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Abstract

Design-by-Morphing (DbM) is a novel design methodology that creates a search space for topology optimization. Traditional design
techniques often impose geometric constraints and, sometimes, the designer’s biases on the design space, which restricts the novelty
of the designs and allows for only small local changes. On the contrary, we show in this paper that DbM does not impose such
restrictions on the design space, thus allowing for a radical and expansive search space with only a few design parameters. We
compare DbM with other methods in the case of design space generation for 2D airfoils and find that DbM can reconstruct the entire
UIUC database with >99.5% accuracy. Furthermore, using a bi-objective genetic algorithm, we optimize the airfoil designs created
by DbM to maximize both the lift-over-drag ratio, CLDnax, and stall angle tolerance, Aa, which results in a Pareto-front of innovative
airfoils that exhibit substantial improvements in both objectives.
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1. Introduction

Airfoil shape optimization is a critical stage in the design of aero-
dynamic components, such as aircraft wings (Drela 1998; Besnard
et al., 1998; Vicini & Quagliarella 1999; Elham & van Tooren 2014)
and wind-turbine blades (Li et al., 2010; Ju & Zhang 2012; Ribeiro
et al., 2012; Grasso 2012; Chehouri et al., 2015; Ali & Kim 2021). The
airfoil optimization process typically involves three main com-
ponents: shape parametrization, airfoil evaluation, and optimiza-
tion. Among these, the parametrization method defines both the
design space and the complexity of the optimization problem. To
ensure effectiveness, a desirable parametrization technique must
be able to encompass a wide design space using a modest amount
of design parameters (Sobester & Barrett 2008; Sripawadkul et al.,
2010; Masters et al., 2015; Chen et al., 2017). This is particularly im-
portant during the initial design phase, where minimum geomet-
ric constraints are imposed, and the flexibility to make significant
changes during optimization is beneficial.

Shape parametrization methods differ in their fidelity and con-
trol ranges (Masters et al., 2015; Sobester & Barrett 2008) and can
be placed on a virtual spectrum according to the geometric scope
of each design parameter. At one end of the spectrum, adjusting
a single parameter alters a local section of the airfoil, which offers
precise shape control but modifies the shape slowly. At the oppo-
site end, each design parameter affects the global contour of the
airfoil (Sobester & Barrett 2008).

Atthe local end of the spectrum is the discrete method (Jameson
1988), where the design parameters are exactly the discrete points
that define the airfoil surface. Since the position of each point
can be adjusted, the design space is potentially limitless (Samareh
2001) and precise local control with high fidelity can be achieved.
However, a substantial number of surface points are needed to

accurately describe an airfoil shape, which complicates the opti-
mization problem. Gradient-based optimizers are frequently em-
ployed to mitigate the increased complexity, but they are likely to
get stuck at a sub-optimal solution during the optimization.

As the geometric scope of each parameter is expanded, there
emerge the classical approaches that are based on the curve-
fittings of regional features or control points. For example, the
popular parametric section (PARSEC) method (Sobieczky 1999)
uses 11 or 12 parameters to represent major sectional features of
an airfoil, including leading edge radii and upper and lower crest
locations, and constructs the airfoil surface using a sixth-order
polynomial. Another popular method is the Bézier parametriza-
tion (Farin 1993), which constructs the upper and the lower sur-
faces of the airfoil through the Bézier curves defined by pre-
chosen control points. Additionally, a hybrid of the two tech-
niques, Bézier-PARSEC parametrization, was introduced by Rogal-
sky & Derksen (2009), which uses the parameters of the PARSEC
method to define the Bézier curves that form the shape contours.
One main issue with the above methods is their inability or in-
efficiency to include high-fidelity features; the PARSEC and the
Bézier-PARSEC methods both have a fixed number of parameters
and a limited range of fidelity, while the Bézier parametrization
requires higher-degree Bézier curves to describe complex shapes
which are inefficient to calculate (Samareh 2001).

To consider finer details of airfoils or, equivalently, to represent
more complex curves, either B-splines (Sanaye & Hassanzadeh
2014; Han & Zingg 2014) or non-uniform rational B-spline (NURBS;
Schramm et al., 1995) can be used, which creates curves by con-
necting low-order Bézier segments defined by control points. As
the number of control points increases, these methods move to
the local end of the spectrum and become capable of repre-
senting high-fidelity features, but the computing complexity also
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increases. One way to reduce the number of design parameters
is to group the control points together so that global transforma-
tions such as twisting and thickening can be used as the param-
eters. This is known as the free-form deformation (FFD) method
(Sederberg & Parry 1986; Lamousin & Waggenspack 1994) and is
closer to the global end of the spectrum. A similar method, called
the radial basis function (RBF) domain element approach (Buh-
mann 2003; Wendland 2005; Tang et al., 2020), also exists and
makes use of RBF to exert deformation on the airfoil.

Near the global end of the spectrum, we see methods using
spectral construction of basis functions to form or deform airfoil
shapes. One popular choice of the basis functions is the domi-
nant modes from singular value decomposition (SVD) of an airfoil
dataset (Toal et al., 2010; Ghoman et al., 2012; Yonekura & Watan-
abe 2014; Kedward et al., 2020; Poole et al., 2019). Other choices in-
clude sinusoidal functions of the Hicks-Henne approach (Hicks &
Henne 1978), which create ‘bumps’ on a reference airfoil surface,
and surface functions of the class/shape function transformation
method (Kulfan & Bussoletti, 2006; Akram & Kim, 2021), which
are in the form of the product of a class function and a shape
function generated by a linear combination of Bernstein polyno-
mials. Nonetheless, like many other methods on the spectrum,
these methods also suffer from the so-called curse of dimension-
ality that more basis functions or modes are always required to
resemble high-fidelity features.

Efforts have been made to overcome the curse of dimensional-
ity (Viswanath et al,, 2011, 2014; Cinquegrana & Iuliano, 2018).
A recent work by Chen et al., (2020) applied a generative adver-
sarial network (GAN) to learn the major shape variations of an
airfoil database and use those to parameterize the shapes while
also preserving the high-fidelity features via an additional noise
space. However, like many other dimension reduction methods,
this study assumes that the optimum design is not far from the
database, which is not always true. To address this limitation,
they proposed another GAN-based method that encourages diver-
sity during sample generation (Chen & Ahmed, 2020), but a large
dataset is still required to initialize the training. In contrast, our
paper is motivated by the optimization problem during the early
design stage when few initial designs are available. Therefore, we
are interested in a parametrization method that is capable of rep-
resenting high-fidelity features even when the design parameters
and initial airfoil designs are limited.

In this paper, we apply the Design-by-Morphing (DbM)
parametrization technique to the airfoil optimization problem.
DbM is a novel and universal design strategy that was first intro-
duced by Oh et al., (2018) and has been used in recent years for ge-
ometry optimization of different problems (Oh et al., 2018; Sheikh
& Marcus 2019; Sheikh et al.,, 2022, 2021). As a global method,
it ‘morphs’ homeomorphic baseline shapes together to create
new shapes and is able to interpolate and extrapolate the de-
sign space, allowing for both high-fidelity representation of shapes
without the curse of dimensionality and radical modifications to
the shapes without any implicit geometric constraints (Oh et al.,
2018; Sheikh et al., 2022). This strategy is applicable to a variety of
2D and 3D design problems, and we aim to conduct a special case
study of DbM for the 2D airfoil shape optimization here. Through-
out this paper, we aim to make the following scientific contribu-
tions:

® Application of DbM to 2D airfoil shape optimization, show-
ingits accurate reconstruction of the existing airfoil database
and radical changes in airfoil shapes while being free from ge-

ometric constraints and designers’ biases by extrapolation of
the design space by applying negative weights.

® Evaluation of airfoil design capacity of the DbM strategy and
comparison with other typical 2D airfoil design strategies.

® Sensitivity analysis for the number of baseline shapes con-
vergence analysis compared to conventional airfoil design
strategies is shown, and the significance of extrapolation for
DbM is also shown.

® Optimization within the 2D airfoil search space generated by
DbM using a genetic algorithm (GA) and investigation of the
optimum Pareto-front.

2. Design-by-Morphing

Design-by-Morphing (DbM) works by morphing homeomorphic,
i.e., topologically equivalent, shapes to create a continuous and
constraint-free design search space. It comes with several advan-
tages. To begin with, DbM is valid for shapes of any dimension and
capable of creating exotic shapes because radically different base-
line shapes can be morphed together. Furthermore, DbM does not
impose any geometric constraints on the design parameters. And
the only implicit constraints are the selections of the ‘baseline
shapes’ themselves, which are necessary to prescribe the problem
to be solved. Lastly, it is able to create an extensive design search
space, even when the number of pre-existing designs is small, e.g.,
(Sheikh et al., 2022), by both the means of ‘extrapolation,’ that is
to assign negative weights during morphing, and the inclusion of
irregular or uncommon shapes. The details of DbM for airfoil op-
timization are presented in the subsequent subsections.

2.1 Baseline shapes and morphing

The DbM technique requires two or more homeomorphic ‘base-
line shapes,” mostly chosen from pre-existing designs in the liter-
ature, to create the design space. A one-to-one correspondence
between the baseline shapes must first be established through
some systematic shape collocation methods in either the func-
tional (Oh et al., 2018) or the geometric space (Sheikh & Marcus,
2019; Sheikh et al., 2022). Then the new shapes can be generated by
applying weights to the collocation vectors of the baseline shapes
and summing them together in a linear manner.

For 2D airfoils, the closed shapes can be collocated in the Eu-
clidean coordinate system. It is noted here that all 2D shapes
bounded by a single surface are homeomorphic to one another.
Using the leading edge of each airfoil as origin, each shape can be
collocated by taking fixed and uniformly spaced points along the
x-axis, creating a one-to-one correspondence between the shapes.
This collocation strategy is demonstrated in Fig. 1, and the base-
line shapes used in this paper are chosen from various airfoils in
the literature, which are detailed later. Morphing is performed by
multiplying a specific airfoil shape with a scalar weight, summing
the weighted vectors, and then normalizing them. For a collection
of N baseline shapes, morphing is given by

1 N

P(X) = ———
Y et Wi n=1

WnSn(x). 1)

Here, Sy (x) is the y-coordinate collocation vector of the n'™ base-
line shape, collocated at x = [xo, - - - , x¢] where the ith x-coordinate
x; = |1 — 21/F| and F is the number of collocation points. The first
half of the elements of S, represents the top surface of the airfoil,
and the second half of the elements of S, represents the bottom.
wy € [ — 1, 1] is the morphing weight applied to the y-coordinate
vector of the n™ baseline shape, and negative w, values imply
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Figure 1: An example of DbM. The coordinates of the baseline shapes
are weighted, summed, and normalized to form the coordinates of a
morphed shape.

extrapolation. A visual demonstration of the strategy is presented
in Fig. 2.

2.2 Intersection control

For smooth baseline shapes, applying positive weights, i.e., inter-
polation, will always create smooth shapes. However, applying
negative weights, i.e., extrapolation, may produce non-physical
geometries, such as self-intersections, which have ‘zero-area’ re-
gions, as shown in Fig. 3a. One may discard the morphed airfoil
shapes with self-intersections during the optimization, but that
diminishes the size of our design space. Instead, we recover new
shapes by removing the intersections.

Intersection removal is accomplished by first locating the in-
tersection within the morphed coordinate vector and restructur-
ing the vector by ‘flipping’ it between the intersection points, as
shown in Fig. 3c. The vector is then ‘stiffened’ to remove the ‘zero-
area’ between the intersections by removing the points in their
neighborhoods and linearly interpolating between the broken co-
ordinate vectors. As seen in Fig. 3d, this removes the ‘zero-area’
space and adds some physical area to the shape at the original
intersection point. This process is repeated until all intersections
are removed, e.g., both intersections in Fig. 3 are successfully re-
moved, and finally, a moving-average smoothing filter is applied
to smooth out any sharp edges.

2.3 Selection of baseline shapes

The selection of baseline shapes is a crucial component of the
DbM strategy and ultimately determines the size and novelty of
our search space. Metaphorically, the selection of the baseline air-

foil shapes serves as the gene pool for the morphed airfoils and
its diversity is important for creating a large design space.

One way of selecting the baseline shapes is by performing SVD
or principle component analysis (PCA) on a set of shapes and then
using the dominant modes as the baseline shapes. Methods such
as parametric model embedding Serani & Diez (2023) can help re-
duce the dimensionality of the problem as well. Although these
methods would help in quantitatively choosing baselines, these
methods, however, require an existing dataset that might not be
available in many shape optimization problems (Oh et al., 2018;
Sheikh et al., 2017, 2022). Therefore, while techniques like SVD
and PCA can be easily applied to airfoil shape optimization prob-
lems and provide arguably better baselines, we choose the base-
line shapes qualitatively instead to demonstrate the universality
of DbM even for engineering problems with few existing designs.
In other words, for research purposes, we assume that the airfoil
database is not a priori knowledge at the selection stage, except
for those chosen as baselines.

An additional benefit of directly morphing existing designs is
that, from a human designer’s perspective, it can be more in-
tuitively informative than handling PCA modes. For example,
vertical-axis wind turbines are broadly categorized into drag, lift,
and hybrid categories, so the weights associated with each type
are more informative to a human designer than the weights of
the dominant modes. On the other hand, choosing actual shapes
as the baseline shapes has the advantage that non-conforming
designs can be easily added, as is the case for baseline #19 (mir-
rored Selig airfoil). Conventional techniques may have much more
difficulty adding radical features into the design space, and the
significance of such radical baseline shapes is demonstrated in
the Results section.

We selected 25 shapes (see Fig. 4) from the UIUC airfoil coor-
dinates database (Selig, 2022) as our baseline shapes. They were
picked to ensure diversity and to introduce radical features into
the design space. Our selection of baseline shapes included air-
foils that are either known for high lift-to-drag ratio or good stall
performance, which are commonly used in the literature and the
industry. We also included airfoils with poor aerodynamic perfor-
mances, as well as airfoils with irregular shapes, to provide nov-
elty to the design space. It is worth noting that, unlike in the con-
ventional airfoil optimization processes (Koroglu & Ozkol, 2019),
we deliberately included the bad performers so that our opti-
mization could suppress these features by assigning them neg-
ative weights, which will be demonstrated in greater detail in our
later results. The model names and characteristics of the baseline
shapes can be found in Appendix B. To express shapes as colloca-
tion vectors, each airfoil shape is represented by 4001 coordinates
that span counterclockwise from the upper surface trailing edge
around the leading edge to the lower surface trailing edge, with
equally distributed x-coordinates parallel to the airfoil chord line
of unit length (i.e., F = 4000 in Fig. 1).

2.4 Airfoil design capacity test

As a benchmark, we reconstruct the entire UIUC airfoil database
(Selig, 2022) using DbM to test the robustness of our method and
the representation capacity of the generated design space. Having
noted that one of the key features of DbM is to permit shape ex-
trapolation, we compare our reconstruction results against the re-
sults of an interpolation-only DbM (DbM-I) where all DbM weights
are non-negative. In addition, we performed the same test on
three conventional 2D airfoil shape parametrization methods:
PARSEC (Sobieczky, 1999), NURBS (Schramm et al., 1995), and the
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Figure 2: Application of DbM to 2D airfoils. Column 1 shows the baseline shapes. Column 2 depicts the elements of the collocation vectors of the
baseline shapes plotted as a function of the index i of the collocation vector. Column 3 shows the weighted elements of the collocation vector plotted
as a function of the index i of the collocation vector. Column 4 shows the resultant collocation vector of the morphed shape and the morphed shape
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Figure 4: Twenty-five baseline airfoil shapes chosen from the UIUC
database (Selig, 2022). See Appendix B for further details.

Hicks-Henne approach (Hicks & Henne, 1978). These tests were
meant to answer the following questions:

® How much does the extrapolation expand the design space?

Extrapolation is undoubtedly better at creating a wider de-
sign search space. However, we shall focus on how quantitatively
the search space is broadened by extrapolation, so as to con-
firm whether this feature genuinely distinguishes DbM from other
generic approaches.

® [s DbM comparable to conventional airfoil shape
parametrization methods in terms of shape reconstruc-
tion?

It should be noted that we selected the baseline airfoil shapes
for DbM solely based on the qualitative principle of ensuring di-
versity and intentionally avoided the use of a selection method
that requires a known, rich design database in advance. We shall
demonstrate that the answer to the above question is still positive,
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Figure 5: Geometric demonstration of MAE between target and
reconstructed airfoil surfaces.

even though DbM is not a design method specifically for airfoils,
unlike the methods that the DbM is compared with.

For all of the 1620 airfoils in the UIUC database (Selig, 2022),
we obtained the closest representation of each target shape by
running a global optimization of the input design parameters that
minimizes mean absolute error (MAE) between the target and the
reconstructed airfoil surfaces. A geometric demonstration of MAE
is provided in Fig. 5. Using the functional expression of an airfoil
y(x;) =y; (0 <i<F),asintroduced in Fig. 1a,

2 (F .
MAE(target, reconstructed) = 7 / yirodi, (2)
0

where yermor = [yreconstructed _ 49 When we express the error in
percentage terms, i.e., (MAE x 100)%, we emphasize that the error
is described as a proportion of the area difference to the square of
the chord length, as all airfoil shapes are normalized to maintain
a unit chord length. The factor of 2 in equation (2) is present for
this reason.

To obtain the closest representation, we utilized a MATLAB-
based single-objective GA: ga. The population size is set to 100,
and the maximum number of generations is set to 500. The lower
bound for MAE was set to 1.44 x 1073 (or 0.144%) from equation (2)
for a chord length of 1, in accordance with the lower limit of
Kulfan’s typical wind-tunnel tolerance (Kulfan & Bussoletti, 2006;
Masters et al., 2017). To ensure a fair comparison, all the airfoil
parametrization methods tested underwent the same optimiza-
tion scheme for shape reconstruction, with similar numbers of
design parameters (e.g., 25 design parameters for the DbM) ex-
cept for PARSEC, which has fixed design parameters. In general,
the fidelity of these design methods improves as the number of
design variables increases (Masters et al., 2017).

It is important to note that the objective of our reconstruction
tests is to examine both the efficiency and the accuracy of a given
parametrization method in the context of shape generation dur-
ing the design process, which must be distinguished from the ac-
curacy in surface fitting. NURBS, for instance, can achieve arbi-
trary accuracy for shape fitting if a good initial guess of the pa-
rameters is provided, but it may not be ideal for shape generation
as the shape it constructs varies slowly during the optimization
process. Accordingly, all the reconstruction tests are initialized in
a consistent manner to provide a meaningful comparison. In par-
ticular, the initial population is set to contain a single parameter
set that represents the profile of NACA 0012 with the remaining
sets randomly distributed. The results of the reconstruction tests
can then be understood as the ability of a method to create var-
ious shapes, including the common designs that have been col-
lected in the UIUC database, precisely within a certain number
of optimization generations. And the progressive improvement in
the design space reconstruction can be observed as a function of
the number of GA generations.

target
i

—&— PARSEC —+— NURBS Hicks-Henne —#—DbM = —¢-~ DbM-I|
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o]
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Percentage of Airfoils
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0 100 200 300 400 500
Number of GA Generations

Figure 6: Percentage of airfoils reconstructed within the MAE tolerance
of 0.5% using DbM, compared to those from DbM only with interpolation
(DbM-I) and three airfoil shape parametrization methods (see Table 1).

Applying DbM for the reconstruction of the UIUC database, we
found that 1618 of the 1620 airfoils of the entire UIUC database,
were reconstructed with an MAE error <1%. Even for the two air-
foils with the highest error, the DbM reconstruction still resulted
in an MAE error of less than 1.5%. Figure 6 displays the percentage
of airfoils that were reconstructed within the tolerance of 0.5%
MAE error, with respect to the total number of GA generations.
A comparison between DbM and DbM-I reveals that the extrap-
olation feature of DbM significantly contributes to the improved
performance of the method, suggesting that the extrapolation fea-
tureis indispensable for DbM. On the other hand, at the maximum
GA generation, the total percentage of reconstructed airfoils with
an MAE error <0.5% increases from 60% (DbM-I) to 98% (DbM). As
a result, DbM converges faster than any other conventional ap-
proaches tested here.

To provide better insight, we plot the reconstruction results
of 10 airfoil shapes in Fig. 7, which represent the less successful
reconstruction attempts. In particular, we ranked the results
based on the unweighted average of all MAE errors from the five
tested methods for each airfoil case and made the selections
at every percentile bin from the worst. These 10 shapes are
depicted in row-major order, from one in the 90™ percentile
(HOR 20, average MAE 0.35%) to one in the 99 percentile (FX
79-W-660A, average MAE 1.1%). Even these less successful results
appear to reasonably reconstruct the target airfoil shapes. It is
worth paying attention to the worst case, FX 79-W-660A, which is
designed for use on a thick rotor blade of a wind turbine and far
from the typical streamlined airfoil shapes. DbM-I encountered a
notable failure in this case because none of our chosen baseline
airfoil shapes for DbM were as thick as the target shape. As
a result, the reconstruction just ended up with the thickest
baseline airfoil shape, #23 (see Fig. 7e). This specific example
underscores the significance of the extrapolation feature of DbM,
which provides the opportunity to explore extraordinary designs,
such as much thicker airfoils in this case. We also observed that
NURBS occasionally produced thorn-like local structures (e.g., at
the leading edge of GOE 511 in Fig. 7b), which resulted from the
locally deforming nature of NURBS. These artifacts are normally
removed by fitting software, such as FitCrv in Rhinoceros 3D, or by
manual handling of the control points by the designer.

Another way DbM explicitly introduces novelty is by using
novel shapes directly as baselines. Generally speaking, novel de-
signs that contain unconventional features can be challenging to
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Table 1: Airfoil shape parametrization methods for comparison.

Method Design variables (DVs) # of DVs Remark
PARSEC 7P : Leading edge radii 12 Fixed # of parameters
xup/lo, yup/lo - Crest coordinates
y;:f/ . Crest curvatures
Vte, tre : Trailing edge mid-position and thickness
are, Bre : Trailing edge direction and wedge
NURBS x?ﬁff , yé‘fr’{}f’ : Control point coordinates (i=1,---, 4) 26 Third—grdgr B-spline Evenly
w:w/lo - Curve weights (i=1,--, 4) distributed knots
Y . Trailing edge positions
Hicks-Henne wl‘pﬂo :Bump widths (i=1,---, 6) 24 Base profile: NACA 0012
m:%P/‘O : Bump magnitudes (i=1,---, 6) Cosine-distributed bump points
DbM (Present) w; :  Morphing weights (i=1,---, 25) 25 See Fig. 4 for the baselines
Target — PARSEC Target —1 NURBS Target Hicks-Henne Target — DbM Target 1 DbM-I
HOR20 AS6094 HOR20 AS6094 HOR20 AS6094 HOR20 AS6094 HOR20 AS6094
CC e~ C= = & ——— @
GOET38 Es52 GOET38 E552 GOET38 E552 GOET38 ES52 GOET38 ES52
SPAT21LA FX69274 SP4T21LA FX69274 SP4T21LA FX69274 SP4T21LA FX69274 SP4721LA FX69274
GOE244 GOES11 GOE244 GOES11 GOE244 GOES11 GOE244 GOES11 GOE244 GOES11
A .. . . C e =
FXT6MP160 FXTIWGE0A FX76MP160 FXT9WEB60A FX76MP160 FX79WE60A FXT6MP160 FXTIWGEE0A FX76MP160 FXTIWE60A
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Figure 7: GA-based reconstruction of pre-existing airfoil shapes using different design parametrization methods, after S00 GA generations in total.
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Figure 8: Reconstruction of a deliberately “mirrored” airfoil shape. In
contrast to convention, the blunt edge is at x = 1 and the sharp edge is
at x = 0. PARSEC and the Hicks-Henne method, which implicitly define
edge geometries, face challenges in reconstructing the mirrored edges.
NURBS looks to perform well due to its better flexibility in adjusting
curvatures through weights. DbM has no problem because it can take
such non-conforming shapes as baselines as needed.

construct. For example, the ‘mirrored’ airfoil in our DbM base-
line shapes (#19) is considered off-design by conventional airfoil
parametrization methods that prescribe fixed edge geometries for
the airfoil, such as relatively ‘blunt’ and ‘sharp’ edges at x =0 and
x = 1, respectively. Figure 8 displays the results of the GA-based
reconstruction of the mirrored airfoil using the tested methods.
PARSEC and the Hicks-Henne approach, which implicitly define
edge geometries for airfoils, clearly struggle in reconstructing the
mirrored edges. At x = 1, these methods still exhibit hints of
the sharp edge in their reconstructed shapes. On the other hand,
NURBS performs well as it is more flexible in handling curvatures
through weight parameters. However, although not considered in
this study, if one wishes to introduce a tentative higher-order fea-
ture, such as a stepped wing (Lumsdaine et al., 1974), NURBS may
require a larger number of design parameters (i.e., more control

Relative Percentage of
Airfoils Reconstructed (%)

100 4
80 A
60 -
40
3
0 - T T T T
5 10 15 20 25

Number of Design Variables

Figure 9: Relative percentage of airfoils reconstructed within the MAE
tolerance of 0.5% by DbM using a subset of the chosen baseline shapes
(see Fig. 4) to those using all 25 baseline shapes at the maximum GA
generation. All tests were done five times with five random subsets for
each case. Error bars indicate the standard deviation of the five test
results.

points and weights). On the contrary, DbM would only require one
additional design parameter (i.e., by adding it as a new baseline
shape) to introduce novelty regardless of the complexity of the
new design.

For the current study, we note here that we used 25 base-
lines based on the computational budget available, and our study
shows that the number of baseline shapes was sufficient. How-
ever, a smaller number of baseline shapes might have proven to
be enough as well to this end. Fig. 9 presents a sensitivity study
of DbM in relation to the number of design variables (baseline
shapes) used, where the convergence trend confirms that 20-25
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Figure 10: General flowchart of airfoil optimization via DbM.

baseline shapes are sufficient. Note that the current sensitivity
study is restricted to the same baseline shape set in Fig. 4. All tests
were done five times with five random subsets for each case to
consider sensitivity to the choice of baseline shapes within the
subset. Future efforts will be directed toward conducting addi-
tional sensitivity analyses of DbM by varying the selection of the
initial 25 baseline shapes themselves.

Overall, we have shown that DbM is competitive against con-
ventional local parametrization methods despite being on the
global end of the spectrum. In addition, DbM’s ability to gener-
ate extraordinary designs through the extrapolation feature en-
hances the chances of finding novel solutions that deviate from
the inputs (baseline shapes), which is important because the aero-
dynamic performance of an airfoil can be non-intuitively corre-
lated with geometric features of the airfoil. More importantly, DbM
is not just a method for design parametrization, but rather, a uni-
versal design strategy for broader design search. While we have
compared DbM to airfoil shape parametrization methods in the
context of airfoil optimization, DbM can be useful for any type of
problem that aims to introduce more novelty in design search.

3. Optimization Methodology

Our airfoil optimization methodology is built around the DbM
technique introduced in Section 2. As shown by the flowchart
in Fig. 10, the optimization starts with the selection of the base-
line shapes and then evaluates and optimizes the airfoils formed
by morphing these baseline shapes using DbM. Our methodol-
ogy does not rely on a specific airfoil evaluation tool or a specific
optimizer, and discussions on their choices are provided in Sec-
tions 3.1 and 3.2, respectively.

3.1 Airfoil evaluation

Our optimization methodology is not limited to a specific airfoil
performance analyzer. Any reliable CFD or experimental meth-
ods can be used. For optimizing airfoil shapes using CFD-based
solvers, the evaluation of the objective functions (i.e., aerody-
namic properties) is typically divided into two categories: the full
Reynolds-averaged Navier-Stokes (RANS) based approach and
the interacted viscous/inviscid zonal approach. The RANS-based
approach is computationally expensive and demands a highly
efficient optimizer. To accommodate a large number of design
variables, which is common in aerodynamic designs, a gradient-
based optimizer coupled with adjoint methods for computing
derivatives is deemed most feasible (Kenway & Martins 2016;
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He et al., 2019; Piotrowski & Zingg 2022). On the other hand,
the viscous/inviscid zonal approach, which combines separated
solutions for inviscid external flow and viscous shear layer flow
in an iterative manner to form a continuous profile, is faster and
less expensive.

Among a number of inviscid/viscous zonal airfoil analysis
codes, XFOIL (Drela 1989) has been the most dominant and widely
adopted program (Ronsten 1992; Giguére & Selig 1998; Jones et al.,
2000; Mueller & DeLaurier 2003; Johnson et al., 2005; Batten et al.,
2006; Lafountain et al., 2010; Ramanujam & Ozdemir 2017; Chen
& Ahmed 2020). It combines a vorticity panel method for exterior
flow with an integral boundary-layer method for viscous bound-
ary layers and uses an e’-type amplification formulation to deter-
mine the transition point (Drela 1989). Its suitability for airfoil de-
signs has been demonstrated in the past literature, where its pre-
dictions of aerodynamic properties are found to be in good agree-
ment with both wind-tunnel experiment data (McGhee et al., 1988;
Seliget al., 1995) and the RANS-based simulation results (Morgado
et al., 2016).

While our choice of the evaluation tool is flexible, for this work,
we opt for XFOIL due to its acceptable accuracy under our flow
condition and its low computation cost. Its widespread usage also
allows for quick reproduction of our optimization results. Itis used
in a black-box manner so that any other commercial or in-house
airfoil analysis tools can be incorporated into our optimization
framework if necessary. Our detailed airfoil evaluation setup is
given in Appendix B.

3.2 Optimization

When a set of solutions is given, the most optimal solution within
the set can be determined without difficulty for single-objective
optimization problems, which is the case for most of the previous
airfoil optimization studies (Tang et al., 2020; Ashenafi et al., 2022;
Chen & Ahmed 2020). However, for multi-objective optimization,
multiple and potentially conflicting objectives must be consid-
ered simultaneously to determine the optimal answer in the so-
lution set (Miettinen 2004; Gunantara 2018). If the designer has
a quantitative ranking of the objectives, these objectives can be
combined together to formulate a single-objective problem, but
when no such ranking exists, constructing a Pareto-front is the
most common methodology (Barron & Barrett 1996; Das & Den-
nis 1997; Chang 2008), which has applications in the design of
architected materials (Ghachi et al., 2020; Vangelatos et al., 2021)
and turbo-machinery (Schlieter & Diugosz 2020; Xu et al., 2021;
Chehouri et al., 2016; Rodrigues et al., 2016; Wang et al., 2011; Rao
et al., 2007), process engineering (Nguyen 2021; Gao et al., 2018;
Wang et al., 2020), shape design (Li et al., 2020; Correia et al., 2021,
Ciardiello et al., 2020), and structural engineering (Fox et al., 2019;
Afshari et al.,, 2019).
We pose the multi-objective optimization problem as

Woy: = argmax(f(w)), (3)
weWw

where f(w) = [f1(w), fr(w),---, fx(w)]. Here, f1, -+, fx are the K ob-
jectives to be maximized, and w is the design variable vector.
Generally, w is a d-dimensional vector defined over a bounded
set W c R? representing d continuous variables. {wopt} is a set of
Pareto-optimal solution vectors, i.e., vectors that are not Pareto-
dominated by any other vectors. For the reader’s convenience, it is
noted that a design variable vector W is Pareto-dominated by an-
other design variable vector w if fp(W) < fp(W) forall k € {1, -, K}.
To obtain the Pareto-front, especially when objectives cannot be
weighted or when a non-convex black-box function is considered,
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evolutionary or GAs are a natural choice (Wang et al., 2020; Gao
et al., 2000). In fact, these algorithms have been commonly imple-
mented in many previous aerodynamic optimization studies due
to their gradient-free nature and wide search domain (Zhao et al.,
2014; Skinner & Zare-Behtash 2018; Rahmad et al., 2020; Akram
& Kim 2021). An alternate choice is the Bayesian optimization
method, which has been proven to be efficient when the cost func-
tions are expensive to compute (e.g., when using experiments or
CFD as an evaluation tool; Sheikh & Marcus 2022).

Our study considers a bi-objective (K = 2) 2D airfoil shape op-
timization. In particular, we optimize the shape of a subsonic air-
foil operating in an incompressible flow with Re = Uc/v of 1 x 10°,
where U and v are the free-stream flow speed and fluid kinematic
viscosity, respectively, and c is the airfoil chord length. The param-
eter to be optimized is the morphing weight vector for the DbM
technique, defined as:

W= (Wi, -, Wos) € D, 4)

where D=[-1,1]c R and w; (i = 1, 2, -, 25) is the weight ap-
plied to the i™ baseline shape. The design objectives are the
maximum lift-drag ratio over all possible angles of attack «, i.e,,
f1(w) = CLDmax(w), and the difference between the stall angle as
and the angle where the maximum lift-drag ratio occurs, ie.,
f2(w) = Aa(w), often called the stall angle tolerance. This partic-
ular combination of design objectives has applications in the de-
sign of vertical-axis wind turbines (Sheikh & Marcus 2019), and
the precise definitions of these design objectives are explained in
Appendix A. Both objectives are evaluated using XFOIL, which is
efficient enough to be used with the GA.

We use a MATLAB-based variant of the popular NSGA-II al-
gorithm gamultiobj (Deb et al., 2002), which is a controlled, elitist
GA. Its practical employment can be found in Keane & Voutchkov
(2020) for the purpose of airfoil design optimization, as in the case
with ours. Our initial population consists of the single-objective
optimums of each design target and random samples in the de-
sign space. A population size of 372 is used with a total of 3000 GA
generations. Within each generation, solutions are actively ranked
to maintain diversity and prevent overcrowding in the Pareto-
optimal solution set. Our setup was tested using the commonly
used set of ‘ZDT’ benchmark problems for multi-objective prob-
lems, as suggested by Zitzler et al., (2000). The test problems and
validation results are detailed in Appendix C.

4, Results

A Pareto-front on the A« - CLDygx Objective plane resulting from
a total of 3000 generations of the GA runs is depicted in Fig. 11.
See Appendix C for how we validated the maximum generation
number. The convergence of the front is confirmed by the large
number of generations with a population size of 372, involving
around 1.1 million XFOIL evaluations of CLDy,.x and Aa. Without
duplicates, a set of 80 Pareto-optimal airfoil shapes was obtained
via DbM from the 25 chosen baseline shapes. For comparison, the
whole UIUC database (Selig, 2022), as well as the baseline cases,
are evaluated and plotted in Fig. 11 together. It is noted that base-
line #19 has zero CLDpqx and A« because it is intentionally mir-
rored, and XFOIL failed to evaluate its aerodynamic performance.
We assigned zero values to cases of failure like this because they
represented airfoil geometries found to be aerodynamically unvi-
able in the XFOIL space. The GA optimization successfully devel-
oped the Pareto-front, with two ends at (CLDpax, Ae) = (30.63, 40°)
and (CLDyqx, Aa) = (264.17,11°). Even in the largest maximum lift-
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Figure 11: The Pareto-front consisting of the optimal airfoil shapes,
resulting from the NSGA-II 3000 generation runs. The grey points are the
whole evaluation outcomes of the UIUC reference database (Selig, 2022),
with the DbM baseline cases in the present study highlighted as red
hollow circles with respective indices. See Appendix D for the clustering.
Rechorg = 1 x 106.

drag ratio case, the angle of attack gap between the stall and de-
sign pointis 11°, providing the airfoil with a decent tolerant range
for off-design operations.

The Pareto-front is divided into three different clusters, each
constituting a segment of the front that does not overlap with the
others. It is worth noting that the non-overlapping division of the
front is a result of clustering through Principal Component Anal-
ysis (PCA) rather than being manually assigned. The details of the
clustering are provided in Appendix D.

Fig. 12 depicts nine representative optimal airfoil shapes on the
Pareto-front, arranged in ascending order of CLDpgy. From each
cluster, three airfoil shapes with distinct objective function val-
ues have been selected for representation. Also, note that Fig. 12a
shows the extreme case of the smallest CLDyx and largest Aa,
while Fig. 121 depicts the opposite extreme of the largest CLDyqx
and smallest Aw«. It can be seen that within each cluster, the over-
all shape remains unchanged, with only a gradual decrease in
airfoil thickness as CLDyx increases. Since thin airfoils such as
bird-like airfoils (Ananda & Selig, 2018), e.g., #13 and #14 of the
baseline shapes, are known for their high CLD performance, the
trend of airfoil thickness observed in the Pareto-front appears to
be reasonable.

Cluster 1, made up of 48 optimal airfoil shapes, resembles the
total mean of the Pareto-front, which is the average of all air-
foil shapes on the Pareto-front (see Fig. 14a). This makes sense
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Figure 12: Nine representative Pareto-optimal airfoil shapes. (a)-(c) are in cluster 1, (d)—(f) are in cluster 2, and (g)-(i) are in cluster 3. See Appendix D

for the clustering.

as they make up the majority of airfoil shapes located on the
front. Moreover, this cluster is located near the origin in the PCA-
projected weight space (see Fig. D1 in Appendix D), indicating that
no radical morphing of the airfoil shape took place from the mean
shape.

Next, cluster 2 contains 24 optimal airfoil shapes. Compared to
those in cluster 1, the most distinguishing feature is their narrow
trailing edge regions, which are typically favorable for increasing
lift. However, these airfoils are not greatly different from the origin
in the PCA-projected weight space and are close to the total mean
Pareto-front.

Finally, eight optimal airfoil shapes are found in cluster 3
from the optimization. This cluster includes the airfoil shapes
experiencing more drastic morphing than the other clusters.
This is manifested by the fact that they are the thinnest air-
foils where the leading edge region’s thickness also becomes
narrow.

The mean weight distributions with respect to 25 original base-
line shapes are shown in Fig. 13. Overall, the weight distributions
of the three clusters conform to the weight distribution of the
total mean. It turned out that baseline shape #13 (model name:
AS6097) was commonly the most significant for morphing. Since
this baseline shape has the best in CLDyx and the second best
in Ae among the 25 baseline shapes (see Fig. 11), it was likely to
persist in the GA runs over generations against the selection pres-
sure that only sorts out dominant individuals in terms of both
CLDmax and Aa. However, excellence in the objectives of an indi-
vidual baseline shape does not necessarily guarantee its survival,
which is the case for the globally best baseline shape #6 (model
name: AH 79-100C). An individual’s superior ‘phenotype’ may be
no longer revealed or even suppressed after the morphing is done
and all ‘genes’ are mixed up. In the same sense, inferiority in the
objectives of an individual does not necessarily result in elimina-
tion, as demonstrated by the ‘mirrored’ baseline #19.

As discussed from the examination of the morphed airfoil
shapes, both cluster 1 and 2 show no significant differences from
the total mean Pareto-front. Through small shape variations in
shape from the total mean Pareto-front, as seen in Fig. 14a, reach-
ing these optima would be relatively easy. In contrast, cluster 3
has a number of weights that are quite different from the mean
(e.g., #6 and #11) and substantial morphing would be required if
one starts with the total mean airfoil shape.

In the context of the present study, each axis obtained by PCA
can be considered as a unique morphed airfoil shape because the
25 PCA coefficient vectors defined in the weight space D?* are or-
thogonal to each other. These 25 new morphed airfoils span the
entire design space and therefore can serve as alternative baseline
shapes in lieu of the original ones. More importantly, the domi-
nance of the first two PCA axes with respect to the data point vari-
ance, accounting for 95% of the total variance explained, suggests
that the major geometric features of the 208 airfoil shapes we
found through optimization are virtually generated by the mor-
phing of these two new airfoils. A small variance of a PCA axis
indicates that the data points are not significantly deviated from
their mean on the axis. In other words, the baseline shape corre-
sponding to this PCA axis has a marginal impact on morphing the
airfoil shape for optimization.

Once we pick two baseline shapes from the first two domi-
nant PCA axes, whose associated collocation vectors are denoted
as, e.g.,, P; and P,, and use them to morph the airfoil shape ob-
tained from the total mean of the Pareto-optimal weight vector
set, which corresponds to the mean collocation vector Py, we
gain a better understanding of how the morphing, especially along
each PCA axis, influences major geometric changes in the opti-
mal airfoil shapes. These airfoil shapes are depicted in Fig. 14,
where the black and red surfaces are distinguished to emphasize
that they represent the first and second halves of the collocation
points, respectively. For example, we note that the orientation of
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Figure 14: Morphed airfoil shapes generated by the optimal weight
vectors, representing (a) the total mean of all optimal airfoils’ weights,
(b) the coefficients of the PCA axis having the most variance, and (c) the
coefficients of the PCA axis having the second-most variance. The black
and red surfaces correspond to the first and second half of the
collocation points, respectively.

the two surfaces of P; is mirrored in comparison to that of Ppean,
meaning that the stronger the weight of PCA axis 1 in the positive
direction is, the narrower the morphed airfoil shape gets.

5. Discussion

Most shape parametrization methods rely upon the careful selec-
tion of geometric constraints and parameters, which determines
the likelihood of success. The fidelity offered by such methods
largely depends on the number of parameters chosen. Moreover,
these designs are limited by parametric constraints and implicit
designer bias, making it difficult to perform extrapolation or make
radical global changes. Data-driven methods typically rely on the
assumption that the optimum solutions are not far from the train-
ing data set, which again limits the ability to make radical shape
changes.

DbM, on the other hand, creates a design space that is not
inhibited by geometric constraints, enables extrapolation from
the design space, which is particularly useful for airfoil design,
and is applicable to a wide range of engineering design prob-
lems. It does not suffer from the curse of dimensionality when
parameterizing airfoils by control points and allows for a high-
fidelity representation of airfoils without increasing the num-
ber of independent parameters in the problem. Using only 25
baseline shapes from the UIUC database, we were able to recre-
ate 99.87% of the UIUC database with an MAE error <1%. We
also showed that extraordinary and broad searches are possi-
ble using DbM. By applying it to the bi-objective shape optimiza-
tion with the objectives of maximizing CLDpgy and Ae«, we could
achieve significant results compared to our baseline shapes. We
posit that for the design parametrization of airfoils as well as
other 2D/3D shapes, DbM should be the preferred method for cre-
ating an unconstrained, unbiased, and non-database-driven de-
sign space that allows for radical modifications, which can of-
ten result in non-conforming shapes. In this paper, our qualita-
tive selection of 25 baseline shapes adequately spanned the de-
sign space with tolerable error. However, it would be possible that
even a smaller number of baseline shapes than 25 could suc-
cessfully construct the design space if some of the current base-
line shapes were redundant. To further understand DbM, our fu-
ture work will focus on performing sensitivity analysis of DbM on
the baseline shape selection and applying DbM for the design of
turbo-machinery.
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6. Conclusions

The DbM design strategy creates a design space that contains
novel and radical 2D airfoils that are not constrained by geomet-
ric parameters or designer bias. Optimization within the design
space created, for the dual objectives of CLDyqy and Ae, resulted
in remarkable improvements in both objectives and provided a
Pareto-front of optimal airfoil designs. The final airfoils showed
significant advancements compared to the input baseline shapes.

Overall, in our optimization study with respect to the 2D air-
foil optimization problem, DbM is a suitable method for design
space creation. In addition, our methodology is highly adaptable
and can be utilized for shape optimization of other fluid machin-
ery. Our ongoing work includes the applications of DbM in con-
junction with Bayesian optimization to 3D airfoil optimization and
vertical-axis wind turbine optimization problems.

Acknowledgments

The authors would like to thank Prof. Omer Savas, affiliated with
the University of California, Berkeley for providing insightful dis-
cussions regarding airfoils and aerodynamics. The authors ac-
knowledge the use of the Extreme Science and Engineering Dis-
covery Environment, supported by National Science Foundation
grant number ACI-1548562 through allocation TG-CTS190047.

Data and Materials Availability

The data needed to evaluate the conclusions are present in the
paper and Appendices. The data files and optimization setup will
be posted in a public repository upon publication of the paper.

Funding

No funding information needs to be disclosed. No funding was
recieved.

Nomenclature
Alphabets

y-coordinate collocation vector of a morphed airfoil
y-coordinate collocation vector of a baseline airfoil
Airfoil chord length (m)

Drag force of an airfoil per unit span (N m~1)

Lift force of an airfoil per unit span (N m~1)
Free-stream flow speed (m s~?)
Design-by-Morphing weight factor

o

SRR

Greek Letters

a:  Airfoil angle of attack (°)

as:  Ailrfoil stall angle (°)

Aa: Stall angle tolerance, the range of o between the stall point
and the maximum lift-drag ratio point (°)

v:  Fluid kinematic viscosity (m? s7?)

p:  Fluid density (kg m~3)

Dimensionless Groups

Re: Reynolds number based on airfoil chord length, Uc/v
Cq: Drag coefficient of an airfoil per unit span, 2d/(pU?%c)
Cr: Lift coefficient of an airfoil per unit span, 21/(pU?c)

CLD: Lift-drag ratio of an airfoil, C;/Cy4
CLDmax:  Maximum lift-drag ratio of an airfoil, max,CLD(«)
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Appendix A. Aerodynamic Optimization
Objectives

Airfoil optimization has become a common practice in aerody-
namic design problems that involve maximization of one or more
performance parameters of airfoils. We mainly consider the fol-
lowing two performance parameters: the lift-drag ratio and stall
angle. Given the flow speed U, fluid density p, and airfoil chord
length c, the lift and drag coefficients of an airfoil per unit span at
an angle of attack «, C, and Cy, are expressed as:

1(ex)

_ d(a)
- Lpuke’

= 7%pU2C-

Ci() Cala) (A1)
where | and d are lift and drag force per unit span, respectively,
both of which change with respect to «. In this paper, these pa-
rameters are predicted using XFOIL (Drela, 1989), a program for
analyzing a subsonic 2D airfoil, with varying « and then used for
optimization. Based on C; and Cy, the lift-drag ratio CLD is calcu-
lated as:
G (@)
CLD(a) = : A2

@)= ) (a2)
On the other hand, we define the stall angle «s as an angle of
attack where C; reaches its first local maximum as the angle in-
creases from 0°, or:

= mine where 3§ > 0 such that

>0

]
B
I

C (@)

%

G Yxela—38 a+3). (A3)

Note that this definition is more conservative than the typical def-
inition of stalling, where the flow at the rear region begins to fully
separate and C; is globally maximized. a5 is occasionally smaller
than the global maximum of C;. Nonetheless, this approach helps
avoid overestimation of the stall angle, which is expected to oc-
cur in XFOIL due to the nature of its flow solver having a limited
accuracy in stall and post-stall conditions.

CLD and as have been typically considered to be significant in
characterizing airfoil performance. For example, when it comes
to lift-type wind turbines, the point where CLD is maximized is of-
ten chosen as the design point. However, since wind turbines can-
not always operate under design conditions, as needs to be addi-
tionally considered to evaluate how far they run under increasing
lift conditions. For well-designed airfoils, as generally occurs later
than the design point, which yields operational tolerance beyond
the design point. Consequently, the stall angle tolerance Aa, i.e.,
the range between these two angles of attack, expressed as

Aa = max (O, o — argmax CLD(a)) , (A4)
aeR

can be a proper choice to evaluate the off-design performance (Li

et al., 2013). Fig. A1 depicts a schematic diagram of how CLD and

A« are determined on airfoil performance curves.

Appendix B. Baseline Airfoil Shapes and
Evaluation

Our optimization methodology does not rely on one specific air-
foil evaluation tool. To compare our results with previous litera-
ture and help future researchers quickly reproduce our results,
we used XFOIL (Drela, 1989) in the present study. The two design
objectives, CLDmqx and Ac, are obtained from the C; and C; data
calculated by the XFOIL at different angles of attack (see Fig. Al).
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Figure Al: Schematic diagram of airfoil performance curves.

For improved efficiency and consistency, we used XFOIL to gen-
erate performance data and did not rely on any of its built-in pan-
eling features. The conditioning and re-paneling of the morphed
airfoil coordinates are custom-built at the end of our DbM algo-
rithm, transforming the coordinates into 200 or 250 vortex panels
with a relatively higher concentration where the curvature is high.
To reduce evaluation time, we first performed a rough scan with
an o increment of 1° to estimate the range determining A, and
then finer scans for CLDpgx and A« separately with an « incre-
ment of 0.25° within and around the estimated range of Ao from
the initial rough scan.

It is worth noting that XFOIL uses a global Newton's method
(Drela, 1989) to solve the boundary layer and transition equa-
tions simultaneously and uses the solution from the previous an-
gle of attack as a starting guess. As a result, ill-conditioned airfoil
coordinates and the occurrence of flow separation can both lead
to non-convergence of the XFOIL evaluation. To ensure the robust-
ness and correctness of our airfoil evaluation, our XFOIL wrapper
attempts to reach convergence by restarting the root-finding with
a fresh starting guess and gradually increasing the number of pan-
els. If both attempts fail, the wrapper will check convergence at
neighboring points, which will indicate whether flow separation
occurs or not. Besides non-convergence, we further verify the cor-
rectness of Newton’s method by comparing the calculated viscous
and inviscid drag coefficients. The latter is determined purely by
the potential flow theorem and has to be smaller than its viscous
counterpart due to its neglect of the friction (viscous effect). Any
angles with incorrect results will undergo the same treatment as
non-converging ones, hence ensuring the correctness of our airfoil
performance evaluation. A comparison between our XFOIL eval-
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uation and an existing database of the same airfoils under the
same flow conditions is provided in Table B1.

Appendix C. Optimization Test Functions
and Validation

We used the multi-objective problems suggested by Zitzler et al.,
(2000) to test our GA setup. The details of the test functions are
given in Table C1. All the test functions are aimed to be minimized

with 25 variables in the given design space.
MATLAB’s NSGA-II GA, a fast sorting and elitist multi-objective

GA, was used for practical implementation. Initialization was per-
formed through single-objective optimization for each objective
and random sampling. A population size of 372 was used, with
a total of 3000 maximum generations. The ‘phenotype’ crowding
distance metric was used. This setup was validated on the test
functions described above. All the problems were benchmarked
with 25 variables (d = 25) and two objective functions (K = 2), as
with the present airfoil optimization problem. The results of our
setup on these four benchmark problems are shown in Fig. C1.
The algorithm could accurately capture ZDT1, ZDT2, and ZDT4
and predict ZDT6, which is the most complicated due to its non-
convex and non-uniform properties, reasonably well.

Appendix D. Airfoil Shape Clustering

To analyze the characteristics of the optimized airfoil shapes in
detail, the airfoil shapes on the Pareto-front were classified into
three clusters using k-means clustering based on the Euclidean
distance with k = 3. The clustering was performed in the design
variable space, or weight space, of D% rather than in the objective
plane because the purpose of clustering was to identify common
geometric features over different airfoil shapes as a result of the
optimization. The selection of the cluster size was based on the
PCA of the optimal weight vector set.

It should be noted here that the baseline shapes chosen might
be linearly dependent. The distances in the PCA weight space, thus
might not be rigorous as a morphed shape on the Pareto-front
may be represented by another set of weights. However, this PCA
analysis was used only to identify if qualitative classes within the
Pareto-front could be found and clustered together and to glean
some additional insights from our Pareto-front results.

Fig. D1 shows the projection of the 25D weight vector set to
the 2D subspace spanned by the 2 PCA axes having the first- and
second-most variance. The explained variance ratios of PCA axes
1and 2 are 80.7% and 14.0%, respectively. On the other hand, the
PCA axis of the third-most variance only accounts for 1.7% of the
variance, affirming that the 2D projection in Fig. D1 adequately
scatters the clusters. Based on this observation, k = 3 was chosen
to be the most appropriate cluster size.
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Table B1: The model names, features, shape outlines, and XFOIL evaluation results of the 25 baseline shapes used by DbM in this paper.
The coordinates of the baseline shapes are obtained from the UIUC airfoil coordinates database (Selig 2022). The airfoil evaluation results
are obtained for an incompressible flow with a chord Reynold number of 1 x 10°. The reference evaluation results are interpolated from
the online XFOIL database (air, 2022); N/A indicates that no data are available.

Index Model name Series (Features) Airfoil shape Reference Present
CLDpmax Ac CLDpmax Ac
1 NACA 0012 NACA (4-digit) L —— 75.6 8.50 69.3 6.75
2 NACA 2412 NACA (4-digit) l a—— 101.4 12.00 99.5 12.00
3 NACA 4412 NACA (4-digit)  cai— 129.4 1.75 126.2 11.50
4 E 205 Eppler — 128.3 8.50 124.4 10.50
5 AH 81-K-144 W-F Klappe Althaus % 89.7 2.00 91.6 2.00
6 AH 79-100 C Althaus P——— 183.0 14.75 170.6 15.50
7 AH 79-K-143/18 Althaus Ca—— 110.9 150 107.0 1.50
8 AH 94-W-301 Althaus @ 103.0 4.00 101.4 2.75
NACA 23112 NACA (5-digit) — 98.6 6.75 96.9 8.00
10 NACA 64(2)-415 NACA (6-digit) Ca——— 1206 1250 1138 13.00
11 NACA 747(A)-315 NACA (7-digit) e 1115 12.00 105.8 13.00
12 Griffith 30% Suction Griffith (Suction) Q 17.3 0.00 17.9 0.00
13 AS 6097 Selig (Bird-like) = N/A N/A 171.2 14.00
14 E 379 Eppler (Bird-like) — N/A N/A 160.0 2.00
15 Clark YS Clark L ——— 85.7 5.25 82.3 5.75
16 Clark W Clark G e 116.1 11.00 114.8 11.00
17 Clark Y Clark [ —— 114.8 11.75 113.7 12.75
18 Chen Chen -, 125.4 000 1267 0.00
19 $2027 Mirrored Selig (Mirrored) m— N/A N/A 0.00 0.00
20 GOE 417A Gottingen (Thin plate) . 86.7 5.25 90.4 5.25
21 GOE 611 Gottingen (Flat bottom) -~ 125.6 9.00 129.7 9.00
22 Dragonfly Canard Dragonfly 144.6 2.50 147.5 3.00
23 FX 79-W-470A Wortmann (Fat) © N/A N/A 23.9 9.25
24 Sikorsky DBLN-526 Sikorsky (Fat) © 53.3 4.75 515 4.25
25 FX 82-512 Wortmann L 99.1 14.75 98.7 13.00

Table C1: Benchmark test functions. All of the test functions are bi-objective with extended to n-dimensional constrained search space.

Problem Bounds Objective functions Optima Note
ZDT1 w; € [0, 1], f1(w) = wq w1 € [0, 1] convex
i=1...n Falw) = gw) [1 — (f: (w)/g(w))*] w, =0,
gw) =149 (XL, wi) /(n—1) i=2,...,n
ZDT2 w; € [0, 1], fi(w) =w, wq € [0, 1] non-convex
i=1...n Falw) = g(w) [1 - (f: (w)/g(w))?] w; =0,
glw) = 1+9 (T w) /(n - 1) i=2...n
ZDT4 wq € [0, 1] fi(w) =w. wq € [0,1] NON-convex
w; € [-5,5], fo(w) = g(w) [1 - (f1(w)/g(w))"/?] w; =0,
1=2,...,n g(w) = 10n+ YL, (w? —10cos(4nw)) 9 i=2,...,n
ZDT6 w; € [0, 1], f1(w) =1 — exp(—4w;) sin® (6w, ) wy € [0, 1] non-convex,
i=1,...,n fo(w) = g(w) [1 = (f1(w)/g(w))?] w; =0, non-uniform
gw) =1+ 9[(XL,w)/ <n—1>]““ i=2...n
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Figure C1: Multi-objective optimization of benchmark test functions
using GA.
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