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We show that the continuous time crystal state can arise in an ensemble of linear oscillators from 

nonconservative coupling via optical radiation pressure forces. This new mechanism 

comprehensively explains observations of the time crystal state in an array of nanowires illuminated 

with light [Nat. Phys. 19, 986 (2023)]. Being fundamentally different from regimes of nonlinear 

synchronization, it has relevance to a wide range of interacting many-body systems including in the 

realms of chemistry, biology, weather, and nanoscale matter. 

 

Time crystals – a state of matter with spontaneously 

broken time-translation symmetry, were introduced 

theoretically just over a decade ago [1-4]. It was 

subsequently understood that nature prohibits the 

breaking of continuous time translation symmetry in 

closed systems [5]. However, time crystals with broken 

discrete time-translation symmetry, wherein an external 

periodic force initiates spontaneous oscillation at sub-

harmonic frequency, have been experimentally realized in 

a variety of trapped ion and atom, solid state spin, and 

superconducting qubit systems [4]. Open systems that 

break continuous time translation symmetry realize the 

spirit of the original proposal more closely and represent 

a new state of matter. A continuous time crystal is a many-

body system in which continuous time translation 

symmetry is spontaneously broken into periodic motion 

in response to an arbitrarily weak perturbation via a first-

order, ergodicity-breaking phase transition 

(distinguishing it from classical oscillation phenomena). 

Such behavior has been seen in the slow oscillation 

dynamics of a semiconductor nonlinear electron-nuclear 

spin system at few-Kelvin temperatures [6]; in a strongly 

interacting Rydberg gas at room temperature [7]; and in 

an optically pumped dissipative Bose-Einstein condensate 

in an optical cavity [8]. In the latter, time-periodic light 

emission and spatially periodic atomic density emerge 

spontaneously, and the system therefore constitutes a 

continuous space-time crystal.  

These observations in quantum atomic and spin systems 

demonstrate the feasibility of the continuous (space-)time 

crystal state but do not provide “materials” suitable for 

practical applications. However, it has recently been 

shown experimentally that a simpler classical system – an 

array of dielectric nanowires decorated with plasmonic 

metamolecules (a metamaterial) undergoing stochastic 

thermal motion, can be optically driven into a state of 

robust, persistent, coherently synchronized oscillation [9]. 

Despite its physical periodicity, this array lacks spatial 

periodicity as the nanowires exhibit uncorrelated in- and 
out-of-plane thermal motion. Upon synchronization, they 

exhibit phase-locked, amplified out-of-plane motion, 

spontaneously breaking continuous spatial and temporal 

translational symmetry. As such, the system becomes a 

classical (as opposed to quantum, c.f. Refs. [1, 2]) 

continuous space-time crystal (CSTC) material, 

potentially deployable in electrooptic, timing and sensing 

applications. 

We show here that this transition to the CSTC state 

belongs to a class of phase transitions driven by non-

reciprocal forces [10, 11]. Nonreciprocal interactions in 

many-body systems are increasingly understood to 

underpin a multifarious range of emergent phenomena 

across physical and bio sciences [12-17]: For example, 

colloidal particles and enzymes exhibit non-reciprocal 

interactions when they are catalytically active; ‘chasing’ 

interactions between non-polar particles in a binary 

mixture lead to the emergence of polarity in the form self-

organized self-propelled active molecules, and among 

more than two species can introduce time-periodic 

clustering; nonreciprocal interactions can lead to novel 

phase transitions, self-organization, formation of complex 

spatiotemporal patterns accompanied by parity and time-

reversal symmetry breaking, space- and time-translation 

symmetry breaking, and spontaneous chiral symmetry 

breaking.. Of particular relevance to the present case, it 

has been shown theoretically, and in simple robotic 

demonstrations, that nonreciprocal interactions can lead 

to synchronization [11, 14, 15], which can be described in 

the framework of bifurcation theory and non-Hermitian 

quantum mechanics. 

We demonstrate here that light can be the agent of 

nonreciprocity in such transitions, leading to 

synchronization of oscillator movements, the 

establishment of spatial periodicity, and breaking of 

ergodicity in the transition to the CSTC state. Optical 

forces are generally perceived to be conservative and 

reciprocal, e.g. optical trap forces proportional to the light 

intensity gradient. However, in a non-Hamiltonian 

ensemble of oscillators, in the presence of light which 

continuously pumps energy into the system, 

nonreciprocal forces can emerge from the radiation 
pressure induced by scattered fields [18-25]. (Note here 

that ‘nonreciprocal’ refers to breaking of the action-

reaction equality, rather than the reciprocity of 
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electromagnetic field propagation introduced through the 

Lorentz and Feld-Tai lemmas [26, 27].) The 

nonconservative component can be significant in 

nanoscale systems, leading to apparent violations of the 

action-reaction equality, as illustrated in Fig. 1 for the 

simple case of two closely spaced plasmonic 

nanoparticles under continuous plane wave coherent 

illumination. When the particles are of the same size and 

aligned with their center-to-center axis parallel to the 

incident wavefront (Fig. 1a), light-induced forces acting 

on the particles along that axis are reciprocal (F1 = -F2). 

However, if they are illuminated with a mutual phase lag 

(Fig. 1b) or differ in size/shape (Fig. 1c), the forces along 

the shared axis are generally neither of equal magnitude 

nor opposite sign.  

Now consider a simplified model of the CSTC 

demonstrated in Ref. [9] - a 2D array of nanowires 

decorated with plasmonic nanorods. We will examine two 

cases: one in which all nanowires are identical (all 

decorated with the same type of plasmonic particles, Fig. 

2a); and another in which there are two alternating types 

of nanowire decorated with different nanoparticles (Fig 

2b). We assume that in the presence of light, identical 

nanowires interact reciprocally, while differing nanowires 

interact nonreciprocally, and begin by analyzing the 

motion of isolated nanowire pairs. Their thermal motion 

at non-zero temperatures is accounted for by assuming 

that they are connected to a common bath (the 

metamaterial frame) at temperature T. Such a system is 

described by the Langevin model for linear oscillators, 

with frequencies 𝜔0𝑖 , masses 𝑚𝑖  and loss parameters 

𝛾𝑖 = 𝜔0𝑖/𝑄𝑖:  

𝑥̈𝑖 + 𝛾𝑖𝑥̇𝑖 + 𝜔0𝑖
2 𝑥𝑖 + ∑𝜉𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

= √2𝑘𝐵𝑇𝛾𝑖 𝑚𝑖⁄  𝜂𝑖(𝑡) 
(1) 

where 𝑄𝑖  and 𝜂𝑖(𝑡)  are respectively quality factors and 

normalized white noise terms, and the parameter 𝜉𝑖𝑗 

describes light-induced coupling between oscillators.  

We analyze the behavior of these systems under various 

coupling conditions by numerically solving the stochastic 

differential Eq. (1) (using Heun’s method [28]; see 

Supplementary Material), taking values of 𝜔0𝑖 , 𝑚𝑖 , 𝛾𝑖 

close to those of the Ref. [9] experimental system. From 

Maxwell tensor calculations, electromagnetic forces 

acting between nanoparticles in the experimental case are 

found to be predominantly nonreciprocal (see 

Supplementary Material). However, to illustrate 

differences between reciprocal 𝜉12 =  𝜉21 =  𝜉   and 

nonreciprocal 𝜉12 =  − 𝜉21  =  𝜉∗  coupling we consider 

both cases.  

We first consider identical oscillators (𝜔01  =  𝜔02 =
 𝜔0 ; 𝛾1 =  𝛾2 ). Figure 3a shows spectra of oscillator 

positions 𝑥1(𝑡)  and 𝑥2(𝑡)  in the absence of coupling, 

calculated from 1 ms intervals of time-series data (~2000 

oscillation cycles): they identically exhibit resonances at 

the oscillators’ fundamental frequency 𝜔0 . When 

reciprocal coupling is introduced, the resonances split: for 

each oscillator, one peak remains at 𝜔0, while a ‘run-away’ 

resonance at  𝜔̃0 appears and either increasingly blue- or 

red-shifts (relative to 𝜔0 ) with increasing coupling 

strength 𝜉. While the two oscillators’ motion spectra are 

the same in the presence of reciprocal coupling, their 

movement is uncorrelated regardless to the value of 𝜉 . 

This can be seen from the persistently random variation 

of the order parameter 𝑟(𝑡) =  
1

2
𝑎𝑏𝑠{𝑒𝑖𝜑1(𝑡) + 𝑒𝑖𝜑2(𝑡) } 

as a function of time (Fig. 3d) – this being a measure of 

synchrony: a stable value of 𝑟 means that the phase lag 

𝜑1(𝑡) − 𝜑2(𝑡) between oscillations is constant and they 

are synchronized; 𝑟 = 1  corresponds to the oscillators 

moving in phase.  

In the case of nonreciprocal coupling (𝜉12 = − 𝜉21 =
 𝜉∗ ), oscillator dynamics are radically different: firstly, 

there is no resonance splitting (Fig. 3c – here, we no 

Fig. 2. Schematics of nanowire metamaterials, in which: (a) all 

nanowires are identical and thereby reciprocally coupled in the 

presence of light; (b) alternate nanowires support different 

nanoparticles, such that they can be nonreciprocally coupled 

when illuminated. 

Fig. 1. Light-induced nonreciprocal optical forces. Optical forces F1, F2 acting on a pair of spherical gold nanoparticles along their centre-

to-centre axis under illumination with x-polarized light at a wavelength of 550 nm at an intensity of 1327 µW/µm2 when the particles are: 

(a) of the same size and illuminated in phase; (b) of the same size and illuminated with a relative phase lag; (c) of different sizes. The 

specific values of parameters are as follows: (a) r1, r2 = 60 nm, d = 40 nm, F1 = -F2 = -1.5 fN, (b) r1, r2 = 60 nm, d = 40 nm, h = 40 nm, 

F1 = 30 fN, F2 = 64 fN, (c) r1 = 60nm, r2 = 40 nm, d = 40 nm, F1 = 9 fN, F2 = 5 fN. 
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longer plot separate spectra for the two oscillators, but 

rather just one of them). Instead, oscillation amplitude 

grows with increasing 𝜉∗, and the resonance narrows (see 

inset to Fig. 3c). Moreover, relative noise decreases, and 

the synchronized oscillation resembles that of a single 

oscillator with amplitude and quality factor growing with 

𝜉∗  (Fig 3c). The oscillators’ movements become 

correlated, more quickly with stronger nonreciprocal 

coupling. After an initial transition period, the order 

parameter asymptotically approaches 𝑟 =  1, as shown in 

Fig. 3e.  

Next, we consider synchronization due to nonreciprocal 

coupling between two oscillators with different natural 

frequencies, 𝜔01 =  𝜔0 − 𝛿𝜔  and 𝜔02 =  𝜔0 + 𝛿𝜔 , 

where 𝛾 ≪ 𝛿𝜔 ≪  𝜔0 . This is a case of particular 

practical importance because manufacturing tolerances in 

real time-space metamaterials inevitably lead to 

variations among nanowires’ fundamental oscillation 

frequencies.  

For reciprocally coupled identical oscillators the run-

away resonance splits (by 𝜉/𝜔0) from their shared natural 

frequency, as shown in Fig. 3b.  More generally, when the 

oscillators’ (uncoupled) natural frequencies are different, 

both resonances shift in the same direction (depending on 

the sign of 𝜉) with increasing coupling strength; one tends 

to 𝜔0  while the other keeps running. This is a 

manifestation of anti- (or avoided) crossing [29], arising 

due to the additional restoring force caused by reciprocal 

interaction, increasing the oscillation frequency. 

Synchronization of non-identical oscillators is 

achievable when coupling is nonreciprocal, but only 

above a threshold coupling strength 𝜉𝑡ℎ
∗ . Figure 4a shows 

the spectral density of relative position for a pair of 

dissimilar oscillators for various values of  𝜉∗ . In the 

absence of coupling (blue line), two peaks are seen at the 

oscillators’ fundamental frequencies. As 𝜉∗  approaches 

𝜉𝑡ℎ
∗ , the peaks shift towards one another and collapse into 

a single resonance at 𝜔0 (orange line). Further increasing 

the coupling strength leads to an exponential, orders-of-

magnitude increase in oscillation amplitude and a 

decrease in relative noise (yellow line). Synchronization 

is also manifested in the order parameter, which evolves 

rapidly (as a function of increasing coupling strength, Fig. 

4b) to a stable value corresponding to a stable phase 

difference between the oscillators (which is a function of 

𝛿𝜔).   

It should be noted here that the amplitude of 

synchronized oscillation (above the 𝜉𝑡ℎ
∗  threshold) grows 

with time. Spectra are therefore calculated from short (1 

Fig. 3. Dynamics of coupled noisy, identical, linear oscillators. (a, b) Spectral density of position for a pair of identical noise-driven 

oscillators [1 and 2] with natural frequency ω0/2π = 2 MHz, effective mass 1 pg and quality factor Q = 1000, at T = 300K in the case of: 

(a) no coupling between oscillators: 𝜉12 = 𝜉21 = 0; (b) reciprocal coupling:𝜉12 = 𝜉21 = 𝜉 = 0.05𝜔0
2; (c) Spectral density of position for 

one of two identical nonreciprocally coupled oscillators, for a selection of coupling strengths 𝜉∗ [as labelled]. The inset shows resonance 

width as a function of 𝜉∗. (d, e) Order parameter as a function of time for: (d) the reciprocally coupled system, from the moment in time 

when coupling reaches 𝜉 = 0.05𝜔0
2; (e) nonreciprocal coupling from  𝜉∗ = 0.05𝜔0

2 [the yellow trace in panel (c)]. 
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ms; ~2000 period) intervals of 𝑥1,2(𝑡) data, during which 

oscillation amplitude grows by only a few percent. In real 

systems, increasing amplitude is constrained by 

nonlinearity – in the case of doubly-clamped nanowires, 

by their mechanical or ‘geometric’ nonlinearity: when 

displacement amplitude is comparable to the thickness of 

the nanowire, the nonlinear component of restoring force 

becomes comparable to the linear ‘Hooke's law’ force [30]. 

To account for this in modelling, we add a cubic 

nonlinearity term 109𝜔0𝑖
2 𝑥𝑖

3  to the left-hand side of Eq. 1, 

which has the effect of limiting the (otherwise 

exponential) growth of oscillation amplitude at the level 

comparable to the nanowire thickness in experiments. It 

also pushes the synchronized oscillation frequency away 

from 𝜔0  towards higher frequencies (as shown by the 

purple line in Fig. 4a). The saturation of oscillation 

amplitude as a function of increasing coupling strength is 

shown in Fig. 4c, which also reveals a hysteresis in 

synchronization – an important characteristic of a first-

order phase transition.  

It must be emphasized here that the oscillators’ 

nonlinearity is not required for their synchronization, as it 

would be in other regimes (e.g. Kuramoto) that depend on 

nonlinearity [31]: it only manifests itself at large (already 

synchronized) amplitudes, as effectively a limiting 

mechanism.  

Finally, we illustrate the synchronization process for an 

array of six inhomogeneously broadened oscillators, each 

nonreciprocally coupled to their nearest neighbors. This 

demonstrates one of the most characteristic features of the 

CSTC regime – loss of ergodicity. We employ the same 

equations as above (with indices 𝑖, 𝑗 taking values from 1 

to 6). We assume 𝜉𝑖𝑗/𝜔0𝑖
2 = −𝜉𝑗𝑖/𝜔0𝑗

2 = 𝛸 × 10−3   for 

all values of 𝑖, 𝑗, and that oscillators are coupled to near 

neighbors only. (There is no coupling between the first 

and the last oscillators in the array.) We assume 

frequencies 𝜔0,1−6/2𝜋 = 1.961, 2.025, 1.979, 2.010, 

1.974, 2.023 MHz and include the abovementioned cubic 

nonlinearity term 109𝜔0𝑖
2 𝑥𝑖

3.  

At low coupling strengths, the phase space of the system 

is rich, the oscillators move stochastically, and spectra 

contain six separate peaks at different frequencies, as 

shown at the bottom of Fig. 5 (where 𝛸 = 4.0 ). With 

increasing coupling (Fig. 5a), some of the resonances 

merge and then demerge, temporarily creating ‘domains’ 

of neighboring oscillators that move in unison (e.g. 𝑖 =
 3,4  at 𝑋 =  4.25 ). At 𝛸 =  4.65  oscillators 𝑖 =  2,3,4,5 

become robustly synchronized and then at 𝑋𝑡ℎ
𝑐𝑟𝑦𝑠𝑡 =

4.7 they are joined by the remaining oscillators 𝑖 =  1,6. 

Synchronization is complete and ergodicity of the system 

has been broken: the ensemble’s phase space has 

collapsed into a single unified trajectory. With decreasing, 

Fig. 4. Dynamics of nonreciprocally coupled noisy, non-identical oscillators. (a) Spectral density of relative position for a pair of 

nonreciprocally coupled oscillators at various coupling strengths. Here, the presence of nonlinearity is manifested by frequency pulling 

at high coupling strength (the purple curve). The vertical dashed lines indicate the individual fundamental and mean oscillation 

frequencies. (b) Order parameter as a function of time, where coupling strength increases from zero at time = 0, in increments of 

0.00001ω0i
2 at 1 ms intervals (denoted by the dashed lines). (c) Peak amplitude of spectral density as a function of increasing (blue) and 

decreasing (orange) coupling strength. The vertical dashed line indicates the coupling threshold, 𝜉𝑡ℎ
∗  for onset of synchronization. 

Fig. 5. Crystallization and melting of a space-time crystal. 

Synchronization (crystallization) and de-synchronization 

(melting) in an ensemble of six nonreciprocally coupled 

oscillators. The numerical annotations at the bottom of each line 

denote the position of the oscillator within the array. 
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coupling the synchronized state breaks at 𝑋𝑡ℎ
𝑐𝑟𝑦𝑠𝑡 <

 𝑋𝑡ℎ
𝑚𝑒𝑙𝑡   (hysteresis). The restoration of stochastic motion 

also goes through stages of disintegration and domain 

formation, as can be seen in Fig. 5b.  

In conclusion, we have demonstrated that the recent 

observation of a light-induced continuous space-time 

crystal state in a metamaterial array of interacting 

nanowires decorated with plasmonic nanoparticles can be 

comprehensively explained as a nonreciprocal phase 

transition, occasioning spontaneous synchronization, 

establishment of spatial periodicity, and loss of motion 

ergodicity. The findings offer insight to the understanding 

of a diverse range of systems involving nonreciprocal 

interactions [10-17]. 
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