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Abstract

The paleoclimate record provides a test-bed in which climate models can be
evaluated under conditions of substantial CO2 change; however, these data
are typically under-used in the process of model development and evalua-
tion. Here, we use a set of metrics based on paleoclimate proxy observations
to evaluate climate models under three past time periods. We find that the
latest CMIP6/PMIP4 ensemble mean does a remarkably good job of simu-
lating the global mean surface air temperatures of these past periods, and is
improved on CMIP5/PMIP3, implying that the modern climate sensitivity of the
CMIP6/PMIP4 model ensemble mean is consistent with the paleoclimate record.
However, some models, in particular those with very high or very low climate
sensitivity, simulate paleo temperatures that are outside the uncertainty range
of the paleo proxy temperature data; in this regard, the paleo data can provide
a more stringent constraint than data from the historical record. There is also
consistency between models and data in terms of polar amplification, with ampli-
fication increasing with increasing global mean temperature across all three time
periods. The work highlights the benefits of using the paleoclimate record in the
model development and evaluation cycle, in particular for screening models with
too-high or too-low climate sensitivity across a range of CO2 concentrations.

Keywords: climate modelling, paleoclimate

1 Introduction

Climate models are routinely applied to situations outside of the regimes in which they

have been evaluated during their development cycle. For example, in the framework of

the Coupled Model Intercomparison Project Phase 6 (CMIP6) and the Intergovern-

mental Panel on Climate Change (IPCC), models are used to project future climates

under CO2 concentrations substantially higher than those of the recent observational

period.

However, there is potential for traditional model evaluation and development to

be expanded to utilise proxy data associated with paleoclimate states [e.g. 1–6]. In

particular, paleoclimate model simulations test model behaviour under a wide range

of forcings, which encompass those expected in the timescale of the next few centuries

and beyond [7, 8]. The underlying philosophy is that we would expect to have more

confidence in future predictions from a model which has successfully simulated both
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past and modern climate states, than future predictions from a model which has only

successfully simulated the modern climate state.

Here we focus on three time periods, chosen firstly because they were subject to

substantial CO2 forcing relative to preindustrial, so are of most direct relevance to

future projections, and secondly because they have been part of ongoing international

modelling efforts in the framework of the Paleoclimate Modelling Intercomparison

Project (PMIP) [9], so have simulations available from a variety of different climate

models. The time periods are (i) the Last Glacial Maximum (LGM, 21,000 years ago),

with a CO2 concentration of ∼180 ppmv [e.g. 10, compared to ∼280 ppmv prior to

industrialisation, and ∼420 ppmv today], and an increase in ice sheet area and volume

compared to today, in particular in the Northern Hemisphere [e.g. 11], (ii) interglacial

KM5c within the mid Pliocene warm period (MPWP; ∼3.2 million years ago), with

a CO2 concentration of ∼400 ppmv [e.g. 12], and reduced Greenland and Antarctic

ice sheets compared with today [e.g. 13], and (iii) the early Eocene climatic optimum

(EECO; ∼53.3-49.1 million years ago), with CO2 concentrations of ∼1500 ppmv [e.g.

14], and no ice sheets. In general, older time periods have fewer locations with proxy

data, and greater uncertainty in the proxy data that is available.

When evaluating climate models for the purposes of assessing their ability to

project the future, the general approach is to focus on properties of the climate system

that are routinely used to quantify the magnitude of future climate change, and which

are robust inherent features that persist across a range of climate states [15, 16]. It is

also useful to evaluate properties that are determined by the combined effect of multi-

ple components of the climate system (e.g. atmosphere, ocean, cryosphere), so that the

integrated effect of the whole system can be assessed. Here, we focus on three large-

scale properties: global mean surface temperature, polar amplification, and land-sea

warming contrast. Global mean surface temperature (GMST) is the most fundamental

metric, and is a key focus of international agreements to limit global mean warming

3
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[e.g. 17]. Changes in GMST are determined by processes throughout the atmosphere,

ocean, and land surface; changes in GMST forced by CO2 alone can be quantified by

the Equilibrium Climate Sensitivity [ECS; 18]. Polar amplification is also a key com-

ponent of the climate system; the Arctic is currently warming at between 2 [19] and 4

[20] times that of the global mean, with associated impacts including sea level rise [21].

Polar amplification is determined by a range of processes [22], including changes in

heat transport [23], sea ice/snow feedbacks [24], and lapse-rate feedbacks [25]. Land-sea

warming contrast has also been observed over the last 150 years, with 1.6◦C warm-

ing over land areas compared with 0.9◦C warming of SSTs, associated with a 1.1◦C

GMST warming over the same period [26]. Land-sea warming contrast is associated

with changes to the hydrological cycle and atmospheric circulation [e.g. 27, 28], and

the thermal contrast between land and ocean plays a role in monsoon circulations [29].

Although these metrics are straightforward to define and quantify in a purely mod-

elling or conceptual framework, estimating them from paleoclimate proxy records is

challenging given their sparse distribution and large uncertainties [e.g. 30]. This com-

plicates model-data comparison, and means that quantification of model improvements

over time is problematic. Here we make use of assessed GMST estimates from the

IPCC [26], and additionally provide site-specific definitions for all the metrics, that

are straightforward to apply in a paleo context (see Online Methods, Sections 4.2 and

4.3), and apply the metrics to existing simulations from the fourth and third phase

of the Paleoclimate Modelling Intercomparison Project (PMIP4, PMIP3). In doing so

we provide a benchmark for paleoclimate model simulations, and assess improvements

over time, including in some of the very latest CMIP6 models.

2 Results

The spatial patterns of ensemble-mean (see Online Methods, Section 4.1) modelled

surface temperature change (near-surface air temperature and SST) are shown in
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Figure 1, along with paleoclimate proxy estimates at the locations for which they are

available (see Online Methods, Section 4.2). In general, the sparsity of the proxy data

increases further back in time. An exception is the terrestrial MPWP data, which is

more sparse than the (earlier) EECO; this is because of the relatively narrow time

period that is used in the Pliocene terrestrial reconstruction (a window of 30kyrs in

the MPWP [31] compared with 4120kyrs years in the EECO [32]; see discussion in

Section 3). Polar amplification (more warming in the polar regions than the tropics

under increasing CO2), and land-sea warming contrast (more warming over land than

over ocean under increasing CO2) are qualitatively apparent for all three time periods.

However, in order to quantify these features in proxies and models, and in order to

assess model-data comparison, quantitative metrics are required that account for the

relative sparsity of the paleo proxy data. Here we define and use two forms of metrics:

firstly, ‘true’ metrics based on the globally-defined fields, and secondly ‘site-specific’

metrics which are defined according to a particular paleo proxy dataset and calculated

according to the locations of the proxies (see Online Methods, Sections 4.2 and 4.3).

2.1 Global Mean Surface Temperature (GMST)

The true GMST metric ( ∆Tl,p,e t) is shown in Figure 2, for models and observations

(see Online Methods, Sections 4.2 and 4.3), for the three paleo time periods, and also

for the Historical (1850-2014) and post 1975 (1975-2014) periods. The paleoclimate

observed true GMST metrics are assessed values from the IPCC [26]; the equivalent

site-specific global SAT and SST modelled and observed metrics ( ∆Tl,p,e s) are shown

in Supp Info, Figure S1. First of all, it is interesting to note that in the observations,

the ratio of mean temperature change to uncertainty in this change (i.e. the signal-to-

noise ratio) is similar across the five time periods (Figure 2, black circles and vertical

error bars). The LGM has the largest signal-to-noise ratio for GMST, even larger than
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the historical record, indicating that it may be the most stringent target for model-

data comparisons. This is associated with the fact that the LGM has a greater density

of proxy data sites than the other paleo time periods. It is also important to note

that the LGM has less uncertainty in the forcing boundary conditions than the other

two paleo time periods (in particular CO2, for which ice core records [e.g. 10, 33] give

more accurate and precise values than is possible for the MPWP or EECO, where only

indirect CO2 proxies are available). As such, the uncertainty in the GMST sensitivity

to forcing for the Pliocene and EECO compared to the LGM is greater than would be

implied from the uncertainties in GMST alone. However, the 5-7◦C IPCC assessment

of LGM GMST cooling may be overly narrow; recent work has suggested a central

GMST estimate of 4.5 ◦C of cooling [Figure 2, black open circle and dashed range, 34].

For each paleo time period, the multi-model mean GMST metric sits within the

observed range, which is quite remarkable given that from the LGM to EECO this

represents a temperature range of about 20◦C. However, the spread across the ensem-

ble is relatively large, and many individual models sit outside the observed range (78

%, 65%, 29% for the LGM, MPWP, and EECO respectively).

Previous studies have not always found a clear correlation between modern ECS

and paleo GMST [e.g. 35, 36]. Although the ECS of every model in this study is

not available, there is some indication that models with an ECS that is known to

be greater than the IPCC assessed range of 2–5◦C simulate too great a change in

the paleo time periods (red dots in Figure 2c-e). Similarly, models with an ECS that

is known to be lower than this range simulate too small a change in GMST in the

paleo time periods (blue dots in Figure 2c-e). Only one model, CESM2, carried out

simulations across all five time periods. Apart from that, CESM1.2 is the only model

which carried out simulations across all three paleo time periods. The results from

these two models, highlighted in Figure 2, indicate a consistency in relative GMST

change across the paleo time periods for a particular model. However, more models
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carrying out simulations across multiple paleo time periods would allow this to be

explored further, and allow emergent constraints on ECS [37] from multiple time

periods to be developed. This would also require all PMIP models to carry out 4×CO2

simulations alongside their paleo simulations in order to calculate their ECS.

It also appears that both high and low ECS models can simulate the Historical

period in good agreement with observations (Figure 2b), and low ECS models can

simulate the post-1970 warming (Figure 2a). Therefore, paleoclimates may be a better

discriminator of high- and low-ECS models than the observational periods (which

is consistent with findings from an assessment of ECS that included paleoclimate

evidence [38]). This may be due to the fact that the paleoclimate simulations are close

to equilibrium with the CO2 forcing, whereas the Historical simulations are transient,

and as such have a GMST that is influenced by a transient pattern effect [e.g. 39],

and/or it may be related to uncertainties in the aerosol forcing over the historical

period [40]. However, more paleo simulations are required to further confirm this

relation. In particular, there is a need for more paleo model simulations to be carried

out with the same models that carry out the Historical CMIP simulations (this lack

of consistency between the CMIP6 and PMIP4 model ensembles arises, at least in

part, due to the long integration lengths required for full equilibrium of paleoclimate

simulations).

It is also apparent that for all three past time periods there has been an improve-

ment in the modelled GMST in the PMIP4/CMIP6 paleoclimate model simulations

compared with the previous CMIP5/PMIP3 simulations (large versus small dark grey

dots in Figure 2c-e). This improvement is likely due to a combination of updated

boundary conditions, and improvements to the models themselves. Key changes in

boundary conditions in PMIP4 compared with PMIP3 include updated ice sheets for

the LGM [41], updated paleogeography and representation of ocean gateways for the

Pliocene [42], and a consistent experimental design for the EECO including a new
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paleogeography [43]. It is harder to robustly identify particular model improvements

that may be relevant, because there is no clear lineage between the models in PMIP3

and PMIP4, but, for some models at least, improvements in model representation of

cloud microphysics are playing an important role [e.g. 44, 45].

2.2 Polar Amplification

The site-specific polar amplification metrics (see Online Methods, Section 4.3),

( ∆Pl,p,e t,s), are shown in Figure 3a. Because the MPWP and EECO are warmer than

the preindustrial whereas the LGM is colder, the observed site-specific metric from

proxies is positive for the EECO and MPWP but is negative for the LGM (black cir-

cles in Figure 3, see Online Methods, Section 4.2 for a description of how the error bars

are calculated). For all three time periods this indicates a polar amplification associ-

ated with increasing temperature (i.e. a decrease in meridional temperature gradient

with increasing temperature).

For the LGM, the proxies indicate a site-specific SST polar amplification of about

-0.4◦C, whereas the model ensemble mean indicates a greater amplification of -0.7◦C

(dark grey circles in Figure 3a). The proxy value sits within the model range, but

the model range is large compared with the uncertainty range from the proxies, from

0.1 ◦C (IPSLCM5A2) to -1.4◦C (CESM2). For the MPWP and EECO, the polar

amplification indicated by the proxies is greater than in any of the models, although for

the MPWP two models do get close to the observed value of 1.7 ◦C and are within the

uncertainty range of the proxy metric. For the EECO, the model-data disagreement

is much starker, with nearly double the polar amplification in the proxies (12◦C) than

in the model with the greatest value (CESM2; 7◦C). This discrepancy is primarily

because of exceptionally warm proxy temperatures in the southwest Pacific. Many

reasons for possible warm biases in the proxy temperatures in this region have been

proposed, including a seasonal bias in mid- and high-latitude SST proxies [32, 46],

8



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

and/or uncertainties in the functional form of different paleo temperature proxies

(e.g., TEX86) in the upper temperature range [47, 48]. Since data from this region

represent a large number of the high latitude records available from the EECO, they

bias the proxy-based metric towards extremely high values. With the SSTs from the

southwest Pacific excluded, the proxy polar amplification decreases from 12◦C to 4◦C,

and the model and data are in closer agreement (see Supp Info, Figure S2a). Note

that our site-specific proxy-based metrics are not comparable with previous estimates

of Eocene polar amplification [e.g. 44, 49], which were based on Mg/Ca estimates of

deep ocean temperatures, and designed to be comparable with true model metrics.

There has been little change in the ensemble mean LGM or EECO SST polar

amplification between PMIP4 and PMIP3, although improvements in cloud parame-

terisations since PMIP3 have been shown to improve simulation of polar amplification

in the EECO for individual models [44, 50]. However, for the Pliocene there has been

a substantial improvement. At least some of this improvement is likely related to the

closure of the Bering Strait in the PMIP4 experimental design, which has been shown

to increase Pliocene temperatures in the North Atlantic [51]. However, the proxies

still indicate greater amplification than the models (0.8◦C for PMIP4 and 0.25◦C for

PMIP3, compared with 1.7◦C in the proxies).

For all three time periods, the site-specific polar amplification metric ( ∆Pl,p,e s)

has a similar value to the true metric ∆Pl,p,e t for most models. Across the ensemble,

the true metric is greater than the site-specific metric in the MPWP (by 0.05◦C), and

less than the site-specific metric in the EECO (by 0.4◦C); indicating that despite the

sparsity of the proxy data, there is enough data for the site-specific polar amplification

metric to be meaningful. However, the exception to this is for the CESM2 model at the

LGM (red dot in the LGM panel of Figure 3a), where the site-specific metric (-1.4◦C)

is very different, and even of opposite sign, to the true metric (0.3◦C). This because

although the CESM2 LGM ∆T metric is greater than any other model (Figure 2),
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the LGM polar SSTs can not drop below the freezing point of seawater, resulting in

relatively low polar amplification in the true metric (see Supp Info, Figure S3b).

There is not enough proxy SAT data in the tropics to define a SAT polar amplifica-

tion metric for the MPWP or the EECO, and there is not enough data in the Southern

Hemisphere to define a global polar amplification metric for the LGM. However, it

is possible to quantify the absolute changes in high-latitude SATs for all three time

periods (see Supp Info, Figure S4a,b,c), and for the LGM a Northern Hemisphere-

only polar amplification metric can be defined (see Supp Info, Figure S4a). This shows

that the Northern Hemisphere LGM polar amplification is very well simulated by the

PMIP4 model ensemble mean (-4.1◦C) compared with the proxies (-4.2◦C). For the

Pliocene, the model ensemble is colder than the proxies in general in the Northern

Hemisphere high latitudes, related to less warmth in the Eurasian and Northern Amer-

ica continental interiors than indicated by the proxies. It has been suggested that the

warm proxy temperatures in this region may be related to seasonal biases and/or the

lack of modern analogues for the associated pollen records [52]. For the EECO, the

Southern Hemisphere high latitude temperatures are well simulated by the ensemble

mean, which further supports that the Southwest Pacific SSTs proxy temperatures are

biased too warm. For the Northern Hemisphere, the models simulate a greater polar

amplification than the proxies, but this is largely due to a set of proxy temperatures

at 45◦N in North America which are relatively cold, and may be influenced by the

local topography of the Rockies.

2.3 Land-sea warming contrast (LSWC)

The site-specific land-sea warming contrast (LSWC) metrics, ( ∆Ll,p,e t,s), are shown

in Figure 3b. The proxies indicate a negative (positive) LSWC for the LGM (MPWP),

indicating that for both these time periods the land surface SAT warms more than

the ocean SST under warming GMST. However, for the EECO the proxies indicate

10



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

a negative LSWC under warming GMST. Again, this is related to the super warm

southwest Pacific proxy SST temperatures, and discounting SSTs from that region

results in a positive LSWC for the EECO (see Supp Info, Figure S2b). The terrestrial

proxies for the Eocene are from a wider time window (56.0 to 47.8 Ma) than the marine

proxies (53.3 to 49.1 Ma) [32], and in many cases have uncertain paleoaltitude, and so

this may also be playing a role. For both the LGM and MPWP, the model ensemble

has a lower magnitude LSWC than the proxies, and this discrepancy is greater in

the PMIP4/CMIP6 models than in the PMIP3/CMIP5 models. For the MPWP, the

proxy SAT locations are all in the mid latitudes of the Northern Hemisphere, and as

discussed above, in this region the models simulate colder temperatures than indicated

by the proxies (see Supp Info, Figure S4b), and it is this discrepancy which leads to

the discrepancy in land-sea warming contrast. The model site-specific and true metrics

differ from each other quite considerably, with the true metrics being lower than the

site-specific metrics for all time periods, by 70%, 50%, and 40% for the LGM, MPWP,

and EECO respectively.

3 Discussion

There is a remarkable relationship between the modelled GMST metric, ∆T, and the

polar amplification metric, ∆P, across the three time periods, in both the site-specific

and true metrics (Figure 4a). This is also supported in the proxies, in particular when

the southwest Pacific sites are excluded from the EECO; in this case both models

and proxies point to an approximately linear relationship between the two metrics.

The fact that this relationship is so linear is surprising given the greatly reduced

(or non-existent) sea ice in the EECO, indicating that other mechanisms of polar

amplification (for example related to cloud feedbacks) are compensating for each other

across different time periods, resulting in the linear relationship. This relationship is
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also seen in proxy estimates of global mean temperature and meridional temperature

gradient from across the last 95 million years [53].

In the models, there is also a clear relationship between the GMST metric and the

LSWC metric (Figure 4b). In this case there is a non-linear relationship, with LSWC

increasing at lower GMST, but then flattening out under the high temperatures of

the EECO. This relationship, including a saturation, is consistent with theory based

on contrasting surface humidities and lapse rates over land and ocean [28]. The LGM

proxy data is consistent with this relationship, but Pliocene LSWC in the proxies is

greater than in the models, even accounting for the error bars in the proxy metric.

In the EECO, the proxies indicate a complete reversal in this relationship, but when

the EECO southwest Pacific sites excluded again, the models and proxies are more

consistent, especially accounting for the large error bars of the EECO proxy estimates

of GMST and LSWC.

In this paper we have used metrics derived from paleo proxy data to evaluate cli-

mate model simulations of the LGM, MPWP, and EECO.We find that model ensemble

mean GMSTs are in exceptionally good agreement with the proxy data for all three

paleo time periods, and that this agreement has improved in CMIP6/PMIP4 compared

to CMIP5/PMIP3. The LGM is shown to be a very stringent target for model evalu-

ation and development due to its large signal-noise ratio, and well-defined boundary

conditions. There are indications that model evaluation using the paleo proxy record

can be a better discriminator of models with very high or very low climate sensitivity

than using the Historical observational period. Models also simulate polar amplifi-

cation, and the relationship between GMST and polar amplification in reasonable

agreement with proxies. However, there are uncertainties associated with the proxy

records in: i) the MPWP within the northern hemisphere continental interiors, and

ii) during the EECO, particularly in the southwest Pacific. In addition, some proxy

terrestrial sites are from high elevation regions that are not resolved in the models,

12
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or, for the EECO, are from regions for which the paleoelevation is uncertain. Further-

more, the relatively wide temporal window of the EECO (4.12 Myr) means that the

proxy signal is affected by orbital forcing, and temporal variations in CO2. All of these

proxy uncertainties should be further explored in future work in order to maximise

the utility of the paleoclimate proxy record for model development. Land-sea warm-

ing contrast is reasonably well simulated at the LGM, but less so at the MPWP and

EECO. The models indicate an increasing but saturating relationship between GMST

and LSWC, consistent with theory.

Overall, the paper provides a framework for paleo model evaluation that can be

used for future model development in the framework of CMIP7 and beyond [6, 8, 54].

The framework also provides a traceability to previous model generations, allow-

ing a robust assessment of model improvements over time, through successive model

development cycles.

4 Online Methods

4.1 Model simulations

The most recent experimental designs for the three time periods above are described

in detail in Ref. [41] for the LGM, Ref. [42] for the MPWP, and Ref. [43] for the

EECO. These experimental designs describe standard boundary conditions (e.g. CO2,

non-CO2 greenhouse gases, ice sheets, and vegetation) to be implemented in models,

and protocols for the simulations themselves (e.g. run length and initial conditions).

Simulations carried out using these experimental designs are all classified here as

PMIP4/CMIP6 simulations. The models that carried out these PMIP4 simulations

are of varying complexity, and include models developed for use in CMIP6, as well

as earlier iterations of CMIP. The large-scale features of these PMIP4 simulation

results are discussed in Ref. [4] for the LGM, Ref. [1] for the MPWP (as part of

the PlioMIP2 project), and Ref. [3] for the EECO (as part of the DeepMIP project).

13



599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

Simulation results are also presented for previous model simulations in the framework

of PMIP3/CMIP5, described in Ref. [4] for the LGM, [31] for the MPWP, and Ref.

[55] for the EECO. Tables listing all the simulations used in this paper are given in

Supp Info, Tables S1-S5.

Note that for the EECO, the NorESM1 F model uses a paleogeography with a

different reference frame than the other models, and as such is only included in the

GMST metric and not in the polar amplification or land-sea warming contrast metrics,

which are reference frame-specific. Also for the EECO, there are fewer models pre-

sented here than in Ref. [3]. This is because here we only include those models which

carried out simulations in the range ×4 to ×8 preindustrial levels of CO2, in accor-

dance with CO2 proxy estimates for the EECO [3]. The exception is CESM2.1slab,

which we include for context and which was run at ×3.

4.2 Proxy datasets

In order to evaluate the model simulations, we use existing syntheses and compilations

of paleo proxy data for all three time periods.

For the GMST metric, we make use of the IPCC AR6 assessments of GMST change

for the three paleo time periods [26]. These are based on a thorough review of the

literature, and are designed to be global metrics directly comparable with the global

mean output from models (i.e, they are ‘true’ metrics, see Metrics section 4.3). For

the LGM, we also include the GMST metric of [34].

For the polar amplification and land-sea warming contrast metric, we use site-based

data; for the LGM we use Ref. [56] for the sea surface temperatures (SSTs) and Ref.

[57] (at the locations defined in Ref. [58], which are the actual proxy locations that

inform the global assimmilated dataset of [57]) for the land air temperatures (LATs).

For the MPWP we use Ref. [59] for the SSTs and Ref. [60] for the LATs. For the

EECO we use Ref. [61] for the SSTs and LATs.
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4.3 Definition of metrics

For changes in GMST, polar amplification, and land-sea warming contrast, we can

define two types of quantitative metrics. Firstly, ‘true’ quantities, Qt, which in theory

require SST, and LAT and near-surface air temperature (SAT) values to be defined

over the entire ocean and globe respectively (i.e. at all gridcells of a model or global

gridded observational dataset). SST t is the ocean-only true global mean SST, LAT t is

the land-only true global mean SAT, and SAT t is the true global mean SAT. Secondly,

‘site-specific’ means; SST s, LAT s, and SAT s. These are similar to the true quantities,

but rather than averaging over all gridcells, they are defined according to a particular

paleo proxy dataset, and are averaged only over those cells/locations that include at

least one proxy data point in that dataset. True quantities, Qt, can in theory only be

defined for globally gridded output, whereas site-specific quantities, Qs can be defined

either for global model output or for proxy datasets. In practice, the IPCC-assessed

paleoclimate GMST metrics are also considered to be ‘true’ metrics, as discussed in

Section 4.2. Site-specific quantities are simply the average of the temperatures at each

site in the proxy dataset. All quantities can be defined for a particular time period (x,

where x can be e for EECO, p for MPWP, l for LGM, or pi for preindustrial) and can

also be defined for selected latitude ranges (r), Qxr , so that, for example the site-specific

mean SST in the range 90S to 30S during the EECO, is written SSTe s
−90:−30 .

We then define 3 key metrics as a function of these quantities. In particular, the

change in true or site-specific (t,s) mean temperature relative to the preindustrial

(∆T ), for the LGM (l), MPWP (p), or EECO (e) is:

∆Tl,p,e t,s = SATl,p,e t,s − SATpi t,s (1)
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for SAT, and similarly for SST and LAT. The polar amplification metric (∆P ) is

∆Pl,p,e t,s = SSTl,p,e t,s
−30:+30 − SSTl,p,e t,s

±60:±90 − SSTpi t,s
−30:+30 + SSTpi t,s

±60:±90 (2)

for SST, and similarly for LAT. The land-sea warming contrast metric (∆L) is

∆Ll,p,e t,s = LATl,p,e t,s − SSTl,p,e t,s − LATpi t,s + SSTpi t,s. (3)

The proxy compilations that we use are published with associated uncertainties

in temperature for each individual site. However, the meaning of these uncertainty

ranges is unclear in some cases, and inconsistent across different time periods. Here we

interpret all published uncertainties as representing a range of uniformly distributed

uncertainty. In order to estimate the associated uncertainty in the polar amplifica-

tion and land-sea warming contrast site-specific proxy metrics that we present, we

use monte carlo sampling to generate 100 proxy datasets, and use these to generate

100 associated metrics, from which we report a mean and a 90% uncertainty range

(consistent with the IPCC ‘very likely’ range).

4.4 Developments since IPCC AR6

IPCC AR6 includes a Figure showing ensemble mean maps, and zonal means, of the

SST and SAT data analysed in this paper ([18, ; Figure 7.13 therein]. Compared with

the IPCC Figure, here we have carried out some developments, and incorporated these

into our overall analysis: (1) Here, in Figure S3, the horizontal lines showing the banded

mean SSTs, and the values given in the plot for the values of the polar amplification

associated with these bands, are calculated using the ensemble mean SSTs only for

those gridboxes where all models have an ocean grid ocean (cdo operator ‘ensaver’).

In the equivalent IPCC plot, the values given are the same as in Figure S1, but the
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horizontal lines were calculated using the mean of the models for all gridboxes for

which at least one model had ocean (cdo operator ‘ensmean’). (2) Here, for extracting

the modelled SST at the location of a proxy, for SST proxy locations which were

defined as land in the models, the nearest ocean gridcell was used to define the model

value. In the IPCC, due to a coding error, the nearest-but-one ocean gridcell was used.

(3) Here, we assigned an uncertainty of ±5◦C for any proxy data that did not have an

associated uncertainty in the original reference. In the IPCC, due to a coding error, an

error of zero was assigned. (4) Here, with the exception of NorESM stated above, all

models are used to calculate all three metrics. In the IPCC, the EECO CESM2.1slab

simulation was not included in the map of the ensemble mean map or in the plot of

the zonal mean.

Supplementary information. Supplementary material is available, consisting of

Figures S1-S5, and Tables S1-S5.
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Fig. 1 Patterns of model and proxy temperature change relative to preindustrial. Pat-
terns of (a,c,e) near surface air temperature (SAT), and (b,d,f) sea surface temperature (SST), in
paleo proxies and models of the (a,b) Last Glacial Maximum (LGM), (c,d) the Mid-Pliocene Warm
Period (MPWP), and the (e,f) Early Eocene Climatic Optimum (EECO). Modelled ensemble-mean
temperature anomalies compared with pre-industrial are shown in the background colours. Proxy
near-surface air temperatures and SST anomalies are shown as coloured circles (see Online Methods,
Section 4.2). Note the differing colour scales for each map.
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Fig. 2 Model and proxy global mean temperature change relative to preindustrial.
Global mean true surface temperature (GMST) anomaly, ∆Tl,p,e t in models and observations from
five time periods. (a) post-1975; (b) Historical; (c) Last Glacial Maximum (LGM, l); (d) mid-Pliocene
Warm Period (MPWP, p); (e) Early Eocene Climatic Optimum (EECO, e). Light grey circles show
CMIP6/PMIP4 models with ECS in the very likely range as assessed by [18]; models in red have an
ECS greater than the assessed very likely range (> 5◦C); models in blue have an ECS lower than the
assessed very likely range (< 2◦C). Dark grey large circles show the multi-model ensemble mean for
CMIP6/PMIP4. Dark grey large circles show the multi-model ensemble mean for CMIP5/PMIP3.
Black circles and very likely ranges show the IPCC assessed temperature anomaly derived from
observations [26]. For the LGM, the black open circle with dashed very likely uncertainty range
shows the GMST anomaly estimate from [34]. The Historical anomaly in models and observations
is calculated as the difference between 2005–2014 and 1850–1900, and the post-1975 anomaly is
calculated as the difference between 2005–2014 and 1975–1984. For the LGM, MPWP and EECO,
modelled temperature anomalies are compared with pre-industrial. The square symbol denotes the
five simulations carried out by CESM2, and the triangle symbol denotes the three simulations carried
out by CESM1.2. A version of this figure with all models labelled is in the Supp Info, Figure S5, and
all the models in this plot are listed in order of GMST in the Supp Info, Tables S1-S5. A similar plot
of the paleo time periods, but for the site-specific metric, ∆Tl,p,e s, is shown in Supp Info, Figure S1.
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Fig. 3 Metrics of polar amplification and land-sea warming contrast. Metrics for (a) SST
polar amplification ( ∆Pl,p,e t,s) and (b) land-sea warming contrast ( ∆Ll,p,e t,s), for Last Glacial
Maximum (LGM, l), mid-Pliocene Warm Period (MPWP, p), and early Eocene Climatic Optimum
(EECO, e). Black circles and very likely ranges show the observed site-specific metric (s), dark grey
circles show the model ensemble mean site-specific metric (large circles for CMIP6/PMIP4 and small
circles for CMIP5/PMIP3), and light-grey/red/blue circles show the individual CMIP6/PMIP4 model
site-specific metric. The EECO observed metric shown with an open circle and dotted error bar
excludes SST data from the southwest Pacific. All metrics are calculated relative to the preindustrial.
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Fig. 4 Relationship between global mean surface temperature, polar amplification, and
land-sea warming contrast. Relationship between metrics for (a) GMST ( ∆Tl,p,e t,s) and polar
amplification (( ∆Pl,p,e t,s)), and (b) GMST and land-sea warming contrast ( ∆Ll,p,e t,s), for the Last
Glacial Maximum (LGM; blue, l), mid-Pliocene Warm Period (MPWP; orange, p), and early Eocene
Climatic Optimum (EECO; red, e). Large circles and very likely ranges show the observed site-specific
metric (s), small circles show the model site-specific metric for all CMIP6/PMIP4 models, and stars
show the true model metric (t) for all CMIP6/PMIP4 models. The square shows the preindustrial.
The EECO observed metric shown with an open circle excludes SST data from the southwest Pacific.
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