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Superoscillatory wavefront synthesis  

The computer-controlled wavefront synthesizer employed in this work is described in detail 

in Ref. [1]. It is based upon a pair of reflective liquid crystal spatial light modulators 

(Meadowlark P512) – one for intensity and the other for phase modulation, as shown 

schematically in Fig. S1.  

In this work, we employ an axially-symmetric superoscillatory wavefront constructed from 

two circular prolate spheroidal wavefunctions, S3 and S4 (following Ref. [2]): 𝐸(𝑟/𝜆) = 4.477 

𝑆3(𝑟/𝜆) + 𝑆4(𝑟/𝜆), where r is radial distance from the beam axis.  

 

 

Fig. S1. Double-4f arrangement of spatial light modulators for superoscillatory wavefront 

synthesis: SLM = spatial light modulator; L = lens, Pol. = linear polarizer. 

 

Neural network architecture and training 

The neural network architecture is as reported in Ref. [3]. It is implemented using TensorFlow 

libraries and consists of three convolution layers, each followed by a pooling layer, with kernel 

dimensions as shown in Table S1. The network ends with three fully connected layers and a 

single output for nanowire displacement. Mean square error serves as the loss function, 

optimized with the Adam stochastic algorithm with a learning rate set at 0.0001. Training ends 

when the validation loss ceases to improve, monitored by setting an early stopping 'patience' of 

400 epochs. 

 
Table S1. Convolution neural network architecture 

Layer Name No. of Kernels Kernel Size Activation Function 

Convolution 1 64 5 × 5 ReLu 

Max Pooling 1 - 4 × 4  - 

Convolution 2 128 4 × 4 ReLu 

Max Pooling 2 - 3 × 3  - 

Convolution 3 256 2 × 2 ReLu 

Max Pooling 3 - 3 × 3  - 

Fully Connected 1 128 - ReLu 

Fully Connected 2 256 - ReLu 

Fully Connected 3 128 - ReLu 

Output 1 - Sigmoid 



 

We recorded 19 consecutive sets of single-shot scattering patterns for 201 different 

nanowire positions, covering a displacement range of 360 - 4000 pm from the zero-bias 

position. The final set was designated as the ‘measurement dataset’, and never used in neural 

network training, except to establish precision and accuracy benchmarks for self-referenced 

training and testing within a single dataset. Others are designated as ‘training datasets’, as 

illustrated in Fig. 2. Among all sets, the same randomly selected 80% of scattering patterns and 

corresponding (known) nanowire displacement values were designated for use in neural 

network training and validation. 

For each set of measurements (each of Figs. 3a-c, 4a-c, and equivalents for other values of 

Δt and N) the requisite N × 0.8 × 201 scattering patterns and nanowire displacement values 

(where N is the training depth – the number of ‘training datasets’ being used) were amalgamated 

in a single pool for training and validation. Across ten independent network implementations 

for each case, this pool is split in a randomized (i.e. differently for each implementation) 4:1 

ratio between training (N × 128 patterns) and validation (N × 32 patterns).  

For the purposes of Figs. 3, 4, and S2, every trained network is tested on the same set of 

(0.2 × 201 = 41) scattering patterns for previously-unseen nanowire positions from the 

measurement dataset. For the purpose of Fig. 5, networks are also separately tested on scattering 

patterns from the measurement dataset for nanowire positions previously seen in training and 

validation. 

 

Measurement performance at Δt = 10 min. 

 

Fig. S2. Optical localization of nanowire position – performance as a function of training depth 

at Δt = 10 min. [Compare with Fig. 4d,e, showing performance at Δt = 5 min] (a) Measurement 
precision [average standard deviation] and (b) accuracy [root mean square error] as a function 

of training depth N. 

 

References 

[1] E. T. F. Rogers, S. Quraishe, K. S. Rogers, T. A. Newman, P. J. S. Smith, and N. I. Zheludev, "Far-field 

unlabeled super-resolution imaging with superoscillatory illumination," APL Photon. 5, 066107 (2020). 

[2] K. S. Rogers, K. N. Bourdakos, G. H. Yuan, S. Mahajan, and E. T. F. Rogers, "Optimising superoscillatory 
spots for far-field super-resolution imaging," Opt. Express 26, 8095-8112 (2018). 

[3] T. Liu, J. Y. Ou, J. Xu, E. A. Chan, K. F. MacDonald, and N. I. Zheludev, "Picophotonic localization metrology 
beyond thermal fluctuations," Nat. Mater. 22, 844-847 (2023). 

 


