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Clouded data: Privacy and the promise
of encryption

Luke Munn , Tsvetelina Hristova and Liam Magee

Abstract

Personal data is highly vulnerable to security exploits, spurring moves to lock it down through encryption, to crypto-

graphically ‘cloud’ it. But personal data is also highly valuable to corporations and states, triggering moves to unlock its

insights by relocating it in the cloud. We characterise this twinned condition as ‘clouded data’. Clouded data constructs a

political and technological notion of privacy that operates through the intersection of corporate power, computational

resources and the ability to obfuscate, gain insights from and valorise a dependency between public and private. First, we

survey prominent clouded data approaches (blockchain, multiparty computation, differential privacy, and homomorphic

encryption), suggesting their particular affordances produce distinctive versions of privacy. Next, we perform two

notional code-based experiments using synthetic datasets. In the field of health, we submit a patient’s blood pressure

to a notional cloud-based diagnostics service; in education, we construct a student survey that enables aggregate

reporting without individual identification. We argue that these technical affordances legitimate new political claims to

capture and commodify personal data. The final section broadens the discussion to consider the political force of clouded

data and its reconstitution of traditional notions such as the public and the private.
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Introduction

The cloud introduces a new scale of observation, com-
putation and control. Its advocates have argued its
merits: a flexible utility, delivered on-demand (Buyya
et al., 2009: 599); lower barriers to entry, scalable ser-
vices and support for innovative applications (Avram,
2014: 531); and, at an institutional level, lower capital
intensities compared with earlier informatic, media,
and communications infrastructure. Driven by the pro-
liferation of data, the intensive processing required by
machine learning systems, and the demands of start-ups
now dispersed globally from Dhaka to Santiago, the
utility-like nature of the cloud in turn conditions and,
in turn, is conditioned by today’s pervasive and perpet-
ual computing uses. Yet if the cloud can be technically
defined as a ‘systematized virtualization of data storage
and access, the coalescence of processing power’
(Coley and Lockwood, 2012: 1), it is a technology
that disrupts politically as much as economically.
Simultaneously computational architecture and

metaphor, the ‘cloud’ reconfigures the political imagin-
ation through the different and often counter-logical
realisation of the dialectics between obscurity, on one
hand, and the making visible, on the other (Amoore,
2018; Hu, 2015), through data centralisation and
accumulation.

This disruptive power has led to an increased sense
of urgency in addressing what can be seen as a crisis of
privacy. The amassing of data in the cloud has made it
a focal point of vulnerability to attacks on personal
data. Through the spectacle of media coverage of
large-scale compromised consumer databases, threats
to cloud-stored data appear to loom large. The rate
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of data breaches seems to be accelerating, with the
Breach Data Index reporting that over 7 million rec-
ords are now compromised every day (Gemalto,
2018a). One security commentator noted that 2017
was a ‘monumental’ year for leaks, observing that
‘the number of data records compromised in publicly
disclosed data breaches surpassed 2.5 billion, up 88%
from 2016’ (Gemalto, 2018b). In September of 2017, to
take just one example, consumer credit reporting
agency Equifax announced one of the largest breaches
to date, revealing that ‘the names, Social Security num-
bers, and dates of birth of 143 million US consumers
had been exposed’ (Gallagher, 2018). Congressional
statements made later by Equifax management revealed
that much of this information was stored in plaintext,
without being obfuscated, encrypted or anonymised
(Newman, 2017).

Moreover, data’s ability to be combined in new ways
complicates attempts to contain and protect personal
information. Even when identifiers are hashed out or
removed from data, individuals can be re-identified
through various techniques (Ohm, 2010). In 2008,
streaming giant Netflix made available a massive arch-
ive of viewing data in conjunction with a competition
that challenged developers to come up with a better
recommendation algorithm. While the data was thor-
oughly anonymised, Narayanan and Shmatikov (2008)
demonstrated how it could be cross-referenced against
IMDB information in order to identify specific individ-
uals. More recently, De Montjoye et al. (2015) have
shown how just the dates and locations from four
credit card receipts yielded enough information to iden-
tify more than 90% of purchasers.

The attacking of cloud-based vulnerabilities and the
adversarial capabilities of techniques like de-anonymi-
sation exert increased pressure on privacy. But as
efforts to undermine privacy grow, so does its perceived
importance. Microsoft has recently made privacy one
of its three ‘core pillars’ (Nadella, 2018). Facebook
plans on hiring 10,000 new employees to address secur-
ity and privacy in the wake of the Cambridge Analytica
scandal (Hautala, 2018). And the European Union’s
General Data Protection Regulation (GDPR) puts
individual privacy at the heart of its legislation
(European Union, 2018).

Beyond such individualised concerns, these changes
in the feasibility and reach of mass-scale computing put
forth new questions about collective data privacy, data
security and data sovereignty. The human subject is
now interpolated in ways unanticipated in older
machines of record. From the hand-written registers
of the seventeenth century to the departmental data-
bases of the twentieth, the ways data structured and
delineated the person are surprisingly consistent and
comparatively thin (Foucault, 2007). Interlinked

social media, online health services and student and
work histories thicken, intensify and exteriorise the sub-
ject’s data profiles, criss-crossing private and public
institutional interests with individual and group sub-
jects (Amoore, 2014; Mittelstadt, 2017). The techno-
logical capabilities offered by data linkage and data
analysis allow for a certain subjecthood to be
assembled and disassembled in ways that bypass exist-
ing legal and ethical frameworks (Amoore, 2017;
Cohen, 2019; Mittelstadt, 2017). Technologies that
assume the integrity of the individual data subject,
such as obfuscation and anonymisation of data, pro-
vide only partial protection. Following from what
Montgomery and Pool have termed ‘experimental pub-
lics’ (2017), the assembly of these heterogeneous indi-
vidual traits into ad-hoc clusters might be termed
‘combinatorial publics’: social ensembles that are
made and unmade with the cut of a declarative query
or filter operation. Yet the response to the Cambridge
Analytica affair and other scandals also illustrates the
ways the massification of data produces a political acti-
vation of subjects.

We introduce the term ‘clouded data’ in order to
discuss this series of transformations that develop
through data accumulation, data privacy and value
extraction in the cloud. Used descriptively, the concept
refers to the twinned condition of personal information
today. Companies and agencies want to unlock the
potential value within the data by resituating it within
the cloud, a massive process of data centralisation.
These cloud-based architectures render data comput-
able and interoperable to a new degree, able to be inten-
sively processed and endlessly recombined with other
repositories to generate new insights. At the same time,
to protect this highly valuable information, data has
also become clouded in the sense of obfuscation,
encrypted or distorted to protect it from unwanted sur-
veillance or intrusion. These twinned processes are
therefore more than coincident: centralising data
makes it more vulnerable, requiring technologies for
obfuscation; and the pooling of computational
resources in turn makes those technologies computa-
tionally tractable and economically feasible.

However ‘clouded data’ not only describes the
technological properties opened up by data in the
cloud. It also encompasses political responses to threats
and dangers to privacy; the technologies designed to
ameliorate such threats and dangers; and, in turn, the
ways these technologies themselves open up different
political scenarios and different constellations of polit-
ical actors. This complex movement shows that not
only is technology, in a generalised sense, generative
of political meaning and implications, but that different
technological designs produce different arrangements of
power relations and possibilities for intervention.
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Collectively, demand for computational resources, data
ownership and access, ease of use, and what can be
considered different architectures of privacy, which we
explore in detail below, form the parts of technopoliti-
cal assemblages that, conversely, can only be under-
stood through analyses of their computational
materiality and social practice. Beyond its descriptive
value, ‘clouded data’ denotes then the production of a
novel field of differentiated activation, where political
concerns can arise, technological responses can be
initiated, and political possibilities can in turn be gen-
erated around the central issues of data accumulation
and privacy.

This field is neither technologically nor politically
homogeneous, and in this article we offer an attempt
to analyse the multiplicity of arrangements by looking
at four of the technological solutions for data privacy.
Each expresses what Julie Cohen has referred to as
‘privacy by design’ (2019), a particular set of ‘design,
production, and operational practices’ that construct a
distinct version of privacy and make it available
through an infrastructure. In these technical environ-
ments, privacy emerges from protocols and feature sets,
rather than adhering to an a priori normative standard.
In other words, we want to explore privacy as affor-
dance rather than abstraction. Understanding the
design of these cloud-based technologies implies a cer-
tain political economy, a particular arrangement of
power, trust and capital, which points in turn to the
ways in which they open up new fields of the political,
new dependencies between publicness and privacy, and
attach new significance to these categories.

The rest of the article explores how clouded data
reconfigures privacy. The first section surveys four tech-
nologies for data security in the cloud. The second sec-
tion uses code-based experiments and notional datasets
to engage with cloud-based encryption frameworks: in
a healthcare context, we posit a scenario around a
patient’s blood pressure; in a tertiary education context,
we work with a student survey. These empirical engage-
ments illustrate how distinctive forms of privacy emerge
from particular technical affordances. The final section
broadens the discussion to consider the political force
of clouded data and its reconstitution of traditional
notions such as the public and the private.

Securing the cloud: Four approaches
to networked data privacy

We identify and review four cloud-based cryptographic
responses to privacy concerns: blockchains, differential
privacy, multiparty computation (MPC) and homo-
morphic encryption. Each technology emphasises a dis-
tinctive aspect, staking out a particular territory within
the general field of computer security. With its current

hold on the public imagination, blockchain represents
the first, highly popular approach investigated. Second,
as a comparatively unobtrusive means for preserving
anonymity in data sets, differential computation fore-
grounds ease of application as a factor. Next, secure
MPC epitomizes what Claude Shannon (1949) defined
as ‘perfect secrecy’: encrypted messages reveal nothing
of the key used to encrypt the message. Finally,
fully homomorphic encryption (FHE) stresses comput-
ability, encrypting data while still allowing it to be
operated on.

These four approaches do not indicate mutual exclu-
sivity, nor a definitive articulation of the field itself, but
rather sketch a provisional terrain of clouded security
today. Our interest is in how each conjures a distinct
world of relations between social actors. In the sense
Cohen (2019) has suggested, each technology actively
coordinates and designs an inflected concept of privacy,
and through their respective implementation – in some
cases, still highly experimental – intervenes in the
unfolding process of data clouding. This, as we discuss
later, is as much as a shaping of political imagination as
of technical infrastructure.

Blockchain

Blockchain technology encompasses a variety of secur-
ity models. We begin by describing that used in the
most widely known blockchain examples, and then
elaborate on more recent versions. Bitcoin and
Ethereum are open and public blockchains. Able to
be downloaded or inspected by anyone at any time,
they operate via what might be termed ‘trust-through-
transparency.’ Distributed among all parties, no one
has more information than any other. Any member
on the network can send and receive transactions; any
member can verify whether blockchain data is consist-
ent and complete. Bitcoin and Ethereum extend this
principle of informational symmetry to their security
models, which employ public key cryptography to
grant all parties theoretically equivalent degrees of ano-
nymity. Each Bitcoin transaction is, for example, sent
to an ‘address,’ a hashed and encoded version of a
public key. Though exposed throughout the network,
these Bitcoin addresses cannot necessarily identify their
owners. However, since total privacy still requires dis-
cipline on the part of blockchain members (not expos-
ing their public keys alongside their personal details for
instance), this property has been termed pseudonymity
rather than strict anonymity. A distributed infrastruc-
ture with distinct technical properties – encryption,
‘proof of work’ checks against fraud, and a data store
that can only be appended to, not deleted or edited –
seeks to establish an egalitarian or ‘trustless’ network
that democratises, in theory, control over financial
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transactions, as well as other contractual arrangements
(Finextra Research and IBM, 2016).

Yet the distributed character of the blockchain also
poses challenges. As a public and inherently complete
record, its ledger is permanently open to new exploits
that seek to re-identify addresses accompanying trans-
actions. As Primavera De Filippi argues, ‘anyone can
retrieve the history of all transactions performed on a
blockchain and rely on big data analytics in order to
retrieve potentially sensitive information’ (2016: 0).
Moreover, blockchain’s distributed ledger records
information permanently, and this inability to remove
or amend records may violate new privacy regulations
such as the GDPR’s Article 17 (European Union,
2018). Different instances of blockchain technologies
thus produce different inflections of privacy; users are
not exposed to threats in a uniform way. Instead, those
with sufficient technical and financial resources can
better mask their identities, either by combatting iden-
tifying techniques on popular platforms like Bitcoin, or
by using more secure but also more complex alterna-
tives like Zcash or Monero.

Partly in response to these criticisms, other block-
chain designs explore alternatives with greater security,
flexibility and efficiency. These ‘permissioned’ block-
chains restrict membership to an invited list of parties,
typically at the discretion of a central authority who
initiates and governs the blockchain. At least from
the blockchain provider’s point of view invitees are
no longer even pseudonymous, and may be assigned
roles that further constrict their activity. Conversely,
the private character of these systems means they can
be secured against third-party access: blockchain data
is distributed only among authorised members, and is
limited to the data specific to the blockchain’s purpose.
Permissioned blockchains also need not store all data
within the blockchain itself, and can support a hybrid
model, where repositories of ‘off-chain’ personal data
are pointed to by small ‘on-chain’ references (Zyskind
et al., 2015). By only storing references, limiting the
number of parties and replacing proof-of-work with
simpler consensus procedures, such permissioned
blockchains can utilise far fewer network, storage and
processing resources. However they also re-establish
the central mediating authority – a bank, insurance or
healthcare provider – that public blockchains originally
sought to bypass. Indeed companies like IBM and
Oracle, sensing an opportunity to leverage existing
database technologies, have promoted the use of per-
missioned blockchains for enterprise (Mearian, 2018).
In such cases, privacy hinges once again on trusting a
central authority and what is often proprietary infra-
structure: the servers, databases, encryption standards
and security procedures through which such block-
chains are administered.

Differential privacy

In differential privacy, privacy is manufactured by
making an individual’s contribution to any given data
statistic arbitrary or contingent (Dwork, 2006).
Differential privacy obscures personal data by introdu-
cing noise in statistical datasets in such a way that
makes it impossible to deduce whether an individual’s
data is part of that dataset or not. Differential privacy
advocates explain the concept by positing two worlds:
in one world, an individual takes a survey and contrib-
utes to a dataset; in the other, she does not. This dis-
crepancy is then formalized systemically, and a
corresponding amount of noise added to queries. For
differential privacy then, ‘privacy’ is an adjustable
value, a parameter on a virtual control knob: dialled
up, each record resembles less and less its original form,
and the accuracy of statistics declines; dialled down, the
‘true’ shape of a modelled public recrystallizes, and so
too do the sharp contours of each individual’s profile
(McSherry, 2018). Properly configured, such ambiva-
lence protects individuals at the level of the single
record, while still allowing broad trends to emerge
when analysed in aggregate. Properties of the public
are revealed; properties of the person are not. For pion-
eers Cynthia Dwork and Aaron Roth, this indetermin-
acy enables a privacy promise: ‘you will not be affected,
adversely or otherwise, by allowing your data to be
used in any study or analysis, no matter what other
studies, data sets, or information sources, are available’
(2014: 5).

Relative to other approaches, differential privacy has
certain affordances: the technology is usable for non-
experts, who can run queries without understanding the
underlying mechanics; it supports the broad range of
queries that analysts are already using; and it integrates
with existing data environments, rather than requiring
new database architectures (Near, 2018). Near also
notes these merits have been adopted in production
systems: using differential privacy, Apple has analysed
the power consumption of websites and the popularity
of emojis without comprising individual privacy, while
Google has studied browser malware and traffic ana-
lysis in large cities.

Since differential privacy does not address the under-
lying data itself – depending on configuration, that data
is either transformed during initial load, or remains
intact but protected while the adjusted data is online
– it leaves open the potential for breaches, leaks, or
disclosures from adversaries who access and redistrib-
ute it. Additionally, and unlike public blockchains, a
central authority must control and protect such data;
as Dwork and Roth argue, individuals supplying data
must ‘assume the existence of a trusted and trustworthy
curator who holds the data of individuals in a database’
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(2014). While it defuses the ability of analysts to obtain
information damaging to any individual, differential
privacy presumes both the reputation of the provider
and the security of the architecture that delivers
responses to queries.

Multiparty computation

Like blockchains and unlike differential privacy, MPC
assumes instead the adversarial nature of the network
itself. Privacy in this antagonistic environment consists
in never trusting any single agent, not even a benevolent
curator, with a meaningful dataset. Instead, in the
‘Secret Sharing’ approach to MPC, information is
split into meaningless pieces that are then distributed
to a large number of providers for computation and
analysis. In this model, privacy is assured not by cipher-
texts alone, but also by the fragmented nature of cor-
porate ownership and computer architectures. As
Zyskind (2017) explains, ‘an attacker would need to
compromise t servers at any given point in time to get
the data back, which is highly unlikely for a large t.’
Though distributed, the use of the term ‘server’ here
indicates that, unlike blockchains, MPC operates in a
more common client-server rather than peer-to-peer
network topology; most explanatory diagrams of
MPC bear this out, showing a large number of users
and a smaller number of servers rather than the coin-
cidence of individual and device.

Though theoretically possible for some time, and
debuted in 2008 with Dutch sugar beet prices
(Bogetoft et al., 2008), MPC has seen several notable
real-world deployments, such as the evaluation of
gender pay disparities in Boston (Lapets et al., 2015)
and tax fraud in Estonia (Bogdanov et al., 2015). More
recently, engineers from Google have discussed how
they use MPC to evaluate advertising views or track
Android keyboard use while ensuring a degree of priv-
acy (Wood, 2017). At scale, overheads become critical –
distributing computation widely across a real-world
network like the Internet imposes significant perform-
ance costs. To address this constraint, Google’s imple-
mentation of MPC replaces antagonistic-assuming
‘academic’ protocols with less severe ‘industry’ versions
that ‘require only specific protocols, which can there-
fore be optimised, and comparatively weak security
guarantees’ (Wood, 2017).

As these examples suggest, computational cost and
complexity ensures the ‘parties’ in a MPC scheme are
most often institutional. These cases of MPC imply a
prior arrangement between public and private institu-
tions and the subjects whose data they curate and ana-
lyse. Similar to security tools on a personal computer or
mobile phone, they seek to be transparent about what
they conceal, and in doing so make an implied moral

appeal to a security-conscious public. In the contexts
accompanying its use to date, MPC seeks to conserve
existing institutional–individual relations, and in com-
mercial contexts, offer a feature that differentiates its
provider from competitors.

Homomorphic encryption

Homomorphic encryption suggests a solution with a
total obfuscation of personal data. In a typical, non-
homomorphic context, cloud-based service providers
decrypt data in order to run computations and deliver
analysis, but this temporary decryption presents an
unacceptable vulnerability – privacy is compromised
at the moment data is retrieved for computation. The
goal of homomorphic encryption is to operate on
encrypted data as if it was decrypted, retaining privacy
while enabling data analysis. Computation takes place
on ciphertexts and generates an encrypted result, which
is then returned to the user, who decrypts it. With the
advent of asymmetric or public key encryption, FHE
imagined a complete set of computing functions based
upon support for both additive and multiplicative
operations.

Although first suggested in a paper by Rivest,
Adleman and Dertouzos in 1978, and further developed
by Goldwasser and Silvio Micali in 1982, the possibility
of FHE was thought to be practically infeasible. In
2009, Craig Gentry (2009) outlined the first FHE
scheme that could handle both addition and multipli-
cation operations, using the mathematical notion of
ideal lattices and a technique called ‘bootstrapping’.
The breakthrough, however, came with significant per-
formance limitations, since the size of the encrypted
ciphertext grew enormously with each operation
(Schneier, 2009). In 2009 Gentry himself estimated
that his scheme would multiply computing time by a
factor of a trillion (Greenberg, 2009). Thus homo-
morphic encryption is highly attractive in a cloud-com-
puting environment, but its performance characteristics
have limited its adoption.

Nonetheless much work over the last decade has
focused on improving FHE performance through hard-
ware acceleration (Wang et al., 2012), software opti-
mization and prepared datasets – all of which require
significant investments. Performance has continued to
improve over time (Acar et al., 2017) and most recently
a team from Microsoft won the iDash competition with
an entry that reduced computation times down to sec-
onds (Çetin et al., 2017). An implementation of the
popular HElib library by Shai Halevi, released in
March of 2018, claims that optimizations enable speed-
ups of 15� to 75� (Halevi, 2018). Given these order-of-
magnitude improvements over a decade, performance is
no longer the roadblock for feasible real-world

Munn et al. 5



deployments that it once was (Hallman et al., 2018) and
this will certainly impact on the dynamics between pro-
viders of cloud-as-a-service, data providers and data
analysts.

Comparative analysis

In Table 1, we distinguish technical and practical prop-
erties of these four security schemes, summarising fea-
tures and trade-offs. The table shows, for instance,
blockchains and MPC are network-dependent, while
differential privacy and FHE can operate on single
machine; and that MPC and FHE offer current ‘state-
of-the-art’ security, but differ fundamentally in
approach.

In the second part of the table, we use these technical
properties to derive a series of assessments about how
privacy is being configured and designed. These assess-
ments are necessarily fragmentary, since we do not pre-
sume theories of privacy can be naively read off the
properties of technological systems themselves. The
‘reconstructive’ case studies below explore more
deeply how the individual subject’s relation to institu-
tional power may be reworked by two of these systems:
MPC and FHE. Yet even the inferences we make here
convey some sense of the changing relationship between
data, privacy, an individual juridical and political sub-
ject, and the queryable ‘combinatorial publics’ dis-
cussed earlier. Blockchains, for instance, hide
identifiers in plain sight, while differential privacy
requires data be stored by a trusted party.

This last point hints at a further distinction between
the four technologies. Blockchain and multiparty com-
putation both emerge from a theoretical security – and
in blockchain’s case, a further explicitly ideological –
desire to decentralise data control (despite the fact that
blockchains in practice have tended to become highly
centralised). While neither explicitly articulate a centra-
lised computing architecture, both differential privacy
and FHE imply powerful centralised computing
resources. In the case of differential privacy, determin-
ing the degree of noise required to adjust one data
record so that it can neither be identified nor perturb
aggregate calculations implies control of the complete
unencrypted data set by a single provider. In the case of
FHE, at least for many sufficiently large, i.e. popula-
tion-level, data sets, processing power requirements
would also imply a dedicated data centre facility. In
practice though, both blockchain and MPC have
tended also to favour centralised configurations; in
the case of famous blockchains like BitCoin, because
mining operations have progressed from personal com-
puters to clusters of dedicated mining machines; in the
case of MPC, at least in certain cases, because func-
tional systems have tended to be developed under

proprietary licenses that favour controlled, i.e. centra-
lised operating environments.

Speculating on encryption: Cases in
healthcare and tertiary education

Of these approaches, secure MPC and homomorphic
encryption (FHE) have received the least scrutiny in
regard to their social implications and by extension,
their potential reconfiguration of conceptions of priv-
acy. Applications of blockchain have been a subject of
attention in both technology media coverage and IT
literature while differential privacy has similarly been
comprehensively examined, without the same media
acclaim. Due to their comparative novelty and com-
plexity, the distinct form of data privacy constructed
by MPC and FHE is less well understood, motivating
our selection in the two case studies that follow.

Our method follows those employed in critical code
studies, notably in Mackenzie’s ‘code-based reconstruc-
tion’ (2018). We develop two such reconstructions,
based on Australia’s health and education industries,
where data privacy is under intense scrutiny and has
itself become an explicitly and intensely politicised
topic. The institutions of the clinic and the school
(Foucault, 2002, 2012) have been paradigmatic sites
for the reproduction of sovereignty, power and subject-
ivity in modern civic society. While claims of the vir-
tualisation of these institutions (through telemedicine
and online learning for instance) may be overstated,
they are equally essential sites for examining how tech-
nologies of ‘clouded data’ intervene in the establish-
ment of new concepts and practices of data
sovereignty. Enacting how new cloud-based technolo-
gies might apply to these institutional scenarios – devel-
oped and deployed here in much the same ways as they
are in the vast literature proselytising cloud-computing
– enables, through the differences of these scenarios
with the de facto conditions of privacy in those indus-
tries today, something of the wider reconfiguring of
relations between subject, corporation and state to
be seen.

While we list several of the affordances and limits of
the two approaches, our purpose is not to undertake a
technical evaluation of the kind widely used in com-
puter science and information systems disciplines, nor
to follow the suggestive possibilities of ‘tool criticism’
(Van Es et al., 2018) developed in software and media
studies. Rather our work constitutes a form of simula-
tion-as-reflexive-practice, designed to anticipate how a
future of ‘clouded data’ might shift political notions of
privacy and publics. In the health scenario, we utilise
PySEAL, a Python interface to the Simple Encrypted
Arithmetic Library (SEAL) FHE implementation
developed by Microsoft and open sourced in late
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2018. In the education scenario, we employ a secure
MPC system developed by NTT, San-Shi (2017),
which we obtained access to via a partnership with
NTT’s subsidiary, Dimension Data. In a paper describ-
ing San-Shi, Tanaka et al. (2017) claim it is resistant to
adversarial attacks from even the majority of parties,
offering even stronger protection than conventional
multiparty encryption schemes. Each implementation
therefore reflects the current state-of-the-art, anticipat-
ing cloud security to come rather than mature or wide-
spread systems in use today.

Healthcare

The importance of data security in healthcare has
increased with the progressive digitalisation of patient
and clinical data. In Australia, the introduction of elec-
tronic health records in 2012 has driven efforts to
improve data interoperability between private and
public health providers and insurance schemes such as
Medicare. Such efforts make the case for high levels of
healthcare data security all the more pressing. The cur-
rent version of electronic medical records in Australia,
My Health Record, is planned to include every
Australian, with an opt-out option, by the end of
2018 (Australian Digital Health Agency, 2018).
However, privacy concerns are stalling the planned
adoption of cloud storage in the industry (e-Health
Strategy, 2018) and threaten to sabotage the plan for
universal coverage. In the first couple of weeks after the
launch, the rate of opt-outs from the system has raised
concerns about the viability of the plan (Stilgherrian,
2018).

In its current state, Australia’s e-health system com-
prises mostly of siloed data systems, which hinders
interoperability. Such siloing does limit the damage of
data breaches, but does not prevent them altogether.
The focus of the Australian Digital Health Agency on
health data security has so far been directed predomin-
antly towards legislative measures and controlling the
access to the My Health Record database (2018a). One
of the measures adopted is the roll out of a new
Notifiable data breach scheme, introduced in
February 2018, which makes the reporting of personal
data breaches mandatory for organisations and entities
handling personal data (Office of the Australian
Information Commissioner, 2018).

However legislative measures to control access to
My Health Record databases have limited efficacy.
They address traditional healthcare scenarios – sharing
medical data between healthcare providers – but not
the challenges brought about by newer technological
innovations such as cloud-computing and Big Data
analytics. Such measures are expressed in what Cohen
(2019) has termed ‘liberty-based language of human

rights discourse’ which ‘are both difficult to dispute
and operationally meaningless,’ especially when such
technical operations are opaque and practically inex-
plicable. More direct critiques have emphasised the
inadequate encryption and anonymisation of My
Health Record data. In 2016 the bulk of partially
encrypted healthcare data shared for research by the
Health Ministry was discovered to be vulnerable to
re-identification and taken down (Dunlevy, 2016).
Analysis revealed that cross-checking with other pub-
licly available databases containing personal and tax
information could help re-identify individuals
(Culnane et al., 2017). These specific examples point
towards a broader inability to completely foreclose
de-anonymisation – datasets released in the future
could provide the key link to re-identifying individuals
or revealing personal data.

In our experimental scenario, a patient takes a blood
pressure test at a local clinic. She would like to know
whether this reading indicates a risk of hypertension.
The clinic has recently learned about a secure cloud-
based service able to determine if the patient’s blood
pressure reading is abnormally high using machine
learning techniques. As recent studies suggest, such
techniques have been shown ‘to provide solid predic-
tion capabilities in various application domains includ-
ing medicine and healthcare, including in the area of
hypertension’ (Sakr et al., 2018). Yet the patient is
unwilling to share her unencrypted history with online
services, concerned that any discovered risk factors
might be shared with health insurers or potential
employers. Her doctor informs her that her data will
be first encrypted, and that the cloud-based service per-
forms its computations solely on that encrypted infor-
mation. With her consent, the clinic submits the
patient’s details, including her blood pressure, along-
side a database of other, comparable patients – all
encrypted. The service determines that the patient’s
readings are indeed abnormally high, and could be a
predictor of hypertension. Such an encrypted and
highly focused analysis would allow the patient to
make informed choices about lifestyle, diet and poten-
tial treatment, while retaining control of her private
and highly valuable health data.

We generated and encrypted a small set of blood
pressure values, derived from mean and standard devi-
ation values reported for Australia by the World
Health Organisation (Kuulasmaa et al., 1999). We
developed a simple Python class which would accept
(a) the clinic’s public key, (b) the encrypted set of pre-
vious client records and (c) the patient’s blood pressure
reading, also encrypted. Without the secret key, objects
have no way of deciphering the encrypted data, but can
compute meaningful results. Our criteria were inten-
tionally simplistic: assuming blood pressure readings
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are normally distributed, is the patient’s reading in
the top 5 percentile (two standard deviations above
the mean)? We synthetically set the patient’s reading
to indicate ‘at risk’, and then evaluated whether we
could determine this once all the records were
encrypted and submitted to the cloud service.
Figure 1 plots the patient’s result (in red) with a set
of other randomly generated readings.

We had several challenges implementing even this
basic algorithm. Because PySEAL provides no means
of performing square root, variable division or number
comparison, we were restricted to calculating means
and variance. Since variables cannot be compared, the
software client needed to test the result of the function
with unencrypted data. As noted in comments in the
PySEAL example code, calculations are susceptible to
the parameters supplied to the homomorphic encryp-
tion scheme. Setting these parameter values too low led
to calculation errors, while setting them too high intro-
duced a dramatic decline in performance. While our
tests were not designed for benchmarking, there was a

noticeable performance decrease in calculating the
mean even for 25 compared with 10 observations,
with parameters set quite low.1 Beyond 25 observa-
tions, both performance and accuracy decreased dra-
matically.2 Thus, despite being touted as
‘homomorphic encryption in a user-friendly Python
package’ (Kishore, 2018), we found PySEAL presents
challenges even for experienced software developers to
use. The project’s GitHub page acknowledges it is a
‘proof of concept,’ and implementing workarounds to
calculate functions such as standard deviation is unu-
sually ‘low level’ (Titus, 2018). The effort to implement
such commonplace functions indicates something of the
labour required to refactor existing software to incorp-
orate homomorphic encryption. While such functions
may eventually be integrated as libraries like SEAL and
PySEAL mature, this labour poses a further obstacle to
FHE adoption.

Nevertheless, we were able to implement a simplified
‘outsourced computation’ scenario. As a technical
demonstration, the experiment shows a potential

Figure 1. Synthetic blood pressure readings (patient’s reading in red).
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reconfiguring of assumptions underpinning the privacy
disclosures of a national facility like MyHealthRecord.
In our naive case, a diagnosis is performed without
disclosure of even anonymous plaintext data. The
case could be extended to a much wider set of patient
data, with personal and identifying characteristics, that
could be linked to other data sets in a fully encrypted
environment. Under such conditions, disclosures that
usually trigger informed consent might instead fall
away. In bypassing former privacy limits, encrypted
yet computable data sets become a common resource
available for analysis by health organisations and
indeed any other actors. And yet the cloud that
makes such computation possible becomes even more
integral, an essential mediator in transactions between
client and the health industry. This registers a shift in
control from public institutions to private platform
corporations.

Tertiary education

The field of higher education is guided by similar con-
cerns about the security of personal data, which are
further complicated by the variety of citizenship, migra-
tion, financial and social information collected by edu-
cational institutions (Australian Government,
Department of Education and Training, 2018).
Concerns over use of student information have histor-
ically focussed on issues of bias and validity
(Druckman and Kam, 2011). With the rise of networks
and social media, exploitation of student data for
research and commercial purposes has begun to receive
critical attention (Hewitt and Forte, 2006).
Commensurate with the rise of audit culture, universi-
ties often survey students to monitor course satisfac-
tion, to boost metrics of engagement, or to gather
information for research projects.

Both research and market surveys are often anonym-
ous, but will sometimes include identifying information
such as a student ID. In such cases, data privacy policies
and university ethics committees will often constrain the
ways such identifiers may be used, prohibiting the mer-
ging of research data with other databases containing
course results or student enrolment records. While
such constraints adhere to the university’s duty of care
toward its students, they limit analysis that could be
derived from such merges. In the scenario below, we
explore how such analysis might be undertaken with a
secure multiparty computational environment.

In this scenario, a research team in a university busi-
ness school wants to know how well students feel
their courses were preparing them for the future job
market. They would like to administer a survey to the

university’s students, with questions like:

Please state your level of agreement with the following

statement:

‘I feel confident my current course is preparing me for

the future job market.’

In addition, the team wants to know how student
responses related to their course of study, their place
of residence, and economic factors such as student debt
and household income. A motivating research question
might be: do students from lower socio-economic back-
grounds feel more or less positive about how their
course is preparing them for future employment?

The team applies to the university’s ethics committee
for permission to administer their survey. They are
informed that their survey can contain basic questions
about work preparedness, but not sensitive questions
regarding income, background or place of residence,
as these would be invasive of privacy. However stu-
dents’ postcodes are captured by the university’s enrol-
ment system, and the team does obtain approval from
the university’s ethics committee to ask for student ID
numbers in their survey. The team also explains clearly
to all research participants why they are asking for
these identifiers, and emphasise they will not be able
to use these identifiers to obtain sensitive information
from students. After four weeks of running their
survey, the team has 1000 survey responses, including
attitudes about work preparedness.

They then upload a spreadsheet of these responses to
the San-Shi system, where it is encrypted. The same
system also has an encrypted copy of student enrolment
records, including postcodes. By matching student ID
numbers, the team can cross-index their survey with the
enrolment records to generate a more comprehensive
set of student data. Without being able to look at the
original records, the team can generate statistics about
responses by postcode. Using measures of socioeco-
nomic disadvantage and cartographic data from the
Australian Bureau of Statistics (2018a, 2018b), they
then generate a series of maps and tables to explore
the data.

Figure 2 shows the distribution of average scores
(where 1¼ ‘Strongly Disagree’ and 5¼ ‘Strongly
Agree’) across various postcodes in Western Sydney.
Barrel distortion is applied to magnify the smaller
postal areas surrounding Parramatta. A clustering of
low or high response postcodes might indicate that atti-
tudes vary spatially across Western Sydney. The data
was generated in R, using an inverse logistic function to
sample a distribution of responses biased by distance of
respondents’ place of residence from Parramatta.
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The aggregate responses extracted from the encrypted
San-Shi data reflected this biased distribution.

Whereas it was possible with PySEAL to do limited
computations with individual encrypted values, here we
could not obtain access to any underlying records. In
the scenario, this ability allows the School of Business
team to comply with ethics while still generating aggre-
gate results. While for testing purposes a single system
was operated under the control of a provider, other
configurations could include multiple parties who
each hold meaningless data shares that are only ever
reconstituted in response to queries using a secure
protocol. The particular implementation, then, presents
a field of possibilities stretching from the singular con-
trol exercised by the platform provider to the distribu-
ted and decentralised topology of peer-to-peer
networks. According to the setup, privacy is configured
as either the promise of a trusted corporate guarantor,
or a property that rises with the growth of networks. In
both cases, control over data by, for example, a state
actor is undermined, dispersed toward either a corpor-
ate mediator or a multitude of other actors.

Discussion

Our survey of cloud encryption approaches and the
experimental scenarios illustrate how technologies con-
struct a particular version of privacy. Each framework
has its own implementation of security, its own under-
standing of trust, its own formalization of roles.
Privacy emerges in specific formations based on under-
lying architectures and embedded assumptions. At a
higher level, these technical imaginaries encompass
roles and responsibilities, suggesting how cloud-based
privacy should work and who should operate it.

Usability provides one way of understanding who a
technology is intended for. As both experiments show,
current implementations are complex even for experi-
enced technicians to administer, query and programme.
In the case of FHE, while performance has improved,
integration into real-world projects retains a formidable
learning curve. As encryption specialist David Archer
(2016) has observed, the requirements ‘to transform
programmes into circuits, carefully configure FHE
computations, manage encryption and decryption,

Figure 2. Responses to question on work preparedness, mapped by postcode.
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and other complexities make programming FHE appli-
cations the domain of a small number of expert
researchers.’ For example, to use the SEAL library
for basic encryption tasks, ‘the first step is to create a
new EncryptionParameters object, and to set its modu-
lus attributes. The polynomial modulus should be set to
a power-of-2 cyclotomic polynomial’ (Titus, 2018).
Compared with using common statistical functions in
data analysis languages like Python and R, the degree
of expertise and requirement for labour involved in
homomorphic encryption restrict use to dedicated
research and experimental commercialisation environ-
ments. The analyst manual for San-Shi is similarly
complex. Successful use requires configuration of
thresholds for fragmented data, registration of tenants
for multiparty sharing, implementation of standard
functions such as correlation, and other details not typ-
ically part of a data analyst’s training.3 For at least the
foreseeable future, such complexity demands the inclu-
sion of the technician in these privacy arrangements; a
demand still evident even with more widely available
systems like blockchains and differential privacy.

Admittedly MPC and FHE are emerging technolo-
gies, at least at the level of implementation. Yet it is
precisely at this early juncture that roles are established
– ’privacy’ becomes a matter for the paid experts of
private companies, who offer it back to consumers. In
this sense, usability, while anchored in graphical inter-
faces and help manuals, extends into the broader
domain of accessibility. Encryption technologies
employ a particular language, assume a certain tech-
nical familiarity, and suppose access to necessary com-
putational architectures. In this way, the contextual
formation surrounding a technology establishes a gate-
way, inviting specific publics whilst excluding others.
Here, this gateway reinforces the expertise of the
cloud provider – expertise offered through the informa-
tion architectures of data centres and the human
resources of security experts. Personal data is entrusted
to the professionals.

The dependency between public and private is also
evident in questions of data sovereignty and the way it
legitimates the move into the corporate cloud.
Microsoft, for instance, has taken the lead in develop-
ing a homomorphic encryption standard (Microsoft
Research, 2017) while also releasing SEAL, a software
library that supports it. While SEAL can be embedded
into different applications and network configurations,
such flexibility belies the practical likelihood that it
would operate in data centres with computing power
capable of handling homomorphic calculations. In this
context, Microsoft’s CEO Satya Nadella’s public
endorsement of FHE in 2018 can be seen as an effort
to foreground the importance of privacy precisely in
concert with its own highly successful cloud offering.

For its part, NTT’s San-Shi is envisioned as a privacy
toolkit for cloud-providers, encompassing storage,
registration of users, delegation of computation to
agents and data analysis functions. Both systems
argue for a consolidated deployment on data centres,
and bind privacy to the platforms that run on them.
Encryption, then, is both technical achievement and
commercial hinge, underpinning ambitions for market
consolidation and reterritorialization, and potentially
shifting public trust from the clouds of upstart social
media companies to those of incumbent technology
firms. Clouded data is not simply the ability to translate
mathematical abstractions onto everyday scenarios,
but encompasses particular arrangements of research
funding, network configurations, protocol standardisa-
tion, legal entitlements and delicate enticements to
submit institutional data into the safety of the newly
secured cloud.

Conclusion

This article has argued that clouded data constructs a
political and technological notion of privacy that oper-
ates through the intersection of corporate power, com-
putational resources, and the ability to obfuscate, gain
insights from, and valorise a dependency between
public and private. At an individual level, the obstacles
to using and calibrating the parameters of cloud crypt-
ography (and in particular, FHE) point, then, to a lim-
ited agency in the control over one’s data. Such limits
press further on the possibilities to leverage power, and
to make claims and demands in a technologically con-
stricted territory of the political. Moreover, by fulfilling
(or bypassing) privacy regulations while still serving
governmental and market-based interests, cloud crypt-
ography renders collective agency over the control and
governance of data more difficult too. Theorists like
Gandy (2011) and Morozov (2015) have repeatedly
stressed that in determining the commodification and
circulation of personal data, this economy shapes pol-
itics and exerts significant power.

In responding to the demands of civic and commer-
cial actors, these new cryptographic procedures recon-
dition the sociological imaginary and the political
economy of privacy. As they mature, we anticipate
they will comprise the heart of efforts to rebuild a shat-
tered public trust of data management by government
and corporate institutions. As Facebook hints at a paid
tier of its major services (Ellis, 2018), data privacy
becomes a discriminating factor, completing a transi-
tion in media business models from pay-to-consume to
pay-to-stay-private. The processing and network costs
of homomorphic encryption and secure MPC will likely
be externalised as charges for securitization – a step
effectively already taken by the rewards earned by
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third-party miners in common blockchain implementa-
tions. Such developments in turn gesture toward a wildly
uneven and unequal future economy of data: the bench-
mark of privacy set by those who can afford the leasing
of computational cycles many orders of magnitude
greater than required for unencrypted equivalents, with
downward graduations for those with progressively less
means, compelled instead to pay for their digital life
through third-party monetisation of it.

Finally, the new conditions instantiated by cloud-
based encryption seem to shift the conventional under-
standing of publics. When data can remain clouded and
agencies ‘never see’ the underlying information, then –
perversely – privacy becomes a less effective argument
for restrictions on data capture or regulations on infor-
mation use. On an immediate level, this rationalizes
more expanded and invasive regimes of data capture.
But less obviously, the implied security of this ‘always
encrypted’ data legitimizes its combination and cross-
pollination with other datasets. Technically constituted
in the moment without the group’s knowledge, these
‘combinatorial publics’ bypass the traditional link
between privacy and the individual, forming a kind of
ethical loophole. Based on concepts like personal infor-
mation and a data subject, traditional privacy rights are
highly individualized and ‘atomistic’ (Floridi, 2014).
This means that privacy rights and duties do not yet
exist for ‘algorithmically constructed ad hoc groups’
(Mittelstadt, 2017). Indeed a nascent field of ‘group
privacy’ emerging over the last few years has attempted
to address the rights of these groups (Taylor et al.,
2017). While groups have little control over these pro-
files, they are both revealing and consequential. Often
responding to the concrete demands of a project, the
aggregate ‘insights’ obtainable from such combinatorial
publics nevertheless lend them a substantive empirical
force, whether leveraged in the commercial arena for
business logics or in the civic sphere for legislative poli-
cies. Associations of voting preferences with the
obscure margins of cultural taste, so well documented
in the Cambridge Analytica scandal, highlight the com-
binatorial affordances of personal data just beginning
to be recognized. More work will be necessary to exam-
ine exactly how these technologies reconstitute the rela-
tion-so central for classical western political thought
(Arendt, 1958; Habermas, 1989) – between privacy
and the public.

The clouded data condition is part of a rapidly shift-
ing terrain. This still-unfolding technological space,
with global economic and political stakes, is not
simply a response to social concerns that, once pacified,
move to other fields of contestation. Rather it produces
a novel imaginary of privacy, with correlate expect-
ations and opportunities for intervention. As more –
and more personal – information moves online, and

new techniques for exploiting this information
emerge, the dichotomy of ‘public’ and ‘private’ is
(again) challenged. New cloud infrastructures allow
data to be shared across sectors and institutions, slip-
ping easily between corporate and state actors. While
data takes part in diverse ecologies of power – repre-
sentation through statistical aggregation, enclosure
through encryption, commodification, sharing and
hacking – the issue of inviolability of private informa-
tion and the subject becomes as much a question of
political contestation as of technological feasibilities.
If the computation of privacy has become newly tract-
able, the culture of privacy, contested and rapidly shift-
ing, is far from clear.
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Notes

1. The source code and parameter values have been published

on GitHub (details supplied on publication).
2. We conducted tests on a server running Ubuntu 16.04,

with an Intel Xeon processor E3-12xx at 2.6MHz and
4GB RAM. We tested compared two functions, average

and variance, between unencrypted (supplied by Python

numpy functions mean and var) and encrypted (our own
‘home-rolled’ versions using PySEAL’s API). With FHE

schemes, there is typically a trade-off between accuracy

and performance. This trade-off is managed within
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PySEAL through the setting of three parameters: the

polynomial modulus, the coefficient modulus and

the plaintext modulus (http://130.56.248.129:8889/edit/

SEALPythonExamples/examples.py). For calculations

with very small numbers, these parameters can be set to

small values, which provides a correspondingly low ‘noise

budget’ but better performance. On our hardware config-

uration, setting polynomial and coefficient modulus to

8192 and the plaintext modulus to 786,433 allowed us to

encrypt 25 8-bit numbers – enough to capture blood pres-

sure values – at reasonable speeds. For the calculation of

the mean, FHE performance decreased by a factor of 4824

(0.012 vs. 57.577 s, best of three 1000 iterations); for cal-

culation of variance, FHE performance decreased by a

factor of 62,834 (0.038 vs. 2,367.476 s, best of three 1000

iterations). These figures are intended to reflect a ‘naı̈ve’

use of PySEAL’s API, and do not constitute a rigorous

evaluation. Performance characteristics may vary with

other data, parameters, algorithm, hardware and network

settings.
3. Based on experimentation with an early (R&D) build of

the San-Shi platform.
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Çetin GS, Chen H, Laine K, et al. (2017) Private queries

on encrypted genomic data. BMC Medical Genomics
10(2): 45.

Cohen JE (2019) Turning privacy inside out. Theoretical

Inquiries in Law 20(1): 1–32.
Coley R and Lockwood D (2012) Cloud Time. London: Zero

Books.

Culnane C, Rubinstein B and Teague V (2017) Health Data in
an Open World. 18 December. Melbourne: The University
of Melbourne. Available at: https://arxiv.org/ftp/arxiv/
papers/1712/1712.05627.pdf

De Filippi P (2016) The interplay between decentralization
and privacy: The case of blockchain technologies.
Journal of Peer Production 9. Available at: http://peerpro-

duction.net/issues/issue-9-alternative-internets/peer-
reviewed-papers/the-interplay-between-decentralization-
and-privacy-the-case-of-blockchain-technologies/

(accessed 30 July 2018)
De Montjoye Y, Radaelli L and Singh VK (2015) Unique in

the shopping mall: On the reidentifiability of credit card

metadata. Science 347(6221): 536–539.
Druckman JN and Kam CD (2011) Students as experimental

participants. In: Cambridge Handbook of Experimental
Political Science. Vol. 1. Cambridge: Cambridge

University Press, pp. 41–57.
Dunlevy S (2016) Encrypted private medical records released

by the Department of Health are vulnerable. Available at:

https://www.news.com.au/lifestyle/health/encrypted-pri-
vate-medical-records-released-by-the-department-of-heal
th-are-vulnerable/news-story/a2f1dc892102cfaa5d1915dd3

2ad98d8 (accessed 2 July 2018)
Dwork C (2006) Differential privacy. In: Bugliesi M, Preneel

B, Sassone V, et al. (eds) Automata, Languages and
Programming. Berlin/Heidelberg: Springer, pp. 1–12.

Dwork C and Roth A (2014) The algorithmic foundations of
differential privacy. Foundations and Trends� in
Theoretical Computer Science 9(3–4): 211–407.

e-Health Strategy (2018) eHealth Strategy for NSW Health
2016–2026. Sydney: NSW Health. Available at: http://
www.health.nsw.gov.au/eHealth/Documents/eHealth-

Strategy-for-NSW-Health-2016-2026.pdf

14 Big Data & Society

http://130.56.248.129:8889/edit/SEALPythonExamples/examples.py
http://130.56.248.129:8889/edit/SEALPythonExamples/examples.py
http://arxiv.org/abs/1704.03578
http://arxiv.org/abs/1704.03578
https://www.uscybersecurity.net/csmag/revolution-and-evolution-fully-homomorphic-encryption/
https://www.uscybersecurity.net/csmag/revolution-and-evolution-fully-homomorphic-encryption/
https://www.uscybersecurity.net/csmag/revolution-and-evolution-fully-homomorphic-encryption/
http://www.abs.gov.au/ausstats/abs@.nsf/mf/2033.0.55.001
http://www.abs.gov.au/ausstats/abs@.nsf/mf/2033.0.55.001
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
http://www.abs.gov.au/ausstats/abs@.nsf/Previousproducts/3218.0Main%20Features702015-16?opendocument&amp;tabname=Summary&amp;prodno=3218.0&amp;issue=2015-16&amp;num=&amp;view=
https://www.myhealthrecord.gov.au/front
https://www.education.gov.au/privacy-policy
http://fc15.ifca.ai/preproceedings/paper_47.pdf
http://eprint.iacr.org/2008/068
https://arxiv.org/ftp/arxiv/papers/1712/1712.05627.pdf
https://arxiv.org/ftp/arxiv/papers/1712/1712.05627.pdf
http://peerproduction.net/issues/issue-9-alternative-internets/peer-reviewed-papers/the-interplay-between-decentralization-and-privacy-the-case-of-blockchain-technologies/
http://peerproduction.net/issues/issue-9-alternative-internets/peer-reviewed-papers/the-interplay-between-decentralization-and-privacy-the-case-of-blockchain-technologies/
http://peerproduction.net/issues/issue-9-alternative-internets/peer-reviewed-papers/the-interplay-between-decentralization-and-privacy-the-case-of-blockchain-technologies/
http://peerproduction.net/issues/issue-9-alternative-internets/peer-reviewed-papers/the-interplay-between-decentralization-and-privacy-the-case-of-blockchain-technologies/
https://www.news.com.au/lifestyle/health/encrypted-private-medical-records-released-by-the-department-of-health-are-vulnerable/news-story/a2f1dc892102cfaa5d1915dd32ad98d8
https://www.news.com.au/lifestyle/health/encrypted-private-medical-records-released-by-the-department-of-health-are-vulnerable/news-story/a2f1dc892102cfaa5d1915dd32ad98d8
https://www.news.com.au/lifestyle/health/encrypted-private-medical-records-released-by-the-department-of-health-are-vulnerable/news-story/a2f1dc892102cfaa5d1915dd32ad98d8
https://www.news.com.au/lifestyle/health/encrypted-private-medical-records-released-by-the-department-of-health-are-vulnerable/news-story/a2f1dc892102cfaa5d1915dd32ad98d8
http://www.health.nsw.gov.au/eHealth/Documents/eHealth-Strategy-for-NSW-Health-2016-2026.pdf
http://www.health.nsw.gov.au/eHealth/Documents/eHealth-Strategy-for-NSW-Health-2016-2026.pdf
http://www.health.nsw.gov.au/eHealth/Documents/eHealth-Strategy-for-NSW-Health-2016-2026.pdf


Ellis C (2018) Facebook could introduce a paid subscription

service. Techradar, 11 April. Available at: https://www.te-

chradar.com/au/news/facebook-could-introduce-a-paid-

subscription-service (accessed 25 July 2018)
European Union (2018) Article 17 – Right to

erasure (‘right to be forgotten’). Available at: http://

www.privacy-regulation.eu/en/article-17-right-to-erasure-

’right-to-be-forgotten’-GDPR.htm (accessed 20 June

2018)
Finextra Research and IBM (2016) Banking on Blockchain:

Charting the Progress of Distributed Ledger Technology in

Financial Services. January. London: Finextra

ResearchAvailable at: https://www.finextra.com/finextra-

downloads/surveys/documents/32e19ab4-2d9c-4862-8416-

d3be94161c6d/banking%20on%20blockchain.pdf

(accessed 2 July 2018)

Floridi L (2014) Open data, data protection, and group priv-

acy. Philosophy & Technology 27(1): 1–3.

Foucault M (2002) The Birth of the Clinic. Abingdon:

Routledge.

Foucault M (2007) Security, Territory, Population: Lectures
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