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Purpose: We introduce a deep learningebased biomarker proposal system for the purpose of accelerating
biomarker discovery in age-related macular degeneration (AMD).

Design: Retrospective analysis of a large data set of retinal OCT images.
Participants: A total of 3456 adults aged between 51 and 102 years whose OCT images were collected

under the PINNACLE project.
Methods: Our system proposes candidates for novel AMD imaging biomarkers in OCT. It works by first

training a neural network using self-supervised contrastive learning to discover, without any clinical annotations,
features relating to both known and unknown AMD biomarkers present in 46 496 retinal OCT images. To interpret
the learned biomarkers, we partition the images into 30 subsets, termed clusters, that contain similar features. We
conduct 2 parallel 1.5-hour semistructured interviews with 2 independent teams of retinal specialists to assign
descriptions in clinical language to each cluster. Descriptions of clusters achieving consensus can potentially
inform new biomarker candidates.

Main Outcome Measures: We checked if each cluster showed clear features comprehensible to retinal
specialists, if they related to AMD, and how many described established biomarkers used in grading systems as
opposed to recently proposed or potentially new biomarkers. We also compared their prognostic value for late-
stage wet and dry AMD against an established clinical grading system and a demographic baseline model.

Results: Overall, both teams independently identified clearly distinct characteristics in 27 of 30 clusters, of
which 23 were related to AMD. Seven were recognized as known biomarkers used in established grading sys-
tems, and 16 depicted biomarker combinations or subtypes that are either not yet used in grading systems, were
only recently proposed, or were unknown. Clusters separated incomplete from complete retinal atrophy, intra-
retinal from subretinal fluid, and thick from thin choroids, and, in simulation, outperformed clinically used grading
systems in prognostic value.

Conclusions: Using self-supervised deep learning, we were able to automatically propose AMD biomarkers
going beyond the set used in clinically established grading systems. Without any clinical annotations, contrastive
learning discovered subtle differences between fine-grained biomarkers. Ultimately, we envision that equipping
clinicians with discovery-oriented deep learning tools can accelerate the discovery of novel prognostic
biomarkers.

Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclo-
sures at the end of this article. Ophthalmology Science 2024;4:100543 ª 2024 by the American Academy of
Ophthalmology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).
Age-related macular degeneration (AMD) is the leading
cause of irreversible vision loss in the developed world and
is projected to affect nearly 300 million people by 2040.1

Clinical grading systems2e5 drive the screening, diagnosis,
and monitoring of AMD using a small set of known imaging
biomarkers in retinal OCT. The early and intermediate
AMD stages are characterized by increasing sizes of drusen,
which are lipidic subretinal deposits that often precede
conversion to late AMD. It is currently impossible to
ª 2024 by the American Academy of Ophthalmology
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reliably predict if and when a patient will progress to late
AMD, which is classified as either macular neo-
vascularization (MNV), identified by macular fluid, or
geographic atrophy, indicated by retinal and retinal pigment
epithelium thinning and hypertransmission of OCT signal in
the choroid. The small number of known biomarkers, which
permit only a coarse stratification of patients, is limiting the
prognostic ability of current grading systems. There is a
clear and unmet need for new imaging biomarkers that
1https://doi.org/10.1016/j.xops.2024.100543
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better describe patients’ physiology and provide improved
risk stratification.

Identifying new biomarkers, or subtypes of known ones,
is a very challenging task. A new understanding of the
pathophysiology of a specific disease can lead to the dis-
covery of new biomarkers.6 More commonly, biomarkers
are proposed by clinicians making anecdotal observations
in small cohorts. Using this ad hoc approach, clinicians
have recently proposed double-layer sign (DLS),7

vitreomacular interface abnormalities,8 and intraretinal
hyperreflective foci9 as biomarkers for AMD. Before
entering clinical practice, candidate biomarkers must
undergo extensive testing of their predictive value,
reproducibility, and utility.10,11 Because drusen were
proposed and integrated into clinical grading systems 2
decades ago, no new biomarkers for early stage disease
have been fully established.12 The reliance on anecdotal
observations, coupled with the onerous process of
biomarker discovery, is a major constraint limiting the rate
of biomarker discovery in AMD.

To expedite the initial stage of biomarker discovery,
there has been an increased push to harness data-driven
approaches.13 However, retinal specialists have not been
able to translate the growing amount of retinal data into
increased rates of biomarker discovery. Systematically
searching for potentially new disease subtypes in large
populations of patients is a tedious and resource-intensive
task. Identifying new subtypes involves finding subgroups
of images or patients that share some newly proposed
characteristic. However, dividing a data set of only 10 000
retinal images into as many as 30 subgroups would require
making at least 300 000 simultaneous pairwise comparisons.
The limited capacity in visual working memory14,15 makes
manual identification and exhaustive analysis of common
patterns and biomarkers on this scale practically infeasible
for human experts.

Deep learning has shown potential for automating visual
tasks at scale in medical data sets.16 Traditional supervised
approaches train networks to predict if any known
biomarkers are present in the image. This both constrains
networks to train only on the subset of labeled images and
limits their ability to discover new biomarkers outside the
set known to the clinical annotators. The self-supervised
learning paradigm17e22 surpasses these limitations by
training networks using unlabeled images. To train networks
without supervision, researchers designed self-supervised
tasks where networks learn features through self-discovery
with minimal human input. Examples of these tasks include
image reconstruction23 and contrastive predictive encoding.19

After training, these learned features can be interpreted and
potentially inform clinicians of new biomarkers that were
present, but previously unseen, in the data.

Prior applications of self-supervised learning for
biomarker discovery mistakenly incentivized networks to
learn features that are uncorrelated with disease. Image
reconstruction24 and generative adversarial tasks25 prioritize
learning features unrelated to imaging biomarkers, such as
position and orientation of the retina in the image, and
global image brightness and contrast. These features
dominate the learning process and obfuscate subtler and
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more fine-grained indications of new biomarkers. Recent
advances in self-supervised learning by contrastive methods
address this issue by training networks to explicitly ignore
these irrelevant features.20e22 As a result, they extract more
robust and semantically relevant image features. Despite
their potential for discovering new imaging features related
to disease, contrastive methods have received little to no
attention for biomarker discovery.

In this work, we develop the first contrastive-learning-
based proposal system for AMD imaging biomarkers. By
pretraining a network with contrastive learning, we were
able to automatically extract self-supervised features from
46 496 OCT images of 6236 eyes from 3456 patients
without any clinical supervision. We then automatically
identified 30 distinct groups of images, termed clusters, that
share similar features. Two teams of retinal specialists
independently reviewed the clusters, assigning clinical in-
terpretations to each. Finally, we report clusters character-
ized by unique sets of features relating to known, suspected,
and unknown AMD imaging biomarkers.
Methods

The workflow used in this study is illustrated in Figure 1. We begin
this section by introducing the OCT data set and the set of known
biomarkers. We then describe the first stage of the automatic
discovery process, by which we learn imaging features from this
data set using self-supervised contrastive learning. In the second
stage, we automatically identify subgroups, termed clusters, of
images with shared features. Treating those shared features as
possible biomarker candidates, we next describe our strategy to
interpret them with direct involvement from ophthalmologists.
Finally, we outline our full procedure for evaluating our method.

OCT Data Set

Experiments were conducted using a data set of 46 496 OCT im-
ages of 6236 eyes from 3456 patients acquired over an 8-year
period at the Southampton Eye Unit and collected by the
PINNACLE consortium.26 The PINNACLE study
(ClinicalTrials.gov NCT04269304) protocol was approved in the
United Kingdom by the East MidlandseLeicester Central
Research Ethics Committee (ref. 19/EM/0163) and further by the
institutional review boards of all involved institutions. It adheres to
the principles of Good Clinical Practice and is in accordance with
the Declaration of Helsinki. Informed consent was obtained from
the participants after an explanation of the nature and possible
consequences of the study. All images were acquired using Topcon
3D OCT scanners (Topcon Corporation). From each, we extracted
a 2D mediolateral slice centered on the fovea, adjusted it to a size
of 208 � 256 pixels, and set the pixel size to 7.0 � 23.4 mm2,
representing half the median resolution. Visual acuity logMAR
scores, which measured the patient’s functional quality of vision,
were measured at 34 093 visits. These were converted to letter
scores, indicating how many letters the patient can read on a chart
(from 5e95).

Current grading system annotations are as follows: a subset of
7730 images from 1031 eyes from 1001 patients were labeled by
the retinal specialists using the established AMD grading protocols
that derive from known imaging biomarkers.

Early/intermediate AMD was characterized by drusen at least
63 mm in diameter. We also recorded MNV, complete retinal
pigment epithelial and outer retinal atrophy (cRORA; atrophy of

http://ClinicalTrials.gov


Figure 1. In this study, we design a biomarker proposal system based on contrastive learning. After self-supervised pretraining, we have clustered images that
share similar sets of features. Finally, 2 teams of retinal specialists independently identify the characteristic features of each cluster that potentially relate to
new biomarkers. AMD ¼ age-related macular degeneration.
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width �250 mm and <1000 mm), larger cRORA (atrophy of width
�1000 mm),27 and healthy cases with no visible pathological
biomarkers.

Self-Supervised Contrastive Learning

We used contrastive learning to train a self-supervised feature
extractor f, which will form the basis of our biomarker proposal
system. Contrastive learning works by creating 2 augmented ver-
sions of each image using a predefined set of transformations (Fig
2). By training f to extract a similar set of features from each
augmented version, f learns to discern imaging features that are
invariant to the transformations. By intentionally using
transformations that do not alter the presentation of structural
imaging biomarkers, we aimed to increase both the amount and
subtlety of learned features that relate to potentially new
biomarkers. To this end, we varied global image brightness and
contrast, image rotation and aspect ratio, horizontal symmetry,
and a randomly sized and located crop. The latter requires f to
relate features that cooccur across the OCT images, such as
hypertransmission (in the choroidal region) and retinal thinning.
The exact parameters used for these transformations are tailored
for retinal OCT by Holland et al.28

We choose the contrastive loss from Bootstrap Your Own
Latent,28 which trains f to minimize the distance in feature space
between the 2 transformed image versions. We parameterize f by
a ResNet50 (4x) network29 and train for 120 000 steps using the
Adam optimizer with a momentum of 0.9, weight decay of
1.5 � 10e6, and a learning rate of 5 � 10e4. Once training was
complete, we first removed the final linear layer of f before
extracting 2048 unsupervised features from each labeled image.
This so-called feature space, or vector database, compactly enco-
ded each image’s most salient features for further analysis.
Clustering and Feature Attribution

We employed a cluster-based approach to identify subgroups of
self-supervised features learned by f. These clusters are later
reviewed by clinicians, who give clinical interpretations to their
characteristic sets of features. To perform the clustering, we used k-
means to assign each image to 1 of 30 distinct clusters. We then
used 3 annotation strategies to enhance the interpretability of the
clusters before review. First, we reordered clusters by their median
visual acuity, so that higher cluster numbers indicated a more
degraded quality of functional vision. We referred to our clusters
using the schema C1 (best vision) up to C30 (worst vision). Sec-
ond, we correlated each cluster with a disease stage from the
current grading system. To do this, we found the probability that
any given image from each cluster was annotated with each of the
known biomarkers. Third, we highlighted the features in each
image that are most representative of its assigned cluster (Fig 2).
To this end, we fit a single, linear layer that mapped from the
feature space to cluster assignments. Then, to highlight the
cluster-specific image features, we generated an attribution map
by applying GradCAM30 between the image and the cluster label
using the final 2 convolutional layers of f.

Interpreting Clusters with Retinal Specialists

Until this stage, the entire automated discovery process had not
used any clinical annotations or manual input. We then aimed to
understand and interpret the features that defined and distinguished
each cluster. To this end, we recruited 2 independent teams of
retinal specialists, each consisting of a senior and a junior
ophthalmologist, and conducted 2 parallel 1.5-hour semistructured
interviews. For each cluster, we first showed the specialists 10
randomly drawn images and their associated attribution maps,
3



Figure 2. The fully automated backbone of our biomarker proposal system consists of 2 stages. First, self-supervised contrastive learning trains models to
identify biomarkers and other image features without any clinical annotations. To do so, it trains networks to ignore a specified set of known invariant image
features, defined by the set of contrastive transformations, amplifying the signal of any biomarker-related features. Second, we extract self-supervised image
features and cluster images with similar features. After this, we compute attribution maps that highlight the cluster-specific features in each image to assist
interpretation by retinal specialists.
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ensuring all images were derived from different patients. By
comparing multiple images from the same cluster, the retinal
specialists could visually extract, distill, and articulate any image
features that represented the majority. While interpreting the im-
ages, the specialists were also permitted to inspect other clusters
that correlated with the same disease grading. This allowed them to
better identify image features that are not currently differentiated
by established grading systems but were, by definition, distin-
guishable by their self-supervised features. This could enable the
detection of potentially new biomarker subtypes that are currently
conflated in each indiscriminate disease stage.

After reviewing the 10 images, each team suggested up to 3
common features using clinical terms, such as large drusen or poor
image quality, for each cluster and ranked them according to their
prevalence among the images. If there is no identifiable feature
describing the majority of images, the cluster is labeled “heteroge-
neous.” To validate these descriptions, a further set of 10 unseen
images and attribution maps were subsequently revealed. The sug-
gested features were only taken as the team’s proposed descriptions
if they also described the majority of the unseen images. Finally, if
there is semantic consensus between the 2 independent teams’ de-
scriptions, we reported this as the overall description of the cluster.
Cluster descriptions may reveal potentially new biomarkers,
providing the basis for proposing novel biomarker candidates.

Evaluation

Our main evaluation assessed the ability of our system to propose
novel biomarkers. To assess this, we determined how often both
expert teams identified the same features in each of the 30 clusters.
Next, we recorded the number of clusters where the identifiable
features related to biomarkers, as a measure of the ability of
contrastive learning to ignore disease-unrelated image features.
Finally, we observed how many of those biomarkers were already
4

included in existing grading systems, as opposed to those that have
been proposed by clinical researchers, but are not yet included in
grading systems, or were previously unknown. These statistics are
our predominant measure of the effectiveness of our biomarker
proposal system.

In addition to being discernible in images, biomarkers should
provide some degree of risk stratification and prognostic value for
late AMD. We compared the predictive value of our clusters with
the known biomarkers and a demographic baseline that uses only
the patient’s age and sex. To make predictions using our clusters,
each image was represented by a vector of size 30 that encodes its
similarity to each cluster. This vector was then used by a Lasso
linear regression model to estimate the risk. We quantify each
system’s prognostic capability by calculating the mean absolute
error in years to forecast the time until a patient’s conversion to
MNV or cRORA. In addition, we predicted the current visual
acuity. Finally, we included a fully supervised learning baseline by
fitting a linear support vector regression model directly to the
feature space to demonstrate the performance gap between our
interpretable cluster-based approach and black-box models. Each
experiment used 10-fold cross-validation on random 80/20 parti-
tions while ensuring a patient-wise split. We repeated the entire
experiment, from clustering to regression, using 7 random seeds
and reported means and standard deviations.
Results

Quality of Clusters

Both teams of retinal specialists independently reported
semantically identical descriptions in 27 out of 30 clusters
(Fig 3) and remarked on the consistency of image features



Figure 3. Each cluster with its description derived independently by 2 teams of retinal specialists. In each, we show 4 representative images from different
patients. Our proposal system identified these clusters without any human supervision or prior knowledge of known biomarkers through a process of self-
discovery. Out of 30 clusters, 23 were related to AMD, of which 16 made subtle distinctions between fine-grained biomarkers that were either unknown to
retinal specialists or not included in existing clinical grading systems. AMD ¼ age-related macular degeneration; cRORA ¼ complete retinal pigment
epithelial and outer retinal atrophy; DLS ¼ double-layer sign; FVPED ¼ fibrovascular pigment epithelial detachment; iRORA¼ incomplete retinal pigment
epithelial and outer retinal atrophy; PED ¼ pigment epithelial detachment; SDD ¼ subretinal drusenoid deposits; SRF ¼ subretinal fluid.

Holland et al � Clustering OCT for Biomarker Discovery in AMD
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Table 1. The Number of Images Contained in Each Cluster, in Addition to the Number of Unique Patients the Images Originate from

Cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#Images 310 262 400 370 234 249 166 166 198 197 395 268 205 233 435
#Patients 196 173 166 174 156 102 114 103 69 121 170 110 126 69 174
Ratio 1.6 1.5 2.4 2.1 1.5 2.4 1.5 1.6 2.9 1.6 2.3 2.4 1.6 3.4 2.5
Cluster 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
#Images 326 187 152 226 123 218 155 303 396 136 233 152 206 211 235
#Patients 135 55 75 148 73 133 82 114 139 93 75 46 88 67 55
Ratio 2.4 3.4 2.0 1.5 1.7 1.6 1.9 2.7 2.8 1.5 3.1 3.3 2.3 3.1 4.3

In Most Clusters, the Average Patient Contributed No More Than 3 Images. Clusters C29 and C30, Which Had Higher Ratios, Related to Scarring and
Largely Document Patients Being Monitored Posttreatment.
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observed within each. The 2 teams disagreed, or found no
clearly identifiable features, in only 3 clusters (C7, C10,
C13) deemed heterogeneous. Notably, 23 clusters were
found to capture different biomarkers related to AMD. We
have approximately divided these into a group of 7
clusters representing biomarkers already in current grading
systems and a group of 16 that exhibit potentially new
subtypes. In a minority of clusters (C5, C8, C21, C25),
the common features were instead related to image or scan
quality. Importantly, there were no clusters for image
brightness, rotation, and position of the retina in the
image, or any feature explicitly included in the set of
contrastive transformations. The high proportion of
clusters depicting identifiable imaging biomarkers
confirms our hypothesis that contrastive learning is able to
extract high-level semantic features and ignore many con-
founding image features.

Each cluster contained at least 120 images, originating
from at least 46 unique patients (see Table 1). This indicated
that the clusters captured biomarkers that arose
independently among multiple patients with AMD, rather
than features that were specific to only a few outlier
patients. This is also shown in Figure 4 where, in most
clusters, images from 10 randomly drawn patients
presented consistent features related to AMD that were
distinct from other clusters.

This was reinforced by GradCAM attribution maps that,
for example, highlighted drusen in C9, hypertransmission in
C26, and subretinal hyperreflective material (disciform
scars) in C30.
Clusters Describe Known Biomarkers

Both teams of retinal specialists found clusters that
distinguished healthy retinas (C1), small drusen with
subretinal drusen deposits (C4), confluent drusen (some
post anti-VEGF treatment) (C6), and large drusen (C9).
Drusen size is an established predictor for the risk of
progression to late AMD.31,32 Moreover, they identified
clusters described as subretinal fluid (C18) and pigment
epithelial detachment (C17), which are both indicative
of MNV. Finally, images in cluster C19 clearly exhibit
atrophy or cRORA. These clusters represent the known
biomarkers used in clinical grading systems that
currently map the progression of early AMD and its
wet and dry variants in late AMD.
6

Clusters Contain Biomarkers Not Yet in
Established Grading Systems

The majority of the clusters distinguished cases that would
fall under the same category in established grading sys-
tems. As shown in Figure 5, our clusters create a more
fine-grained decomposition of the more broadly defined
known biomarkers. Moreover, correlating clusters with
known disease stages also highlighted a subgroup (C20
with vitreomacular interface abnormalities) that had been
mislabeled as healthy. Our clusters differentiated intra-
retinal fluid (C22) from subretinal fluid (C18). These are
typically conflated under neovascular AMD,33 despite the
known association between intraretinal fluid and
degraded visual acuity,34e36 which was reflected in our
own measurements where average visual acuity for C22,
58.7 letters (95% confidence interval [55.9, 61.4]), was
worse than in C18, 68.2 letters (95% confidence interval
[66.7, 69.8]) (Fig 6).

Other clusters described biomarkers that have only been
tentatively linked to the progression of AMD such as DLS
(C14), which is associated with subclinical type 1 macular
neovascularization,7 and vitreomacular interface
abnormalities (C20) including epiretinal membrane,
which has been shown to increase the growth rate of
geographic atrophy.37 Moreover, our clusters reflected the
distinction in the severity of atrophy between
"incomplete retinal pigment epithelial and outer retinal
atrophy" (iRORA) (C12, C15) and cRORA (C24, C26)
that was only recently proposed in 2018.27 Clusters also
differentiated incomplete retinal pigment epithelial
atrophy (C11) from iRORA and cRORA. One cluster
was characterized by small fovea involving atrophy and
macular holes (C27) and had the worst visual acuity of
any cluster not depicting scarring. Fovea-centered atrophy
has been shown to have the most deleterious effects on
visual acuity.38 The subtlety of these distinctions supports
our hypothesis that features learned by contrastive learning
can extract fine-grained biomarkers.

Clusters Describe Potentially New Biomarkers

Some clusters were differentiated by the presence of a
thick, visible choroid. For example, in contrast to C1, C2
contained healthy retinas but with a thick, permeable
choroid. Similarly, C16 showed iRORA with a thick
choroid in contrast to C15 exhibiting iRORA with a thin



Figure 4. Images from 10 randomly drawn patients from 6 clusters, as shown to retinal specialists during the cluster interpretation interviews. The clusters
were largely homogeneous and had identifiable features that described the majority of the images (written to the left). This was reinforced by cluster-specific
attribution maps (below each image) that indicate that a consistent set of self-supervised features define each cluster. cRORA ¼ complete retinal pigment
epithelial and outer retinal atrophy; PED ¼ pigment epithelial detachment.

Holland et al � Clustering OCT for Biomarker Discovery in AMD
choroid. Both teams of retinal specialists were most
interested in C24, which showed cRORA but with a
thick, visible choroid. This was unexpected, as usually
atrophy is accompanied by a thin choroid as in C19 and
C26. Poor choroidal perfusion of the macula is implicated
in the pathogenesis of AMD,39 which may indicate that
patients in clusters with thinner choroids are at higher
risk. Another novel combination includes DLS and
7



Figure 5. Clusters were correlated with known biomarker annotations and disease stages using conditional probability. By comparing clusters that are
indistinguishable from current grading systems but are, by definition, distinguishable by their self-supervised features, we hope to identify new biomarker
subtypes that are currently conflated in each indiscriminate disease stage. cRORA ¼ complete retinal pigment epithelial and outer retinal atrophy; MNV ¼
macular neovascularization.
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fibrovascular pigment epithelial detachment (C12). These
findings evidence the capability of our system to
propose biomarker subtypes that had not yet been
considered.

Risk Stratification with Clusters

By simulating a grading system using cluster membership,
we found that the fine-grained biomarker-related distinctions
made by our clusters were more prognostic than the broad
8

disease stages in the clinical grading system. This was
evidenced by reduced mean absolute error in predicting time
until conversion to late wet AMD and late dry AMD
(Table 2). Notably, the current grading system (defined
earlier) did not stratify patient risk much better than the
patient’s age and sex. The fully supervised black-box
model performed the best, but this approach makes unin-
terpretable predictions. We found our clusters were espe-
cially effective at predicting current visual acuity (11.5 vs.
18.4 mean absolute error). This performance is enabled by



Figure 6. Comparing the stratification of visual acuity (in letter score) by each stage of the clinical grading system cluster (top) to our clusters (middle).
Each bar represents the average visual acuity with error bars for standard deviation. Our interpretable clusters provide a significantly improved stratification
of degradation to visual acuity compared with the set of known biomarkers. We also use a UMAP projection (bottom) to depict where retinal images reside
in the self-supervised contrastive feature space used to create the clusters. AMD ¼ age-related macular degeneration; cRORA ¼ complete retinal pigment
epithelial and outer retinal atrophy; DLS ¼ double-layer sign; iRORA ¼ incomplete retinal pigment epithelial and outer retinal atrophy; MNV ¼ macular
neovascularization; UMAP ¼ uniform manifold approximation and projection.

Holland et al � Clustering OCT for Biomarker Discovery in AMD
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Table 2. Clusters Outperformed the Established Clinical Grading Systems for AMD in Predicting Future Conversion to Disease, Shown by
Reduced MAE in Years for Late AMD, MNV, and cRORA

System
Time to Late AMD

(MAE Yrs) Y
Time to MNV
(MAE Yrs) Y

Time to cRORA
(MAE Yrs) Y

Current
Visual Acuity

(MAE Letters) Y

Demographic 0.76 � 0.01 0.82 � 0.01 0.70 � 0.03 19.1 � 0.35
Current grading system 0.76 � 0.01 0.82 � 0.01 0.69 � 0.04 18.4 � 0.40
Clusters 0.75 � 0.01 0.78 � 0.02 0.63 � 0.05 11.5 � 0.25
Fully supervised 0.71 � 0.02 0.73 � 0.01 0.61 � 0.03 10.0 � 0.20

We Also Find Clusters Substantially Reduced MAE in Letter Scores for Predicting Visual Acuity. Fully Supervised Machine Learning Outperforms Our
Clusters but Is Uninterpretable and Cannot Form Better Grading Systems.
AMD ¼ age-related macular degeneration; cRORA ¼ complete retinal pigment epithelial and outer retinal atrophy; MAE ¼ reduced mean average error;
MNV ¼ macular neovascularization.
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the use of fovea-centered images that effectively capture the
macula. Moreover, we find clusters provide more granular
stratification of the degradation in visual acuity (Fig 6).
These results reinforce that our clusters are related to
disease progression.
Discussion

In this study, we introduced a contrastive learning-based
approach to biomarker discovery in AMD. We hypothe-
sized that contrastive learning could reveal new biomarkers
by focusing deep learning models on potentially new bio-
markers. Through a process of automated self-discovery, our
system rediscovered known biomarkers and proposed can-
didates for potentially new ones. Without using any clinical
annotations, we automatically grouped a data set of over 46
000 retinal OCT images into 30 distinct clusters. In only two
1.5-hour interviews, 2 teams of retinal specialists empowered
with our tool built a granular taxonomy of the AMD pro-
gression in a data set. The teams independently verified that
clusters modeled fine-grained distinctions between various
subtypes of AMD. They remarked both on the consistency in
shared features between images of the same cluster and on
the subtlety of the different biomarkers captured by different
clusters. In addition to finding tentative biomarkers that are
not yet in current grading systems, retinal specialists were
surprised to find clusters depicting nuanced and granular
subtypes of biomarkers that had not yet been identified in
clinical research. These subtypes included new combinations
such as thick choroid with hypertransmission, DLS seen with
a fibrovascular pigment epithelial detachment, and small
fovea involving atrophy. Moreover, in quantitative bench-
marks, our clusters provided greater risk stratification and
prognostic value than the current clinical grading system. Our
results strongly suggest that biomarker proposals powered by
contrastive learning can accelerate the initial idea-generation
stage of biomarker discovery.

Our approach offers a data-driven and scalable alternative
to traditionally anecdotal biomarker proposals. It provides a
fast, effective, and inexpensive preliminary review of any
medical data set, which can subsequently be refined using
fewer resources. It can also enable the analysis of the
10
compound effect on progression risk posed by enumerable
biomarker combinations and subtypes. Our method, from
pretraining the feature extractor, to clustering and finally
clinical interpretation, is not specific to any disease, anatom-
ical region, or scanning instrument. However, if a user has
images acquired using a different domain, such as a change in
OCT instrument or pathology of interest, they should first
retrain the feature extractor on data from their specific domain
before identifying new biomarker proposals. By integrating
our tool into existing biomarker discovery pipelines, advances
in deep learning can improve patient care without deploying a
single black-box neural network to the clinic.

Although our clusters were found to be largely homo-
geneous, there were instances where not every image within
a cluster shared the majority feature. We emphasize that
clusters should be treated as biomarker proposals requiring
further refinement by clinicians, rather than as definitive
biomarkers. They are intended as preliminary suggestions
that provide a starting point for further investigation.
Consequently, our quantitative study only indicates that a
more nuanced set of biomarkers may enhance risk stratifi-
cation for AMD. This also complicates measuring definitive
quantities of our clusters, such as the minimum width of
atrophy (such as cRORA > 1000 mm). However, all the
aforementioned issues can be addressed by manually
refining each cluster.

Moreover, clusters are not guaranteed to be characterized
by biomarker-related features. Of the 30 clusters, 4 related to
invariant image features, such as scan location, are difficult
to model in the set of contrastive transformations and may
require a more sophisticated technique to explicitly remove
from the set of self-supervised features. For now, these
clusters can easily be removed during the review stage and
could even be filtered from the data set as a preprocessing
step (for example, removing C21 would omit acquisitions
not centered on the fovea). However, in another 3 clusters,
the retinal specialists were unable to identify any majority
feature. This could either indicate the existence of catch-all
heterogeneous clusters of miscellaneous images or that both
teams of retinal specialists missed potentially new
biomarker subtypes. As 2 of these clusters had no obvious
signs of AMD, it may also indicate that identifying early
stage biomarkers, which produce more subtle structural
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deformities, can be more challenging than detecting more
pronounced late-stage ones. Improving the chance of
detecting new early stage biomarkers may require filtering
late-stage patients from the process. A more definitive lim-
itation of our system is that by using 2D fovea-centered B-
scans, we potentially miss pathologies in other regions of
the retina. This potentially missed pathology may explain
some of the error in predicting visual acuity, which was 10
letters using fully supervised learning, equating to 2 lines in
a logMAR chart. To incorporate biomarkers outside the
macula and enhance the prognostic value of our clusters, we
plan to repeat this study using the full 3D OCT volume.

In this work, we introduced a deep learning-based
biomarker proposal system powered by self-supervised
contrastive learning, capable of identifying biomarker can-
didates in large medical image data sets with minimal human
input. Our system, without any prior knowledge of AMD,
rediscovered all the known biomarkers. Crucially, it also
proposed biomarker candidates that had either only been
raised in a small number of reports or had not been yet iden-
tified by retinal specialists, to the best of our knowledge.
Ultimately, we envision deep learning-based self-discovery
systems can improve patient outcomes by accelerating the rate
of biomarker research into this poorly understood disease.
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