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Abstract: Topologically structured light contains deeply subwavelength features, such as phase 

singularities, and the scattering of such light can therefore be sensitive to the geometry or 

movement of scattering objects at such scales. Indeed, it has been shown recently that single-

shot optical measurements can yield positional precision better than 100 pm (less than one five-

thousandth of the wavelength λ) via a deep-learning analysis of scattering patterns. 

Measurement performance, and the extent to which it can be sustained are constrained by the 

stability of experimental apparatus and the quality and depth of neural network training data. 

Here we show that a neural network can be trained, through exposure to an extended envelope 

of instrumental/ambient noise conditions, to robustly quantify picometric displacements of a 

target against orders-of-magnitude larger background fluctuations: maintaining precision and 

accuracy of 100-150 pm in optical measurements (at λ = 488 nm) of nanowire positional 

change. This capability opens up a range of application opportunities, for example in the optical 

study of nanostructural dynamics, stiction, material fatigue, and phase transitions. 

 

1. Introduction 

In a range of non-contact, label-free optical measurement and imaging techniques, machine 

learning has emerged as a powerful tool for retrieving object information from far-field 

scattering patterns, through its aptitude for effectively solving the inverse scattering problem – 

i.e. to determine characteristics of an unknown scatterer from measurements of a scattered light 

field - an inverse problem that can be reduced to the Fredholm integral equation [1-3]. For 

example, it has been shown that a trained neural network can retrieve positional and 

dimensional characteristics of sub-wavelength apertures under plane wave illumination from 

their transmission scattering/diffraction patterns with single-shot precision down to λ/130 

(where λ is the wavelength of light) [4, 5]; and more recently that with a combination of 

topologically structured illumination – an incident light field containing deeply subwavelength 

features, such as phase singularities [6] – and ‘in-situ’ neural network training data that is 

perfectly congruent with the object of study, picometric precision down to λ/5300 can be 

achieved in single-shot localization measurements of the position of a nanowire [7]. 

However, in any optical measurement or imaging application, there are constraints placed 

on performance by the stability of the instrumental platform. Even a robust optical microscope 

in a typical temperature-controlled laboratory environment will be subject to short-term random 

fluctuations and long-term drift at nano- to micrometric length scales over time scales of 

minutes to hours [8], for example through ambient acoustic noise or differential thermal 

expansion of components (especially those intended to provide motion, e.g. sample stages, 

objective turrets). The power, wavelength and polarization of a laser illumination source may 

likewise be subject to fluctuations and drift over similar time scales. In systems dependent on 

machine learning, these noise contributions prevent generalization or application to ‘out-of-

distribution’ data - meaning data containing artefacts and noise features different from, or 



outside the range of such features encountered during training. Training data diversity is 

essential to addressing this limitation [9, 10]. Here, we show how increased diversity, in the 

form of just a few iterative training cycles, each subject to random time-dependent noise, can 

enable a neural network to continue delivering nanowire localization measurements with 

precision and accuracy orders of magnitude smaller than the scale of concomitant instrumental 

fluctuations, for minutes beyond the training interval (over a duration >109 times longer than 

the nanowire’s natural oscillation period), where previously (Ref. [7]) it could only do so within 

the training interval. The neural network learns to identify changes in the transmission 

scattering pattern that relate specifically to changes in the position of the nanowire relative to 

the rest of the sample, while disregarding other, extraneous changes in the scattered light field. 

2. Method 

The experimental sample and microscopic apparatus for this study were as described in Ref [7]: 

The sample comprises a 17 µm long, 200 nm wide nanowire, cut by focused ion beam milling 

from a 50-nm-thick Si3N4 membrane coated with 65 nm of gold, with ~100 nm gaps on either 

side (Fig. 1). The lateral position of the nanowire, i.e. distance to the parallel edges of the 

surrounding membrane, is electrostatically controlled over a few-nanometer range through the 

application of a DC bias between the nanowire and one side of the adjacent membrane. The 

sample was illuminated at the mid-point of the nanowire length, by a coherent (𝜆 = 488 nm) 

superoscillatory wavefront generated by a pair of spatial light modulators (see Supplementary 

Information). Transmission scattering patterns from an image plane at a distance ~𝜆 from the 

membrane were recorded via an objective with a numerical aperture of 0.9 on a 16-bit image 

sensor. The experiment was operated remotely to exclude perturbations due to the presence of 

people (as a source of vibrational disturbance, heat, moisture, etc.) in the laboratory during data 

collection. 

 

 

Fig. 1. Measuring picometric nanowire displacement in the presence of nano- to micrometric 

noise. Topologically structured light scattered from the nanowire is imaged in transmission via 
a high-numerical-aperture microscope objective (not shown). Lateral displacements of the wire, 

controlled by application of a DC bias, V, between the wire and the adjacent edge of the 

supporting membrane, are quantified via a deep-learning-enabled analysis of single-shot 
scattering patterns. With sufficiently ‘diverse’ training, a neural network can determine nanowire 

position with high precision and accuracy, even while the whole sample and/or apparatus are 

subject to much larger positional fluctuations. 

 

We recorded 19 consecutive sets of single-shot scattering patterns for 201 different 

nanowire positions over a 360-4000 pm range of displacements from the zero-bias position. 

These were recorded in a random sequence (repeated in each set) to exclude the possibility of 

neural network learning from any correlation of position and time within a set, and the applied 

bias (displacement) was reset to zero between each recorded position to eliminate any effect of 



stress history in the nanowire. Scattering patterns were recorded with a 7.7𝜆 × 7.7𝜆 (301×301 

pixel) field of view and an integration time of 100 ms. Each 201-image set was recorded over 

2.5 min, giving a total span of 47.5 min between the beginning of the first and the end of the 

last. The final set was reserved for use as a delayed measurement set, i.e. never used in neural 

network training, except to establish benchmarks for self-referenced training and testing within 

a single dataset (as per Ref. [7]). Among all sets, the same randomly selected 80% of scattering 

patterns and corresponding (known) nanowire displacement values were designated for use in 

neural network training and validation. The other 20% are put aside as unseen images 

(nominally unknown displacements) for testing (see Fig. 2). This ensures that, regardless to the 

‘depth’ of training, i.e. the number of repeated datasets used in training: (i) all neural networks 

are trained and validated on the same 160 known nanowire displacements; and (ii) the 

assessment of metrological performance is always based on the same set of scattering patterns 

from the measurement dataset, for nanowire positions that have never been seen in training. 

(Further details of the neural network architecture and training/validation procedure are given 

in Supplementary Information.) 

 

 

Fig. 2. Neural network training for resilience to noise. Training data with a greater diversity of 
background noise artefacts is accumulated by iterative repetition of the set of m randomly 

sequenced nanowire displacement settings (x1, x2, x3, …, xm), where m = 201 in the present case. 

The time interval between the end of the last dataset used in neural network training and the 
subsequently recorded ‘measurement dataset’ is denoted Δt. ‘Training depth’ N refers to the 

number of datasets used in training, counting backwards from the closest in time to the 

measurement dataset. Within each set, scattering patterns for the same randomly selected 80% 
of nanowire positions (blue solid circles) are designated for use in training and validation, while 

the other 20% of positions (red open circles) remain ‘unseen’ by the network. (Training points 

within the ‘measurement’ dataset [blue open circles] are only used for benchmarking against in-

distribution measurement performance, i.e. training and measurement within a single dataset.) 

 

3. Results and discussion 

Figure 3 shows how metrological performance deteriorates rapidly as the time interval Δt 

between the end of training data collection and measurement increases, while only single 

datasets are used for training. We assess neural network performance in the retrieval of 

optically-measured nanowire displacement in terms of: precision (Fig. 3d) , which describes 

the reproducibility of a set of nominally identical measurements (cf. the magnitude of the error 

bars in Figs. 3a-c) – calculated as the average measurement standard deviation over the range 

of measured displacements; and accuracy, which describes how close the mean value of a set 

of nominally identical measurements is to the true value (cf. how close the datapoints are to the 

measured = actual displacement diagonal in Figs. 3a-c) – evaluated as root mean square error 

over the range of measured displacements. As one would expect, performance in time-delayed 

measurements is invariably inferior to the self-referenced benchmark case (i.e. of testing on 

unseen images recorded within the training interval). Precision and accuracy fluctuate wildly 

as a function of Δt – randomly better or worse from one point to the next as noise artefacts in 



each training image set are randomly (as a consequence of short-timescale instrumental 

fluctuations) closer to or further from those present during recording of the measurement 

dataset. In simple terms, useful measurement capability is lost within <5 min., as illustrated in 

Fig. 3c. 

 

 

 

Fig. 3. Optical localization of nanowire position – performance as a function of time delay 
between training and measurement. (a-c) Optically measured versus actual values of nanowire 

displacement for neural networks trained: (a) in the self-referenced, benchmark case of training 

and testing within a single dataset; (b, c) on single datasets with a delay Δt [as labelled] between 
the end of training and start of measurement dataset recording. Points and error bars represent 

respectively the mean and standard deviation of ten measurements from independently trained 

networks. Dashed lines above and below the solid ideal correlation diagonals are plotted at ±10% 
relative error. (d) Measurement precision [average standard deviation] and (e) accuracy [root 

mean square error] as a function of Δt. In (d) and (e), values for the self-referenced benchmark 

case are shown as dashed lines. 

 

Figure 4 shows how increasing the diversity (or ‘depth’) of training can improve 

performance in time-delayed measurements, to the extent of achieving comparable precision 

and better accuracy than the self-referenced benchmark at values of Δt where measurements 

based on single-dataset training fail. In this case, we fix Δt at 5 minutes and vary the training 

depth N – the number of prior datasets used in neural network training. Figures 4a-c show 

examples for training depths N = 1, 6, and 16 (Fig. 4a, for N = 1 and Δt = 5 min. being identical 

to Fig. 3c). As can be seen in Figs. 4d,e a training depth >6 is sufficient to recover precision 

≤100 pm, approaching the 72 pm single-dataset self-referenced benchmark, and accuracy 

slightly but consistently better than the 214 pm self-referenced benchmark. This is not a simple 

manifestation of the idea that the predictive power of a neural network increases with the size 

of its training dataset [11]: In the present case, increasing N does not add any additional 



information to the training dataset on the measurand (the nanowire position) – it adds repetitions 

of the same 160 known nanowire positions. This should not and does not improve measurement 

precision (Fig. 4d). That it marginally improves measurement accuracy (Fig. 4e) is an 

interesting consequence (discussed below) rather than the intended purpose of the iterative 

training regime, which is to sustain performance over time after training. Through training on 

several scattering patterns for each nanowire position, recorded over time (here, at intervals of 

~2.5 min) such that each presents different random noise artefacts related to instrumental 

fluctuations on such timescales, the neural network learns to distinguish between changes in 

the patterns which relate specifically to movement of the nanowire relative to the nearby edges 

of the membrane (i.e. electrostatically controlled variations in the gap sizes on either side of the 

wire) and other changes in the scattering patterns, related to instrumental perturbations that may 

be orders of magnitude larger. 

 

 

 

Fig. 4. Optical localization of nanowire position – performance as a function of training depth 

at Δt = 5 min. (a-c) Optically measured versus actual values of nanowire displacement for neural 

networks trained over N [as labelled] datasets, with a fixed interval Δt = 5 min between the end 
of training and the start of measurement dataset recording. (d) Measurement precision [average 

standard deviation] and (e) accuracy [root mean square error] as a function of N. 

 

The same behavior – recovery of precision and accuracy to levels respectively just above 

and just below the self-referenced benchmark at N>6; little or no further improvement in 

performance for N >8, is seen at Δt = 10 min. (see supplementary Fig. S2).  This speaks to the 

fact that in general, the depth of training required to maximize metrological performance and 

the length of time over which performance can then be maintained will depend on the nature of 

the measurement being made, and the nature, magnitude and characteristic timescale of 

instrumental and ambient noise and/or drift, i.e. on the physical and environmental stability of 



the experiment. In the present case (an optical microscope with a closed-loop piezoelectric 

sample stage, on a vibration-isolated optical table), as few as six iterations of each nanowire 

position over a total training period of ~15 min. are sufficient for the neural network to map the 

parameter space of noise subsequently encountered over at least another 12.5 min. (i.e. Δt = 10 

min. plus the 2.5 min. duration of measurement dataset collection). Performance will be 

maintained for as long as experimental conditions remain within the trained envelope of 

measurement range and noise; it will be lost (the neural network’s model will fail) at whatever 

point the apparatus exceed that envelope, e.g. due to long-term drift of a given parameter with 

laboratory temperature over many hours.  

Ordinarily (Figs. 3, 4) neural networks are tested only on previously-unseen nanowire 

positions (the red points within the measurement dataset, as illustrated in Fig. 2). However, it 

is informative to compare measurement performance for previously-seen (i.e. in training and 

validation) versus -unseen positions, both subject (in the time-delayed measurement dataset) to 

previously-unseen noise. At Δt = 5 min., there is no difference between results for these two 

cases (Fig. 5). This indicates firstly that noise in the scattering patterns at Δt = 5 min. is 

sufficiently large that networks with shallow (low-N) training cannot distinguish between 

nominally known and unknown positions (i.e. all lie outside the envelope of trained noise 

parameter space). At high N, the fact that precision (Fig. 5a) for previously-seen positions tends 

to a self-referenced benchmark identical to that for previously-unseen positions (rather than a 

lower level, or even zero) indicates that this is a limit imposed by experimental uncertainty, i.e. 

principally in knowledge and reproducibility of actual displacement values. Accuracy (Fig. 5b) 

at high N, for both previously-seen and -unseen positions, tends to the self-referenced 

benchmark for previously-seen positions, which surpasses the level for previously-unseen 

positions because it is derived from the data specifically used to optimize accuracy (minimize 

error) as the singular objective of network training and validation. 

 

 

Fig. 5. Comparison of optical measurement performance as a function of training depth at Δt = 

5 min. between nanowire positions unseen by neural networks during training [datapoints as in 

Figs. 4d,e] and nominally known [previously-seen] positions used in training. (a) Measurement 

precision [average standard deviation] and (b) accuracy [root mean square error] as a function 

of N. 

 

4. Conclusion 

In summary, we have shown experimentally that picometrically precise single-shot optical 

measurements enabled by machine learning can be made robust against instrumental 

fluctuations at orders of magnitude larger scale. With suitably diverse (iterative depth of) in-



situ training, a neural network retrieving (sub)nanometric positional/dimensional information 

on an object from scattering patterns can learn to distinguish meaningful changes in the patterns 

from extraneous artefacts related to random instrumental noise. Precise and accurate 

measurements can thus be maintained for some time beyond the training window – in the 

present case, for at least 12.5 minutes after only six 2.5-min. training data acquisition cycles. 

In the context of studying the motion of nanoscale objects, this interval should be compared 

with the nanowire’s ~1.6 MHz in-plane natural mechanical resonance frequency: it corresponds 

to >109 oscillation periods. This sustained measurement capability opens up a range of 

interesting applications for optical picometrology, for example in the study of nanostructural 

dynamics and the action of forces and fields on nano-objects, in systems providing for a neural 

network to be trained under a regime of controlled (quasi)static positioning, for subsequent 

observation of free or externally driven motion. 
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