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Abstract—This paper proposes a method for visual inspection
of subsea communication cables. As principal carrier for data
transmission between continents and islands, such cables are
major infrastructure assets that are vulnerable to natural or
human causes of damage, but are challenging to survey due to
the long distances they span and great water depths they are laid
in. AUVs can visually map seafloor cables; however, autonomous
cable following along routes with relatively high uncertainties
and over varying substrate types is challenging. This research
develops a cable detection and following algorithm for real-time
on-board processing on camera-equipped AUVs. Simulations
on existing cable routes demonstrate effective and repeatable
cable following despite introducing random misdetections at
the rates expected for the suggested machine learning based
image classifier. A study on various levels of incorrect cable
detection and different vehicle speeds shows that a low level
of false positives in the cable detection is crucial for robust
cable following, and lower vehicle speeds lead to a higher visual
coverage of cable routes, albeit at an increased survey time.

Index Terms—subsea cable, monitoring, seafloor mapping,
AUV, machine learning, AI, image classification

I. INTRODUCTION

The world has become heavily reliant on global data com-
munication, 97% of which is transmitted via subsea cables [1].
Reliable connections are vital, as the socioeconomic cost of
any interruption is high and wide-ranging. Currently, there are
over 1.4 million kilometres of subsea communication cables
spanning the globe [2]. These cables can get damaged, due to
natural causes, such as turbidity currents and earthquakes [3],
[4] or unintentional or intentional human activity [5]–[7].
Network redundancy can mitigate interruptions in the event of
a cable fault; however, in the event of multiple cable breaks,
certain areas can be cut off [6]. This paper proposes visual
inspection of subsea communication cables using autonomous
underwater vehicles (AUVs) to detect damage or objects that
could pose a threat before they cause the cable to break.

Although subsea cables are steel wire armoured and buried
in shallow waters, they are unarmoured with a diameter of
approximately 3 cm and laid on top of the seafloor at larger
depths, which makes it possible to visually inspect the cable
with underwater cameras. The images can be used both to
detect potential threats as well as navigational features for
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tracking the cable. While remotely operated vehicles (ROVs)
are a versatile tool to inspect underwater infrastructure, their
need for a support vessel and crew incurs high costs for routine
surveys along cables in deep waters. AUV based camera sur-
veys offer a more economical option to gather the same type of
images. However, autonomous cable following is a challenging
task for AUVs, as the narrow footprint of the cameras’ fields
of view requires an AUV to follow cables with minimum
(centimetres to metres) lateral offset. Although the estimated
positions of subsea cables are recorded during laying, the
lateral uncertainty is 5 to 10% of water depth [8], making
waypoint-based navigation not precise enough to follow ca-
ble routes. This makes real-time cable detection necessary.
Electromagnetic sensing is one option to achieve this [9],
however, it requires additional sensors on the AUV. Side-scan
sonar (SSS) captures the seafloor in relatively high resolution,
however, subsea communication cables are in general too thin
to be reliably detected in SSS data [10], making it not a viable
option for cable tracking. Optical images on the other hand
offer high enough resolution to detect cables on the seafloor
and cameras are typically already installed on AUVs or can
be retrofitted using a range of off-the-shelf solutions.

This research develops and simulates a subsea cable tracking
method using an AI-based real-time cable detection algorithm.
Imagery from a grid photo survey of the Regional Cabled
Array of the Ocean Observatories Initiative at the Southern
Hydrate Ridge off the coast of Oregon, USA, was used to train
image classification algorithms, and to estimate the accuracies
(in particular true and false positives) of these algorithms so
that the impact of imperfect detection on cable tracking can
be understood. The mapping data also provided examples of
real-world cable routes for the simulation. A cable following
algorithm was developed and tested with a simulation using
the physics model of a Sparus II AUV [11], and using realistic
performance of cable identification in images.

II. METHOD

A. Survey strategy

An AUV is tasked to visually map a subsea communication
cable. It is assumed that there is a prior map of where the cable
is laid, but lateral uncertainties of up to 10% of depth, which is
representative of realworld cable route knowledge. The AUV
is deployed in the vicinity where the cable is known to be
laid. When the AUV reaches the seafloor, it moves into the



direction where the prior map indicates the cable is. When
the cable detection algorithm described in section II-B reports
detection of the cable, the cable tracking algorithm described
in section II-C generates the high-level navigation commands
for the AUV to follow the cable. If the cable is not detected, a
graph-based Simultaneous Localisation and Mapping (SLAM)
method is used to update the search space based on which the
navigation commands are determined until the cable is again
observed in a camera image [8].

B. Image classification algorithm

The cable tracking algorithm assumes that the AUV acquires
strobed images of the seafloor from roughly constant altitude
at regular time intervals. The images are colour corrected
according to the acquisition altitude using the method de-
scribed in [12] based on pre-trained colour attenuation param-
eters. Subsequently they are corrected for lens distortion and
stretched or shrunk to normalise the physical dimension a pixel
represents to the same size in each image and so compensate
for differences in acquisition altitudes due to imperfect terrain
following. The images are then split into a grid of square
image tiles with associated geolocation information, which are
classified using a semi-supervised deep-learning classification
algorithm. Two different algorithms for training convolutional
neural networks were tested; the location guided autoencoder
(LGA) algorithm described in [13], and the GeoCLR algorithm
described in [14]. These algorithms were chosen because they
are well suited to imagery where objects cover larger areas
than what fits into a single image frame, leveraging image
location information, and because they have been shown to
achieve good classification accuracies for underwater images.
In both cases the algorithm uses a model that is pre-trained
on a labelled set of images acquired in similar conditions.
Training these models is computationally intensive, but can be
done offline on a high-specification workstation or on a high-
performance PC. Classifying images is a less computationally
intense process and can be performed by CPUs typically used
on board AUVs.

C. Cable following algorithm

In images where the cable is detected in at least two image
tiles, the navigation command for the AUV is computed based
on these. The centroid of all image tiles where cable was
detected is computed, as well as a regression line across the
cable-labelled tiles. A waypoint is generated on the regression
line at a distance d from the detected centroid, as shown in
Fig. 1. The positive along-the-cable direction from the prior
knowledge map is used to determine the side of the detected
centroid where the new waypoint needs to be set. This replaces
any existing waypoint, and will itself be updated at the next
timestep.

Fig. 2 illustrates how the number of tiles into which
images are split determines the resolution at which the cable

Fig. 1: Illustration of waypoint generation from a seafloor
image sampled into 3×3 tiles.

Fig. 2: Illustration of discretising the image footprint, where
the red cross is the centre of the image. This also corresponds
to the intersection of the camera centre-line with the seafloor.

regression can be computed. For an image footprint of 2×2 m,
the computed centroid and bearing of the cable in Fig. 2 are:
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Grids with a larger number of tiles lead to a better resolution
of the cable modelling. However, this also increases the
computational load for classification and reduces its labelling
accuracy. Errors due to incorrect cable detections can cause
unbounded errors in the cable route modelling through false
positive detections. Although grids with fewer tiles lead to
a lower resolution of the cable modelling, the errors are
bounded. Therefore we select a small number of larger grid
elements to maximise detection accuracy.

D. Simulator

A simulation was implemented to test the algorithm and
to determine its performance in terms of proportion of cable
observed and time taken under different conditions for a given



Fig. 3: The “Smarty200” Iqua Sparus II AUV owned and oper-
ated by the University of Southampton. The AUV is modified
to integrate a high-resolution seafloor imaging system and a
Doppler aided inertial navigation system.

Fig. 4: Simulator showing the Sparus II AUV imaging the
cable (black), where green indicates presence and red absence
of cable in the respective image tiles, and purple the current
waypoint.

cable route. We assume that the survey is carried out with
an Iqua Sparus II AUV, pictured in Fig. 3. The simulation
is based on the Robot Operating System (ROS) and uses the
vehicle dynamics model provided by the AUV manufacturer. A
module for modelling cable routes and tiled image acquisition
and classification thereof was implemented, as shown in Fig. 4.
Errors in image classification can be modelled by indicating
the ratio of false negatives (cable not detected where cable is
present) and false positives (image tile flagged as containing
cable even though there is no cable in the respective image
tile). The recordings of simulated camera poses and the model
of its field of view are used to compute the percentage of
observed cable for each run, as illustrated in Fig. 5.

III. RESULTS

A. Image classification

The LGA and GeoCLR algorithms were trained on a grid
mapping dataset of the Ocean Observatory Initiative Regional
Cabled Array at the Southern Hydrate Ridge off the coast
of Oregon, USA. The data was collected from an altitude of
6 m above the seafloor with the SeaXerocks3 visual mapping
device mounted on the AE2000f AUV of the University of

Fig. 5: Visualisation of the camera frames for each observation
in a cable tracking simulation run, assuming a 46◦ × 60◦

camera field of view and a mapping altitude of 2 m over a flat
seafloor.

Fig. 6: Examples of image tiles showing the subsea commu-
nication cable.

Tokyo, deployed from R/V Falkor of the Schmidt Ocean Insti-
tute [15]. The colour correction parameters were determined
using all images of the dataset and applied back on the images.
After correcting for lens distortions, the images were split into
tiles corresponding to 1.6 m by 1.6 m squares of seafloor at
5 mm per pixel resolution, leading to 3x3 tiles per image for
most images. The tiles were divided into categories “cable”,
“rock”, “carbonate”, “sand”, “shell fragment” and “bacterial
mat” based on manual labelling data. Fig. 6 shows examples
of image tiles picturing the cable. While for cable following
distinguishing beyond “cable” and “not cable” is not required,
using the additional classes of different types of substrates
provides further information for analysis, including where
false detections are more likely to occur.

CNN models were trained on the images using the self-
supervised feature learning LGA and GeoCLR algorithms.
Nonlinear support vector machine (SVM) with a radial basis
function (RBF) kernel classifiers were trained to delineate
class boundaries in the feature space using the labelled data.
Fig. 7 shows the t-distributed stochastic neighbour embedding
(t-SNE) representation of the feature space of the image tiles.
While clear delineation of classes in the dimension-reduced
t-SNE representation enables accurate classification in most
cases, some degree of mixing does not necessarily lead to
bad classification results. The performance of the classifiers



Fig. 7: T-SNE visualisation of the feature space after applying
the LGA (top) and GeoCLR (bottom) model on the labelled
image tiles.

from both models were analysed by applying them on 100
image tiles of each class that had not been used for training
of the classifiers. The confusion matrices in Fig. 8 show
good performance for both models for cable detection. The
precision for the cable class is 0.82 for the LGA classifier
and 0.97 for GeoCLR, the recall 0.56 and 0.75, and the F1-
score is 0.67 and 0.85, making GeoCLR the better performing
classifier by all measures, showing relatively reliable detection
capabilities for seafloor cables. The LGA algorithm yielded
44% false negatives and 12% false positives for the cable class,
whereas GeoCLR lead to 25% false negatives and 2% false
positives. While failure to detect the cable in an image tile
(false negative) can lead to a slightly different vector for the
waypoint generation, or no image-based waypoint generation,
false positives (reporting cable where there is none) can lead to
random waypoint generation, leading the AUV off course. For
these reasons, while correct detection is important in general,
it is crucial that the rate of false positives is low for tracking
purposes.

B. Simulation of cable tracking

For the simulation a mapping altitude of 2 m above a flat
seafloor with a camera field of view of 46◦ × 60◦, leading to
a projected area of 1.7 m × 2.3 m and an image acquisition
rate of 1 Hz were assumed to simulate Smarty200’s camera
system. A 100 m long section of cable route mapped at the
Southern Hydrate Ridge was used in the simulation, and the
distance d at which a waypoint is set in front of the centre
of cable observations was set to 3 m. The performance of
cable tracking was determined for different conditions of AUV
speeds and cable detection accuracies. The cable detection

Fig. 8: Confusion matrices between clustering results and
ground truth for the LGA (top) and GeoCLR (bottom) classi-
fier using 100 labelled image tiles for each class.

accuracies from the LGA and GeoCLR application to the
Southern Hydrate Ridge data, as well as error-free detection
were simulated. While the imagery at Southern Hydrate Ridge
had been acquired from higher altitude than the 2 m assumed
for the simulation, these levels represent upper bounds, as
clearer images acquired from lower altitudes are likely to
yield better detection accuracies. Additionally, the influence
of vehicle speed was studied using 3 different AUV surge
speeds and the expected detection accuracies based on the
better performing GeoCLR algorithm. For each setting 10
repeat runs were simulated. Fig. 9 shows the AUV tracks for
the 10 runs of each tested condition, and table I shows the
average and the standard deviation of the cable coverage and
time taken for mapping the cable track. A run was considered
completed when passing the last cable point in the along-the-
cable direction as per the prior cable map.

As expected, the highest cable observation rate was achieved
with simulated error-free cable detection, plotted in Fig. 9a.
The false positive detection rates of 12% as found when
applying the LGA algorithm to the Southern Hydrate Ridge
dataset caused the AUV to lose track of the cable where it
bends, with the SLAM algorithm unable to guide the AUV
back towards the cable within the short survey distance, as
Fig. 9b and Fig. 9d show, leading to a cable observation rate
of only 11.2% ± 3.8% (with no false negatives) and 12.6% ±
3.4% (with false negatives) for the studied cable route at the
AUV’s default surge speed of 0.2 m/s.

The comparison between simulated cable detection with
only false positives (Fig. 9b and 9e) and only false negatives
(Fig. 9c and 9f) confirm that false positive cable detections
have a stronger detrimental effect on the performance than



(a) Speed: 0.2 m/s, false positives: 0%, false
negatives: 0%

(b) Speed: 0.2 m/s, false positives: 12%, false
negatives: 0%

(c) Speed: 0.2 m/s, false positives: 0%, false
negatives: 44%

(d) Speed: 0.2 m/s, false positives: 12%, false
negatives: 44%

(e) Speed: 0.2 m/s, false positives: 2%, false
negatives: 0%

(f) Speed: 0.2 m/s, false positives: 0%, false
negatives: 25%

(g) Speed: 0.15 m/s, false positives: 2%, false
negatives: 25%

(h) Speed: 0.2 m/s, false positives: 2%, false
negatives: 25%

(i) Speed: 0.3 m/s, false positives: 2%, false
negatives: 25%

Fig. 9: Cable route (black) and AUV tracks (in colours) from 10 repeat simulation runs for the different tested configurations
of false positive and negative cable detection rates and AUV surge speeds.



TABLE I: Average duration and portion of observed cable (± std. dev.) for different cable detection accuracy rates and vehicle
speeds. The cases for full LGA and GeoCLR detection accuracy rates and typical Smarty200 survey speed (0.2 m/s) are shown
in bold.

AUV speed (m/s) False positives (%) False negatives (%) Duration (s) Observed cable (%)

0.2 0 0 538.2 ± 0.9 95.4 ± 0.8
0.2 12 0 590.0 ± 27.3 11.2 ± 3.8
0.2 0 44 544.8 ± 6.1 91.9 ± 3.0
0.2 12 44 583.4 ± 25.4 12.6 ± 3.4
0.2 2 0 558.4 ± 29.0 90.1 ± 3.5
0.2 0 25 539.7 ± 2.9 93.1 ± 2.6

0.15 2 25 754.8 ± 49.2 93.0 ± 6.8
0.2 2 25 563.8 ± 44.3 90.3 ± 4.7

0.25 2 25 465.3 ± 23.7 79.1 ± 8.1

false negatives, even if the false negatives occur at a higher
rate. With a false positive detection rate of 2% and false
negative rate of 25% found when applying the GeoCLR
algorithm on the Southern Hydrate Ridge data, the simulation
in Fig. 9h shows good cable following performance and a
90.3% ± 4.7% cable observation rate for the studied cable
route. False detections still occasionally lead the AUV away
from the cable route, but the SLAM algorithm succeeded
in guiding it back without the false detections excessively
deteriorating the SLAM solution. The simulations of different
AUV surge speeds and false cable detection rates based on
the GeoCLR performance plotted in Fig. 9g to 9i show that
slower surge speeds lead to better observation rates, although
it increases the required time for the survey.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes a method for tracking subsea commu-
nication cables using camera images. Results from 2 different
algorithms applied to a set of subsea communication cable im-
ages acquired by an AUV show good detection performance,
where the GeoCLR algorithm outperforms LGA. A simulation
implementing the proposed cable tracking algorithm applied
to an existing cable route demonstrates the importance of
accurate cable detection, where the simulation using false
detection rates typical for GeoCLR lead to good cable mapping
rates and so confirms the validity of the algorithm, while
the lower correct cable detection rates typical of the LGA
algorithm were shown not to be sufficient for reliable cable
following.

The algorithm will be implemented on the Smarty200 AUV
of the University of Southampton and tested at sea on a
stretch of temporarily laid subsea communication cable to
prove the method and assess the real-time performance in a
relevant environment. Further studies will look into the effects
of partially buried cable sections and will be extended to other
cable routes.
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