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Abstract
Learning accurate numerical constants when developing algebraic models is a known chal-
lenge for evolutionary algorithms, such as Gene Expression Programming (GEP). This 
paper introduces the concept of adaptive symbols to the GEP framework by Weatheritt and 
Sandberg (J Comput Phys 325:22–37, 2016a) to develop advanced physics closure mod-
els. Adaptive symbols utilize gradient information to learn locally optimal numerical con-
stants during model training, for which we investigate two types of nonlinear optimization 
algorithms. The second contribution of this work is implementing two regularization tech-
niques to incentivize the development of implementable and interpretable closure mod-
els. We apply L

2
 regularization to ensure small magnitude numerical constants and devise 

a novel complexity metric that supports the development of low complexity models via 
custom symbol complexities and multi-objective optimization. This extended framework 
is employed to four use cases, namely rediscovering Sutherland’s viscosity law, developing 
laminar flame speed combustion models and training two types of fluid dynamics turbu-
lence models. The model prediction accuracy and the convergence speed of training are 
improved significantly across all of the more and less complex use cases, respectively. The 
two regularization methods are essential for developing implementable closure models and 
we demonstrate that the developed turbulence models substantially improve simulations 
over state-of-the-art models.
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1 Introduction

The development of physics models is at the core of most science and engineering dis-
ciplines. With the goal of understanding physical systems, predicting their future states 
and discovering governing laws, researchers have been developing physics models for 
centuries. The ability to predict the dynamics of a system-of-interest allows the design 
of advanced technologies, from microprocessors to spacecraft engines. Tradition-
ally, such predictive models have been conceived based on physical, mathematical and 
empirical insights (Durbin 2018). Due to high costs of physical and numerical experi-
ments in the past, data was limited and primarily used to verify and calibrate models 
(Montáns et al. 2019).

The rapid increase in computational resources in the last decades, however, enabled 
the generation of large quantities of high-fidelity data. Additional advances of machine 
learning (ML) algorithms, which are able to utilize big datasets, motivated a paradigm 
shift from traditional model development to data-driven modeling in various scientific 
fields (Montáns et al. 2019). The most frequently applied ML models are deep neural 
networks (DNN) (Goodfellow et al. 2016), which demonstrated remarkable success on 
previously intractable problems, from computer vision initially to protein folding more 
recently (Krizhevsky et  al. 2012; Jumper et  al. 2021). While DNNs posses excellent 
predictive capabilities on high-dimensional datasets, the trained models are difficult to 
interpret and have been shown to generalize poorly to data outside of the training distri-
bution for nonlinear target functions (Xu et al. 2021). Furthermore, the models resulting 
from DNN training or decision tree-based methods, another often applied type of ML 
algorithm, are highly complex equations or algorithmic models. For the application as 
closure models, i.e. the implementation in underdetermined systems of equations, which 
are the focus of this work, these models are difficult to use due to stability issues during 
the numerical solution of equation systems.

An alternative to such highly complex models are algebraic models, which are typi-
cally the result of traditional model development. However, Schmidt and Lipson (2009) 
used genetic programming (GP) (Koza 1992), which is an evolutionary algorithm, 
to symbolically regress algebraic models from experimental data. This data-driven 
approach yields interpretable and implementable models. Cranmer et al. (2020) showed 
that algebraic models derived via symbolic regression even generalize better to out-of-
distribution data than DNNs for different physical problems.

Ferreira (2001) developed with Gene Expression Programming (GEP) an algorithm 
that improves over GP by introducing a genotype-phenotype distinction (see Sect. 2.1 
for details), as inspired by natural evolution. While symbolic regression via GP or GEP 
is popular due to a high flexibility in the resulting model structure, the problem of not 
converging to accurate numerical constants in the model equation is well known (Ryan 
and Keijzer 2003; Zhong et  al. 2017). Typically, a finite number of numerical con-
stants are created before the training and other constants in the model equation are only 
achieved by combining existing constants via mathematical operators. Thus, converging 
to specific constants is challenging, especially since evolutionary algorithms are funda-
mentally stochastic.

A different approach for the development of algebraic models was devised by Brun-
ton et  al. (2016), which performs linear regression on a library of equation snippets 
with sparsity-enforcing regularization. This approach, which is termed sparse regres-
sion, computes numerical constants accurately using a deterministic linear least squares 
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solver. A considerable downside is, however, that the possible model structures are lim-
ited to linear combinations of the equation snippets in the library.

The goal of this paper is combining the advantages of symbolic and sparse regression 
to develop data-driven closure models with flexible structures and accurate numerical con-
stants. We extend the GEP framework developed by Weatheritt and Sandberg (2016a) to 
incorporate gradient information to optimize model constants. In the literature, both gradi-
ent-free and gradient-based methods for constant optimization in GEP exist. Li et al. (2004) 
investigated random and creep mutation operators that modify numerical constants during 
training. Other gradient-free methods applied to this problem are hill climbing (Lopes and 
Weinert 2004) and differential evolution (Zhang et al. 2007). To improve over these sto-
chastic methods, Zarnegar et al. (2009) employed a linear least squares solver to calculate 
the values of constants pre-multiplied to trained basis functions. Dominique et al. (2021) 
defined a special power operator, of which the exponent was determined using a gradient-
based nonlinear least squares solver.

A novelty of this paper is the introduction of so-called adaptive symbols, which allow 
gradient-informed numerical constants in GEP in a general form, i.e. at any position in the 
trained model equation. To determine the values of adaptive symbols p during training, 
both a general optimizer to solve

for any objective function J ∶ ℝ
n
→ ℝ and a nonlinear least squares optimizer to solve Eq. 

(1) for

are investigated (Nocedal and Wright 1999). Furthermore, we apply two regularization 
methods to avoid overfitting the training data and incentivize the development of imple-
mentable models. Small magnitudes of numerical constants and a low complexity of the 
evolved model equation are considered indicators for the numerical stability of closure 
models. Thus, we implement L2 regularization (Goodfellow et al. 2016) and define a model 
complexity metric, which is set as an additional objective function similar to the approach 
for GP of Schmidt and Lipson (2009).

This new gradient-informed and regularized GEP framework is applied to four different 
use cases. First, we rediscover Sutherland’s viscosity law from generic data as a proof-of-
concept. Next, laminar flame speed models are trained on data of unstretched premixed 
flames. Finally, we develop two types of models for turbulent flow. A subgrid-scale (SGS) 
model for large eddy simulations (LES) of homogenous isotropic turbulence and a nonlin-
ear eddy viscosity model (NLEVM), including a turbulence production correction model, 
for Reynolds-averaged Navier–Stokes (RANS) calculations of a three-dimensional flow 
around a wall-mounted square cylinder are trained.

The structure of this paper is as follows. We briefly discuss the standard GEP frame-
work in Sect. 2.1 and then introduce the concept of adaptive symbols and the optimization 
algorithms to determine their values in Sect. 2.2. In Sect. 2.3, the regularization techniques 
that support generalizability and implementability of the developed models are described. 
Section  3 is organized such that each use case is introduced in detail with its modeling 
and training strategies before the respective training results are analyzed. Conclusions are 
drawn in Sect. 4.

(1)p∗ = argmin p∈ℝn J(p) , ‖p − p∗‖ < 𝛿 , 𝛿 > 0

(2)J(p) =
1

2

m∑
i=1

ri(p)
2 , r ∶ ℝ

n
→ ℝ

m , m ≥ n
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2  Methodology

The novel contributions of this paper are the introduction of adaptive symbols and the 
application of L2 regularization and a model complexity objective function to GEP. The 
former is discussed in Sect. 2.2, while the latter is described in Sect. 2.3. We start by out-
lining the utilized GEP framework.

2.1  Standard GEP Framework

Weatheritt and Sandberg (2016a) developed the GEP framework employed in this paper to 
enable tensor regression, i.a. for turbulence closure modeling. The framework implements 
the GEP algorithm by Ferreira (2001), which is a type of evolutionary algorithm. As such, 
a population of candidate models, so-called individuals, is evolved over numerous gen-
erations to minimize a specific training objective. Figure 1a illustrates the corresponding 
flowchart. Initially, a population of random individuals is created. In each generation, the 
fitness of each individual according to the training objective is evaluated. If the set termina-
tion criterion is not fulfilled, individuals compete based on their fitness for selection to the 
mating pool. Possible termination criteria are a minimum fitness in the population, a speci-
fied number of generations or a maximum training runtime. Next, offspring are created 
by applying genetic operators, such as mutation or crossover, to individuals in the mating 
pool. Finally, the offspring update the population by replacing unfit individuals.

Structurally, individuals in GEP consist of multiple genes and each gene is encoded as 
a linear string of symbols, which is referred to as its genotype. Typical symbols are input 

Fig. 1  Flowchart of the GEP framework without (a) and with (b) the extension to handle adaptive symbols 
( A)
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variables, mathematical operators and numerical constants. To evaluate the fitness of an 
individual, the genotype of each gene is translated to a nonlinear expression tree, which 
can be interpreted as an algebraic equation. This equation is referred to as the gene’s phe-
notype. Then, these phenotypes are linked to yield the complete algebraic model, i.e. the 
individual’s phenotype, and the training objective is calculated. Figure 2 shows the transla-
tion of an individual with two genes for the input variables x1 and x2 , addition and multipli-
cation operators and the numerical constants z1 and z2.

In comparison to genetic algorithms (GA) (Holland 1975) and GP, the advantage of 
GEP results from the distinction between the genotype and the phenotype. While genetic 
operators are applied to the genotype, the phenotype of an individual determines its fitness. 
This distinction allows easy genetic manipulations and complex functional expressions. In 
contrast, genes in GA are implemented as linear strings only, which limits their functional 
expressivity, and genes in GP are represented as expression trees only, which complicates 
genetic manipulation.

2.2  Adaptive Symbols and Numerical Optimizers

The concept of adaptive symbols is introduced in GEP to generate algebraic models with 
accurate numerical constants and to determine these constants efficiently, i.e. based on gra-
dient information instead of stochastic processes. Adaptive symbols are devised as a new 
type of symbol that are, in addition to standard symbols like input variables, mathematical 
operators or fixed numerical constants, available to the GEP algorithm to build and mutate 
the genotype of individuals in the population.

In the genotype, adaptive symbols behave precisely like standard symbols, so that the 
same genetic operators can be applied. In the phenotype, however, adaptive symbols act as 
placeholders. When one or more of these placeholders are detected prior to an individual’s 
fitness evaluation, a process is started to determine the optimal numerical constants at the 
placeholder positions (see Fig. 1b). In this process, an iterative gradient-based optimizer is 
employed with the goal of minimizing the specified training objective. The resulting con-
stants, i.e. the adaptive symbol values, are inserted at the placeholder positions and the 
fitness of the individual is calculated. Finally, each adaptive symbol stores its value as an 
initial value for next generation’s fitness evaluation. The following aspects further define 
the concept of adaptive symbols: 

1. Adaptive symbols can occur at any position in the phenotype.
2. Values of adaptive symbols are unique for each individual, not across the population.

Fig. 2  Translation from genotype to phenotype of exemplary individual consisting of two genes (blue, 
green) and one link (black)
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3. The number of adaptive symbols per individual is user-defined.
4. One adaptive symbol can be selected to the genotype multiple times.
5. All instances of one adaptive symbol share the same value in the phenotype.

As an example, data generated from the canonical function 
f (x1, x2) = 0.196 x2

1
+ 0.616 x2 + 3.142 could be approximated using the input symbols x1 

and x2 , the operators + and ∗ and two adaptive symbols p1 and p2 with the genotype

that translates to the phenotype

where the numerical optimizer would calculate p1 = 0.196 and p2 = 3.142.

2.2.1  Numerical Optimizers

Determining the locally optimal adaptive symbol values p∗ is generally a nonlinear opti-
mization problem, as any training objective J depends on the candidate model and adap-
tive symbols can occur at any position in the candidate model. Such a problem requires an 
iterative solution of Eq. (1) and we investigate two types of numerical optimizers.

First, a general optimizer is applied to solve Eq. (1) for any objective function 
J ∶ ℝ

n
→ ℝ , which provides a high flexibility for defining the training objective. Specifi-

cally, we select the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Broyden 1970; 
Fletcher 1970; Goldfarb 1970; Shanno 1970) based on the results of a preliminary study. 
The algorithm improves over the standard gradient descent algorithm by utilizing curvature 
information and is computationally efficient by approximating instead of calculating the 
inverse Hessian matrix of J. This approximation is updated at every iteration based on the 
observed change of gradients (Nocedal and Wright 1999).

The second type of investigated optimizers are nonlinear least squares optimizers, as 
most ML training objectives are formulated to minimize the square errors between the 
model predictions and the training data. Equation (2) defines such a training objective J, 
where the residual function r describes the dependency of these prediction errors on the 
adaptive symbol values p. The mathematical structure of least squares problems can be 
exploited to approximate the Hessian matrix of J based on the Jacobian matrix of r, which 
is considered to be an often accurate approximation (Nocedal and Wright 1999). The Lev-
enberg-Marquardt (LM) algorithm (Levenberg 1944; Marquardt 1963), which is applied in 
the studies in Sect. 3, combines this approximation of the Hessian with additional regulari-
zation to control the iteration step size. The BFGS and LM algorithms are implemented in 
the GEP framework via the SciPy package for Python (Virtanen et al. 2020).

2.3  Regularization and Model Complexity

Regularization is applied in ML in general to prevent a trained model from overfitting the 
training data. In other words, the model is incentivized to not memorize the training data 
points but approximate the underlying data generating function, so that the error on test-
ing data from the same data distribution is close to the training error. For the development 
of closure models in particular, the experience of previous studies is that implementing 

+ ∗ �� ∗ ����+ ∗∗ ��������

p1 ⋅ x
2
1
+ p1 ⋅ p2 ⋅ x2 + p2 ,
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complex models with large numerical constants to close underdetermined systems of equa-
tions can lead to instabilities when solving these systems numerically (Weatheritt et  al. 
2017). To control the magnitudes of adaptive symbol values and the complexity of the 
evolved algebraic models, L2 regularization and a model complexity objective function are 
added to the GEP framework.

L2 regularization is the most frequently used regularization technique and drives model 
parameters towards small magnitudes (Goodfellow et al. 2016). Therefore, the square L2 
norm of the parameter vector p ∈ ℝ

n is multiplied by a scalar regularization parameter � 
and added to the training objective J to yield the extended training objective

where the number of parameters n corresponds to the number of unique adaptive symbols 
in the phenotype of the evaluated individual. The regularization parameter � is user-defined 
and balances fitting the training data with reducing adaptive symbol magnitudes. Due to 
the nature of L2 regularization, determining p∗ that minimizes Ĵ remains a least squares 
problem to which both investigated optimizers can be applied.

2.3.1  Model Complexity

The complexity of a model describes the capability of its model class F to approximate a 
wide range of functions by adapting its parameters p (Goodfellow et al. 2016). One exam-
ple of a model class are univariate polynomials of degree d

If we assume that exemplary training data is generated by a quadratic function, the com-
plexity of any linear model in F1 is too low to accurately fit the training data. On the other 
hand, the complexity of a polynomial of degree five is considered too high, as training a 
model in F5 will likely overfit the training data. Thus, controlling the model complexity is 
another regularization technique to improve generalizability. Additionally, a low complex-
ity naturally increases a model’s interpretability and, as discussed above, is beneficial for 
the implementability of closure models.

Quantifying model complexity, however, is not a straightforward task, as no universally 
accepted metric exists. In GP, published metrics can be classified as calculating either the 
structural complexity or the functional complexity of a model. Structural complexity met-
rics analyze the genotype of an individual, which is an expression tree in GP, and meas-
ure, for example, the number of tree nodes or the sum of subtree nodes (Schmidt and Lip-
son 2009; Smits and Kotanchek 2005). In contrast, the functional complexity of a model 
depends on its phenotype, i.e. the resulting algebraic equation. Vladislavleva et al. (2008) 
estimated the order of nonlinearity of models to measure complexity and Vanneschi et al. 
(2010) devised a curvature-based metric. Furthermore, metrics from statistical learning 
theory were investigated, such as the Vapnik-Cervonenkis dimension or the Rademacher 
complexity (Chen et al. 2018, 2020). Complexity metrics in GP are either used to extend 
the objective function to a weighted composite function (Soule and Foster 1998) or set as 
an additional objective function (Smits and Kotanchek 2005).

(3)Ĵ = J + 𝜆 ⋅ ‖p‖2
2
= J + 𝜆 ⋅

n�
i=1

p2
i
,

(4)Fd(x) =

d∑
i=0

pix
i .
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In GEP, to the authors’ knowledge, only Ferreira (2006) studied model complexity and 
applied a metric based on the count of expression tree nodes. As structural complexity 
metrics are computationally inexpensive and successful at preventing ineffective symbols 
in the model equation, we also define a structural model complexity metric, but one that 
is based on the symbol complexity of expression tree nodes. Therefore, each symbol s in 
the set of symbols S available to the GEP algorithm is assigned a user-defined complexity 
value cs . The complexity of an evolved model is then calculated as

where L is the list of symbols in the individual’s expression tree. The ability to define cus-
tom symbol complexities, in contrast to counting the number of symbols, which is equiva-
lent to cs = 1 ∀ s ∈ S , allows incentivizing specific model structures. For example, set-
ting c+ = 1 and cexp = 3 for the symbols s+(x1, x2) = x1 + x2 and sexp(x) = exp(x) supports 
the usage of linear over nonlinear operators. While Ferreira (2006) extended the training 
objective via a weighted sum approach to account for model complexity, we apply Eq. 
(5) as a second objective function. In comparison, our multi-objective approach does not 
require weighting the training error and the model complexity metric, which is difficult 
to estimate before the training, and enables the analysis of models of different complexity 
selected from the Pareto front (see Figs. 10 and 11) after the training. We utilize the multi-
objective optimization extension to the GEP framework by Waschkowski et al. (2022).

3  Results

The application of the presented adaptive symbol concept (see Sect. 2.2) and regulariza-
tion methods (see Sect. 2.3) to four different use cases is discussed in the following. While 
all cases employ adaptive symbols, we investigate different optimizers and regularization 
techniques in each use case.

First, we compare the performance of the BFGS and LM optimizers when rediscov-
ering Sutherland’s law in Sect. 3.1. Next, laminar flame speed models are developed for 
unstretched premixed flames and the advantages of the model complexity objective func-
tion Jc are explored (see Sect.  3.2). In Sect.  3.3, the impact of L2 regularization on the 
development of SGS models for LES of homogenous isotropic turbulence is demonstrated. 
Lastly, we combine the two regularization techniques and compare the two optimizers 
when training NLEVMs for RANS calculations of a wall-mounted square cylinder flow 
(see Sect. 3.4). Table 1 presents an overview of the use cases.

All results are compared to the standard GEP framework and a maximum training runt-
ime is set as the termination criterion, unless otherwise stated. As optimizing the values of 

(5)Jc =
∑
s∈L

cs ,

Table 1  Overview of studied 
use cases

Use case Optimizers Regularization

Sutherland’s law BFGS, LM –
Laminar flame speed modeling BFGS Jc

Subgrid-scale modeling BFGS, LM L2

Nonlinear eddy viscosity modeling BFGS, LM L2 , Jc
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adaptive symbols increases the computational training costs, we aim to ensure an unbiased 
comparison between training runs with varying numbers of adaptive symbols by provid-
ing equal computational resources to all runs. In other words, training runs with no or few 
adaptive symbols are able to evolve their population for more generations, while runs with 
higher numbers of adaptive symbols can benefit from more gradient-informed numerical 
constants. The novel hyperparameters in this work, i.e. the number of adaptive symbols 
and the L2 regularization parameter, are analyzed via hyperparameter studies in Sects. 3.2 
and Appendix A. All remaining parameters of the GEP framework are determined based 
on the authors’ experience from previous projects (Weatheritt and Sandberg 2016a; Sand-
berg et al. 2018; Zhao et al. 2020; Waschkowski et al. 2022) and selective preliminary stud-
ies. An overview of all hyperparameters for the different use cases is included in Table 7. 
In the following, the details of each case and its modeling and training strategies are pre-
sented before the respective results are discussed.

3.1  Sutherland’s Law

Sutherland’s law (Sutherland 1893) models the dynamic viscosity � of dilute gases as

where � is solely a function of the temperature T. The Sutherland temperature C is a gas-
specific constant and �0 and T0 are reference values. Sutherland’s law is derived from 
kinetic gas theory and assumes an idealized intermolecular-force potential (White and 
Majdalani 2006). In computational fluid dynamics (CFD) simulations of compressible 
flows, Eq. (6) is commonly applied as a closure model to describe the linear dependency of 
the viscous stresses of Newtonian fluids on the strain rate tensor.

We utilize Sutherland’s law as a canonical example to discuss the benefits of adaptive 
symbols and analyze the two selected optimizers. We aim to rediscover first Eq. (6) and then 
its normalized version �̂� = 𝜇∕𝜇0 for air with C = 110.4K and �0 = 1.716 × 10−5 kg∕(m s) 
at T0 = 273.15K . The training data for � and �̂� is generated according to Eq. (6) at 100 uni-
formly spaced data points in a range from T = 250K to T = 1750K.

3.1.1  Modeling and Training Strategies

Three strategies to rediscover Sutherland’s law are investigated. We compare the standard 
training approach of using five random numerical constants (RNC) drawn from a uniform 
distribution U(−1, 1) to using five adaptive symbols with values determined by either the 
BFGS or LM optimizer.

The remaining symbols and hyperparameters are unchanged across the different train-
ing approaches. The single input symbol is T and the mathematical operators are + , −, × , 
÷ and (⋅)

3

2.1 The integer values 0, 1 and 2 are provided as additional numerical constants. 
In every training run, a population of 1000 individuals consisting of two genes each is 
evolved to minimize the mean squared error (MSE) between the predicted (normalized) 

(6)� = �0

(
T

T0

) 3

2 T0 + C

T + C
,

1 Note that the choice of (⋅)
3

2 over the more generic 
√
⋅ operator reduces the required computational budget 

but does not impact the comparison between RNC and the two optimizers.
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viscosities and their training data values. For each of the three strategies and both � and 
�̂� , we perform the training with five different random initializations of the population. The 
maximum runtime per training run is set to 0.25 CPU hours. An overview of all training 
settings is provided in Table 7.

3.1.2  Analysis and Discussion

The results of training models for � and �̂� to rediscover Sutherland’s law using the three 
introduced training strategies are presented in Table 2. The accuracy describes the ratio of 
rediscoveries to randomly initialized training runs and the reported time is the mean train-
ing time for successful rediscoveries and its standard deviation (SD).

Training with five adaptive symbols and employing the LM optimizer allows to identify 
the correct � and �̂� equations in all training runs. In contrast, using the BFGS optimizer, 
the GEP framework is only able to learn Sutherland’s law in its normalized form.

Sutherland’s law can be simplified to � = C1T
3

2 ∕(T + C) , where the combined con-
stant is C1 = 1.458 × 10−6kg/m/s/K

1

2 . For the normalized version �̂� , C1 changes to 
8.496 × 10−2K

1

2 . Thus, the difference in the order of magnitude between C1 in the numera-
tor and C = 110.4K in the denominator is reduced significantly for �̂� , which enables redis-
coveries using the BFGS optimizer and speeds up the training with the LM optimizer.

The standard training approach utilizing RNCs is not capable of rediscovering Suther-
land’s law in any training run, despite evolving populations for up to 798 generations (in 
contrast to a maximum of 114 generations with the LM optimizer). One issue that we iden-
tified is a conflict between model structure, constants and fitness. The fittest model result-
ing from the training with RNCs to rediscover �̂� is

with a fitness value of J = 0.82 × 10−2 . This model has a structure and constants that are 
less similar to the simplified version of Sutherland’s law than

which is the least fit model resulting from the five training runs ( J = 2.1 × 10−2).
Adaptive symbols are capable of resolving this conflict and demonstrate sig-

nificant performance advantages on this canonical example. In particular, the least 

(7)�̂� = 1.469 × 10−3 K−1
⋅ T + 0.86

(8)�̂� = 7.925 × 10−2 K−0.5
⋅ T

3

2 ∕T ,

Table 2  Accuracy and training time ( mean ± SD ) for rediscovering Sutherland’s law in its standard ( � ) and 
normalized form ( �̂� ) using the standard training strategy (RNC) or adaptive symbols with different optimiz-
ers (BFGS, LM)

Strategy � �̂�

Acc Time [ CPU
s
] Acc Time [ CPU

s
]

RNC 0/5 – 0/5 –
BFGS 0/5 – 4/5 355.7 ± 209.4

LM 5/5 217.4 ± 185.0 5/5 113.1 ± 73.0
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squares-specific LM optimizer robustly determines accurate numerical constants across 
varying orders of magnitude. While the results of the standard training approach could 
potentially be improved by modifying the RNC sampling distribution, adapting GEP 
hyperparameters or normalizing the training data differently, the concept of adaptive 
symbols simplifies the training procedure and adds flexibility to the GEP framework.

3.2  Laminar Flame Speed Modeling

The laminar flame speed SL is an important characteristic of a given fuel-air mixture in 
combustion engines. SL describes the rate of propagation of the flame surface in pre-
mixed combustion processes as a result of chemical reactions, mass diffusion and heat 
conduction. Numerical simulations of premixed combustion engines require an accurate 
description of the combustion processes and typically use empirical or analytical lami-
nar flame speed models. The accuracy of these models affects the numerical prediction 
of the combustion behavior and the emission of pollutants significantly, which in turn 
influences the potential for improving the combustion processes. Therefore, obtaining 
accurate laminar flame speed models that apply to the wide range of operating condi-
tions observed in industrial premixed combustion engines is a key challenge.

Among the most widely used SL models is the Gülder model (Gülder 1984), which 
is an empirical model fitted to experimental data. Metghalchi and Keck (1982) intro-
duced an empirical power-law expression that accounts for the temperature and pres-
sure dependency of SL and captures dilution effects. In contrast, Göttgens et al. (1992) 
proposed a physics-based approach to derive an analytical expression for SL based on 
rate-ratio asymptotics. The constants in this analytical expression have been fitted to a 
wide range of fuels, such as hydrogen, methane, ethylene, ethane, acetylene, propane, 
ethanol, n-heptane, iso-octane and primary reference fuel (Göttgens et  al. 1992; Röhl 
et al. 2009; Ewald and Peters 2005; Beeckmann et al. 2017). Due to the physics-based 
approach, the asymptotic model extrapolates reasonably outside the temperature and 
pressure ranges of the calibration data and thus can be readily implemented in combus-
tion engine simulations (Ewald and Peters 2005; Hesse et al. 2018; Hann et al. 2020). 
One general limitation of the asymptotic model is its applicability to lean equivalence 
ratios only, although more complex extensions have been proposed to include rich mix-
tures (Hann et al. 2020; Seshadri and Göttgens 1991).

In this section, we utilize numerical data of a well-validated chemical mechanism 
for methane-air mixtures to develop advanced data-driven laminar flame speed mod-
els. This mechanism consists of 79 species and 1055 reactions and we perform one-
dimensional unstretched premixed flame simulations using the FlameMaster software 
package (Pitsch 1998) to generate a dataset of SL values that covers a wide range of 
temperatures T ( 300 to 1200K ) and pressures p ( 1 to 40 bar ) at lean-to-stoichiometric 
equivalence ratios � (0.5–1.0). These training data ranges are selected to ensure a fair 
comparison to the asymptotic model by Göttgens et  al. (1992), which only applies to 
lean equivalence ratios, and due to the relevance for industrial applications, as lean mix-
tures are important for containing NOx, soot and pollutant emissions. Extra data points 
at � = 0.0 are added to prevent unphysical non-zero flame speeds. The complete dataset 
of size m = 9945 is non-dimensionalized using quantities from the asymptotic analysis 
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of the flame structure, which is essential for developing models that generalize outside 
the training data distribution.

3.2.1  Modeling and Training Strategies

The gradient-informed GEP framework is applied to develop analytical models 
ŜL = f

(
T̂ , p̂, �̂�

)
 , where ⋅̂ denotes non-dimensionalized quantities. We utilize ten adaptive 

symbols, which are optimized with the BFGS algorithm,2 and compare the performance 
to the standard training approach with random numerical constants (RNC). The available 
mathematical operators are + , −, × , exp , log and 

√
⋅ . The evolved models are evaluated 

using the normalized MSE between the model predictions and the simulation data

Additionally, in the second part of the SL modeling analysis, we investigate setting the 
model complexity metric Jc (see Eq. (5)) as a second objective function. All others details 
on the modeling and training settings are listed in Table 7.

3.2.2  Analysis and Discussion

Initially, the SL models are trained without regularization. Figure 3 shows the convergence 
of the normalized MSE objective function for training with adaptive symbols (BFGS) and 
RNCs. Note that the solid lines represent the minimum error across three randomly initial-
ized training runs and the shaded areas indicate the respective variation. Utilizing adaptive 

(9)J =
1

m

m∑
i=1

(
ŜL,i,GEP − ŜL,i,data

ŜL,i,data

)2

.

Fig. 3  Convergence of normalized MSE of SL models from standard (RNC) and gradient-informed (BFGS) 
training without regularization (shaded areas represent variation due to random initialization)

2 The LM optimizer without L
2
 regularization tends to converge to very high numerical constants for 

regression problems (see Sect. 3.4) and this section’s goal is investigating the impact of the model complex-
ity metric independent from L

2
 regularization.
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symbols is clearly beneficial compared to the standard training approach, as the normalized 
MSE is reduced by an entire order of magnitude. Additionally, the variance in the training per-
formance across different random initializations is reduced substantially. The fittest SL models 
resulting from the two training approaches are the following:

We observe that both SL models contain nested terms of the nonlinear operators exp , log 
and 

√
⋅ , which is considered unphysical and could impair the prediction accuracy when 

applying the models outside the training data.
Thus, we add the model complexity metric Jc as a second objective function and specifi-

cally set the symbol complexity values for s ∈ {exp, log,
√
⋅} from the unity default value to 

cs = 5 , which disincentivizes the usage of these operators. To further reduce the normalized 
MSE of the developed models, the maximum training runtime is increased from 72 to 120 
CPU hours. The resulting SL model, which is selected as the optimal trade-off between the 
two objective functions (see Sect. 3.4 for details on the selection process), yields a normalized 
MSE value of 4.80 × 10−3 compared to 6.63 × 10−3 for Eq. (11) and reads as follows:

(10)
ŜRNC
L

= 0.91 ⋅ �̂�2
⋅ (1.10 ⋅ p̂ + 2.10) ⋅ exp(p̂ ⋅ �̂� − T̂ +

√
1618.18 ⋅ T̂)

⋅ (p̂ + �̂� +
√
T̂ − log(p̂) + 0.43 ⋅ log(��̂� +

√
T̂ − 0.09�) + 0.33) ,

(11)

ŜBFGS
L

= T̂ ⋅ �̂� ⋅ (486.95 ⋅ (p̂ − 1.30) ⋅ (T̂ − 0.035) ⋅
√
p̂ − 10.13)

⋅ (−12.49 ⋅ p̂ + 221923.13 ⋅ T̂2 + 22.94 ⋅ (log(��̂� − 0.029�) − T̂)

+ log(�̂�) + 153.58) ⋅ (log(�(p̂ + �̂�) ⋅ log(�̂�)�) − 2.07) .

(12)

ŜBFGS-MC
L

= (T̂ + 0.008) ⋅ (�̂� − 0.071) ⋅ (1.27 ⋅ p̂ − 27.48 ⋅ T̂ − 1.18) ⋅ 106

⋅ (2.16 ⋅ p̂ + 55.94 ⋅ T̂ + 61.26 ⋅ �̂� − log(p̂) − 3.89) ⋅
√
T̂ ⋅

�
�̂�

⋅ (T̂ + �̂� − 0.034) .

Fig. 4  Overview of SL predictions over equivalence ratio � of gradient-informed and regularized model 
(BFGS-MC) and asymptotic model (ASYM) with target simulation data (SIM) as reference at various pres-
sure and temperature values
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While the overall expression length is similar compared to Eqs. (10) and (11), no nested 
nonlinear operators occur in Eq. (12). An overview of the SL predictions of the devel-
oped model (BFGS-MC) at representative p and T values in comparison to the asymptotic 
model (ASYM) by Göttgens et al. (1992) is presented in Fig. 4. The prediction accuracy 
of ŜBFGS-MC

L
 improves noticeably over the asymptotic model, in particular towards high 

equivalence ratios. Therefore, we summarize that the gradient-informed GEP framework 
distinctly outperforms the standard training approach for this use case and derives a model 
exceeding the popular asymptotic model. Additionally, model complexity regularization 
with custom symbol complexities allows steering the model development towards desired 
model structures.

3.3  Subgrid‑Scale Modeling

Large eddy simulations are one of the most important methods for turbulence simula-
tion and have been widely applied in various areas, e.g. in aerospace engineering. LES 
obtain large-scale flow structures by solving filtered Navier–Stokes equations, while the 
effects of subgrid-scale structures on the large-scale structures are approximated by SGS 
models (Smagorinsky 1963; Lilly 1967; Pope 2001; Sagaut 2006). As established SGS 
models have inherent limitations, e.g. an excessive dissipation predicted by the Smagor-
insky model (Vreman et al. 1997), and no overall satisfactory model has emerged from 
multiple decades of research (Gamahara and Hattori 2017), developing closure models 
for LES remains an active area of study.

For this use case, we consider incompressible turbulence for which the filtered conti-
nuity and momentum equations (Sagaut 2006; Meneveau and Katz 2000) are

where ⋅̃  denotes filtered variables and is defined for the velocity u as

where D is the entire flow domain and G is the filter function which satisfies the nor-
malization condition ∫ G(r, x)dr = 1 . The SGS stress tensor �ij in Eq. (14) is defined as 
�ij = ũiuj − ũiũj.

In this section, we apply the gradient-informed GEP framework to develop improved 
SGS models. The high-fidelity dataset for training and testing is obtained from a direct 
numerical simulation (DNS) of three-dimensional forced incompressible isotropic tur-
bulence (Xie et al. 2020), which is a canonical use case that is frequently employed for 
the comparison of SGS models, as many of the basic features of turbulence are present 
while its computational costs are inexpensive (Fureby et  al. 1997). The DNS velocity 
field is calculated on a uniform grid of size 10243 and the Taylor Reynolds number is 

(13)
�ũi
�xi

= 0 ,

(14)
�ũi
�t

+
�ũiũj

�xj
= −

�p̃

�xi
−

��ij

�xj
+ �

�2ũi
�xjxj

+ F̃i ,

(15)ũ(x, t) = ∫D

G(r, x)u(x − r, t)dr ,
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Re� ≈ 260 . To extract the filtered velocity field, we apply a top-hat filter in three dimen-
sions. The top-hat filter in one dimension is

where the filter width can be expressed as Δ = nfΔx . We choose nf = 16 in this case such 
that about 5% of the turbulence kinetic energy is filtered, as discussed by Xie et al. (2020). 
Furthermore, coarse-graining that yields 163 different datasets with 643 coarse grid points 
each is applied to the filtered DNS data. We select a total dataset of 8 × 643 grid points and 
70% of points are randomly selected for training and the remaining 30% for testing.

3.3.1  Modeling and Training Strategies

For this use case, we compare the BFGS and LM optimizers in combination with L2 regu-
larization for modeling the anisotropic SGS stress tensor �A

ij
 . Following Li et al. (2021), we 

model �A
ij
 as a function of the filter width Δ and the local filtered strain and rotation rate 

tensors S̃ij and Ω̃ij . We assume a linear dependency on Δ and utilize the integrity basis pro-
posed by Pope (1975) to model �A

ij
 as

where |S̃| =
√

S̃mnS̃mn is an inverse time scale. The basis tensors Vk
ij
 and the invariants Il 

are only functions of S̃ij and Ω̃ij non-dimensionalized by |S̃| . The definitions of Vk
ij
 and Il 

are available in Li et al. (2021). The scalar functions gk are the modeling target of the GEP 
framework.

During training, the MSE between the predicted anisotropic SGS stress tensor �A,GEP
ij

 
and the DNS training data value �A,data

ij
 is minimized. Therefore, a population of 100 indi-

viduals with four adaptive symbols per scalar function is evolved. Table 7 lists the remain-
ing modeling and training settings.

3.3.2  Analysis and Discussion

First, we perform a hyperparameter study to identify an appropriate order of magnitude for 
the L2 regularization parameter � in Eq. (3). We utilize the BFGS optimizer and explore 
� ∈ {10−2, 10−3, 10−4, 10−5, 10−6} . The maximum training runtime is set to 13.89 CPU 
hours.

Figure 5 shows the MSE of SGS models regularized with different � values during train-
ing. There is approximately a constant factor between the training and testing MSE across 
all � values, displayed as solid and dashed lines, respectively. Improvements on the train-
ing dataset result in improvements on the testing dataset, which suggests that no overfit-
ting occurs. Furthermore, we observe that starting with � = 10−5 the MSE increases with 
increasing � value. L2 regularization incentivizes parameters of small magnitude and thus, 
restricts the search space for adaptive symbol values. From � = 10−4 , the search space 
gets too restricted and the optimal numerical constants cannot be learned, which results in 

(16)f̃i =
1

2nf

⎛
⎜⎜⎝
fi−nf ∕2 + 2

i+
nf

2
−1�

j=i−
nf

2
+1

fj + fi+nf ∕2

⎞
⎟⎟⎠
,

(17)�A
ij
= (Δ|S̃|)2 ⋅

4∑
k=1

gk
(
I1,… , I4

)
Vk
ij
,
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deteriorating model performances. However, comparing the results based on � = 10−5 and 
� = 10−6 indicates that a limited amount of L2 regularization, i.e. a small restriction to the 
parameter search space, improves the convergence speed significantly.

In the following, we select � = 10−5 and compare the BFGS and LM optimizers, both 
with and without L2 regularization, to the standard GEP training approach. We analyze 
the convergence of the MSE and the correlation coefficient Cc in Fig. 6 for the different 
approaches evaluated on the testing dataset. The correlation coefficient measures the 
average componentwise correlation between the predicted and the high-fidelity aniso-
tropic SGS stress tensors �A,GEP

ij
 and �A,data

ij
 and is calculated as

(18)
Cc =

1

6

3�
i=1

3�
j=i

��
𝜏GEP −

�
𝜏GEP

��
⊙
�
𝜏data −

�
𝜏data

���
���

𝜏GEP − ⟨𝜏GEP⟩�2
�
⊙
��

𝜏data − ⟨𝜏data⟩�2
� ,

Fig. 5  Convergence of MSE of SGS models in � hyperparameter study evaluated on training (solid) and 
testing (dashed) data

Fig. 6  Convergence of MSE (left) and Cc (right) of different SGS models evaluated on testing data
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where ⟨⋅⟩ indicates averaging over the dataset, ⊙ represents componentwise multiplication 
and � is a short notation for �A

ij
.

Figure 6 (left) shows that all training approaches converge to a similar MSE value 
within the training runtime of 8.3 CPU hours. This can be explained by the simple 
model structure of the fittest SGS models. Using the LM optimizer with L2 regulariza-
tion, the resulting model for �A,GEP

ij
 is

where the scalar functions gk are constant. Thus, determining accurate numerical constants 
is the key challenge for this use case. Consequently, utilizing adaptive symbols and numeri-
cal optimizers significantly increases the convergence speed, although the BFGS optimizer 
without L2 regularization appears to converge to suboptimal constants until close to the 
maximum training time. The general observations are that the least squares-specific LM 
optimizer outperforms the BFGS optimizer and that L2 regularization further speeds up 
training convergence, which is in line with the results of Sect. 3.1 and the � hyperparam-
eter study. Furthermore, Cc values of close to 0.9 in Fig. 6 (right) support that the resulting 
models are highly correlated with the high-fidelity data and that, for example, not only the 
error in one component of �A,GEP

ij
 is reduced, which might cause unphysical predictions.

In order to investigate the suitability of Eq. (19) as a closure model, i.e. ensuring accu-
rate predictions and numerical stability, we perform an LES of homogeneous isotropic tur-
bulence with the developed SGS model. The LES grid is of size 1283 with a filter width of 
Δ = 16Δx and the numerical methods are described in (Li et al. 2021). We compare the 
LES results based on �A,GEP

ij
 with the filtered high-fidelity DNS data (fDNS) and the predic-

tions of an LES applying a standard SGS model, the dynamic mixed model (DMM) (Liu 
et al. 1994).

Figure  7 displays the �A
23

 contours of the different simulations at an arbitrary slice in 
the flow domain. The SGS model developed with the gradient-informed GEP framework 
captures fine-scale structures similar to the fDNS data and predicts stress intensity levels 
accurately. In contrast, the DMM models more dissipation which leads to larger �A

23
 struc-

tures of lower intensity. The energy spectrum E(�) , premultiplied by the wave number � , in 
Fig. 8 (left) shows reduced energy content of the small-scale structures, i.e. at high � val-
ues, due to this overpredicted dissipation of the DMM. The �A,GEP

ij
 LES results approximate 

the spectrum of the fDNS data more accurately and match the target �A
12

 distribution in 

(19)�A,GEP
ij

= (Δ|S̃|)2 ⋅
(
−0.01V1

ij
− 0.1V2

ij
+ 0.07V3

ij
− 0.11V4

ij

)
,

Fig. 7  Contours of SGS stress component �A
23

 at arbitrary domain slice: a fDNS, b DMM, c GEP
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Fig. 8 (right) closely. The width of the probability density function (PDF) of �A
12

 resulting 
from the DMM is not sufficiently large.

In summary, adaptive symbols, especially when employing the LM optimizer, and 
a moderate level of L2 regularization significantly increase the convergence speed when 
developing models with a simple structure such as in Eq. (19). The developed SGS model 
is easily implementable in an LES solver and was demonstrated to substantially improve �A

ij
 

predictions over a standard SGS model.

3.4  Nonlinear Eddy Viscosity Modeling

RANS calculations remain the primary tool to perform CFD simulations of turbulent flows 
of industrial interest. In contrast to spatial filtering in LES, Reynolds averaging allows cal-
culating time-averaged flow fields, which is computationally more efficient and often suf-
ficient for industrial applications. For an incompressible flow with constant density, the 
Reynolds-averaged continuity and momentum equations are

with the mean velocity ui , the density-corrected pressure p and the kinematic viscosity � . 
The Reynolds stress tensor u′

i
u′
j
 describes the impact of turbulent fluctuations on the aver-

aged flow field and can be deconstructed into an isotropic ( 2
3
k�ij ) and an anisotropic term 

( 2kaij ), where k is the turbulence kinetic energy and �ij is the Kronecker delta.
The anisotropy tensor aij is modeled as aij = −

�t
k
Sij by linear eddy viscosity models 

(LEVM), such as the popular k-� SST model (Menter 1994), which solves two additional 
transport equations for k and � , the specific dissipation rate, to calculate the eddy viscosity 
�t . The mean strain rate Sij is calculated from Sij =

1

2

(
�ui
�xj

+
�uj

�xi

)
 . To improve the well-

known shortcomings of LEVMs, e.g. predicting flows with separation or curvature 

(20)
�ui
�xi

= 0 ,

(21)uj
�ui
�xj

= −
�p

�xi
+

�

�xj

(
�
�ui
�xj

− u�
i
u�
j

)
,

Fig. 8  Premultiplied energy spectrum �E(�) (left) and probability density function (PDF) of SGS stress 
component �A

12
 (right)
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inaccurately (Leschziner 2015), NLEVMs assume a nonlinear dependency of aij on Sij and 
the mean rotation rate Ωij =

1

2

(
�ui
�xj

−
�uj

�xi

)
.

In this section, we develop NLEVMs for a wall-mounted square cylinder flow using 
the GEP framework with adaptive symbols and the introduced regularization techniques. 
In addition to modeling aij , we evolve a turbulence production correction model R, as pro-
posed by Schmelzer et al. (2019). This second model extends the production term of k in 
the turbulence transport equations and ensures the consistency of k between its transport 
equation and its high-fidelity data values.

This section’s use case is a complex three-dimensional flow around a square cylinder 
with a height-to-width ratio of h∕d = 4 at a Reynolds number of Red = 11, 000 . The result-
ing flow features include horseshoe vortices around the cylinder, upwash from the bound-
ary layer, downwash over the cylinder tip and a von Kármán vortex street (Wang and Zhou 
2009). These secondary features are inherently difficult to predict via RANS calculations, 
which makes this case a challenging hurdle for data-driven turbulence modeling. Addition-
ally, its computational costs are too expensive to perform simulation-driven training, where 
the numerical solver is invoked to evaluate candidate models and the models’ implementa-
bility is guaranteed (Zhao et al. 2020). Hence, this case particularly relies on regularization 
techniques to incentivize the development of implementable models. As high-fidelity data 
for developing the aij and R models, we utilize a well-validated hybrid RANS/LES data-
set generated by Weatheritt and Sandberg (2016b). Following the results of Haghiri et al. 
(2020), who split the flow domain of this case into a near-body region and a downstream 
region and showed that the NLEVM developed for the downstream region is responsible 
for nearly all prediction improvements, we extract the training and testing data from the 
downstream region starting at x∕d = 2 . As a compromise between low computational cost 
and avoiding overfitting, 105 data points are selected for training while the remaining data 
points are set aside for testing. In order to calculate � and R values from the high-fidelity 
data, we employ the k-corrective frozen RANS approach (Schmelzer et al. 2019), which 
solves the turbulence transport equations with frozen ui , k and aij high-fidelity data values.

3.4.1  Modeling and Training Strategies

For developing aij and R models, we utilize adaptive symbols and both L2 and model com-
plexity regularization. We analyze the performance of the BFGS and LM optimizers and 
make a comparison to unregularized training and the standard GEP training approach. The 
modeling approach for the turbulence production correction R is

where aR
ij
 is modeled similar to aij based on the integrity basis derived by Pope (1975), 

which is defined for the anisotropy tensor as

In contrast to Sect. 3.3, all five scalar invariants Il and ten basis tensors Vk
ij
 are included to 

capture the complexity of this use case. The mean strain and rotation rates Sij and Ωij are 

(22)R = 2kaR
ij

�ui
�xj

,

(23)aij =

10∑
k=1

gk
(
I1, I2, ..., I5

)
Vk
ij
.
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non-dimensionalized by � before calculating Il and Vk
ij
 according to the definitions in Pope 

(1975). The scalar functions gk are learned by the GEP framework.
The training objective is minimizing the MSE between the predictions of the aij and R 

models and the corresponding training data values. For L2 regularization, the MSE objec-
tive function is extended according to Eq. (3). The regularization parameter is determined 
via a hyperparameter study to � = 10−7 (see Appendix A). For model complexity regulari-
zation, Eq. (5) is set as a second objective function. To further support the development 
of low complexity models, the numerical constant 0 is assigned a symbol complexity of 
c0 = 0 , as, for example, multiplication with 0 reduces complexity beyond the calculated Jc 
value. All other symbols S ⧵ {0} have a symbol complexity of unity.

During training, a population of 100 individuals is evolved for a maximum training 
runtime of 240 CPU hours. The optimal number of adaptive symbols is a trade-off between 
functional expressivity and computational cost, as one adaptive symbol is insufficient to 
approximate a function with multiple distinct numerical constants, but more adaptive sym-
bols complicate the optimization problem. In Appendix A, we identify five adaptive sym-
bols per scalar function gk to be an optimal trade-off. The remaining modeling and training 
settings are listed in Table 7.

3.4.2  Analysis and Discussion

First, we develop aij and R models without regularization. Figure 9 shows the convergence 
of the MSE, relative to the linear k-� SST model, of the different training approaches, 
where shaded areas represent variation resulting from different random initializations. All 
training approaches improve both models over the LEVM and the relative improvement 
is larger for the turbulence production correction model R. Utilizing adaptive symbols is 
clearly advantageous in comparison to the standard training approach (RNC) and, in line 
with the results of Sects. 3.1 and 3.3, the LM optimizer yields lower MSE values than the 
BFGS optimizer.

Fig. 9  Convergence of MSE relative to LEVM of aij (dashed) and R (solid) models trained without regulari-
zation for NLEVM case (shaded areas represent variation due to random initialization)
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Table 3 presents the performance of the resulting aij and R models on the training and 
testing datasets. Additionally, the respective model complexity Jc and the maximum adap-
tive symbol magnitude maxi(|pi|) are listed, which are both not regularized in this first 
study. Comparing the errors on the training and testing datasets shows that no overfitting 
occurs. However, the model complexity values of the developed models are too high to 
allow interpretation. For example, the following is the aij model developed using the BFGS 
optimizer, which is the least complex trained model and has additionally been simplified 
using the SymPy package (Meurer et al. 2017):

The standard training approach (RNC) yields the models with the highest complexity val-
ues Jc . In order to approximate a certain numerical constant, the combination of multi-
ple random numerical constants and mathematical operators is generally required. This 

aBFGS
ij

= (306.79 ⋅ I3 + (0.88 − 175.64 ⋅ I2) ⋅ (−I1 + I3 + 0.12) − 1.86) ⋅ V1
ij

+ (I2 − 0.02) ⋅ (I5 + 109.19) ⋅ V2
ij
− (−I1 + I2 + I3 + 2.54) ⋅ V3

ij

+ (I1 − 15.42) ⋅ (I1 + I2 + 0.08) ⋅ (84.03 ⋅ I2 − 84.03 ⋅ I4 + 6.74) ⋅ V4
ij

+ (I3 ⋅ (I1 + I3) + 12.91) ⋅ V5
ij
+ I3 ⋅ (I2 + 263.97) ⋅ (I4 + 41.48) ⋅ V6

ij

− 191.44 ⋅ (I1 − 1) ⋅ V7
ij
+ (5.15 ⋅ I1 + I2 + 36.44) ⋅ V8

ij

+ (I3 + I5 − 3.07) ⋅ V9
ij
+ (I4 + 2.13) ⋅ V10

ij
.

Table 3  Training and testing 
MSE relative to LEVM, model 
complexity Jc and maximum 
absolute adaptive symbol value 
maxi(|pi|) of aij and R models 
trained without regularization for 
NLEVM case

Model Strategy Train. MSE Test. MSE Jc maxi(|pi|)
aij RNC 0.8056 0.8049 330 –

BFGS 0.7858 0.7849 140 1.09 × 102

LM 0.7226 0.7224 180 3.71 × 1014

R RNC 0.6305 0.6189 320 –
BFGS 0.5886 0.5789 166 4.24 × 102

LM 0.5581 0.5497 210 3.06 × 1013

Fig. 10  MSE relative to LEVM 
and model complexity Jc of aij 
models developed with regular-
ized training approaches for 
NLEVM case (markers represent 
different random initialization)
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increases the search space of possible expressions and complicates symbolic regression. 
The gradient-informed GEP framework derives an accurate numerical constant with a sin-
gle adaptive symbol. However, we notice that the LM optimizer converges to extraordinar-
ily high pi values. Table 3 shows that the LM-optimized models do not overfit the training 
data, but numerical constants on the order of O(1013) will likely cause stability issues of 
the numerical solver that applies the trained models.

To develop interpretable and implementable closure models, we apply L2 regulari-
zation when optimizing adaptive symbol values and add the model complexity metric 
defined in Eq. (5) as a second objective function. Figures 10 and 11 show the perfor-
mance of the developed aij and R models on the two objective functions. Note that the 
marker symbols represent training runs with different random initializations and that 
only the Pareto front is plotted, i.e. models that are not outperformed by any other model 
in the training run population. The advantages of utilizing adaptive symbols compared 
to the standard training approach (RNC-MC) are significant, as lower prediction errors 
and Jc values are achieved for both models. We notice that the LM optimizer improves 
over the BFGS optimizer especially towards higher Jc values, where more adaptive sym-
bols in the expression tree are likely and thus, the optimization problem is more com-
plex. In comparison to unregularized training, the complexity values of the gradient-
informed models reduce from a minimum of 140 to a maximum of 81, while the relative 
MSE values are slightly increased (by 0.076 for aij and 0.035 for R).

Fig. 11  MSE relative to LEVM 
and model complexity Jc of R 
models developed with regular-
ized training approaches for 
NLEVM case (markers represent 
different random initialization)

Table 4  Training and testing 
MSE relative to LEVM, model 
complexity Jc and maximum 
absolute adaptive symbol value 
maxi(|pi|) of aij and R models 
trained with regularization for 
NLEVM case

Model Strategy Train. MSE Test. MSE Jc maxi(|pi|)
aij LM-L2-MC-21 0.8360 0.8352 38 1.15 × 101

LM-L2-MC-6 0.8118 0.8109 44 1.27 × 101

LM-L2-MC-14 0.7985 0.7978 59 1.30 × 101

R LM-L2-MC-26 0.6325 0.6212 40 1.37 × 101

LM-L2-MC-30 0.6120 0.6012 50 1.86 × 101

LM-L2-MC-19 0.5929 0.5828 68 1.64 × 101
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One benefit of multi-objective optimization is that the trade-off between the objective 
functions can be done after the training. We select three candidate models of increasing 
complexity for aij and R, which are highlighted in light green, yellow and dark green in 
Figs. 10 and 11. Table 4 demonstrates that, in addition to avoiding overfitting and reduc-
ing model complexity, the adaptive symbol values are on the order of O(101) across 
the varying Jc values. Therefore, we conclude that the two regularization techniques are 
effective.

For a detailed analysis, the models LM-L2-MC-6 ( a6
ij
 ) and LM-L2-MC-30 ( R30 ) 

are selected as a compromise between prediction accuracy and model complexity. The 
respective model expressions are the following:

which reduce the number of basis tensors Vk
ij
 from ten in unregularized training to merely 

five and two, respectively, and contain mostly constant and linear terms. Interestingly, the 
basis tensors in Eq. (24) are a subset of the tensors that Haghiri et  al. (2020) identified 
based on their high alignment with the high-fidelity aij data of the downwash over the cyl-
inder tip ( V1

ij
 , V4

ij
 , V9

ij
 ) and the upwash from the boundary layer and the near-wall region ( V2

ij
 , 

V7
ij
 , V8

ij
 ) in the downstream region. Furthermore, the LM-L2-MC-30 model achieves con-

stants on the order of O(104) by combining multiple adaptive symbols, despite a maxi(|pi|) 
value of 18.6 and applying model complexity regularization, which signals the importance 
of the multiplied tensor V6

ij
 for modeling R.

Lastly, we investigate the suitability of the models in Eqs. (24) and (25) as closure mod-
els. The models are implemented in the CFD software OpenFOAM (Weller et  al. 1998) 
to extend the baseline k-� SST model. We run a steady-state RANS calculation on the 
numerical grid of the hybrid RANS/LES simulation that generated the high-fidelity data 

(24)
a6
ij
= (160.48 ⋅ I3 − 1.41) ⋅ V1

ij
+ (89.48 ⋅ I2 − 1.41) ⋅ V2

ij

− 6.95 ⋅ V4
ij
+ 159.33 ⋅ V7

ij
+ 111.25 ⋅ V9

ij
,

(25)
R30 = 2k ⋅

((
−101.10 ⋅ I1 + 236.20 ⋅ I2 + 7.19

)
⋅ V1

ij

−
(
5.86 × 104 ⋅ I1I2 − 1.09 × 104 ⋅ I2

)
⋅ V6

ij

)�ui
�xj

,

Fig. 12  Wall-normal profiles of 
mean streamwise velocity (left) 
and turbulence kinetic energy 
(right) on centerline at x∕d = 3 
of NLEVM case
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(Weatheritt and Sandberg 2016b). Figure 12 shows the wall-normal profiles of the mean 
streamwise velocity u1 and the turbulence kinetic energy k, non-dimensionalized by the 
freestream velocity uf  , on the centerline at x∕d = 3 . We compare the two developed mod-
els (LM-L2-MC-6-30) to the high-fidelity hybrid RANS/LES data, the baseline LEVM 
and the NLEVM developed by Haghiri et  al. (2020) for the downstream region (HAG). 
In addition to clear improvements over the LEVM, the LM-L2-MC-6-30 models predict 
the u1 profile slightly more accurately than the HAG model. However, the most noticeable 
advancement of the LM-L2-MC-6-30 models is predicting the turbulence kinetic energy 
on level with the high-fidelity data. While some inaccuracies in the k profile remain due 
to the unsteady nature of the flow features in this use case, the improvements compared to 
the HAG model are substantial. Table 5 quantifies these observations by calculating the 
mean (MAE) and maximum (ME) absolute errors between the RANS predictions of the 
NLEVMs and the high-fidelity data relative to the respective LEVM errors. Both NLEVMs 
reduce the MAE of the u1 predictions by around 75% compared to the baseline model. The 
significant improvement of the LM-L2-MC-6-30 models is a reduction of the relative k 
MAE by 50.9% , while the HAG model only achieves a 17.8% improvement. Furthermore, 
the small deviations between the mean and maximum of the absolute error distributions 
suggest that both NLEVMs improve consistently over the baseline LEVM.

We summarize that adaptive symbols lead to significant improvements in unregularized 
and regularized training with the GEP framework for this complex three-dimensional flow. 
The two introduced regularization techniques allow the development of implementable and 
more interpretable aij and R models, which, for the first time, yield steady-state RANS pre-
dictions for k on level with the high-fidelity data. Notably, we show that model complexity 
regularization automatically selects basis tensors for aij that are associated with characteris-
tic flow features, which previously required a manual alignment analysis.

4  Conclusion

The concept of adaptive symbols is introduced in this paper to advance the develop-
ment of physics closure models from high-fidelity data. The fundamentally stochastic 
GEP framework by Weatheritt and Sandberg (2016a) is extended via adaptive symbols to 
incorporate gradient information in order to learn accurate numerical constants. A gen-
eral, i.e. objective function independent, optimizer (BFGS) and a specific nonlinear least 
squares optimizer (LM) are compared to determine locally optimal adaptive symbol val-
ues. Furthermore, two regularization methods are implemented to support the develop-
ment of interpretable and implementable closure models, which is typically associated 
with numerical constants of small magnitude and model expressions of low complexity. 
We add L2 regularization to the objective function for the gradient-based optimization and 
define a novel structural model complexity metric, which allows assigning custom symbol 

Table 5  Mean (MAE) and maximum (ME) absolute errors relative to LEVM of mean streamwise velocity 
u
1
 and turbulence kinetic energy k for NLEVM case

Model MAE u
1

ME u
1

MAE k ME k

HAG 0.257 0.367 0.822 0.870
LM-L2-MC-6-30 0.208 0.272 0.491 0.572
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complexities in order to incentivize the usage of certain symbols. The model complexity 
metric is set as an additional objective function, so that candidate models of varying fitness 
and complexity can be compared after the training.

The gradient-informed GEP framework is applied to four use cases to rediscover Suther-
land’s law (see Sect. 3.1), develop laminar flame speed models (see Sect. 3.2) and train two 
types of turbulence models for LES (see Sect. 3.3) and RANS calculations (see Sect. 3.4). 
All use cases demonstrate significant improvements in prediction accuracy and training 
convergence speed for more and less complex optimization problems, respectively. While 
the BFGS optimizer provides more flexibility for defining the objective function, the proof-
of-concept use case of rediscovering Sutherland’s law already demonstrates the advantages 
of the LM optimizer for least squares objective functions. However, developing NLEVM 
for RANS calculations shows that the LM optimizer can converge to extraordinarily high 
numerical constants without regularization. L2 regularization is effective at maintaining 
small magnitude constants and even speeds up training convergence for developing SGS 
models for LES. The model complexity objective function reduces the expression length 
of the developed NLEVM and improves interpretability by selecting model components 
that are associated with the use case’s physical features. Furthermore, setting custom sym-
bol complexity values is shown to be useful to prevent an excessive usage of nonlinear 
mathematical operators when developing laminar flame speed models. Finally, the imple-
mentability of the developed turbulence models, enabled by the introduced regularization 
methods, is demonstrated by running LES and RANS calculations, which yield promising 
predictions that outperform state-of-the-art turbulence models.

We consider the concept of adaptive symbols and the two regularization techniques 
important extensions to the GEP framework to progress towards developing more accurate 
and generalizing closure models while ensuring their implementability and ideally achiev-
ing interpretability. Although algebraic models are not inherently interpretable, mathemati-
cal expressions are the backbone of the natural sciences and many scientists have formed 
strong intuitions for their interpretation, which is not the case for the extremely large matri-
ces that define parametric models, such as DNNs. Incentivizing the development of low 
complexity algebraic models further increases this advantage. Furthermore, developing 
closure models that continue to predict the learned statistical patterns outside the train-
ing data is necessary for generalization, but not sufficient. Once the underlying physical 
mechanisms of a use case change, accurate predictions can no longer be expected from the 
developed model. We think that including multiple, diverse use cases in the training dataset 
is necessary to advance towards generalizing closure models and Fang et al. (2023) dem-
onstrated first promising results for training turbulence models on sets of diverse free-shear 
and wall-bounded flows.

Future research on adaptive symbols will focus on their utilization not only for super-
vised training on high-fidelity data but also in simulation-driven training. This approach 
ensures consistency between the training and prediction environments of the developed 
models, which is a frequent issue in the practial application of data-driven closure models 
(Duraisamy 2021). However, simulation-driven training is generally expensive and gradi-
ent-based optimization requires even more objective function evaluations than the gradi-
ent-free standard training approach. Identifying low-order approximations to the numerical 
solver could be one path to drastically reduce computational costs and enable the develop-
ment of consistent models with accurate numerical constants.
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Hyperparameter Studies for NLEVM Use Case

Two hyperparameter studies are performed to determine the optimal number of adaptive 
symbols per scalar function np and the L2 regularization parameter � for the NLEVM use 
case in Sect. 3.4. We focus on the development of R models, which present a higher poten-
tial for improvement compared to aij models (see Fig. 9), and limit the maximum training 
runtime to 60 CPU hours in order to reduce the computational costs. The other modeling 
and training settings are unchanged from Table 7.

To identify the optimal np value, we employ the BFGS optimizer, which is expected 
to require more adaptive symbols than the LM optimizer due to the performance disad-
vantages observed in Sects. 3.1 and 3.3. Figure 13 shows the convergence of the MSE 
relative to the baseline LEVM, which applies no turbulence production correction, for 
training with np ∈ {1, 3, 5, 7} adaptive symbols per scalar function. While np = 1 is 
clearly not sufficient to reduce the error to the level of the other approaches, utilizing 
three adaptive symbols per scalar function achieves the minimum MSE value. However, 
the orange shaded area indicates a high dependency on the random initialization for the 
np = 3 training runs. This dependency is significantly reduced for np = 5 and np = 7 . 
Since np = 7 does not further improve the MSE value compared to np = 5 , we select five 
adaptive symbols per scalar function as the optimal trade-off between training perfor-
mance and reliability.

Fig. 13  Convergence of MSE relative to LEVM of R models trained with varying number of adaptive sym-
bols per scalar function for NLEVM case (shaded areas represent variation due to random initialization)

Table 6  Training and testing 
MSE relative to LEVM, model 
complexity Jc and maximum 
absolute adaptive symbol value 
maxi(|pi|) of R models trained 
with varying L

2
 regularization 

parameter � for NLEVM case

� Train. MSE Test. MSE Jc maxi(|pi|)
0.0 0.5644 0.5558 186 8.55 × 1017

10−9 0.5790 0.5700 170 8.72 × 101

10−7 0.5874 0.5770 164 1.12 × 101

10−5 0.6166 0.6052 194 6.97 × 100

10−3 0.6162 0.6048 226 2.18 × 10−1
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For the L2 regularization parameter study, the LM optimizer is selected, as unregular-
ized NLEVM training with this optimizer leads to very high adaptive symbol values (see 
Table  3). We explore � ∈ {0.0, 10−9, 10−7, 10−5, 10−3} and Table  6 lists the training and 
testing MSE values, the model complexities Jc and the maximum adaptive symbol mag-
nitudes maxi(|pi|) of the resulting R models. Interestingly, a small amount of L2 regulari-
zation, realized by setting � = 10−9 , is sufficient to yield p values below 102 . Increasing 
the regularization parameter to � = 10−7 results in a similar testing error and reduces the 
maxi(|pi|) value by nearly one order of magnitude. While the even larger values of � = 10−5 
and � = 10−3 reduce the maxi(|pi|) value further, both MSE values and the model complex-
ity increase. Thus, we choose � = 10−7 for the regularized training in Sect. 3.4.

Modeling and Training Strategies

See  Table 7.

Table 7  Overview of modeling and training strategies for investigated use cases

Use case Sutherland’s law Laminar flame speed SGS modeling NLEVM modeling

Models � , �̂� ŜL �A,GEP
ij

aij/aRij
Training objective MSE Normalized MSE MSE MSE
Input symbols T p̂ , T̂  , �̂� I1,… , I4 I1,… , I5

Mathematical operators + , −, × , ÷ , (⋅)
3

2 + , −, × , exp , log , 
√
⋅ + , −, × + , −, ×

Numerical constants 0, 1, 2 −1 , 0, 1, 2 −1 , 0, 1, 2 −1 , 0, 1, 2
# RNCs 5/0 5/0 5/0 5/0
# Adaptive symbols 0/5 0/10 0/16 0/50
Optimizers –/BFGS/LM –/BFGS –/BFGS/LM –/BFGS/LM
Regularization – –/Jc –/� = 10−5 –/� = 10−7 , Jc
Population size 1000 200 100 100
# Genes 2 5 4 10
# Initializations 5 3 5 3
Max. runtime [ CPUh] 0.25 72/120 8.3 240
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