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ABSTRACT: Both microplastics and phytoplankton are found together in
the ocean as suspended microparticles. There is a need for deployable
technologies that can identify, size, and count these particles at high
throughput to monitor plankton community structure and microplastic
pollution levels. In situ analysis is particularly desirable as it avoids the
problems associated with sample storage, processing, and degradation.
Current technologies for phytoplankton and microplastic analysis are limited
in their capability by specificity, throughput, or lack of deployability. Little
attention has been paid to the smallest size fraction of microplastics and
phytoplankton below 10 μm in diameter, which are in high abundance.
Impedance cytometry is a technique that uses microfluidic chips with
integrated microelectrodes to measure the electrical impedance of individual particles. Here, we present an impedance cytometer
that can discriminate and count microplastics sampled directly from a mixture of phytoplankton in a seawater-like medium in the
1.5−10 μm size range. A simple machine learning algorithm was used to classify microplastic particles based on dual-frequency
impedance measurements of particle size (at 1 MHz) and cell internal electrical composition (at 500 MHz). The technique shows
promise for marine deployment, as the chip is sensitive, rugged, and mass producible.
KEYWORDS: microplastics, phytoplankton, impedance cytometry, impedance spectroscopy, machine learning, lab-on-a-chip

Microplastics are particles and fibers of plastic of millimeter
scale and below. Microplastic pollution in the ocean is a
growing concern as there is potential for wide ranging negative
effects on the marine ecosystem and human health.1,2

Estimates of the levels of microplastic pollution vary and
depend on the sampling and analysis technique used. There is
estimated to be up to 21 million tons of the three most
common microplastics polyethylene, polypropylene, and
polystyrene in the top 200 m of the Atlantic alone within
the size range of 32−651 μm.3 Little is known about
microplastics smaller than 25 μm in diameter due to a lack
of available techniques capable of measuring microplastics of
this size range.
Microplastics are found suspended in seawater among a

variety of other microscopic particle types including inorganic
particles such as sand and silt, zooplankton, eggs, and
phytoplankton, which are in particularly high abundance.
Phytoplankton are a diverse set of microscopic photosynthetic
organisms which form the base level of the food web in the
ocean and are responsible for almost 50% of primary
production on earth.4 The health, composition, and quantity
of phytoplankton in the ocean have far-reaching consequences
for the global carbon cycle and ecosystems. Currently, there is
concern about the changing composition of phytoplankton
communities in response to human-induced climate change5

showing an increased rate of turnover and an unstable
community structure.6

There is a need for technologies which can identify, count,
and size microplastics and phytoplankton in seawater. The
ability for such technologies to perform in situ analysis is
particularly desirable to allow deployment on automated
vehicles, which are increasingly being used for oceanic surveys.
Currently, there are a range of analytical techniques used to
analyze microplastics and phytoplankton. Standard microscopy
allows visual classification of particles and is affordable and
accessible but has a low throughput and relies on user
experience.7 Scanning electron microscopy allows identifica-
tion of the smallest particles but has a very low throughput and
is difficult to deploy in the field.8 Fourier transform infrared
spectroscopy (FTIR) uses the mid-infrared absorption
signature of plastics to identify material, typically collected
on a filter. The technique is label-free and specific but is
expensive and time-consuming. Imaging FTIR allows individ-
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ual particles to be identified but is limited to particles above 10
μm in diameter.9 Raman spectroscopy also allows label-free
identification of microplastics and can theoretically identify
particles down to 1 μm in diameter.10,11 Raman spectroscopy
can be used as a complementary technique to FTIR but suffers
from the same drawbacks of low throughput and limited
deployability when in a conventional microscopy format.
Raman spectroscopy has been used in combination with
holographic imaging in a deployable format to identify 3 mm
plastic pellets suspended in water without the need for filter
collection.12 Conventional flow cytometry offers an alternative
method for analyzing particles from optical scattering and
fluorescence signals. Thousands of individual particles can be
analyzed per second by flowing them rapidly through a laser
beam providing information on particle size and pigment
content. Standard benchtop flow cytometers have been used
onboard ship13 as well as specialized deployable cytometers.14

Phytoplankton are identified by intrinsic fluorescence from
photosynthetic pigments, while microplastic identification
relies on highly multidimensional analysis15 or prestaining
with a fluorophore such as Nile red16,17 which is challenging in
situ. Imaging flow cytometry has been widely used for
identification and enumeration of phytoplankton in situ,18

but there are limited image analysis techniques available for
microplastics without additional identification markers.19

Impedance cytometry is a potential technique that can be
used for the analysis and quantification of microplastics and
phytoplankton. Impedance cytometers measure the size and
electrical properties of individual particles or cells,20,21 and this
information can be used for discriminating microplastics from
phytoplankton or potentially discriminating between individual
species of phytoplankton.22 Chip-based impedance cytometry
is advantageous for ocean sensing as it allows high-throughput,
label-free single particle analysis and importantly can be easily
miniaturized and ruggedized for the in-field analysis. It also
avoids the need for bulky and complex sheath flow-based
hydrodynamic focusing.23 Early work in the field demonstrated
that impedance spectroscopy combined with fluorescence
could size and classify selection phytoplankton.24 Sui et al.
used multifrequency impedance cytometry to track cell health
in response to changing medium salinity.25 de Bruijn et al. used
impedance opacity measurements to discriminate between
calcified and decalcified coccolithophores.26 Two-frequency
impedance spectroscopy has also been used to quantify
hundreds of microplastics and biological particles in fresh
water in the 200−1000 μm size range.22 However, the smaller
size range of phytoplankton and microplastics below 10 μm is
more difficult to characterize by impedance cytometry. In
addition, most techniques analyze the sample in low
conductivity media, which limits direct sampling from the
ocean.
In this work, we demonstrate a significant step toward using

impedance cytometry to discriminate microplastics from
phytoplankton directly in seawater. A novel impedance
cytometry chip and a protocol are used to quantify
microplastics in a mixed culture of phytoplankton using dual-
frequency impedance measurements and simple machine
learning algorithms. This method targets the yet uncharac-
terized size fraction of 1.5−10 μm particles in a full
conductivity seawater medium (≈3 S/m). We also identify
some of the challenges and limitations associated with using
impedance to identify particles and discriminate between

phytoplankton species in a complex mixture, such as seawater,
with an example analysis of a sample of dock water.

■ DEVICE DESIGN AND MEASUREMENT PRINCIPLE
The device design, fabrication, and measurement principle
have been previously described in detail by Spencer and
Morgan.21 The microfluidic chip is shown in Figure 1a, and the

measurement concept for impedance cytometry is shown
conceptually in Figure 1b. A microfluidic channel is formed
from two glass wafers with a layer of patterned photoresist
inbetween, with pairs of parallel facing microelectrodes on the
roof and floor of the channel. Seawater containing particles
flows through the microfluidic channel, and an AC voltage is
applied to the electrodes. The electric current passing between
opposing electrodes is measured differentially using a lock-in
amplifier. A particle flowing along the channel between the
electrodes disturbs the flow of electrical current, and the
amplitude and the phase of the current change correspond to
the complex impedance of the particle. The chips used in this
work use nine pairs of parallel facing electrodes which produce
a multipeak impedance signal as previously described in the
literature.27 This allows the position and velocity of the particle
in the channel to be measured which is then used to normalize
the impedance signal and improve measurement precision.
The impedance of a single particle at multiple discrete
frequencies is measured simultaneously using a multichannel
lock-in amplifier allowing for high-throughput single-cell
impedance spectroscopy. Phytoplankton cells and micro-
plastics exhibit distinct impedance spectra due to their
structure, and this information can be used to classify particles.
Specific frequencies can be used to probe distinct electrical
properties of particles. In high conductivity media (seawater)
at low frequencies (0.5−10 MHz), impedance is a direct
measure of particle volume for both phytoplankton cells and
microplastics. At intermediate frequencies (10−200 MHz), the
impedance of cells is dominated by membrane capacitance,
while at high frequencies (>200 MHz), the signal from a cell is
dictated by internal conductivity and the electrical properties
of any organelles. By comparison, microplastics are solid
objects with a fixed value of electrical permittivity and
conductivity.
High-performance lock-in amplifiers are capable of taking

single-particle impedance measurements at 8 or more
frequencies simultaneously over a broad frequency range;
however, performing such multifrequency measurements on a

Figure 1. (a) Plan view photograph of a glass microfluidic chip. (b)
Schematic cross section of a microfluidic channel showing the
simplified measurement principle for multifrequency impedance
cytometry.
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marine deployment poses challenges. The drive voltage must
be split between each channel, which lowers the signal-to-noise
ratio; a high data transfer rate and large capacity data storage
are required. Such multifrequency lock-in amplifiers are also
expensive, bulky, and difficult to ruggedize. A simpler approach
is to carefully select two optimal frequencies to classify
particles. A low-frequency signal was used to size particles, and
a high-frequency signal was used to identify differences in
internal electrical properties.

■ MATERIALS AND METHODS
Phytoplankton and Microplastic Samples. Monodisperse

phytoplankton cultures of Isochrysis galbana (IG), Chlorella vulgaris
(CV), Porphyridium purpureum (PP), and Synechococcus sp. (SY) were
purchased from the Culture Collection of Algae and Protozoa (Oban,
Scotland). The cultures were grown in an incubator at 18 °C under
warm white (3000K) LED light at an irradiance of 1.6 mW/cm2 with
a day/night cycle of 12/12 h. IG, CV, and PP were grown in the f/2
medium28 and SY in the L1 medium.29 The phytoplankton cultures
contained predominantly one type of phytoplankton, as verified by
visual inspection and size measurement under a microscope. All
cultures showed some evidence of coliving bacteria or cyanobacteria
but still contained a high proportion of the species of interest. Two-
week-old cultures were used for the impedance cytometry experi-
ments. Plastic calibration beads were used to simulate microplastics. A
sample of microplastics was prepared by mixing a range of calibration
beads made of both polystyrene (diameter 2,3,5 μm) and PMMA
(diameter 8 μm) (Merck, Germany) in f/2 media.
Impedance Cytometry. Microfluidic impedance cytometry chips

were fabricated as described in detail elsewhere.30,31 In brief, platinum
microelectrodes were first patterned onto 6 in. glass substrates.
Microfluidic channels were patterned using a 15 μm thick negative
photoresist (Perminex 2000, KayakuAM, USA) layer on the base
substrate, which was aligned and bonded to the top substrate using a
thermal bonder (EVG 620TB, EV group, Austria). An automated
scriber was used to dice individual chips. Fluidic input and output
access holes were drilled into the top substrate by laser machining
(Epilogue Fusion edge 40W, Epilogue USA). The input and output
fluidic tubing connections were made to the chip using a clamp-on
tubing manifold shown in Figure S2. Electrical connections were
made to the chip electrode pads by using contact spring pins. Samples
were transferred into a syringe and immediately flowed through the
microcytometer at 30 μL/min. Particle impedance was measured
using a custom PCB front-end amplifier and a digital lock-in amplifier
(UHFLI, Zurich instruments). A 4 Vpk‑pk excitation signal was used,
and data were recorded at 230 ksamples/s.
Population-Averaged Impedance Spectra. The method for

obtaining population-averaged impedance spectra using microfluidic
cytometry has previously been described in detail.21 The population-
averaged impedance spectrum of I. galbana in the f/2 medium was
taken by measuring the average impedance for 10000 cells at
incremental excitation frequencies between 250 kHz and 550 MHz.
For each measurement, a reference impedance measurement was also
made at 80 MHz from a population of 5 μm diameter polystyrene
beads mixed in with the sample in order to track baseline drift. Fitting
of a double-shell electrical model32 to the experimental data was
performed by minimizing the mean square error between the
analytical model and the experimental data using the MATLAB
function “pattern search”.
Dual-Frequency Impedance Cytometry of Monocultures

and Mixed Samples. The impedance cytometry apparatus is shown
in Figure S2. Dual-frequency impedance analysis of samples was
conducted at 1 and 500 MHz simultaneously. Immediately before
microcytometry analysis, all samples were filtered through a 40 μm
diameter pore size cell strainer. To allow size calibration of each
monodisperse sample, 2 μm diameter polystyrene calibration beads
were mixed into each sample to produce a final concentration of 100
beads/μL. To acquire training data for KNN classification, the dual-
frequency impedance of individual particles in monodisperse samples

was recorded to build a training library with a minimum of 3000
particle signals for each class. The concentration of cells in each
monodisperse sample was calculated from these impedance cytometry
data by gating out cell populations. A mixed culture of phytoplankton
and microplastics was prepared by mixing each monodisperse sample
of microplastics: I. galbana: C. vulgaris: Synechococcus: P. purpureum
stock samples, respectively, at an equal volumetric ratio. In the mixed
culture, the final concentration of 2 μm beads was increased to 200
beads/μL to enhance the 2 μm bead peak for calibration. The
conductivity of the mixed culture medium and monocultures was
measured at 2.9 S/m on a Horiba LAQUAtwin conductivity meter.
Machine Learning Classification of Microplastics and

Phytoplankton. The KNN algorithm used two dimensions for
classification: particle radius (cubed root of the real part of impedance
measured at 1 MHz) and particle impedance phase at 500 MHz.
Training data sets for each class were formed from the impedance
cytometry data of each monodisperse sample. Training populations of
cells or microplastics were manually gated from contour scatter plots
based on expected particle sizes. All training data sets had the same
number of data points, n = 3000. The KNN algorithm was written in
MATLAB using the standard “fitknn” function with a standardized
Euclidean distance metric, no weighting, exhaustive search method,
and default cost matrix. The number of nearest neighbors used for the
algorithm was 11 as this provided the minimum cross validation loss
(Figure S1). KNN classification accuracy was evaluated by measuring
the recovery rate for KNN classification of a mixed sample. The
recovery rate is defined as the percentage ratio of KNN classified
particle concentration against the known concentration of each
particle class added to the mixed culture.
Flow Cytometry of Dock Water. Dock water was collected from

the dock front at the National Oceanography Centre, Southampton at
high tide on 13/06/23. The sample was filtered using a 10 μm mesh
cell strainer. The impedance cytometer was used to analyze a 120 μL
sample using the standard protocol described in Dual-Frequency
Impedance Cytometry of Monocultures and Mixed Samples. The
KNN algorithm was trained as a binary algorithm to sort between
microplastics and biological particles. The phytoplankton training
data set was formed by pooling the training data for all of the
phytoplankton monocultures in a single data set representing
biological particles. The microplastic training set consisted of a
mixture of 2, 3, and 5 μm polystyrene together with 8 μm PMMA
particles. The KNN algorithm process was otherwise identical to that
used for analysis of the mixed culture. 600 μL of the dock water
sample was also analyzed on a conventional flow cytometer (Attune
Nxt, Thermo Fisher Scientific, US) to compare total particle counts.
Particle recognition was triggered from forward scatter with the
trigger threshold set to produce no triggers when a 0.2 μm filtered
sample of dock water was run through the cytometer.

■ RESULTS AND DISCUSSION
Impedance Spectroscopy of Phytoplankton. To select

two optimal frequencies for particle classification, the
population-averaged impedance spectra, for example, phyto-
plankton species, I. galbana, were measured using the
microcytometer. Cells were suspended in a seawater-like
medium (f/2 medium). Figure 2 shows the population-
averaged impedance spectra for I. galbana after normalization
using 5 μm calibration beads; further information on the
normalization procedure is detailed by Spencer et al.21 The
solid line is the best fit for a double-shell dielectric model.33

The mean dielectric properties for the cells were determined
by fitting a double-shell electrical model to the data using the
method outlined elsewhere.21,32 The cell is modeled as series
of concentric spherical shells, with each shell representing
different cellular structures with distinct conductivity and
permittivity. I. galbana is known to have a complex cellular
ultrastructure including a thick organic scale layer outside the
cell membrane approximately 100 nm thick,34 large internal
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lipid containing vesicles which can form up to 25% of the cells
dry weight,35,36 and chloroplasts and a nucleus. A double-shell
model was built with the inner core representing the cytoplasm
and lipid storage vesicles,32 next the cell membrane, and on the
outside the cell scale layer. To increase fitting accuracy, the
number of free parameters was minimized by fixing the values
for cell membrane permittivity based on literature values
measured by electrorotation32 and cell scale layer thickness
measured by SEM.34 Table 1 summarizes the fitting bounds
and the final fitted values. The dielectric properties which best
fit the experimental data match well with those measured for S.
abundans32 which also has a high internal lipid content. The
first dielectric relaxation is a result of polarization at the
interface between the cell membrane and the suspending
medium and is determined from Figure 2 as the region of
maximum gradient for the real impedance values in Figure 2 a
and at the peak of imaginary impedance in Figure 2b. The first
dielectric relaxation for I. galbana was determined to be 250
MHz. This observation indicated that impedance measure-
ments above 250 MHz would probe the internal electrical

properties of particles and allow membranous cells to be
differentiated from solid microplastics.
Impedance Cytometry of Monodisperse Samples.

Based on the data shown in Figure 2, the optimal frequencies
selected for dual-frequency impedance cytometry measure-
ments for particle classification were 1 MHz for size (volume)
and 500 MHz for internal electrical properties. Dual-frequency
impedance measurements were then made for monodisperse
cultures of phytoplankton and microplastic controls to build a
training data library for k-nearest neighbors classification
(KNN), a supervised machine learning algorithm. Figure 3
shows contour scatter plots of the impedance phase (500
MHz) against the electrical diameter (1 MHz) for each
monodisperse sample. The impedance phase at 500 MHz is
displayed in arbitrary units for relative comparison. In each
case, 2 μm diameter calibration beads were mixed into each
sample to provide a calibration reference, and the cell data
used to train the KNN model are indicated. The limit of
detection for electrical diameter was 1.5 μm, and all data points
below this threshold were discarded. The polystyrene and
PMMA microplastic controls shown in Figure 3a,b exhibit a
higher phase at 500 MHz compared to the phytoplankton
control species shown in Figure 3c−f. As expected, phase
measurement precision decreases with electrical diameter, as
can be seen by broadening of the phase distributions as
diameter decreases in all plots. Microscopy of the phyto-
plankton cultures showed evidence of small (<3 μm diameter)
biological particles mixed in with the culture, which were
positively stained for DNA, and were considered likely to be
coliving bacteria and biological debris (Figure S3). The size
and phase signal for the smallest phytoplankton species
measured are shown in Figure 3e and overlap with signals
from coliving bacteria shown in Figure 3c, d, and f. Figure 3e
also shows that the population distribution for Synechococcus
cells, which is known to have a size range from 0.5 to 1.5 μm in
diameter,37 is significantly cropped by the detection limit of the
system, and so Synechococcus cell numbers cannot be reliably
measured on this device.
Differentiation of Microplastics and Phytoplankton.

The dual-frequency impedance cytometry data from the
separate microplastic and phytoplankton samples were used
to train a KNN algorithm for the classification of microplastics
and individual species of phytoplankton. Figure 4a shows
impedance cytometry data for each monodisperse training
sample overlaid on a single scatter plot. To test the KNN
classification process, monodisperse samples were combined in
a single mixed sample at known concentrations and analyzed

Figure 2. (a,b) Experimentally measured averaged impedance
spectrum for a population of Isochrysis galbana in the f/2 medium.
The y-axis for both plots is the mean of the real and imaginary
components of the Clausius−Mossotti factor ( fCM) multiplied by the
ratio of the differential current measured for 10 000 cells and
calibration beads in the same sample. Solid lines are the best fit for a
double-shell electrical model approximating an Isochrysis. galbana cell.

Table 1. Fitted Values for a Double-Shell Electrical Model
of Isochrysis galbana Fitted to Population-Averaged
Impedance Spectra

Free Parameters Fitted Value

inner core relative permittivity (εI) 63
inner core conductivity (σI) (S/m) 1.12
inner core lipid volume ratio (LI) (%) 20%
cell membrane conductivity (σM) (S/m) 5.0 × 10−4

cell scale permittivity (εS) 13
cell scale conductivity (σM) (S/m) 9.9 × 10−3

fixed parameters fixed value reference
cell membrane thickness (nm) 5 32
cell membrane relative permittivity (εM) 6 32
cell scale thickness (nm) 100 34
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Figure 3. Dual-frequency impedance scatter plots for separate, monodisperse samples of (a) 2 μm polystyrene calibration beads, (b) microplastic
mixture of 2, 3, and 5 μm polystyrene calibration beads and 8 μm PMMA beads, (c) Isochrysis galbana with 2 μm polystyrene calibration beads, (d)
Chlorella vulgaris with 2 μm polystyrene calibration beads, (e) Synechococcus sp. with 2 μm polystyrene calibration beads, and (f) Porphyridium
purpureum with 2 μm polystyrene calibration beads. On all plots, the y-axis is the phase measured at 500 MHz and the x-axis is the electrical
diameter calculated from impedance measurements at 1 MHz. The density of scatter points is color-coded according to the legend, and contour
lines are displayed showing lines of equal density.

Figure 4. Scatter plots of dual-frequency impedance cytometry data for (a) monodisperse samples analyzed separately and overlaid on a single plot.
Each sample provides a set of 3000 training data points for KNN classification for unknown particles. (b) Scatter plot of impedance cytometry data
from 15000 particles in a single sample containing a mixture of the same phytoplankton and microplastics at known concentrations. Each unknown
particle has been individually assigned a class by the KNN algorithm. Black contour lines indicate lines of equal particle density with increasing
concentricity indicating increasing point density.
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on the microcytometer. The trained KNN algorithm was used
to classify each detected particle into one of the training
classes. Figure 4b shows the KNN classified impedance
cytometry data from the mixed sample, showing a similar
class distribution to the training data.
The accuracy of the KNN algorithm for particle

classification was evaluated using the “recovery rate” as a
metric, defined as the ratio of the KNN classified particle
concentration against the true concentration for each particle
class in the mixture. Figure 5 shows that classification overall

was accurate to within ±20% of the true concentration for all
classes except the smallest phytoplankton, Synechococcus.
Accuracy is limited partly as the scatter distributions from I.
galbana, C. vulgaris, and P. purpureum overlap to some extent.
The additional of further independent variables such as
fluorescence signals38 would be expected to increase the
accuracy of the classification process in this case. Synechococcus
was overestimated by a much larger margin of +178% which is
attributed to the k-NN algorithm misclassifying bacteria as
Synechococcus. This occurs because the Synechococcus size and
phase signal significantly overlap with the coliving bacteria
signals mixed in from the other cultures, making it appear like
there are more Synechococcus than originally added to the
mixture. The signals are likely to be similar as both bacteria
and coliving bacteria are similar in size and have an external
cell wall surrounding a plasma membrane. Any further
differences between bacteria and Synechococcus in cell structure
cannot be discerned within the current precision limits of the
system. The signal for both Synechococcus and coliving bacteria
also borders on the size detection limit of the device, making
total counts unreliable. Reducing the channel height would be
expected to improve device sensitivity, enabling smaller
particles to be measured with greater precision.
The impedance cytometer was also used to analyze a sample

of seawater taken from the docks at the National Ocean-
ography Center, Southampton, UK. To simplify the analysis, a
binary KNN algorithm was used to categorize particles in the

sample into either microplastics or biological particles. To
achieve this, the training data for all species of phytoplankton
were pooled into a single group representing biological
particles. The dock water sample was also analyzed on an
optical flow cytometer (Attune Nxt) to compare total particle
counts (see Figures S4 and S5). Figure 6 shows the impedance

cytometry data for the analysis of a dock water sample showing
the classification of the sample into microplastics and
phytoplankton using the binary KNN algorithm. The total
particle concentration measured in the sample was 176
particles/μL for the conventional cytometer and 162
particles/μL for the impedance cytometer, showing good
agreement. The concentration of each class detected by the
KNN algorithm was 12 particles/μL for microplastics and 150
particles/μL for biological particles. The sample contains a
high proportion of particles below 2.4 μm in diameter which
are likely to be cyanobacteria and bacteria (see Figures S3 and
S4). As no gold standard identification techniques for
microplastics in this size range were available, these results
could only be examined qualitatively as an example of an
analysis of a real-world seawater sample. This analysis has
identified some of the complexities associated with direct
analysis of seawater with a trained machine learning algorithm.
The process is currently unable to distinguish between
cyanobacteria and bacteria, which could make up a high
proportion of the particulate matter.
Overall, these results show that dual-frequency impedance

cytometry is capable of discriminating microplastics from
phytoplankton in a seawater-like medium and in measuring
size distribution in the 1.5−10 μm diameter range and has
some use for broad discrimination of phytoplankton species.
This work used a simplified mixture of particles of known
origin to demonstrate the principle of the technique in a
controlled environment. Seawater samples taken from the
ocean contain a complex mixture of inorganic and biological

Figure 5. Evaluation of the KNN classification accuracy of a mixed
sample of phytoplankton and microplastics. The recovery rate is the
ratio of the KNN classified particle concentration against the true
concentration of each particle class added to the mixed sample.

Figure 6. Scatter plot of dual-frequency cytometry data for a sample
of dock water from the National Oceanography Centre, Southampton
Docks. A binary KNN algorithm was used to classify the particles into
microplastics and phytoplankton. Black contour lines indicate lines of
equal particle density with increasing concentricity indicating
increasing point density.
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particles with multiple species of phytoplankton sometimes of
unexpected origin. This analysis did not include character-
ization of suspended silt particles, which as solid dielectric
particles may have similar high-frequency impedance proper-
ties to plastic particles. Silt can be excluded from samples by
density-based separation of the sample before impedance
cytometry.39,40 Microscopic bubbles may also exhibit impe-
dance signals similar to those of solid particles. In our
experiments, care was taken to avoid the introduction of
bubbles into the sample during handling, and no significant
inclusion of bubbles in the samples was detected (see Figure
S5). The method could be used to analyze real seawater
samples in the future by further training with additional model
species or the application of unsupervised machine learning
techniques. The technique also used a benchtop lock-in
amplifier which can be replaced by a bespoke lock-in amplifier
for deployment.

■ CONCLUSIONS
We have demonstrated the use of dual-frequency impedance
cytometry to discriminate between microplastics and four
plankton species in a seawater-like medium at a particle size
range below 10 μm. Measurement of the impedance spectrum
of the model phytoplankton Isochrysis galbana showed a
dielectric relaxation above 250 MHz. Based on these data, an
impedance cytometry technique was developed where
thousands of microplastic particles could be differentiated
from phytoplankton using dual-frequency impedance measure-
ments at 1 and 500 MHz, representative of particle size and
internal electrical composition, respectively. A simple machine
learning algorithm based on k-nearest neighbor classification
allowed identification of microplastics and phytoplankton
above 2 μm in size within ±20% of true concentration in a
mixed culture of phytoplankton. The device was also used for a
qualitative analysis of dock water identifying some of the
limitations of the approach and suggesting future routes for
optimization. The work presented here shows promise as a
technique to characterize the smallest size fraction of
phytoplankton and microplastics in the ocean. The chip-
based design and all electronic sensing method with simple
fluidics are highly amenable to creating a rugged deployable
device which can be used to gain an insight into the particulate
mixture in the ocean.

■ ASSOCIATED CONTENT

Data Availability Statement
Data for this publication are obtainable from 10.5258/
SOTON/D2862.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssensors.4c01353.

Comparison table of impedance cytometry devices from
the literature; further details on materials and methods:
cross validation loss and resubstitution loss of k-nearest
neighbor classification and photograph of impedance
cytometry apparatus; further results details: microscopy
analysis of monocultures used, k-NN classification
recovery rate data table, analysis of dock water sample
using a traditional flow cytometer, and bubble
identification protocol (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Jonathan T. Butement − School of Electronics and Computer
Science, University of Southampton, Southampton SO17 1BJ,
United Kingdom; orcid.org/0000-0002-2939-9014;
Email: jb3006@soton.ac.uk

Authors
Xiang Wang − School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, United
Kingdom

Fabrizio Siracusa − National Oceanography Centre,
Southampton SO14 3ZH, United Kingdom

Emily Miller − School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, United
Kingdom

Katsiaryna Pabortsava − National Oceanography Centre,
Southampton SO14 3ZH, United Kingdom

Matthew Mowlem − National Oceanography Centre,
Southampton SO14 3ZH, United Kingdom

Daniel Spencer − School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, United
Kingdom

Hywel Morgan − School of Electronics and Computer Science,
University of Southampton, Southampton SO17 1BJ, United
Kingdom; orcid.org/0000-0003-4850-5676

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssensors.4c01353

Author Contributions
J.B., D.S., and H.M. contributed to conceptualization. J.B.,
X.W., and F.S. contributed to data curation. J.B., X.W., F.S.,
and E.M. contributed to formal analysis. M.M., D.S., and H.M.
contributed to funding acquisition. J.B., X.W., and E.M.
contributed to investigation. All authors contributed to
methodology. M.M., D.S., and H.M. contributed to project
administration. K.P., M.M., D.S., and H.M. contributed to
resources. J.B., X.W., and D.S. contributed to software. D.S.
and H.M. contributed to supervision. K.P. and F.S. contributed
to validation. J.B., X.W., and F.S. contributed to visualization.
J.B. contributed to writing of the original draft and preparation.
All the authors contributed to writing of review and editing.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to thank Dr Susan Evans and Dr
Anthony Lindley for advice on phytoplankton culturing. The
authors would also like to thank Katie Chamberlain for making
the chips. This project received funding from the European
Union’s Horizon 2020 Research and Innovation Programme
under grant agreement No. 101000858 (TechOceanS). This
output reflects only the author’s view, and the Research
Executive Agency (REA) cannot be held responsible for any
use that may be made of the information contained therein.

■ REFERENCES
(1) Seeley, M. E.; Song, B.; Passie, R.; Hale, R. C. Microplastics
Affect Sedimentary Microbial Communities and Nitrogen Cycling.
Nat. Commun. 2020, 11 (1), 2372.
(2) Wright, S. L.; Kelly, F. J. Plastic and Human Health: A Micro
Issue? Environ. Sci. Technol. 2017, 51 (12), 6634−6647.

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.4c01353
ACS Sens. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c01353/suppl_file/se4c01353_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c01353/suppl_file/se4c01353_si_001.pdf
https://doi.org/10.5258/SOTON/D2862
https://doi.org/10.5258/SOTON/D2862
https://pubs.acs.org/doi/10.1021/acssensors.4c01353?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssensors.4c01353/suppl_file/se4c01353_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jonathan+T.+Butement"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2939-9014
mailto:jb3006@soton.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiang+Wang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Fabrizio+Siracusa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Emily+Miller"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Katsiaryna+Pabortsava"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Mowlem"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+Spencer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hywel+Morgan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4850-5676
https://pubs.acs.org/doi/10.1021/acssensors.4c01353?ref=pdf
https://doi.org/10.1038/s41467-020-16235-3
https://doi.org/10.1038/s41467-020-16235-3
https://doi.org/10.1021/acs.est.7b00423?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.7b00423?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.4c01353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(3) Pabortsava, K.; Lampitt, R. S. High Concentrations of Plastic
Hidden beneath the Surface of the Atlantic Ocean. Nat. Commun.
2020, 11 (1), 4073.
(4) Field, C. B.; Behrenfeld, M. J.; Randerson, J. T.; Falkowski, P.
Primary Production of the Biosphere: Integrating Terrestrial and
Oceanic Components. Science 1998, 281 (5374), 237−240.
(5) Winder, M.; Sommer, U. Phytoplankton Response to a
Changing Climate. Hydrobiologia 2012, 698 (1), 5−16.
(6) Henson, S. A.; Cael, B. B.; Allen, S. R.; Dutkiewicz, S. Future
Phytoplankton Diversity in a Changing Climate. Nat. Commun. 2021,
12 (1), 5372.
(7) Shim, W. J.; Hong, S. H.; Eo, S. E. Identification Methods in
Microplastic Analysis: A Review. Anal. Methods 2017, 9 (9), 1384−
1391.
(8) Mahon, A. M.; O’Connell, B.; Healy, M. G.; O’Connor, I.;
Officer, R.; Nash, R.; Morrison, L. Microplastics in Sewage Sludge:
Effects of Treatment. Environ. Sci. Technol. 2017, 51 (2), 810−818.
(9) Primpke, S.; Lorenz, C.; Rascher-Friesenhausen, R.; Gerdts, G.
An Automated Approach for Microplastics Analysis Using Focal Plane
Array (FPA) FTIR Microscopy and Image Analysis. Anal. Methods
2017, 9 (9), 1499−1511.
(10) Oßmann, B. E.; Sarau, G.; Holtmannspötter, H.; Pischetsrieder,
M.; Christiansen, S. H.; Dicke, W. Small-Sized Microplastics and
Pigmented Particles in Bottled Mineral Water. Water Res. 2018, 141,
307−316.
(11) Allen, S.; Allen, D.; Phoenix, V. R.; Le Roux, G.; Simonneau, A.;
Binet, S.; Galop, D. Atmospheric Transport and Deposition of
Microplastics in a Remote Mountain Catchment. Nat. Geosci. 2019,
12 (5), 339−344.
(12) Takahashi, T.; Liu, Z.; Thevar, T.; Burns, N.; Mahajan, S.;
Lindsay, D.; Watson, J.; Thornton, B. Identification of Microplastics
in a Large Water Volume by Integrated Holography and Raman
Spectroscopy. Appl. Opt. 2020, 59 (17), 5073.
(13) Bolaños, L. M.; Karp-Boss, L.; Choi, C. J.; Worden, A. Z.; Graff,
J. R.; Haëntjens, N.; Chase, A. P.; Della Penna, A.; Gaube, P.;
Morison, F.; Menden-Deuer, S.; Westberry, T. K.; O’Malley, R. T.;
Boss, E.; Behrenfeld, M. J.; Giovannoni, S. J. Small Phytoplankton
Dominate Western North Atlantic Biomass. Isme J. 2020, 14 (7),
1663−1674.
(14) Leroux, R.; Gregori, G.; Leblanc, K.; Carlotti, F.; Thyssen, M.;
Dugenne, M.; Pujo-Pay, M.; Conan, P.; Jouandet, M.-P.; Bhairy, N.;
et al. Combining Laser Diffraction, Flow Cytometry and Optical
Microscopy to Characterize a Nanophytoplankton Bloom in the
Northwestern Mediterranean. Prog. Oceanogr. 2018, 163, 248−259.
(15) Sgier, L.; Freimann, R.; Zupanic, A.; Kroll, A. Flow Cytometry
Combined with ViSNE for the Analysis of Microbial Biofilms and
Detection of Microplastics. Nat. Commun. 2016, 7 (1), 11587.
(16) Bianco, A.; Carena, L.; Peitsaro, N.; Sordello, F.; Vione, D.;
Passananti, M. Rapid Detection of Nanoplastics and Small Micro-
plastics by Nile-Red Staining and Flow Cytometry. Environ. Chem.
Lett. 2023, 21 (2), 647−653.
(17) Kaile, N.; Lindivat, M.; Elio, J.; Thuestad, G.; Crowley, Q. G.;
Hoell, I. A. Preliminary Results From Detection of Microplastics in
Liquid Samples Using Flow Cytometry. Front. Mar. Sci. 2020, 7,
552688.
(18) Kraft, K.; Seppälä, J.; Hällfors, H.; Suikkanen, S.; Ylöstalo, P.;
Angles̀, S.; Kielosto, S.; Kuosa, H.; Laakso, L.; Honkanen, M.;
Lehtinen, S.; Oja, J.; Tamminen, T. First Application of IFCB High-
Frequency Imaging-in-Flow Cytometry to Investigate Bloom-Forming
Filamentous Cyanobacteria in the Baltic Sea. Front. Mar. Sci. 2021, 8,
594144.
(19) Hyeon, Y.; Kim, S.; Ok, E.; Park, C. A Fluid Imaging Flow
Cytometry for Rapid Characterization and Realistic Evaluation of
Microplastic Fiber Transport in Ceramic Membranes for Laundry
Wastewater Treatment. Chem. Eng. J. 2023, 454 (P1), 140028.
(20) Gawad, S.; Schild, L.; Renaud, P. Micromachined Impedance
Spectroscopy Flow Cytometer for Cell Analysis and Particle Sizing.
Lab Chip 2001, 1 (1), 76−82.

(21) Spencer, D.; Morgan, H. High-Speed Single-Cell Dielectric
Spectroscopy. ACS Sens. 2020, 5 (2), 423−430.
(22) Colson, B. C.; Michel, A. P. M. Flow-Through Quantification
of Microplastics Using Impedance Spectroscopy. ACS Sens. 2021, 6
(1), 238−244.
(23) Golden, J. P.; Kim, J. S.; Erickson, J. S.; Hilliard, L. R.; Howell,
P. B.; Anderson, G. P.; Nasir, M.; Ligler, F. S. Multi-Wavelength
Microflow Cytometer Using Groove-Generated Sheath Flow. Lab
Chip 2009, 9 (13), 1942−1950.
(24) Benazzi, G.; Holmes, D.; Sun, T.; Mowlem, M. C.; Morgan, H.
Discrimination and Analysis of Phytoplankton Using a Microfluidic
Cytometer. IET Nanobiotechnol. 2007, 1 (6), 94−101.
(25) Sui, J.; Foflonker, F.; Bhattacharya, D.; Javanmard, M. Electrical
Impedance as an Indicator of Microalgal Cell Health. Sci. Rep. 2020,
10 (1), 1251.
(26) de Bruijn, D. S.; Ter Braak, P. M.; Van de Waal, D. B.; Olthuis,
W.; van den Berg, A. Coccolithophore Calcification Studied by Single-
Cell Impedance Cytometry: Towards Single-Cell PIC: POC
Measurements. Biosens. Bioelectron. 2021, 173, 112808.
(27) Spencer, D.; Caselli, F.; Bisegna, P.; Morgan, H. High Accuracy
Particle Analysis Using Sheathless Microfluidic Impedance Cytom-
etry. Lab Chip 2016, 16 (13), 2467−2473.
(28) Guillard, R. R. L.; Ryther, J. H. Studies of Marine Planktonic
Diatoms. I. Cyclotella Nana Hustedt and Detonula Confervaceae
(Cleve) Gran. Can. Can. J. Microbiol. 1962, 8, 229−236.
(29) Guillard, R. R. L.; Hargraves, P. E. Stichochrysis Immobilis Is a
Diatom, Not a Chrysophyte. Phycologia 1993, 32 (3s), 234−236.
(30) Spencer, D.; Morgan, H. Positional Dependence of Particles in
Microfludic Impedance Cytometry. Lab Chip 2011, 11 (7), 1234−
1239.
(31) Holmes, D.; She, J. K.; Roach, P. L.; Morgan, H. Bead-Based
Immunoassays Using a Micro-Chip Flow Cytometer. Lab Chip 2007,
7 (8), 1048−1056.
(32) Lin, Y.-S.; Tsang, S.; Bensalem, S.; Tsai, C.-C.; Chen, S.-J.; Sun,
C.-L.; Lopes, F.; Le Pioufle, B.; Wang, H.-Y. Electrorotation of Single
Microalgae Cells during Lipid Accumulation for Assessing Cellular
Dielectric Properties and Total Lipid Contents. Biosens. Bioelectron.
2021, 173, 112772.
(33) Morgan, H.; Sun, T.; Holmes, D.; Gawad, S.; Green, N. G.
Single Cell Dielectric Spectroscopy. J. Phys. D: Appl. Phys. 2007, 40
(1), 61−70.
(34) Chen, Y. C. Immobilized Isochrysis Galbana (Haptophyta) for
Long-Term Storage and Applications for Feed and Water Quality
Control in Clam (Meretrix Lusoria) Cultures. J. Appl. Phycol. 2003,
15 (5), 439−444.
(35) Eltgroth, M. L.; Watwood, R. L.; Wolfe, G. V. Production and
Cellular Localization of Neutral Long-Chain Lipids in the Haptophyte
Algae Isochrysis Galbana and Emiliania Huxleyi. J. Phycol. 2005, 41
(5), 1000−1009.
(36) Liu, C.-P.; Lin, L.-P. Ultrastructural Study and Lipid Formation
of Isochrysis Sp. CCMP1324. Bot. Bull. Acad. Sin. 2001, 42 (3), 207−
214.
(37) Morel, A.; Ahn, Y.; Partensky, F.; Vaulot, D.; Claustre, H.
Prochlorococcus and Synechococcus: A Comparitive Study of Their
Optical Properties in Relation to Their Size and Pigmentation. J. Mar.
Res. 1993, 51, 617−649.
(38) Spencer, D.; Elliott, G.; Morgan, H. A Sheath-Less Combined
Optical and Impedance Micro-Cytometer. Lab Chip 2014, 14, 3064−
3073.
(39) Katsumi, N.; Nagao, S.; Okochi, H. Addition of Polyvinyl
Pyrrolidone during Density Separation with Sodium Iodide Solution
Improves Recovery Rate of Small Microplastics (20−150 Μm) from
Soils and Sediments. Chemosphere 2022, 307 (P1), 135730.
(40) Quinn, B.; Murphy, F.; Ewins, C. Validation of Density
Separation for the Rapid Recovery of Microplastics from Sediment.
Anal. Methods 2017, 9 (9), 1491−1498.

ACS Sensors pubs.acs.org/acssensors Article

https://doi.org/10.1021/acssensors.4c01353
ACS Sens. XXXX, XXX, XXX−XXX

H

https://doi.org/10.1038/s41467-020-17932-9
https://doi.org/10.1038/s41467-020-17932-9
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1126/science.281.5374.237
https://doi.org/10.1007/s10750-012-1149-2
https://doi.org/10.1007/s10750-012-1149-2
https://doi.org/10.1038/s41467-021-25699-w
https://doi.org/10.1038/s41467-021-25699-w
https://doi.org/10.1039/C6AY02558G
https://doi.org/10.1039/C6AY02558G
https://doi.org/10.1021/acs.est.6b04048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.6b04048?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C6AY02476A
https://doi.org/10.1039/C6AY02476A
https://doi.org/10.1016/j.watres.2018.05.027
https://doi.org/10.1016/j.watres.2018.05.027
https://doi.org/10.1038/s41561-019-0335-5
https://doi.org/10.1038/s41561-019-0335-5
https://doi.org/10.1364/AO.393643
https://doi.org/10.1364/AO.393643
https://doi.org/10.1364/AO.393643
https://doi.org/10.1038/s41396-020-0636-0
https://doi.org/10.1038/s41396-020-0636-0
https://doi.org/10.1016/j.pocean.2017.10.010
https://doi.org/10.1016/j.pocean.2017.10.010
https://doi.org/10.1016/j.pocean.2017.10.010
https://doi.org/10.1038/ncomms11587
https://doi.org/10.1038/ncomms11587
https://doi.org/10.1038/ncomms11587
https://doi.org/10.1007/s10311-022-01545-3
https://doi.org/10.1007/s10311-022-01545-3
https://doi.org/10.3389/fmars.2020.552688
https://doi.org/10.3389/fmars.2020.552688
https://doi.org/10.3389/fmars.2021.594144
https://doi.org/10.3389/fmars.2021.594144
https://doi.org/10.3389/fmars.2021.594144
https://doi.org/10.1016/j.cej.2022.140028
https://doi.org/10.1016/j.cej.2022.140028
https://doi.org/10.1016/j.cej.2022.140028
https://doi.org/10.1016/j.cej.2022.140028
https://doi.org/10.1039/b103933b
https://doi.org/10.1039/b103933b
https://doi.org/10.1021/acssensors.9b02119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.9b02119?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c02223?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssensors.0c02223?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/b822442k
https://doi.org/10.1039/b822442k
https://doi.org/10.1049/iet-nbt:20070020
https://doi.org/10.1049/iet-nbt:20070020
https://doi.org/10.1038/s41598-020-57541-6
https://doi.org/10.1038/s41598-020-57541-6
https://doi.org/10.1016/j.bios.2020.112808
https://doi.org/10.1016/j.bios.2020.112808
https://doi.org/10.1016/j.bios.2020.112808
https://doi.org/10.1039/C6LC00339G
https://doi.org/10.1039/C6LC00339G
https://doi.org/10.1039/C6LC00339G
https://doi.org/10.1139/m62-029
https://doi.org/10.1139/m62-029
https://doi.org/10.1139/m62-029
https://doi.org/10.2216/i0031-8884-32-3-234.1
https://doi.org/10.2216/i0031-8884-32-3-234.1
https://doi.org/10.1039/c1lc20016j
https://doi.org/10.1039/c1lc20016j
https://doi.org/10.1039/b707507n
https://doi.org/10.1039/b707507n
https://doi.org/10.1016/j.bios.2020.112772
https://doi.org/10.1016/j.bios.2020.112772
https://doi.org/10.1016/j.bios.2020.112772
https://doi.org/10.1088/0022-3727/40/1/S10
https://doi.org/10.1023/A:1026071714199
https://doi.org/10.1023/A:1026071714199
https://doi.org/10.1023/A:1026071714199
https://doi.org/10.1111/j.1529-8817.2005.00128.x
https://doi.org/10.1111/j.1529-8817.2005.00128.x
https://doi.org/10.1111/j.1529-8817.2005.00128.x
https://doi.org/10.1357/0022240933223963
https://doi.org/10.1357/0022240933223963
https://doi.org/10.1039/C4LC00224E
https://doi.org/10.1039/C4LC00224E
https://doi.org/10.1016/j.chemosphere.2022.135730
https://doi.org/10.1016/j.chemosphere.2022.135730
https://doi.org/10.1016/j.chemosphere.2022.135730
https://doi.org/10.1016/j.chemosphere.2022.135730
https://doi.org/10.1039/C6AY02542K
https://doi.org/10.1039/C6AY02542K
pubs.acs.org/acssensors?ref=pdf
https://doi.org/10.1021/acssensors.4c01353?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

