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Abstract—We present a method for flexible over-horizon
awareness of autonomous underwater vehicle (AUV) gathered
seafloor imagery. The method uses self-supervised learning to
create compact dataset summaries. These consist of georeferenced
latent representations of images and a subset of human-viewable
dataset representative images. The summaries are small enough
to send over low-bandwidth satellite networks such as Iridium.
This allows seafloor spatial patterns to be visualised and flexibly
interpreted within tens of minutes of the AUV surfacing, without
the need for physical recovery or proximity to the robot. The
method is demonstrated using the University of Southampton’s
Smarty200 AUV in a UK Marine Protected Area. Over 4000
images (140 GBytes) were summarised into 51 Iridium messages
(102 kBytes), achieving a reduction to 1.4 millionth of the original
size. Transmission of the summaries takes ~20mins once the
AUV has surfaced, at which point the data can be remotely
interpreted by geographically dispersed experts and operators.

I. INTRODUCTION

Recent ship-free, multi-week autonomous underwater ve-
hicle (AUV) imaging surveys [1] highlight an opportunity
for flexible, remote interpretation of seafloor image datasets.
This would allow camera-equipped AUVs to be re-tasked in a
similar way to the gliders and Argo floats [2], [3] that transmit
physical oceanographic datasets and receive mission updates
during planned surfacing intervals. However, global communi-
cation networks like Iridium (2.4 kbit/s) cannot transmit multi-
gigabyte datasets from camera surveys due to bandwidth lim-
its. Faster satellite networks, e.g., Starlink and VSAT achieving
10 Mbit/s to 100 Mbit/s, need large antennae (0.5 to 2 m) that
cannot be easily adapted for submersible pressure tolerance.
Alternative channels like acoustic, optical, mobile and wifi
networks offer speeds from 10kbit/s to 20 Gbit/s but require
specialised infrastructure to be installed within hundreds of
meters to kilometers. As such, wireless transmission of large
image datasets is likely to remain impractical in most of the
ocean for the foreseeable future.

One way to enable remote awareness over low-bandwidths
is to analyse images on the fly using pre-programmed classi-
fiers [4]-[7] and transmit classified outputs via Iridium [8],
[9]. A limitation is that outputs are constrained to fixed
classification schemes, which may be challenging to define
prior to multi-week AUV deployments in diverse environ-
ments. Furthermore, varying environmental and operational
conditions (e.g., water clarity, lighting, altitude) limit the
robustness of classifiers [10], making it difficult to trust outputs
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without access to viewable images for validation. More gen-
eral approaches include curiosity [11], scene-complexity [12],
anomaly [13] and topic [14] based interpretation that have been
used for adaptive path planning of AUVs. Kaeli et al., [15]
demonstrated online summaries (representative images and
cluster grouping) for acoustic transmission of compact seman-
tic summaries during camera surveys. Their approach used lo-
cal binary patterns (LBP) to extract image features, with online
clustering and cluster representative image identification that
allowed clusters to be merged into classes.

This research builds on recent advances in self- and semi-
supervised learning [16], [17] to generate flexible remote
awareness of seafloor images over low communication band-
widths. The contributions of our method are:

o Generation and transmission of georeferenced latent rep-
resentation spaces (i.e., characteristic features) of large
numbers of newly acquired images

o Identification and transmission of dataset (i.e., latent
space) representative images to enable flexible remote
classification of received latent representations

Advantages over methods that directly transmit classification
results are that labelling schemes can be decided after re-
viewing representative images, which is useful for exploration
where classification schemes and criteria may be hard to de-
cide upfront. The approach also allows multiple classification
schemes to be applied to the same latent representations, which
allows for generation of various semantic maps tailored to dif-
ferent survey goals. The method also improves the robustness
to environmental and operational variables, since it correlates
classes to characteristics of the acquired images as opposed
to pre-defined thresholds. Unlike cluster-based methods where
boundaries are constrained by cluster definitions (which might
not suit the desired classification scheme), this approach
allows for more precise class delineation based on the actual
data. We demonstrate our approach with results of remote-
awareness achieved during field trials using the University of
Southampton’s Smarty200 AUV. A 140 GByte image dataset
was summarised in ~100 kByte of image-derived information,
consisting of 1500 georeferenced latent representations and 16
compressed representative images. This allows interpretation
tasks (e.g., classification) to be completed in tens of minutes
of an AUV surfacing, allowing for timely adjustments of
operational parameters and data-informed re-tasking between
AUV dive cycles without the need for physical recovery or
any additional support infrastructure.



II. METHOD

Our method adapts the semi-supervised workflow presented
in [16], which achieves state-of-the-art performance for off-
line classification of geo-spatial imagery. In offline semi-
supervised workflows, the process begins with self-supervised
feature learning, where a neural network is trained to embed
images into a compact latent representation space with com-
pression ratios between 1072 to 1076, This space captures the
diverse characteristics of the dataset, with the key advantage
being that networks can learn intrinsic patterns from unlabelled
images. Next, a subset of labelled images is used to correlate
labels with regions of the latent representation space. This
allows the entire dataset to be classified. Equivalent perfor-
mance to supervised learning can be achieved using orders
of magnitude fewer human-labelled image examples. Optimal
performance is usually achieved when the dataset being clas-
sified is also used for feature learning, after pre-processing to
reduce the effects of colour attenuation, scale variation, and
geometric distortions on image appearance [18]. Classification
performance can be further enhanced by selecting images for
human labelling that represent diverse regions of the latent
representation space. This approach maximises the value of
each labelled image [17].

Fig. 1 (top) illustrates the traditional off-line workflow, dif-
ferentiating between purely automated tasks (machine) of im-
age pre-processing, feature learning and representative image
identification, from the manual labelling of identified images

(human). Fig. 1 (bottom) illustrates the proposed remote on-
line workflow. The main on-line workflow constraints are:

o Self-supervised feature learners cannot be trained on the
target dataset as training typically takes several hours to
days on a workstation. Instead, existing datasets pre-train
the feature encoder to generate the georeferenced latent
representations for low-bandwidth transmission.

o Labelling to correlate classes with regions of the latent
representation space requires identification of a dataset
representative image subset that is sufficiently small for
low-bandwidth transmission.

For the first point, previous studies [16] have shown that
generic training datasets have limited effectiveness for inter-
pretation of seafloor imagery. Performance improves when
images in the dataset used to pre-train feature learners have
similar appearance to the interpretation targets [19]. For repeat
surveys, this may be a simple as using previous site survey
data, but even in this case it is important that camera, lighting,
imaging altitudes and water turbidity conditions are simi-
lar [10]. In [19], the authors showed improved classification
performance by pre-processing images (through colour and
geometric correction) collected with different hardware and
under varying acquisition conditions before using them for
feature learning. In scenarios such as exploration where image
appearance is difficult to predict, it may be possible to prepare
an ensemble of feature encoders and use dataset similarity
metrics [20] to determine the most appropriate encoder to
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Fig. 1: Off-line and proposed remote on-line classification workflows. The top illustrates state-of-the-art off-line workflows,
where large image datasets retrieved via a cable after physical robot recovery are used to train self-supervised machine learning.
Typical timescales for sub-processes illustrate the delay to classification result availability. The proposed on-line framework uses
pre-trained encoders to create compact feature representations of newly acquired images and identifies a dataset representative
image subset. Transmitting these image derived summaries via AUV compatible satellite services allows for flexible remote
interpretation within tens of minutes of the AUV surfacing, without the need for physical recovery or additional infrastructure.



embed the latent representation space. Other considerations
for remote awareness are that encoding images to the latent
representation space must be fast enough for realtime pro-
cessing with onboard processors, and sufficiently compact to
send sufficient numbers of representations to capture spatial
distributions in the remotely generated semantic maps.

For the second point, kernel based methods such as Support
Vector Machines (SVMs) and Gaussian Processes can effi-
ciently model the correlation between class labels and different
regions of the latent space. However, this can only be done
if humans can review images of sufficient quality to identify
unique class characteristics. Our approach identifies images
that sample different regions of the latent representation space
using k-means clustering, identifying each cluster’s central
image for compression and transmission over Iridium short
burst data (SBD) messages. The BPG image compression
format [21] is used to fit each image into the SBD message
size of 1.96 kBytes. Since compressed image sizes cannot be
accurately predicted, we apply a range of compression ratios to
each identified image, and transmit each representative image’s
largest BPG compression that remains below 1.96 kBytes. The
k-means clustering results, used to identify the representative
images, can be visualised prior to any manual labelling to
understand spatial patterns. Once labels are assigned to the
representative images, a SVM with a radial basis function
(RBF) kernel is used to classify all the transmitted latent
representations and generate a corresponding semantic map.
Key advantages of this approach are that class boundaries are
not limited to the cluster boundaries, and since the location of
representative images in the latent space is known, processing
can take place using only the transmitted information. This
allows multiple different classification schemes to be applied
without further interaction with the AUV. Additional consider-
ations include whether the compressed images retain enough
information for humans to accurately determine class labels,
and whether the available images are sufficiently diverse and
numerous to capture the desired level of semantic detail. The
computational time required to identify and compress the
representative images using onboard vehicle processors also
needs to be taken into account.

III. EXPERIMENTS WITH SMARTY200

We demonstrated the method using the University of
Southampton’s Smarty200 AUV during sea trials at the Stud-
land bay Marine Protected Area (MPA) in September 2023.
The MPA is a shallow seagrass meadow located off the coast
of Dorset, UK. The AUV (see table I) is equipped with a 12M
pixel strobe illuminated camera and gathered images along a
1km long transect around 10 eco-moorings that have been
installed to protect the seagrass from anchor damage. The dive
duration was 1h 7min, and a total of 4007 images (140 GB)
were gathered from a low target altitude of 1.0m, set due to
poor visibility conditions. The remote awareness framework
was initiated when the AUV surfaced after the dive.

Images were processed using the AUV’s onboard CPU and
generated summaries were sent using Iridium SBD messages.

Fig. 2: Smarty200 is a 200m depth rated seafloor imaging
AUV equipped with a strobe illuminated camera and line laser
scanning system. It operates at altitudes of 1 to 3m to gather
mm-resolution seafloor images and bathymetry.

TABLE I: Smarty200 system specifications

Length, mass

Endurance, range, depth
Main CPU

Mapping speed, altitude range
Swath, resolution

2.0m, 70kg (in air)

12h, 12km, 200 m (max.)
Intel i7-4700-EQ (2.4GHz)
0.3m/s, 1 to 3m

1.5m to 4.5m, <l mm

3D imaging Recon LS 12M pixel camera
500,000 Lumen LED strobe
Line laser for bathymetry

Navigation Sprint Nav Mini DVL-INS

USBL (Avtrak Nano)

Micron scanning sonar

Acoustic (Avtrak Nano in water)
Wifi, Iridium (at surface)

Obstacle avoidance
Communication

Feature encoding was performed using the Location-Guided
Autoencoder (LGA) [16], [18], [22]. The LGA architecture is
based on the AlexNet convolutional neural network (CNN),
which takes 227x227 pixel images as input and has a for-
ward path of 0.71 GFLOP to encode each image into a 16-
dimensional latent representation space. The LGA encoder was
pre-trained using images gathered during a previous survey of
the same region that used a different camera setup [23]. These
were pre-processed to correct for light attenuation, geometric
distortion and were rescaled to a fixed pixel resolution of
5 mm/pixel based on vehicle altitude and the camera’s field of
view. Newly acquired images were pre-processed in the same
way as the training data, which required a further 45 MFLOP
of onboard computation following the method in [19].

Table II summarises the key parameters of the trials. A
total of 1500 images were randomly sampled on mission
completion, pre-processed and encoded. The total number of
images was chosen to balance the number of data points in the
semantic maps, where a larger number is desirable to better
understand seafloor spatial distributions, and the time taken
to generate the summaries onboard Smarty200’s CPU (10 min
33s, averaging 0.42s/image) and transmit over satellite. 16
representative images were identified by applying k-means
clustering to the latent representation space, where k=16.



TABLE II: Summary of remote awareness field trials

Imaging Survey

Images acquired 4,007
Distance travelled 1.04 km
Duration 1h 7 min
Raw image dataset size 140 GBytes
On-line Summary Generation
Latent representations 1500

Pre-processing & encoding 10 min 33 s (0.42 s/image)
Representative images 16
Rep. image ID & BPG compression 48s (3 s/image)
Total time to generate summary 11min 20s
Summary Transmission

Iridium SBDs (Latents: Rep. images) 51 (35:16)
Time to transmit summaries ~17 min
Transmitted data size 102 kBytes

The images closest to each cluster centroid were chosen and
compressed using the BPG format. This number of images
was chosen considering the total time taken for processing
and satellite transmission. Clustering to identify 16 images
and compression to ~2 kBytes BPG format took 48 s onboard
Smarty200’s CPU.

The summarised information (i.e., 1500 latent image repre-
sentations and 16 representative images) totalled 102 kBytes,
representing a size reduction of 1400000:1 compared to the
raw images. This was packed into 51 Iridium SBDs using the
DCCL v4 protocol, where 35 SBDs contained latent image
representations (i.e., 43 image latent representations per SBD),
and 16 SBDs contained representative images (i.e., 1 BPG
image per SBD). The time required to generate (11 min 205s)
and transmit (~17 min) the summaries totalled 28 min 20s,
which is broadly similar to the time spent by Argo-floats and
gliders at the surface. Once received, representative images
were labelled according to the classification scheme described
in [23]. The human effort required to assign labels to the 16
images is small, and the computation to train and infer class
boundaries requires just a few minutes on a standard laptop
for datasets of this size.

IV. RESULTS AND DISCUSSION

Figs. 3 to 5 show the results of the remote awareness, where
the same colour scheme has been used across the figures. Fig. 3
(left) shows a semantic map generated using the 1500 latent
image representations and the location of the 16 representative
images. The representative images are shown in Fig. 4, where
even at high compression sufficient detail is preserved to
identify unique class characteristics. The corresponding 2-
dimensional t-SNE projection of the 16-dimensional latent
representation space is shown in Fig. 5 (top). Fig. 3 (right)
shows the semantic map generated after manual labelling of
the 16 representative images. Fig. 4 shows the manual labels,
where each representative image appears under the class label
(coloured text box) assigned during our experiments. The
results of the SVM-RBF classifier are shown in the latent
representation space in Fig. 5 (bottom).

The pie chart in Fig. 3 (right) illustrates the site’s unbal-
anced class distribution, with “sand” comprising just 1.6 % of

the dataset while “seagrass 80-100 %” accounts for 36.5 %.
Despite this, the method successfully identify a subset of
representative images that evenly populates each class. This
would not be the case if images were naively sampled (e.g.,
random or spatially stratified) for transmission. The reason for
this can be seen in Fig. 5, where classes such as “algae & rock”
(11.7 %) and “water column” (0.3 %), which were taken during
the AUV’s initial descent, form clusters in different regions of
the latent representation space from the rest of the dataset. On
the other hand, the classes from “sand” to “seagrass 80-100 %”
form a continuum of increasing seagrass cover over a sandy
substrate. The continuous nature can be seen with these classes
forming a sequence of increasing seagrass cover in the t-SNE
representation. Unlike methods that send clustering results for
merging into relevant classes, the SVM-RBF classifier is not
limited to delineate along the cluster boundaries as it considers
distances between image representations in the latent space
and the provided labelled examples. This is noticeable in
Fig. 5, in particular representative image N lies on the edge
of the class boundary between sand and “seagrass 0-20 %”.
Closer inspection of Fig. 4 shows that while the image was
manually classified as sand, a few seagrass shoots are present
in the image. Advantages over pre-programming classifiers on-
board AUV processors is that multiple different classification
schemes can be applied, and the ability to view images and
review labels increases trust in the semantic outputs.

A limitation of this approach is that the images used to
train the latent space encoders are not guaranteed to be
similar in appearance to the real-time acquired data. However,
since the pre-trained models do not delineate class boundaries
directly, but instead compress images into low-dimensional
latent vectors, as long as features in the acquired data can
be distinguished in the latent representation space, appropriate
labels can still be assigned by humans reviewing the dataset
representative images. This maintains flexibility and robust-
ness over having pre-trained classifiers that assume appro-
priately matched and calibrated labelling schemes. Another
limitation is that while the BPG compression preserves much
of the detail in images (smaller than 2 kBytes) degradation of
finer textures in the images potentially limits the ability to
identify unique class characteristics, and the limited number
of representative images means that only relatively simple
classification schemes can be used.

Increasing the size of the summaries (e.g., larger numbers of
latent image representations, more representative images, less
compressed representative images) is possible. Since AUVs
typically takes images at lower than 1 Hz to allow their strobes
to recharge, pre-processing and encoding latent feature spaces
can be achieved in realtime to generate latent representations
of all acquired images. However, it takes ~20s to transmit a
single SBD message and transmission can only be achieved
once the AUV has surfaced. Increasing the number, or quality
of representative images also increases the time spent at the
surface to transmit the compressed images. Furthermore, the
current approach to identify dataset representative images
requires dataset acquisition to have been completed. While



e A
eB
eC
eD
E
° {Fa 50.646
o H ® Water column
e | @ Sand
e/ © Algae & Rock
: E Seagrass 0-20%
® Seagrass 20-40%
: m 1°0° o Seagrass 40-60%
®0 ® Seagrass 60-80%
eP — ® Seagrass 80-100%
O Rep. images et O Rep. images
109 OMoorings L.° 00 _200m [0  5m [J Moorings
-1938 -1936 -1934 1932 -1938 -1936 -1934 -1932

Fig. 3: Semantic maps generated from satellite transmitted summaries of a box survey around eco-moorings at the Studland
bay MPA. The left shows locations of the 1500 latent representations and 16 representative images, where colour has been
assigned according to intrinsic grouping of regions in the latent space. The pie chart shows the relative occurrence of the types
of scene imaged by the robot. The right shows results after classification based on manually labelling of representative images.

Water column Sand Algae & Rock Seagrass 0-20%
(O, P) (M, N) (E,F) _ (K, L)

Water column

Seagrass ]
80-100% (A, B) Q on

S

(G, H) (1. J) (C, D)

: - Fig. 5: 2-dimensional t-SNE projections of the 16-dimensional

Fig. 4: 16 satellite transmitted representative images. Each latent representation space. The top shows k-means groupings
image is 350x350 pixels with a resolution of 0.5 mm/pixel. used to determine dataset representative images (circles). The
The BPG format is used to compress each image to smaller bottom shows results of the SVM-RBF classifier trained on
than 2 kBytes. the manual labels assigned to the 16 representative images.

Seagrass 20-40% I I Seagrass 40-60% || || Seagrass 60-80% ISeagrass 80-100
(A, B)

NS s
i o O 40-60% (, J) n—szfmgégsr(alzsu

- e .S.eag « o -
rass
60-80% (C, D) o o
Seagrass Sand
. 20-40% (G, H) (M, N)
Algae & Rock
(E.F)




improvements in efficiency are possible by scheduling part
of the processing to happen during acquisition or during the
AUV’s ascent from depth, communication bottlenecks mean
that increased summary sizes inherently increase transmission
time, and so the operational risks of the surface environment
must also be considered.

V. CONCLUSION

Flexible remote awareness of seafloor imagery can be
achieved over low communication bandwidths by combining
self-supervised feature learning encoders with remote semi-
supervised classifiers. Our field trials demonstrate this by
processing 140 GBytes of seafloor imagery to generate a
102kByte dataset summary that can be transmitted over the
Iridium satellite network in ~17 mins. This represents a 105
reduction in data size. Our result show that despite the large
reduction in data volume, semantic maps and representative
images can allow operators and experts to understand charac-
teristic patterns of spatial distribution on the seafloor within
tens of minutes of an AUV surfacing, without the need for
physical recovery or proximity to the AUV. This approach
can be used to better manage long-endurance AUV imaging
missions, and has potential use in multivehicle deployment
scenarios, where vehicles often end up queued and immediate
recovery is not possible. Although we have demonstrated
dataset summarising, the same framework could be adapted to
return images that fit a particular target description (e.g., search
missions), or images that are anomalous (e.g., in exploration).
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