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Efficient design of complex-valued neural networks with
application to the classification of transient acoustic signals

Vlad S. Paula) and Philip A. Nelson
Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, United Kingdom

ABSTRACT:
A paper by the current authors Paul and Nelson [JASA Express Lett. 3(9), 094802 (2023)] showed how the singular

value decomposition (SVD) of the matrix of real weights in a neural network could be used to prune the network

during training. The paper presented here shows that a similar approach can be used to reduce the training time and

increase the implementation efficiency of complex-valued neural networks. Such networks have potential advantages

compared to their real-valued counterparts, especially when the complex representation of the data is important,

which is the often case in acoustic signal processing. In comparing the performance of networks having both real

and complex elements, it is demonstrated that there are some advantages to the use of complex networks in the cases

considered. The paper includes a derivation of the backpropagation algorithm, in matrix form, for training a

complex-valued multilayer perceptron with an arbitrary number of layers. The matrix-based analysis enables the

application of the SVD to the complex weight matrices in the network. The SVD-based pruning technique is applied

to the problem of the classification of transient acoustic signals. It is shown how training times can be reduced, and

implementation efficiency increased, while ensuring that such signals can be classified with remarkable accuracy.
VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0028230
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I. INTRODUCTION

The purpose of this paper is to show how complex-

valued neural networks (CVNNs) can be efficiently

designed by using a novel algorithm based on the singular

value decomposition (SVD) of the weight matrices in the

network. There has been growing interest in CVNNs with

recent reviews (Bassey et al., 2021; Lee et al., 2022) show-

ing the variety of tasks to which CVNNs have already been

applied. Although the theory underlying the backpropaga-

tion algorithm using complex-valued data was first dis-

cussed in the early 1990s (Benvenuto and Piazza, 1992;

Georgiou and Koutsougeras, 1992; Leung and Haykin,

1991), CVNNs have recently received increasing interest,

with some of the most popular applications being MRI fin-

gerprinting (Virtue et al., 2017), wireless communications

(Marseet and Sahin, 2017), and image processing (Cao

et al., 2019; Popa, 2017). Some work has been undertaken

in the audio signal processing field, typically in the context

of speech processing (Hayakawa et al., 2018; Lee et al.,
2017) and source localization (Paul and Nelson, 2022;

Tsuzuki et al., 2013).

One of the main advantages of CVNNs, as noted by

Hirose (2009), is that they can treat the real and imaginary

parts of a number as a single component, thus keeping the

relation between the magnitude and phase at a given fre-

quency. This property is especially useful for applications

involving the processing of acoustic signals, where the

frequency-domain is often used as an input feature and

where the real and imaginary parts are statistically depen-

dent upon one another. This topic has been discussed in

detail in Hirose (2011), where the author presented an analy-

sis showing that a real-valued network, where the real and

imaginary parts are concatenated into a single vector, is not

equivalent to using the complex-valued number directly.

While the addition of the real and imaginary parts separately

is the same as the addition of the complex number, the mul-

tiplication is different, since the multiplication of complex

numbers introduces an angle rotation and an amplitude

attenuation/amplification. More about the convergence and

merits of CVNNs can be found in Hirose (2009), Nitta

(2003), and Zhang et al. (2014).

In addition to the properties of the CVNNs described

above, complex-valued activation functions and learning

rates can be used to enhance training, as discussed in Bassey

et al. (2021), Scardapane et al. (2020), and Zhang and

Mandic (2015). Despite their potential benefits, CVNNs

have not been extensively used in acoustic signal process-

ing, as shown in Bassey et al. (2021). One possible reason

for the lack of popularity could be the increased computa-

tional cost needed during training, since, as discussed below,

the gradients of complex-valued functions require the com-

putation of more terms than for real-valued functions.

The work in this paper will present a technique to

remove some of the computational cost during training, ide-

ally without losing any performance. This is known asa)Email: vlad_paul_1995@yahoo.com
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network pruning and has been intensively researched

(Augasta and Kathirvalavakumar, 2013; Blalock et al.,
2020; Choudhary et al., 2020), given that computational

power has become a concern when employing high dimen-

sional networks with a substantial number of neurons. The

use of the SVD as a low-rank approximation technique for

removing training parameters is only one of the available

pruning techniques and Bermeitinger et al. (2019) discussed

in detail its use on machine learning models. The use of the

SVD in network models can be linked to an early investiga-

tion by Psichogios and Ungar (1994), where the SVD was

employed to reduce overfitting and enhance generalization

error. After the training was completed, Psichogios and

Ungar (1994) discarded redundant singular values along

with their corresponding hidden layer nodes.

With a focus on acoustics, Cai et al. (2014) and Xue

et al. (2013) used SVD-based approaches to reduce the

training parameters of feed-forward networks. In Xue et al.
(2013), the authors replaced the matrix of weights W by two

smaller matrices computed from the SVD matrices of W

once during training. They evaluated the pruning technique

on a LVCSR speech recognition task and showed a reduc-

tion of model size by 73% with less than 1% relative accu-

racy loss. In the work by Cai et al. (2014), the authors

argued against the direct use of the SVD on the randomly

initialized weight matrices, showing that the pruning perfor-

mance can be improved if the SVD is applied only after the

model has trained for a couple of iterations. In both of these

examples, only real-valued networks (RVNNs) were consid-

ered. In a recent study, Singh and Plumbley (2022) investi-

gated the use of a different pruning technique on a

Convolutional Neural Network trained for acoustic scene

classification. The authors remove filters with similar con-

tent, assuming that such filters yield similar responses and

are thus redundant for the overall training process.

The technique presented here follows that presented

previously (Paul and Nelson, 2023) in order to efficiently

design real-valued multilayer perceptrons (MLPs). In this

work, it is shown that such an approach can be successfully

applied to complex-valued networks, even if here all opera-

tions are in the complex domain. Compared to other SVD-

based pruning techniques (e.g., Psichogios and Ungar, 1994;

Yang et al., 2020), this approach discards weights as the

learning progresses and does not need a full training of the

model before reducing its dimensions. Other approaches

(e.g., Cai et al., 2014; Xue et al., 2013) apply the SVD once

at the beginning or during the training and do not change the

dimension of the hidden layer when singular values are dis-

carded. In the technique presented here, it is shown that

removing singular values at several consecutive points dur-

ing the training is beneficial. Furthermore, the resizing of

the hidden layer ends up being an adaptive process that

depends on the task and network structure, as will be dis-

cussed later.

The example used here consists of an MLP with two

layers (a hidden layer and an output layer), and through the

iterative discarding of singular values during training, it is

shown that a network can be designed such that it can be

implemented with high computational efficiency. The prob-

lem of classifying the complex spectra associated with some

model transient signals is used to illustrate the method. The

transient signals used are the impulse responses of some

bandpass filters of the type used in the authors’ previous

work (Paul and Nelson, 2021b) on the classification of

acoustic power spectra. By analogy with the previous work,

the use of such models also enables a good estimate of the

accuracy to which very similar transient signals can be clas-

sified. It is demonstrated that, using an appropriately trained

network, two transient signals that can be barely distin-

guished using conventional spectral analysis can be classi-

fied accurately from single time history samples. The work

presented also establishes the limits to classification accu-

racy determined by the level of noise added to the signals.

The theoretical background will first be presented and the

equations governing the behavior of the network will be

derived from first principles.

II. THE COMPLEX-VALUED MLP (CMLP)

A. Background

The derivation of the complex-valued backpropagation

algorithm requires an understanding of the theoretical basis

for the use of complex numbers and their derivatives. The

analysis presented here is based on the work of Kreutz-

Delgado (2009) and Amin et al. (2011), both of whom draw

on the fundamental work of Wirtinger (1927). A detailed

discussion of complex numbers and their use for signal

processing applications can be found in Adali et al. (2011).

This paper also helpfully summarizes Wirtinger calculus, its

derivative identities, and deals with other issues, such as the

treatment of proper and circular complex numbers and how

these can enhance performance of algorithms, such as the

independent component analysis for source separation.

The following identities based on Kreutz-Delgado

(2009), building on earlier work by Brandwood (1983), will

be used for the derivation of the backpropagation algorithm.

For a function h(g), where g is a complex vector, the partial

derivatives with respect to the complex vector z and its com-

plex conjugate z* are given by the chain rules

@hðgÞ
@z
¼ @h

@g

@g

@z
þ @h

@g�
@g�

@z
; (1)

@hðgÞ
@z�

¼ @h

@g

@g

@z�
þ @h

@g�
@g�

@z�
: (2)

Furthermore, it also follows that the derivative of the com-

plex conjugate of h(g) is given by the following:

@h�ðgÞ
@z�

¼ @h�

@g

@g

@z�
þ @h�

@g�
@g�

@z�
: (3)

Equations (2) and (3) can be combined into the form of a

composite matrix, given by the following:
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@hðgÞ
@z�

@h�ðgÞ
@z�

2
664

3
775 ¼

@h

@g

@h

@g�

@h�

@g

@h�

@g�

2
6664

3
7775

@g

@z�

@g�

@z�

2
664

3
775: (4)

B. Forward propagation in the cMLP

Using matrix notation (capital and bold for matrices;

and lowercase and bold for vectors), the forward propaga-

tion of a cMLP with two layers can be expressed as follows:

að2Þ ¼Wð2Þxþ bð2Þ; (5)

zð2Þ ¼ hðað2ÞÞ; (6)

að1Þ ¼Wð1Þzð2Þ þ bð1Þ; (7)

zð1Þ ¼ hðað1ÞÞ ¼ ŷ; (8)

where all variables are defined in the complex domain. Such

a network is illustrated in Fig. 1. Thus, the neurons in the lth
layer, (where l¼ 1, 2 in this case) produce a vector of com-

plex outputs z(l) that are related to the vector of complex

inputs a
(l) by a complex activation function h(a(l)). Note that

the layers are counted from the output backward, such that

l¼ 1 defines the output layer. The vector b(l) is the complex

bias associated with the neurons in the lth layer. Since the

task to be solved here involves a classification problem, the

cross-entropy function extended for complex numbers can

be defined (Cao et al., 2019) as follows:

L¼�1

2

1

K

XK

k¼1

ðRðykÞ logðRðŷkÞÞþIðykÞ logðIðŷkÞÞÞ; (9)

where RðÞ and IðÞ denote the real and imaginary parts of

the kth estimated output ŷk and target output yk. Note that

ŷk ¼ z
ð1Þ
k . This expression reduces to the cross-entropy func-

tion discussed in Paul and Nelson (2023) for the real-valued

MLP case. For a classification task using complex-valued

outputs, the target outputs y were defined as one-hot

encoded vectors, where for the correct class, the target out-

put was defined as 1þ 1j, which is a straightforward trans-

formation from the real case. This way, a phase term is

enforced when estimating the output, which could improve

the convergence due to the additional constraint. It should

be noted that, in dealing with classification tasks, the activa-

tion function in the output layer is usually a softmax func-

tion. One of the existing approaches that extend the softmax

function to complex-valued data can be defined (Cao et al.,
2019) as follows:

softmaxðzÞ ¼ softmaxðRðzÞÞ þ j � softmaxðIðzÞÞ: (10)

Since the softmax function is applied to the real and imagi-

nary parts separately, its output can be directly compared to

a target output, for example, of 1þ 1j.

C. Backpropagation in the cMLP

Although the work presented here will focus on the use

of a two-layer MLP (where l¼ 1, 2), it is simple enough to

present the derivation of the backpropagation algorithm for

the general case of a number of layers (where l¼ 1, 2,

3,…,lmax). Thus, assume that the MLP consists of a number

of layers of neurons where the variables are designated start-

ing with the output layer and the layers are designated from

l¼ 1 at the output to l¼ lmax at the input.

The complex gradients describing the dependence of

the loss function on the matrix of weights W
(l) can be evalu-

ated by using the vec operator that sequentially orders the

columns of a matrix into a single vector. This gives compos-

ite vectors of weights w
(l) ¼ vec(W(l)). First, the gradient of

the network outputs with respect to the weight vector w
(l) is

computed, and then one can work sequentially through the

other layers. When dealing with complex-valued networks,

it follows from the Wirtinger calculus (Amin et al., 2011)

that the gradient of the loss function with respect to the

weights w(l) can be written as the product

@L

@wðlÞ�
¼ @L

@zð1Þ
@L

@zð1Þ

� ��" # @zð1Þ

@wðlÞ�

@zð1Þ�

@wðlÞ�

2
6664

3
7775: (11)

It is shown in Appendix A that the composite row vector

containing the terms @L=@zð1Þ and ð@L=@zð1ÞÞ� can be writ-

ten as ~d ¼ ½dH dT�, where elements of the vector d will

depend on whether the network is aimed at either a regres-

sion or a classification task. The composite matrix on the

right side of the above equation can be written by using the

identity in Eq. (4) above such that

@zð1Þ

@wðlÞ�

@zð1Þ�

@wðlÞ�

2
6664

3
7775¼

@zð1Þ

@að1Þ
@zð1Þ

@að1Þ�

@zð1Þ

@að1Þ�

� ��
@zð1Þ

@að1Þ

� ��
2
6664

3
7775

@að1Þ

@wðlÞ�

@að1Þ�

@wðlÞ�

2
6664

3
7775: (12)

Furthermore, the matrix on the right side of this equation

can also be expressed by using the identity in Eq. (4), which

then leads toFIG. 1. MLP model with two layers.
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@að1Þ

@wðlÞ�

@að1Þ�

@wðlÞ�

2
6664

3
7775¼

@að1Þ

@zð2Þ
@að1Þ

@zð2Þ�

@að1Þ

@zð2Þ�

� ��
@að1Þ

@zð2Þ

� ��
2
6664

3
7775

@zð2Þ

@wðlÞ�

@zð2Þ�

@wðlÞ�

2
6664

3
7775: (13)

The matrices of partial derivatives can be written compactly

as @zð1Þ=@að1Þ ¼ Hð1Þ; @zð1Þ=@að1Þ� ¼ Ĥ
ð1Þ

, where each ele-

ment in the matrices can be computed for a classification task

as shown in Appendix B. It can also be shown (see Appendix

C) that @að1Þ=@zð2Þ ¼Wð1Þ and that @að1Þ=@zð2Þ� ¼ 0, so that

the combination of the above two relationships results in

@zð1Þ

@wðlÞ�

@zð1Þ�

@wðlÞ�

2
6664

3
7775¼ Hð1Þ Ĥ

ð1Þ

Ĥ
ð1Þ�

Hð1Þ�

" #
Wð1Þ 0

0 Wð1Þ�

" # @zð2Þ

@wðlÞ�

@zð2Þ�

@wðlÞ�

2
6664

3
7775:
(14)

The two composite matrices from above can be rewritten in

a more compact form using the composite matrix notations

~H
ð1Þ

and ~W
ð1Þ

, respectively.

Now note that one can evaluate the partial derivatives

of z
(2) with respect to w

(l) by using identical reasoning. It

then follows that

@zð2Þ

@wðlÞ�

@zð2Þ�

@wðlÞ�

2
6664

3
7775¼ Hð2Þ Ĥ

ð2Þ

Ĥ
ð2Þ�

Hð2Þ�

" #
Wð2Þ 0

0 Wð2Þ�

" # @zð3Þ

@wðlÞ�

@zð3Þ�

@wðlÞ�

2
6664

3
7775;
(15)

where again the composite matrices can be substituted by
~H
ð2Þ

and ~W
ð2Þ

. This process can be repeated until one

reaches the final layer lmax, which comprises the input to the

network. The gradient at any single layer can be written

using the composite matrix notation as

@zð1Þ

@wðlÞ�

@zð1Þ�

@wðlÞ�

2
6664

3
7775¼ ~H

ð1Þ ~W
ð1Þ � � � ~H

ðl�1Þ ~W
ðl�1Þ

@zðlÞ

@wðlÞ�

@zðlÞ�

@wðlÞ�

2
6664

3
7775: (16)

Finally, it can be shown (see Appendix D) that @aðlÞ=@wðlÞ�

¼ 0 and @aðlÞ�=@wðlÞ� ¼ zðlþ1ÞH � Ið1Þ, where � denotes the

Kronecker product and I
(l) is the identity matrix of dimen-

sions equal to the length of the vector z(lþ1). It therefore fol-

lows that

@zðlÞ

@wðlÞ�

@zðlÞ�

@wðlÞ�

2
6664

3
7775 ¼ HðlÞ Ĥ

ðlÞ

Ĥ
ðlÞ�

HðlÞ�

" #
0

zðlþ1ÞH � IðlÞ

" #
: (17)

The net result for the gradient at the lth layer is then given

by the product of composite matrices

@zð1Þ

@wðlÞ�

@zð1Þ�

@wðlÞ�

2
6664

3
7775¼ ~H

ð1Þ ~W
ð1Þ � � � ~H

ðl�1Þ ~W
ðl�1Þ ~H

ðlÞ 0

zðlþ1ÞH� IðlÞ

" #
:

(18)

Writing the product of the composite matrices on the right

of this equation as ~B
ðlÞ

then shows that the gradient of the

loss function with respect to the lth weight vector w(l) can be

written as

@L

@wðlÞ�
¼ ~d ~B

ðlÞ 0

zðlþ1ÞH � IðlÞ

" #
: (19)

Using the same reasoning as that described in Paul and

Nelson (2021a), one can rewrite the gradient with respect to

the matrix of weights W(l) as

@L

@WðlÞ ¼ 0 IðlÞ½ � ~d ~B
ðlÞ� �T

zðlþ1ÞH: (20)

The gradient with respect to the bias vector b
(l) is identical

to Eq. (20), but with the term zðlþ1ÞH omitted. Note that if

l¼ lmax, then z
(lþ1)H¼ x

H. In the work that follows, the

above equations were used as the basis of code written in

MATLAB, the matrix formulation given enabling a clear

understanding of the performance of the algorithms.

D. SVD-based pruning with reduction in hidden layer
dimensions

The aim of the pruning technique is to reduce the

dimensions of the hidden layer based on the number of sin-

gular values discarded iteratively during training. It has

been found by Paul and Nelson (2021b) that a good method

for choosing the iterations at which to discard singular val-

ues (called here discarding points) is to space them logarith-

mically, using more discarding points at the start of training

and fewer as training progresses. The equation used for

determining the discarding points is given by the following:

dðnÞ ¼ dðn� 1Þ � 10ðb�aÞ=ðN�1Þ; (21)

where N is the total number of discarding points, n is the

iteration index, and a and b define, respectively, the lower

and higher bounds of the sequence of discarding points. If

the lower bound is defined to be 3 for example, the value of

a in the equation above would be a¼ log10(3). The value of

the index s at which discarding takes place during training is

given by the nearest integer value of d(n).

The following notation will be used to derive the update

equations for the new set of matrices. At the nth discarding

point, before removing any singular values, the SVD of

W
ð2Þ
n�1 is given by W

ð2Þ
n�1 ¼ Un�1Rn�1VH

n�1. After small sin-

gular values have been removed, the SVD matrices are

replaced by UnRnVH
n , respectively. Following the same

notation, assuming the nth discarding point, the hidden layer
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a
ð2Þ
n�1 can be multiplied by UH

n every time singular values are

discarded and the new hidden layer with fewer neurons is

denoted as að2Þn . Following this, the forward propagation for

the hidden layer becomes UH
n a
ð2Þ
n�1 ¼ ðUH

n UnRnVH
n Þx

þUH
n b
ð2Þ
n�1. Since UH

n Un ¼ I, the identity matrix, and by mul-

tiplying the remaining matrices RnVH
n ¼Wð2Þ

n , the forward

propagation for cMLP-SVD is given by the following:

að2Þn ¼Wð2Þ
n xþ bð2Þn ; (22)

zð2Þn ¼ hðað2Þn Þ; (23)

að1Þ ¼Wð1Þ
n zð2Þn þ bð1Þ; (24)

zð1Þ ¼ hðað1ÞÞ ¼ ŷ; (25)

where að2Þn ¼ UH
n a
ð2Þ
n�1 and bð2Þn ¼ UH

n b
ð2Þ
n�1. The size of both

að2Þn ; bð2Þn depends on the dimensions of UH
n , which changes

depending on how many singular values are discarded in Rn.

Note that since the number of neurons in zð2Þn ¼ hðað2Þn Þ can

change after every discarded singular value, the dimensions

of Wð1Þ
n also have to be adapted. This can be done by remov-

ing as many last columns of Wð1Þ
n as singular values were

removed at that stage. It has been found that this process

yields good results; however, it is not impossible that other

approaches might prove to be more effective. Finally, since

the forward propagation of cMLP-SVD is identical to that

from the cMLP, the gradient equations are also identical to

Eq. (20), with the observation that the dimensions of the gra-

dients will depend on the number of singular values

discarded.

III. RESULTS

A. Description of classification task

Previous work by the current authors (Paul and Nelson,

2021b, 2023) explored the ability of real-valued MLPs to

discern acoustic spectra that may be challenging to differen-

tiate using traditional power spectral analysis. Here, how-

ever, the objective is to evaluate the extent to which

complex MLPs, once taught, can identify small differences

between transient acoustic signals. The model used here is

based on that used in the previous paper (Paul and Nelson,

2021b). In this case, the transient signals considered are

based on the impulse responses of the bandpass filters used

in the previous work. A unit impulse signal is passed

through bandpass filters having different center frequencies

and bandwidths in order to generate impulse responses of

very similar bandpass filters. Once the impulse responses

have been generated, different white noise signals having a

Gaussian distribution were added to the signals based on a

signal-to-noise ratio (SNR) in order to investigate the limits

of the cMLP to discriminate between small changes in the

complex spectra associated with the model transient acous-

tic signals.

The impulse responses were generated using a filter

bandwidth of 200 Hz and a difference in center frequencies

of 20 Hz. The network models were trained for two different

classification tasks. For the first task, five different classes of

impulse responses were generated using center frequencies

between 900 and 980 Hz. For the second task, the number of

classes was increased from five to ten, the center frequencies

being between 800 and 980 Hz. The reason for generating

two datasets is that the structure of the network is changing,

increasing the number of output neurons from five to ten.

The change of structure is expected to influence the number

of discarded singular values during training. The length of

the impulse responses was defined to be 512 samples. The

signal was long enough to capture the ringing of the

response for these particular bandpass filters, which

decreases by more than 60 dB. The time histories of around

20-ms-long at a sampling frequency of ƒs¼ 24 kHz were

then transformed into the frequency domain. For a fast

Fourier transform (FFT) length (N) of 512 samples, the

spectral resolution can be calculated as the fraction fs/N,

which for the cases presented here was around 47 Hz. In

other words, signals generated from bandpass filters with a

difference in center frequency smaller than 47 Hz will have

closely related spectra and their differences will be difficult

to detect by inspection only, especially if white noise is

added. Figure 2 shows a comparison between the moduli of

the complex spectra of two impulse responses with 10 dB

SNR added white noise, where in the upper plot the band-

pass filters have a difference in center frequencies of

FIG. 2. Moduli of the complex spectra of single impulse responses of band-

pass filters with a spacing between center frequencies Dƒ of: (a) 20 Hz and

(b) 50 Hz using a bandwidth of B¼ 200 Hz. White noise was added to each

impulse response using a 10 dB SNR.
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Dƒ¼ 20 Hz, while the lower plot, Dƒ¼ 50 Hz. The training

dataset consisted of 500 signals in each class, where each

class contained the impulse response of one bandpass filter

with white noise snippets having the same duration as the

impulse response to which it was added. The input into the

network was the complex FFT of the noisy impulse

response, as shown in Fig. 2. The size of the input layer was

257 samples long, corresponding to the positive frequencies

in the FFT spectrum.

B. Network parameters

The 500 samples in each class were split into 60% train-

ing, 20% validation, and 20% test datasets and a batch size

of 32 was used during the training. Both network architec-

tures were trained using the Adam optimizer (Kingma and

Ba, 2014), where the only difference from the real-valued

approach is that here the gradients are complex. A real-

valued learning rate of 0.002 was chosen, since with a

complex-valued learning rate, the training was observed to

be less smooth. The use of a complex-valued learning rate is

worthy of further investigation, as discussed by Zhang and

Mandic (2015). The network architectures had one hidden

layer with 50 neurons and an output layer with five or ten

neurons corresponding to the different classes. The activa-

tion function used in the hidden layer was the complex car-

dioid function (Virtue et al., 2017), which reduces to

rectified linear unit if the numbers are real. The activation

function in the output layer was the softmax function

applied individually to the real and imaginary values of the

estimated output. Since the estimated output is complex val-

ued, the classification accuracy is computed by comparing

the moduli of the K elements in the estimated vector ŷ with

those in the target vector y. If, for example, the maximum of

the moduli of ŷ is at index k¼ 1 and the correct label 1þ 1j
in the target output vector is also at k¼ 1, the classification

is considered to be correct.

The training was stopped after 150 iterations. The

results shown below were computed by averaging the per-

formance of ten trials. The results were averaged, since net-

work weights are initialized with random numbers and

therefore the performance can differ slightly between trials.

For the cMLP-SVD approach, a discarding threshold of 0.2

was chosen empirically, which means that all singular val-

ues with magnitude smaller than 20% of the largest singular

value were removed at each discarding point. Based on Eq.

(21), three discarding points were defined starting with itera-

tion 3 and stopping at one-fourth of the total number of

iterations.

The performance of the cMLP and cMLP-SVD models

is compared to that of their real-valued counterparts pro-

posed by Paul and Nelson (2023), denoted here as rMLP

and rMLP-SVD. For the RVNNs, the real and imaginary

parts of the FFT spectrum are concatenated into a one-

dimensional vector. The hidden layer of the RVNNs is

therefore also doubled to account for the concatenation and

the output layers are kept the same for both network types.

The discarding threshold for the rMLP-SVD was set to 0.2,

keeping the threshold the same for both RVNNs and

CVNNs.

The pruning approaches are further compared with a

benchmark method adapted from Han et al. (2015) (denoted

here as cMLP pruned), which is one of the most popular

magnitude-based pruning techniques. The method prunes

weights in an unstructured manner by replacing them with

zeros if their magnitude is smaller than a threshold. For the

work presented here, the modulus of the weight was chosen

as a threshold. Using this approach, the structure of the net-

work is not changed; however, the weight matrices become

sparse and need less storage and fewer computations. By

setting weights to zero, the model ignores certain connec-

tions during training and can focus on the more important

connections. To enable a fair comparison with the SVD

approaches, the same percentage of weights are set to zero

as number of singular values are removed by the end of

training. The pruning is performed once at the same iteration

as the third (final) discarding point in the SVD method. This

way, the pruned models have a significant number of itera-

tions to fine-tune the weights and to converge. All the net-

work models have been trained on a MacBook Pro M3 Max

chip with 14-core CPU and 30-core GPU.

C. Comparison of performance between the cMLP and
cMLP-SVD

Table I shows the test accuracy for the first dataset,

together with the averaged training time for the full training

and the number of floating point operations (FLOPs) needed

to compute a forward propagation after the network models

finished training. The number of FLOPs can be computed

for multiplications and additions of matrices and vectors by

evaluating their dimensions (Golub and Van Loan, 2013). A

complex-valued operation requires more FLOPs than a real

operation. For example, a multiplication of two complex

numbers needs four real multiplications and two additions.

Note that the number of FLOPs is a rough estimate of the

number of operations needed by the network model, since

the operations required, for example by the activation func-

tions, are not included.

All network architectures are able to classify a single

time history corresponding to a noisy impulse response with

an accuracy of 66% or above, depending on the SNR value.

The CVNNs have a better performance than their real-

valued counterparts on average, and the reasons for this

behavior will be discussed in Sec. IV. The training time of

the cMLP models is slightly higher than that of the rMLPs

due to the complex multiplications in the forward and back-

ward propagation. The SVD-based networks finish training

with a similar number of neurons in the hidden layer, even if

the rMLP-SVD model starts with twice the number of neu-

rons in the hidden layer.

The proposed pruning technique is outperforming the

benchmark method adapted from Han et al. (2015) in all

three cases. The main reason for this is that the proposed

SVD-based pruning technique is more robust to the different

1104 J. Acoust. Soc. Am. 156 (2), August 2024 Vlad S. Paul and Philip A. Nelson

https://doi.org/10.1121/10.0028230

 06 Septem
ber 2024 14:10:30

https://doi.org/10.1121/10.0028230


datasets and training procedures. This will be discussed fur-

ther in Sec. IV. Interestingly, as the SNR value becomes

higher and the classification task becomes easier to solve,

the SVD models discard more neurons in the hidden layer

by the end of training. This automatically leads to a reduced

training time. Due to the removal of neurons in the hidden

layer, the number of FLOPs is also drastically reduced com-

pared to the basic MLP networks for a forward propagation

of the trained model. The rMLP-SVD approach needs over-

all the smallest number of FLOPs; however, the perfor-

mance is lower on average and the rMLP-SVD models are

less robust to the pruning of neurons, as will be discussed in

Sec. IV.

Figure 3 shows the behavior of the validation accuracy

of the five models for the middle task (SNR 5 dB). The per-

formance is also compared to a cMLP network that starts

training with five neurons in the hidden layer, in order to

investigate the need of the pruning algorithm (see the curve

labeled cMLP5 in Fig. 3). The discarding points where the

network is changing its structure can be seen at the iterations

where the validation accuracy drops significantly. Note that

every time singular values are discarded, a new weight

matrix with different values is computed.

With the new weight matrices and hidden layer dimen-

sions, the networks learn quickly and the validation accu-

racy recovers in a couple of iterations for the tasks

investigated here. The benchmark method is not able to fully

recover after a large number of weights are set to zero;

therefore, on average over ten trials, it achieves a lower

accuracy than the cMLP-SVD method. The validation accu-

racy shows a couple of interesting behaviors. First, overfit-

ting occurs for both rMLP and cMLP models. This is shown

by the validation accuracy which for the rMLP achieves its

maximum at an early stage and starts decreasing as training

progresses. The cMLP model is able to reduce this effect

and can generalize better. A similar observation was found,

for example, by Grinstein and Naylor (2022). A second

important observation is that, due to the pruning of the mod-

els, both rMLP-SVD and cMLP-SVD models can enhance

performance and reduce overfitting. This observation has

been found in other work, such as Shmalo et al. (2023) and

has been discussed in detail in Hirose (2009). A brief discus-

sion about this behavior is mentioned in Sec. IV. A final

important factor to note is that training directly the cMLP

with five neurons in the hidden layer leads to a slightly

lower validation and test accuracy on average compared to

the cMLP-SVD. While the difference in performance is not

significant, the advantage of using the SVD-based pruning

method is that it offers a more robust training behavior on

average and gives the user an estimate of the number of neu-

rons that are needed by the model during training. Averaged

over the three scenarios discussed in Table I, the cMLP-

SVD had a 2%–3% better accuracy than the network models

that started with only four or five neurons in the hidden

layer.

Moving on to the second scenario, where the number of

output classes is increased to ten, Table II shows the perfor-

mance of the five network models. In this case, the CVNNs

have a similar performance to the RVNNs, but do not out-

perform them as clearly as in the previous scenario.

However, the same pattern occurs that the SVD-based

approaches outperform the regular cMLP and rMLP models.

For the SNR¼ 1 dB case, the benchmark method outper-

forms the proposed SVD-based approach, suggesting that

the cMLP-SVD model was not able to learn the right pat-

terns after singular values have been discarded. For the other

two datasets, the benchmark method shows less robustness

to the pruning of weight connections and achieves on aver-

age a lower performance.

TABLE I. Comparison between the cMLP, cMLP-SVD, rMLP, and rMLP-SVD for a classification task of noisy impulse responses using three different

SNR values and five output classes. The networks have 257 neurons as input (514 for the real networks), 50 neurons in the hidden layer (100 for the real net-

works), and five neurons in the output layer. The values in boldface represent the highest accuracy, the lowest training time, and the smallest number of

FLOPs for each training task.

Accuracy (%) Training time (s) Remaining neurons Number of FLOPs

SNR (dB) 1 5 10 1 5 10 1 5 10 1 5 10

cMLP 71 93 100 25 25 25 50 50 50 104 910 104 910 104 910

cMLP-SVD 75 94 100 7 7 5 5 5 4 10 500 10 500 8402

cMLP pruned 74 84 92 26 25 25 50 50 50 10 800 10 800 8664

rMLP 66 88 100 18 19 17 100 100 100 103 905 103 905 103 905

rMLP-SVD 67 85 88 11 10 9 14 5 5 14 551 5200 5200

FIG. 3. Validation accuracy of all six networks for the task of classifying

noisy impulse responses with an SNR of 5 dB and five output classes. The

two thin lines correspond to the benchmark method (cMLP pruned) and the

network model with only few initial neurons in the hidden layer.
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The training time is drastically reduced due to the dis-

carding of singular values. This is shown in Fig. 4, where

the remaining number of singular values after every discard-

ing point are compared for the two network models for the

same task of classifying five or ten impulse responses with a

1 dB SNR. Increasing the number of output classes leads to

a faster reduction of neurons in the hidden layer as training

progresses but does not necessarily lead to a bigger reduc-

tion in training time. As shown in Fig. 4, the SVD models

with ten output classes discard more neurons at the first and

maybe second discarding points, but fewer at the third dis-

carding point. This behavior can be observed for all scenar-

ios with different SNR values investigated here. These

results suggest that the chosen discarding threshold of 0.2

was large, so that it made the SVD models finish training

with a similar number of neurons in the hidden layer,

regardless of the structure of the network. This observation

is particularly valuable as it describes the varying behavior

of the SVD approach across different cMLP models. Note

that the reduction in the number of network parameters

resulted from the pruning may not reveal the “effective

dimensionality” of the network, since, as shown by Maddox

et al. (2020), “simple parameter counting can be a mislead-

ing proxy for model complexity and generalization

performance.”

IV. DISCUSSION

A. Performance improvements

The pruning method proposed here for cMLPs shows

excellent performance, similarly to the work presented in

Paul and Nelson (2023) for the real-valued models. The

detailed investigation of multiple scenarios with different

datasets shows the robustness of the cMLP-SVD approach

for the scenarios investigated here. The method can achieve

the same or even better accuracy than the regular cMLP in

less training time and needs fewer FLOPs. The pruning

approach can adapt to different network structures and

removes neurons in the hidden layer based on an empirically

defined threshold. The multiple discarding points spaced

logarithmically show the importance of discarding neurons

several times during the training.

Compared to the benchmark method adapted from Han

et al. (2015), the proposed SVD-based technique shows a

higher classification accuracy in most of the cases. The

benchmark method is not always able to fully recover after a

large number of weights are set to zero; and therefore, on

average over ten trials, it achieves a lower accuracy than the

cMLP-SVD method. Since the method is setting weights to

zero, but is not changing the size of the model, one would

need to perform sparse matrix multiplications in order to

save training time and FLOPs. The advantage of the pro-

posed SVD technique is that it changes the network struc-

ture as training progresses and finishes training with a

smaller number of neurons in the hidden layer. At least for

the scenarios investigated here, evaluating the singular val-

ues and removing those that are small seem to be a more

robust way to eliminate neurons and weight connections. Of

course, both the cMLP-SVD and the benchmark methods

can be developed further and improvements have been

already proposed for unstructured weight pruning based on

a threshold (Cheng et al., 2023).

Note that the benchmark technique has been used with

prior information from the cMLP-SVD approach. For exam-

ple, if the cMLP-SVD model finished training with five neu-

rons in the hidden layer, the same percentage of weight

connections in the cMLP was set to zero when implement-

ing the benchmark method. However, if one would blindly

select a percentage for setting weight connections to zero,

TABLE II. Comparison between the cMLP, cMLP-SVD, rMLP, and rMLP-SVD for a classification task of noisy impulse responses using three different

SNR values and ten output classes. The networks have 257 neurons as input (514 for the real networks), 50 neurons in the hidden layer (100 for the real net-

works), and ten neurons in the output layer. The values in boldface represent the highest accuracy, the lowest training time, and the smallest number of

FLOPs for each training task.

Accuracy (%) Training time (s) Remaining neurons Number of FLOPs

SNR (dB) 1 5 10 1 5 10 1 5 10 1 5 10

cMLP 66 89 100 57 57 56 50 50 50 106 920 106 920 106 920

cMLP-SVD 71 94 100 23 21 13 9 7 3 19 262 14 986 6434

cMLP pruned 77 91 92 57 55 58 50 50 50 19 344 15 072 6528

rMLP 65 91 100 36 36 36 100 100 100 104 910 104 910 104 910

rMLP-SVD 74 93 86 21 20 18 11 8 7 11 549 8 402 7353

FIG. 4. Remaining number of singular values after every discarding point

for the cMLP-SVD, rMLP-SVD when trained on five or ten classes with

1 dB SNR.
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the classification accuracy would be slightly different. For

example, for the SNR¼ 1 dB and ten output classes, a prun-

ing percentage of 50% leads to a classification accuracy of

70% on average, which is slightly lower than that of the

cMLP-SVD. Similarly, if the pruning percentage is

increased to 70%, the classification accuracy increases to

75%. One of the reasons for a better performance when

more weight connections are removed in the benchmark

technique is that the model complexity is reduced and the

chance of overfitting is smaller. However, if too many

weight connections are set to zero, the chance increases for

the models to fail to learn the right patterns after the prun-

ing. This behavior can be observed, especially for the easier

tasks (SNR¼ 5 dB and SNR¼ 10 dB), where the benchmark

method performs worse than the cMLP-SVD. Interestingly,

if the discarding threshold of the cMLP-SVD is increased to

0.3, the performance for the SNR¼ 1 dB and ten output

classes is increased from 71% to 81%. However, if the

benchmark technique (cMLP pruned) is implemented by

eliminating as many weight connections as the cMLP-SVD

(94%), the accuracy decreases from 77% to 65%.

B. Reduction of overfitting effect

While the main purpose of the presented technique is to

reduce the size of the model in an efficient way, the fact that

pruning the network models can reduce overfitting and

enhance performance is worth discussing further. The pro-

posed pruning method has a regularizing effect on the model

in the sense that it discards small singular values. It ignores

certain neurons during training due to the discarding of sin-

gular values, thus leading to a reduced overfitting effect in

the case investigated here. Compared to a classical approach

of reducing overfitting, such as the dropout method (Hinton

et al., 2012), the SVD-based pruning technique permanently

changes the network structure as training progresses and the

final trained model consists of fewer parameters and a

reduced complexity. During dropout, the training weights

are kept the same (apart from those that are masked), while

in the proposed pruning technique, all the values in the

weight matrix are changed at every discarding point. The

potential advantage of the pruning method to reduce overfit-

ting and thus improve performance is task-dependent and

depends strongly on the training process. If certain neurons

that are considered redundant learn irrelevant information

from the training dataset, discarding them will automatically

reduce overfitting. This is indeed the case here, where due to

the small dataset and large SNR values, the original network

models were prone to overfit on the patterns in the training

dataset. In order to investigate this behavior further, it would

be helpful to undertake a systematic ablation study (see,

e.g., Meyes et al., 2019), which aims to better understand

the inner representations of network models. Following such

an approach, one can determine the importance of specific

parts of the network model and which of these representa-

tions are redundant.

C. CVNNs outperform RVNNs

When compared to the real counterparts, the CVNNs

outperform the RVNNs in most of the cases, being able to

reduce overfitting and enhance the performance. Both net-

works need similar training times and number of FLOPs;

however, due to real operations, the rMLP and rMLP-SVD

models need slightly less FLOPs, if enough neurons have

been removed during the pruning. One of the main reasons

for the performance enhancement is that the complex multi-

plication reduces the degree of freedom in the CVNNs com-

pared to a multiplication of the real and imaginary parts

independently. As discussed in detail by Hirose (2011),

reducing a “possibly harmful” part of the freedom during

training can result in a better generalization, since the arbi-

trariness of the solution is reduced. Moreover, as noted above,

the use of complex numbers during training imposes addi-

tional constraints on the network, which are beneficial in this

case. For example, the use of a phase constraint in the target

output (1þ 1j) also demonstrates an improved convergence.

D. Removal of neurons using the SVD

Compared to other pruning techniques that remove neu-

rons based on a magnitude threshold [see Cheng et al.
(2023) for a comprehensive recent review], the SVD-based

method creates a new matrix of weights using the informa-

tion from the low-rank approximation. Therefore, the tech-

nique is not only removing redundant neurons, keeping all

other weights the same, but rather rebuilds the matrix of

weights and the hidden layer using less information that is

considered to be more important for the training process.

This is the main reason for the large drops in accuracy as

training progresses and, depending on the task to be solved,

the time needed to recover the accuracy will vary. During

the simulations, it was found that the discarding threshold

strongly depends on the training process. Based on the dis-

tribution of singular values of the matrix of weights at every

discarding point, a larger or smaller number of singular val-

ues will be discarded. The main influential factors include

the training data, weight initialization using random num-

bers, activation functions, learning rates, and network struc-

tures. The substantial dependence on these factors

emphasizes the potential for implementing an adaptive pro-

cess for the discarding threshold. Such an adaptive process

would enable the network to autonomously determine the

optimal discarding threshold based on the distribution of

singular values at any given discarding point.

Finally, this work focused on the use of three discarding

points during training, although this number can be varied,

possibly allowing for the removal of more singular values or

enhancing the performance. However, the computational time

may lengthen with each additional discarding point, espe-

cially for large weight matrices, where the SVD can become

computationally expensive. Future work could involve

exploring the scalability of SVD-based pruning with larger

networks containing multiple hidden layers or large weight

matrices. Initial simulations on cMLP models with several
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hidden layers showed great potential, but further investigation

is required if more general conclusions can be reached. In

general, there will be a trade-off between the number of

SVDs during training and the number of discarded singular

values. If not enough singular values are discarded during the

training, the training time might increase. However, even in

this case, the advantage of having a pruned network model at

the end of training that requires a smaller number of FLOPs

when used on a device can be beneficial.

V. CONCLUSIONS

This paper has analyzed from first principles a cMLP

with any number of hidden layers and non-holomorphic

activation functions. The analysis presented enables the use

of the SVD to observe the behavior during training of the

singular values of the weight matrices in the network. It is

shown how the removal of small singular values during

training enables a reduction of the number of neurons in the

hidden layer. The discarding of singular values is under-

taken sequentially during the training and the time that is

saved depends mostly on the size and shape of the MLP net-

work. The proposed cMLP-SVD approach has been success-

fully applied to a classification task using transient model

signals, where the network was trained to distinguish

between very small changes in the signals. The effect of

SNR on classification accuracy was also established. The

performance was compared to the regular cMLP, and it has

been shown that the cMLP-SVD can achieve the same or

higher accuracy compared to the regular cMLP, using less

training time and fewer FLOPs to implement. When com-

pared to the real-valued network models, both cMLP and

cMLP-SVD outperform their counterparts in most of the

cases and are less prone to overfitting. The method proposed

for the cases considered here is likely to be extended to

other network architectures and multiple hidden layers,

although additional investigations will be necessary.
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APPENDIX A

The cross-entropy loss for complex numbers for the kth

neuron is given by

Lk ¼ �
1

2
ykR

log ðzð1ÞkR
Þ þ ykI

log ðzð1ÞkI
Þ

� �
; (A1)

where the subscripts R and I denote the real and imaginary

parts of the complex number, respectively. Using the identi-

ties from Adali et al. (2011), it follows that
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Computing each gradient term individually shows that
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and
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and the final gradient expression can be written as

ð�1=4Þd�k , where d�k ¼ ykR
=z
ð1Þ
kR
� jykI

=z
ð1Þ
kI

. If one computes

the total error Lk with respect to the vector of outputs zð1Þ,

the expression becomes @Lk=@zð1Þ ¼ ð�1=4Þ½d�1; d�2;…; d�K�
¼ dH. Similarly, @Lk=@zð1Þ� ¼ ð�1=4Þ½d1; d2;…; dK� ¼ dT.

APPENDIX B

The terms @zð1Þ=@að1Þ and @zð1Þ=@að1Þ� can be computed

as follows. Assuming the mth output of the softmax function

zð1Þm and due to the nth input into the function að1Þn , the deriva-

tive is given by

@zð1Þm

@a
ð1Þ
n

¼ @

@a
ð1Þ
n

softðRfað1Þm gÞ þ jsoftðIfað1Þm gÞ
� �

: (B1)

By denoting Rfað1Þm g as að1ÞmR
and Ifað1Þm g as að1ÞmI

, we can

compute the derivative of zð1Þm with respect to Rfað1Þn g
¼ að1ÞnR

and Ifað1Þn g ¼ að1ÞnI
, following the identities in Adali

et al. (2011). First, for the real part að1ÞnR
, it follows that

@zð1Þm

@a
ð1Þ
nR

¼ @

@a
ð1Þ
nR

ea
ð1Þ
mRXK

k¼1

e
a
ð1Þ
kR

þ j
ea
ð1Þ
mIXK

k¼1

e
a
ð1Þ
kI

0
BB@

1
CCA; (B2)

where the sum is over all K output neurons. Since the deriv-

ative of the imaginary part with respect to að1ÞnR
is zero, if one

applies the quotient rule, the resulting expression for the two

cases m ¼ n;m 6¼ n is very similar to the real-valued soft-

max derivative and is given by

@zð1Þm

@a
ð1Þ
nR

¼
zð1ÞmR
ð1� zð1ÞmR

Þ if m ¼ n;

zð1ÞmR
zð1ÞnR

if m 6¼ n:

8<
: (B3)

Similarly, the partial derivative of zð1Þm with respect to the

imaginary part að1ÞnI
is given by

@zð1Þm

@a
ð1Þ
nI

¼
j � zð1ÞmI

ð1� zð1ÞmI
Þ if m ¼ n;

�j � zð1ÞmI
zð1ÞnI

if m 6¼ n:

8<
: (B4)
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Using these results shows that

@zð1Þm

@a
ð1Þ
n

¼ 1

2

@zð1Þm

@a
ð1Þ
nI

� j
@zð1Þm

@a
ð1Þ
nI

 !
(B5)

¼

1

2
zð1ÞmR
ð1� zð1ÞmR

Þþ zð1ÞmI
ð1� zð1ÞmI

Þ
h i

; m¼ n;

1

2
�zð1ÞmR

zð1ÞnR
� zð1ÞmI

zð1ÞnI

h i
; m 6¼ n:

8>><
>>: (B6)

The derivative with respect to the complex conjugate að1Þ�n is

given by

@zð1Þm

@a
ð1Þ�
n

¼ 1

2

@zð1Þm

@a
ð1Þ
nI

� j
@zð1Þm

@a
ð1Þ
nI

 !
(B7)

¼

1

2
zð1ÞmR
ð1� zð1ÞmR

Þ� zð1ÞmI
ð1� zð1ÞmI

Þ
h i

; m¼ n;

1

2
�zð1ÞmR

zð1ÞnR
þ zð1ÞmI

zð1ÞnI

h i
; m 6¼ n:

8>><
>>: (B8)

The matrices of derivatives Hð1Þ and Ĥ
ð1Þ

can be computed

by placing all m¼ n derivatives on the diagonal and all

m 6¼ n derivatives on the off diagonal positions.

APPENDIX C

Since að1Þ ¼Wð1Þzð2Þ þ bð1Þ, by omitting the bias term

for simplicity, the derivative of the mth term að1Þm with

respect to zð2Þm is given by

@að1Þm

@z
ð2Þ
m

¼ 1

2

@að1Þm

@z
ð2Þ
mR

� j
@að1Þm

@z
ð2Þ
mI

 !
: (C1)

After some algebra, it follows that @að1Þm =@zð2Þm ¼ wð1Þm .

Similarly, it can be shown that @að1Þm =@zð2Þ�m ¼ 0. It follows

that @að1Þ=@zð2Þ ¼Wð1Þ, and that @að1Þ=@zð2Þ� ¼ 0.

APPENDIX D

Applying the identities from Adali et al. (2011), the mth

element of the derivative can be written as

@að1Þm

@w
ð1Þ
m

¼ 1

2

@að1Þm

@w
ð1Þ
mR

� j
@að1Þm

@w
ð1Þ
mI

 !
; (D1)

where w
ð1Þ
R ¼ Rfwð1Þg and w

ð1Þ
I ¼ Ifwð1Þg. Expanding að1Þm

and omitting some algebra, it can be shown that

@að1Þm =@wð1Þm ¼ zð2Þm . Similarly,

@að1Þm

@w
ð1Þ�
mR

¼ 1

2

@að1Þm

@w
ð1Þ
mR

þ j
@að1Þm

@w
ð1Þ
mI

 !
; (D2)

and the expression can be simplified to @að1Þm =@wð1Þ�m ¼ 0. It

follows that the partial derivatives @að1Þ=@wð1Þ� ¼ 0 and

@að1Þ�=@wð1Þ� ¼ zð2ÞH � Ið1Þ.
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