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Abstract 

A popular focus in affective neuroscience research has been to map the relationships 

between individual differences (e.g. personality and environmental experiences) and 

psychophysiological responses, in order to further understand the effect of individual 

differences upon neurobehavioral systems that support affect and arousal. Despite this 

trend, there have been a lack of practical examples demonstrating how the 

quantification of individual differences (e.g. categorical or continuous) impacts the 

observed relationships between different units of analysis (e.g. self-report > 

psychophysiological responses). To address this gap, we conducted a two-stage 

aggregated meta-analysis of self-reported intolerance of uncertainty (IU) and skin 

conductance responses during threat extinction (k = 18, n = 1006) using different 

quantification choices for individual differences in self-reported intolerance of 

uncertainty (continuous, categorical via median split, and categorical via extremes – one 

standard deviation above/below). Results from the meta-analyses revealed that the 

different quantification techniques produced some consistent (e.g. higher IU was 

significantly associated with skin conductance responding during late extinction training) 

and inconsistent IU-related effects. Furthermore, the number of statistically significant 

effects and effect sizes varied based on the quantification of individual differences in IU 

(e.g. categorical, compared to continuous was associated with more statistically 

significant effects, and larger effect sizes). The current study highlights how conducting 

different quantification methods for individual differences may help researchers 

understand the individual difference construct of interest (e.g. characterisation, 
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measurement), as well as examine the stability and reliability of individual difference-

based effects and correspondence between various units of analysis.   

 

Keywords: Intolerance of Uncertainty, Trait Anxiety, Threat extinction, Individual 

Differences, Psychophysiology, Meta-analysis, Multiverse-type analysis 
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Introduction 

In affective neuroscience research there has been a rising interest in examining how 

individual differences in personality or environmental experiences map on to 

psychophysiological responses (for examples, see Lonsdorf & Merz, 2017; Morriss et 

al., 2023; Saarinen et al., 2021; Sigrist et al., 2021). A key advantage of this research is 

that it may reveal the extent to which different types of individual variation modulate 

neurobehavioral systems that support affect and arousal (Davidson, 2003; Hariri, 2009). 

Importantly, the findings from such research can be applied or integrated into existing 

frameworks of human functioning (e.g. Research Domain Criteria: Insel, 2014) and 

transdiagnostic models of psychopathology (e.g. The Hierarchical Taxonomy of 

Psychopathology: Kotov et al., 2017), with the aim to accelerate translation of basic 

science discoveries to cost-effective and individually tailored therapeutic intervention.  

While this continued focus on individual differences in affective neuroscience 

research is promising, methodological considerations for how to examine individual 

differences have been somewhat lacking and slower to emerge in some sub fields 

(Elliott et al., 2021; Yarkoni, 2015), compared to others (e.g. attachment: Gardener et 

al., 1986; Fraley & Spieker, 2003). Recently, in affective neuroscience research there 

has been a push to understand how individual differences can be best captured using 

psychophysiological measures (e.g, see Hajcak et al., 2017). However, there is still a 

dearth of concrete examples on how different quantification choices for individual 

differences impact observed relationships between commonly used read-outs (e.g. self-

report and psychophysiological responses).  
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Currently, there are two dominant approaches for quantifying individual 

differences for statistical analysis (Maxwell & Delaney, 1993): (1) categorical, which 

involves splitting a set of values into different groups based on the median or one 

standard deviation above or below the mean, and (2) continuous, which consists of 

using an entire set of values along a continuum. Categorical and continuous 

approaches for quantifying individual difference data have several different advantages 

and disadvantages (for review see, DeCoster et al., 2011). On the one hand, categorical 

approaches can be useful for probing individual difference data that have skewed 

distributions and/or extreme scores (e.g. commonly seen for some mental health 

symptom dimensions), as well as nonlinear relations which are quadratic (e.g. often 

observed in developmental research) (DeCoster et al., 2011). Although, artificially 

creating categories will in most cases reduce statistical power (Cohen, 1983), 

particularly for individual difference predictor variables that are normally distributed (e.g. 

in a median split, some individuals may be only a few points away from fitting one 

category over another), as well as increase the chance of false statistical significance 

when there are multiple predictors (MacCallum et al., 2002; Maxwell & Delaney, 1993).  

On the other hand, continuous approaches allow for the inclusion of all the available 

data points and can be applied to most types of models (e.g. linear, nonlinear), which 

increases statistical power. A disadvantage of the continuous approach for individual 

difference data is that more participants need to be recruited to achieve an even spread 

of scores across a given metric.  

As far as we are aware there has been no systematic comparison of how 

categorical and continuous quantification of individual difference data impacts the 
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observed relationships between different units of analysis (e.g. self-report > 

psychophysiological responses). There may be benefits to conducting a multiverse-type 

analysis (Del Giudice & Gangestad, 2021; Steegen et al., 2016) based on different 

quantification choices for individual difference data. For example, applying both 

categorical and continuous quantification of individual differences to any given data set 

may provide useful information about: (1) how to further characterise (e.g. 

dichotomously; dimensionally) the individual difference, and (2) how to optimally design 

experiments and prepare analysis pipelines to capture and examine the  individual 

differences across different readouts (e.g. self-report, psychophysiology). Furthermore, 

investigating the effect of different quantification choices of individual difference data on 

statistical outcomes (e.g. significance, effect size) will allow for a better assessment of 

the reliability and reproducibility of the individual difference of interest.    

 In the current study, we conducted a two-stage aggregated meta-analysis (for 

discussion see, Boedhoe et al., 2018) on an existing data set (k = 18, n = 1006, Morriss 

et al., 2021) and compared how the different quantification choices for individual 

difference variables impacted statistical outcomes such as significance and effect size. 

The original Morriss et al. (2021) two-stage aggregated meta-analysis examined the 

relationships between self-reported Intolerance of Uncertainty (IU: the tendency to find 

uncertainty aversive, Carleton et al., 2007; Freeston et al., 1994) and differential skin 

conductance response to learned cues during threat extinction training (Lonsdorf et al., 

2017). In line with prior research,the total IU scale (27-item, 12-item) and its subscales 

(inhibitory, prospective) were quantified as continuous variables (Carleton et al., 2007; 

Freeston et al., 1994). The differential skin conductance response to learned cues 



   

 

7 
 

during threat extinction training was indexed by four commonly used metrics (whole 

phase, early, late, and double-difference [early trials – late trials]) (Fullana et al., 2018; 

Morriss et al., 2018). To assess the specificity of IU over broader negative affective 

traits (for discussion see, Morriss, 2023) additional analyses included controlling for self-

reported trait anxiety. The meta-analysis revealed that higher IU, across different scales 

and subscales, was associated with greater skin conductance response to learned 

threat versus safety cues during the whole and late parts of the threat extinction training 

phase. Moreover, these IU-related effects remained when controlling for trait anxiety. To 

interrogate these IU-related effects during threat extinction training further, here we 

assessed whether these findings replicate when applying different quantification choices 

for individual differences in IU: categorical via median split; categorical via extremes – 

one standard deviation above/below; and continuous. This planned analysis may be 

considered a multiverse-type-analysis as it consists of comparing how different data 

quantification choices (e.g. categorical versus continuous data) and associated 

statistical model (e.g. correlations versus ANOVAs) pipelines impact the outcome. The 

aims of this study run in parallel to a growing literature of multiverse analyses to 

improve scientific rigor in psychophysiological research generally (Clayson, 2024), and 

in particular threat conditioning research (Kuhn et al., 2022; Lonsdorf et al., 2019, 2022; 

Ney et al., 2020, 2022).    

 

Methods 

An updated two-stage aggregated meta-analysis was conducted on a pre-existing data 

set comprising of 18 experiments (n = 1006; see Table 1 and 2) that examined IU and 
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skin conductance responses during threat extinction training (Goldfarb et al., 2021; 

Kanen et al., 2021; Lucas et al., 2018; Morriss, 2019; Morriss et al., 2015, 2016, 2020; 

Morriss & van Reekum, 2019; Sjouwerman et al., 2016, 2020, unpublished data 2020; 

Steinman et al., 2022; Thompson et al., 2018; de Voogd et al., 2020; Wake et al., 2020, 

2021). At the first stage, raw individual level self-reported intolerance of uncertainty/trait 

anxiety and skin conductance response data from the threat extinction training phase 

were used to generate summary statistics (i.e. effect sizes) per experiment. At the 

second stage the summary statistics were synthesised across experiments using fixed-

effect meta-analysis models. Please refer to the original two-stage aggregated meta-

analysis by Morriss et al. (2021) for details relating to data search and inclusion criteria, 

data quality checks, and data collation. The experimental parameters and participant 

characteristics of the experiments are outlined in Table 1 and 2 respectively.  

The protocol outlined here was not preregistered. The relevant files from this 

meta-analysis (i.e., master data file and meta-analysis output from RStudio [RStudio, 

Inc., Boston, MA]) are located on the Open Science Framework through the following 

link: https://osf.io/us4qv/ 

[Insert Table 1 and Table 2 here] 

 

Data reduction 

Intolerance of Uncertainty: Scores from four separate Intolerance of Uncertainty 

Scales (IUS) were generated (IU-27, IU-12, I-IU, and P-IU). The IU-27 consists of 27 

items rated on a 5-point Likert scale (Freeston et al., 1994). The IU-12 is generated 

based on 12 items from the IUS-27 (Carleton et al., 2007). Two experiments collected 

https://osf.io/us4qv/
https://www.sciencedirect.com/topics/medicine-and-dentistry/likert-scale
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the IU-12 and therefore are not included in the analysis of the IU-27 (Lucas et al., 2018; 

Thompson et al., 2018). The inhibitory IU (I-IU) and Prospective IU (P-IU) subscales 

measure separate components of IU and are generated from either the IU-27 or the IU-

12. Where two or more items were missing for the IUS, values were interpolated based 

on the average item score (n = 14).  

Continuous Measure of IU Scores: For each experiment, the original IU scales 

and subscales comprised of continuous data and therefore no additional data reduction 

steps were required.  

Median Split of IU Scores: For each experiment, a median was computed for 

each IUS measure (IU-27, IU-12, I-IU, and P-IU) and then a median split was conducted 

by dividing the data into two groups (low IU and high IU) based on the median score for 

each IUS measure (see Fig 1A). 

Extreme Values of IU Scores: Within each experiment, the mean and standard 

deviation was computed for each IUS measure (IU-27, IU-12, I-IU, and P-IU). 

Subsequently, extreme values for each measure were identified, defined as those 

deviating from the mean by more than one standard deviation (see Fig 1B). For each 

experiment, extreme values were categorised as follows: Low IU, representing scores 

one standard deviation below the mean, and High IU, signifying scores one standard 

deviation above the mean. 

[Insert Fig 1 here] 
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Trait Anxiety: Of the 18 studies, 15 measured trait anxiety using the State-Trait Anxiety 

Inventory-Trait (STAI-T: Spielberger et al., 1971) or the State-Trait Inventory for 

Cognitive and Somatic Anxiety (STICSA: Ree et al., 2008). The STAI-T consists of 20 

items rated on a 4-point Likert scale, and the STICSA consists of 21 items rated on a 4-

point Likert scale. 

 

Skin Conductance Response: As in the original paper by Morriss et al. (2021), four 

separate skin conductance response difference score metrics were computed for each 

experiment: whole phase extinction [(CS+) − (CS−)], early extinction [(first 6–10 CS+ 

trials) − (first 6–10 CS− trials)], late extinction [(last 6–10 CS+ trials) − (last 6–10 CS− 

trials)], and double-difference extinction score [(CS+ − CS−)early − (CS+ − CS−)late]. For 

4 experiments, only the early extinction training metric was analyzed (Kanen et al., 

2021; Sjouwerman et al., 2016, 2020, unpublished data 2020) because these 

experiments had too few extinction learning trials to compute the other SCR difference 

score metrics. 

 

Analyses 

Correlation and partial correlation analyses were performed in SPSS 19 (IBM Corp.) to 

generate effect sizes for each experiment based on IU as a continuous variable. The 

correlations included IU (IU-27, IU-12, I-IU, and P-IU) as a continuous independent 

variable and the skin conductance difference scores (whole phase, early, late, and 

double-difference) as a continuous dependent variable. Additionally, partial correlations 

were conducted on  IU (IU-27, IU-12, I-IU, and P-IU) and skin conductance difference 
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scores (whole phase, early, late, and double-difference), while controlling for trait 

anxiety.  

ANOVAs and ANCOVAs were conducted in RStudio (RStudio, Inc., Boston, MA) 

to generate effect sizes for each experiment based on IU as a categorical variable 

(median split or extremes based on one standard deviation above and below the mean). 

The ANOVAs included IU (IU-27, IU-12, I-IU, and P-IU) as a categorical independent 

variable and the skin conductance difference scores (whole phase, early, late, and 

double-difference) as a continuous dependent variable. Furthermore, ANCOVAs were 

conducted on IU (IU-27, IU-12, I-IU, and P-IU) and skin conductance difference scores 

(whole phase, early, late, and double-difference), while controlling for trait anxiety.  

The r values from the correlations and partial correlations using IU as a 

continuous measure were converted into Hedges’ g effect size values. The F values 

from ANOVA and ANCOVA analyses using IU as a categorical (i.e., median split and 

extreme values) measure were also converted into Hedges’ g effect sizes. Fixed-effect 

meta-analyses were carried out in RStudio (RStudio, Inc., Boston, MA) on effect sizes 

across the 18 experiments separately for continuous, median split and extreme 

measures of IU to generate a pooled effect size for every IU scale/subscale (IU-27, IU-

12, I-IU and, P-IU) and difference score (early, late, whole phase, and double-

difference). Meta-analyses were repeated for effect sizes calculated when controlling for 

measures of trait anxiety (STAI and STICSA). Together the different types of analysis 

resulted in 96 independent effect sizes per experiment (see Table 3).  

 

[Insert Table 3 here] 
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Benjamini-Hochberg corrections (Benjamini & Hochberg, 1995) were applied for 

continuous (corrected value, p < .025) and categorical (median split corrected value, p < 

.046; extreme values corrected value, p < .043) measures of IU. Benjamini-Hochberg 

corrections were also applied for meta-analyses controlling for trait anxiety (corrected 

values: continuous, p < .018; median split, p < .040; extreme value, p < .043, measures 

of IU).  

 

Results 

Sections of this text related to the relationship between continuous measures of IU and 

SCR during threat extinction have been reported in Morriss et al. (2021). For moderator 

analyses and assessment of publication bias, please refer to Morriss et al. (2021).  

 For visualisation of the results from the meta-analyses based on the individual 

difference quantification method see Fig 2 and Supplementary Fig 1 for the effect sizes, 

and Table 4 for the percentage of significant effects. 

 

[Insert Fig 2 and Table 4 here] 

 

Continuous Measure of IU Scores: For IU as a continuous measure, all the self-

reported variants of the IUS (IU-27, IU-12, I-IU, and P-IU) were significantly associated 

with SCR difference scores during late extinction training and across the entire 

extinction phase (corrected ps < .025) (see Fig 2A and Supplementary Table 1). Only 

the IU-27 (not IU-12, I-IU, or P-IU) was significantly associated with SCR double-
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difference scores during extinction training (corrected p < .025). None of the self-

reported variants of the IUS (IU-27, IU-12, I-IU, and P-IU) were significantly associated 

with SCR difference scores during early extinction training (ps < .3) (See Supplementary 

Table 1). These analyses yielded small to medium effect sizes (Hedges’ g 0.20–0.35) 

with a variable range of heterogeneity (I2 0–45.6%) depending on the IUS measure (see 

Fig 2A and Supplementary Table 1). 

When controlling for trait anxiety, continuous measures of IU-12, P-IU, and I-IU 

(but not IU-27) were significantly associated with SCR difference scores during late 

extinction training (corrected p < .018) (See Supplementary Table 4 and Supplementary 

Fig 1A). Moreover, when controlling for trait anxiety, IU-27, IU-12, and P-IU (but not I-

IU) were significantly associated with SCR difference scores across the entire extinction 

phase (corrected p < .018) (See Supplementary Table 4 and Supplementary Fig 1A). 

Furthermore, when controlling for trait anxiety, none of the self-reported variants of the 

IUS (IU-27, IU-12, I-IU, and P-IU) were significantly associated with SCR double-

difference scores (corrected ps between .029 and .06) or SCR difference scores during 

early extinction training (corrected ps > .3) (see Supplementary Table 4 and 

Supplementary Fig 1A). Again, these analyses produced small to medium effect sizes 

(Hedges’ g 0.21–0.31) with a variable range of heterogeneity (I2 0–52.1%) depending 

on the IUS measure (see Supplementary Table 4). 

 

Median Split of IU Scores: For IU based on a median split, all the self-reported 

variants of the IUS (IU-27, IU-12, I-IU, and P-IU) were significantly associated with SCR 

difference scores during early extinction training, late extinction training and across the 
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whole extinction phase (corrected ps < .046) (see Fig 2B and Supplementary Table 2). 

IU-27, IU-12 and I-IU were significantly associated with SCR double-difference scores 

(corrected ps < .046), while P-IU was not. The significant meta-analytic effect sizes for 

relationships between self-reported IU and SCR difference scores during the extinction 

phase were small to medium (Hedges’ g 0.26 – 0.47) (see Fig 2B and Supplementary 

Table 2) and yielded extremely low heterogeneity across studies (I2 0.0%) (see 

Supplementary Table 2).   

When controlling for trait anxiety, all of the self-reported variants of IU as a 

median split (IU-27, IU-12, I-IU, and P-IU) were significantly associated with SCR 

difference scores during early extinction training and across the whole of the extinction 

phase (corrected ps < .040) (see Supplementary Table 5 and Supplementary Fig 1B). 

IU-27 and IU-12 were significantly associated with SCR difference scores during late 

extinction training (corrected ps < .043), while I-IU and P-IU were not (see 

Supplementary Table 5 and Supplementary Fig 1B). Further, IU-12 and I-IU were 

significantly associated with SCR double-difference scores (corrected ps < .040), while 

IU-27 and P-IU were not (see Supplementary Table 5 and Supplementary Fig 1B). The 

meta-analytic effect sizes for significant relationships between IU based on a median 

split and SCR difference scores were small to medium (Hedges’ g 0.21-0.46) and 

showed extremely low heterogeneity (I2 0.0%) across studies (see Supplementary 

Table 5) 

 

Extreme Values of IU Scores: When grouping participants into high vs low IU groups 

based on extreme values of IU, all the self-reported variants of the IUS (IU-27, IU-12, I-
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IU, and P-IU) were significantly associated with SCR difference scores during early and 

late extinction training and with double difference scores across the extinction phase 

(corrected ps < .043) (see Fig 2C and Supplementary Table 3). IU-27 and P-IU were 

significantly associated with SCR difference scores across the whole extinction phase 

(corrected ps < .043), while IU-12 and I-IU were not (see Fig 2C and Supplementary 

Table 3). The significant meta-analytic effect sizes for relationships between IU based 

on scores one standard deviation below and above the mean and SCR difference 

scores during the extinction phase were medium to large (Hedges’ g 0.43 – 0.86) and 

heterogeneity was variable across studies (I2 0.0% - 79.6%) (see Supplementary Table 

3).   

When controlling for trait anxiety, all of the self-reported variants of the IUS as 

extreme scores (IU-27, IU-12, I-IU, and P-IU) were significantly associated with SCR 

difference scores during early extinction training, late extinction training and with double 

difference scores across the extinction phase (corrected ps < .043) (see Supplementary 

Table 6 and Supplementary Fig 1C). IU -27 and P-IU were significantly associated with 

SCR difference scores across the whole extinction phase (corrected ps < .043), while 

IU-12 and I-IU were not (see Supplementary Table 6 and Supplementary Fig 1C). The 

significant meta-analytic effect sizes for relationships between IU based on scores one 

standard deviation below and above the mean and SCR difference scores during the 

extinction phase, while controlling for trait anxiety, were medium to large (Hedges’ g 

0.43 – 0.99) and heterogeneity was variable across studies (I2 0.0% - 84.6%) (see 

Supplementary Table 6 and Supplementary Fig 1C). 
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[Insert Fig 3 here] 

Discussion 

The aim of this study was to provide a concrete example of how quantification choices 

for individual differences impact the observed relationships between different units of 

analysis (e.g. self-report > psychophysiological responses), in terms of statistical 

outcomes such as significance and effect size. Here, we conducted an updated two-

stage aggregated meta-analysis of  self-reported IU and skin conductance responses 

during threat extinction (k = 18, n = 1006; Morriss et al., 2021) using different 

quantification choices for individual differences in self-reported IU (categorical via 

median split, categorical via extreme values – one standard deviation above/below, and 

continuous). The choice of quantification techniques for individual differences in IU 

yielded similar and varied meta-analytic results regarding statistical significance and 

effect sizes.  

The different quantification techniques produced some consistent IU-related 

effects. For instance, across all three individual difference quantification techniques, 

higher IU, regardless of the scale or subscale used,was significantly associated with 

larger skin conductance responding to the learned threat vs. safe cues during late 

extinction training (see Fig 3). Furthermore, the majority of the IU-related effects during 

late threat extinction training held when controlling for trait anxiety. In addition, a similar 

pattern emerged for IU across the whole phase of threat extinction training. These 

findings are in line with prior research demonstrating how higher IU, over other broader 

negative affective traits, specifically disrupts threat extinction learning (for review see, 

Morriss et al., 2021).  
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However, the different quantification techniques also produced varied results. For 

example, when the IU data were quantified categorically (median split, extremes) but 

not continuously, higher IU across the different scales and subscales was significantly 

associated with larger skin conductance responding to the learned threat vs. safety cue 

during early extinction training. Furthermore, when the IU data were quantified 

categorically (median split, extreme values) versus continuously, there were more 

statistically significant effects, and the effect sizes were larger (see Fig 2 and Table 4). 

Such findings suggest that on the one hand quantifying individual differences 

categorically may lead to a greater number of type one errors. On the other hand, 

quantifying individual differences continuously may be the most conservative approach 

statistically and may be less prone to type two errors. Alternatively, it is possible that the 

categorical quantification of individual differences in IU produced genuinely unique 

results. The categorisation of IU data based on extremes of one standard deviation 

above and below the mean may capture subclinical populations that are more 

homogenous. Thus, the differences between low and high IU groups may be more likely 

to be larger and consistent, and hence larger effect sizes occur. In particular, this may 

explain why the categorisation of IU data based on standard deviation above or below 

the mean, compared to the other two quantification techniques, also produced the least 

heterogeneity between the experiments in the meta-analysis.     

Taken together, these results suggest that despite different quantification 

methods for individual differences, self-reported IU broadly, including the total scale and 

subscales, reliably captures differences in skin conductance responding during threat 

extinction training. These findings have clear implications for how individual differences 
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in IU are integrated into transdiagnostic models of the etiology and treatment of anxiety 

and stress-related conditions (e.g. exposure-based therapies) (for discussion, see 

Morriss et al., 2021). However, to further understand the translational relevance of IU to 

threat conditioning mechanisms, future meta-analyses and multiverse-type analyses 

should aim to investigate whether self-reported IU can be reliably mapped to other 

psychophysiological metrics (e.g. startle) during threat extinction training. Examining the 

extent to which IU-related effects during threat extinction training and other threat 

conditioning phases vary in relation to other individual differences (e.g. personality 

characteristics, life experiences, developmental windows, mental health conditions) and 

experimental parameters (e.g. reinforcement rate, types of conditioned/uncondition 

stimuli) will also be beneficial.  

This multiverse-type analysis for the quantification of individual differences sits 

alongside a recent wave of other multiverse analysis efforts to optimise scientific rigor in 

psychophysiology generally (Clayson, 2024), and within threat conditioning research 

(Kuhn et al., 2022; Lonsdorf et al., 2019, 2022; Ney et al., 2020, 2022). As far as we are 

aware, this is one of the first multiverse-type analysis to examine individual difference 

quantification techniques and how this influences the relationships between different 

units of analysis that are thought to capture the same individual difference construct. 

Overall, in line with previous methodological work (MacCallum et al., 2002; Maxwell & 

Delaney, 1993), these findings demonstrate that the quantification choices for individual 

differences impact statistical outcomes such as significance and effect 

sizes.Furthermore, the current study highlights how conducting a multiverse-type 

analysis for the different quantification methods of individual differences may help 
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researchers understand the construct of interest (e.g. characterisation) and how to 

accurately measure it (e.g. effect sizes for power analyses), as well as examine the 

stability and reliability of individual difference-based effects and correspondence 

between various units of analysis (e.g. self-report, psychophysiology). Interrogating  

individual difference data using this multiverse-type analysis on larger scales will 

ultimately improve the precision of measuring individual difference constructs, which is 

crucial for  the development of existing frameworks of human functioning (e.g. Research 

Domain Criteria: Insel, 2014) and transdiagnostic models of psychopathology (e.g. The 

Hierarchical Taxonomy of Psychopathology: Kotov et al., 2017), to accelerate 

translation of basic science discoveries to real-world concerns (e.g. clinical practice).  

The study did have a few shortcomings. Firstly, we only examined the 

relationship between two units of analysis, namely self-report and skin conductance 

response. Future research may wish to expand on this by examining how quantification 

choices for individual differences impact other combinations of read-outs, which may 

have their own unique methodological advantages and disadvantages. Secondly, the 

dataset included in this study comprised of two variables (e.g. self-reported intolerance 

of uncertainty and skin conductance difference scores) that are often normally 

distributed, either in their raw form or due to transformation (e.g. square root, z-score). 

Such patterns of results may not be observed in instances where the variables of 

interest have non-normal distributions (e.g. skewed, flat, inverted). More research is 

required to understand how quantification of individual differences impact statistical 

significance and effect sizes when the variables of interest are non-normally distributed. 

Thirdly, the study only examined individual difference data in relation to one 
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experimental paradigm (e.g. threat conditioning experiments) and did not investigate 

additional experimental parameters as moderators (e.g. reinforcement rate, conditioned 

stimulus type).Examining these aspects will elucidate whether IU plays a broader role in 

affective processing more generally or whether IU influences affective processing / 

threat conditioning processes only under specific circumstances. Fourthly, the study 

was limited to the usage of cross-sectional data from primarily community/student 

samples in English-speaking countries. Therefore, further affective neuroscience 

research using this type of multiverse analysis for the quantification of individual 

differences is required to assess the specificity, generalisability, and reproducibility of 

individual difference-based effects  in samples with greater demographic diversity (e.g. 

age, ethnicity, nationality) and samples meeting criteria for clinical presentation of 

anxiety-related conditions 

In conclusion, this study provides a concrete example of how quantification 

choices for individual differences impact the observed relationships between different 

units of analysis (e.g. self-report > psychophysiological responses). Future research 

should compare different quantification choices for individual differences across various 

units of analysis, in order to advance our understanding of individual difference 

constructs and measurement, and to realise the benefit of individual differences and 

psychophysiology research to real-world applications.  
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Table 1. 

Experimental parameters across threat conditioning studies 

Study  IU Scale 
Administered 

Trait Anxiety 
Measure 

Administered 

Reinforcement 
Rate 

Instruction 
Type 

CS Type US Type CS 
Length 

(ms) 

ITI 
Length 

(ms) 

N Trials 
Extinction  

SCR 
Scoring 
Window 

(ms 
after 
trial 

onset)  
Goldfarb et 

al. (2021) 
IU-27 STAI-T 73% Uninstructed Tones and 

coloured 
squares 

Electric 
shock 

6000 8000 – 
10000 

24 (12+, 12 CS-) 500 - 
6000 

 

 

 
Kanen et al. 

(2021) 
IU-27 STAI-T 37.5% Uninstructed Coloured 

squares 
Electric 

shock 
4000 10000 20 (10 CS+, 10 

CS-) 
500 - 
4500 

 

 
Lucas et al. 

(2018)  
IU-12 N/A 50% Uninstructed Angry male 

white faces 
Electric 

shock 
8000 22000, 

24000 
or 

26000 

32 (16 CS+, 16 
CS-) 

1000 – 
4000 

 

 
Morriss et al. 

(2015) 
IU-27 STAI-T 100% Uninstructed Coloured 

squares 
Female 
scream 

1500 3000 – 
6450 

32 (16 CS+, 16 
CS-) 

0 – 
7000  

Morriss et al. 
(2016) 

IU-27 STAI-T 100% Uninstructed Coloured 
squares 

Female 
scream 

1500 3000 – 
6450 

32 (16 CS+, 16 
CS-) 

0 – 
7000 

 

 
Morriss & 

van Reekum 
(2019) Exp 1  

IU-27 STAI-T 50% Uninstructed Coloured 
squares 

Female 
scream 

4000 6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500 

 

 
Morriss & 

van Reekum 
(2019) Exp 2  

IU-27 STAI-T 50% Uninstructed Coloured 
squares 

Female 
scream 

4000 6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500 

 

 
Morriss & 

van Reekum 
(2019) Exp 3 

IU-27 STAI-T 50% Uninstructed Coloured 
squares 

Female 
scream 

4000 6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500 

 

 
Morriss 
(2019) 

IU-27 STAI-T 50% Uninstructed Coloured 
squares 

Female 
scream 

4000 6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500 

 

 
IU-27 STICSA 50% Uninstructed 4000  
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Morriss et al. 
(2019) 

Coloured 
squares 

Female 
scream 

6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500  

Sjouwerman 
et al. (2016) 

IU-27 STAI-T 100% Uninstructed Black 
shapes (i.e. 

grid or 
spiral) on a 

background 
picture of 

water 

Electric 
shock 

6000 10000 
– 

13000 

18 (9 CS+, CS-) 900 - 
4000 

 

Sjouwerman 
et al. (2020) 

IU-27 STAI-T 100% Uninstructed Black 
geometrical 
symbols on 

coloured 
background 

Electric 
shock 

6000 10000 - 
13000 

18 (9 CS+, CS-) 900 - 
4000 

 

Sjouwerman 
& Lonsdorf 

(Unpublished 
Data) 

IU-27 STAI-T 100% Uninstructed Black 
geometrical 
symbols on 

coloured 
background 

Electric 
shock 

6000 11000 - 
13000 

18 (9 CS+, CS-) 900 - 
3500 

 

Steinman et 
al. (2022) 

IU-27 STAI-T 53.33% Uninstructed Angry male 
white faces 

Electric 
shock 

6000 12000 40 (20 CS+, 20 
CS-) 

500 - 
6000 

 

 
Thompson et 

al. (2018) 
IU-12 N/A 100% Uninstructed Coloured 

images of 
animals 

(fish and 
birds) 

Electric 
shock 

6000 13000 - 
17000 

24 (12 CS+, 12 
CS-) 

1000 - 
6000 

 

de Voogd et 
al. (2020) 

IU-27 N/A 37.50% Uninstructed Pictures of 
snakes 

Electric 
shock 

6000 18000 
– 

22000 

40 (20 CS+, 20 
CS-) 

500 - 
6500 

 

 
Wake et al. 

(2020)  
IU-27 STICSA 50% Uninstructed Coloured 

squares 
Female 
scream 

4000 6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500  

 

 
Wake et al. 

(2021) 
IU-27 STAI-T 50% Uninstructed Neutral 

female 
white faces 

Electric 
shock and 

critical 
verbal 

statements 

4000 6000 – 
8800 

32 (16 CS+, 16 
CS-) 

500 – 
3500  
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Intolerance of Uncertainty, IU-12 or IU-27; STAI-T, State-Trait Anxiety Inventory-Trait; STICSA, The State-Trait Inventory for Cognitive and Somatic Anxiety; 
CS, Conditioned stimulus; US, Unconditioned stimulus; N, Number; ITI, Inter-trial interval; SCR, Skin Conductance Response. 

 

           
 

Table 2 

Participant characteristics across threat conditioning studies 

Study  Sample Type Sex Ethnicity Age 

Goldfarb et al. (2021) 
Community and 
students 30 F / 18 M Not recorded 22.25 

Kanen et al. (2021) 
Non-clinical, 
community 18 F / 29 M Data not returned on time 25 

Lucas et al. (2018) 
Community and 
students 29 F / 19 M (across exp groups) 15 Caucasian, 7 Asian, 2 Indian 25 (across exp groups) 

Morriss et al. (2015) 
Community and 
students 12 F / 10 M 18 White, 2 Asian, 2 Mixed 23.59 

Morriss et al. (2016) Students 32 F / 6 M Not recorded 18-25 years 

Morriss & van 
Reekum (2019) Exp 1 

Community and 
students 33 F / 27 M (across exp groups) Not recorded 

23.56 (across exp 
groups) 

Morriss & van 
Reekum (2019) Exp 2  

Community and 
students 57 F / 24 M (across exp groups) Not recorded 

24.65 (across exp 
groups) 

Morriss & van 
Reekum (2019) Exp 3  

Students 

86 F / 11 M (across exp groups) 

72 White, 13 Asian, 6 Black, 4 
Mixed, 2 Middle Eastern (across exp 
groups) 

20.61 (across exp 
groups) 

Morriss (2019) 
Community and 
students 31 F / 14 M 33 White, 5 Asian, 4 Black, 3 Mixed 23 

Morriss et al. (2019) 
Community and 
students 

86 F / 58 M (across exp groups) 

92 White, 29 Asian, 15 not specified, 
4 Middle Eastern/Arab, 2 Black, 2 
Mixed (across exp groups) 24 (across exp groups) 

Sjouwerman et al. 
(2016) 

Community and 
students 255 F / 101 M Not recorded 25 

Sjouwerman et al. 
(2020) 

Community and 
students 38 F / 19 M Not recorded 25 
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Sjouwerman & 
Lonsdorf 
(Unpublished Data)  

Community and 
students 

66 F / 22 M Not recorded 25 

Steinman et al. (2022) 

Clinically diagnosed 
with anxiety or 
obsessive 
compulsive disorder 15 F / 12 M 17 White, 4 Other, 3 Black, 3 Asian 24.33 

Thompson et al. 
(2018) 

Students 
15 F / 9 M 15 Caucasian, 7 Asian, 2 Indian 20.37 

de Voogd et al. (2020) 
Non-clinical, 
students 

61 F/ 41 M (across exp groups) 

35 Asian/Asian Americans, 29 
Caucasian/White, 20 Black/African 
American, 8 Mixed, 5 Unknown/not 
indicated, 3 Hispanic non-white, 1 
Hispanic White, 1 Arab (across exp 
groups) 

24.4 (across exp 
groups) 

Wake et al. (2020) 
Community and 
students 

67 F / 28 M (across exp groups) 

61 White, 14 not specified, 10 Asian, 
3 Middle Eastern/Arab, 2 Black, 1 
Mixed (across exp groups). 

24.4 (across exp 
groups) 

Wake et al. (2021) Students 

84 F 

67 White, 14 Asian/Pacific Islander, 
7 Black, 3 Mixed, 1 Middle 
Eastern/Arab  19.66 
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Table 3.  

Analysis steps 

Quantification Statistical Test IU scales Skin conductance difference scores 
Control for trait 
anxiety 

Total 
independent 
effect sizes 
generated 

Continuous Correlation 
4: IU-27, IU-12, I-IU, and 
P-IU 

4: whole phase, early, late, and double-
difference   16 

Continuous 
Partial 
Correlation 

4: IU-27, IU-12, I-IU, and 
P-IU 

4: whole phase, early, late, and double-
difference x 16 

Median Split ANOVA 
4: IU-27, IU-12, I-IU, and 
P-IU 

4: whole phase, early, late, and double-
difference   16 

Median Split ANCOVA 
4: IU-27, IU-12, I-IU, and 
P-IU 

4: whole phase, early, late, and double-
difference x 16 

Extreme Values ANOVA 
4: IU-27, IU-12, I-IU, and 
P-IU 

4: whole phase, early, late, and double-
difference   16 

Extreme Values ANCOVA 
4: IU-27, IU-12, I-IU, and 
P-IU 

4: whole phase, early, late, and double-
difference x 16 

 

 

 

 

 

 

 

 

Table 4.  

Percentage of significant effects from the meta-analyses based on the individual 
difference quantification method 

  Continuous Median Split Extreme Values 

IU 56.25% 93.75% 87.50% 

IU controlling for trait anxiety 56.25% 81.25% 87.50% 
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Figure captions 

Fig 1. Histograms of the median (A) and standard deviations (B) for each IUS measure 

(IUS-27, IU-12, I-IU, P-IU). The X axis for A represents the median spit of IU scores and 

for B represents the extreme values of IU scores – one standard deviation above and 

below the mean. The Y axis represents the frequency of experiments.    

 

Fig 2. A plot depicting the meta-analytic pooled effect sizes for every IU scale/subscale 

(IU-27, IU-12, I-IU and, P-IU) and skin conductance response difference scores (CS+ - 

CS-) during threat extinction (early, late, whole phase, and double-difference) based on 

the individual difference quantification method for IU (A = continuous, B = median split, 

C = extreme values – one standard deviation above and below the mean). The values in 

the cells represent hedges’ g effect sizes. Empty cells represent non-significant effects. 

 

Fig 3. Forest plots demonstrating effect sizes across studies for the relationships 

between the 12-item Intolerance of Uncertainty Scale (IU-12) and skin conductance 

response difference scores (CS+ - CS-) during late extinction training when IU-12 is 

quantified continuously (A), based on a median split (B), and based on extreme values 

– one standard deviation above and below the mean (C). CI, confidence interval; SMD, 

standardised mean difference as hedges’ g effect sizes.  
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CI, confidence interval; ext, extinction; I-IU, Inhibitory IU; IU, intolerance of 

uncertainty; P-IU, Prospective IU; SCR, skin conductance response.  
a Percentage of variability in effect size 

 

 

 

 

 

 

Supplementary Table 1.  

Pooled effect sizes and heterogeneitya using continuous IU scales and difference 

scores for SCR during extinction. 

  

g 

 

(95% CI) 

 

k 

 

N 

 

p 

 

I2 

IU-27       

 Early Ext -0.01 (-0.14; 0.11) 16 958 .822 45.6% 

 Late Ext 0.35 (0.17; 0.53) 12 504 <.001 17.2% 

 Whole Phase Ext 0.29 (0.11; 0.46) 12 504 .001 1.5% 

 Double-

Difference 

-0.28 (-0.45; -0.1) 12 504 .002 31.8% 

IU-12       

 Early Ext 0.06 (-0.06; 0.19) 18 1006 .341 44.9% 

 Late Ext 0.24 (0.08; 0.41) 14 552 .005 29.9% 

 Whole Phase Ext 0.28 (0.11; 0.45) 14 552 .001 1.1% 

 Double-

Difference 

-0.12 (-0.28; 0.05) 14 552 .180 38.2% 

I-IU       

 Early Ext 0.03 (-0.09; 0.16) 18 1006 .621 40.4% 

 Late Ext 0.25 (0.08; 0.42) 14 552 .004 10.9% 

 Whole Phase Ext 0.22 (0.05; 0.39) 14 552 .010 0% 

 Double-

Difference 

-0.15 (-0.32; 0.02) 14 552 .090 43% 

P-IU       

 Early Ext 0.07 (-0.06; 0.19) 18 1006 .301 42% 

 Late Ext 0.20 (0.04; 0.37) 14 552 .017 32.5% 

 Whole Phase Ext 0.23 (0.06; 0.39) 14 552 .008 10% 

 Double-

Difference 

-0.08 (-0.25; 0.09) 14 552 .348 20% 
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Supplementary Table 2.   
Pooled effect sizes and heterogeneitya using median split IU scales and difference 
scores for SCR during extinction.  

    
g  

  
(95% CI)  

  
k  

  
N; grp1, 
grp2  

  
p  

  
I2  

IU-27              

  Early Ext  0.47  0.29, 0.66  16  463, 494  <.001  0.0%  

  Late Ext  0.33  0.08, 0.59  12  244, 259  .010  0.0%  

  Whole Phase Ext  0.38  0.13, 0.64  12  244, 259  .003  0.0%  
  Double-Difference  0.26  0.01, 0.52  12  244, 259  .042  0.0%  

IU-12              

  Early Ext  0.27  0.09, 0.46  18  473, 532  .003  0.0%  

  Late Ext  0.43  0.18, 0.67  14  263, 288  .001  0.0%  

  Whole Phase Ext  0.36  0.12, 0.61  14  263, 288  .004  0.0%  

  Double-Difference  0.35  0.11, 0.60  14  263, 288  .005  0.0%  

I-IU              

  Early Ext  0.30  0.12, 0.49  18  470, 535  .001  0.0%  

  Late Ext  0.31  0.06, 0.56  14  253, 298  .014  0.0%  

  Whole Phase Ext  0.35  0.10, 0.60  14  253, 298  .007  0.0%  

  Double-Difference  0.35  0.10, 0.60  
  

14  253, 298  .007  0.0%  

P-IU              

  Early Ext  0.34  0.16, 0.53  18  461, 544  <.001  0.0%  

  Late Ext  0.33  0.09, 0.58  14  261, 290  .008  0.0%  

  Whole Phase Ext  0.44  0.19, 0.68  14  261, 290  .001  0.0%  

  Double-Difference  0.24  -0.00, 0.49  14  261, 290  .054  0.0%  

CI, confidence interval; ext, extinction; I-IU, Inhibitory IU; IU, intolerance of 
uncertainty; P-IU, Prospective IU; SCR, skin conductance response.   
a Percentage of variability in effect size  
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Supplementary Table 3.   
Pooled effect sizes and heterogeneitya (percentage of variability in the effect size) 
using extreme values of IU scales (IU-27, IU-12, I-IU, and P-IU) and difference 
scores (early, late, whole phase and double-difference) for SCR during extinction.  

    
g  

  
(95% CI)  

  
k  

  
N; grp1, 
grp2  

  
p  

  
I2  

IU-27              

  Early Ext  0.58  0.25, 0.91  16  153, 169  .001  32.6%  

  Late Ext  0.86  0.40, 1.33  12  83, 88  <.001  63.7%  

  Whole Phase Ext  0.54  0.09, 0.99  12  83, 88  .018  0.0%  
  Double-Difference  0.69  0.23, 1.14  12  83, 88  .003  79.6%  

IU-12              

  Early Ext  0.54  0.22, 0.85  18  162, 171  .001  0.0%  

  Late Ext  0.55  0.12, 0.98  14  92, 98  .013  0.0%  

  Whole Phase Ext  0.36  -0.07, 0.78  14  92, 98  .097  0.0%  

  Double-Difference  0.57  0.13, 1.00  14  92, 98  .010  0.0%  

I-IU              

  Early Ext  0.44  0.15, 0.72  18  201, 172  .003  0.0%  

  Late Ext  0.44  0.05, .082  14  110, 99  .027  0.0%  

  Whole Phase Ext  0.36  -0.02, 0.74  14  110, 99  .065  0.0%  

  Double-Difference  0.43  0.05, 0.82  14  110, 99  .028  0.0%  

P-IU              

  Early Ext  0.45  0.14, 0.76  18  167, 172  .005  0.0%  

  Late Ext  0.69  0.26, 1.11  14  95, 96  .002  0.0%  

  Whole Phase Ext  0.47  0.05, 0.88  14  95, 96  .029  0.0%  

  Double-Difference  0.63  0.21, 1.06  14  95, 96  .003  0.0%  

CI, confidence interval; ext, extinction; I-IU, Inhibitory IU; IU, intolerance of 
uncertainty; P-IU, Prospective IU; SCR, skin conductance response.   
a Percentage of variability in effect size  
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Supplementary Table 4.   
Pooled effect sizes and heterogeneitya using continuous IU scales and difference 
scores for SCR during extinction when controlling for trait anxiety scores.    

    
g  

  
(95% CI)  

  
k  

  
N  

  
p  

  
I2  

IU-27              

  Early Ext  -0.03  (-0.16; 0.1)  15  933  .661  45.3%  

  Late Ext  0.14  (-0.04; 0.33)  11  479  .120  65.5%  

  Whole Phase Ext  0.31  (0.13; 0.49)  11  479  <.001  18.8%  
  Double-Difference  -0.21  (-0.39; -0.02)  11  479  .029  52.1%  

IU-12              

  Early Ext  0.04  (-0.08; 0.17)  15  933  .498  46.1%  

  Late Ext  0.28  (0.10; 0.47)  11  479  .002  26.9%  

  Whole Phase Ext  0.25  (0.07; 0.43)  11  479  .007  14%  

  Double-Difference  -0.17  (-0.35; 0.01)  11  479  .066  43%  

I-IU              

  Early Ext  0.004  (-0.12; 0.13)  15  933  .947  41.2%  

  Late Ext  0.29  (0.11; 0.47)  11  479  .002  18%  

  Whole Phase Ext  0.18  (0.002; 0.36)  11  479  .047  16.1%  

  Double-Difference  -0.18  (-0.37; -0.003)  11  479  .046  51.6%  

P-IU              

  Early Ext  0.06  (-0.07; 0.19)  15  933  .354  32.8%  

  Late Ext  0.23  (0.05; 0.41)  11  479  .013  22%  

  Whole Phase Ext  0.24  (0.06; 0.42)  11  479  .009  
  

0%  

  Double-Difference  -0.13  (-0.31; 0.05)  11  479  .163  19.3%  

  CI, confidence interval; ext, extinction; I-IU, Inhibitory IU; IU, intolerance of 
uncertainty; P-IU, Prospective IU; SCR, skin conductance response.   
a Percentage of variability in effect size  
b State-Trait Anxiety Inventory-Trait or State-Trait Inventory for Cognitive and 
Somatic Anxiety.  
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Supplementary Table 5.   
Pooled effect sizes and heterogeneitya using median split IU scales and difference 
scores for SCR during extinction when controlling for trait anxiety scoresb.  

    
g  

  
(95% CI)  

  
k  

  
N; grp1, 
grp2  

  
p  

  
I2  

IU-27              

  Early Ext  0.21  0.01, 0.41  13  388, 416  .039  0.0%  

  Late Ext  0.40  0.09, 0.70  9  175, 188  .010  0.0%  

  Whole Phase Ext  0.46  0.15, 0.76  9  175, 188  .003  0.0%  
  Double-Difference  0.25  -0.05, 0.55  9  175, 188  .096  0.0%  

IU-12              

  Early Ext  0.26  0.05, 0.46  13  375, 429  .014  0.0%  

  Late Ext  0.43  0.12, 0.73  9  171, 192  .006  0.0%  

  Whole Phase Ext  0.41  0.10, 0.71  9  171, 192  .009  0.0%  

  Double-Difference  0.37  0.06, 0.67  9  171, 192  .019  0.0%  

I-IU              

  Early Ext  0.30  0.10, 0.51  13  374, 430  .004  0.0%  

  Late Ext  0.32  0.01, 0.63  9  163, 200  .046  0.0%  

  Whole Phase Ext  0.38  0.07, 0.69  9  163, 200  .016  0.0%  

  Double-Difference  0.38  0.07, 0.69  9  163, 200  .016  0.0%  

P-IU              

  Early Ext  0.36  0.15, 0.57  13  363, 441  .001  0.0%  

  Late Ext  0.30  -0.01, 0.60  9  168, 195  .057  0.0%  

  Whole Phase Ext  0.44  0.13, 0.75  9  168, 195  .005  0.0%  

  Double-Difference  0.21  -0.10, 0.51  9  168, 195  .181  0.0%  

CI, confidence interval; ext, extinction; I-IU, Inhibitory IU; IU, intolerance of 
uncertainty; P-IU, Prospective IU; SCR, skin conductance response.   
a Percentage of variability in effect size  
b State-Trait Anxiety Inventory-Trait or State-Trait Inventory for Cognitive and 
Somatic Anxiety.  
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Supplementary Table 6.   
Pooled effect sizes and heterogeneitya (percentage of variability in the effect size) 
using extreme values of IU scales (IU-27, IU-12, I-IU, and P-IU) and difference 
scores (early, late, whole phase and double-difference) for SCR during extinction 

when controlling for trait anxiety scores (STAI-T or STICSA)b.  

    
g  

  
(95% CI)  

  
k  

  
N; grp1, 
grp2  

  
p  

  
I2  

IU-27              

  Early Ext  0.62  0.25, 0.98  13  125, 145  .001  43.3%  

  Late Ext  0.99  0.44, 1.56  9  58, 67  .001  73.0%  

  Whole Phase Ext  0.62  0.07, 1.17  9  58, 67  .026  0.0%  
  Double-Difference  0.69  0.15, 1.24  9  58, 67  .013  84.6%  

IU-12              

  Early Ext  0.52  0.17, 0.88  13  128, 134  .004  0.0%  

  Late Ext  0.63  0.09, 1.18  9  60, 65   .022  0.0%  

  Whole Phase Ext  0.37  -0.15, 0.89  9  60, 65  .168  0.0%  

  Double-Difference  0.62  0.08, 1.15  9  60, 65   .024  0.0%  

I-IU              

  Early Ext  0.43  0.12, 0.75  13  161, 137  .007  0.0%  

  Late Ext  0.54  0.07, 1.01  9  74, 67  .026  0.0%  

  Whole Phase Ext  0.36  -0.11, 0.83  9  74, 67  .130  0.0%  

  Double-Difference  0.52  0.05, 0.99  9  74, 67  .032  0.0%  

P-IU              

  Early Ext  0.50  0.15, 0.85  13  132, 139  .005  0.0%  

  Late Ext  0.80  0.26, 1.33  9  62, 66  .004  0.0%  

  Whole Phase Ext  0.60  0.07, 1.12  9  62, 66  .025  0.0%  

  Double-Difference  0.74  0.21, 1.27  9  62, 66  .007  0.0%  

CI, confidence interval; ext, extinction; I-IU, Inhibitory IU; IU, intolerance of 
uncertainty; P-IU, Prospective IU; SCR, skin conductance response.   
a Percentage of variability in effect size  
b State-Trait Anxiety Inventory-Trait or State-Trait Inventory for Cognitive and 
Somatic Anxiety.   
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Supplementary Fig 1. A plot depicting the meta-analytic pooled effect sizes for 

every IU scale/subscale (IU-27, IU-12, I-IU and, P-IU) and skin conductance 

response difference scores (CS+ - CS-) during threat extinction (early, late, whole 

phase, and double-difference) whilst controlling for trait anxiety, based on the 

individual difference quantification method for IU (A = continuous, B = median split, 

C = extreme values – one standard deviation above and below the mean). The 

values in the cells represent hedges’ g effect sizes. Empty cells represent non-

significant effects. 
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