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Abstract—This work explores the fundamental problem of the
recoverability of a sparse tensor being reconstructed from its
compressed embodiment. We present a generalized model of
block-sparse tensor recovery as a theoretical foundation, where
concepts measuring holistic mutual incoherence property (MIP)
of the measurement matrix set are defined. A representative
algorithm based on the orthogonal matching pursuit (OMP)
framework, called tensor generalized block OMP (T-GBOMP),
is applied to the theoretical framework elaborated for analyzing
both noiseless and noisy recovery conditions. Specifically, we
present the exact recovery condition (ERC) and sufficient con-
ditions for establishing it with consideration of different degrees
of restriction. Reliable reconstruction conditions, in terms of the
residual convergence, the estimated error and the signal-to-noise
ratio bound, are established to reveal the computable theoretical
interpretability based on the newly defined MIP, which we
introduce. The flexibility of tensor recovery is highlighted, i.e.,
the reliable recovery can be guaranteed by optimizing MIP of
the measurement matrix set. Analytical comparisons demonstrate
that the theoretical results developed are tighter and less restric-
tive than the existing ones (if any). Further discussions provide
tensor extensions for several classic greedy algorithms, indicating
that the sophisticated results derived are universal and applicable
to all these tensorized variants.

Index Terms—Block sparsity, compressed sensing, tensor signal
processing, mutual incoherence property, recovery condition.

I. INTRODUCTION

RECOVERING an n-mode sparse tensor
X ∈ CN1×N2×···×Nn from linear measurements

[1]–[3]

Y = X ×1 D1 ×2 D2 ×3 · · · ×n Dn +N , (1)

occurs in many applications, such as channel estimation
[4] and direction-of-arrival estimation [5], where Y ∈
CM1×M2×···×Mn is the given measurement tensor, Dt ∈
CMt×Nt (t ∈ {1, 2, · · · , n}) are measurement matrices with
Mt ≪ Nt, N denotes the additive noise, and ×i (i ∈
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{1, 2, · · · , n}) denotes the ith mode product of a tensor and
a matrix. More specifically, the tensor product X ×i Di

(i = 1, · · · , n) is equivalent to first multiplying each slice
of the ith mode of the tensor with the matrix Di, and then
arranging the resulting matrices in sequence to form a new
tensor. This model is called the generalized sparse recovery
model since the conventional ones, e.g., single measurement
vector (SMV) [6] and multiple measurement vector (MMV)
[7] models, are one-mode tensor recovery models, i.e., the
parameter n in (1) is equal to 1. As the exploitation of
n modes provides instrumental correlation information from
various domains and the confirmed potential to filter out noise
inference, high-dimensional tensors exhibit more desirable
performance than ones with low modes. Moreover, compared
with the MMV problem, the intrinsic structure of the nonzero
tensor supports is more flexible, since MMV assumes that
the sparse patterns of each sparse signal are the same. These
advantages, in terms of recoverability and flexibility, have
sparked much interest in tensor recovery.

Representative tensor recovery algorithms, e.g., tensor or-
thogonal matching pursuit (T-OMP) [4], [8] and tensor block
OMP (T-BOMP) [9], are promising due to their fast implemen-
tation through the greedy iterative mechanism. They gradually
construct an estimated support of the sparse tensors by adding
one index that is most strongly correlated with the residual into
it per iteration, and then calculate the sparse approximation
over the enlarged support. Different from T-OMP, T-BOMP
considers the reconstruction of the sparse tensors that exhibit
additional structure in the form of the nonzero atoms appearing
in clusters, which are referred to as block-sparse [6], [10].
Making explicit use of block sparsity obtains better provable
recovery characteristic than the schemes which treat the signals
being randomly sparse [6]. In the applications, e.g., muti-
band signal processing [11]–[13], the block sparsity occurs
naturally.

A fundamental question in the analysis of tensor recovery
is the characterization of its recoverability. The restricted
isometry property (RIP) [14]–[16] is one of the main tools
for measuring the recoverability of greedy algorithms in
conventional SMV and MMV models. It indicates that if
a measurement matrix satisfies the RIP with some suitable
restricted isometry constants (RICs), then the sparse signals
can be recovered reliably. However, calculating the RIC of
a matrix is an NP-hard problem. By contrast, the mutual
incoherence property (MIP) [6], [17], [18] is computable,
and it provides a stronger condition than that of the RIP,
i.e., meeting MIP implies that RIP holds but the converse
is not true [19]. However, the existing MIP framework is
not applicable to the tensor recovery scenario since it only
represents the characteristic of a single measurement matrix
and cannot materialize the cross coherence within a given
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matrix set.
Moreover, developing less restrictive theoretical guarantees

is useful for practical decision-making, which is highly depen-
dent on an enabling tensor model. The block-sparse tensor is
regarded as a generalized case with further consideration of the
internal structure characteristic [9], [20]. The authors of [20]
consider the case in which one of the nonzero supports of a
tensor consists of multiples indices, resulting in block sparsity,
and the authors then reformulate the tensor recovery problem
into the MMV model-based problem. The work [9] proposes
to tensorize data in a block-sparse manner via utilizing its
spatial distributions. In practical scenarios, the need for block-
sparse tensor recovery arises in various applications, including
spectrum sensing [11], [13], [21], channel estimation [4], [8],
[22]–[27] and sparse representation [28]–[32] across different
modes. The signals of interest not only possess a multidi-
mensional structure with each mode representing a specific
physical attribute like time, frequency or space, leading to the
tensor structure, but also exhibit block sparsity due to factors
such as multiple-band spectrum utilization and energy spread
effect [28], [33], [34]. By leveraging both the tensor structure
and block sparsity, block-sparse tensor recovery holds promise
in terms of enhancing recovery accuracy and simplifying
implementation complexity. Despite these advancements, a
comprehensive block-sparse tensor model elucidated through
an associated MIP framework is yet to be formulated for
computably feasible interpretability.

The focus of the present paper is on revealing theoreti-
cal recovery guarantees by exploiting the generalized tensor
recovery model. The main contributions are summarized as
follows.

1) We define concepts revealing the MIP of a given matrix
set, as a foundation for the theoretical illumination
of the tensor recovery problem. They are intended as
indicators of whether the matrix set is sufficiently rich
to allow for reliable reconstruction. The flexibility of
tensor recovery is further highlighted, since these newly
defined concepts can be optimized by adjusting the
internal measurement matrices in the set. Analytical
comparisons evince the newly defined concepts’ stronger
ability of tensor structured representation compared with
conventional ones.

2) A generalized tensor recovery model with block sparsity
is formulated. We model a new block structure inside
the sparse tensor as shadow block sparsity. It quantifies
the number of related blocks between each measurement
matrix and the nonzero support blocks of the sparse
tensor. Meanwhile, the cases in which the tensor has
regular or irregular block structure, i.e., in which the
block lengths in certain modes are the same or different,
are considered. Correspondingly, we present analytical
solutions for these distinct scenarios with the redefined
MIP concepts.

3) As a generalized variant, a tensor generalized BOMP
(T-GBOMP) stemming from the OMP framework that
contains multiple tensor block selection mechanism,
similar to those of compressive sampling matching
pursuit (CoSaMP) [35] and multiple orthogonal least

squares (MOLS) [36], is organized and summarized for
the first time. The algorithm is exploited as an impor-
tant tool to derive reliable reconstruction conditions of
block-sparse tensor recovery. We further summarize and
present several tensorized algorithm variants based on
the existing greedy algorithms, and point out that the
theoretical results derived are universal and applicable
to all of these algorithm variants.

4) In-depth analyses are conducted based on the aforemen-
tioned preparations. The theoretical results contain two
parts, i.e., the analyses on exact recovery and reliable
reconstruction in the noiseless and noisy scenarios,
respectively. Firstly, we present less restrictive exact
recovery condition (ERC) for T-GBOMP (Theorem 1
and Remark 2), and provide corresponding sufficient
conditions, in terms of higher reconstructible sparsity
level (Theorem 2, Corollary 4, Remark 3, Remark 4,
and Remark 5). These results guarantee that T-GBOMP
reconstructs the sparsest tensor from the measurements
exactly if the sparsity level falls within an upper bound.
Meanwhile, the exponential convergence of residual ten-
sor has also been demonstrated (Theorem 3). We have
presented the lower and upper bounds of shadow block
sparsity in Proposition 2, along with specific tensor
structures corresponding to these bounds, which facil-
itate a more intuitive analysis of the results presented in
this study. By leveraging the concept of shadow block
sparsity, we have obtained analytical results pertaining to
crucial parameters, such as different coherences and ten-
sor block length. These results showcase how a general
tensor can align with the tensor structure that reaches the
lower bound of shadow block sparsity (Remark 6). Sec-
ondly, noisy recovery conditions are derived based on
MIP, which involves upper bounds on the error between
the original tensor and the estimated one under various
assumptions (Theorem 4, Theorem 6 and Theorem 8),
the lower bound of SNR required for reliable recovery
(Theorem 5), and the norm of the residual tensor at
specific iterations (Theorem 7). It is worth mentioning
that the theoretical results derived are related to the
number of tensor modes. Based on these findings and
asymptotic analysis, it has been revealed that a larger
tensor mode allows for a lower bound on the required
SNR for reliable recovery (Remark 7). Additionally,
block orthogonality of measurement matrices can reduce
the upper bound of reconstruction error, wherein a
larger block length further increases the performance
gap between block orthogonal and non block-orthogonal
measurement matrices (Remark 8). The aforementioned
results derived are tighter and less restrictive than the
existing ones (if any and comparable), demonstrating the
superiority of block-sparse tensor recovery over other
methodologies.

II. PRELIMINARIES

A. Notations
We briefly summarize the notations used in this paper.

Matrices are denoted by boldface uppercase letters, e.g., D,
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and tensors are denoted by calligraphic uppercase letters,
e.g., X . Vectorization of tensor X is denoted by vec(X ).
The element in the i-th row and j-th column of matrix D
is denoted by D(i,j), and D(:,j) denotes the j-th column
of D. DΘ is a submatrix of D that contains the columns
indexed by the set Θ. D\DΘ is the residual matrix after
all the columns indexed by Θ are removed from D. DT

represents the transpose of D, and WH denotes the conjugate
transpose of W. Given a block length, the j-th column-block
submatrix of matrix D is denoted as D[j]. The set ΘB consists
of the block indices of the set Θ based on a given block
length. ⟨·, ·⟩ denotes the inner product. inf{f(x)} denotes the
infimum of the function f(x) with respect to the variable
x. I stands for the identity matrix. The operation supp(X )
returns the index set of the nonzero support tensor blocks
of X . If DΘ has full column rank, D†

Θ =
(
DH

ΘDΘ

)−1
DH

Θ

represents the pseudoinverse of DΘ. span(DΘ) denotes the
space spanned by the columns of DΘ, and PDΘ

=DΘD†
Θ is

the projection onto span(DΘ), while P⊥
DΘ

=I−PDΘ
is the

projection onto the orthogonal complement of span(DΘ). For
a vector r, diag(r) denotes the diagonal matrix whose diagonal
elements are the entries of r. The all zero vector/matrix/tensor
is uniformly denoted by 0. |Θ| stands for the cardinality or
the block cardinality that allows repetition of set Θ, and |c|
is the absolute value of scalar c. Give an n-mode tensor X ,
denote its ith (i∈{1, 2, · · · , n}) mode tensor index set as Θi

with |Θi|=k. The corresponding tensor index set for X can
be represented as

Θ={(Θ11 ,Θ21 , · · · ,Θn1
), (Θ12 ,Θ22 , · · · ,Θn2

),

· · · , (Θ1k ,Θ2k , · · · ,Θnk
)}

with |Θi| = |Θ| = k (i ∈ {1, 2, · · · , n)}, where Θij denotes
the jth element of the set Θi (j ∈ {1, 2, · · · , k}). The
(i1, · · · , in)th tensor block of X with respect to Θ is denoted
by X[Θ1i1

,··· ,Θnin
] ∈ Cd1×···×dn . The Kronecker product is

represented by ⊗. Based on a matrix set Υ =
{
Di ∈

CMi×sidi , 1 ≤ i ≤ n
}

(n ≥ 1) and the tensor index set
Θ, we denote the cascading matrix:

D̈Θ =
[
DnΘn[1]

⊗ · · · ⊗D1Θ1[1]
,DnΘn[2]

⊗ · · · ⊗D1Θ1[2]
,

· · · ,DnΘn[|Θn|]
⊗ · · · ⊗D1Θ1[|Θ1|]

]
,

where DtΘt[j]
, t ∈ {1, · · · , n} and j ∈ {1, · · · , |Θt|}),

is a column-block submatrix of Dt indexed by Θt[j] . The
operation | · |u denotes the non-repeating cardinality of its
argument.

B. Block-Sparse Tensor Model and Useful Definitions

As illustrated in Fig. 1, the block-sparse tensor X ∈
CN1×···×Nn is compressed by the n measurement matrices
in the set Υ =

{
Di ∈ CMi×Ni , 1 ≤ i ≤ n

}
(n ≥ 1),

where Nn = sndn. If there exist k support tensor blocks with
nonzero F-norms, X is called k block-sparse tensor, and the
corresponding indices constitute the set Ξ with |Ξ| = k. The
measurement matrices Di for i ∈ {1, · · · , n} can be rewritten

Tensor block

Fig. 1. Illustration of the block-sparse tensor recovery model.

as a concatenation of the si column-block submatrices, i.e.,

Di =
[
Di(:,1) · · ·Di(:,d)︸ ︷︷ ︸

Di[1]

Di(:,d+1)
· · ·Di(:,2d)︸ ︷︷ ︸

Di[2]

· · ·Di(:,N−d+1)
· · ·Di(:,N)︸ ︷︷ ︸

Di[si]

]
,

where Di[j] ∈ RMi×di is the j-th column-block submatrix of
Di. Throughout the paper, the columns in the measurement
matrix are normalized to have the unit ℓ2-norm.

Based on the model presented, we provide the MIP frame-
work, which is an important tool to analyze the theoretical
guarantees of compressed sensing (CS) approaches [19]. We
first give the conventional MIP concept of a matrix D,
including the matrix coherence µ

D
, and the block-structure

coherence µD and νD. Then, we propose the new concepts of
mutual block coherence and mutual sub-coherence, which can
be regarded as the generalized high-dimensional extensions of
the conventional MIP.

Definition 1. (Matrix coherence [17]) The coherence of a
matrix D, which represents the similarity of its elements, is
defined as

µ
D

= max
∀i,j ̸=i

∣∣ < D(:,i),D(:,j) >
∣∣.

Definition 2. (Block-structure coherence [10]) This block-
structure coherence of a matrix D consists of two individual
concepts, i.e., block coherence and sub-coherence. Let d be
the block length. The block coherence of D is defined as

µD = max
∀i,j ̸=i

∥∥M[i,j]

∥∥
2

d
,

where M[i,j] = DH
[i]D[j], and D[i] is the i-th column-block

submatrix of D with block length d. The sub-coherence of D
is defined as

νD = max
∀l

max
∀i,j ̸=i

∣∣ < D[l](:,i)
,D[l](:,j)

>
∣∣,

where D[l](:,i)
is the i-th column of D[l].

The block-structure coherence is a generalized extension
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of the matrix coherence, which is more capable of exploring
the MIP-based performance guarantees offered by the block-
structure characteristic of a matrix. Theoretical bounds based
on the block-structure coherence are usually less restrictive
than those based on conventional matrix coherence under the
same assumptions [10]. When the block length d = 1, then
block-structure coherence reduces to the matrix coherence,
i.e., µD = µ

D
and νD = 0 [10]. For the tensor recovery

case, there exists a matrix set, consisting of n measurement
matrices. Neither the matrix coherence nor the block-structure
coherence, which are both applicable only to single matrix,
can accurately measure the cross coherence among the given
multiple matrices. To represent the degree of coherence among
multiple block-structured matrices, we propose new coherence
concepts that provide the MIP among n measurement matrices
as follows.

Definition 3. (Mutual block coherence) Given a matrix set
Υ =

{
Di ∈ CMi×sidi , 1 ≤ i ≤ n

}
(n ≥ 1), the mutual block

coherence of Υ is defined by the following two formulations.

Firstly, considering that ∀(i1, i2, · · · , in), (j1 ̸= i1, j2 ̸=
i2, · · · , jn ̸= in), mutual block coherence ϖΥ is given by

ϖΥ = max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(

1∏n
i=1 di

∥∥∥(Dn[in]
⊗ · · · ⊗D1[i1]

)H
×
(
Dn[jn]

⊗ · · · ⊗D1[j1]

)∥∥∥
2

) 1
n

, (2)

where di is the block length of the matrix Di.

Secondly, without loss of generality, ∀(i1, i2, · · · , in), (j1 =
i1, j2 = i2, · · · , jt = it, jt+1 ̸= it+1, · · · , jn ̸= in) (t ≥ 1),
mutual block coherence is defined as

ϖΥ = max
∀(i1,··· ,in),(j1=i1,··· ,jt=it,jt+1 ̸=it+1,··· ,jn ̸=in)(

1∏n
i=1 di

∥∥∥(Dn[in]
⊗ · · · ⊗Dt+1[it+1]

⊗Dt[it]
⊗ · · · ⊗D1[i1]

)H
×
(
Dn[jn]

⊗ · · · ⊗Dt+1[jt+1]

⊗Dt[it]
⊗ · · · ⊗D1[i1]

)∥∥∥
2

) 1
n

. (3)

The definition in (2) is more similar to the conventional
sparse recovery case as defined in Definition 2, wherein the
indices of the measurement matrix blocks used for coherence
calculation differ. However, in high-dimensional tensor recov-
ery scenarios, the measurement matrix labels corresponding to
different tensor blocks may be partially the same, as long as
these labels are not identical, which results in the definition
in (3).

Definition 4. (Mutual sub-coherence) Given a matrix set Υ ={
Di ∈ CMi×sidi , 1 ≤ i ≤ n

}
(n ≥ 1), the mutual sub-

coherence of Υ is given by the following two definitions.

Firstly, considering that ∀(i1, i2, · · · , in), (j1 ̸= i1, j2 ̸=

i2, · · · , jn ̸= in), mutual sub-coherence τΥ is given by

τΥ = max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(∣∣∣(Dn(:,in)

⊗ · · · ⊗D1(:,i1)

)H
×
(
Dn(:,jn)

⊗ · · · ⊗D1(:,j1)

)∣∣∣) 1
n

, (4)

where di is the block length of the matrix Di, and
Dl(:,il)

,Dl(:,jl)
∈ Dl[tl]

, tl ∈ {1, · · · , sl}, l ∈ {1, · · · , n}.

Secondly, without loss of generality, ∀(i1, i2, · · · , in), (j1 =
i1, j2 = i2, · · · , jt = it, jt+1 ̸= it+1, · · · , jn ̸= in) (t ≥ 1),
mutual sub-coherence is defined as

τΥ = max
∀(i1,··· ,in),(j1=i1,··· ,jt=it,jt+1 ̸=it+1,··· ,jn ̸=in)(∣∣∣(Dn(:,in)

⊗ · · · ⊗Dt+1(:,it+1)

⊗Dt(:,it)
⊗ · · · ⊗D1(:,i1)

)H
×
(
Dn(:,jn)

⊗ · · · ⊗Dt+1(:,jt+1)

⊗Dt(:,it)
⊗ · · · ⊗D1(:,i1)

)∣∣∣) 1
n−t

. (5)

More specially, the definition in (5) satisfies

τΥ = max
∀(it+1,··· ,in),(jt+1 ̸=it+1,··· ,jn ̸=in)∥∥∥(DH

n(:,in)
Dn(:,jn)

)
⊗ · · · ⊗

(
DH

t(:,it+1)
Dt(:,jt+1)

)∥∥∥ 1
n−t

2
,

since the measurement matrices are normalized to have unit
column norms.

Compared with the conventional and block-structure coher-
ence, a significant advantage of the representativeness of the
mutual coherence is that it can be optimized by adding a matrix
with satisfactory coherence or replacing a matrix in the given
set with a more desirable matrix. This indicates that the mutual
coherence can provide the overall coherence variation within
the matrix set. When n = 1 and d ̸= 1, the mutual block
coherence and mutual sub-coherence degenerate into the block
coherence and sub-coherence of Definition 2, respectively. On
the other hand, if n = 1 and d = 1, they naturally reduce to the
matrix coherence of Definition 1. Moreover, for the definition
in (2), we have

ϖΥ = max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(

1∏n
i=1 di

∥∥∥(DH
n[in]

Dn[jn]

)
⊗ · · · ⊗

(
DH

1[i1]
D1[j1]

)∥∥∥
2

) 1
n

(6)

= max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)

(
n∏

l=1

∥∥DH
l[il]

Dl[jl]

∥∥
2

dl

) 1
n

(7)

=

( n∏
l=1

µDl

) 1
n

(8)
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≤
( n∏

l=1

µ
Dl

) 1
n

(9)

≤ 1, (10)

where (6) is from the definition of mutual block coherence, (7)
is based on the property of the norm of Kronecker product, (8)
is due to the definition of block coherence, (9) is from [10, Eq.
(10)] which states that given a matrix D, µD ≤ µ

D
, and (10)

is because µ
D

≤ 1. If the matrices in the matrix set consist
of orthonormal blocks, i.e., DH

t[j]
Dt[j] = I for t ∈ {1, · · · , n}

and j ∈ {1, · · · , st}, we have

ϖΥ ≤
( n∏

l=1

1

dl

) 1
n

,

which is because given a matrix D with orthonormal blocks
and block length d, µD ≤ 1

d [10]. As for the definition in (3),
we have

ϖΥ = max
∀(i1,··· ,in),(j1=i1,··· ,jt=it,jt+1 ̸=it+1,··· ,jn ̸=in)(

t∏
l=1

∥∥DH
l[il]

Dl[il]

∥∥
2

dl

n∏
l=t+1

∥∥DH
l[il]

Dl[jl]

∥∥
2

dl

) 1
n

≤
( t∏

l=1

1 + (dl − 1)νDl

dl

n∏
l=t+1

µDl

) 1
n

(11)

≤ 1, (12)

where (11) is from the Geršgorin’s disc theorem [37], and (12)
is because 1+(dl−1)νDl

dl
= 1

dl
(1−νDl

)+νDl
≤ 1 and µDl

≤ 1.
Similarly, for the mutual sub-coherence defined in (4), we

have

τΥ = max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(∥∥∥(DH

n(:,in)
Dn(:,jn)

)
⊗ · · · ⊗

(
DH

1(:,i1)
D1(:,j1)

)∥∥∥
2

) 1
n

(13)

= max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)

( n∏
l=1

∥∥∥DH
l(:,il)

Dl(:,jl)

∥∥∥
2

) 1
n

(14)

=

( n∏
l=1

νDl

) 1
n

(15)

≤
( n∏

l=1

µ
Dl

) 1
n

, (16)

where (16) is because given a matrix D, νD ≤ µ
D

. Based on
the similar derivations in (13)-(16), for the definition in (5),
we have

τΥ ≤
( n∏

l=t+1

µ
Dl

) 1
n−t

.

Remark 1. The above definitions apply to the scenario where
the block structure of the sparse tensor is regular, i.e., the
block length of each block in each mode is the same. For the
case in which the block lengths within the tth (t ∈ {1, · · · , n})

mode are different, we present two useful solutions. The first
one considers that irregular block lengths do not lead to a
block structure, which results in a block length 1 for the
modes where the block lengths are different. The second one
considers this irregular block lengths case as a generalized
block structure, and we provide extended MIP concepts serving
for this generalized structural characteristic. Note that we
consider the definitions in (2) and (4) as examples, and similar
analyses can be easily extended to those of the definitions in
(3) and (5).

We now present the first solution. The case in which the
block lengths of the tth mode are different is provided as a
concise example, which can be directly extended to the sce-
nario where the block lengths of multiple modes are different.
To this end, let the block length of the tth (t ∈ {1, · · · , n})
mode be 1, i.e., dt = 1. From Definitions 3 and 4, we have

ϖΥ = max
(i1,··· ,it,··· ,in),(j1 ̸=i1,··· ,jt ̸=it,··· ,jn ̸=in)(

1(∏t−1
l=1 dl

)
dt
(∏n

l=t+1 dl
)

×
∥∥∥(Dn[in]

⊗ · · · ⊗Dt[it]
⊗ · · · ⊗D1[i1]

)H
×
(
Dn[jn]

⊗ · · · ⊗Dt[jt]
⊗ · · · ⊗D1[j1]

)∥∥∥
2

) 1
n

= max
(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(

1(∏t−1
l=1 dl

)(∏n
l=t+1 dl

)
×
∥∥∥(Dn[in]

⊗ · · · ⊗Dt(:,it)
⊗ · · · ⊗D1[i1]

)H
×
(
Dn[jn]

⊗ · · · ⊗Dt(:,jt)
⊗ · · · ⊗D1[j1]

)∥∥∥
2

) 1
n

,

τΥ = max
(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(∥∥∥(Dn(:,in)

⊗ · · · ⊗Dt(:,it)
⊗ · · · ⊗D1(:,i1)

)H
×
(
Dn(:,jn)

⊗ · · · ⊗Dt(:,jt)
⊗ · · · ⊗D1(:,j1)

b
)∥∥∥

2

) 1
n

.

Thus, similar to (8) and (15), we have

ϖΥ =µ
1
n

Dt

( t−1∏
l=1

µDl

n∏
l=t+1

µDl

) 1
n

,

τΥ =µ
1
n

Dt

( t−1∏
l=1

νDl

n∏
l=t+1

νDl

) 1
n

.

Under a special case where d1 = · · · = dn = 1, we define
τΥ = 0. In a second case, suppose that the block lengths of
the tth (t ∈ {1, · · · , n}) mode are different, and there are st
tensor blocks in the tth mode with the block lengths being dti ,
i ∈ {1, · · · , st}. Then, we define

ϖΥ = max
(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(

1∏n
t=1

√
dtindtjn

∥∥∥(Dn[in]
⊗ · · · ⊗D1[i1]

)H
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×
(
Dn[jn]

⊗ · · · ⊗D1[j1]

)∥∥∥
2

) 1
n

,

τΥ = max
∀(i1,··· ,in),(j1 ̸=i1,··· ,jn ̸=in)(∥∥∥(Dn(:,in)

⊗ · · · ⊗D1(:,i1)

)H
×
(
Dn(:,jn)

⊗ · · · ⊗D1(:,j1)

)∥∥∥
2

) 1
n

. (17)

It can be seen that τΥ defined in (17) is the same as that in (4)
with indices it and jt (t ∈ {1, · · · , n}) being within the same
block of Dt. It can be observed that the first solution does
not require any additional input of structural information for
reliable recovery analysis as the block length is regarded as
1, while the second solution relies on specific block length
information of the irregular structure. For concise symbol
representation, in the sequel, we consider the theoretical
derivation of the regular block structure scenario, which can
be directly extended to the irregular block length case by using
the two solutions presented in this remark.

For symbol simplicity, we denote the mutual block coher-
ence and mutual sub-coherence as ϖΥ,t and τΥ,t, respectively,
when t indices (0 ≤ t ≤ n) are the same in their definitions.
Furthermore, when t = 0, the mutual block coherence and
mutual sub-coherence can be simplified to be represented as
ϖΥ and τΥ, respectively. In the following, a new structural
concept of the block-sparse tensor is presented, which can
figuratively display the number of measurement matrix blocks
that are related to the support tensor blocks in tensor recovery.

Definition 5. (Shadow block sparsity) As illustrated in Fig. 2,
the ith (i = 1, 2 · · · , n) mode shadow block sparsity ki of a
tensor X ∈ CN1×···×Nn is defined as the number of nonzero
blocks blocking the field of view in the ith mode direction.

Denoting the index set of nonzero tensor blocks
in X as Ξ = {(Ξ11 ,Ξ21 , · · · ,Ξn1

), (Ξ12 ,Ξ22 ,
· · · ,Ξn2

), · · · , (Ξ1k ,Ξ2k , · · · ,Ξnk
)}, we have ki = |Ξi|u

and ki ∈ [1, k] (i ∈ [1, 2, · · · , n]), since there exist duplicate
indices in Ξi, where the elements in Ξ are n-dimensional.
We further define a shadow extraction operation, which
returns a neat subtensor consisting of the nonzero supports of
the original tensor but with sufficient gaps as shown in Fig.
2. In other words, the shadow extraction operation removes
all of the zero slices of the tensor and returns the obtained
subtensor, which is sized as k1×k2×· · ·×kn. Mathematically,
given an index set Θ, the extraction operation on XΘ returns
the neat subtensor consisting of the tensor blocks indexed by
Θ and with sufficient gaps.

To aid the derivation of both exact and reliable recovery
conditions in noiseless and noisy scenarios, we further present
the definitions of block mixed norm, SNR and an extension of
minimum-to-average ratio (MAR) [36] on block-sparse tensors
as follows.

Definition 6. (Block mixed norm [10]) For a matrix D ∈
CM×N with M = md and N = nd, denote D[i,j] as the
(i, j)th d × d block of D. The two components of the block

extraction

Shadow

Fig. 2. Illustration of shadow block sparsity and shadow extraction.

mixed norm of D are given by

ρr(D) =max
i

∑
j

∥D[i,j]∥2,

ρc(D) =max
j

∑
i

∥D[i,j]∥2.

Definition 7. (SNR) The SNR is defined as the ratio of the
signal component to the noise component, i.e.,

SNR =
∥X ×1 D1 ×2 D2 ×3 · · · ×n Dn∥2F

∥N∥2F
.

Definition 8. (MAR on block-sparse tensors) Given a k block-
sparse tensor X whose nonzero support tensor blocks are
indexed by the set Ξ, the MAR on X is defined as

MAR∗ =

√
k min

(i1,··· ,in)∈Ξ

∥∥X[i1,··· ,in]∥F

∥X
∥∥
F

.

III. USEFUL LEMMAS AND BLOCK-SPARSE TENSOR
RECOVERY ALGORITHMS

A. Some Useful Lemmas

Analyses related to the extreme eigenvalues of measurement
matrices are useful, and they have been exploited in many
works, such as [6], [19]. Before presenting the theoretical
results bounding the eigenvalues, a useful proposition is pro-
vided first for an intuitive expression of the eigenvalue bounds.

Proposition 1. Consider a matrix set Υ = {Di ∈
CMi×sidi , 1 ≤ i ≤ n} (n ≥ 1). Denote Gi = si − 1, and
define the following generating function:

g(x) = (x+G1)(x+G2) · · · (x+Gn)

= Cnx
n + Cn−1x

n−1 + · · ·+ C0x
0.

For the block matrix THT whose blocks are (D1[i1]
⊗D2[i2]

⊗
· · ·⊗Dn[it]

⊗Dn[it+1]
⊗· · ·⊗Dn[in]

)H(D1[j1]
⊗D2[j2]

⊗· · ·⊗
Dn[jt]

⊗Dn[jt+1]
⊗ · · ·⊗Dn[jn]

) sized as
∏n

i=1 di×
∏n

i=1 di,
where T = D1 ⊗D2 ⊗ · · ·⊗Dn, the number of blocks in the
block matrix THT satisfying i1 = j1, i2 = j2, · · · , it = jt
is equal to Ct

∏n
l=1 sl (1 ≤ t ≤ n). Specifically, if there

is no identical index, the corresponding number is equal to
C0

∏n
l=1 sl. If considering block matrices on a certain column

or row, then the aforementioned numbers are equal to Ct and
C0, respectively.
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Similarly, denote Gi = di − 1, and define the following
generating function:

g(x) = (x+G1)(x+G2) · · · (x+Gn)

= Cnx
n + Cn−1x

n−1 + · · ·+ C0x
0.

For the matrix THT =
(
D1[i1]

⊗ D2[i2]
⊗ · · · ⊗ Dt[it]

⊗
Dt+1[it+1]

⊗ · · · ⊗Dn[in]

)H(
D1[i1]

⊗D2[i2]
⊗ · · · ⊗Dt[it]

⊗
Dt+1[it+1]

⊗ · · · ⊗ Dn[in]

)
, where T = D1[i1]

⊗ D2[i2]
⊗

· · · ⊗Dt[it]
⊗Dt+1[it+1]

⊗ · · · ⊗Dn[in]
, whose elements are(

D1[i1](:,j1)
⊗D2[i2](:,j2)

⊗· · ·⊗Dt[it](:,jt)
⊗Dt+1[it+1](:,jt+1)

⊗

· · ·⊗Dn[in](:,jn)

)H(
D1[i1](:,q1)

⊗D2[i2](:,q2)
⊗· · ·⊗Dt[it](:,qt)

⊗
Dt+1[it+1](:,qt+1)

⊗ · · · ⊗Dn[in](:,qn)

)
, the number of elements

in THT satisfying j1 = q1, j2 = q2, · · · , jt = qt is equal to
Ct

∏n
l=1 sl (1 ≤ t ≤ n). Specifically, if there is no identical

index, the corresponding number is equal to C0

∏n
l=1 sl. If

considering elements on a certain column or row, then the
aforementioned numbers are equal to Ct and C0, respectively.

Note that
n∑

l=0

Cl =
n∏

l=1

sl and
n∑

l=0

Cl =
n∏

l=1

dl. Meanwhile,

Ct and Ct can be formulated concretely as

Ct =
∑

1≤j1<j2<···<jn−t<···≤n

Gj1Gj2 · · ·Gjn−t

=
∑

1≤j1<j2<···<jn−t<···≤n

n−t∏
i=1

Gji,

Ct =
∑

1≤j1<j2<···<jn−t<···≤n

Gj1
Gj2

· · ·Gjn−t

=
∑

1≤j1<j2<···<jn−t<···≤n

n−t∏
i=1

Gji,

respectively. For the sake of simplicity in notation, in the

sequel, we denote Ct satisfying
n∑

l=0

Cl = α and Ct satisfying
n∑

l=0

Cl = β as Cα
t and Cβ

t , respectively. Based on Proposition

1, the following lemma reveals that the eigenvalues of the
Kronecker product of the measurement matrices are bounded
in terms of mutual block coherence and mutual sub-coherence.

Lemma 1. Consider a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1). Let T = D1 ⊗ · · · ⊗ Dn. Define λmin and
λmax as the minimum and maximum eigenvalues of the matrix
THT. If WΥ,

∏n
t=1 st

> 0, then the following inequality holds:

WΥ,
∏n

t=1 st
≤ λmin ≤ λmax ≤ WΥ,

∏n
t=1 st ,

where

WΥ,
∏n

t=1 st
=1−

n−1∑
t=0

C
∏n

t=1 dt

t τn−t
Υ,t −

n−1∑
t=0

C
∏n

t=1 st
t ϖn

Υ,t

n∏
i=1

di,

WΥ,
∏n

t=1 st =1+

n−1∑
t=0

C
∏n

t=1 dt

t τn−t
Υ,t +

n−1∑
t=0

C
∏n

t=1 st
t ϖn

Υ,t

n∏
i=1

di,

in which ϖΥ and τΥ are the mutual block coherence and
mutual sub-coherence of the matrix set Υ, respectively.

Proof: See Appendix A.
It can be observed from Lemma 1 that as the mutual block

coherence ϖΥ and the mutual sub-coherence τΥ decrease,
WΥ,

∏n
t=1 st

and WΥ,
∏n

t=1 st approach 1, indicating tighter
eigenvalue bounds. Generally speaking, to recover the block-
sparse tensor accurately, the degree of linear dependency
among the entries of the corresponding measurement matrices
needs to be small. This reveals that there is a significant
amount of effective information in the measurement matrices.
Assume that the measurement matrices in the set Υ are block
orthogonal, which results in the mutual sub-coherence τΥ
being equal to 0, and we have

1−
n−1∑
t=0

C
∏n

t=1 st
t ϖn

Υ,t

n∏
i=1

di ≤ λmin

≤ λmax ≤ 1 +

n−1∑
t=0

C
∏n

t=1 st
t ϖn

Υ,t

n∏
i=1

di. (18)

The bounds in (18) becomes tighter than those in Lemma 1,
which indicates that a block orthogonal structure can bring
significant improvements in the eigenvalue boundary. Due
to the orthogonality of the measurement matrix blocks, the
atomic information contained within these blocks is relatively
high, leading to a more reliable recovery performance.

Lemma 1 is applicable to symmetric matrices, while, in the
general case, the matrices to be analyzed are not symmetric
matrices. Therefore, we present the following lemma in which
an upper bound on the matrix spectral norm is provided, which
is suitable for any given matrix.

Lemma 2. Given a matrix D ∈ CM×N with M = md and
N = nd, we have

∥D∥2 ≤
√

ρc(D)ρr(D) (19)
≤ max{ρr(D), ρc(D)}, (20)

where D[i,j] is the (i, j)th d× d block of D.

Proof: See Appendix B.
It is interesting that (19) can be seen as an extension of the

Geršgorin’s disc theorem [37] for any block matrix and does
not require the restriction that matrices need to be square.
Moreover, the inequality (20) introduces a scaling, which is
useful as it allows to bound the matrix norm based on just one
of the block mixed norms. In certain particular cases where the
rows and columns of a matrix have different meanings, such
as the rows of a measurement matrix represent coefficients
from different candidate entries and the columns represent
individual entries, the inequality (20) can provide intuitive
bounds that reflect the characteristics of either the rows or
the columns of the matrix.

Based on Lemma 2, for the case in which the matrix is
square, the following corollary holds.

Corollary 1. Given a symmetric matrix D ∈ CM×M with
M = md, we have

∥D∥2 ≤ min{ρr(D), ρc(D)},

where D[i,j] is the (i, j)th d× d block of D.
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The proof of Corollary 1 is direct since the spectral radius
of a symmetric matrix is equal to its spectral norm, and the
spectral radius of a square matrix is less than or equal to any
other matrix norm. Now consider a symmetric matrix D∗.
Geršgorin’s disc theorem on D∗ is given by

∥D∗∥2 ≤ min{∥D∗∥∞, ∥D∗∥1}. (21)

Since

∥D∗∥∞ = max
l

∑
r

∣∣D∗(l,r)

∣∣
≥ max

i

∑
j

∥∥D∗[i,j]

∥∥
2
= ρr(D∗),

∥D∗∥1 = max
r

∑
l

∣∣D∗(l,r)

∣∣
≥ max

j

∑
i

∥∥D∗[i,j]

∥∥
2
= ρc(D∗),

we have min{ρr(D∗), ρc(D∗)} ≤ min{∥D∗∥∞, ∥D∗∥1},
which indicates that the bound in Corollary 1 is tighter than
(21).

Exploiting Lemmas 1 and 2, we present the following
two corollaries. They are the building blocks for the feasible
derivation of both exact and reliable recovery conditions in
noiseless and noisy scenarios.

Corollary 2. Consider a matrix set Υ = {Di ∈
CMi×sidi , 1 ≤ i ≤ n} (n ≥ 1), and n pairs of column-
block submatrices, D1Ξ1

and D1Ξ∗
1

of D1, · · · , DnΞn
and

DnΞ∗
n

of Dn with Ξ1 ∩ Ξ∗
1 = ∅, · · · , Ξn ∩ Ξ∗

n = ∅,
|Ξ1| = l1, |Ξ∗

1| = l∗1 , · · · , |Ξn| = ln and |Ξ∗
n| = l∗n. Let

T = D1Ξ1
⊗· · ·⊗DnΞn

and T∗ = D1Ξ∗
1
⊗· · ·⊗DnΞ∗

n
. Define

σmin and σmax as the minimum and maximum singular values
of THT∗. If WΥ,

∏n
t=1 lt

> 0 and WΥ,
∏n

t=1 l∗t
> 0, then the

following inequality holds:

W
1
2

Υ,
∏n

t=1 lt
W

1
2

Υ,
∏n

t=1 l∗t
≤ σmin

≤ σmax ≤ max
{
ϖn

Υ

n∏
t=1

ltdt, ϖ
n
Υ

n∏
t=1

l∗t dt

}
,

where WΥ,ln
and WΥ,l∗n

can be obtained by Lemma 1, and
dt (t ∈ {1, 2, · · · , n}) is the block length of Dt.

Proof: See Appendix C.

Corollary 3. Consider an n-mode k block-sparse tensor
X ∈ CN1×N2×···×Nn with block length and block shadow
sparsity of the nth mode equal to dn and kn respectively, and
a measurement matrix set Υ = {Di ∈ CMi×sidi , 1 ≤ i ≤ n}
(n ≥ 1). Then we have

W
1
2

Υ,
∏n

t=1 kt
∥X∥F ≤∥X ×1 D1 ×2 · · · ×n Dn∥F

≤W
1
2

Υ,
∏n

t=1 kt
∥X∥F ,

WΥ,
∏n

t=1 kt
∥X∥F ≤∥X ×1 (D

H
1 D1)×2 (D

H
2 D2)

×3 · · · ×n (DH
nDn)∥F

≤WΥ,
∏n

t=1 kt
∥X∥F , (22)

where WΥ,kn
and WΥ,kn

can be obtained by Lemma 1.

Algorithm 1 T-GBOMP
Input: D1 · · ·Dn, Y , block sparsity level k, block length

d1, d2 · · · , dn, residual tolerant ϵ and selection parameter
s ≤ k.

Output: X̂ , Ξ̂.
1: Initialization: l = 0, R0 = Y , Ξ0 = ∅, X 0 = 0.
2: while l < k and ∥Rl∥2 > ϵ do
3: Identify the support by Θl+1 =

arg max
Θ:|Θ|=s

∑
(i1,i2,··· ,in)∈Θ

∥Rl ×1 DH
1[i1]

×2 · · · ×n

DH
n[in]

∥F .
4: Augment Ξl+1 = Ξl ∪Θl+1.
5: Estimate X l+1 = arg min

X :supp(X )=Ξl+1
∥vec(Y) −∑

(i1,··· ,in)∈Ξl+1

(Dn[in]
⊗ · · · ⊗D1[i1]

)vec(X[i1,··· ,in])∥F .

6: Update Rl+1 = Y − X l+1 ×1 D1 ×2 · · · ×n Dn.
7: Update l = l + 1.
8: end while
9: return Ξ̂ = arg min

Θ:|Θ|=k
∥X l − X l

Θ∥F and X̂ with

X̂Ω\Ξ̂ = 0.

For n pairs of column-block submatrices D1Ξ1
and D1Ξ∗

1

of D1, · · · , DnΞn
and DnΞ∗

n
of Dn with Ξ1 ∩ Ξ∗

1 = ∅, · · · ,
Ξn ∩ Ξ∗

n = ∅, |Ξ1| = l1, |Ξ∗
1| = l∗1 , · · · , |Ξn| = ln and

|Ξ∗
n| = l∗n, we have

W
1
2

Υ,
∏n

t=1 lt
W

1
2

Υ,
∏n

t=1 l∗t
∥X∥F

≤ ∥X ×1 (D
H
1Ξ1

D1Ξ∗
1
)×2 · · · ×n (DH

nΞn
DnΞ∗

n
)∥F

≤ max

{
ϖn

Υ

n∏
t=1

ltdt, ϖ
n
Υ

n∏
t=1

l∗t dt

}
∥X∥F . (23)

For any vector x ∈ Csn
∏n

t=1 dt , we have

W
1
2

Υ,sn
∥(T†)Hx∥F ≤ ∥x∥F ≤ W

1
2

Υ,sn∥(T
†)Hx∥F , (24)

where T =
[
DnΞn[1]

⊗ · · · ⊗D1Ξ1[1]
| · · · | DnΞn[sn]

⊗ · · · ⊗

D1Ξ1[sn]

]
.

Proof: See Appendix D.

B. T-GBOMP and Relations with Other Existing Algorithms

As illustrated in Algorithm 1, the T-GBOMP algorithm
chooses s tensor blocks that are most strongly correlated
with the residual tensor, and adds the selected indices to
the support list per iteration. Then, it estimates the block-
sparse tensor over the enlarged support matrix. As T-GBOMP
incorporates multiple useful mechanisms from existing greedy
algorithms, i.e., the multiple support selection [36], the struc-
ture calculation [6], the correlation discriminant [10], and
the high-dimensional spatial mapping [4] mechanisms, T-
GBOMP can be seen as a generalization of these earlier
algorithms. Theoretical results derived for T-GBOMP can thus
be applied/extended straightforwardly to the other algorithms.
To lay the groundwork for this generalization, this section lists
essential characteristics of several representative greedy algo-
rithms, and provides the basic ideas for extending them. Note
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that OMP and OLS are the two classic frameworks for sparse
recovery algorithms, and T-GBOMP is developed based on the
OMP framework. We first analyze the relationship between T-
GBOMP and other OMP-framework-based algorithms.

1) OMP framework-based algorithms: Sparse recovery in
vector form, i.e., the SMV model, is regarded as the 1-
mode sparse tensor reconstruction. OMP is one of the most
classical 1-mode recovery algorithms, which selects only one
most correlated index per iteration [19]. Thus, T-GBOMP
degenerates into OMP directly by setting the block lengths, the
number of multiple supports selected and the number of modes
as 1. The block version variant of OMP, i.e., BOMP [13], can
be obtained by setting the number of multiple supports selected
and the number of the modes in T-GBOMP to 1. CoSaMP is
another representative algorithm that selects multiple entries
per iteration, but only retains the most correlated nonzero
atoms, the number of which is equal to the sparsity [35].
This mechanism is equivalent to that of T-GBOMP by setting
the selection parameter as sparsity and the block length as 1.
Furthermore, T-GBOMP reduces to the two high-dimensional
tensor recovery algorithms, T-OMP [8] and T-BOMP [9], by
setting the block length and the selection parameter to 1,
and only setting the selection parameter to 1, respectively.
Note that the sparse recovery based on the MMV model can
also be regarded as the 1-mode tensor recovery problem. The
mechanisms of other OMP-framework-based algorithms are
similar and will not be elaborated here.

2) OLS framework-based algorithms: The OLS and the
OMP frameworks differ in the way of selecting the new sup-
port entry [18], [38]. More specifically, OLS chooses a column
that minimizes the power of the new residual. It can be shown
that compared with the OMP framework, the OLS framework
exhibits better convergence behavior, at the expense of impos-
ing higher computational complexity [36]. Mathematically, the
main difference between the OMP-framework-based algorithm
and the OLS-framework-based algorithm is that there exists a
normalization factor in the selection mechanism of the OLS-
framework-based algorithm [6]. For example, the following is
the selection mechanism of OLS [6]:

il+1 = arg max
j∈{1,..,N}\Ωl

∣∣∣∣〈 Dj

∥P⊥
ΩlDj∥2

, rl
〉∣∣∣∣, (25)

where ∥P⊥
SlDj∥2 is a normalization factor. As illustrated in

existing works, e.g., [6] and [18], (25) can be lower and upper
bounded, providing a means of applying the theoretical results
derived in the next section to OLS-framework-based algo-
rithms. Similarly, popular OLS framework-based approaches,
such as MOLS [36] and BOLS [6], have incorporated useful
iterative mechanisms, resulting in desirable performance and
complexity.

In a nutshell, OMP- and OLS-framework-based algorithms
can be extended into the tensor case, and T-GBOMP acts
as a generalized framework for these greedy algorithms. The
analyses based on T-GBOMP in the sequel can thus serve as
a theoretical basis for tensor greedy algorithms in general,
and can be easily applied to the many existing algorithms
by setting certain parameters to specific values as mentioned
above.

IV. MAIN RESULTS

We now present our main results, namely, conditions that
guarantee T-GBOMP can recover a block-sparse tensor from
measurements. This section is divided into two parts. In the
first part, an analysis under the noiseless case is conducted,
including development of the ERC and reconstructible sparsity.
In the second part, we present conditions for reliable recovery
in the noisy scenario, including discussions of the difference
between the original tensor and the estimated tensor, the
residual convergence with respect to both the measurements
and noise, and a lower bound of the SNR required for reliable
recovery.

A. Noiseless Recovery Conditions

An exact recovery condition was first developed for OMP in
the work [17], after which several ERCs applicable to various
other algorithms, such as BOMP [10] and BOLS [6], were
derived. These ERCs reveal that, if the measurement matrix
satisfies certain conditions, then the corresponding algorithms
will select all the correct supports during their sparsity itera-
tions. The conditions apply only to 1-mode tensor recovery,
and they are not suitable for the generalized n-mode tensor
reconstruction scenarios, as discussed in Subsection III-B. Our
first result is an ERC for an n-mode tensor recovery algorithm
T-GBOMP to solve the exact sparse problem, which is a suf-
ficient condition for T-GBOMP to identify the representation
of the input tensor that exploits the least number of tensor
blocks, i.e., the sparsest one.

Theorem 1. Let X be a k block-sparse tensor, and for a given
measurement matrix set Υ = {Di ∈ CMi×sidi , 1 ≤ i ≤ n}
(n ≥ 1), let Y = X ×1 D1 ×2 D2 ×3 · · · ×n Dn. A sufficient
condition for T-GBOMP to reconstruct X is

ZRl√
s

∥∥D̈†
ΞD̈Ψ

∥∥
2
< 1, (26)

where

ZRl =

∥∥D̈H
Ξ vec(Rl)

∥∥
F∥∥(DH

n[i∗n]
⊗ · · · ⊗DH

1[i∗1]

)
vec(Rl)

∥∥
F

, (27)

Ξ is the tensor index set corresponding to the nonzero supports
of X , Ψ denotes the index set containing s largest ele-
ments in

{∥∥Rl×1D
H
1[i1]

×2 · · ·×nD
H
n[in]

∥∥
F

}
(i1,i2,··· ,in)∈Ω\Ξ,

and (i∗1, · · · , i∗n) is the tensor index that leads to the
largest element in the set

{∥∥Rl ×1 DH
1[i1]

×2 · · · ×n

DH
n[in]

∥∥
F

}
(i1,i2,··· ,in)∈Ξ

.

Proof: See Appendix E.

Remark 2. Note that ZRl in (27) is bounded as 1 ≤ ZRl ≤√
k. The lower bound can be obtained by assuming that D̈H

Ξ

is an all zero matrix except for the submatrix indexed by
(i∗1, · · · , i∗n), while the upper bound is derived by letting D̈H

Ξ

be a cascade of k DH
n[i∗n]

⊗ · · ·⊗DH
1[i∗1]

matrices. The ERC in
(26) can thus be reformulated in terms of the least restricted
variant and the most restricted variant, i.e.,

1√
s

∥∥D̈†
ΞD̈Ψ

∥∥
2
<1, (28)
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∥∥D̈†
ΞD̈Ψ

∥∥
2
<1, (29)

respectively. Compared with the existing results in [6], [10],
[17], (28) provides progress due to the existing of 1√

s
. For

instance, the ERC for BOMP with a 1-mode tensor is [10]

ρc
(
D†

ΞDΩ\Ξ
)
< 1, (30)

where ρc(·) is the mixed matrix norm defined in Definition 6,
and D ∈ CM×N is the 1-mode measurement matrix. It
is worth noting that in most cases |Ω\Ξ| > |Ψ| = s.
Hence ∥D̈†

ΞD̈Ψ∥2 ≤ ρc(D
†
ΞDΩ\Ξ) under the reasonable

assumption that the dimensions of measurement matrices are
equivalent, i.e., M =

∏n
t=1 Mt and N =

∏n
t=1 Nt. Since

∥D̈†
ΞD̈Ψ∥2 in (28) is further multiplied by a parameter

1√
s
≤ 1, we obtain that the ERCs in (28) and (29) are less

restrictive than the one in (30). Comparisons to other existing
ERCs are similar. Thus, we can conclude that the T-GBOMP
algorithm is more capable of achieving exact sparse recovery
than its 1-mode counterparts.

Clearly (26) would not be very useful without the help of
a method for checking if the ERC is satisfied. To this end,
we present an intuitive result in terms of the sparsity bound
required for the establishment of (26), named reconstructible
sparsity, by exploiting the MIP. Note that in this subsection up
to Theorem 3, we assume that Ξ∪Ψ = ∅ for intuitive results,
which facilitates clear comparisons with existing results. The
outcomes when Ξ ∪Ψ ̸= ∅ can be easily obtained based on
the analyses conducted in this subsection.

Theorem 2. A sufficient condition for the establishment of
(26) is

k <

√
s
(
1−

(∏n
t=1 dt − 1

)
τnΥ +ϖn

Υ

∏n
t=1 dt

)
(
ZRl +

√
s
)
ϖn

Υ

∏n
t=1 dt

. (31)

Proof: See Appendix F.

It can be observed that Theorem 2 provides an upper bound
on the sparsity level, under which the T-GBOMP performs
exact tensor recovery, i.e., the ERC in (26) holds. Based
on Remark 2, we obtain the least restricted reconstructible
sparsity by setting ZRl = 1, as follows:

k <

√
s
(
1−

(∏n
t=1 dt − 1

)
τnΥ +ϖn

Υ

∏n
t=1 dt

)
(
1 +

√
s
)
ϖn

Υ

∏n
t=1 dt

. (32)

In the subsequent remark, we provide some useful compar-
isons between (32) and existing criteria.

Remark 3. Since the existing reconstructible sparsity levels
are developed for 1-mode tensor recovery, we set n = 1 in
(32) for fair comparison. Then, (32) is reformulated into

kd <

√
sd
(
1− (d− 1)νD + µDd

)
(1 +

√
s)µDd

. (33)

The classic reconstructible sparsity bounds in [17] and [10]
are

K <
1

2

(
1

µ
D

+ 1

)
, (34)

kd <
1

2

(
1

µD
+ d− dνD

µD
+

νD
µD

)
, (35)

respectively, where K = kd represents the total sparsity.
Firstly, let d = 1 in (33), and (33) thus becomes

K <

√
s

1 +
√
s

(
1

µ
D

+ 1

)
. (36)

Since 1 ≤ s ≤ k, we have
√
s

1+
√
s
≥ 1

2 . This indicates that
when s = 1, (36) converges to (34), which is applicable for
the conventional OMP, while in the case s > 1, the upper
bound in (36) is better than that in (34), which reveals that T-
GBOMP is capable of exactly recovering tensors with larger
sparsity levels in the scenarios where ZRl = 1. However,
the condition ZRl = 1 is not achievable in practice, since
the measurement matrix should be full rank for correct atom
selection. Despite that the setting ZRl = 1 is impractical,
the bound in (36) provides a non-negligible improvement over
the existing results, unveiling possible potential performance
gain on tensor recovery by T-GBOMP. Secondly, after some
simplification operations, (33) becomes

kd <

√
s

1 +
√
s

(
1

µD
+ d− dνD

µD
+

νD
µD

)
. (37)

A similar conclusion can be made that the upper bound of
reconstructible sparsity in (37) is equivalent to or better than
that in (35).

Now, considering the most restricted case of Theorem 2,
i.e., ZRl =

√
k, we provide the following corollary. Note that

Corollary 4 replaces the uncertainty factor ZRl in (31) with
a complex expression.

Corollary 4. If the following inequality

k <

(
3

√
−Q

2
+

√
∆+

3

√
−Q

2
−
√
∆−

√
s

3

)2

(38)

is satisfied, the ERC in (26) holds, where P = − s
3 , Q =

27δ+2s
3
2

27 , ∆ =
(
Q
2

)2
+
(
P
3

)3
, and

δ = −

√
s
(
1−

(∏n
t=1 dt − 1

)
τnΥ +ϖn

Υ

∏n
t=1 dt

)
ϖn

Υ

∏n
t=1 dt

. (39)

Proof: See Appendix G.

Remark 4. We demonstrate that the most restricted recon-
structible sparsity presented in Corollary 4 can be superior
to the existing results (34) and (35). For reliable recovery
in CS, the matrix formed by the measurement matrix blocks
corresponding to the nonzero indices of the sparse tensor must
be of full rank, which has been stated in Remark 3. This
indicates that ZRl can be further bounded by ZRl <

√
k.

Since (38) that provides a complex reconstructible sparsity in
closed-form is derived from (31), we come to the inequality
(31) for an intuitive explanation. Let ZRl =

√
k − θ, where

θ > 0 is a scalar, and we have

k <

√
s
(
1−

(∏n
t=1 dt − 1

)
τnΥ +ϖn

Υ

∏n
t=1 dt

)
(
√
k − θ +

√
s)ϖn

Υ

∏n
t=1 dt

, (40)

which is the most restricted initial inequality for exporting the
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closed-form upper bound (38). By selecting a feasible s value
as k, (40) changes into

k <

(
1−

(∏n
t=1 dt − 1

)
τnΥ +ϖn

Υ

∏n
t=1 dt

)
(2− θ√

k
)ϖn

Υ

∏n
t=1 dt

.

For the case of d = 1 and n = 1, and for the case of d > 1
and n = 1, (40) yields respectively

K <
1

2− θ√
k

(
1

µ
D

+ 1

)
, (41)

kd <
1

2− θ√
k

(
1

µD
+ d− dνD

µD
+

νD
µD

)
, (42)

where K = kd = k × 1 implies the total sparsity in (41).
Since 1

2− θ√
k

> 1
2 , the upper bounds in (41) and (42) provide

an intuitive improvement compared to those in (34) and
(35). This indicates that our derived reconstructible sparsity
can be better than those in (34) and (35) even if the most
restricted constraint is supposed in (40), which completes our
demonstration.
Remark 5. By using the bound of (19) and based on the
proof in Appendix F, we obtain the following conditions for
reconstructible sparsities of the least and most restricted:

k <

(
− 1

2
+

√
5

4
−

(
∏n

t=1 dt − 1)τnΥ − 1

ϖn
Υ

∏n
t=1 dt

)2

,

k <

(
1−(

∏n
t=1 dt−1)τn

Υ

ϖn
Υ

∏n
t=1 dt

)2
+ 1 + 2

ϖn
Υ

∏n
t=1 dt

2 + 2
ϖn

Υ

∏n
t=1 dt

− θ
,

where θ is similarly defined in Remark 4 which satisfies θ > 0.
In the following theorem, we study the rate of convergence

of T-GBOMP in the noiseless scenario, which provides useful
insights, in particular, revealing that the residual power of T-
GBOMP decreases exponentially as the number of iterations
increases.

Theorem 3. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), if the MIP satisfies WΥ,

∏n
t=1 kn+sk > 0,

then the residual of T-GBOMP satisfies

∥∥Rl+1
∥∥2
F
≤

(
1−

sWΥ,
∏n

t=1 kn+sl

kW
1
2

Υ,
∏n

t=1 kn+slWΥ,s

)l+1∥∥Y∥∥2
F
.

Proof: See Appendix H.

B. Noisy Recovery Conditions
In practice, the tensor measurements are corrupted by noise.

This subsection presents several important results guaranteeing
the reliable recovery of the T-GBOMP algorithm with the help
of the defined MIP concepts. As illustrated in Algorithm 1,
T-GBOMP stops the iteration procedure when l = k or
∥Rl∥2 ≤ ϵ. The following theorem reveals an upper bound
on the error between the original and the estimated tensors
when T-GBOMP is terminated.

Theorem 4. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), if the iterative procedure of T-GBOMP satis-

fies ∥Rl∗∥F ≤ ϵ, WΥ,
∏n

t=1 kt+k > 0 and WΥ,
∏n

t=1 kt+sl∗ > 0

for l∗ ≤ k, then the following inequality with respect to X̂
holds:

∥X − X̂∥F ≤
2W

1
2

Υ,
∏n

t=1 kt+kϵ

W
1
2

Υ,
∏n

t=1 kt+kW
1
2

Υ,
∏n

t=1 kt+sl∗

+
2
(
W

1
2

Υ,
∏n

t=1 kt+k +W
1
2

Υ,
∏n

t=1 kt+sl∗

)
∥N∥F

W
1
2

Υ,
∏n

t=1 kt+kW
1
2

Υ,
∏n

t=1 kt+sl∗

, (43)

where WΥ,
∏n

t=1 kt+k, WΥ,
∏n

t=1 kt+sl∗ and WΥ,
∏n

t=1 kt+k

can be obtained by Corollary 3.

Proof: See Appendix I.
Even if Theorem 4 is illustrated mainly based on the

defined MIP framework, it seems to be complex. We now
present intuitive explanations of Theorem 4 for adding the
understanding of the theoretical reconstruction error. To begin
with, we provide Proposition 2 that describes the lower
and upper bounds of the multiplication of the shadow block
sparsity.

Proposition 2. Given a k block-sparse tensor with n modes,
its shadow block sparsity {ki} (i ∈ {1, 2, · · · , n}) satisfies

k ≤ k1 × k2 × · · · × kn ≤ kn, (44)

The proof of Proposition 2 is omitted, since it can be
derived by considering the spatial geometric characteristic of
the k nonzero tensor blocks. The lower bound in (44) can be
achieved by assuming that the k nonzero tensor blocks are
arranged regularly along one of the tensor modes, e.g., the tth
(t ∈ {1, 2, · · · , n}) tensor mode, resulting in kt = k, while the
remaining shadow block sparsity is equal to 1. On the other
hand, if the k nonzero tensor blocks are arranged unobstructed
throughout the entire tensor, the upper bound in (44) can be
obtained with ki = k (i ∈ {1, 2, · · · , n}).

Based on Proposition 2 and the aforementioned discus-
sions, the following remark presents results investigating some
particular tensor structures for Theorem 4, which offer intu-
itive relationships between reconstruction error and MIP.
Remark 6. Considering that the tensor structure achieves the
lower bound in Proposition 2 with d1 = d2 = · · · = dn = d,
l∗ satisfies k

s ≤ l∗ ≤ k and ϵ = ∥N∥F , then (43) changes
into

∥X − X̂∥F

≤

(
4W

1
2

Υ,2k(k+1)n−1 + 2W
1
2

Υ,2k(k+1)n−1

)
∥N∥F

W
1
2

Υ,2k(k+1)n−1W
1
2

Υ,(s+1)k(sk+1)n−1

(45)

≤ 2
√
10∥N∥F

1−
∑n−1

t=0 Cdn

t τn−t
Υ,t −

∑n−1
t=0 C

(s+1)k(sk+1)n−1

t ϖn
Υ,td

n
,

(46)

where (45) is because WΥ,x and WΥ,x are monotoni-
cally increasing and decreasing functions of the variable
x, respectively, and (46) follows from 4W

1
2

Υ,2k(k+1)n−1 +

2W
1
2

Υ,2k(k+1)n−1 ≤ 2
√
10 and 2k(k+1)n−1 ≤ (s+1)k(sk+
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1)n−1. Clearly, the upper bound of the reconstruction error
∥X−X̂∥F decreases with the reductions in block sparsity, mu-
tual block coherence and mutual sub-coherence, indicating an
improved recovery performance. Compared with the existing
results mainly based on the NP-hard RIP metric, e.g., [39]
and [40], the derived bound in (46) provides a computable
theoretical reconstruction error, making it more practically
applicable.

Let us come to the tensor structure achieving the upper
bound in Proposition 2, which seems to offer the most re-
stricted results. Similar to the assumption and derivation of
(46), the reconstruction error in Theorem 4 can be further
bounded by

∥X − X̂∥F

≤

(
4W

1
2

Υ,2nkn + 2W
1
2

Υ,2nkn

)
∥N∥F

W
1
2

Υ,2nknW
1
2

Υ,(s+1)nkn

≤ 2
√
10∥N∥F

1−
∑n−1

t=0 Cdn

t τn−t
Υ,t −

∑n−1
t=0 C

(s+1)nkn

t ϖn
Υ,td

n
.

Define the following two functions:

f(ϖΥ, τΥ)

=
2
√
10∥N∥F

1−
∑n−1

t=0 Cdn

t τn−t
Υ,t −

∑n−1
t=0 C

(s+1)k(sk+1)n−1

t ϖn
Υ,td

n
,

g(ϖΥ, τΥ)

=
2
√
10∥N∥F

1−
∑n−1

t=0 Cdn

t τn−t
Υ,t −

∑n−1
t=0 C

(s+1)nkn

t ϖn
Υ,td

n
.

Then, we obtain

g(ϖΥ, τΥ)

f(ϖΥ, τΥ)

= 1 +

∑n−1
t=0 (C

(s+1)k(sk+1)n−1

t − C
(s+1)nkn

t )ϖn
Υ,td

n

1−
∑n−1

t=0 Cdn

t τn−t
Υ,t −

∑n−1
t=0 C

(s+1)nkn

t ϖn
Υ,td

n

= 1 +∆∗, (47)

where ∆∗ =
∑n−1

t=0 (C
(s+1)k(sk+1)n−1

t −C
(s+1)nkn

t )ϖn
Υ,td

n

1−
∑n−1

t=0 Cdn
t τn−t

Υ,t −
∑n−1

t=0 C
(s+1)nkn

t ϖn
Υ,td

n
. For

(47), we have 

∂∆∗

∂ϖΥ
≥ 0, (48a)

∂∆∗

∂τΥ
≥ 0, (48b)

∂∆∗

∂k
≤ 0. (48c)

These results provide intuitive theoretical analyses on the
question how can the general block-sparse tensor structure
approaches the tensor structure that achieves the lower bound
in (44), with respect to several key parameters in block-
sparse tensor recovery. Note that in order to achieve the
approximation of the tensor structure mentioned above, the
difference ∆∗ should be sufficiently small. Specially, the
partial derivatives derived in (48a)-(48b) indicate that small
coherence in terms of mutual block coherence and mutual

sub-coherence can contribute to the desirable block-sparse
tensor structure, i.e., achieving the lower bound in (44).
The result (48c) indicates that when the block sparsity k
is sufficiently small, the reconstruction error can be close
to that of the satisfactory tensor structure mentioned above.
Furthermore, when the total sparsity K = kd is fixed, we
have ∂∆∗

∂d ≤ 0. This unveils an important conclusion related
to the block structure characteristic of tensor recovery, i.e.,
the larger the block length, the closer the reconstruction error
compared to that of the desirable tensor structure. It indicates
that a stronger block structure can result in better recovery
performance.

In the noisy scenario, ϵ should be set appropriately to avoid
late or early termination of the algorithm [36]. It is worth
noting that early cessation leads to an insufficient recovery
of the tensor, while stopping too late results in the tensor
being disturbed by more noise, i.e., over-fitting. Note that in
Theorem 4, we consider the case where ∥Rl∗∥F ≤ ϵ for
l∗ ≤ k. As given in Algorithm 1, T-GBOMP is forced to iterate
for k iterations. However, the scenario where ∥Rl∗∥F ≤ ϵ is
not met when l∗ ≤ k naturally occurs since ϵ is a preset
parameter. The following theorem considers this scenario, and
provides a recovery condition demonstrating that the algorithm
can perform reliable recovery in at most k iterations.

Theorem 5. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), suppose that ∥Rl∗∥F ≤ ϵ is not met for
l∗ ≤ k. If WΥ,ks > 0, WΥ,kn > 0, and the SNR satisfies

SNR >
(√

kW
1
2

Υ,sW
1
2

Υ,k +
√
ksW

1
2

Υ,ksW
1
2

Υ,k

)2
×

((√
s√
k
W

1
2

Υ,ksW
1
2

Υ,k − kϖΥd1

− (ksϖΥd1)
2

WΥ,ks

)
MAR∗

)−2

, n = 1, (49a)

SNR >
(√

kW
1
2

Υ,sW
1
2

Υ,
∏n

t=1 kt

+
√
ksW

1
2

Υ,ksW
1
2

Υ,
∏n

t=1 kt

)2
×

((√
s√
k
W

1
2

Υ,ksW
1
2

Υ,kn− knϖn
Υ,n−1

n∏
t=1

dt

−
kn+1sϖ2n

Υ,n−1(
∏n

t=1 dt)
2

WΥ,ks

)
MAR∗

)−2

, n > 1, (49b)

then T-GBOMP selects all the support indices in at most k
iterations.

Proof: See Appendix J.
Theorem 5 may not be intuitive in revealing the connection

between various MIP metrics and the necessary SNR level for
reliable recovery. To this end, the following remark is provided
for a detailed descriptions.
Remark 7. Based on (20) in Lemma 2, (49a) and (49b) in
Theorem 5 can be integrated into the following inequality:

√
SNR >

(
1√
s
W

1
2

Υ,s +W
1
2

Υ,ks

)
√
kW

1
2

Υ,
∏n

t=1 kt
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×

((
1√
k
W

1
2

Υ,ksW
1
2

Υ,kn −
sϖ2n

Υ,n−1k
n
2 +1
( n∏

t=1
dt

)2
WΥ,ks

−
√
knϖn

Υ,n−1

n∏
t=1

dt

)
MAR∗

)−1

. (50)

Then, letting d1 = d2 = · · · = dn = d, (50) changes into
√
SNR

>

(
1√
s

√√√√1 +

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Cs
l ϖ

n
Υ,ld

n

+

√√√√1 +

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Cks
l ϖn

Υ,ld
n

)

×
√
k

√√√√1 +

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

C
∏n

t=1 kt

l ϖn
Υ,ld

n

×

((
1√
k

(
1−

n−1∑
l=0

Cdn

l τn−l
Υ,l −

n−1∑
l=0

Cks
l ϖn

Υ,ld
n
) 1

2

×
(
1−

n−1∑
l=0

Cdn

l τn−l
Υ,l −

n−1∑
l=0

Ckn

l ϖn
Υ,ld

n
) 1

2

−
sϖ2n

Υ,n−1k
n
2 +1d2n

1−
∑n−1

l=0 Cdn

l τn−l
Υ,l −

∑n−1
l=0 Cks

l ϖn
Υ,ld

n

− k
n
2 ϖn

Υ,n−1d
n

)
MAR∗

)−1

. (51)

Since the prerequisites that WΥ,ks > 0 and WΥ,kn > 0 are
given in Theorem 5, we have

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Cks
l ϖn

Υ,ld
n < 1, (52)

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Ckn

l ϖn
Υ,ld

n < 1. (53)

Furthermore, (52) and (53) indicate that
n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Cs
l ϖ

n
Υ,ld

n < 1, (54)

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

C
∏n

t=1 kt

l ϖn
Υ,ld

n < 1, (55)

respectively. Thus, as for the right-hand side in (51), (52)-(55)
lead to the following limits:

lim
n→∞

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Cks
l ϖn

Υ,ld
n = 0, (56)

lim
n→∞

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Ckn

l ϖn
Υ,ld

n = 0, (57)

lim
n→∞

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

Cs
l ϖ

n
Υ,ld

n = 0, (58)

lim
n→∞

n−1∑
l=0

Cdn

l τn−l
Υ,l +

n−1∑
l=0

C
∏n

t=1 kt

l ϖn
Υ,ld

n = 0, (59)

lim
n→∞

k
n
2 +1ϖ2n

Υ,n−1d
2n = 0, (60)

lim
n→∞

k
n
2 ϖn

Υ,n−1d
n = 0. (61)

The condition of SNR presented in (51) can be reformulated
intuitively based on the aforementioned limits, i.e.,

lim
n→∞

√
SNR >

(
1√
s
+ 1
)
k

MAR∗
. (62)

Denote the right-hand side of (62) as a function
h(k, s,MAR∗). The observation that ∂h(k,s,MAR∗)

∂s < 0
indicates that the larger the selection parameter s, the lower
the SNR required for reliable recovery. This indicates that
if it is possible to select more atoms in each iteration, then
within a maximum of k iterations, the likelihood of the
algorithm selecting all correct atoms increases, so as to
achieve the desired performance with lower SNR. Meanwhile,
the observation that ∂h(k,s,MAR∗)

∂k > 0 reveals that a larger
block sparsity k requires a more stringent SNR for reliable
recovery. This result is consistent with the upper bound of
reconstruction error provided in Theorem 4 which indicate
that a lower reconstruction error may require a lower block
sparsity level. Moreover, as MAR∗ is defined in Definition
8, (62) can be adjusted into

lim
n→∞

√
SNR >

(
1√
s
+ 1
)√

k
∥∥X∥∥

F

min
(i1,··· ,in)∈Ξ

∥∥X[i1,··· ,in]
∥∥
F

.

It can be seen that k and s are on the same scale that
contributes to h(k, s,MAR∗), implying that an increase in
the selection parameter s can effectively counteract the per-
formance loss resulting from the increased block sparsity.
Since ∂h(k,s,MAR∗)

∂MAR∗
< 0, a lower SNR bound is acquired

as the support tensor blocks becomes more powerful. The
results related to the limits in (56)-(61) indicate a monotonic
decreasing property of the bound in the right-hand side of (51)
with respect to the number of tensor modes n. Therefore, this
analysis unveils that a high-dimensional tensor recovery can
provide strong robustness.

The following theorem is an extension of Theorem 4, which
considers the scenario where the SNR satisfies the conditions
in Theorem 5, and ∥Rl∗∥F ≤ ϵ is not met for l∗ ≤ k.

Theorem 6. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), suppose that ∥Rl∗∥F ≤ ϵ is not met for
l∗ ≤ k. If WΥ,ks > 0, WΥ,

∏n
t=1 kt+k > 0, and the SNR

satisfies (49a) and (49b), then the output X̂ satisfies

∥∥X̂ − X
∥∥
F
≤ ∥N∥F

W
1
2

Υ,k

, s = 1, (63a)

∥∥X̂ − X
∥∥
F
≤

(
1 +

W
1
2

Υ,
∏n

t=1 kt+k

W
1
2

Υ,ks

)

× 2∥N∥F
W

1
2

Υ,
∏n

t=1 kt+k

, s > 1. (63b)
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Proof: See Appendix K.
We now present an insight to the block orthogonal tensor

recovery model, where the measurement matrix satisfying
block orthogonal has been proved to offer more assured
theoretical guarantees.

Remark 8. Consider that the measurement matrices satisfy
block orthogonality among the measurement matrix set Υ,
i.e., νDt

= 0 (t ∈ {1, 2, · · · , n}), and thus τΥ,l = 0
(l ∈ {0, 1, · · · , n}). Let s = 1. Then, the condition in
Theorem 6 becomes∥∥X̂ − X

∥∥
F
≤ ∥N∥F√

1−
∑n−1

l=0 Ck
l ϖ

n
Υ,l

n∏
t=1

dt

. (64)

By defining the right-hand sides of (63a) and (64) as functions
p(ϖΥ, τΥ) and q(ϖΥ, τΥ), respectively, we have

q(ϖΥ, τΥ)

p(ϖΥ, τΥ)

=

(
1−

∑n−1
l=0 Ck

l ϖ
n
Υ,l

∏n
t=1 dt

1−
∑n−1

l=0 C
∏n

t=1 dt

l τn−l
Υ,l −

∑n−1
l=0 Ck

l ϖ
n
Υ,l

∏n
t=1 dt

) 1
2

=

(
1+

∑n−1
l=0 C

∏n
t=1 dt

l τn−l
Υ,l

1−
∑n−1

l=0 C
∏n

t=1 dt

l τn−l
Υ,l −

∑n−1
l=0 Ck

l ϖ
n
Υ,l

∏n
t=1 dt

) 1
2

= (1 +∆)
1
2 ,

where ∆ =
∑n−1

l=0 C
∏n

t=1 dt
l τn−l

Υ,l

1−
∑n−1

l=0 C
∏n

t=1 dt
l τn−l

Υ,l −
∑n−1

l=0 Ck
l ϖ

n
Υ,l

∏n
t=1 dt

. In

general, as the block lengths increase, the dimensions of the
measurement matrix blocks are increased correspondingly,

leading to the increases of ϖn
Υ,l

n∏
t=1

dt and τn−l
Υ,l . Then, we ob-

tain that the ∆ is increased with the increase of block lengths.
It reveals that the reconstruction error difference between
the block orthogonal tensor recovery and non-orthogonal
tensor recovery is further exacerbated as the block structure
property becomes stronger. This necessitates the design of
measurement matrix that obeys block orthogonality for better
recovery performance guarantees, which can be achieved
through methodologies like Schmidt orthogonalization [41].

Theorems 4 to 6 present reliable recovery conditions of
T-GBOMP by considering the level of residual power within
k iterations as a prerequisite. Now we naturally turn to the
study of bounding the residual power. To begin with, we first
provide the following lemma that characterizes the relationship
between the residuals in different numbers of iterations.

Lemma 3. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), if WΥ,|Λl

ϱ∪Ξc+∆c−1| > 0, c ≥ l and ∆c > 0

for any integer c, and ϱ ∈
{
1, · · · ,max

{
0,
⌈
log2

L
s

⌉}
+ 1
}

,
the residual Rc+∆c in the (c+∆c) iteration satisfies∥∥Rc+∆c

∥∥2
F

−
∥∥Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

vec
(
XΛl\Λl

ϱ

)
+vec(N )

∥∥2
F

≤ GΥ,ϱ,c,∆c

(∥∥vec(Rc)
∥∥2
F

−
∥∥∥Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

vec
(
XΛl\Λl

ϱ

)
+vec(N )

∥∥∥2
F

)
,

where

GΥ,ϱ,c,∆c = exp

(
−

∆cWΥ,|Λl
ϱ∪Ξc+∆c−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

)
.

Proof: See Appendix L.
In the following remark, we present the results related to

the Frobenius norm of residual tensors in different iterations,
which is regarded as the true residual error.

Remark 9. For the lth (0 < l < k) iteration, denote the tensor
index sets selected in the (l+1)th iterations as Ξl+1. Following
the proof in Appendix H, we have

∥Rl −Rl+1∥2F = ∥PD̈
Ξl+1

vec(Rl)∥2F ≤ ∥vec(Rl)∥2F

≤

(
1−

sWΥ,
∏n

t=1 kn+s(l−1)

kW
1
2

Υ,
∏n

t=1 kn+s(l−1)WΥ,s

)l∥∥Y∥∥2
F
.

For a more intuitive representation, let d1 = d2 = · · · = dn =
d, and we have

∥Rl −Rl+1∥2F ≤

(
1−

s(1−
∑n−1

l=0 Cdn

l τn−l
Υ,l −

∑n−1
l=0 C

∏n
t=1 kn+s(l−1)

l ϖn
Υ,ld

n)

k(1 +
∑n−1

l=0 Cdn

l τn−l
Υ,l +

∑n−1
l=0 C

∏n
t=1 kn+s(l−1)

l ϖn
Υ,ld

n)
1
2

× 1

1 +
∑n−1

l=0 Cdn

l τn−l
Υ,l +

∑n−1
l=0 Cs

l ϖ
n
Υ,ld

n

)l∥∥Y∥∥2
F
.

It can be observed that as the number of iteration l increases,
the upper bound of the residual tensor error gradually ap-
proaches 0, which indicates that the significant tensor blocks
are being subtracted from the measurement tensor. It can be
roughly assumed that all the correct tensor blocks have been
selected if ∥Rl−Rl+1∥2F tends very close to 0. Similar to the
analysis in Remark 7, we obtain

lim
n→∞

∥Rl −Rl+1∥2F ≤
(
1− s

k

)l∥∥Y∥∥2
F
.

This result indicates that as s increases, the significant tensor
blocks are more likely to be selected correctly, resulting in
a faster convergence speed that equalizes Rl and Rl+1.
A special case arises when s = k, wherein we observe
limn→∞ ∥Rl − Rl+1∥2F = 0, which indicates that all the
correct tensor blocks are selected during the first iteration.
Moreover, it is worth mentioning that the convergence speed
increases with the increase of the tensor mode n when the
other parameters are fixed. This also unveils that the derived
bound of the residual error becomes smaller as the tensor
mode n increases. That is, the high-dimensional tensor recov-
ery provides tight theoretical guarantees.

Based on Lemma 3, we develop the following theorem,
which indicates that after a specified number of iterations
related to the number of remaining supports to be selected,
the residual is upper bounded by a quantity with respect to
the MIP and noise power.
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Theorem 7. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), let Λl be the set consisting of
the remaining support block tensors after l iterations with

|Λl| = θ, and α be an integer such that α = inf

{
x ∈{

1, · · · ,max
{
0,
⌈
log e|Λl|

s

⌉}
+ 1
}
, exp(x−2)s(e−1)
exp(x−1)−1+(e−1)x

}
. If

the MIP of Υ satisfies WΥ,k > 0, WΥ,sl+s+θ > 0 and
WΥ,sl+sθ+θ > 0, then we have∥∥Rl+|Λl|∥∥

F
≤ ξ∥N∥F ,

where

ξ =
(
ω(1 + γ)WΥ,θn +

WΥ,sl+s+θ

WΥ,s

(1 + γ)WΥ,θnη−1
) 1

2

×
(
1 +

( 1

1− β
(1 + γ−1)

) 1
2
)

×W
− 1

2

Υ,k

(
1−

(ω(1+γ)WΥ,θn+
WΥ,sl+s+θ

WΥ,s
(1+γ)WΥ,θnη−1

WΥ,k

) 1
2
)−1

+
(1 + γ−1)

1
2

(1− β)
1
2

,

ω = max
{ 1

η(1− ηβ)
, 1−

WΥ,sl+s+θ

WΥ,s

}
,

β = exp
(
−

αWΥ,sl+sθ+θ

WΥ,s

)
,

with ηβ < 1 and γ > 0.

Proof: See Appendix M.

It can be observed that if T-GBOMP has already operated
l iterations, then the algorithm iterates at most |Λl| additional
iterations to guarantee that the residual falls below ξ∥N∥F
with the MIP satisfying the conditions in Theorem 7. Note that
when l = 0, we have |Λ0| = k. Based on these discussions,
we present the following corollary.

Corollary 5. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), let α be an integer such that α = inf

{
x ∈{

1, · · · ,max
{
0,
⌈
log ek

s

⌉}
+1
}
, exp(x−2)s(e−1)
exp(x−1)−1+(e−1)x

}
. If the

MIP of Υ satisfies WΥ,sk+k > 0, then we have

∥Rk∥F ≤ ξ∗∥N∥F ,

where

ξ∗ =
( 1

η(1− 1
e )

(1 + γ)WΥ,kn

+
WΥ,s+k

WΥ,s

(1 + γ)WΥ,knη−1
) 1

2

×
(
1 +

( 1

1− β
(1 + γ−1)

) 1
2
)

×W
− 1

2

Υ,k

(
1−

( 1
η(1− 1

e )
(1 + γ)WΥ,kn +

WΥ,s+k

WΥ,s
(1 + γ)WΥ,knη−1

WΥ,k

) 1
2
)−1

+
(1 + γ−1)

1
2

(1− β)
1
2

, (65)

η =
1

e
exp

(αWΥ,sk+k

WΥ,s

)
, β = exp

(
−

αWΥ,sk+k

WΥ,s

)
,

with ηβ < 1 and γ > 0.

Note that in Corollary 5, ηβ = 1
e ≤ 1. Thus,

1

η(1− ηβ)
=

1

1
e exp

(
αWΥ,sk+k

WΥ,s

)
(1− 1

e )

≥ 1−
WΥ,sl+s+θ

WΥ,s

,

and we have ω = 1

η
(
1− 1

e

) .

Remark 10. The existing result given in [42] for generalized
OMP indicates that when the RIP is constrained to a derived
degree, the number of iterations should be max

{
K, ⌈8K⌉

s

}
for the residual to be less than a product of the noise power
and a constant related to the RIP indicator, where K = kd is
the total sparsity. However, since the calculation of the RIP is
NP-hard, the result of [42] is not verifiable. By contrast, the
MIP is computable, and our result in Corollary 5 reveals that
when the number of iterations is equal to k, the residual can
be smaller than ξ∗∥N∥F with WΥ,sk+k > 0. Intuitively, due
to the consideration of the block structure, we have k < K
for d > 1. The T-GBOMP exhibits significant superiority in
terms of lower iterative complexity over that of the generalized
OMP. In particular, setting s = 1 and d = 1, we obtain that
the number of iterations for the generalized OMP derived
in [42] is 8K and the parallel result in Corollary 5 is K.
We present two explanations for this phenomenon. The first
is that the MIP condition WΥ,sk+k > 0 in Corollary 5
is much more restrictive than the RIP constraint in [42],
and hence the number of iterations in Corollary 5 is much
smaller than that in [42]. Since computing RIP is NP-hard,
this viewpoint cannot be verified. The second is that the result
given in Corollary 5 is indeed better than the one given
in [42], which provides a lower number of iterations for
reliable recovery, resulting in less consumption of computing
resources. In any case, since MIP is computationally friendly,
Corollary 5 is useful in presenting a verifiable prerequisite for
determining whether the signal components in the residual are
fully extracted.

Similar to Theorem 6, the following theorem demonstrates
that the estimated error is upper bounded by a more relaxed
quantity with respect to MIP and noise power under a less
restrictive MIP condition.

Theorem 8. Given a matrix set Υ = {Di ∈ CMi×sidi , 1 ≤
i ≤ n} (n ≥ 1), let α be an integer such that α = inf

{
x ∈{

1, · · · ,max
{
0,
⌈
log ek

s

⌉}
+1
}
, exp(x−2)s(e−1)
exp(x−1)−1+(e−1)x

}
. If the

MIP of Υ satisfies that WΥ,sk+k > 0, then we have∥∥X̂ − X
∥∥
F
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≤
2
(
W

− 1
2

Υ,
∏n

t=1 kt+ks(ξ
∗ + 1)W

1
2

Υ,
∏n

t=1 kt+k + 1
)

W
1
2

Υ,
∏n

t=1 kt+k

∥N∥F ,

(66)

where ξ∗ is given in (65).

Proof: See Appendix N.

Remark 11. From Theorems 6 and 8, when ∥N∥F = 0, we
have X̂ = X , indicating that the block-sparse tensor can be
recovered exactly in the noiseless scenario. The variables on
the right-hand sides of equations (63a), (63b) and (66) are the
computable MIP, which not only presents strong theoretical
interpretability for the feasibility of the block-sparse tensor
recovery with low error reconstruction, but also provides a
basis for making decisions regarding reliable performance
guarantees before operation of the algorithm.

V. SIMULATION RESULTS

We empirically investigate the recovery performance of T-
GBOMP in reconstructing block-sparse tensors under both
noiseless and noisy conditions. It is important to note that
we not only compare the recovery performance using vari-
ous metrics but also demonstrate the resilience of different
algorithms to suboptimal coherence of measurement matrices.
We adopt similar testing metrics as those used in [36], [43].
In particular, the exact recovery ratio (ERR) of block-sparse
tensor reconstruction is examined as a function of block
sparsity and the number of measurements in the noise-free
scenario. In the noisy scenario, false alarm/miss-detection ratio
and the normalized mean square error (NMSE) are employed
to assess the recovery performance of various approaches. To
explore the robustness against unsatisfactory MIP, an effort-
less method is to use the hybrid dictionary as presented in
[44], [45], where the conventional matrix coherence is close
to 1. This measurement matrix substantially diminishes the
performance of the compared algorithms, with the extent of
performance degradation varying across different algorithms,
thereby enabling a more comprehensive insight into the merits
and demerits of each algorithm. In a similar fashion, we
also produce measurement matrices with conventional matrix
coherence nearly 1, but by generating small-dimensional Gaus-
sian matrices. The number of tensor modes is fixed to 3. The
measurement matrices satisfy

∏3
i=1 Mi =144 or

∏3
i=1 Mi =

216, and
∏3

i=1 Ni = 512 or
∏3

i=1 Ni = 1024 with each
element drawn independently and identically from a Gaussian
distribution. When

∏3
i=1 Mi=216 and M1=M2=M3, then

we have M1 = M2 = M3 = 6, which are small-dimensional
measurement matrices whose conventional matrix coherence is
about 0.75. Meanwhile, measurement matrices with low matrix
coherence are also generated for performance comparison, and
they have a coherence value of approximately 0.23. Moreover,
these matrices are created as block orthogonal matrices with
τΥ = 0 and are normalized to have unit column norm. For
each realization of a block-sparse tensor, its block support
is chosen uniformly at random, and nonzero elements are 1)
drawn independently from a standard Gaussian distribution, or
2) drawn independently from the set {±1}. These two types of

tensors are referred to as the block-sparse Gaussian tensor and
the block-sparse 2-ary pulse amplitude modulation (2-PAM)
tensor, respectively [36]. In our experiments, we perform
1,000 independent trials for each point of the approaches, and
consider the following recovery algorithms: 1) BOMP [10];
2) BOLS [6]; 3) T-OMP [8]; 4) T-GOMP (s=2); 5) T-GOMP
(s=3); 6) T-BOMP; 7) T-GBOMP (s=2); and 8) T-GBOMP
(s=3).

A. The Noiseless Scenario
In the noiseless case, the ERR is used as a metric to evaluate

the performance of various algorithms, which is defined as [43]

ERR =
number of exact reconstructions

number of total trials
.

In Fig. 3, we depict the ERR as a function of the block
sparsity k. The block lengths are fixed at d1 =2, d2 =2 and
d3=1, resulting in a total sparsity of K=d1d2d3k=4k. The
conventional matrix coherence of the measurement matrices
is around 0.75, which is unsatisfactory for recovery and can
significantly degrade the performance of the algorithms. The
mutual block coherence, as defined in Definition 3, is about
0.6. It is evident that due to the unsatisfactory MIP of the
measurement matrices, none of the compared approaches can
consistently achieve exact recovery. However, it can be seen
that T-GBOMP (s=2) and T-GBOMP (s=3) provide better
assurance of exact recovery, outperforming other algorithms
when the block sparsity is less than or equal to 2, wherein
k=1 is the only possible point for the algorithms to achieve
exact recovery, i.e., ERR=1. As can be seen from Fig. 3(a),
T-GBOMP (s = 2) and T-GBOMP (s = 3) perform worse
than BOLS in recovering the block-sparse Gaussian tensors
with

∏3
i=1 Mi = 144 and

∏3
i=1 Ni = 512 when a block

sparsity is greater than 3, which indicates that the OLS-
framework may be highly competitive in providing reliable
recovery in the scenarios with unsatisfactory MIP and high
block sparsity. For 2-PAM tensors, Figs. 3(b) and 3(d) show
that T-BOMP, T-GBOMP (s = 2) and T-GBOMP (s = 3)
exhibit significant performance improvements over the other
algorithms. This suggests that tensor structure information
is beneficial for reliable recovery, as T-BOMP outperforms
BOMP and BOLS. Moreover, exploiting block sparsity yields
more assured results, since T-GBOMP (s=2) and T-GBOMP
(s = 3) outperform T-GOMP (s = 2) and T-GOMP (s = 3).
As T-GBOMP performs better than T-BOMP, and T-BOMP
performs better than BOMP, it becomes evident that the larger
the tensor mode, the better the recovery performance of the
algorithms. This aligns with the statement in Section IV,
indicating that a larger tensor mode can offer more reliable
recovery performance. Furthermore, in general, T-GBOMP
(s = 3) outperforms T-GBOMP (s = 2), indicating that a
larger selection parameter can indeed enhance the accuracy
of recovery by increasing the likelihood of selecting all the
correct atoms. We now verify the analytic results related
to reconstructible sparsity derived in Subsection IV-A. As
illustrated in Remark 5, based on the parameter settings in
Fig. 3, the most restricted reconstructible sparsity can be

calculated by
(
− 1

2 +
√

5
4 − −1

0.63×4

)2
≈1, which is consistent
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Fig. 3. ERR for recovering block-sparse tensors as a function of the block sparsity.

with the results given in Fig. 3. Observe that T-GBOMP (s=2)
and T-GBOMP (s=3) can achieve 100% ERR when the block
sparsity is less than or equal to 1.

In Fig. 4, where measurement matrices are generated to have
low matrix coherence, the ERR is plotted as a function of the
number of measurements. It can be observed that T-GBOMP
(s=2) and T-GBOMP (s=3) outperform the other compared
methods, with T-GBOMP (s = 3) achieving the best ERR
when the number of measurements exceeds 144. When the
total sparsity is fixed, i.e., K = k

∏3
i=1 di =16, the recovery

performance of T-GBOMP (s=2) and T-GBOMP (s=3) are
improved as the block length increases. This indicates that a
stronger block-structure characteristic leads to a more assured
recoverability of the algorithms. It is worth noting that the

block-structure characteristic is crucial for the reliability of
recovery. For instance, in Fig. 4(a), for T-GBOMP (s = 3)
to attain the 100% ERR, the number of measurements is
larger than 288. In contrast, as can be seen from Fig. 4(b),
T-GBOMP (s=3) can provide 100% ERR performance when
the number of measurements exceeds 216. Furthermore, since
the total sparsity remains constant, the corresponding ERRs
of T-GOMP (s=2) and T-GOMP (s=3) are similar given a
same number of measurements, as can be seen from Figs. 4(a)
and 4(b). This finding aligns with the expectation that these
algorithms do not leverage the block structure of the tensors
being recovered, and therefore are not significantly influenced
by changes in the block structure given a fixed total sparsity.
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B. The Noisy Scenario

The false alarm/miss-detection and NMSE are used as met-
rics to evaluate recovery performance of different approaches.
The false alarm ratio is expressed as

False alarm ratio =
|Ξ̂ \Ξ|
k
∏3

i=1 di
,

which is equivalent to the miss-detection ratio since |Ξ̂| =
|Ξ| = k

∏3
i=1 di, where Ξ̂ is the estimated set consisting of

the indices corresponding to nonzero tensor elements, and Ξ
denotes the correct index set. The NMSE is expressed as

NMSE =
∥X̂ − X∥2F

∥X∥2F
,

where X̂ represents the estimated block-sparse tensor, and X
denotes the true block-sparse tensor.

As illustrated in Fig. 5, T-GBOMP (s = 3) achieves the
best false alarm/miss-detection ratio among all the compared
algorithms. This indicates that a larger selection parameter
s can provide more assured performance in identifying the
correct tensor supports. When the compression ratio becomes
larger but still remains below 1

2 as depicted in Fig. 5(b), T-
GBOMP (s=2) and T-GBOMP (s=3) achieve exceptionally
good detection performance, surpassing the other algorithms,
with the false alarm/miss-detection ratios of T-GBOMP (s=2)
and T-GBOMP (s = 3) reaching 0 across all compared
SNR values. In general, algorithms that exploit block sparsity
outperform those that do not utilize block sparsity, indicating
that the block-structure characteristic is indeed a beneficial
factor for reliable recovery. Furthermore, it can be observed
that the methods using block-sparse tensor structure, i.e., T-
BOMP, T-GBOMP (s= 2) and T-GBOMP (s = 3), provide
better false alarm/miss-detection ratios than BOMP and BOLS,
which only utilize block sparsity without employing tensor

structure. This is due to the vectorization in conventional
non-tensor algorithms which causes the loss of certain high-
dimensional feature information in sparse recovery.

As can be observed from Fig. 6, where measurement
matrices are generated with low matrix coherence, T-GBOMP
(s = 3) generally achieves the lowest NMSE among all the
compared methods. The results of Fig. 6 show that as the block
sparsity increases, the performance of T-BOMP, T-GBOMP
(s = 2) and T-GBOMP (s = 3) deteriorate, but they still
outperform the other approaches significantly. We can now
discuss the theoretical results derived in Subsection IV-B.
Firstly, regarding the lower bound of SNR required for re-
liable recovery, we consider the intuitive result presented in
Remark 7, taking into account the parameter settings of T-
GBOMP (s = 3) in Fig. 6(a). Since block-sparse 2-PAM
tensors are generated in the simulation of Fig. 6(a), the MAR
is equal to 1 as defined in Definition 8. The lower bound
of SNR required for reliable recovery in Remark 7 is thus
equal to 10 log10

(
2
(

1√
3
+ 1
))2 ≈ 10 dB. This holds true, as

the NMSE is relatively low, and remains under 10−2 when
the SNR exceeds 10 dB in Fig. 6(a). It is worth mentioning
that the result given in Remark 7 is less restrictive than those
in Theorem 5 due to the asymptotic analysis, which indicates
that the correctness of the result in Remark 7 also demonstrates
the truth in Theorem 5. Secondly, regarding the reconstruction
error which can be reflected by the NMSE, we consider
the results presented in Theorem 6. Similarly, we assume a
less restricted scenario for calculating the reconstruction error
bound, where each element in the measurement matrix of
Fig. 6(a) follows an independent and identically distributed
Gaussian distribution with zero mean and variance 1∏3

i=1 Mi
.

In Fig. 6(a), when SNR=10 dB and K = k
∏3

i=1 di =8, we
have E(∥N∥F ) =

√
K × 10−

10
10 = 2

√
5

5 . Therefore, according

to Theorem 6, we have NMSE =
∥X̂−X∥2

F

∥X∥2
F

≤ (4∥N∥F )2

K2 =
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Fig. 4. ERR for recovering block-sparse 2-PAM tensors as a function of the number of measurements.
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Fig. 5. False alarm/Miss-detection ratio for recovering block-sparse 2-PAM tensors as a function of SNR.
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Fig. 6. NMSE for recovering block-sparse 2-PAM tensors as a function of SNR.

16( 2
√

5
5 )2

64 = 1
5 . This result is consistent with the findings in

Fig. 6(a), indicating that the other theoretical results derived
regarding the reconstruction error are also valid. Note that
the analytical results presented are more pessimistic than
the numerical results, since our analyses based on the MIP
framework essentially consider worst-case scenarios.

VI. CONCLUSIONS

In this paper, we have defined new MIP concepts measuring
the uncertainty relations in a matrix set, formulated block-
sparse tensor recovery modeling, and elaborated T-GBOMP

as a generalized algorithmic basis for theoretical derivation.
Then, we have provided in-depth theoretical analyses for T-
GBOMP, in terms of exact recovery conditions in the noiseless
case and reliable reconstruction conditions in noisy scenarios.
Specifically, we have presented an exact recovery condition
and closed-form sufficient conditions that ensure T-GBOMP
can recover the block-sparse tensor exactly if the block sparsity
is smaller than a derived upper bound. We have further derived
error bounds and the residual convergence level of T-GBOMP
after a specified number of iterations, in the presence of noise.
Moreover, the SNR required for reliable recovery with respect
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to the newly defined version of MIP has also been developed.
We have further highlighted that the T-GBOMP includes the
existing greedy algorithms as special cases and it can be
extended to other tensor variants, indicating that the theoretical
results developed in this paper are quite broad.

APPENDIX

A. Proof of Lemma 1
Proof: Use elementary column transformation to form

T ∈ C
∏n

t=1 Mt×stdt as a concatenation of
∏n

t=1 st column-
block submatrices, of sizes

∏n
t=1 Mt ×

∏n
t=1 dt, where the

cth (c ∈ {1, · · · ,
∏n

t=1 st}) block of the transformed matrix
is D1[i1]

⊗ · · · ⊗ Dn[in]
, and i1 ∈ {1, · · · , s1}, · · · , in ∈

{1, · · · , sn}. We denote this new transformed matrix as Q,
and the eigenvalues of QHQ are equal to those of THT. To
lower bound λmin, we prove that the matrix QHQ − λI is
nonsingular under the condition λ < 1−(d−1)νD−(s−1)dµD

when (d − 1)νD + (s − 1)dµD < 1. This is equivalent to
proving that for any nonzero vector f =

[
fT[1], f

T
[2], · · · , f

T
[s]

]T ∈
C

∏n
t=1 st

∏n
t=1 dt , (QHQ−λI)f ̸= 0. Without loss of general-

ity, we assume ∥f[1]∥2 ≥ ∥f[2]∥2 ≥ · · · ≥ ∥f[s]∥2. The ℓ2-norm
of the first block of (QHQ− λI)f satisfies∥∥∥[(QHQ− λI)f

]
[1]

∥∥∥
2

=

∥∥∥∥(QH
[1]Q[1] − λI

)
f[1] +

∏n
t=1 st∑
i=2

QH
[1]Q[i]f[i]

∥∥∥∥
2

≥
∥∥QH

[1]Q[1]f[1]
∥∥
2
− λ∥f[1]∥2 −

∥∥∥∥
∏n

t=1 st∑
i=2

QH
[1]Q[i]f[i]

∥∥∥∥
2

≥
∥∥QH

[1]Q[1]f[1]
∥∥
2
− λ∥f[1]∥2

−
n−1∑
t=0

Ctϖ
n
Υ,t

n∏
i=1

di max
l∈{Ct}

∥f[l]∥2, (67)

where the set {Ct} consists of the indices corresponding to
Ct as defined in Proposition 1. Denote QH

[1]Q[1] = I + A,
where ∀i, A(i,i) = 0. Based on Geršgorin’s disc theorem [37]

∥A∥2 ≤
n−1∑
t=0

Ctτ
n−t
Υ,t .

Thus,∥∥QH
[1]Q[1]

∥∥
2
≥ ∥I∥2 − ∥A∥2 ≥ 1−

n−1∑
t=0

Ctτ
n−t
Υ,t . (68)

Combining (67) and (68) yields∥∥∥[(QHQ− λI)f
]
[1]

∥∥∥
2

≥

(
1−

n−1∑
t=0

Ctτ
n−t
Υ,t − λ

)
∥f[1]∥2

−
n−1∑
t=0

Ctϖ
n
Υ,t

n∏
i=1

di max
l∈{Ct}

∥f[l]∥2

>

n−1∑
t=0

Ctϖ
n
Υ,t

n∏
i=1

di∥f[1]∥2

−
n−1∑
t=0

Ctϖ
n
Υ,t

n∏
i=1

di max
l∈{Ct}

∥f[l]∥2

=

n−1∑
t=0

Ctϖ
n
Υ,t

n∏
i=1

di

(
∥f[1]∥2 − max

l∈{Ct}
∥f[l]∥2

)
≥ 0.

This reveals that
(
QHQ − λI

)
f ̸= 0 and λmin ≥ 1 −∑n−1

t=0 Ctτ
n−t
Υ,t −

∑n−1
t=0 Ctϖ

n
Υ,t

∏n
i=1 di holds.

The inequality λmax ≤ 1 +
∑n−1

t=0 Ctτ
n−t
Υ,t +∑n−1

t=0 Ctϖ
n
Υ,t

∏n
i=1 di can be proved similarly.

B. Proof of Lemma 2

Proof: Based on matrix norm property, we have

∥D∥2 =
√

∥DHD∥2 =
√

ρ(DHD)

≤
√

min{ρr(DHD), ρc(DHD)} (69)

≤
√

min{ρr(DH)ρr(D), ρc(DH)ρc(D)} (70)

=
√

min{ρc(D)ρr(D), ρr(D)ρc(D)} (71)

=
√

ρc(D)ρr(D),

where ρ(·) denotes the spectral radius on its objective, (69) is
because ρr(D) and ρc(D) are matrix norms as discussed in
[10], and the spectral radius of a square matrix is less than
or equal to any other matrix norm, (70) follows from the sub-
multiplicativity of matrix norm, and (71) is because ρr(D

H) =
ρc(D) and ρc(D

H) = ρr(D) [10]. This completes the proof.

C. Proof of Corollary 2

Proof: Observe that∥∥THT∗
∥∥
2
≤ min

{
ρr(T

HT∗), ρc(T
HT∗)

}
(72)

≤ min

{
ϖn

Υ

n∏
t=1

ltdt, ϖ
n
Υ

n∏
t=1

l∗t dt

}
, (73)

where (72) is from Lemma 2, and (73) is from the definition
of mutual block coherence. On the other hand,∥∥THT∗

∥∥
2

≥ σmin(T)σmin(T∗)

≥

(
1−

( n∏
t=1

dt − 1

)
τnΥ −

( n∏
t=1

lt − 1

)
ϖn

Υ

n∏
t=1

dt

) 1
2

×

(
1−

( n∏
t=1

dt − 1

)
τnΥ −

( n∏
t=1

l∗t − 1

)
ϖn

Υ

n∏
t=1

dt

) 1
2

(74)

= W
1
2

Υ,
∏n

t=1 lt
W

1
2

Υ,
∏n

t=1 l∗t
,

where (74) is derived based on Lemma 2, and σmin(·)
represents the minimum singular value of its target. This
completes the proof.



21

D. Proof of Corollary 3

Proof: Observe that

∥X ×1 D1 ×2 · · · ×n Dn∥F
= ∥XΞ ×1 D1 ×2 · · · ×n Dn∥F
= ∥(Dn ⊗Dn−1 ⊗ · · · ⊗D1)vec(XΞ)∥F
≤ ∥Dn ⊗Dn−1 ⊗ · · · ⊗D1∥2∥vec(XΞ)∥F

≤ W
1
2

Υ,
∏n

t=1 kt
∥X∥F , (75)

where Di (i ∈ [1, 2, · · · , n]) are the column-block submatrices
of Di whose column indices correspond to the shadow block
sparsity of X , vec(X ) ∈ Ck1d1k2d2···kndn is the vectorized
XΞ, and (75) is based on Lemma 1 and due to the fact that
∥vec(XΞ)∥F = ∥X∥F . On the other hand,

∥X ×1 D1 ×2 · · · ×n Dn∥F
≥ σmin

(
Dn ⊗Dn−1 ⊗ · · · ⊗D1

)
∥vec(XΞ)∥F

≥ W
1
2

Υ,
∏n

t=1 kt
∥X∥F , (76)

where σmin(·) denotes the smallest singular value of its
argument, and (76) is based on Lemma 1.

The proofs of (22) and (23) are similar, and the proof of
(24) is essentially an extension of those of the [35, Proposition
3.1] and [36, Lemma 6]. This completes the proof.

E. Proof of Theorem 1

Proof: Note that∥∥Rl ×1 D
H
1[i∗1]

×2 · · · ×n DH
n[i∗n]

∥∥
F

= max
(i1,i2,··· ,in)∈Ξ

∥∥Rl ×1 D
H
1[i1]

×2 · · · ×n DH
n[in]

∥∥
F
. (77)

Letting qs be the sth largest element in Ψ, we have

qs ≤
1√
s

√ ∑
(i1,··· ,in)∈Ψ

∥∥Rl ×1 DH
1[i1]

×2 · · · ×n DH
n[in]

∥∥2
F
.

(78)

If the bound in (78) is less than (77), i.e.,√∑
(i1,··· ,in)∈Ψ

∥∥Rl ×1 DH
1[i1]

×2 · · · ×n DH
n[in]

∥∥2
F√

s
∥∥Rl ×1 DH

1[i∗1]
×2 · · · ×n DH

n[i∗n]

∥∥
F

< 1,

(79)

then in the next iteration at least c correct indices are selected.
Since D̈ΞD̈

†
Ξ is the orthogonal projector onto span(D̈Ξ) [6],

we have D̈ΞD̈
†
Ξvec(Rl) = vec(Rl). Thus, the left-hand side

of (79) becomes√ ∑
(i1,··· ,in)∈Ψ

∥∥(DH
n[in]

⊗ · · · ⊗DH
1[i1]

)
D̈ΞD̈

†
Ξ vec(Rl)

∥∥2
F

√
s
∥∥(DH

n[i∗n]
⊗ · · · ⊗DH

1[i∗1]

)
vec(Rl)

∥∥
F

=

√ ∑
(i1,··· ,in)∈Ψ

∥∥(DH
n[in]

⊗· · ·⊗DH
1[i1]

)(
D̈†

Ξ

)H
D̈H

Ξ vec(Rl)
∥∥2
F

√
s
∥∥(DH

n[i∗n]
⊗ · · · ⊗DH

1[i∗1]

)
vec(Rl)

∥∥
F

(80)

≤ 1√
s

∥∥D̈H
Ψ(D̈†

Ξ)
H
∥∥
2

∥∥D̈H
Ξvec(Rl)

∥∥
F∥∥(DH

n[i∗n]
⊗ · · · ⊗DH

1[i∗1]

)
vec(Rl)

∥∥
F

(81)

=
ZRl√

s

∥∥D̈†
ΞD̈Ψ

∥∥
2
, (82)

where (80) is because D̈ΞD̈
†
Ξ is Hermitian matrix, (81) is from

the sub-multiplicativity of matrix norm, and (82) is due to the
definition of the function ZRl . Then, following the similar
proofs in [6], [10], we can prove that T-GBOMP selects a
new tensor block participating in the unique solution of Y =
X ×1 D1 ×2 D2 ×3 · · · ×n Dn. This completes the proof.

F. Proof of Theorem 2
Proof: Observe that

ZRl√
s

∥∥D̈†
ΞD̈Ψ

∥∥
2

=
ZRl√

s

∥∥∥(D̈H
ΞD̈Ξ

)−1
D̈H

ΞD̈Ψ

∥∥∥
2

≤ ZRl√
s

∥∥∥(D̈H
ΞD̈Ξ

)−1
∥∥∥
2

∥∥D̈H
ΞD̈Ψ

∥∥
2

(83)

≤ ZRl√
s

∥∥∥(D̈H
ΞD̈Ξ

)−1
∥∥∥
2
×max

{
ϖn

Υk

n∏
t=1

dt, ϖ
n
Υs

n∏
t=1

dt

}
(84)

≤ ZRl√
s

∥∥∥(D̈H
ΞD̈Ξ

)−1
∥∥∥
2
ϖn

Υk

n∏
t=1

dt, (85)

where (83) is from the sub-multiplicativity, (84) is based on
Corollary 3, and (85) is because s ≤ k.

It remains to derive an upper bound on
∥∥(D̈H

ΞD̈Ξ

)−1∥∥
2
.

Let D̈H
ΞD̈Ξ = I + A, where A ∈ Ck

∏n
t=1 dt×k

∏n
t=1 dt is

a symmetric matrix with A(i,i) = 0, ∀i. Thus, based on
Corollary 1, we have

∥A∥2 ≤
( n∏

t=1

dt − 1

)
τnΥ + (k − 1)ϖn

Υ

n∏
t=1

dt. (86)

The assumption now implies that
(∏n

t=1 dt − 1
)
τnΥ + (k −

1)ϖn
Υ

∏n
t=1 dt < 1. Based on [37, Corollary 5.6.16], we

obtain∥∥(D̈H
ΞD̈Ξ

)−1∥∥
2
=
∥∥(I+A)−1

∥∥
2
=

∥∥∥∥ ∞∑
t=0

(−A)t
∥∥∥∥
2

(87)

≤
∞∑
t=0

∥A∥t2 (88)

=
1

1− ∥A∥2
(89)

≤ 1

1−
(∏n

t=1 dt − 1
)
τnΥ − (k − 1)ϖn

Υ

∏n
t=1 dt

, (90)

where (88) is from the triangle inequality, (89) is the sum of
proportional sequence, and (90) follows by using (86).

Combining (90) and (85) yields

ZRl√
s

∥∥D̈†
ΞD̈Ψ

∥∥
2
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≤ ZRl√
s

ϖn
Υk
∏n

t=1 dt

1−
(∏n

t=1 dt − 1
)
τnΥ − (k − 1)ϖn

Υ

∏n
t=1 dt

(91)

< 1. (92)

Then, (31) follows from (91) and (92), and this completes the
proof.

G. Proof of Corollary 4
Proof: Letting ZRl =

√
k, we obtain the following cubic

inequality with respect to k:(
k

1
2

)3
+
√
s
(
k

1
2

)2
+ δ < 0, (93)

where δ is given by (39) in Corollary 4. Setting k
1
2 = x−

√
s
3 ,

(93) changes into

x3 + Px+Q < 0. (94)

The real-domain solution of (94) based on the Cardano for-
mula is

x <
3

√
−Q

2
+
√
∆+

3

√
−Q

2
−
√
∆. (95)

(38) is the consequence of combining (95) and k
1
2 = x−

√
s
3 .

H. Proof of Theorem 3
Proof: Note that

∥Rl −Rl+1∥F
=
∥∥P⊥

D̈
Ξl
vec(Y)−P⊥

D̈
Ξl+1

vec(Y)
∥∥
F

(96)

=
∥∥∥(I−PD̈

Ξl
vec(Y)

)
−
(
I−PD̈

Ξl+1

)
vec(Y)

∥∥∥
F

(97)

=
∥∥PD̈

Ξl+1
vec(Y)−PD̈

Ξl+1
PD̈

Ξl
vec(Y)

∥∥
F

(98)

= ∥PD̈
Ξl+1

(
I−PD̈

Ξl

)
vec(Y)∥F = ∥PD̈
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∥∥PD̈

Θl+1
vec(Rl)

∥∥
F

(99)

=
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F
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=
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(
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F

=
∥∥(D̈†
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HD̈H

Θl+1vec(Rl)
∥∥
F

≥
∥∥D̈H

Θl+1vec(Rl)
∥∥
F

W
1
2

Υ,s

, (101)

where Θl+1 is the selected index set in the (l+1)th iteration as
given in Algorithm 1, (96) and (97) are due to the definitions of
the residual matrix and orthogonal projection matrix, respec-
tively, (98) and (99) are because span

(
D̈Ξl

)
⊆ span

(
D̈Ξl+1

)
and span

(
D̈Θl+1

)
⊆ span

(
D̈Ξl+1

)
, respectively, (100) is

from the property of projection matrix, and (101) is based
on Corollary 3.

It remains to develop the lower
bound on

∥∥D̈H
Θl+1vec(R)

∥∥
F

. Let Θ∗ =

arg max
Θ:|Θ|=s

∑
(i1,i2,··· ,in)∈Θ

∥∥Rl ×1 D
H
1[i1]

×2 · · · ×n DH
n[in]

∥∥2
F

.

Then, we have∥∥D̈H
Θl+1vec(R)

∥∥2
F

=
∑
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H
1[i1]

×2 · · · ×n DH
n[in]

∥∥2
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∥∥2
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(102)

Combining (101) and (102), we have∥∥Rl
∥∥2
F
−
∥∥Rl+1

∥∥2
F

=
∥∥Rl −Rl+1

∥∥2
F

≥
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H
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F
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(103)

Moreover, since s ≤ k,

max
Θ:|Θ|=s

∑
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∥∥Rl ×1 D
H
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F
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s
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(
vec(Y)−

(
Dn
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n
⊗ · · · ⊗D1

Ξl
1

)
vec(XΞl)

)∥∥∥2
F
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=
s

k

∥∥∥D̈H
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)
vec(X )

−
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Ξl
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1

)
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)∥∥∥2
F

=
s
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(
vec(XΞ)− vec(XΞl)
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(106)

≥ s

k
WΥ,
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∥∥vec(XΞ)− vec(XΞl)
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≥
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1
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(
vec(XΞ)− vec(XΞl)

)∥∥2
F

(108)

=
sWΥ,

∏n
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kW
1
2
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t=1 kn+sl

∥∥Rl
∥∥2
F
, (109)

where (104) is because
∑

(i1,··· ,in)∈Ξl

∥∥Rl ×1 DH
1[i1]

×2

· · · ×n DH
n[in]

∥∥2
F

= 0, (105) is due to (1), (106) is be-
cause

(
DnΞn

⊗ · · · ⊗ D1Ξ1

)
vec(XΞ) =

(
Dn

Ξn∪Ξl
n
⊗ · · · ⊗

D1
Ξ1∪Ξl

1

)
vec(XΞ∪Ξl), (107) and (108) are from Corollary 3.

Combining (103) and (109) yields∥∥Rl
∥∥2
F
−
∥∥Rl+1

∥∥2
F
≥

sWΥ,
∏n

t=1 kn+sl

kW
1
2

Υ,
∏n

t=1 kn+slWΥ,s

∥∥Rl
∥∥2
F
.
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Thus, we have∥∥Rl+1
∥∥2
F
≤

(
1−

sWΥ,
∏n

t=1 kn+sl

kW
1
2

Υ,
∏n

t=1 kn+slWΥ,s

)∥∥Rl
∥∥2
F
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(
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sWΥ,
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1
2
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)∥∥R0
∥∥2
F

≤

(
1−

sWΥ,
∏n

t=1 kn+sl

kW
1
2

Υ,
∏n

t=1 kn+slWΥ,s

)l+1∥∥Y∥∥2
F
.

This completes the proof.

I. Proof of Theorem 4

Proof: Denoting Ql∗ as the best k block-sparse tensor
approximation of X l∗ , and kn as the shadow block sparsity in
the nth mode, we have∥∥Ql∗ −X

∥∥
F

=
∥∥Ql∗ −X l∗ + X l∗ −X

∥∥
F

≤
∥∥Ql∗ −X l∗

∥∥
F
+
∥∥X l∗ −X

∥∥
F

(110)

≤ 2
∥∥X l∗ −X
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F
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≤
2
∥∥(X l∗ −X )×1 D1 ×2 · · · ×n Dn

∥∥
F

W
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≤
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)
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1
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t=1 kt+sl∗

(113)

≤
2
(
ϵ+ ∥N∥F

)
W

1
2

Υ,
∏n

t=1 kt+sl∗

, (114)

where (110) is due to the triangle inequality, (111) is because
Ql∗ is the best k block-sparse tensor approximation to X l∗ ,
(112) is from Corollary 3 and the fact that each shadow block
sparsity of the tensor X l∗ −X can increase by up to sl∗, and
(113) is because Rl∗ = Y − X l∗ ×1 D1 ×2 · · · ×n Dn =
(X l∗ −X )×1 D1 ×2 · · · ×n Dn +N .

Further,

∥Ql∗ −X∥F

≥ ∥(Ql∗ −X )×1 D1 ×2 · · · ×n Dn∥F
W

1
2

Υ,
∏n

t=1 kt+k

(115)

=
∥Ql∗ ×1 D1 ×2 · · · ×n Dn − Y +N∥F

W
1
2
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t=1 kt+k

≥ ∥Ql∗ ×1 D1 ×2 · · · ×n Dn − Y∥F − ∥N∥F
W

1
2
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t=1 kt+k

(116)

≥ ∥X̂ ×1 D1 ×2 · · · ×n Dn − Y∥F − ∥N∥F
W

1
2
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(117)

=
∥(X̂ − X )×1 D1 ×2 · · · ×n Dn −N∥F − ∥N∥F

W
1
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≥ ∥(X̂ − X )×1 D1 ×2 · · · ×n Dn∥F − 2∥N∥F
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1
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≥
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1
2
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t=1 kt+k∥(X̂ − X )∥F − 2∥N∥F

W
1
2

Υ,
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t=1 kt+k

, (119)

where (115) and (119) are derived by Corollary 3 and due to
the fact that the nth mode shadow block sparsity of Ql∗ −X
is up to kn + k, (116) and (118) are based on the triangle
inequality, and (117) is because Ql∗ is supported on Ξl∗ and
X̂ = arg min

X :supp(X )=Ξl∗

∥∥vec(Y)−
∑

(i1,i2,··· ,in)∈Ξl∗ (Dn[in]
⊗

· · ·⊗D1[i1]
)vec(X )[i1,··· ,in]

∥∥
F

. Finally, the proof is completed
by combining (114) and (119).

J. Proof of Theorem 5
Proof: The proof is based on induction of selecting at

least one correct tensor block for each iteration. Note that this
proof technique is similar in spirit to those in [36], [43].

a) First, we prove that T-GBOMP succeeds at choosing the
correct index in the first iteration. According to Algorithm 1,
T-GBOMP chooses the index set

Ξ1

= arg max
Θ:|Θ|=s

∑
(i1,··· ,in)∈Θ

∥∥R0 ×1 D
H
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∥∥Y ×1 D
H
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∥∥
F
,

where

Θ = {(Θ11 ,Θ21 , · · · ,Θn1
), (Θ12 ,Θ22 , · · · ,Θn2

),

· · · , (Θ1k ,Θ2k , · · · ,Θnk
)}.

Since s ≤ k, we have∑
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∥∥Y ×1 D
H
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≥
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H
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Υ,1∥X∥F −W
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Υ,1∥N∥F
)
, (123)
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where D1Ξ1
∈ CM1×sd,D2Ξ2

∈ CM2×sd, · · · ,DnΞn
∈

CMn×sd indexed by Ξ1,Ξ2, · · · ,Ξn are the column-block
submatrices of D1,D2, · · · ,Dn, respectively, (120) is due to
the fact that the average of the correlation between s selected
blocks and the residual in the first iteration is the largest and
should be no less than that of any other subset with cardinality
being no less than s, (121) is from (1), (122) follows from the
triangle inequality, and (123) is derived based on Corollary 3.

Consider the case in which no correct index is selected at
the first iteration, i.e., there exists at least one tensor index set
satisfying that Ξi ∩Ξ1

i = ∅ (i ∈ {1, 2, · · · , n}); we have∑
(i1,··· ,in)∈Ξ1

∥∥Y ×1 D
H
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×2 · · · ×n DH
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∥∥
F

=
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≤
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×2 · · · ×n DnΞn
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H
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F
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H
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∥∥
F

)
=

∑
(i1,··· ,in)∈Ξ1

(∥∥XΞ ×1

(
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1[i1]
D1Ξ1

)
×2 · · · ×n

(
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n[in]
DnΞn

)∥∥
F

+
∥∥N ×1 D

H
1[i1]

×2 · · · ×n DH
n[in]
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F

)
≤ s

(
ϖn

Υ,n−1

n∏
t=1

ktdt

)
∥X∥F + sW

1
2

Υ,1∥N∥F , (124)

where s is the number of selected indices during the first
iteration of T-GBOMP,

∑n−1
t=0 Ct =

∏n
i=1 di − 1, WΥ,1

can be obtained by Corollary 3, and (124) is derived from
the scenario where only one tensor index set is selected
incorrectly, which could present the strictest upper bound in
(124).

Then, if
√
sk
(
W

1
2

Υ,
∏n

t=1 kt
W

1
2

Υ,1∥X∥F −W
1
2

Υ,1∥N∥F
)

> s
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ϖn

Υ,n−1

n∏
t=1

ktdt

)
∥X∥F + sW

1
2

Υ,1∥N∥F , (125)

(123) is contradicted.
Reorganizing (125), we have

∥X∥F
∥N∥F

>

(
s+

√
sk
)
W

1
2

Υ,1
√
skW

1
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Υ,
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1
2
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∏n
t=1 ktdt

) .
(126)

On the other hand,

∥X∥F
∥N∥F

≥ ∥X ×1 D1 ×2 · · · ×n Dn∥F
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1
2

Υ,
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t=1 kt
∥N∥F

(127)

=

√
SNR

W
1
2

Υ,
∏n

t=1 kt

, (128)

where (127) is from Corollary 3 and (128) is due to the
definition of SNR.

Therefore, combining (126) and (128), we obtain that if

√
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(√
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(129)

then at least one correct tensor block is selected at T-GBOMP’s
first iteration.

b) Second, supposing that T-GBOMP selects at least one
correct tensor block at each of the previous l (1 ≤ l < k)
iterations, we prove that the algorithm selects at least one
correct tensor block at the (l + 1)-th iteration. Denote p1
as the largest element in the set

{∥∥Rl ×1 DH
1[i1]

×2 · · · ×n

DH
n[in]

∥∥
F

}
(i1,··· ,in)∈Ξ\Ξl . The following inequality holds:
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≥ 1√
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where c = |Ξ ∩Ξl| ≥ l, WΥ,kn
and WΥ,kn

can be obtained
by Corollary 3, (130) follows from the Cauchy-Schwarz
inequality, (131) is from (1), (132) is based on the triangle
inequality, (133) is based on [19, Lemma 5], and (134) follows
from Corollary 3.

Denoting Ψ as the index set corresponding to the
s largest elements in

{∥∥Rl ×1 DH
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×2 · · · ×n
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}
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√ ∑
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where (135) is because P⊥
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Ξl
= I−PD̈
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. In the following,

we derive upper bounds of the three terms in (135), i.e.,∥∥D̈ΨPD̈
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For the first term, note that∥∥∥D̈ΨPD̈
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∥∥XΞ\Ξl

∥∥
F
,

(136)

where (136) is from the sub-multiplicativity. Based on Corol-
lary 3, we have∥∥D̈ΨD̈Ξl

∥∥
2
≤ max

{
sϖn

Υ,n−1

n∏
t=1

dt, lsϖ
n
Υ,n−1

n∏
t=1

dt

}
= lsϖn

Υ,n−1

n∏
t=1

dt, (137)∥∥∥D̈H
Ξl

(
Dn

Ξn\Ξl
n
⊗ · · · ⊗D1

Ξ1\Ξl
1

)∥∥∥
2

≤ max
{
lsϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
. (138)

It remains to derive an upper bound on
∥∥(D̈H

ΞlD̈Ξl

)−1∥∥
2
. De-

note D̈H
ΞlD̈Ξl as I+A since the diagonal elements of D̈H

ΞlD̈Ξl

are all 1, where A is a matrix of size ls
∏n

t=1 dt× ls
∏n

t=1 dt
with blocks of size

∏n
t=1 dt ×

∏n
t=1 dt. Then, by using

Corollary 1, we obtain

∥A∥2 ≤
n−1∑
t=0

Ctτ
n−t
Υ,t +

n−1∑
t=0

Ctϖ
n
Υ,t

n∏
i=1

di,

where
∑n−1

t=0 Ct =
∏n

t=1 dt − 1,
∑n−1

t=0 Ct = ls − 1, and Ct

and Ct can be obtained by Proposition 1.

Suppose that
∑n−1

t=0 Ctτ
n−t
Υ,t +

∑n−1
t=0 Ctϖ

n
Υ,t

∏n
i=1 di < 1.

Similar to (87) to (90), we have∥∥(D̈H
ΞlD̈Ξl

)−1∥∥
2

≤ 1

1−
∑n−1

t=0 Ctτ
n−t
Υ,t −

∑n−1
t=0 Ctϖn

Υ,t

∏n
i=1 di

. (139)

Combining (136), (137), (138) and (139) leads to∥∥D̈ΨPD̈
Ξl

(
Dn

Ξn\Ξl
n
⊗ · · · ⊗D1

Ξ1\Ξl
1

)
vec
(
XΞ\Ξl

)∥∥
F

≤
(
lsϖn

Υ,n−1

n∏
t=1

dt
)

×max
{
lsϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
× 1

1−
∑n−1

t=0 Ctτ
n−t
Υ,t −

∑n−1
t=0 Ctϖn

Υ,t

∏n
i=1 di

∥XΞ\Ξl∥F

=
(
lsϖn

Υ,n−1

n∏
t=1

dt
)

×max
{
lsϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
× 1

WΥ,ls

∥XΞ\Ξl∥F . (140)

For the second term, we have∥∥D̈Ψ

(
Dn

Ξn\Ξl
n
⊗ · · · ⊗D1

Ξ1\Ξl
1

)
vec
(
X
)∥∥

F

≤ max

{
sϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
×
∥∥XΞ\Ξl

∥∥
F
, (141)

where (141) follows from Corollary 3.

For the third term, we have∥∥D̈ΨP⊥
D̈

Ξl
vec(N )

∥∥
F
≤ ∥D̈Ψ∥2∥N∥F

≤ W
1
2

Υ,s∥N∥F . (142)

Combining (135), (140), (141) and (142), we have

qs ≤
1√
s

((
lsϖn

Υ,n−1

n∏
t=1

dt
)

×max
{
lsϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
× 1

WΥ,ls

∥XΞ\Ξl∥F

+max
{
sϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
× ∥XΞ\Ξl∥F +W

1
2

Υ,s∥N∥F

)
. (143)

Note that if p1 > qs, p1 belongs to the set of s largest
elements among all the elements in

{∥∥Rl ×1D
H
1[i1]

×2 · · · ×n

DH
n[in]

∥∥
F

}
(i1,··· ,in)∈Ω\Ξl , then at least one correct index is

selected in the (l+1)th iteration. Exploiting (134) and (143),
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p1 > qs holds true if the following inequality is satisfied:

1√
k − c

(
W

1
2

Υ,lsW
1
2

Υ,(k−c)n

∥∥XΞ\Ξl

∥∥
F
−W

1
2

Υ,ls∥N∥F
)

>
1√
s

((
lsϖn

Υ,n−1

n∏
t=1

dt
)

×max
{
lsϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
× 1

WΥ,ls

∥XΞ\Ξl∥F

+max
{
sϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

}
× ∥XΞ\Ξl∥F +W

1
2

Υ,s∥N∥F

)
. (144)

Note that

∥X∥F
∥N∥F

≥

√
|Ξ\Ξl| min

(i1,··· ,in)∈Ξ
∥X[i1,··· ,in]∥F

∥N∥F

=
MAR∗

√
k − c∥X∥F√

k∥N∥F
(145)

≥ MAR∗
√
k − c∥X ×1 D1 ×2 · · · ×n Dn∥F√

kWΥ,
∏n

t=1 kt
∥N∥F

(146)

=
MAR∗

√
(k − c)SNR√

kWΥ,
∏n

t=1 kt

, (147)

where (145) is from the definition of MAR∗, (146) is based
on Corollary 3, and (147) follows from the definition of SNR.
Combining (144) and (147), we conclude that if
√
SNR

>

(
1√
s
W

1
2

Υ,s +
1√
k − c

W
1
2

Υ,ls

)
√
kW

1
2

Υ,
∏n

t=1 kt

×

((
1√
k−c

W
1
2

Υ,lsW
1
2

Υ,(k−c)n

− 1√
s

(
lsϖn

Υ,n−1

n∏
t=1

dt

)
×max

{
lsϖn

Υ,n−1

n∏
t=1

dt, (k−c)nϖn
Υ,n−1

n∏
t=1

dt

} 1

WΥ,ls

− 1√
s
max

{
sϖn

Υ,n−1

n∏
t=1

dt, (k − c)nϖn
Υ,n−1

n∏
t=1

dt

})

×MAR∗
√
k − c

)−1

(148)

holds, the T-GBOMP chooses at least one correct index in the
l + 1th iteration.

c) So far, we have proved that under the condition (129) T-
GBOMP succeeds in the first iteration, and under the condition
(148) T-GBOMP succeeds in the general iteration. We now
present a condition under which T-GBOMP succeeds in every

iteration. Due to the fact that 1 ≤ k − c < k, 1 ≤ l < k and
1 ≤ s ≤ k, (148) is transformed into

√
SNR >

(√
k√
s
W

1
2

Υ,sW
1
2

Υ,k +
√
kW

1
2

Υ,ksW
1
2

Υ,k

)

×

(
1√
s

(√
s√
k
W

1
2

Υ,ksW
1
2

Υ,k − kϖΥd1

− (ksϖΥd1)
2

WΥ,ks

)
MAR∗

)−1

, n = 1, (149a)

√
SNR >

(√
k√
s
W

1
2

Υ,sW
1
2

Υ,
∏n

t=1 kt

+
√
kW

1
2

Υ,ksW
1
2

Υ,
∏n

t=1 kt

)

×

(
1√
s

(√
s√
k
W

1
2

Υ,ksW
1
2

Υ,kn−knϖn
Υ,n−1

n∏
t=1

dt

−
kn+1sϖ2n

Υ,n−1

( n∏
t=1

dt
)2

WΥ,ks

)
MAR∗

)−1

, n > 1. (149b)

Since
√
k√
s
≥

√
s√
k

, 1√
s
≤ 1 and MAR∗ ≤ 1, it can be obtained

that (149a) and (149b) are more restrictive than the bound in
(129). Therefore, (149a) and (149b) guarantee that T-GBOMP
chooses all correct indices in k iterations. Simplifying (149a)
and (149b) leads to (49a) and (49b). This completes the proof.

K. Proof of Theorem 6

Proof: Denote l∗ as the number of iterations of T-
GBOMP, where l∗ ≤ k. In the case that s = 1, l∗ = k. Based
on Theorem 5, we have Ξ̂ = Ξk = Ξ and X̂ = X k, since
X̂ = arg min

X :supp(X )=Ξ

∥∥vec(Y) −
∑

(i1,i2,··· ,in)∈Ξ

(
Dn[in]

⊗

· · · ⊗D1[i1]

)
vec(X )[ix]

∥∥
F

and X̂Ω\Ξ = 0. Therefore,∥∥X̂ − X
∥∥
F
=
∥∥D̈†

Ξvec(Y)− vec(XΞ)
∥∥
F

=
∥∥D̈†

Ξ(vec(Y)− D̈Ξvec(XΞ))
∥∥
F

(150)

=
∥∥D̈†

Ξvec(N )
∥∥
F

(151)

≤
∥D̈ΞD̈

†
Ξvec(N )∥F
W

1
2

Υ,k

(152)

=
∥PD̈Ξ

vec(N )∥F

W
1
2

Υ,k

(153)

≤ ∥N∥F
W

1
2

Υ,k

, (154)

where (150) is because D̈†
ΞD̈Ξ = I, (151) follows from (1),

(152) is due to Corollary 3, (153) is derived by PD̈Ξ
=

D̈ΞD̈
†
Ξ, and (154) is because ∥PD̈Ξ

∥2 ≤ 1.
In the case that s > 1, we have Ξ ⊆ Ξk. Letting Qk be the

best k block-sparse approximation of X k, we obtain

∥Qk −X∥F
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= ∥Qk −X k + X k −X∥F
≤ ∥Qk −X k∥F + ∥X k −X∥F (155)

≤ 2∥X k −X∥F (156)

= 2
∥∥D̈†

Ξkvec(Y)− vec(XΞk)
∥∥
F

(157)

= 2
∥∥D̈†

Ξkvec(XΞ ×1 D1Ξ1
×2 · · · ×n DnΞn

+N )

− vec(XΞk)
∥∥
F

(158)

= 2
∥∥D̈†

Ξk(vec(XΞk ×1 D1
Ξk

1

×2 · · · ×n Dn
Ξk

n
+N )

−Tkvec(XΞk))
∥∥
F

= 2
∥∥D̈†

Ξkvec(N )
∥∥
F
≤

2∥D̈ΞkD̈†
Ξkvec(N )∥F

W
1
2

Υ,sk

(159)

=
2∥PD̈

Ξk
vec(N )∥F

W
1
2

Υ,sk

≤ 2∥N∥F
W

1
2

Υ,sk

, (160)

where (155) is from the triangle inequality, (156) is because
Qk is the best k block-sparse approximation to X k, (157) is
because the nonzero tensor blocks of X k are estimated by
D̈†

Ξkvec(Y) and Ξ ⊆ Ξk, (158) is based on (1), and (159) is
derived by Corollary 3.

From Appendix I, we know that

∥Qk −X∥F ≥
W

1
2

Υ,
∏n

t=1 kt+k∥X̂ − X∥F − 2∥N∥F

W
1
2

Υ,
∏n

t=1 kt+k

. (161)

The proof is completed by combining (160) and (161).

L. Proof of Lemma 3
Proof: From (103), for any integer c with c ≥ l, we have∥∥Rc
∥∥2
F
−
∥∥Rc+1

∥∥2
F

≥
∑

(i1,i2,··· ,in)∈Θc+1

∥∥Rc ×1 D
H
1[i1]

×2 · · · ×n DH
n[in]

∥∥2
F

WΥ,s

.

(162)

Denote Z ∈ CN1×1···×nNn as a tensor
with vec(ZΞ∩Ξl∪Λl

ϱ
) = vec(XΞ∩Ξl∪Λl

ϱ
) and

vec(ZΩ\(Ξ∩Ξl∪Λl
ϱ
) = 0. From [42, C. 12], we have〈(

DH
n ⊗ · · · ⊗DH

1

)
vec(Rc), vec(Z)

〉
≤
(⌈ |Λl

ϱ|
s

⌉) 1
2

∥D̈H
Θc+1vec(Rc)

∥∥
F

∥∥vec(ZΩ\Ξc)
∥∥
F
. (163)

On the other hand,〈(
DH

n ⊗ · · · ⊗DH
1

)
vec(Rc), vec(Z)

〉
≥
∥∥(Dn ⊗ · · · ⊗D1

)(
vec(Z)− vec

(
X̂ c
))∥∥

F

×
(∥∥vec(Rc)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

) 1
2

(164)

≥ W
1
2

Υ,|Λl
ϱ∪Ξc|

∥∥vec(Z)− vec(X̂ c)
∥∥
F

×
(∥∥vec(Rc)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

) 1
2

(165)

≥ W
1
2

Υ,|Λl
ϱ∪Ξc|

∥∥vec(ZΩ\Ξc − X̂ c
Ω\Ξc

)∥∥
F

×
(∥∥vec(Rc)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

) 1
2

≥ W
1
2

Υ,|Λl
ϱ∪Ξc|

∥∥vec(ZΩ\Ξc)
∥∥
F

×
(∥∥vec(Rc)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

) 1
2

, (166)

where (164) is based on [42, C. 13], (165) is from Corollary 3,
and (166) is because vec(X̂ c

Ω\Ξc) = 0. Combining (163) and
(166) yields∥∥D̈H

Θc+1vec(Rc)
∥∥
F

≥
W

1
2

Υ,|Λl
ϱ∪Ξc|(⌈

|Λl
ϱ|
s

⌉) 1
2

(∥∥vec(Rc)
∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

) 1
2

. (167)

Based on (162) and (167) we have∥∥Rc
∥∥2
F
−
∥∥Rc+1

∥∥2
F

≥
WΥ,|Λl

ϱ∪Ξc|⌈
|Λl

ϱ|
s

⌉
WΥ,s

(∥∥vec(Rc)
∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
. (168)

Then, for c∗ ∈ {c, · · · , c+∆c− 1}, we have∥∥Rc∗
∥∥2
F
−
∥∥Rc∗+1

∥∥2
F

≥
WΥ,|Λl

ϱ∪Ξc∗ |⌈
|Λl

ϱ|
s

⌉
WΥ,s

(∥∥(vec(Rc∗)
∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
(169)

≥

(
1− exp

(
−

WΥ,|Λl
ϱ∪Ξc∗ |⌈

|Λl
ϱ|
s

⌉
WΥ,s

))(
∥vec(Rc∗)∥2F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
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≥

(
1− exp

(
−

WΥ,|Λl
ϱ∪Ξc+∆c−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

))(
∥vec(Rc∗)∥2F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
, (170)

where (169) is from (168), and (170) is due to the monotonic
decreasing property of WΥ,t with respect to t. Subtract
both sides of (170) by

∥∥vec(Rc∗)
∥∥2
F
−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗

D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

, we obtain∥∥Rc∗+1
∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

≤ exp

(
−

WΥ,|Λl
ϱ∪Ξc+∆c−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

)
×
(∥∥vec(Rc∗)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
. (171)

Substituting c∗ = c, · · · , c+∆c− 1 into (171), we have∥∥Rc+1
∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

≤ exp

(
−

WΥ,|Λl
ϱ∪Ξc+∆c−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

)
×
(∥∥vec(Rc)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
, (172)∥∥Rc+2

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

≤ exp

(
−

WΥ,|Λl
ϱ∪Ξc+∆c−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

)
×
(∥∥vec(Rc+1)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
, (173)

... ,∥∥Rc+∆c
∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

≤ exp

(
−

WΥ,|Λl
ϱ∪Ξc+∆c−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

)

×
(∥∥vec(Rc+∆c−1)

∥∥2
F

−
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F

)
. (174)

The desired result is obtained by combining the results of
(172) to (174).

M. Proof of Theorem 7

Proof: We first present some definitions used in the proof.
Λl = Ξ\Ξl is the index set of the remaining support tensor
blocks after l iterations. Without loss of generality, assume that
Λl = {1, 2, · · · , |Λl|} corresponding to the nonzero blocks of
vec(X ), and vec(X ) is arranged in descending order of their
Frobenius norms, i.e., ∥vec(X )[1]∥F ≥ ∥vec(X )[2]∥F ≥ · · · ≥
∥vec(X )[|Λl|]∥F . The subset Λl

ϱ of Λl is given by

Λl
ϱ =



∅, ϱ = 0, (175a)
{1, · · · , ⌈exp(ϱ− 1)⌉s},

ϱ = 1, · · · ,max
{
0,
⌈
log

e|Λl|
s

⌉}
, (175b)

Λl, ϱ = max
{
0,
⌈
log

e|Λl|
s

⌉}
+ 1. (175c)

For a given set Λl and a constant η ≥ 2, let E ∈{
1, 2, · · · ,max

{
0,
⌈
log e|Λl|

s

⌉}
+ 1

}
be a positive integer

that 

∥∥vec(XΛl\Λl
0
)
∥∥2
F
< η

∥∥vec(XΛl\Λl
1
)
∥∥2
F
, (176a)∥∥vec(XΛl\Λl

1
)
∥∥2
F
< η

∥∥vec(XΛl\Λl
2
)
∥∥2
F
, (176b)

... ,∥∥vec(XΛl\Λl
E−1

)
∥∥2
F
≥ η

∥∥vec(XΛl\Λl
E
)
∥∥2
F
, (176c)

It is worth noting that E always exists according to [42].
Moreover, based on (176a)-(176c), there exist two conclusions
for E ≥ 2 [42]:∥∥vec(XΛl\Λl

ϱ

)∥∥2
F
≤ ηE−1−ϱ

∥∥vec(XΛl\Λl
E−1

)∥∥2
F
,

ϱ = 0, 1, · · · , E, (177)∣∣Λl
∣∣ > (2η − 1

2η − 2

)
2E−2s, (178)

where (178) can be proved by considering the block structure
in vec(X ) and using the similar proof in [42, Appendix B].
Based on these preparations, we now turn to our proof of
Theorem 7, which is derived based on the mathematical
induction.

a) Consider the case in which |Λl| = 0. This indicates that
all the support tensor blocks are selected such that∥∥Rl

∥∥
F

=
∥∥Y − X̂ l ×1 D1 ×2 · · · ×n Dn

∥∥
F

(179)

= min
supp(X )=Ξl

∥∥∥∥vec(Y)−
∑

(i1,··· ,in)∈Ξl

(
Dn[in]

⊗ · · · ⊗D1[i1]

)
× vec

(
X[i1,··· ,in]

)∥∥∥∥
F

(180)
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≤ ∥Y − X ×1 D1 ×2 · · · ×n Dn∥F (181)
= ∥N∥F (182)
≤ ξ∥N∥F ,

where (179) is due to the definition of the residual, (180) is
from Algorithm 1, (181) is because |Λl| = 0, and (182) is
based on (1).

b) Assume that the argument holds up to an integer θ − 1
(θ ≥ 1), i.e., whenever |Λl| ≤ θ−1, the algorithm requires at
most lE + max{|Λl| − ⌈exp(E − 2)⌉s} additional iterations
to choose all the support tensor blocks.

c) Under this inductive assumption, we prove that if |Λ| =
θ, the algorithm also needs at most lE+max{|Λl|−⌈exp(E−
2)⌉s} additional iterations to choose the remaining θ support
tensor blocks in Ξ.

Consider the case in which E ≥ 2. Observe that

∥RlE∥F
=
∥∥P⊥

D̈
ΞlE

(
D̈Ξ\ΞlE vec

(
XΞ\ΞlE

)
+ vec(N )

)∥∥
F

≥
∥∥P⊥

D̈
ΞlE

D̈Ξ\ΞlE vec
(
XΞ\ΞlE

)∥∥
F

−
∥∥P⊥

D̈
ΞlE

vec(N )
∥∥
F

(183)

≥ σmin

(
P⊥

D̈
ΞlE

D̈Ξ\ΞlE

)∥∥vec(XΞ\ΞlE )
∥∥
F

−
∥∥vec(N )

∥∥
F

(184)

≥ σmin

(
D̈Ξ

)∥∥vec(XΞ\ΞlE

)∥∥
F
−
∥∥vec(N )

∥∥
F

(185)

≥ W
1
2

Υ,k

∥∥vec(XΛlE )
∥∥
F
−
∥∥vec(N )

∥∥
F
, (186)

where (183) is based on the triangle inequality, (184) is
because

∥∥P⊥
D̈

ΞlE

vec(N )
∥∥
F
≤ ∥vec(N )∥F , (185) is from [19,

Lemma 5], and (186) is based on Corollary 3.

Let l0 = l and li = l + α
∑i

ϱ=1

⌈
|Λl

ϱ|
s

⌉
for each of i ∈

{1, · · · , E}. Based on Lemma 3 with ϱ = i, c = li−1 and
∆c = li = li−1, we obtain∥∥Rli

∥∥2
F

−
∥∥∥(Dn

Λl
n\Λl

ni

⊗ · · · ⊗D1
Λl

1\Λl
1i

)
vec
(
XΛl\Λl

i

)
+ vec(N )

∥∥∥2
F

≤ GΥ,i,li−1,li−li−1

(∥∥vec(Rli−1
)∥∥2

F

−
∥∥∥(Dn

Λl
n\Λl

ni

⊗ · · · ⊗D1
Λl

1\Λl
1i

)
vec
(
XΛl\Λl

i

)
+ vec(N )

∥∥∥2
F

)
, (187)

for each of i ∈ {1, · · · , E}. Note that

GΥ,i,li−1,li−li−1
= exp

(
−

(li − li−1)WΥ,|Λl
ϱ∪Ξli−1|⌈

|Λl
ϱ|
s

⌉
WΥ,s

)

= exp

(
−

⌈
α|Λl

ϱ|
s

⌉
WΥ,|Λl

ϱ∪Ξli−1|⌈
|Λl

ϱ|
s

⌉
WΥ,s

)

≤ exp

(
−

αWΥ,|Λl
ϱ∪Ξli−1|

WΥ,s

)
,

for each of i ∈ {1, 2, · · · , E}. Since

|Λl
ϱ ∪Ξli−1| ≤ |Λl ∪Ξli−1| (188)

≤ |Ξ ∪Ξli−1| (189)

≤ |Ξ ∪ΞlE |, (190)

where (188) and (189) are from the definitions of Λl
ϱ and Λl,

respectively, and (190) is because li − 1 ≤ lE . Thus, we have

GΥ,i,li−1,li−li−1 ≤ exp

(
−

αWΥ,|Ξ∪ΞlE |

WΥ,s

)
. (191)

From (175a) to (175c), we know that |Λl
ϱ| ≤ ⌈exp(ϱ−1)⌉s

for ϱ = 1, 2, · · · , E. Hence we obtain

lE = l + α

E∑
ϱ=1

⌈ |Λl
ϱ|
s

⌉
(192)

≤ l + α

E∑
ϱ=1

⌈
exp(ϱ− 1)

⌉
(193)

≤ l + α

E∑
ϱ=1

(exp(ϱ− 1) + 1)

= l + α
(exp(E)− 1

e− 1
+ E

)
≤ l + ⌈exp(E − 2)⌉s (194)

≤ l + |Λl| (195)
≤ l + θ, (196)

where (192) follows from the definition of lE , (193) is

from (175a) to (175c), (194) is because α = inf

{
x ∈{

1, · · · ,max
{
0,
⌈
log e|Λl|

s

⌉}
+ 1

}
, exp(x−2)s(e−1)
exp(x−1)−1+(e−1)x

}
,

and (195) is from (175a) to (175c). Combining (191) and
(195), we have

GΥ,i,li−1,li−li−1
≤ exp

(
−

αWΥ,|Ξ∪Ξl+θ|

WΥ,s

)
≤ exp

(
−

αWΥ,sl+sθ+θ

WΥ,s

)
,

since |Ξ ∪ Ξl+θ| = |Ξl+θ| + |Λl+θ| ≤ s(l + θ) + |Λl| ≤
sl + sθ + θ.

Letting β = exp
(
− αWΥ,sl+sθ+θ

WΥ,s

)
, the following inequality

holds:∥∥RlE
∥∥2
F

≤ βE
∥∥vec(RlE )

∥∥2
F

+ (1− β)

E∑
ϱ=1

βE−ϱ
∥∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
× vec

(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥∥2
F

(197)

≤ βE
∥∥(Dn

Λl
n
⊗ · · · ⊗D1

Λl
1

)
vec(XΛl) + vec(N )

∥∥2
F

+ (1− β)

E∑
ϱ=1

βE−ϱ
∥∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
× vec

(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥∥2
F

(198)
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≤ βE
(
(1 + γ)

∥∥(Dn
Λl

n
⊗ · · · ⊗D1

Λl
1

)
vec(XΛl)

∥∥2
F

+ (1 + γ−1)
∥∥vec(N )

∥∥2
F

)
+ (1− β)

E∑
ϱ=1

βE−ϱ

×
(
(1 + γ)

∥∥(Dn
Λl

n\Λl
nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
× vec

(
XΛl\Λl

ϱ

)∥∥
F
+ (1 + γ−1)βE−ϱ∥vec(N )∥2F

)
(199)

≤ βE
(
(1 + γ)WΥ,|Λl|n∥vec(XΛl)∥2F

+ (1 + γ−1)∥vec(N )∥2F
)

+ (1− β)

E∑
ϱ=1

βE−ϱ
(
(1 + γ)WΥ,|Λl|n∥vec(XΛl\Λl

ϱ
)∥F

+ (1 + γ−1)βE−ϱ∥vec(N )∥2F
)

(200)

=

(
βE(1 + γ)WΥ,|Λl|n∥vec(XΛl)∥2F

+ (1− β)

E∑
ϱ=1

βE−ϱ(1 + γ)WΥ,|Λl|n∥vec(XΛl\Λl
ϱ
)∥F
)

+

(
βE(1 + γ−1)

+ (1− β)

E∑
ϱ=1

βE−ϱ(1 + γ−1)

)
∥vec(N )∥2F (201)

≤
(
ηE−1βE + (1− β)

E∑
ϱ=1

ηE−1−ϱβE−ϱ

)
× (1 + γ)WΥ,|Λl|n∥vec(XΛl\Λl

E−1
)∥F

+

(
βE + (1− β)

E∑
ϱ=1

βE−ϱ

)
(1 + γ−1)∥vec(N )∥2F

(202)

<

(
(ηβ)E +

E−1∑
ϱ=0

(ηβ)ϱ
)

× η−1(1 + γ)WΥ,|Λl|n∥vec(XΛl\Λl
E−1

)∥F

+

(
βE +

E−1∑
ϱ=0

βϱ

)
(1 + γ−1)∥vec(N )∥2F (203)

<

( ∞∑
ϱ=0

(ηβ)ϱ
)
η−1(1 + γ)WΥ,|Λl|n∥vec(XΛl\Λl

E−1
)∥F

+

( ∞∑
ϱ=0

βϱ

)
(1 + γ−1)∥vec(N )∥2F (204)

=
1

η(1− ηβ)
(1 + γ)WΥ,θn∥vec(XΛl\Λl

E−1
)∥2F

+
1

1− β
(1 + γ−1)∥vec(N )∥2F . (205)

Here (197) is derived by first substituting β into (187) to obtain∥∥RlE
∥∥2
F
≤ β

∥∥vec(Rl)
∥∥2
F

+ (1− β)
∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥2
F
, (206)

for each i ∈ {1, · · · , E}, and (197) is obtained after some
additional calculations on (206), while (198) is from [42,
Proposition 1], (199) is due to the fact that for γ > 0,
∥x + y∥2F ≤ (1 + γ)∥x∥2F + (1 + γ−1)∥y∥2F and x, y are
vectors, (200) is based on Corollary 3, (201) is from direct
simplification, (202) is because (177), (203) is from β < 1,
(204) is similar to the derivation of [42, (49)], and (205) holds
because ηβ < 1.

Combining (186) and (205) yields

∥vec(XΛlE )∥F

≤
(

(1 + γ)WΥ,θn

η(1− ηβ)WΥ,k

) 1
2 ∥∥vec(XΛl\Λl

E−1

)∥∥
F

+
1

W
1
2

Υ,k

(
1 +

( 1

1− β

(
1 + γ−1

)) 1
2

)
∥vec(N )∥F .

By choosing an appropriate γ, we have
(

(1+γ)WΥ,θn

η(1−ηβ)WΥ,k

) 1
2

< 1.

Then, consider the following two cases. First, if

1

W
1
2

Υ,k

(
1 +

( 1

1−β

(
1 + γ−1

)) 1
2

)
∥vec(N )∥F

<

(
1−

(
(1+γ)WΥ,θn

η(1−ηβ)WΥ,k

) 1
2

)
∥vec(XΛl\Λl

E−1
)∥F ,

then we directly have∥∥XΛlE

∥∥2
F
≤
∥∥XΛl\Λl

E−1

∥∥2
F
. (207)

Recall that ΛlE = Ξ\ΞlE and lE = l+α
∑E

ϱ=1

⌈ |Λl
ϱ|
s

⌉
. Then,

(207) indicates that |ΛlE | ≤ |Λl\Λl
E−1| = θ − ⌈exp(E −

2)⌉s, due to the similar analysis in [43, Sec. V-B]. Thus, there
remain at most θ−⌈exp(E− 2)⌉s support tensor blocks after
the lE th iteration. Then, based on the induction hypothesis,
we have ∥∥RlE+θ−⌈exp(E−2)⌉s∥∥

F
≤ ξ∥N∥F . (208)

Note that

lE + θ − ⌈exp(E − 2)⌉s

= l + α

E∑
ϱ=1

⌈ |Λl
ϱ|
s

⌉
+ θ − ⌈exp(E − 2)⌉s

≤ l + α

E∑
ϱ=1

⌈
exp(ϱ− 1)

⌉
+ θ − ⌈exp(E − 2)⌉s

≤ l + α
(1− exp(E − 1)

1− e
+ E

)
+ θ − ⌈exp(E − 2)⌉s

≤ l + θ, (209)

where (209) follows from that α = inf

{
x ∈{

1, · · · ,max
{
0,
⌈
log e|Λl|

s

⌉}
+ 1

}
, exp(x−2)s(e−1)
exp(x−1)−1+(e−1)x

}
,
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and hence α
( 1−exp(E−1)

1−e + E
)
− ⌈exp(E − 2)⌉s ≤ 0. Thus,

we have ∥∥Rl+θ
∥∥
F
≤
∥∥RlE+θ−⌈exp(E−2)⌉s∥∥

F
(210)

≤ ξ∥N∥F . (211)

where (210) is because the residual is non-increasing, and
(211) is from (208).

Second, if

1

W
1
2

Υ,k

(
1 +

( 1

1−β

(
1 + γ−1

)) 1
2

)
∥vec(N )∥F

≥

(
1−

(
(1+γ)WΥ,θn

η(1−ηβ)WΥ,k

) 1
2

)
∥vec(XΛl\Λl

E−1
)∥F , (212)

then we have∥∥Rl+θ
∥∥
F

≤
∥∥RlE

∥∥
F

(213)

≤
(

1

η(1− ηβ)
(1 + γ)WΥ,θn

) 1
2 ∥∥vec(XΛl\Λl

E−1

)∥∥
F

+

(
1

1− β
(1 + γ−1)

) 1
2

∥vec(N )∥F (214)

≤

(( 1
η(1−ηβ) (1 + γ)WΥ,θn

) 1
2
(
1 +

(
1

1−β

(
1 + γ−1

)) 1
2
)

W
1
2

Υ,k

(
1−

(
(1+γ)WΥ,θn

η(1−ηβ)WΥ,k

) 1
2

)
+

(
1

1− β
(1 + γ−1)

) 1
2

)
∥vec(N )∥F (215)

≤ ξ∥N∥F , (216)

where (213) is from (196), (214) is due to (205), and (215) is
because of (212).

Now consider the case in which E = 1. Similar to (186),
we have∥∥Rl+1

∥∥
F

=
∥∥∥P⊥

D̈
Ξl+1

(
D̈Ξ\Ξl+1vec

(
XΞ\Ξl+1

)
+ vec(N )

)∥∥∥
F

≥
∥∥∥P⊥

D̈
Ξl+1

D̈Ξ\Ξl+1vec
(
XΞ\Ξl+1

)∥∥∥
F
−
∥∥∥P⊥

D̈
Ξl+1

vec(N ))
∥∥∥
F

≥ σmin

(
P⊥

D̈
Ξl+1

D̈Ξ\Ξl+1

)∥∥vec(XΞ\Ξl+1

)∥∥
F
− ∥vec(N ))∥F

≥ σmin

(
D̈Ξ

)∥∥vec(XΞ\Ξl+1

)∥∥
F
− ∥vec(N ))∥F

≥ W
1
2

Υ,k

∥∥vec(XΛl+1

)∥∥
F
− ∥vec(N ))∥F . (217)

Then, from (168), we obtain∥∥Rl
∥∥2
F
−
∥∥Rl+1

∥∥2
F

≥
WΥ,|Λl

ϱ∪Ξl|⌈
|Λl

ϱ|
s

⌉
WΥ,s

(∥∥vec(Rl)
∥∥2
F

−
∥∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥∥2
F

)

=
WΥ,|Λl

ϱ∪Ξl|

WΥ,s

(∥∥vec(Rl)
∥∥2
F

−
∥∥∥(Dn

Λl
n\Λl

nϱ

⊗ · · · ⊗D1
Λl

1\Λl
1ϱ

)
vec
(
XΛl\Λl

ϱ

)
+ vec(N )

∥∥∥2
F

)
, (218)

where (218) is because
⌈
|Λl

ϱ|
s

⌉
≤ 1. Thus, for the same γ as

given in (199), we have∥∥Rl+1
∥∥2
F

≤
(
1−

WΥ,|Λl
1∪Ξl|

WΥ,s

)∥∥Rl
∥∥2
F

+
WΥ,|Λl

ϱ∪Ξl|

WΥ,s

∥∥∥(Dn
Λl

n\Λl
nϱ

⊗ · · · ⊗D1
Λl

1\Λl
11

)
× vec

(
XΛl\Λl

1

)
+ vec(N )

∥∥∥2
F

(219)

≤
(
1−

WΥ,|Λl
1∪Ξl|

WΥ,s

)∥∥∥(Dn
Λl

n
⊗ · · · ⊗D1

Λl
1

)
× vec

(
XΛl

)
+ vec(N )

∥∥∥2
F

+
WΥ,|Λl

1∪Ξl|

WΥ,s
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+ (1 + γ−1)∥vec(N )∥2F , (224)

where (219) is from direct simplification, (220) is derived
based on [42, Proposition 1], (221) is similar to the proof of
(199), (222) is from Corollary 3, and (223) is due to (176c).

Combining (217) and (224) yields∥∥vec(XΛl+1)
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For an appropriate γ, we have((
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Then, consider the following two cases. On one hand, if
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holds, then (225) reveals that

∥XΛl+1∥2F ≤ ∥XΛl∥2F .

This indicates that |Λl+1| < θ. Similarly, there remain at most
θ− 1 support tensor blocks after the (l+1)th iteration. Since

l + 1 + θ − 1 = l + θ,

we have ∥∥Rl+1+θ−1
∥∥
F
=
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On the other hand, if
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(226)

holds, then we have∥∥Rl+θ
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≤ ξ∥N∥F ,

where (227) is because the residual is non-increasing, (228) is
based on (224), (229) is derived by (226), and (230) is because
|Λl

1 ∪ Ξl| ≤ |Ξ ∪ Ξl+1| = |Ξl+1| + |Λl+1|. This completes
the proof.

N. Proof of Theorem 8

Proof: Observe that

∥Rk∥F
= ∥Y − X̂ k ×1 D1 ×2 · · · ×n Dn∥F (231)
= ∥X ×1 D1 ×2 · · · ×n Dn +N

− X̂ k ×1 D1 ×2 · · · ×n Dn∥F (232)

=
∥∥(X − X̂ k
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F
− ∥N∥F , (234)
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where (231) is from the definition of residual, (232) is based
on (1), (233) is derived by the triangle inequality, and (234)
is from Corollary 3.

Thus, based on (234) and Corollary 5, we have∥∥X − X̂ k
∥∥
F
≤ W

− 1
2

Υ,
∏n

t=1 kt+ks

(∥∥Rk
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F
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)
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2
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t=1 kt+ks(ξ
∗ + 1)∥N∥F . (235)

On the other hand, similar to the proof in Appendix I, using
Q̂k as the best k block-sparse tensor approximation of X̂ k,
we have∥∥Q̂k −X

∥∥
F
=
∥∥Q̂k − X̂ k + X̂ k −X
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F
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where (236) is because Q̂k is the best approximation, (237) is
from the triangle inequality, and (238) is based on (235).

From (119), we have
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Then, using (235) and (239), we have
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i.e.,
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This completes the proof.
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