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Abstract

Design-based inference from probability samples is valid by construction
for target parameters that are descriptive summaries of finite populations.
We develop a novel approach of design-based predictive inference for finite
populations, where the individual-level predictor is learned from a proba-
bility sample using any models or algorithms for incorporating the relevant
auxiliary information, and the uncertainty of estimation is evaluated with
respect to the known probability design while the outcome and auxiliary
values for modelling are treated as constants. Unlike the existing theory
of design-based model-assisted estimation for finite populations, design-
based predictive inference is as well suited for individual-level prediction in
addition to producing population-level estimates.

Keywords: Probability sampling, model-assisted estimation, sample split, Rao-
Blackwellisation, administrative register, big data

1 Introduction

Throughout the 20th century, design-based inference from finite-population
probability sampling has been established as the standard approach to official
statistics; see Hansen (1987), Smith (1994), Kalton (2002), Rao (2005, 2011),
Beaumont and Haziza (2022) for reviews and appraisals. In this context the
target parameters for estimation are descriptive, observable summaries of a
given finite population, such as the population total, mean or quantiles of some
specific values associated with the given population units, and the inference
is characterised as descriptive or predictive (Smith, 1983; Geisser, 1993), in
contrast to analytic inference of theoretical, unobservable targets such as the
life expectancy (of a hypothetical cohort of individuals) or a parametric model
that can be used to understand the given population.
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By design-based inference from probability samples, the uncertainty of esti-
mation is evaluated with respect to hypothetically repeated sampling from the
same finite population, while all the other values involved are treated as con-
stants associated with the given population. Design-based inference is valid
by construction because it is based on the known sampling design, “whatever
the unknown properties of the population” (Neyman, 1934). In contrast, by
model-based inference, the uncertainty of estimation is evaluated with respect
to an assumed statistical model of the observations, while the available sample
is typically treated as fixed; see e.g. Valliant et al. (2000). Although models are
necessary for analytic targets or if the available observations are not obtained
by probability sampling, model-based inference may be invalid to the extent
the assumed model is misspecified in respects that matter to the task at hand.

Design-based inference can be made more efficient by using auxiliary infor-
mation in addition to the sampling design. This can largely recover the ‘loss
of efficiency’ compared to model-based inference that uses the same auxiliary
information optimally under the assumed model. For instance, calibration es-
timation (Deville and Särndal, 1992) is a general approach that makes adjust-
ments to the design weights with respect to the known auxiliary population to-
tals. Or, empirical likelihood methods can yield confidence intervals that have
better properties than normal approximation based on the central limit theo-
rem (Hartley and Rao, 1968; Rao and Wu, 2010; Berger and De La Riva Torres,
2016). More relevant to our development is the model-assisted approach where
an assisting model is explicitly formulated but inference remains design-based,
whether or not the adopted estimator has optimal properties with respect to the
assisting model. One can use linear models (Särndal et al, 1992), generalised
linear models (Wu and Sitter, 2001), or many other models under a unified
“construction recipe” as reviewed by Breidt and Opsomer (2017).

To justify any model-assisted estimator that is not design-unbiased, it is
common to seek a proof that it can be design consistent asymptotically for
a hypothetical sequence of populations of increasing sizes. As Smith (1994)
points out, this “asymptotic notion of consistency” is not immediately applica-
ble to the given population as “a real entity”. In contrast, for a given population
and sampling method, if t(1), ..., t(k) are unbiased estimators of the population
totals T (1), ..., T (k), then g(t(1), ..., t(k)) is called “consistent” for g(T (1), ..., T (k))

by Fisher (1956), in that replacing t(j) by T (j) gives the true target population
parameter. Similarly, an interval estimator of “a collective character... of a pop-
ulation” is called “consistent” by Neyman (1934), if it achieves the designated
level of coverage given the finite population and sampling method.

We emphasise that asymptotic consistency of a point estimator or an interval
estimator is unnecessary, if the estimator is Neyman-Fisher consistent in the
sense Neyman and Fisher have used the term “consistent” for finite-population
inference. This will be our perspective to design-based predictive inference in
this paper, which may also be called fully design-based inference in contrast
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to asymptotically design-consistent inference (that has been traditionally more
common for model-assisted finite population estimation).

Now, we notice that design-unbiased ratio or linear regression estimators for
population totals have been proposed by Hartley and Ross (1954) and Mickey
(1959), which are finite-population Neyman-Fisher consistent. More recently,
Sanguiao-Sande and Zhang (2021) developed a design-unbiased approach,
called subsampling Rao-Blackwellisation (SRB), which allows for any assisting
Machine Learning (ML) models or algorithms that have become increasingly
common. The SRB approach combines three classic ideas in statistical in-
ference, (i) model-assisted estimation for survey sampling, (ii) cross-validation
for error estimation by ML methods, and (iii) the Rao-Blackwell Theorem (Rao,
1945; Blackwell, 1947) for efficiency improvement.

In this paper, we extend the SRB approach to a larger class of population
estimators, which are commonly referred to as the prediction estimators, as
well as the associated individual-level predictors for the out-of-sample units.
Notice that, traditionally, due to the lack of a design-based prediction the-
ory, individual outcomes must be treated as random variables for model-based
prediction and the term predictor is common in this context. Although from a
design-based inference perspective the term prediction estimator would seem
more appropriate also at the unit level, we shall keep the term predictor at the
individual level for convenience and familiarity reasons. Notice also that the
two terms “unit” and “individual” are used interchangeably in this paper, such
as in ‘statistical unit’ or ‘individual prediction’.

It may be helpful to make some remarks immediately regarding the nature
of our inference approach and its advantages compared to the more familiar
model-assisted inference.

First, we consider predictive inference by definition, where the sample-based
prediction estimator (using any given ML model or algorithm) aims at some out-
of-sample quantity that varies with the sample, the property of which is eval-
uated only with respect to repeated sampling from the given population. This
design-based predictive inference outlook differs from model-assisted estima-
tion that is aimed at fixed population parameters (such as totals or means).

Next, we develop Neyman-Fisher consistent uncertainty estimators, which
accommodate any given assisting model (or algorithm) and apply generally to
sampling from finite populations. In contrast, asymptotically design-consistent
inference may not hold in a given setting of finite population sampling, but still
requires tailored asymptotic arguments to be developed for different nonpara-
metric assisting models, such as random forest or support vector machine,
which will remain a challenge as new models or algorithms emerge.

Finally, while our approach is model-assisted in the sense that the sampling
design remains the inference basis despite the model introduced, it provides as
well a design-theoretical basis for individual level prediction (estimation). This
is another important difference to standard model-assisted estimation that is
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only applicable to population parameter estimation.

1.1 Prediction estimator

Denote by U = {1, ...., N} a given finite population that is of size N . Let yU =

{yi : i ∈ U} be the associated values of interest. Denote by xU = {xi : i ∈ U} the
collection of feature vectors, where xi is the vector associated with each unit
i ∈ U . Given any sample of units from U , denoted by s ⊂ U , let µ(x, s) be a
predictor for any out-of-sample unit, say, j ∈ R = U \ s, whose feature vector
takes value x, i.e. xj = x. Notice that any function of {yi : i ∈ U \ s} is a random
quantity that varies with the sample s, just like µ(x, s) itself as the notation
emphasises. When the target parameter is the population total Y =

∑
i∈U yi,

the prediction estimator of Y is given as

Ŷ =
∑
i∈s

yi +
∑
j∈U\s

µ(xj, s) (1)

We shall consider µ(x, s) as the associated individual-level predictor of y for any
unit with given features x, where y is treated as a constant just like x.

Notice that individual level features are required to compute the prediction
estimator (1), except e.g. in the case of using linear models. However, this
is a requirement common to all individual-level prediction models, regardless
the inference framework. There may be situations where such information is
unavailable, which would limit one’s choice of models. But the ability to utilise
individual level covariates is certainly not a limitation of our approach not least
because, as we shall explain, design-based individual-level predictive inference
can provide a valid theoretical basis for producing census-like statistical data,
which fills a gap in the current literature.

Note that many design-based estimators in survey sampling can as well be
given as prediction estimators (1). For example, let xi = πiN/n for any i ∈ U ,
given πi = Pr(i ∈ s) and n = |s|, such that the Horovitz-Thompson (HT) estimator
(Horvitz and Thompson, 1952) can be given in the form (1) with

µHT (xj, s) = xjβs +
1

N − n

∑
i∈s

(xiβs − yi)

where βs = n−1
∑

i∈s yi/xi. Other examples include the generalised regression
estimator, model-calibrated linear estimator, as well as the SRB estimator of
Sanguiao-Sande and Zhang (2021).

However, we are interested in design-unbiased inference of the prediction
estimator (1) generally, including when µ is given by an arbitrary ML method
without regard to the sampling design and may not have a wieldy expression,
such as a random forest trained on {(yi, xi) : i ∈ s} by ready-made software.

The theory of design-based predictive inference for population totals and
individuals will be developed and illustrated in Sections 2 and 3, respectively,
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an illustrative application to Structural Business Survey is given in Section 4,
and some final remarks are given in Section 5. However, before we get into
the details of the development, let us first motivate below what design-based
predictive inference can do for official statistics.

1.2 Introduction to total estimation

Design-based predictive inference is clearly relevant to the perennial design vs.
model controversy in survey sampling, as traditionally the two main strands of
approaches to finite population estimation.

In the design-based approach, estimators depend on the sampling design
through the sample inclusion probabilities or other known sampling probabil-
ities. Although auxiliary information in addition to the sampling design can be
incorporated by various techniques, the validity and the associated uncertainty
of the resulting estimator are still based on the given sampling design. In con-
trast, the model-based prediction approach, frequentist or Bayesian, depends
on an assumed working model, which typically ignores the sampling design
and treats the available sample as fixed when it comes to the assessment of
the associated uncertainty.

Meanwhile, it is possible to evaluate any design-based estimator, such as the
HT estimator or a generalised regression estimator, with respect to an assumed
model, in which case it is common to conclude that design-based estimation is
inefficient or lacks desirable conditional properties (e.g. Valliant et al., 2000).
Conversely, a prediction estimator derived optimally under a working model can
be evaluated with respect to the sampling design, in which case the danger of
model misspecification is frequently noted (e.g. Hansen et al., 1983).

Design-based predictive inference takes the last analysis further, whereby
one explicitly evaluates the design-based bias and variance of any given model-
based prediction estimator (1). One can then compare the given model-based
estimator to any other estimator, whether the latter is dependent on the design
or a working model, and choose according to their design-based properties
regardless how they are constructed. The merit of such an approach rests now
on the fact that design-based uncertainty assessment is valid, which does not
require the model underlying any given estimator to be correct.

To illustrate, under the linear model EM(yi | xi) = x⊤β and VM(yi | xi) = σ2

where EM and VM denote expectation and variance under the model, the best
linear unbiased predictor (BLUP) of a population total Y =

∑
i∈U yi is

Ŷ = X⊤b and b = (
∑
i∈s

xix
⊤
i )

−1
∑
i∈s

xiyi

where X =
∑

i∈U xi. Given πi = Pr(i ∈ s), we have

Ep(Ŷ ) = X⊤Ep(b) = Y −
∑
i∈U

{yi − x⊤
i Ep(b)}
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where Ep(b) ≈ (
∑

i∈U πixix
⊤
i )

−1
∑

i∈U πixiyi with respect to sampling, and

Vp(Ŷ ) = X⊤Vp(b | s)X ≈ X⊤Ep{VM(b | s)}X

with respect to sampling, where

Ep{VM(b | s)} = Ep{σ2(
∑
i∈s

xix
′
i)
−1} ≈

( 1

N

∑
i∈U

{yi − x⊤
i Ep(b)}2

)(∑
i∈U

πixix
⊤
i

)−1
.

Both Ep(Ŷ ) and Vp(Ŷ ) can then be estimated from s and compared to, say, the
approximate variance of a generalised regression estimator of Y .

Thus, a chief advantage of adopting design-based predictive inference to
population total estimation based on probability sampling is to circumvent the
design vs. model controversy, by providing a valid common ground for uncer-
tainty assessment. A theory applicable to the class of prediction estimators
(1), which will be developed in this paper, would allow one to use any assisting
ML models or algorithms that can often make more efficient use of auxiliary
information than the standard design-based calibration estimation or model-
assisted estimation methods.

1.3 Introduction to individual estimation

Individual estimation requires the most extremely disaggregated results. It can
be useful for constructing statistical registers or census-like statistical data as
the basis for descriptive official statistics. However, there has never been a
design-based theory for estimation at the individual level.

For instance, having taken a simple random sample of all but two units in
a given population, the traditional design-based estimation theory would only
allow one to make inference about the total (or mean) of the two out-of-sample
units, but not each on its own, no matter how large the sample is or how much
auxiliary information one has in addition. This is clearly unsatisfactory, which
requires extension of the design-based inference theory.

To illustrate the conceptual issue at hand, suppose on observing {yi : i ∈ s}
in a subset s of the population U , one would like to predict the y-value for each
unit out of s by µ(s) =

∑
i∈s yi/n, where n is the number of units in s. How can

one infer about the loss Ds =
∑

j∈U\s{µ(s)− yj}2 that is unobserved?
One possibility is to assume a model. For instance, under the model that yi

is independent and identically distributed (IID) for any i ∈ U , we have

EM(Ds | s) = (N − n)
(
1 + n−1

)
σ2

with respect to the IID model conditional on the given subset s, where σ2 is the
variance of yi under the model and N is the number of units in U .

However, we notice that a fundamentally different, design-based approach
would in fact be possible if s is selected from U by a known sampling design,
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denoted by s ∼ p(s), where
∑

s∈Ω p(s) = 1 and Ω contains all the possible samples
from U . For instance, suppose s is selected from U by simple random sampling
without replacement (SRSWOR), where p(s) = 1/

(
N
n

)
, such that

Ep(Ds) = (N − n)
(
1 + n−1

)
S2
y

with respect to p(s), where S2
y =

∑
i∈U(yi − Ȳ )2/(N − 1) and Ȳ =

∑
i∈U yi/N .

Since s2y =
∑

i∈s{yi − µ(s)}2/(n − 1) is both unbiased for σ2 under the IID
model and unbiased for S2

y under SRSWOR, numerically one would obtain the
same estimate of the expected loss, even though they have completely different
interpretations. While an assumed model would be necessary for evaluating
EM(Ds|s) if the selection mechanism of s is unknown, it could be invalid if
the observed data distribution actually differs to that of the unobserved ones.
While the design-based loss Ep(Ds) here requires one to plan and implement
the SRSWOR design, it is necessarily valid because p(s) is known.

We shall develop a general design-based theory for the out-of-sample loss,
provided the observations are obtained by probability sampling. This would
yield valid inference of the associated risk with respect to the given sampling
design, where all the outcomes yU and features xU are treated as constants.

2 Total prediction estimator

Consider the prediction estimator (1), where µ(x, s) can be obtained by any
model or algorithm fitted to the full sample s. Now, hypothetically speaking,
it is clear that design-unbiased estimation of Ŷ − Y =

∑
j∈R µ(xj, s) − yj, or

some function of it, would be possible given an additional probability sample r

selected from U \ s, because one can then observe the error ej = µ(xj, s)− yj for
any j ∈ r. In the absence of extra observations {yj; j ∈ r}, valid design-based
inference requires creating observed errors within the sample s.

Denote by s1 ∪ s2 = s and s1 ∩ s2 = ∅ a training-test sample split, where s1 is
selected by a subsampling design, denoted by q(s1 | s). For example, s1 of size
n1 can be randomly sampled from s with or without replacement. Or, in T -fold
cross-validation, s is first randomly partitioned into T clusters and then each
cluster is selected as s2 one by one systematically, yielding s1 = s\s2 accordingly.
Denote by µ(x, s1) the predictor obtained from the subsample s1, in the same
way as µ(x, s) from s. Its error µ(xj, s1)− yj can be observed for any j ∈ s2.

As in Sanguiao-Sande and Zhang (2021), we shall refer to the sampling
design that yields (s1, s) as the pq-design, denoted by

f(s1, s) = q(s1 | s)p(s) = f(s | s1)f(s1) (2)

where the last product indicates that, conditional on the training set s1, one
can view the test set s2 as a probability sample from U \ s1, according to which
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s can vary under the pq-design. In particular, for any i ∈ U , let

π2i = Pr(i ∈ s2 | s1) =
∑

s∋i,i/∈s1

f(s | s1) (3)

be its conditional s2-inclusion probability given s1 under the pq-design.
The theory of design-based predictive inference we develop below, including

both Theorems 1 and 2, apply generally provided any well-defined pq-design
(2). However, the typical q-designs mentioned above may need to be modified
in practice, in order to accommodate the additional complex sampling features
that may exist. For instance, given a stratified p-design of s, it may be natural
to subsample s1 within each stratum as well. Or, given a multistage p-design,
the q-design must involve subsampling of the selected primary sampling units
(PSUs), instead of only subsampling elements within all the selected PSUs,
such that conditional sampling by f(s | s1) covers the whole population.

Now, conditional on any given s1, the design-based bias and mean squared
error (MSE) of the prediction estimator using µ(x, s1) can be easily derived. The
theory below explains how one can infer the design-based bias and MSE of
the prediction estimator (1) that is trained using all the observations in s, with
respect to s ∼ p(s), by appropriate averaging over the q-design.

2.1 SRB prediction estimator

Given s1 under the pq-design, the subsample-trained prediction estimator is

Ŷ ∗
1 =

∑
i∈s

yi +
∑
j∈U\s

µ(xj, s1)

whose total error for Y is given by

B =
∑
j∈U\s

e1j = B1 −B(s2)

where e1j = µ(xj, s1)− yj for any j /∈ s1, and

B1 =
∑

j∈U\s1

e1j and B(s2) =
∑
j∈s2

e1j

Note that B and B(s2) vary with (s, s2) conditional on s1 while B1 is fixed.
Applying Rao-Blackwellisation to Ŷ ∗

1 yields a corresponding SRB prediction
estimator in the form of (1), which is given by

Ŷ RB =
∑
i∈s

yi +
∑
j∈U\s

µ̄(xj, s) (4)

where
µ̄(xj, s) = Eq{µ(xj, s1) | s} (5)
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Notice that µ̄(x, s) is a particular full-sample trained predictor, and its special
notation µ̄ is introduced to distinguish it from any µ(x, s) that uses the same µ

but is directly trained once on the full sample s. Sanguiao-Sande and Zhang
(2021) refer to the operation Eq(· | s) as SRB, since it yields the conditional ex-
pectation over subsampling s1 ∼ q(s1 | s), where the unordered s is the minimal
sufficient statistic with respect to the sampling distribution p(s).

It follows from the definition that the bias of Ŷ RB is given by

Ep(Ŷ
RB)− Y = Epq(Ŷ

∗
1 )− Y = Epq(B) .

Given s1, a conditionally unbiased predictor of B is given by

B̂ =
∑
j∈s2

(π−1
2j − 1)e1j

in the sense that, as s varies conditional on s1, we have

Es(B̂ | s1) = B1 − Es{B(s2) | s1} = Es(B | s1)

since e1j resulting from µ(xj, s1) trained on the subsample s1 is fixed with respect
to sampling of s2 by f(s | s1) conditional on s1. Applying Rao-Blackwellisation
to B̂ yields then a more efficient estimator

B̂RB = Eq(B̂ | s) (6)

i.e. as an unbiased estimator of the bias of Ŷ RB with respect to p(s), since

Ep(B̂
RB) = Ep{Eq(B̂ | s)} = Es1{Es(B̂ | s1)} = Es1{Es(B | s1)} = Epq(B) .

Notice that one needs at least |s2| = 1 to calculate B̂, in which case µ(x, s1) is
trained on n − 1 units, i.e. the so-called leave-one-out (LOO) predictor, whose
difference to µ(x, s) is only due to one randomly selected unit.

Moreover, one can estimate unbiasedly the MSE of Ŷ RB by the following
result, the proof of which is given in Appendix A.

Theorem 1. For any given µ(·), an unbiased estimator of the MSE of the SRB
prediction estimator (4), over s ∼ p(s), is given by

mseRB = Eq{B̂2 − V̂s(B̂ | s1) + V̂s{B(s2) | s1} | s} − Vq(Ŷ
∗
1 | s) (7)

where B̂ =
∑

j∈s2(π
−1
2j − 1){µ(xj, s1)− yj}, and V̂s(B̂ | s1) is unbiased for

Vs(B̂ | s1) =
∑
i/∈s1

∑
j /∈s1

(π2ij − π2iπ2j)(
1

π2i

− 1)(
1

π2j

− 1)e1ie1j
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where π2ij = Pr(i, j ∈ s2 | s1), and V̂s{B(s2) | s1} is unbiased for

Vs{B(s2) | s1} =
∑
i/∈s1

∑
j /∈s1

(π2ij − π2iπ2j)e1ie1j .

Notice that one needs at least |s2| = 2 to calculate the variance estimators in
(7), in which case µ(x, s1) is trained on n− 2 units, i.e. the leave-two-out (LTO)
predictor, which differs to µ(x, s) only due to two randomly selected units.

2.2 Discussion

In a recent discussion of cross-validation for prediction error estimation under
the IID model of (yi, xi), Bates et al. (2023, Theorem 3) have shown that, given
a sample s of size n, it is possible to estimate unbiasedly the MSE of (K−1)-fold
cross-validation on a reduced sample of size n(K − 1)/K, but not for the K-fold
cross-validation on the sample of size n which one actually does. Unbiased
MSE estimation for the latter is generally difficult if µ(x, s) does not have a
wieldy expression, because by definition one cannot observe the error of µ(x, s)
without extra out-of-sample observations.

We have obtained design-unbiased MSE estimator (7) for the SRB prediction
estimator Ŷ RB that uses µ̄(x, s), but not for Ŷ using the more familiar µ(x, s) that
is trained once on the full sample. Design-unbiased estimation of MSE(Ŷ ) faces
the same general difficulty as model-based MSE estimaton. Indeed, similarly
to reduced-sample cross-validation, we could easily estimate unbiasedly the
design-based MSE of the hypothetical prediction estimator

Ŷ1 =
∑
i∈s1

yi +
∑

j∈U\s1

µ(xj, s1)

i.e. as if s1 was the sample (instead of the actual s) such that µ(x, s1) was the
full-sample once-trained predictor. Analogously to Theorem 1, we would have
Eq{B̂1 | s} as an unbiased estimator of the design-based bias of Ŷ1, where

B̂1 =
∑
i∈s2

π−1
2i {µ(xi, s1)− yi}

and Eq{B̂2
1 − V̂s(B̂1) | s} unbiasedly for MSE(Ŷ1), where V̂s(B̂1) is unbiased for

Vs(B̂1) =
∑
i/∈s1

∑
j /∈s1

( π2ij

π2iπ2j

− 1
)
{µ(xi, s1)− yi}{µ(xj, s1)− yi}

Next, as will be illustrated later, we note that MSE(Ŷ RB) using µ̄(x, s) can
provide a good approximation to MSE(Ŷ ) using µ(x, s), where Ŷ RB and Ŷ should
be close to each other now that both of them are trained on the full sample, as
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long as µ is ‘stable’ in a suitable sense. Specifically, we have

Ŷ − Y ≡ Eq(Ŷ − Y | s) = Eq{
∑
j /∈s

µ(xj, s)− µ(xj, s1) | s}+ (Ŷ RB − Y )

where the term Eq{·} is of a lower order to Ŷ RB − Y , if µ is n2-times q-stable.
Sanguiao-Sande and Zhang (2021) define the LOO-predictor µ to be q-stable,
if µ(x, s) − µ(x, s1)

P→ 0 asymptotically, as n,N → ∞, while n2 = 1 is held fixed.
Here, µ is said to be n2-times q-stable if the same holds given any n2 ≥ 1.

Finally, notice that, apart from familiarity and custom, there is no reason
why one cannot adopt the SRB prediction estimator (4), for which MSE estima-
tion is unbiased, instead of using the once-trained predictor µ(x, s).

2.3 Notes on implementation

2.3.1 Sampling probability

By definition (3), π2i is the conditional s2-inclusion probability given s1, the cal-
culation of which generally requires f(s | s1) that is derived from q(s1 | s)p(s).
However, p(s) is unknown for many unequal-probability sampling methods in
practice, such as the cube method (Deville and Tille, 2004), although the in-
clusion probability πi = Pr(i ∈ s) is always known.

One can use instead another sampling probability of the pq-design. For any
i ∈ U , let its conditional test-set inclusion probability given i /∈ s1 be

ϕ2i = Pr(i ∈ s2 | i /∈ s1) =
Pr(i ∈ s2, i /∈ s1)

Pr(i /∈ s1)
=

πi{1− Pr(i ∈ s1 | i ∈ s)}
1− πi Pr(i ∈ s1 | i ∈ s)

. (8)

Given πi, the probability ϕ2i can be calculated as long as Pr(i ∈ s1 | i ∈ s) does
not depend on i under the subsampling design and can be specified regardless
the realised s, such as SRS of s1 from s with or without replacement, or T -fold
cross-validation. Since

ϕ2i =

∑
s1:i/∈s1

∑
s:i∈s∩i/∈s1 f(s | s1)f(s1)∑
s1:i/∈s1 f(s1)

=

∑
s1:i/∈s1 π2if(s1)∑
s1:i/∈s1 f(s1)

= Es1{π2i | i /∈ s1} ,

it is the conditional expectation of non-zero π2i, where π2i = 0 iff i ∈ s1.
To illustrate, take the special case of SRSWOR of s from U and SRSWOR of

s1 from s, with sample sizes n = |s|, n1 = |s1| and n2 = |s2| = n−n1. For any given
s1 and i /∈ s1, we have exactly

π2i =
Pr(i ∈ s2)f(s1 | i ∈ s2)

f(s1)
=

n2

N

(
N−1
n1

)−1(
N
n1

)−1 =
n2

N − n1

= ϕ2i .

Similarly, instead of π2ij in (7), one can use another conditional joint s2-
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inclusion probability

ϕ2ij = Pr(i, j ∈ s2 | i, j /∈ s1) =
Pr(i, j ∈ s2 | i, j ∈ s)πij

Pr(i, j /∈ s1)

where Pr(i, j ∈ s2 | i, j ∈ s) is known for random subsampling of s1 or T -fold
cross-validation, and Pr(i, j /∈ s1) = 1− Pr(i ∈ s1)− Pr(j ∈ s1) + Pr(i, j ∈ s1).

2.3.2 Monte Carlo SRB

By (7), the exact mseRB for the LTO-SRB prediction estimator Ŷ RB requires
C(n, 2) =

(
n
2

)
sample splits. If feasible, it would also provide a good estimator

of MSE(Ŷ ) given any 2-times q-stable µ as explained earlier. The variance of
mseRB should be comparable to that of the HT variance estimator; indeed, the
former tends to be smaller than the latter if the model-assisted Ŷ RB is more
efficient than the HT-estimator ‘assisted’ only by xi = πiN/n (Section 1).

The exact SRB operation may be infeasible if C(n, 2) is too large, in which case
it needs to be replaced by Monte Carlo Rao-Blackwellisation (MC-RB) using T

sample splits, T ≪ C(n, 2). The corresponding MC-SRB prediction estimator,
denoted by Ỹ RB, is given by replacing µ̄(x, s) in (4) by

µ̃(x, s) =
1

T

T∑
t=1

µ(x, s
(t)
1 )

based on sample splits (s
(t)
1 , s

(t)
2 ) for t = 1, ..., T . The MSE of Ỹ RB is then

MSE(Ỹ RB) = MSE(Ŷ RB) + Ep{Vq(Ŷ
∗
1 | s)}/T .

The unbiased exact-RB estimator of MSE(Ỹ RB) follows from (7), i.e.

mseRB(Ỹ RB) = Eq{B̂2 − V̂s(B̂ | s1) + V̂s{B(s2) | s1} | s} − T − 1

T
Vq(Ŷ

∗
1 | s),

such that the unbiased MC-RB estimator of MSE(Ỹ RB) is given by

m̃seRB
=

1

T

T∑
t=1

(
B̂2(t) − V̂s(B̂ | s(t)1 ) + V̂s{B(s2) | s(t)1 } − {Ŷ ∗(t)

1 − Ỹ RB}2
)
, (9)

where the index t explicates the computation results for t = 1, ..., T .
For the LTO Ỹ RB, the ratio Vpq(m̃seRB

)/Vp(mseRB) converges to 1 much slower
than MSE(Ỹ RB)/MSE(Ŷ RB), as T increases. The inflation of Vpq(m̃seRB

) is al-
most entirely due to approximating the Eq{·}-term in (7) by MC in (9), wherein
the terms are all estimated from s

(t)
2 of the size n2 = 2. While the MC variance of

Vpq(m̃seRB
) can be reduced by increasing either T or n2, the reduction is consid-

erably faster as n2 increases. Note that the condition of n2-times q-stability of
µ is put under a greater pressure as n2 increases, which might affect whether
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MSE(Ỹ RB) would remain close to MSE(Ŷ ), where Ŷ is based on µ(x, s).
Therefore, in practice, one can first explore the MC variance of m̃seRB in

relation to n2 using a moderately large T , in order to choose a value of n2 that
reduces the MC variance as much as possible without jeopardising the n2-times
stability condition, and then compute m̃seRB with the chosen n2 using T that
is as large as computationally practical.

2.4 Ilustration

Let us illustrate with a simple example. Generate and fix a population of size
N = 1000 by yi = β1x1i + β2x2i + ϵi with IID x1i ∼ LogN(1, 1), x2i ∼ Poisson(5) and
ϵi ∼ N(0, σ2/4), where σ2 is the population variance of x1i. Let s be given by
SRSWOR with n = 100. Let SRSWOR be the subsampling q-design of s1 with
size n1 that is to be specified. Let the mis-specified predictor be µ(x, s) = x⊤β,
with x = (1, x1) but omitting x2. The full-sample once-trained µ(x, s) and the
SRB µ̄(x, s) are approximately but not exactly equal to each other, where

µ(x, s) = x⊤(
∑
i∈s

xix
⊤
i )

−1(
∑
i∈s

xiyi)

µ̄(x, s) = Eq{µ(x, s1) | s} = x⊤Eq

(
(
∑
i∈s

I(i ∈ s1)xix
⊤
i )

−1(
∑
i∈s

I(i ∈ s1)xiyi) | s
)

0 20 40 60 80 0 20 40 60 80

Figure 1: MC variance (left) and expectation (right) of m̃seRB given n2 ≥ 2

Given a single realised sample s, as in practice, Figure 1 illustrates the MC
variance (left) and expectation (right) as n2 increases from 2 towards n under
this setup, given T = 103. The MC variance is seen to decrease sharply to a
plateau as n2 increases from 2, before it increases dramatically again as n2 gets
close to n. Meanwhile, the MC expectation is quite stable, say, for n2 ≤ 40. For
example, setting n2 to be 20 or 30 for the final computation of m̃seRB using
T = 105, we would obtain 0.020 or 0.014 as the MC coefficient of variance (CV),
which seem acceptable for practical purposes.

Table 1 shows the results of simulating MSE estimation based on 250 in-
dependent samples, given T = 103 and n2 = 2, 20, 30. The MSE is simply the
average squared error of either Ŷ or Ŷ RB over the 250 samples, and the rel-
ative efficiency (RE) is the ratio between either MSE and the variance of the
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Table 1: MSE estimation from 250 samples, T = 103, µ(x, s) for Ŷ and µ̄(x, s) for
Ŷ RB, (training, test) set of size (n1, n2), RE against variance of HT-estimator.

(n1, n2) MSE(Ŷ ) RE(Ŷ ) MSE(Ŷ RB) RE(Ŷ RB) CV(m̃seRB
)

(98, 2) 386532.7 0.44 386632.4 0.44 3.48
(80, 20) 363613.9 0.41 363441.5 0.41 0.31
(70, 30) 362673.0 0.41 357146.9 0.41 0.21

HT-estimator. Notice that the three MSE(Ŷ ) here are all estimators of the same
MSE, each using 250 independent samples, since Ŷ depends only on s.

For n2 up to 20 (or even 30), MSE(Ŷ RB) is practically equal to MSE(Ŷ ). The
CV of the MC-MSE estimator m̃seRB is drastically reduced by setting n2 to 20 or
30 instead of 2. In comparison, the CV of the exact-RB MSE estimator mseRB is
0.14 by simulation, whereas the CV of the HT variance estimator is 0.32. This
confirms that setting n2 to be 20 (or even 30) and using a larger but practical
T would work satisfactorily for MSE estimation in this setup.

In terms of the choice of estimator, we notice that the mis-specified predictor
µ(x, s) yields a design-based MSE that is less than half of the variance of the
HT-estimator, and the bias of Ŷ or Ŷ RB is a negligible part of the MSE here,
the details of which are omitted to save space. The assessment is enabled
by the design-based predictive inference theory developed above. Finally, as
mentioned before, there is no reason why one cannot adopt Ŷ RB using µ̄(x, s),
for which MSE estimation is unbiased, instead of Ŷ using µ(x, s).

3 Individual prediction estimator

Consider the individual-level predictor µ(x, s) in the prediction estimator (1).
Regardless how µ(x, s) is obtained from {(yi, xi) : i ∈ s}, using whichever model
or algorithm, its total squared error (TSE) over R = U \ s is given by

D(s;µ) =
∑
i∈R

{µ(xi, s)− yi}2 .

For design-based individual-level predictive inference, we define the risk of µ to
be the expectation of D(s;µ) over repeated sampling of s ∼ p(s), while treating
yU and xU as fixed, denoted by

τ(µ) = Ep {D(s;µ)} . (10)

We stress that only s is random in (10), i.e. it is a design-based measure,
regardless the model or algorithm by which µ(x, s) is constructed.
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3.1 Risk of SRB predictor

Under the same pq-design of (s1, s) as in Section 2, the error of the subsample-
trained predictor µ(x, s1) for any i /∈ s1 is given by

ei(µ, s1) = µ(xi, s1)− yi

which can be observed for any unit in the test set s2 = s \ s1. Let

DR(s1;µ) =
∑
i∈R

ei(µ, s1)
2

be the TSE of µ(x, s1) over R = U \ s. Let

A2 =
∑
i∈s2

ei(µ, s1)
2 =

∑
i∈U\s1

ei(µ, s1)
2 −DR(s1;µ) .

Given s1, both A2 and DR(s1;µ) vary with s2 = s \ s1 under the pq-design, but
their sum

∑
i∈U\s1 ei(µ, s1)

2 is fixed. The predictor

D̂R(s1;µ) =
∑
i∈s2

(
π−1
2i − 1

)
ei(µ, s1)

2

is unbiased for DR(s1;µ) conditional on s1, since

Es{D̂R(s1;µ) | s1} = Es{
∑
i∈s2

π−1
2i ei(µ, s1)

2 − A2 | s1} = Es{DR(s1;µ) | s1} . (11)

Meanwhile, the TSE of the SRB-predictor µ̄(x, s) given by (5) is

D(s; µ̄) =
∑
i∈R

ei(µ̄)
2 and ei(µ̄) = µ̄(xi, s)− yi .

For any i ∈ R with xi = x, the errors of µ̄(x, s) and µ(x, s1) are related by

ei(µ, s1) = µ(x, s1)− yi = {µ(x, s1)− µ̄(x, s)}+ ei(µ̄) .

Since µ̄(x, s) and ei(µ̄) are constant of s1 ∼ q(s1 | s), we have

ei(µ̄)
2 = Eq{ei(µ, s1)2 | s} − Eq{ai(µ, s1)2 | s} (12)

where ai(µ, s1) = µ(x, s1) − µ̄(x, s) and Eq{ai(µ, s1)2 | s} is the variance of µ(x, s1)
under the SRB operation. Design-unbiased estimation of the risk D(s; µ̄) is
given by the result below, the proof of which is given in Appendix A.

Theorem 2. For any given µ(·), an unbiased estimator of the risk τ(µ̄) of the
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corresponding SRB-predictor µ̄(x, s), over s ∼ p(s), is given by

D̂(s; µ̄) = Eq

(∑
i∈s2

(π−1
2i − 1)

{
ei(µ, s1)

2 − ai(µ, s1)
2
}
| s

)
.

In practice, where exact SRB is infeasible numerically, one can use the MC-
SRB predictor based on T subsamples, which is given as{

µ̃(xi, s) = T−1
∑T

t=1 µ(xi, s
(t)
1 ) if i ∈ R

µ̊(xi, s) = T−1
i

∑T
t=1 I

(
i /∈ s

(t)
1

)
µ(xi, s

(t)
1 ) if i ∈ s

where s
(t)
1 is the t-th subsample, Ti =

∑T
t=1 I

(
i /∈ s

(t)
1

)
and s

(t)
2 = s \ s(t)1 .

To estimate the risk, for any i ∈ s
(t)
2 , let ei(µ, s(t)1 ) = µ(xi, s

(t)
1 )−yi directly, and let

ai(µ, s
(t)
1 ) = µ(xi, s

(t)
1 )−µ̊(xi, s) be an out-of-bag approximation to µ(xi, s

(t)
1 )−µ̄(xi, s),

instead of µ(xi, s
(t)
1 )− µ̃(xi, s) that would have been a residual-based alternative.

The MC risk estimator is given by

D̃(s; µ̄) =
1

T

T∑
t=1

∑
i∈s(t)2

(
π−1
2i − 1

)
{ei(µ, s(t)1 )2 − ai(µ, s

(t)
1 )2} . (13)

3.2 Using an ensemble of predictors

By design-based predictive inference, there is no need to assume that a true
model exists for yU , or that one is able to identify the true model under repeated
sampling. It is then natural to combine an ensemble of different predictors (e.g.
Dietterich, 2000; Zhou, 2012; Sagi and Rokach, 2018; Dong et al., 2020) in
addition to selecting a single model and the corresponding predictor. Ensemble
SRB prediction by voting or averaging is developed below.

3.2.1 SRB-selector

Consider selecting a single model by voting given an order-K heterogeneous
ensemble {µ1, ..., µK}. Let D(s;µk) =

∑
i∈R{µk(xi, s)− yi}2. Denote by Ω =

⋃K
k=1Ωk

the partition of the sample space such that, for any s ∈ Ωk and l ̸= k, we have

D(s;µk) < D(s;µl)

where we discount the possibility of D(s;µk) = D(s;µl) merely to simplify the
exposition. To select a single predictor for R based on a given sample s, which
minimises the risk (10), one would vote for µk(x, s) iff s ∈ Ωk. The optimal
selector is thus the perfect classifier of I(s ∈ Ωk).

In practice it is a common approach to apply cross-validation and majority-
vote, where cross-validation is based on s1 ∼ q(s1 | s) and s2 = s \ s1. The
expected selection result is given by the SRB-selector as follows. Given any
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(s1, s2) by q(s1 | s) and any k = 1, ..., K, let

δk(s1) =

1 if k = arg min
l=1,...,K

∑
i∈s2

{µl(xi, s1)− yi}2

0 otherwise

indicate which predictor has the least TSE in s2. The SRB-selector

δ̄k(s) =

1 if k = arg max
l=1,...,K

Eq {δk(s1)|s}

0 otherwise
(14)

is a classifier of I(s ∈ Ωk), i.e. the expected majority-vote over cross-validation.
Given the selection by (14), say, µk, one can reuse the same cross-validation

samples (s1, s2) to obtain the selected SRB-predictor µ̄k and its associated risk.

3.2.2 Mixed SRB-predictor

Consider averaging given an order-K ensemble {µ1, ..., µK}, and let the mixed
SRB-predictor be

µ(x, s) =
K∑
k=1

wkµ̄k(x, s) (15)

where
∑K

k=1wk = 1 and wk > 0 for the mixing weights, k = 1, . . . , K. We have

D(s;µ) =
∑
k ̸=1

w2
kDkk +

(
1−

∑
l ̸=1

wl

)2
D11 +

K∑
k=1

∑
l ̸=k,1

wkwlDkl + 2
∑
k ̸=1

wk(1−
∑
l ̸=1

wl)D1k

now that w1 = 1−
∑

k ̸=1wk, where Dkk = D(s; µ̄k) and Dkl = D(s; µ̄k, µ̄l) is given by

Dkl =
∑
i∈R

ei(µ̄1)ei(µ̄2) =
∑
i∈R

Eq{ei(µ1, s1)ei(µ2, s1) | s} − Eq{ai(µ1, s2)ai(µ2, s2) | s},

i.e. similarly to (12). An estimator of Dkl follows as a corollary of Theorem 2,
as well as its MC implementation similarly to (13).

The optimal mixing weights wk minimise D(s;µ). The estimated ŵk can be
obtained via D̂(s;µ) given D̂kl, for all k, l = 1, ..., K. Substituting ŵk in (15) yields
the mixed SRB-predictor. The associated risk (10) can be estimated by D̂(s;µ).

Whilst the above approach aims at minimising the risk, it may experience
instability if the ensemble is not sufficiently heterogeneous. A robust approach
to mixed ensemble prediction should automatically aim at the same mixing
weight of two component predictors that are equal to other.

For any k = 1, ..., K, write D̂(s; µ̄k) = Eq(τ̂k | s), similarly to D̂(s; µ̄) in Theorem
2. Regarding the risk of µ̄k(x, s) defined by (10), we have

τ(µ̄k) = Es1{τ(µ̄k|s1)} = Es1

{
Es

(
τ̂k | s1

)}
= Ep

{
Eq

(
τ̂k | s

)}
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where τ(µ̄k|s1) is its conditional risk given s1. Let the SRB operation yield

wk = Eq(δk | s), δk =

1 if k = arg min
l=1,...,K

τ̂l

0 otherwise
. (16)

The corresponding mixed SRB-predictor (15) is robust against µk ≈ µl for any
k ̸= l. While the SRB-selector (14) is a binary classifier taking the majority-vote
over all (s1, s2), the robust mixing weight (16) is a proportion over all (s1, s2).

3.3 Illustration

Simulations below provide a simple illustration of design-based individual-level
predictive inference. For better appreciation of the design-based approach, we
include also the risk estimator under an assumed IID error model.

We generate 200 sets of yU of population size N = 2000 in an ad hoc manner.
For each yU , half of them are generated by M1 below and half of them by M2,
where x1 ∼ N(0, 1) and x2 ∼ Poisson(5),

(M1) y = x1 + 0.5x2 + ϵ, ϵ ∼


N(0, 1) if z = 1 ⇔ x2 < 3

N(−2, 1) if z = 2 ⇔ 3 ≤ x2 < 7

N(2, 1) if z = 3 ⇔ x2 ≥ 7

(M2) y = 0.5 + 1.5x1 + x2 + ϵ, ϵ ∼ z2 +N(0, 0.25), z ∼ N(0, 1),

From each population we draw a sample of size n = 200 either by SRSWOR
or Poisson Sampling. For Poisson Sampling, we set π−1

i ∝ 1 + 1/exp(α + 0.5yi)

and
∑

i∈U πi = n, where α ∈ {1,−0.1,−1} leads to the coefficient of variation of
πi over U , denoted by cvπ, to be about 15%, 30% and 45%, respectively. This
illustrates a situation where sample selection may cause issues for uncertainty
assessment by the IID model.

Let an order-3 model ensemble contain linear regression, random forest and
support vector machine. Let the feature vector be x = (x1, x2) in all the cases.
We use a 70-30 random split for subsampling of (s1, s2) and let T = 50 for
relevant MC-SRB operations such as (13). We obtain thus the SRB-predictor
as described in (5) corresponding to each model.

For each SRB predictor, we estimate its standardised risk (10), τ/|R|, as
described before, where we have π2i ≡ n2/(N−n1) under SRSWOR given n1 = |s1|
and n2 = |s2|, and we use ϕ2i given by (8) instead of π2i under Poisson Sampling.
Note that if τ̂ is unbiased for τ over repeated sampling from a given population,
then it is also unbiased for D/|R| over all the 200 populations.

The average of the 200 true D/|R| for each SRB predictor will be referred to
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as average true MSE in the results below, which is given by

MSEtrue =
1

200

200∑
b=1

1

N − n

∑
i∈R(b)

{µ̃(xi, s
(b))− yi}2

where s(b) denotes the b-th simulated sample and R(b) the corresponding out-
of-sample units. The proposed MSE estimator (13) will be compared to two
MSE estimators that rely on the IID error model (e.g., James et al., 2013): the
residual-based estimator and the cross-validation (CrV) estimator. The average
of the latter two estimators over the 200 populations are given as

MSEresid =
1

200

200∑
b=1

1

n

∑
i∈s(b)

{µ̃(xi, s
(b))− yi}2

MSECrV =
1

200T

200∑
b=1

T∑
t=1

1

n2

∑
i∈s(b,t)2

{µ(xi, s
(b,t)
1 )− yi}2

where s(b) = s
(b,t)
1 ∪ s

(b,t)
2 signifies the t-th subsampling of the b-th sample.

Table 2: MSE and estimates given each model, averaged over 200 simulations.
PS, Poisson Sampling; LR, Linear regression; RF, Random forest; SVM, Support
vector machine.

SRSWOR PS (cvπ=15%)
MSE LR RF SVM LR RF SVM

Average, true 8.399 9.013 9.272 8.566 9.225 9.671
Design, proposed 8.409 9.073 9.326 8.416 9.182 9.615

Model, CrV 8.457 9.481 9.862 8.014 9.214 9.405
Model, residual 8.162 5.105 7.706 7.766 4.945 7.578

PS (cvπ=30%) PS (cvπ=45%)
MSE LR RF SVM LR RF SVM

Average, true 8.957 9.726 10.451 9.866 10.884 11.573
Design, proposed 8.711 9.559 10.196 9.288 10.364 10.974

Model, CrV 7.624 8.880 8.799 6.992 8.262 7.933
Model, residual 7.369 4.731 7.330 6.776 4.367 6.758

Table 2 displays average true MSE and its estimates across the simulation
settings. Regardless the model, the proposed design-based risk estimator (13)
is unbiased under SRSWOR p-design where π2i is known. Whereas, using ϕ2i

instead of π2i under informative Poisson sampling, it remains essentially un-
biased when cvπ = 15% or 30%, but the approximation may be seen to have
caused some underestimation as cvπ increases to 45%, where the severest un-
derestimate is (9.288− 9.866)/9.866× 100 = −5.86%.

The CrV-based IID-model MSE estimator is also essentially unbiased under
SRSWOR, because the out-of-bag squared errors in the test sample s2 have
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Table 3: MSE and estimates for ensemble individual prediction, averaged over
200 simulations; predictor selected by majority-vote, or averaged by optimal or
robust mixing weights. PS, Poisson Sampling.

SRSWOR PS (cvπ=15%)
MSE Selected Optimal Robust Selected Optimal Robust

Average, true 8.432 8.367 8.380 8.570 8.558 8.578
Design, proposed 8.395 8.260 8.284 8.412 8.343 8.372

Model, CrV 8.453 8.341 8.374 8.015 7.981 8.009
Model, residual 8.076 7.264 7.178 7.746 7.146 7.008

PS (cvπ=30%) PS (cvπ=45%)
MSE Selected Optimal Robust Selected Optimal Robust

Average, true 8.980 8.985 9.012 9.897 9.915 9.981
Design, proposed 8.700 8.657 8.691 9.281 9.257 9.316

Model, CrV 7.631 7.618 7.647 7.006 6.997 7.035
Model, residual 7.289 6.902 6.667 6.989 6.977 7.008

the same mean as those in R conditional on s1 under the pq-design. This
is reasonable since the IID error model would hold exactly under SRS with
replacement. As mentioned in Section 2.2, Bates et al. (2023) explain why
the CrV-based MSE estimator is not exactly unbiased for the full-sample once-
trained predictor µ(x, s), even when the IID model is correct. The CrV-based
MSE estimator is instead applied to the SRB-predictor µ̄(x, s) here.

The CrV-based MSE estimator can become severely biased though, if the IID
model does not hold for the actual sample selection mechanism, as illustrated
here for Poisson Sampling with increasing cvπ. Furthermore, residual-based
MSE estimation should be avoided even under SRSWOR p-design, since it gen-
erally leads to large biases for predictors derived from highly flexible machine
learning models such as random forest and support vector machine.

Next, to illustrate inference for ensemble individual prediction, we obtain
the SRB-predictor (5) selected by (14), and the two mixed SRB-predictors using
the weights that are either optimal for (15) or robust (16). Given any ensemble
MC-SRB predictor µ̃(x, s(b)), for b = 1, ..., 200, we calculate its design-based risk
estimator using (13) and following the corresponding description in Section
3.2. Whereas the two IID model-based MSE estimators are calculated in the
same way as given above.

Table 3 presents average true MSE and estimates for the SRB selector and
mixed SRB predictors across the simulations. The average true MSE by the
SRB-selector is similar to that of the linear model in Table 2, where the MSE
is the smallest by this model than random forest or support vector machine.
The two mixed SRB predictors achieve largely the same true MSE for individual
prediction, in each simulation setting, illustrating the robustness of ensemble
prediction approach even when it cannot improve on the best single model in
the given ensemble. In terms of MSE estimation, the results in Table 3 are
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seen to be consistent with what we have observed for Table 2.

4 Illustrative application

Here we describe an illustrative application of design-based prediction estima-
tion for the Spanish Structural Business Survey (SSBS). The SSBS provides
information about the main structural and economic characteristics of busi-
nesses, such as employed personnel, turnover, purchases, personnel expenses,
taxes and investments. The target population consists of businesses classified
in one of the following economic sectors: industrial sector, commercial sector
and services sector.

We take the year 2020 for reference, where the SSBS population contained
2,615,811 business units and the estimated total turnover was 1,785 billion
euros, which is related to the total value of market sales of goods and services
to third parties during the reference year. The SSBS estimation is traditionally
based on the HT-estimator. One of motivations of this study, which is directly
related to the SSBS, is the need to investigate whether it is possible to reduce
the SSBS sample size, by developing and introducing more efficient estimation
approaches.

4.1 pq-design for SSBS

The SSBS sample contains both fully surveyed business units and other units
that are mainly imputed. For our purpose here, we shall only consider the
sample of fully surveyed units, which are selected using a stratified random
sampling design. There is as usual an exhaustive (i.e. take-all) stratum for the
largest businesses, which will be excluded from the application below, since
sampling error does not exist there. In addition, any stratum with only 1 or
2 sample units will be removed, because some variance smoothing techniques
would be needed for these strata in practice, which have no direct relevance to
the theory of design-based predictive inference.

A total of 9,681 strata are retained in this way, which contain altogether
2,018,561 population units. As shown in the top plot of Figure 2, the stratum
population size is relatively small for most strata but has a skewed distribution.
The biggest stratum does have 54,770 units and there are 319 strata with more
than one thousand units. The histogram of stratum sample size is given in the
bottom plot of Figure 2. Around a half of all the strata have five or fewer sample
units, whereas the number of strata with sample size greater than 25 is 339.
The total sample size is 80,280.

To investigate the potentials of sample size reduction, we selected randomly
and without replacement 45% of the original sample units in each stratum,
subjected to a minimum of three sample units in each stratum. The resulting
total sample size is 40,514, which is about half of the original sample size.
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Figure 2: Histogram of stratum size in population (top) and sample (bottom)

Alternative model-assisted estimators (to be described below) will be compared
based on this reduced sample, which would demonstrate both the proposed
inference approach and the potentials of sample reduction.

We notice that although the ad hoc reductions of stratum sample sizes above
should not be taken as a proposal for the new SSBS sampling design, the
estimation results based on this realised sample are more ‘tangible’ than the
alternative, whereby one first estimates the MSE of a given estimator based on
the original sample and then speculates how this MSE might have changed had
the total sample size been reduced by 50%. Moreover, insofar as our aim here
is not the specifics of the new SSBS sampling design, the single realised sample
is large enough to warrant the comparison of different estimation approaches,
and there is no need to simulate the sample reduction above many times which
would only have generated largely similar results.

We adopt within-stratum SRSWOR as the subsampling q-design for any
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SRB-based estimator, in addition to the stratified random sampling p-design
above. A constant subsampling rate will be implemented in all the strata, where
the stratum subsample sizes of (n1, n2) are truncated to integers by the floor
function, subjected to the constraint that n2 ≥ 2 in each stratum, such that
variance estimation is feasible. Although other subsampling q-designs and
stratum-specific subsampling rates can be explored, a systematic investigation
in this respect is beyond the scope of this paper in any case.

4.2 Models and estimators

We use turnover as the target variable for illustration. The HT-estimators based
on the original SSBS sample (with 80,280 units) and the reduced sample (with
40,514 units) provide the baselines for comparison. Four additional estimators
will be applied to the reduced sample, which arise from the 2×2 combination of
models (linear, tree) and estimators (prediction, unbiased) as described below.

The model is either linear or tree regression, defined globally regardless the
design strata. The linear model uses four features:

• the ‘administrative’ turnover from the corporate incoming tax if available,
or imputed stratum-mean (of available administrative turnover) if missing;

• a binary indicator for whether the administrative turnover is missing;

• the operating income according to the tax administration if available, or
imputed stratum-mean (of available operating income) if missing;

• a binary indicator for whether the operating income is missing.

The linear regression coefficients are estimated by weighted ridge regression,
given the sampling design weights and a small tuning parameter λ = 0.01 for
the regularisation penalty.

The tree regression model uses the following four features, where the miss-
ing values are not imputed but left as-is to the software package:

• the administrative turnover,

• the operating income,

• the first digit of the National Classification of Economic Activities,

• the number of employees according to the Business Register.

The tree model is built using the ready-made R package h2o for random forest,
where one feature is chosen for each split (mtries = 1), the maximum tree depth
is 20 (max_depth = 20) and the minimum number of observations per leaf is 5
(min_rows = 5). The observations are again weighted by the sampling weights.
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Given either model, we consider the SRB prediction estimator (4) and the
design-unbiased model-assisted SRB-estimator (Sanguiao-Sande and Zhang,
2021), where the latter can be given as ŶM = Eq(Ŷ1M | s) and

Ŷ1M =
∑
i∈s1

yi +
∑

i∈U\s1

µ(xi, s1) +
∑
i∈s2

(π−1
2i − 1){µ(xi, s1)− yi}

The SRB operation uses a constant 80-20 sample-split for the linear model and
a constant 50-50 sample-split for the tree model. Notice that in the case of tree
model, the SRB-predictor (5) is a random forest by construction since it is then
the average of T randomly constructed trees.

It is worth pointing out that, unlike the prediction estimator (4) that applies
µ̄(x, s) directly to all the out-of-sample units, the SRB-estimator ŶM corrects the
bias of each µ(x, s1) using the observed errors {µ(xi, s1)− yi : i ∈ s2} via π2i; see
Sanguiao-Sande and Zhang (2021) for the details. Although ŶM is thus exactly
design-unbiased, it may have a larger MSE than the prediction estimator (4)
that uses the same model. Conversely, a prediction estimator would become
less attractive if its bias is ‘intolerable’, even though it may have a much smaller
MSE than an unbiased estimator that uses the same model.

4.3 Results

Table 4 summarises the results for the estimators described above. Apart from
each estimate Ŷ , it is also given the estimated bias (zero for an unbiased es-
timator), the estimated MSE, the relative error (RErr) given as

√
MSE/Ŷ , and

the Monte Carlo (MC) error of the MSE estimator.

Table 4: Estimation results (in billion euros), T = 10, 000 sample-splits, based
on same reduced sample size unless indicated otherwise.

Estimator, model Ŷ Bias MSE RErr MC error

HT-estimator (full sample size) 258 0 94 0.04 -
HT-estimator 252 0 151 0.05 -
SRB-prediction estimator, linear 227 -2 50 0.03 3
SRB-prediction estimator, tree 238 4 27 0.02 5
SRB-estimator, linear 229 0 122 0.05 1
SRB-estimator, tree 234 0 107 0.04 2

Exact Rao-Blackwellisation for MSE estimation is simply beyond reach in
this case, where we have more than six thousand strata with sample size three
in the reduced sample. If we leave out two units in each stratum under sub-
sampling, then there are more than 36000 distinct samples under the q-design
just for these strata, because the models are not built separately within each
stratum, not to mention the other strata with more sample units.
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The MC error is the bootstrap estimated standard deviation of the MC-MSE
estimator, which is due to the loss of MSE estimation efficiency by Monte Carlo
compared to exact Rao-Blackwellisation (with zero MC error). It can be seen
that the relative MC error still does not vanish despite the large number of
sample-splits T = 10, 000, e.g. it is 3/50 for the linear-model SRB-prediction
estimator, and not surprisingly, the relative MC error can increase as the MSE
reduces, such as 5/27 for the tree-model SRB-prediction estimator. Neverthe-
less, the MSE estimation results here are reliable enough for us to distinguish
between the different estimators.

First, we notice that the two design-unbiased SRB-estimators have only led
to moderate efficiency gains over the HT-estimator. The main reason is likely to
be the large number of strata with very few sample units. Basically, in case the
SRB-estimator uses µ(x) that is given in advance, it would become a stratified
difference estimator, which corrects for the design-based bias of µ(x) for each
stratum population total by using only the within-stratum sample units. The
situation is largely similar for the SRB-estimator using µ(x, s) estimated based
on the whole sample, which may have a small sampling variance itself.

In comparison, the SRB-prediction estimators using the same models can
be much more efficient precisely because they do not apply bias correction, i.e.
they are no longer stratified estimators as the SRB-estimators are, such that
they can take full advantage of the reduced variance if the prediction biases
are small. The MSE of the linear-model SRB-prediction estimator is only about
one third of the sampling variance of the HT-estimator, given the same sample
size, whereas the tree model further reduces the MSE by about 50% compared
to the linear model. Meanwhile, while the bias of the linear-model prediction
estimator is relatively small compared to its root MSE, this is no longer the
case for the tree-model prediction estimator, i.e. 4 against

√
27.

This serves to remind one that it is often possible to reduce the MSE at
some cost of increasing bias, such as when adopting either model-assisted or
model-based estimators traditionally. The theory of design-based predictive
inference allows one to estimate both the bias and MSE of a large class of
prediction estimators (1). This increases the scope of choice in practice, in
order to achieve a sensible trade-off between bias and variance.

Finally, the illustrative results above suffice to demonstrate the potentials of
sample size reduction for the SSBS. An appropriate scheme of stratum sample
size reduction requires a more systematic investigation though. In particular,
the accompanying estimator can be chosen from the broad class of prediction
estimators (1), assisted by any model or algorithm and the various features
available from the administrative source. But a detailed analysis is needed
to take into account the level of dissemination (instead of just an overall total
here) and the tolerable trade-off between bias and root MSE.
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5 Final remarks

We have developed a theory of design-based predictive inference from finite-
population probability sampling. For population total estimation, one would be
interested in the total of the out-of-sample prediction errors, whereas the risk
of individual-level prediction depends on the out-of-sample squared prediction
errors. The SRB approach provides a unified treatment of both.

Adopting design-based predictive inference for official statistics allows one
to circumvent the design vs. model controversy. In addition to producing
population-level estimates, it provides a theoretical basis for producing statis-
tical registers or census-like data for descriptive official statistics. The theory
we propose allows for any assisting ML models or algorithms, which can be
more efficient than calibration estimation using only auxiliary totals or the
parametric assisting models commonly used in survey sampling.

There are a number of issues worth further investigation, of which we only
mention a few here. First, survey nonresponse is unavoidable in practice. Lee
et al. (2022) apply a related SRB ensemble learning approach to missing data
imputation. It would be helpful to develop a unified SRB approach, which can
incorporate survey response under an extended quasi-randomisation frame-
work. Next, other choices of risk than the total squared prediction errors may
be considered for individual prediction, or interval estimation may be developed
for population total inference wherever the design-based bias of the prediction
estimator is deemed non-negligible. Finally, it is worth studying how better to
balance between the risk of individual prediction and the MSE of population
total estimation associated with the prediction estimator (1).
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A Proofs

Proof of Theorem 1.

Proof. Conditional on s1, we have

Es(B̂
2 | s1) = Es(B | s1)2 + Vs(B̂ | s1) = {Es(B

2 | s1)− Vs(B | s1)}+ Vs(B̂ | s1)

and Vs(B | s1) = Vs{B(s2) | s1} now that the total B1 = B + B(s2) is fixed given
s1. It follows that a conditionally (on s1) unbiased predictor of the squared total
error of Ŷ ∗

1 is
B̂2 − V̂s(B̂ | s1) + V̂s{B(s2) | s1)} .

Applying Rao-Blackwellisation to it yields the Eq{·} term on the right-hand side
of (7) as a more efficient unbiased estimator of the pq-MSE of Ŷ ∗

1 . Whereas the
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last term on the right-hand side of (7) follows from noting

Epq(B
2) = Epq{(Ŷ ∗

1 − Ŷ RB + Ŷ RB − Y )2} = Ep{Vq(Ŷ
∗
1 | s)}+ MSE(Ŷ RB) .

This completes the proof.

Proof of Theorem 2.

Proof. By (12), we have

D(s; µ̄) = Eq{
∑
i∈R

ei(µ, s1)
2 | s} − Eq{

∑
i∈R

ai(µ, s1)
2 | s} .

For the first term that can be rewritten as Eq{DR(s1;µ) | s}, the estimator

Êq

(
DR(s1;µ) | s

)
= Eq

(
D̂R(s1;µ) | s

)
is unbiased over p(s) since, using (11), we have

Ep{Eq

(
D̂R(s1;µ) | s

)
} = Es1{Es

(
D̂R(s1;µ) | s1

)
}

= Es1{Es

(
DR(s1;µ) | s1

)
} = Ep

{
Eq

(
DR(s1;µ) | s

)}
.

On replacing ei(µ, s1)
2 by ai(µ, s1)

2, one can carry through the same derivation
for the second term of D(s; µ̄) above, Eq{

∑
i∈R ai(µ, s1)

2 | s}. It follows that

Ep{D̂(s; µ̄)} = Ep{D(s; µ̄)} = τ(µ̄) .

This completes the proof.
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