
Flat space spinning massive amplitudes from momentum space
CFT

Raffaele Marottaa, Kostas Skenderisb and Mritunjay Vermab,c

aIstituto Nazionale di Fisica Nucleare (INFN), Sezione di Napoli,

Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126, Napoli, Italy
b Mathematical Sciences and STAG Research Centre, University of Southampton,

Highfield, Southampton SO17 1BJ, UK
c Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India

E-mail: raffaele.marotta@na.infn.it, k.skenderis@soton.ac.uk, mritunjay@iiti.ac.in

Abstract

We discuss the flat space limit of AdS using the momentum space representation of CFT corre-
lators. The flat space limit involves sending the AdS radius and the dimensions of operators dual to
massive fields to infinity while also scaling appropriately the sources of the dual operators. In this
limit, d-dimensional CFT correlators become (d+1)-dimensional scattering amplitudes. We exemplify
our discussion with the computation of the flat-space limit of the CFT 3-point function of a conserved
current, a non-conserved charged vector operator and its conjugate. The flat-space limit should yield
the scattering amplitude of an Abelian gauge field with two massive vector fields. This scattering
amplitude computes the electromagnetic form factors of the electromagnetic current in a spin-1 state,
and these form factors encode the electromagnetic properties of the massive vector field (charge, mag-
netic moment and quadruple moment). In terms of the CFT, the flat-space limit amounts to zooming
in the infrared region of the triple-K integrals that determine the 3-point function, while also scaling
to infinity the order of (some of) the Bessel functions that feature in the triple-K integrals. In this
limit the triple-K integral becomes proportional to the energy-preserving delta function, and the flat
space limit correctly yields the corresponding flat space scattering amplitude in complete detail.
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1 Introduction

The AdS/CFT gives a realization in string theory of the holographic principle, providing, at least con-
ceptually, a non-perturbative formulation of string theory on AdS background in terms of a boundary
conformal field theory [1–3]. In its most general formulation, the correspondence is conjectured to
be a duality between a quantum gravity theory formulated on a (d + 1)-dimensional asymptotically
locally AdS background (AlAdS) times a compact manifold and a d-dimensional quantum field theory
located on the boundary of AlAdS [4,5]. The strong/weak nature of this duality can be exploited to
explore the strong-coupling regime of the dual conformal field theories which are dual to a weakly
coupled classical bulk theory. A weakly coupled bulk theory corresponds to the large radius limit of
AdS. As the AdS radius approaches infinity, the AdS geometry reduces to the flat space geometry1

and, for consistency, the physics in AdS in this limit should match that of flat space (at least locally).
In particular, we could obtain some insight about quantum gravity in flat space by using the flat-space
limit of the AdS/CFT correspondence.

Motivated by this there has been a body of work since the early days of the AdS/CFT corre-
spondence discussing the flat limit of AdS results, starting from [6–9]. Due to the AdS/CFT cor-
respondence, the limit should also make sense on the CFT side at the level of CFT correlators, at
least for holographic CFTs, and (d+1) dimensional flat space-time should emerge from d-dimensional
CFT correlator in a suitable limit. However, it was also clear from the very beginning that the
limit is subtle, and it has been a challenge to make the plausible physical picture into a precise and
mathematically well-defined limit. The limit has been analyzed in a variety of different formulations
and setups: position space [10–13], Mellin space [14–16], partial wave expansion [12, 15], momentum
space [17–22], see also [23] for a comparison of the different formulations, and [24–35] for further
work. One outcome of these works is that the flat space limit is a singular limit. For example, in the

1In the most well understood example of duality, namely when the bulk type IIB string theory is dual to N = 4
SYM, the relation between the AdS radius and the boundary parameters is

L ∼
(
g2

Y M N
) 1

4 (1.1)

In the ’t Hooft limit, one simultaneously sends N to infinity and g2
Y M to zero keeping L large but fixed. For the flat

space limit, one needs to consider the more subtle limit in which we again send N to infinity but we now keep g2
Y M

fixed so that L → ∞ [6, 7].
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momentum space approach of [17,18], (d+ 1)-dimensional flat space amplitudes involving gluons and
gravitons were obtained from the coefficients of singular terms of the flat limit of d-dimensional CFT
correlators involving the conserved currents and stress-energy tensor, respectively.

The flat-space limit provides a link to flat space holography. There have been different approaches
to flat space holography, including celestial holography and Carrollian holography, and connections
to the flat-space limit have been discussed, for example, in [36–45]. We are not going to discuss these
interesting proposals in this paper2, but we note that a minimal possibility for flat space holography
is that it is the flat-space limit of the AdS/CFT, with the flat space results emerging from correlators
of standard relativistic CFT in a suitable limit.

Many of the prior works focused on special cases (e.g. scalar 4-point functions computed by
Witten diagrams, bulk massless fields, etc.). In this work we aim to provide a formulation that
would apply in generality: any n-point function of massless and massive spinning fields with general
interactions. We will focus our analysis in the simplest setup that involves most of these ingredients
while it is also physically interesting: the 3-point function of an abelian gauge field with a massive
spin-1 complex Proca field. Our aim is to obtain the scattering of the photon off a massive vector
field (Figure 1) by taking a limit of the corresponding process in AdS (Figure 2). In flat space this
scattering process captures the electromagnetic properties of the massive particle (charge, magnetic
and quadrupole moments for a spin one particle) and as such it is interesting on its own right. In
particular, our analysis may pave a way to obtain non-perturbative results about electromagnetic
form factors of higher-spin (hadronic) states using holography and CFT results.

3-point functions in CFT are fixed by conformal invariance, up to constants, so this is a case
where the results is known non-perturbatively, and it would allow us to directly take the limit on the
CFT side. On the other hand, to understand what is the precise limit to be taken, it is useful to have
a bulk realization in AdS. We will work with Euclidean signature in AdS with flat boundary (AdS in
Poincaré coordinates, or more accurately with the boundary conformal structure of AdS represented
by a flat metric). We will Fourier transform along the boundary directions and, correspondingly, we
will consider the CFT in momentum space.

In AdS/CFT correspondence, the massive field is dual to a non conserved operator whereas the
gauge field is dual to a conserved current in the boundary theory, so the relevant CFT 3-point function
is that of a conserved current with a non-conserved vector operator and its complex conjugate. This 3-
point function (in momentum space) was determined in our earlier work [47] by solving the conformal
Ward identities, following [48–51], and it depends on the conformal dimension ∆ of the non-conserved
operator, the spacetime dimension d and three parameters, whose values are theory-specific.

In AdS, we work with the most general effective action of the Proca field coupled of an abelian
gauge field, including up to three derivative terms. This action involves three coupling constants: the
minimal coupling, and two more couplings that may be associated with the magnetic and quadrupole
moments of the massive spin-one field. This action might be thought as arising from a compactification
of ten or eleven dimensional supergravity, where the massive vectors correspond to Kaluza-Klein
modes of some higher-dimensional field. The boundary values of the bulk fields act as the sources of

2We will also not discuss whether the limit exists as a limit of the dual CFT as a theory (c.f. footnote 1) or as a
limit of the bulk geometry (c.f., for example, [46]).
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Figure 1: Scattering of a photon γ off a mas-
sive spin-1 particle W in Minkowski space-
time.
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Figure 2: Same process as in Fig. 1 but now
in Euclidean AdS.

the corresponding boundary operators and the holographically renormalized bulk partition function
provides the generating functional of the boundary CFT correlators. We work out the 3-point function
using the original GKPW prescription [4,5] and holographic renormalization [52]. Comparison of the
3-point function computed using the AdS/CFT correspondence with the general CFT 3-point function
shows that there is an 1-1 relation between the three arbitrary parameters that appear in the solution
of the conformal Ward identities and the three AdS bulk coupling. This relation depends on the AdS
radius L and the conformal dimension ∆ of the non conserved operators and is valid in the regime
where the boundary theory is strongly coupled. This explicit matching provides a non trivial test
of AdS/CFT correspondence for the massive spin-1 field described by a higher derivative effective
action.

After computing the above 3-point function, we analyse it in the flat limit where we send the
AdS radius L to infinity. The flat space amplitudes arise from the bulk region where the AdS
metric reduces to the flat metric with the vanishing Ricci tensor and Ricci scalar. In the standard
Poincaré coordinates (see equation (A.114)), the Ricci tensor can be expressed in terms of the radial
coordinate z as RMN = −d δMN/z

2 (M,N = 0, . . . d). Therefore, the dominant region in the flat limit
corresponds to the deep interior of the AdS background where z is large. We parametrized this AdS
region as z = Le

τ
L . In the flat limit, τ is interpreted as Euclidean time.3 Further, in this flat region,

the AdS isometry algebra becomes the Poincaré algebra through the Inonu Wigner contraction [53].
In particular, the AdS isometries include scaling and special conformal transformation, and we show
how in the flat space limit these isometries disappear and instead we obtain translational invariance
in τ together with Lorentz transformations that rotate τ to the other boundary directions.

We would like to take the flat space limit in a way that keeps the physics we want to probe. Suppose
we want to compute the scattering amplitudes for a theory described by flat space by a Lagrangian
Lflat[m2

i , gj ] that depends on set of massless fields, massive fields with masses m2
i and coupling gj via

3We work in the Euclidean AdS signature and Wick rotate the radial direction to make it time like after taking the
flat limit.
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a flat-space limit from AdS. Then the proposal is to start with the same action now in AdS (with AdS
radius L) and then consider the flat space limit L → ∞ keeping fixed the masses m2

i and coupling gj

(in Planck units). Given the standard relation between masses and conformal dimensions, for example
m2L2 = ∆(∆ − d) for scalar fields (or equation (4.47) for the case we consider), keeping fixed the
mass implies that the conformal dimension must tend to infinity, ∆ → ∞, as L → ∞. The crucial
question is then whether AdS amplitudes, or more generally CFT correlators, admit such a limit.

The main building blocks for momentum space CFT 3-point functions are the so-called triple-K
integrals [48],

JN{k1,k2,k3}(p1, p2, p3) ≡
∫ ∞

0
dxx

d
2 +N−1

3∏
i=1

p
∆i− d

2 +ki

i K∆i− d
2 +ki

(xpi) . (1.2)

where pi are the magnitudes of momenta, pi =
√

p2
i , K∆i− d

2 +ki
(xpi) are modified Bessel functions of

the second kind and N and ki are parameters (which are integers in the cases we discuss). In this
integral, the x = 0 region is the UV part of the integral, while the x → ∞ corresponds to the IR
part of the integral. In the AdS computation these integrals arise from the corresponding Witten
diagrams with the Bessel functions being the (momentum-space) bulk-to-boundary propagators and
the integral over x originating from the integral over the bulk vertex, with x identified with the
AdS radial coordinate. The flat-space limit corresponds to considering the deep interior of AdS,
z → ∞, and thus the IR region of the triple-K integral. In the flat-space limit the momenta along
the boundary directions become the spatial momenta of the flat-space scattering amplitude, and thus
we want to keep fixed pi as x → ∞. In addition, we need to send ∆ → ∞ when the corresponding
bulk field is massive.

Thus, the flat-space limit rests (in part) in our ability to take the limit of the triple-K integrals.
For massless fields this involves taking the large argument limit of a modified Bessel function, while
for massive fields we need to take a limit where both the argument and the order and the argument
of the Bessel function tends to infinity. This former limit is well known, but the latter (called uniform
expansion in the mathematics literature) is less known and we review it in detail in appendix B. The
limits of the Bessel function also tell us how the AdS bulk-to-boundary propagators behave in this
limit, and after Wick-rotating to Minkowski spacetime, the answer is that they tend to plane waves,

K∆− d
2 +ℓ(z k) → 1√

Z∆
e−iEt (1.3)

where t = −iτ is Minkowski time (with τ = L log(z/L)). E = ±
√
k2 +m2 is the energy variable of

the flat-space (d + 1)-momentum vector, (E,k), where k is the momentum vector in the CFT. In
other words, the momentum variable of the CFT directly becomes the spatial part of the momentum
variable in flat space and the energy variable is what is dictated by the on-shell condition. Note that
the correct on-shell relation for E automatically emerges from the limit. The two signs correspond
to whether after Wick-rotation the plane wave corresponds to in- or out-state. The factor Z∆ is a
renormalization factor. In the cases we discuss, the Z-factor tends to infinity for the massless photon
and to zero for the massive vector. One would need to renormalize the CFT operators by precisely
these factors in order for the flat-space limit to exist. Using (1.3) in (1.2) we find that the triple-K
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integral becomes (proportional) to the energy-preserving delta function,

lim
L→∞

JN{k1,k2,k3}(p1, p2, p3) ∼ δ(E1 + E2 + E3) (1.4)

where the limit is taken with ∆i/L = mi fixed. Note that the conservation of the spatial momentum
is automatic since the momentum space CFT 3-point functions already contain the momentum-
preserving delta function, δ(k1 + k2 + k3). To complete the flat-space limit of the 3-point function
one needs to take the limit of the form factors (introduced in equation (2.10)) and these involve factors
of ∆ (which follow from the solution of the conformal Ward identities). These factors are crucial in
order to obtain the correct flat space result,

lim
L→∞

√
ZW1ZAZW3 A

µ1µ2µ3
3 = −2πiδ(E1 + E2 + E3) Mµ1µ2µ3

3 , (1.5)

where Aµ1µ2µ3
3 is the momentum-space CFT 3-point function and Mµ1µ2µ3

3 is the flat space scattering
amplitude.

Together with the 3-point function we also analyse the flat limit of the AdS propagators, with
the boundary directions Fourier transformed to momentum space. Again, the flat limit of these
propagators corresponds to sending L and ∆ to infinity. An important role is played by the bulk
to boundary (Btb) propagators of the gauge and Proca fields. These dictate the external leg factors
of the fields in the flat limit which turns out to be very crucial for matching the flat space 3-point
amplitude with the CFT 3-point function. More generally, the solution of the field equations in AdS
properly limit into corresponding solutions in flat space. The AdS solutions depend on the fields that
parametrize their boundary conditions (which play the role of sources in AdS/CFT) and these morph
into polarization vectors in the flat space limit.

We also consider the bulk-to-bulk (BtB) propagator of the gauge field. Even though we only need
its near boundary behaviour in computing the 3-point function via holographic renormalisation, we
have analysed the flat limit of the full BtB propagator in momentum space. Since this propagator
plays the role of Green’s function in AdS, we expect it to limit to the Feynman propagator since
the latter also plays the role of Green’s function in flat space. We find that this is indeed the case,
as expected. However, this analysis gives an interesting insight about the longitudinal part of the
propagator. As is common in AdS/CFT, we used the radial/axial gauge where A0 = 0. In the flat
space limit, the transverse part of the gauge BtB propagator matches exactly with the transverse
part of the Feynman propagator in the flat space limit, while the longitudinal part divergences. This
divergence is precisely linked with an additional singularity (an unphysical double pole) that is present
in the Feynman propagator in the axial gauge in flat space [54,55], and our results match these earlier
results.

The rest of the paper is organised as follows. In section 2, we review results obtained in previous
literature: we summarise the expression of the momentum-space CFT 3-point function involving a
conserved current and two generic non conserved operators having the same conformal dimension, and
we also review results about the flat limit of AdS at the geometric and group algebra level. In section
3, we explicitly show how the AdS isometries limit to the Poincaré isometries and how the scaling
and special conformal symmetry of the CFT correlators recombine to Poincaré transformations in the
large L limit. In section 4, we shall introduce the bulk theory involving a gauge field and two charged
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massive spin-1 fields and derive the boundary CFT 3-point function using this bulk theory and the
procedure of holographic renormalisation. This fixes the coefficients appearing in the CFT 3-point
function in terms of bulk quantities. In section 5, we analyse the flat limit of the BtB propagator
of the gauge field and Btb propagators of the gauge and Proca fields. In section 6, we consider the
flat space limit of the 3-point function and show that it matches with the expected result in the flat
space. We end with some discussion in section 7.

The papers contains a number of technical computations, which require dealing with many subtle
issues. While the techniques and subtleties are all known by the experts, detailed expositions are
rare in the literature and we present a comprehensive analysis in a series of appendices. Appendix A
contains our conventions, and in appendix B we discuss the limiting behaviour of the modified Bessel
functions. In particular, we present a self-contained discussion of the uniform expansion of the Bessel
function when both the argument and the order of the Bessel function goes to infinity. Appendix C
contains a derivation of the most general form of effective action in AdS, which contains up to cubic
terms in the gauge and Proca fields, and up to the three derivative terms. This is the starting point for
our holographic computation in section 4. In appendix D we compute the bulk-to-boundary and the
bulk-to-bulk propagators of the gauge field in axial gauge, and the bulk-to-boundary propagator for
the Proca field. Appendix E contains the computation of the gauge field bulk-to-boundary propagator
in Lorenz gauge. In appendices F and G we work out holographic renormalization for the Proca and
gauge field, respectively. The massive spin-1 field corresponds to an irrelevant operator and this
requires special attention. Appendix H contains the computation of the corresponding flat space
scattering amplitude. Finally, in appendix I we present a self-contained summary of the relation
between electromagnetic form factors and couplings in the effective action.

2 Review of CFT results

In this section, we summarise the CFT 3-point function involving a conserved current and two non
conserved spin 1 fields in momentum space following [47]. This will be needed later to compare with
the bulk 3-point function of a gauge field and two massive spin-1 Proca fields. The results in [47] are
given in an index free notation where Lorentz indices have been contracted with auxiliary vectors.
Here, we state the result in terms of explicit indices which will be more useful for our purposes.

The desired 3-point correlator was determined from the CFT Ward identities. Extracting the
momentum conserving delta function, it can be expressed as

Aµ1µ2µ3
3 = (2π)dδd(p1 + p2 + p3)

〈〈
Oµ1

1 (p1)J µ2(p2)Oµ3
3 (p3)

〉〉
(2.6)

The operators O1 and O3 can have different conformal dimensions, say ∆1 and ∆3 respectively.
However, in our case, they will correspond to bulk fields with the same mass, hence, we shall take
∆1 = ∆3 = ∆. The reduced correlator in (2.6) can be decomposed in a transverse and longitudinal
part as 〈〈

Oµ1
1 (p1) J µ2(p2) Oµ3

3 (p3)
〉〉

=
〈〈

Oµ1
1 (p1) jµ2(p2) Oµ3

3 (p3)
〉〉

+ pµ2
2
p2

2

〈〈
Oµ1

1 (p1) p2νJ ν(p2) Oµ3
3 (p3)

〉〉
, (2.7)
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where jµ denotes the transverse part of the conserved current

jµ(p2) = πµ
ν(p2)J ν(p2), πµν(p2) = δµν − pµ

2p
ν
2

p2
2
, pµ

2 πµν(p2) = 0 . (2.8)

The second term on the right hand side of (2.7) is the longitudinal contribution and the conservation
Ward identity for the symmetry current relates it to the 2-point function of the operators Oµ. This
relates one of the coefficients of the 3-point function with the normalization of the 2-point function
of Oµ, as we discuss below. Focusing on the transverse part, we decompose it in form factors,〈〈

Oµ1
1 (p1) jµ2(p2)Oµ3

3 (p3)
〉〉

= (π · p1)µ2Aµ1µ3 + πµ2µ1Bµ3 + πµ2µ3Cµ1 , (2.9)

where

Aµ1µ3 = A1 δ
µ1µ3 +A2 p

µ1
1 (p1 + p2)µ3 +A3 p

µ1
2 (p1 + p2)µ3 +A4 p

µ1
1 pµ3

2 +A5 p
µ1
2 pµ3

2 ;

Bµ3 = B1 (p1 + p2)µ3 +B2 p
µ3
2 ;

Cµ1 = C1 p
µ1
1 + C2 p

µ1
2 . (2.10)

The form factors Ai, Bk, Ck (i = 1, ..., 5, k = 1, 2) depend on the magnitudes of the momenta, pj =
|pj | =

√
p2

j (j = 1, 2, 3). In the above expressions we used the momentum conserving delta function
to express pµ

3 = −pµ
1 − pµ

2 .4

As discussed in section 3.5 of [47], the correlator is antisymmetric under exchange of (µ1, p1) and
(µ3, p3) that this implies,

Ai(p1, p2, p3) = Ai(p3, p2, p1), i = 1, 2, 5, A3(p1, p2, p3) = −A4(p3, p2, p1) (2.11)

B1(p1, p2, p3) = C1(p3, p2, p1), B2(p1, p2, p3) = −C2(p3, p2, p1) .

The functions Ai, Bi and Ci are determined by solving the Ward identities, and they are given in
terms of triple-K integrals:

A1 = −a5J2{0,1,0} + a1J1{0,0,0} ;

A2 = −a5J3{−1,2,−1} + a2J1{−1,0,−1} + 2a4J2{−1,1,−1} ;

A3 = −A4 = a5J3{0,1,−1} − a4J2{0,0,−1} ;

A5 = a5J3{0,0,0} ;

B1 = C1 = −a5J2{0,1,0} + b1J1{0,1,−1} + (b1 − b2)J1{1,0,−1} + (b1 − b2 + a4)J1{0,0,0} ;

B2 = −C2 = −a5J2{0,0,1} + b2J1{0,0,0} ; , (2.12)
4In [48] the momentum conserving delta function was solved differently for different indices, µ1 → p1, p2, µ2 →

p2, p3, µ3 → p3, p1. This results in form factors Ã, B̃, C̃ that relate to the ones we use here by

A1 = −Ã1 , A2 = Ã4 − Ã2 , A3 = Ã5 − Ã3 , A4 = Ã4 , A5 = Ã5

B1 = B̃2 − B̃1 , B2 = −B̃2 , C1 = C̃1 , C2 = C̃2 .

9



where JN{k1,k2,k3} denote the triple K integrals and are defined by

JN{k1,k2,k3}(p1, p2, p3) ≡
∫ ∞

0
dxx

d
2 +N−1

3∏
i=1

p
∆i− d

2 +ki

i K∆i− d
2 +ki

(xpi) . (2.13)

For more details and useful properties of these integrals, see [48, 49, 56]. Note that (2.12) already
satisfy the symmetry constraints (2.11).

The 3 point function of a conserved current and two arbitrary spin 1 operators with the same
conformal dimension ∆1 = ∆3 = ∆ is given in terms of only 3 independent parameters. This means
that not all the parameters ai, bi in (2.12) are independent. There are relations among different
constants and three of the constants are fixed in terms of the remaining three as

a1 = (d− 2)∆a5 − (∆ − 1)a4 + b2 ; a2 = 2(d− 2)∆a5 − (2∆ + d− 4)a4 + (2∆ − d)
(∆ − 1) b2

b1 = (2∆ − d)
2(∆ − 1)b2 . (2.14)

Thus, the 3-point function is parametrised by three independent parameters as expected, and we
have chosen a4, a5 and b2 to be the three independent parameters. One of these parameters is fixed in
terms of the normalisation of the non-conserved operator. Indeed, the 2-point function of operators
O1 and O3 is given by [47]〈〈

O∗
µ(p)Oν(−p)

〉〉
= a0

[
δµν −

(2∆ − d

∆ − 1

)
pµpν

p2

]
p2∆−d , (2.15)

Now, the generating functional of the CFT correlators is given by

Z[A(0)µ,W(0)µ,W
∗
(0)µ] =

∫
DΦ exp

[
−SCF T −

∫
ddx

(
J µA(0)µ + O∗µW(0)µ + OµW∗

(0)µ

)]
(2.16)

where A(0)µ,W(0)µ and W∗
(0)µ are the sources for the CFT operators J µ,O∗µ and Oµ, respectively.

In the AdS/CFT correspondence, these sources are the fields that determine the boundary conditions
of the corresponding bulk fields. Demanding invariance of the generating functional under the U(1)
transformation, namely

δA(0)µ(x) = ∂µλ(x) ; δW(0)µ = igλ(x)W(0)µ ; δW∗
(0)µ = −igλ(x)W∗

(0)µ (2.17)

we find the conservation ward identity

∂µ⟨J µ(x)⟩s = ig
(
W(0)µ(x)⟨O∗µ(x)⟩s − W∗

(0)µ(x)⟨Oµ(x)⟩s

)
, (2.18)

where the subscript s indicates that these are identities for expectation values in the presence of
sources. Differentiating w.r.t. W(0)µ1

(x1),W(0)µ3
(x3), (and renaming x, µ → x2, µ2), and Fourier

transforming to momentum space yields,〈〈
O∗µ1(p1) p2µ2J µ2(p2) Oµ3(p3)

〉〉
=
(
g
〈〈

O∗µ1(−p3) Oµ3(p3)
〉〉

− g
〈〈

O∗µ1(p1) Oµ3(−p1)
〉〉)

(2.19)

Using this, we find [47]

a0 = 2
d
2 −4 (d− 2∆)

g(d− 2) Γ
(
d− 2∆

2

)
Γ
(2∆ − d

2

)
Γ
(
d

2

) [
(∆ − 1) (−a4 + (d− 2)a5) + b2

]
(2.20)
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Note that this relation involves a new parameter, namely g, which enters via the Ward identity.
Altogether, the Ward identity introduces one relation between the parameters in the 3-point function
and the normalization of the 2-point, but it also contains an additional parameter (the gauge coupling).
Thus, up to 3-point functions we need a total of three parameters.

Finally, we comment about the divergences appearing in the 3-point function. For integer values
of ∆, many of the triple-K integrals appearing in (2.12) diverge and hence regularisation is required
and renormalization may be needed. However, in this paper we consider ∆ to be non-integer. In
this case also some of the triple K integrals, namely J1{0,1,−1}, J1{1,0,−1}, J1{−1,1,0} and J1{−1,0,1} are
individually divergent. However, the divergences cancel for the combination in which they appear in
the 3-point function. The details of this analysis can be found in [47].

3 Poincaré symmetry from AdS isometries

3.1 Flat space limit of AdS

At the geometric level, taking the flat space limit of AdS corresponds to sending L to infinity. The
AdS metric in the Poincaré coordinates is given by

ds2 = L2

z2

(
dz2 + δµνdx

µdxν
)

; xa = (z, xµ) (3.21)

In the limit L → ∞, taken such that the metric GMN has a (finite) limit, the Riemann, Ricci and
scalar curvatures vanish and one gets a flat geometry (see equation (A.119)). To analyse this limit
efficiently, it is convenient to parametrise the radial coordinate z as [23]

z

L
= e

τ
L ; τ ∈ (−∞, ∞) (3.22)

In the large L limit, τ becomes (d + 1)th flat space direction. Indeed, in this limit, the AdS metric
(3.21) becomes the flat space metric as

ds2 = (dτ)2 + e−2 τ
L

δµνdxµdxν = δabdx
adxb + O

( 1
L

)
(3.23)

where a, b = 1, · · · , d+ 1 and we have denoted τ by xd+1 in the second equality. To get to Minkowski
space one may additionally Wick rotate τ = −it 5.

It is also instructive to see how the Poincaré algebra emerges from the AdS isometry algebra in
the flat limit. The isometry algebra of Euclidean AdSd+1 is so(d+ 1, 1) , which is also the conformal
algebra on Rd, is given by

[MAB,MCD] = ηBCMAD − ηACMBD + ηADMBC − ηBDMAC (3.24)

where, ηAB = (+, . . . ,+, −) and

A,B,C,D = 1, 2, · · · , d+ 1, d+ 2 ≡ {a, d+ 2} ≡ {µ, d+ 1, d+ 2}

To recast (3.24) in the conformal algebra, we need to make the following redefinitions [57]

Mµν = Lµν ; Md+1,µ = 1
2(Pµ +Kµ) ; Md+2,µ = 1

2(Pµ −Kµ) ; Md+2,d+1 = D (3.25)

5Note that the analogous flat space limit of the de Sitter metric directly leads to Minkowski space.
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With this, the algebra (3.24) reduces to

[Lµν , Lρσ] = δνρLµσ − δµρLνσ + δµσLνρ − δνσLµρ

[Lµν , Pρ] = δνρPµ − δµρPν ; [Lµν ,Kρ] = δνρKµ − δµρKν

[Kµ, Pν ] = 2δµνD − 2Lµν ; [D,Pµ] = Pµ ; [D,Kµ] = −Kµ (3.26)

This is the standard conformal algebra: Lµν , Pµ,Kµ, D represent the rotation, translation, special
conformal transformation and the dilatation generator, respectively.

The (Euclidean) AdS isometry algebra (3.24) reduces to the algebra of the Euclidean group in the
flat space limit via the Inonu Wigner contraction [53]. Upon Wick rotation this becomes the Poincaré
algebra, and we will loosely use this terminology even when we work with Euclidean signature. To
see this, we note that upon splitting the (d+ 2)th component the algebra (3.24) can be written as

[Mab,Mce] = δbcMae − δacMbe + δaeMbc − δbeMac

[Mab,Mc,d+2] = δbcMa,d+2 − δacMb,d+2 ; [Ma,d+2,Mb,d+2] = Mab (3.27)

Now, writing Ma,d+2 ≡ LPa and taking the limit L → ∞, the algebra (3.27) reduces to

[Mab,Mce] = δbcMae − δacMbe + δaeMbc − δbeMac

[Mab,Pc] = δbcPa − δacPb ; [Pa,Pb] = 0 (3.28)

This is the standard algebra of the Euclidean group in flat d+ 1 dimensional space.

3.2 From AdS to Poincaré

It was mentioned in the introduction that CFT correlators are expected to turn into S-matrix in the
flat limit. This means that the conformal symmetry should morph into the Poincaré symmetries in
the flat limit. In this subsection, we explicitly show how this happens.

We begin by noting that the generator Ma,d+2 introduced in the previous subsection becomes the
momentum generator in d + 1 dimensional flat space, up to a rescaling by the AdS radius. From
equation (3.25), this implies that the combination Pµ −Kµ of the CFT algebra becomes the momen-
tum component Pµ ( with µ = 1, 2, · · · , d) whereas the CFT generator D becomes the momentum
component Pd+1 in the flat limit. Together, they form the flat space momentum in d+ 1 dimensions

Pa = (Pµ,Pd+1) ∼ (Pµ −Kµ, D) (3.29)

On the other hand, the combination Pµ +Kµ of the CFT generators provides Md+1,µ components of
the Lorentz generator in the flat limit, i.e.

Mab = (Mµν ,Md+1,µ) ∼ (Lµν , Pµ +Kµ) (3.30)

To see these relations more explicitly at the level of symmetry transformations, we note that the AdS
isometry transformations in (τ, xµ) coordinates are given by [58]
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1. Rotations and translation of xµ.

δxµ = αµ
νx

ν + bµ (3.31)

2. Scaling of xµ and translation of τ

δxµ = λxµ ; δτ = Lλ (3.32)

3. Special conformal transformation of (τ, xµ)

δxµ = 2(δσνc
σxν)xµ − x2cµ ; δτ = 2L(δµνc

µxν) (3.33)

where, x2 ≡ L2e
2τ
L + δµνx

µxν .

On the other hand, we have the following isometries in flat space

δxµ = ωµ
MxM + aµ = ωµ

νx
ν + ωµ

ττ + aµ (3.34)

δτ = ωτ
MxM + β = ωτ

µx
µ + β (3.35)

We shall now show how to recover these isometries from the flat limit of AdS and relate the flat space
parameters ωµ

ν , ω
τ
µ, a

µ, β in terms of the AdS isometry parameters αµ
ν , b

µ, cµ and λ. We start with
the transformation of τ. From (3.32), we find that it has the structure of translation in the limit
L → ∞ if we simultaneously send λ to 0, i.e.

β = lim
L→∞
λ→0

Lλ =⇒ δτ = β (3.36)

We also see that in this limit the scaling transformation of xµ disappears. We now consider the
rotation of τ. From equation (3.33), we see that it has the correct flat space structure if we define

ωτ
ν ≡ lim

L→∞
cν →0

2Lcν =⇒ δτ = ωτ
νx

ν (3.37)

This completes the analysis for the transformations of τ. Next, we consider the transformations of
xµ. In the limit L → ∞ and cν → 0, equation (3.33) gives

δxµ = lim
L→∞
cν →0

2(δσνc
σxν)xµ −

[
L2
(
1 + 2τ

L
+ 4τ2

L2 + · · ·
)
+δσνx

σxν
]
cµ

= ωµ
ττ − lim

L→∞
cν →0

L2cµ (3.38)

where, we have ignored the terms which vanish when L → ∞ or cµ → 0. In writing the last equality,
we have used equation (3.37) and ωµ

τ = −ω µ
τ . Combining the above equation with (3.31), we find

δxµ = αµ
νx

ν + ωµ
ττ + bµ − lim

L→∞
cν →0

L2cµ (3.39)

Finally we consider bµ = L2cµ+aµ, where aµ is independent of L, so that the combination (bµ−L2cµ) =
aµ has a finite limit giving a finite translation and we recover the expected Poincaré transformation of
xµ, as given in (3.34), in the flat limit. From the above derivation, we also see that the translation of xµ

in the flat limit comes from a combination of original translation and special conformal transformation
as indicated in (3.29). Similarly, the rotation of xa comes from a linear combination of the original
rotation and translation of xµ and the special conformal transformation of (xµ, τ) as suggested by
equation (3.30).
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4 3-point function from bulk theory

4.1 Bulk theory

In this section we derive the CFT 3-point function
〈
O∗µJ τ Oν

〉
of a U(1) conserved current J µ with

a vector operator Oν charged under the U(1) using AdS/CFT. For this purpose we need a bulk action
in AdS, whose cubic terms are linear in the gauge field AM and quadratic in massive vector fields,
WN . As shown in appendix D, the most general such action in Euclidean signature describing the
interaction between a U(1) gauge field and a complex massive spin one field in d + 1 dimensional
curved spacetime up to 3 derivative terms is given by

S =
∫
dd+1x

√
G
[
− 1

16πGN
(R− 2Λ) + 1

4F
MNFMN + 1

2W
∗
MNW

MN +m2W ∗
MWM

−ig αFMNW ∗
MWN + igβFMN

(
∇MW ∗

P ∇PWN − ∇MWP ∇PW ∗
N

)]
, (4.40)

where M, N,P run from 0 to d, Λ is the cosmological constant and FMN = ∂MAN − ∂NAM is the
field strength of the gauge field. We have also introduced the field strength of the massive spin 1 field
as

WMN = DMWN −DNWM , DM = ∇M + igAM , (4.41)

with ∇M being the diffeomorphism covariant derivative. The cubic terms are parametrized by three
independent parameters, g, α, β, matching the number of independent parameters that we found in
the CFT analysis. One of them is the gauge coupling constant g and it multiples the terms introduced
by minimal coupling. The other two, α and β, were first introduced in the context of zero cosmological
constant and their physical meaning is as follows: α is the gyromagnetic coupling which is related to
the magnetic moment of the massive vector field WM and β is related to its quadrupole moment, see,
e.g., [59–63] and the discussion in appendix I.

We shall use the above action in an AdS background. Einstein equations imply that the matter
fields AM and WM couple to the metric through their energy momentum tensor. This back-reaction
can modify the AdS background. However, we shall ignore such back-reaction. The reason is that
we are interested in computing the 3-point function in the CFT, so the corresponding sources are
only turned on infinitesimally (to implement the operator insertion) and then are turned off. As the
bulk energy momentum tensor is quadratic in the fields, one may then neglect the backreaction. The
gauge field equation derived from (4.40) in the AdS background is given by

∇M FMN = JN =⇒
(
∇M ∇M + d

L2

)
AN − ∇N ∇MAM = JN (4.42)

with the source current given by

JN = 2ig
(
W ∗

M ∇[MWN ] −WM ∇[MW ∗N ]
)

+ 2ig α∇M

(
W ∗[M WN ]

)
−2ig β∇M

(
∇[M |W ∗

P ∇PW |N ] − ∇[M |WP ∇PW ∗|N ]
)
, (4.43)

where the antisymmetrization on right hand side is only over the indices M and N . In writing (4.43)
we have neglected terms with higher powers in the gauge coupling g since we shall be only interested
in the cubic interactions, which are linear in the gauge field, in what follows. Taking the covariant
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derivative of both sides of (4.42), we find that that the left hand side vanishes identically giving
the conservation equation ∇MJM = 0. It is easy to check that the current given in (4.43) satisfies
this conservation condition on-shell. For doing calculations, we shall Fourier transform the boundary
directions as

TM (z, k) =
∫
ddx e−ik·x TM (z, x), (4.44)

where TM can be any bulk quantity. From now on, we shall work in this Fourier basis.
To proceed further, we need to gauge fix AM (z, k). We shall work in the axial gauge and in

Euclidean signature, setting A0(z, k) = 0. For the 3-point function, we shall need the perturbative
solution of the gauge field up to first order in the coupling g. It is given by (see appendix G.4 for
details)

Aµ(z, k) = K ν
µ (z, k)A(0)ν(k) +

∫
dw

√
G Gµν(z, w; k) Jν(w, k) , (4.45)

where K ν
µ (z, k) and Gµν(z, w; k) denote the bulk-to-boundary and bulk-to-bulk propagators of the

gauge field, respectively. Their expressions are given in equations (D.177) and (D.191). The field
A(0)µ(k) denotes the boundary value of the gauge field and Jν(w, k) can be obtained from (4.43) by
specialising N to the boundary index ν.

Next, we consider the massive fields. For the 3-point function we are interested in, we only need
the free field classical solution for these massive fields. The reason is that we will determine the 3-point
function through the back reaction of the massive fields to Aµ, using (D.166), and since the massive
field enters quadratically there, higher-order corrections to the massive field will not contribute to the
3-point function of interest. These can be expressed in terms of the massive spin-1 bulk-to-boundary
propagators K µ

M (z; k) and K̄ µ
M (z; k) as

WM (z, k) = K µ
M (z, k)wµ(k) ; W ∗

M (z, k) = K̄ µ
M (z, k)w∗

µ(k) (4.46)

The propagators K µ
M (z; k) and K̄ µ

M (z; k) are given in equations (D.208) and (D.210), respectively.
The wµ and w∗

ν are related to the boundary values of Wµ and W ∗
ν , respectively. Note that we only

need to specify the boundary component of the massive fields. The radial component Wz gets fixed
in terms of the boundary components.

The bulk fields WM and W ∗
M are dual to the non conserved CFT operators of section 2. Their

mass m is related to the conformal dimension ∆ of the boundary operators by the relation

L2m2 = (∆ − 1)(∆ + 1 − d) (4.47)

which follows from equation (D.199) of appendix D.2.

4.2 Three-point function

In this subsection, we use the AdS/CFT correspondence to obtain the 3-point function involving two
spin-1 operators and a conserved current in the CFT dual to the bulk theory described above. This
3-point function will be a special case of the 3-point function given in section 2. The 3 arbitrary
parameters appearing in the CFT result (2.9) will be fixed in terms of the bulk parameters.
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According to the AdS/CFT correspondence, the on-shell bulk partition function Zonshell with
given boundary behaviour of the bulk fields is identified with the generating functional of the dual
CFT-correlation functions [4, 5] ,

Zonshell[Φ(0)] =
〈
e−
∫

ddx Φ(0)(x) O(x)
〉

(4.48)

where Φ(0) denotes the field parametrizing the Dirichlet boundary conditions of the bulk field Φ which
is dual to the CFT operator O.

In the saddle point approximation, the generator of the connected QFT correlators, denoted by
W [Φ(0)], is given by the on-shell value of the action, namely,

W [Φ(0)] = −Sonshell (4.49)

This is the main ingredient to compute the correlation functions of boundary CFT operators from the
bulk action. To obtain renormalized correlators we still need to holographically renormalize [52]. We
regulate the theory by putting the boundary at z = ϵ and add counterterms to cancel the infinities.
The full renormalized action is obtained by

Sren = lim
ϵ→0

(
Sreg + Sct

)
(4.50)

where Sreg denotes the regularised action and Sct denotes the counterterms.
The details of the holographic renormalisation for the bulk theory described by action (4.40) is

given in appendix G. Given the renormalized on-shell action, we can now evaluate the desired 3-point
function. The first step for this is to obtain the exact renormalized 1-point function of the conserved
current. It is given by (for details, see appendix G)

⟨J µ(k)⟩ = lim
ϵ→0

1
ϵ

d
2
√
γ

δSren
δAµ(k, ϵ) (4.51)

where we have used the Fefferman Graham coordinates,

ds2 = L2dρ
2

4ρ2 + γµνdx
µdxν , γµν = L

ρ
δµν . (4.52)

Here γµν is the induced metric at ρ =constant and the IR regulating boundary is at ρ = Lϵ.
The CFT 3-point function of the conserved current and two spin-1 operators is obtained by

differentiating (4.51) with respect to the sources of the spin-1 operators. The final result is given by

〈
O∗µ(p1)J τ (p2)Oν(p3)

〉
= δτλ (2π)d(2π)d δ2

δW(0)µ(−p1)δW∗
(0)ν(−p3)

∫ ∞

0
dσ

√
G Kλκ(σ; p2)Jκ

(0)(σ, p2) , (4.53)

where W(0)µ and W∗
(0)µ denote the fields associated with the boundary conditions of the bulk fields

WM and W ∗
M , respectively (see (F.227), (F.231)). These are the sources of the boundary operators

O∗
µ and Oµ respectively. The Jκ

(0) denotes the boundary component of the current (4.43) but with
terms only up to O(g) in the coupling constant. Terms with higher orders in g are relevant for
bulk calculations of four and higher point correlation functions but do not contribute to the 3-point
function considered in this section. The source current Jκ

(0) is a function of the massive fields Wµ and
W ∗

µ whose classical solutions are given in equation (4.46).
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After a long but straightforward calculation and using the definition of triple-K integrals given in
(2.13), the transverse contribution to the 3-point function is obtained to be〈〈

O∗
ν(p1) Jµ(p2) Oρ(p3)

〉〉
= (π2 · p1)µ Aνρ + (π2)µν Bρ + (π2)µρ Cν (4.54)

The form factors A, B and C, have the same structure as in equations (2.10) and (2.12). However,
the coefficients ai and bi appearing in (2.12) are now given in terms of the AdS bulk parameters as

a1 = gC0

[
−2 + 2(d− 2)

L2 β

]

a2 = gC0

[
−4 + 2(d− 2)

∆ − 1 α+ 1
L2

2(d− 2)(2(2 − ∆) + d(∆ − 1))
(1 − ∆) β

]

a4 = gC0

[ 1 − α

∆ − 1 + 1
L2

2(d− 2 + ∆(1 − d))
1 − ∆ β

]

a5 = gC0

[2β
L2

]

b1 = gC0

[
d− 2∆

2(∆ − 1)
(
1 + α− 2 ∆

L2 β
)]

b2 = gC0

[
−(1 + α) + 2∆

L2 β

]
(4.55)

where, we have defined6

C0 = − 22− d
2

Γ
(

d
2 − 1

)
 2

d
2 +1−∆

Γ
(
∆ − d

2

)
2

L2∆−d−1 (4.56)

The relations given in equation (2.14) can be easily seen to be satisfied for the values of a4, a5 and
b2 given above. The AdS/CFT correspondence has fixed the 3 arbitrary parameters in the boundary
CFT 3-point function in terms of the bulk coupling parameters.

The CFT 3-point function, reviewed in section 2, of one conserved current and two non conserved
operators ( with same conformal dimensions ) spans a 3-dimensional space. In the bulk effective theory
also, we have 3 parameters g, α and β which also span a 3-dimensional space. The 3 independent
parameters in the CFT side were chosen to be a4, a5 and b2. Their expression in terms of the bulk
parameters is given above. We can also invert these relations to express the bulk parameters in terms
of the independent boundary CFT parameters as

g = −(∆ − 1) (−a4 + (d− 2)a5) + b2
2C0

(4.57)

α = −(∆ − 1)(−a4 + da5) + 2a5 − b2
(∆ − 1) (−a4 + (d− 2)a5) + b2

(4.58)

β = − a5L
2

(∆ − 1) (−a4 + (d− 2)a5) + b2
(4.59)

If we had less than 3 parameters in the bulk, then they would not span the full 3-dimensional CFT
space mentioned above. Similarly, if we had more than 3-parameters in the bulk, say coming from the
higher derivative terms, then the relation between the CFT and bulk parameters would be degenerate.

6The AdS-radius L2∆−d−1 that appears in the definition of C0 has been extracted from the metric factors involved in
the integral of three Btb-propagators. All the other factors appearing in the definition of C0 collect the overall constants
present in equations (D.176) and (D.208).
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One important point to note is that each coupling in the bulk (minimal, gyromagnetic, quadrupole)
is consistent with the boundary CFT 3-point function by itself. This follows from the fact that the
bulk action is AdS invariant for any value of the couplings, and the AdS isometries imply that the
contribution of each term in the boundary correlator is a CFT correlator on its own. Moreover, the
matching happens for arbitrary values of these parameters. The matching of the 3-point function
considered here is a non-trivial confirmation of the gauge/gravity correspondence for an effective field
theory of charged massive spin-1 and gauge field up to three derivative terms.

4.3 Conservation Ward identity from the bulk

The transverse ward identity (2.19) relates the 2-point function with the longitudinal part of the
3-point function involving the divergence of the conserved current. We shall now show that it is
consistent with our bulk analysis. The Ward identity (2.19) is easiest to derive by the procedure of
holographic renormalisation. Using (G.276), we find the 1-point function of the divergence of the
current to be (focusing on odd d for now)

⟨⟨p2µJ µ(p2)⟩⟩ = − 2
L
δµν

(
d

2 − 1
)
p2µA

(d−2)
ν (4.60)

where A(d−2)
ν appears in the asymptotic expansion of the gauge field (see equation (G.265)).

Now, up to O(g), the RHS of the above equation in momentum space takes the form (see equation
(G.262))

(d− 2)δµνpµA
(d−2)
ν (p)

= g(2∆ − d)
∫

ddk

(2π)d
δµν
[
W∗(0)

µ (k)W(2∆−d)
ν (p − k) − W(0)

µ (k)W∗(2∆−d)
ν (p − k)

]
(4.61)

where W(0)
µ and W(2∆−d)

ν (and their complex conjugates) are the source and vev part of the near
boundary expansion of the Proca field as given in equations (F.227) and (F.231) respectively.

Now, using the 1-point function (4.60) and the expressions of W(2∆−d)
µ (and its complex conjugate)

given in (F.238), we find〈
O∗ν(p1)p2µJ µ(p2)Oσ(p3)

〉

= − 1
L

(d− 2)δµτ p2µ
δ2A

(d−2)
τ (p2)

δW(0)
ν (−p1)W∗(0)

σ (−p3)
(2π)d(2π)d

= − 1
L
g(2∆ − d)

[(
p1
2

)2∆−d Γ
(

d
2 − ∆

)
L2∆−d

Γ
(
∆ − d

2

) (
δνσ + pν

1pσ
1 (d− 2∆)

p2
1(∆ − 1)

)

−
(
p3
2

)2∆−d Γ
(

d
2 − ∆

)
L2∆−d

Γ
(
∆ − d

2

) (
δσν + pν

3pσ
3 (d− 2∆)

p2
3(∆ − 1)

)]
(2π)dδd(p1 + p2 + p3)

= g

[〈〈
O∗ν(−p3)Oσ(p3)

〉〉
−
〈〈

O∗ν(p1)Oσ(−p1)
〉〉]

(2π)dδd(p1 + p2 + p3) (4.62)

In going to the last equality, we have used the expression of two point function (F.253) obtained using
holographic renormalization. The above result (4.62) is exactly the transverse ward identity (2.19) we
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wanted to show. We can also verify the above Ward identity by directly using (4.53) and contracting
it with the momenta of the current J µ. In this derivation, we considered the case of odd dimensions
and arbitrary ∆. The analysis for even dimension and arbitrary ∆ is similar and yields the same final
result (4.62).

The Ward identity (2.19) also gives the relation (2.20) between the CFT 2- and 3-point function
coefficients. Using (4.57) we see that the CFT 2-point function coefficient a0 becomes

a0 = 2d−2∆(2∆ − d)
Γ
(

d
2 − ∆

)
L2∆−d−1

Γ
(
∆ − d

2

) (4.63)

This agrees exactly with the two point function coefficient appearing in the 2-point function of Proca
field in equation (F.253) obtained using holographic renormalisation.

5 Flat space limit of Propagators

In this section, we consider the AdS propagators for the gauge and Proca fields and analyse them
in the flat space limit. More specifically, we shall consider the bulk-to-bulk (BtB) propagator of the
gauge field and the bulk-to-boundary (Btb) propagators of both gauge and Proca fields. We shall
show how the BtB propagator of gauge field turns into the momentum representation of the gauge
Feynman propagator in the limit to flat space. On the other hand, the Btb propagators will turn out
to be related to the external leg factors of the corresponding fields in the flat limit.

In section 3.1, we reviewed how the AdS geometry locally reduces to the flat space geometry when
the AdS radius L is taken to be large. We introduced the bulk coordinate τ via the relation z

L = e
τ
L .

The flat metric corresponds to keeping z
L to be O(1) and neglecting the O( 1

L) terms in the AdS metric
(see equation (3.23)). It is clear that in this limit, the radial coordinate z is very large. It is consistent
with the bulk kinematic region z k >> 1 taken in [31] as the bulk region relevant for reproducing
the flat space S matrix in the flat limit. This will also be the limit that we shall consider in this
and next section for the BtB and Btb propagators and on the three point correlator for getting the
corresponding quantities in flat space.

5.1 Gauge bulk-to-bulk propagator

The derivation of the bulk-to-bulk propagator of an abelian gauge field in momentum space in the
radial/axial gauge A0 = 0 has been reviewed in appendix D.1.2 and is given by

Gµν(z, w; k) = − 1
Ld−3


(zw)

d
2 −1I d

2 −1(kz)K d
2 −1(kw)πµν + zd−2

d−2
kµkν

k2 , if z < w

(zw)
d
2 −1I d

2 −1(kw)K d
2 −1(kz)πµν + wd−2

d−2
kµkν

k2 , if z > w

(5.64)

For taking the flat space limit, we shall work in the τ coordinate introduced in (3.22) and write

Kd−1(z k) = Kd−1(e
τz
L k L) ; Id−1(w k) = Id−1(e

τw
L k L) (5.65)

Using the asymptotic expansion of the Bessel function for the large argument given in (B.120), we
find

Kd−1(z k) =
(

π

2Lk

) 1
2
e−k (1+ τz

L ) L + O
( 1
L

)
; Id−1(w k) = 1√

2π Lk
ek (1+ τw

L ) L + O
( 1
L

)
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With these results, the bulk-to-bulk propagator takes the form

Gµν(z, w; k)
∣∣∣
L→∞

= −


e−k(τw−τz)

2k πµν +
(

L
d−2 + τz

)
kµkν

k2 + O
(

1
L

)
, if τz < τw

e−k(τz−τw)

2k πµν +
(

L
d−2 + τw

)
kµkν

k2 + O
(

1
L

)
, if τz > τw

(5.66)

To proceed further, we observe that the longitudinal part of the bulk-to-bulk propagator in the flat
space limit can be manipulated as7

− L

d− 2

[(
z

L

)d−2
Θ (w − z) +

(
w

L

)d−2
Θ (z − w)

]

= L

2 − d

[
e(d−2)( τz+τw

2L
+ τz−τw

2L )Θ
(
Le

τw
L − Le

τz
L

)
+ z ↔ w

]

=
(

L

2 − d
− τw + τz

2

)
− (τz − τw)

2 Θ(τw − τz) − (τw − τz)
2 Θ(τz − τw) + O

( 1
L

)
(5.67)

where we have kept only the leading order terms in L. In the limit L → ∞, the first term in the
above expression diverges. We shall shortly connect this divergence with the singularity of the axial
gauge propagator in flat space.

The non-translational invariant piece is a consequence of the divergence. To see this, recall that
time translations originate from scaling, xµ′ = eλxµ, z′ = eλz in the limit λ → 0, L → ∞, with
β = λL fixed, see (3.36). In momentum space, qµ′ = e−λqµ, and the arguments of the Bessel function,
kz and kw are invariant under such rescaling. It follows that

Gµν(eλz, eλw; e−λk) = e(d−2)λGµν(z, w; k) ⇒ δλGµν(z, w; k) = (d− 2)λGµν(z, w; k) . (5.68)

Our computation above shows that the transverse part of the correlation is finite as L → ∞ and thus
as λ → 0 the transverse part is invariant under time translations,

lim
L→∞,λ→0

δλG⊥
µν(z, w; k) = 0 . (5.69)

On the other hand, the longitudinal part diverges linearly in L, and thus

lim
L→∞,λ→0

δλG||
µν(z, w; k) = −β , (5.70)

since λL = β in this limit. This is precisely how the longitudinal part in (5.67) transforms under
δτ = β. Thus, if we remove the divergence, the correlator will also be time-translation invariant.
Ignoring the non-translation invariant part, we have

GTI
µν(z, w; k)

∣∣∣
L→∞

= −


e−k(τw−τz)

2k πµν +
(

L
d−2 + τz−τw

2

)
kµkν

k2 + O
(

1
L

)
, if τz < τw

e−k(τz−τw)

2k πµν +
(

L
d−2 + τw−τz

2

)
kµkν

k2 + O
(

1
L

)
, if τz > τw

(5.71)

where the superscript TI indicates that we kept only the translational invariant part.
To see how to proceed, let us consider the Feynman propagator of an Abelian gauge field in the

axial gauge in flat space. In position space, it is given by [55]

∆ab(x− y) =
∫

dd+1q

(2π)d+1 e
−iq·(x−y)Dab(q) (5.72)

7The same result can be obtained by writing in equation (5.66) τz = 1
2 (τz + τw) + 1

2 (τz − τw) and similarly for τw.
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Figure 3: For x0 < y0, we close the contour in the upper half plane and use the blue contour. For
x0 > y0, we close the contour in the lower half plane and use the red contour.

+E

−E

+µ

−µ

Figure 4: The axial gauge propagator in flat space can be regularised by shifting the double poles at
the origin along the imaginary axis. This gives the principle value of the integral.

with

Dab(q) = i

q2

{
gab − qa nb + qb na

q · n
+ qa qb(n2 + ξ q2)

(q · n)2

}
(5.73)

where we work with mostly minus Minkowski metric, and na is a constant four-vector used to impose
the gauge condition naA

a = 0. The axial temporal gauge is imposed by taking na ≡ (1, 0, . . . , 0)
and ξ = 0 which gives

Dµν(q) = −i
q2

[
δµν − qµ qν

q2
0

]
; Dµ0 = D00 = 0 . (5.74)

To compare it with the flat space limit result (5.71), we need to perform the integration over q0

component in (5.72). To perform this integral, we note that the integrand given by (5.74) has the
standard single poles of the propagator at the point q0 = ±|q⃗| = ±E (see figure 4), and an unphysical
double pole at q0 = 0. The presence of this double pole makes the integration over q0 divergent. We
shall compute this divergent part explicitly. For this, we note that we want to evaluate

I = −i
∫

dq0

(2π)e
−iq0(x0−y0) 1

(q0)2 − |q⃗|2
(
δµν − qµqν

(q0)2

)
(5.75)

We can use the standard Feynman prescription for the single poles. However, we need to avoid the
double pole at the origin. Thus, for x0 < y0 and x0 > y0, we use the blue and red contours respectively
given in Fig. 3. Denoting the radius of the small semi circles around the origin by ϵ and following
the standard method, we find that the result of the above integral is given by

I =


− ei|q⃗|(x0−y0)

2|q⃗| πµν − iqµqν

|q⃗|2
(

1
πϵ + 1

2(x0 − y0)
)
, if x0 < y0

− e−i|q⃗|(x0−y0)

2|q⃗| πµν − iqµqν

|q⃗|2
(

1
πϵ − 1

2(x0 − y0)
)
, if x0 > y0

(5.76)
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Making use of the step theta function, the longitudinal part can be written as

1
πϵ

−
[1

2(x0 − y0)θ(x0 − y0) − 1
2(x0 − y0)θ(y0 − x0)

]
(5.77)

This is identical with the longitudinal part of the flat space limit of the bulk-to-bulk propagator of
the gauge field given in equation (5.71), if we Wick rotate (x0, y0) = −i(τz, τw) and identify ϵ ∼ 1/L.

In flat space, a standard approach to regularise the axial gauge propagator is to use the principle
value (PV) prescription for the double pole as shown in Fig. 4 [55]

PV
( 1

(q0)2

)
= 1

2

[ 1
(q0 + iµ)2 + 1

(q0 − iµ)2

]
; µ > 0 (5.78)

With this prescription, the double pole at q0 = 0 gets shifted to q0 = ±iµ (see Fig. 4). We can
now use the standard Feynman contour prescription to perform the integration over q0 and then send
µ → 0. This gives the same expression as given in (5.77) except that the terms involving 1

ϵ are now
absent. Note that different prescriptions to deal with the double pole involve a time-translational
non-invariant term in the longitudinal part of the propagator [54], as in (5.67).

Thus, with the understanding that L → ∞ limit is treated in this way, we obtain the final result

GFV
µν (z, w; k)

∣∣∣
L→∞

≃


− 1

2ke
−k(τw−τz)πµν − kµ kν

k2
(τz−τw)

2 if τz < τw

− 1
2ke

−k(τz−τw)πµν − kµ kν

k2
(τw−τz)

2 if τw < τz

(5.79)

where FV stands for "Finite Value".

5.2 Bulk-to-Boundary Propagators

The bulk-to-boundary propagators dictate the external leg factors of the corresponding field in the
flat space limit. We start with the gauge field whose bulk-to-boundary propagator is given in equation
(D.177). Its flat space limit is easily obtained by using the asymptotic expansion given in equation
(B.120)

Kµν(e
τ
LL, k)

∣∣∣
L→∞

= L
d−3

2

[(
π

2

) 1
2 22− d

2 e−L k

Γ
(

d
2 − 1

) k d−3
2 πµν e

−k τ + O
( 1
L

)]
+ kµkν

k2 (5.80)

Noting (D.178), the gauge field in the flat limit can be written as

A0 = 0, A⊥
µ (k) ≃ πµν

1√
ZA

Aν
(0)(k)e−k Le−k τ, A||

µ(k) ≃ −i
kµkνA

ν
(0)(k)

k2 (5.81)

where Aν
(0)(k) is the AdS boundary condition (D.170), and we have introduced the normalization

functions ZA which depends on the AdS radius and the momentum as

1√
ZA

= π
1
2 k

d−3
2 L

d−3
2

2
3−d

2

Γ
(

d−2
2

) . (5.82)

The factor e−k L in (5.81) may be removed by shifting τ by L. If we leave this factor in (5.81) it
will cancel out in correlators as a consequence of the time translation invariance of the flat space
correlators, or (what is the same) because of the energy-conserving delta function. We will see this
explicitly in the next section. The longitudinal part of the gauge fields Aµ is independent of τ, and
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thus we set it to zero by a gauge transformation that preserves the axial gauge, A0 = 0. We further
define

aµ
R = 1√

ZA
Aµ

(0)(k) . (5.83)

The factor 1/
√
ZA tends to infinity as L → ∞, and thus we need to scale the source A(0)µ to zero

in order for aµ
R to be finite. As the AdS source is arbitrary one may always arrange such that aµ

R is
finite in the flat-space limit. Thus the flat-space limit of the gauge field becomes

Aa(τ, k) = Aae
−k τ, Aa ≡

(
0, πµνa

ν
R(k)

)
. (5.84)

The Aa thus defined satisfies the transversality condition qa Aa = 0, where the (d + 1) dimensional
null momenta is defined as [17]

qa = (q0, qµ) = (±ik, kµ), q2 ≡ δab q
a qb = 0 , (5.85)

with k being the magnitude of kµ. After Wick rotation to Minkowski spacetime, qa
M = (±k, kµ) and

τ = it, the factor e−kτ becomes plane waves, e∓iq0
M t, and the two signs are related to whether the

external leg is associated with an in- or out-state. The factor Aa encodes the (d − 1)-polarization
vectors of the (d + 1) vector field in flat space. To see this, let us consider a frame such that the
momentum of the photon is along the d-direction, qa = (±ikd, 0, . . . , 0, kq), then

Aa(k) =
d−1∑
λ=1

a(λ)(k)ϵ(λ)
a , ϵ(λ)

a = (0, δλ
i , 0), i = 1, . . . , d− 1 , (5.86)

where ϵ(λ)
a are (d − 1) polarisation vectors and a(λ) is determined by the AdS boundary condition

by a(λ) = aλ
R. Upon quantization a(λ) become the annihilation or creation operators (depending on

the signs ± in qa) of the mode with polarization vector ϵ(λ)
a

8. One may check that the polarisation
vectors satisfy the expected normalization condition,

δabϵ(λ)
a ϵ

(σ)
b = δλσ, λ, σ = 1, . . . , d− 1 , (5.87)

and the expected completeness relation,

d−1∑
λ=1

ϵ(λ)
a ϵ

(λ)
b = δab + n2

(n · q)2 q
aqb − 1

(n · q)(naqb + nbqa) , (5.88)

where na = (1, 0, . . . , 0) is vector imposing the temporal gauge naAa = 0.
Next, we consider the massive Proca field whose Btb propagator is given in equation (D.208).

The extension of the above analysis to the massive Proca field is more involved due to the relation
among mass, AdS-radius and the conformal dimension of the dual operator given in equation (4.47).
Due to this relation, a finite mass in the large AdS radius limit requires that ∆ is also taken to be

8Note that this is similar to what happens in Lorentzian AdS solutions that correspond to CFT excited states. The
CFT state may be generated by an Euclidean path integral by turning on a source for a dual operator on the boundary
of AdS. Using the real-time AdS formalism of [64,65] one may obtain the bulk Lorentzian solution corresponding to this
state and in this solution the annihilation and creation operators are given in terms of the boundary sources [66, 67].
It turns out the resulting solution is precisely that of HKLL [68], which is then interpreted as corresponding to a bulk
coherent state [66,67].
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large keeping ∆/L ≃ m finite. This implies that we need to analyse the modified Bessel function
appearing in the Btb propagator in the limit of both large argument and large order. This is known
as uniform expansion [69] and is reviewed in appendix B. For the modified Bessel functions appearing
in the Proca Btb propagator, the uniform expansion gives (see equation (B.144))

K∆− d
2 +ℓ(z k) =

(
π

2L

) 1
2

(k2 +m2)− 1
4

(
k

m+
√
k2 +m2

)−m L−ℓ

e−
√

k2+m2(L+τ) + O
( 1
L

)
(5.89)

With the expansion (5.89), the flat space limit of the Proca Btb propagator or equivalently the
classical solution can be easily worked out. Here, we note the flat space limit of classical solutions
given in equations (D.205) and (D.206)

Wa(k) ≃ Wa(k)e−L
√

k2+m2
e−

√
k2+m2τ +O

( 1
L

d−5
2

)
,

wµ
R = 1√

ZW
wµ, Wa(k) =

(
i
kµw

µ
R

m
, π̃µνw

ν
R

)
, (5.90)

where wµ is the AdS boundary condition for the Proca field, see (D.203). The factor of e−L
√

k2+m2

will cancel out in correlator as a consequence of time translation invariance. The expression of ZW

and π̃µν are given by

π̃µν = δµν + kµ kν

m(m+
√
k2 +m2)

, (5.91)

1√
ZW

≡ L
d−3

2

(k2 +m2)
1
4

(
(m+

√
m2 + k2)/2

)mL

(mL)mL− 1
2

emL
(

1 + O
( 1
mL

))
(5.92)

Notice that 1/
√
ZW goes to zero as L → ∞, opposite to what happens for 1/

√
ZA, so to keep wµ

R finite
in the flat-space limit we now need to send the the AdS source wµ to infinity, which is always possible
since wµ is arbitrary. The uplifted Euclidean momenta of the Proca field in (d+ 1) dimensions in the
flat-space limit can be written as

qa = (±i
√
k2 +m2, kµ) , q2 = −m2 (5.93)

After Wick rotation to Minkowski spacetime, qa
M = (±

√
k2 +m2, kµ) and τ = it, the factor e−

√
k2+m2τ

becomes plane waves, e∓iq0
M t, and the two signs are related to whether the external leg is associated

with an in- or out-state.
It is easy to check that the subsidiary condition Waqa = 0 is satisfied as expected (where the

indices in Waqa are contracted using the (d+ 1) dimensional Euclidean metric δab). Exactly as in the
gauge field case, we can write Wa in terms of polarization vectors. Indeed, let ϵ(r)

µ = δr
µ, r = 1, . . . , d,

the d-unit vectors along the boundary directions. Then

wµ
R =

d∑
r=1

w(r)(k)ϵ(r)
µ , (5.94)

i.e w(r)(k) are Cartesian coordinates of wµ
R. We now introduce the polarization vectors,

ε(r)
a =

(
i
kρϵ

(r)
ρ

m
, π̃µ

νϵ(r)
ν

)
(5.95)
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One may check that they satisfy the expected normalization condition,

δabε(r)
a ε

(s)
b = δrs, r, s = 1, . . . , d , (5.96)

and the expected completeness relation,

d∑
r=1

ε(r)
a ε

(s)
b = δab + qaqb

m2 . (5.97)

It terms of those,

Wa(k) =
d∑

r=1
w(r)(k)ε(r)

a . (5.98)

Exactly as in the gauge field case the field wµ that parametrizes the AdS boundary condition has
morphed into he creation and annihilation operator (depending on the ± signs in (5.93)), which upon
quantization give rise to massive modes associated with corresponding polarization vectors, and the
AdS radial dependence gave rise to the expected plane wave behavior.

6 Flat limit of 3-Point Function

In this section we analyse the flat space limit of the CFT 3-point function between a conserved current
and two spin one CFT operators computed in section 4 using AdS/CFT correspondence and compare
the resulting expression with the 3-point amplitude involving a gauge field and two massive spin-1
Proca fields in flat space. As we discussed in the previous section the sources must be scaled in order
for the limit to be finite, (5.83), (5.90), thus (using the chain rule) we expect,

lim
L→∞

√
ZW1ZAZW3 A

µ1µ2µ3
3 ∼ δ(E1 + E2 + E3)Mµ1µ2µ3

3 (6.99)

where ZA and ZW are defined in (5.82) and (5.92), respectively, Aµ1µ2µ3
3 is the AdS 3-point momentum

space 3-point amplitude and Mµ1µ2µ3
3 is the corresponding flat space scattering amplitude. As we are

working in momentum space, the momentum conserving delta function is already present, but the
energy conserving delta function should emerge in the limit.

6.1 Asymptotic Expression of Triple K Integrals

The 3-point CFT correlator given in (4.54) in momentum space are expressed in terms of the triple-K
integrals. The specific integrals appearing in our correlator take the general form (see equation (2.13))

JN{ki} =
∫ ∞

0
dz z

d
2 −1+N p

∆− d
2 +k1

1 K∆− d
2 +k1

(z p1) p
d
2 −1+k2
2 K d

2 −1+k2
(z p2) p∆− d

2 +k3
3 K∆− d

2 +k3
(z p3)

We want to evaluate these integrals in the limit L,∆ → ∞ keeping ∆
L fixed. For doing this, we use

the asymptotic expansions given in equations (B.120) and (B.144) to obtain,

JN{ki} ≃
(
π

2

) 3
2
L

d−5
2 +N

(m+
√
p2

1 +m2)mL+k1 p
d−3

2 +k2
2 (m+

√
p2

2 +m2)m L+k3

(p2
1 +m2)1/4 (p2

3 +m2)1/4

e−L(
√

p2
1+m2+p2+

√
p2

3+m2)
∫ ∞

−∞
dτ e−τ(

√
p2

1+m2+p2+
√

p2
3+m2) + · · · (6.100)

25



where · · · terms denote the terms subleading in L and ∆.
In the flat space limit, τ is interpreted as Euclidean time. We want to perform the integration

over this variable. To do this, we use equations (5.85) and (5.93) and using the convention to treat
all momenta as incoming (or choosing the plus sign in (5.85) and (5.93) ) we write p2 = −iq0

2 and
−iq0

1,3 =
√
p2

1,3 +m2. Substituting these in the integral in (6.100) gives∫ ∞

−∞
dτ eiτ(q0

1+q0
2+q0

3) = 2π δ(q0
1 + q0

2 + q0
3) (6.101)

Thus, we see that the energy conserving delta function, as needed in equation (6.99) to interpret the
flat limit of the d-dimensional CFT correlator as an amplitude in the flat space-time with one more
dimension, emerges from the integration over the AdS radial direction. To account for both in-coming
and out-going momenta, one may consider either q0 > 0 and appropriately adjusts the signs in the
delta function or use the convention to consider only plus signs in delta function and consider q0 < 0
for out-going momenta. In the remainder we choose the latter convention. With this, the expression
in (6.100) becomes

JN{ki} ≃ (−i)
d−5

2 +k2LN+ d−5
2

(
π

2

)3/2 (m− iq0
1)m L+k1√
q0

1

(q0
2)

d−3
2 +k2 (m− iq0

3)m L+k3√
q0

3

(2π)δ(q0
1 + q0

2 + q0
3)

where, on the support of the delta function, the exponential factor eiL(q0
1+q0

2+q0
3) has been set to 1.

For comparing with the flat space result, we need to analytically continue the above result to
Lorentzian signature. This is achieved by performing the inverse Wick rotation −iq0 = E with E

denoting the energy of the particles. This gives

JN{ki} ≃ LN−1

C0

(m+ E1)k1 Ek2
2 (m+ E3)k3√

ZW1 ZA ZW3

(2π i)δ(E1 + E2 + E3) (6.102)

where ZA and ZW are defined in equations (5.82) and (5.92) respectively and C0 is defined in equation
(4.56) (with ∆ replaced by mL+ d

2).
As mentioned in section 2, some of the triple K integrals appearing in the 3-point function are

divergent. However, one can show that these divergences correspond to the z → 0 end of the integral.
Here, we are concerned with the opposite end z → ∞. In this region, the integrals are well behaved.
Due to this, we do not encounter any issue related to the divergences of triple K integrals in the flat
limit.

Scalar 3-point functions of primary operators are also given in terms of triple-K integrals [48], and
our discussion suffices to compute their flat-space limit, yielding the expected answer, i.e. a delta
function in energy and momentum.

6.2 CFT Correlator in Flat Limit

We are now ready to take the flat limit of our 3-point function in (4.54). This is easily done by using
(6.102). Replacing the triple K integrals appearing in the 3-point function by (6.102) and keeping
the leading order terms in L, we find after some rearrangement

Aµ1µ2µ3
3

∣∣∣
L→∞

= 2πi δ(E1 + E2 + E3) g√
ZW1 ZA ZW3

Cµ1µ2µ3 (6.103)
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where,

Cµ1µ2µ3

= −(1 + α)πµ2
µ

[(
ηµ1µ + pµ1

1 pµ
1

m(E1 +m)

)((p1 + p2)µ3 p2
E3 +m

+ pµ3
2

)

+
(
ηµµ3 + pµ3

3 pµ
3

m(E3 +m)

)(
pµ1

1 p2
E1 +m

− pµ1
2

)]
− 2p1 µπ

µµ2

[
ηµ1µ3 − pµ1

1 pµ3
2

m(E1 +m)

+ 2 pµ1
1 (p1 + p2)µ3

(E1 +m) (E3 +m) − 2E2 p
µ1
1 (p1 + p2)µ3

m(E1 +m) (E3 +m) + pµ1
2 (p1 + p2)µ3

m(E3 +m)

]

+2β p1 µπ
µµ2

[
pµ1

1 E2
(E1 +m)

(p1 + p2)µ3 E2
(E3 +m) − pµ1

2 (p2 + p1)µ3 E2
(E3 +m) + pµ1

1 pµ3
2 p2

E1 +m
− pµ1

2 pµ3
2

]
(6.104)

This expression may look complicated, but we shall show in the next subsection that it precisely has
the structure to match with the desired flat space 3-point function.

6.3 Matching with Flat Space Result

The expression (6.103) should be compared with the flat space 3-point amplitude of a U(1) gauge
field and two massive spin-1 fields in d + 1 dimensions at tree level. This has been computed in
appendix H and equation (H.290) gives the final expression of the flat space amplitude in terms of the
(d+ 1) dimensional polarizations of the external fields. To compare (H.290) with the result obtained
in (6.103), we need to use the representation of the polarizations suggested by the flat limit of the
Btb propagators as given in equations (5.81) and (5.93), for the gauge and Proca field, respectively.
In Minkowski signature, they can be written as

εW
a =

((p · ε)
m

, εµ + (p · ε)
m(E +m) pµ

)
; εA

a = (0, πµνϵ
ν) , (6.105)

where εµ is any of the vectors ε(r)
µ introduced in (5.94) and ϵν is any of the vectors ϵ(λ)

ν introduced
in (5.86). Below we shall denote these vectors by ϵ1µ, ϵ2µ, ϵ3µ according to which vector they are
associated in the order they appear in the correlator. It is easy to see that these polarization vectors
satisfy the condition p·ε(p) = 0 with pa = (E, pµ) where the inner product now involves the Minkowski
metric ηab. For the above basis of the transverse polarization vectors, we have

εa
1 ε3a = ϵ1µ ϵ3ν

[
ηµν + 2 (p1 + p2)ν pµ

1
(E1 +m)(E3 +m) − 2 p2 (p1 + p2)ν pµ

1
m(E1 +m)(E3 +m) + (p1 + p2)ν pµ

2
m(E3 +m) − pµ

1 p
ν
2

m(E1 +m)

]
,

pa
2 ε1a = ϵ1µ

[
pµ

2 − p2 p
µ
1

E1 +m

]
; pa

2 ε3a = ϵ3µ

[
pµ

2 + p2 (p1 + p2)µ

E3 +m

]
(6.106)

Using these in equation (H.290) gives

M3 = ĝ ϵ1µ1 ϵ2µ2 ϵ3µ3

[
2p1µ π

µµ2

(
ηµ1µ3 + 2 (p1 + p2)µ3 pµ1

1
(E1 +m)(E3 +m) − 2 p2 (p1 + p2)µ3 pµ1

1
m(E1 +m)(E3 +m)

+(p1 + p2)µ3 pµ1
2

m(E3 +m) − pµ1
1 pµ3

2
m(E1 +m)

)
+ 2β̂ p1µ π

µµ2

(
pµ1

2 − p2 p
µ1
1

E1 +m

)(
pµ3

2 + p2 (p1 + p2)µ3

E3 +m

)

− (1 + α̂)πµ2
µ

{
− π̃µ1µ

1

(
pµ3

2 + p2 (p1 + p2)µ3

E3 +m

)
+ π̃µ3µ

3

(
pµ1

2 − p2 p
µ1
1

E1 +m

)}]
(6.107)
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By comparing this (d + 1) dimensional amplitude with the d-dimensional CFT correlator in flat
limit given in equation (6.103), we see that they match exactly provided we identify the flat space
gyromagnetic ratio α̂ and quadrupole couplings β̂ with their AdS counterparts α, β, respectively.
Doing this, we find

lim
L→∞

√
ZW1ZAZW3 A

µ1µ2µ3
3 = −2πiδ(E1 + E2 + E3) Mµ1µ2µ3

3 , (6.108)

Thus the flat space limit of the CFT correlator correctly reproduces the interacting part of the flat-
space S-matrix.

7 Discussion

We discussed in this paper the computation of the flat space scattering amplitude of massive spin
1 field, its complex conjugate and a U(1) gauge field in d + 1 dimensions via a flat-space limit
of a d-dimensional 3-point CFT correlator of a conserved current, a non-conserved vector current
and its complex conjugate. This computation may also be formulated as a flat space limit of a
corresponding tree-level AdS amplitude, with the bulk interactions involving both minimal and non-
minimal couplings, with the latter being the gyromagnetic and the quadrupole couplings.

The bulk AdS computation and the agreement with the CFT result is in itself a new test of
the AdS/CFT. We computed the boundary 3-point correlation function following the procedure of
holographic renormalization. This fixes the three coefficients appearing in the general CFT 3-point
function of a conserved current and two non conserved operators in terms of bulk parameters. One
feature of this matching is that each bulk coupling is separately consistent with the expected conformal
invariance. This is not surprising since each bulk coupling is invariant under the AdS isometries
by itself. Further, since the matching occurs for arbitrary values of the bulk couplings, conformal
symmetry does not impose any restriction on the bulk couplings at the level of 3-point function,
leaving for example, the AdS gyromagnetic ratio α completely arbitrary. Unitarity and crossing
symmetry may impose constraints which may fix or restrict the allowed values of α but this would
require analysing higher point functions.

The flat-space limit amounts to sending the AdS radius L to infinity while keeping fixed all param-
eters (masses and coupling constants) that appear in the bulk action. From the CFT perspective, one
zooms in on the IR region while sending to infinity the conformal dimension of the operator dual to
the massive fields. In this limit, we show that the d dimensional CFT 3-point function matches with a
corresponding 3-point scattering amplitude in d+ 1 dimensional flat space. The flat-space limit turns
AdS isometries into Poincaré isometries and classical solutions in AdS to plane wave solutions in flat
space, with the fields parametrizing the boundary condition in AdS becoming polarization vectors in
flat space.

We also analysed the flat-space limit of the BtB propagator of the gauge field in the axial gauge
and explicitly showed that it matches with the flat space Feynman propagator in the axial gauge.
The longitudinal part of the Feynman propagator in the axial gauge is prescription dependent and
we show that the principle value prescription in flat space agrees with the translation invariant part
of AdS expression in the flat limit (as one may have anticipated based on earlier flat space analyses).
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The polarisation vectors of the fields in the flat-space limit are also dictated by the Btb propagators.
In particular, the matching of the 3-point function requires matching the flat space polarisation
vectors to that that emerge from the flat-space limit of AdS. The conservation of the spatial momenta
in the flat-space limit is ensured by working with momentum space CFT. On the other hand, the
energy conserving delta function emerges from the triple-K integrals that underlie momentum space
CFT 3-point functions. One of the main ingredients for the flat-space limit matching was the uniform
expansion of modified Bessel functions in which both the argument as well as the order of the modified
Bessel functions were taken to be large. This was crucial for taking the limit of the modified Bessel
functions associated with the non conserved operators.

The bulk AdS computation was done at tree-level, but the CFT three-point function is fixed
non-perturbatively by conformal invariance. This implies that bulk loops in AdS will lead to an AdS
amplitudes of the same form as at tree-level but with quantum corrected parameters. Moreover,
quantum corrections of the flat space gyromagnetic and quadruple coupling may be directly obtained
by the flat-space limit of the corresponding AdS diagrams. The reason is that the Feynman rules
map 1-1 in the limit: BtB propagators map to Feynman propagators, Btb propagators map to plane
waves and interaction vertices are kept fixed in the limit. There were recent progress in setting up
loop computation in AdS, see [70] and references therein, and it would be interesting to combine the
methods described there with the results we present here in order to obtain explicit loop-level results
for flat space scattering amplitudes from AdS.

Note that the matching using the CFT 3-point function is non-perturbative, so if we know the co-
efficients of the low-energy effective action non-perturbatively this would provide a non-perturbative
determination of the gyromagnetic and quadruple couplings. The coefficients in the low-energy effec-
tive action in d+ 1 dimension are linked to coefficients in the low-energy effective action in 10d and
11d supergravity via compactification, and some of these coefficient may be fixed non-perturbatively
using U-duality. It would be interesting to track these relations in detail.

In flat space, we know that the gyromagnetic ratios can take two values α = 2 or α = 1 (see,
e.g., [71, 72] for recent works on this). Massive fields charged under the gauge fields, which arise
from the closed string degrees of freedom (such as the graviton or the Kalb-Ramond field), have
gyromagnetic ratio 1 whereas massive fields which are charged under the gauge fields arising from
open strings have gyromagnetic ratio 2 [72,73]. Now, the gyromagnetic ratio α appears in the 3-point
function. Hence, noting that α is a constant at tree level, the exact matching of the 3-point amplitude
implies that its value in AdS should also be 1 or 2. The fixing of the gyromagnetic ratio in AdS will
have implications for the bootstrap program in the dual CFT as the constraints on the bulk coupling
will restrict the OPE coefficients in the boundary CFT theory.

We expect our analysis to extend to higher-point functions. As already noted, the perturba-
tive Feynman rules map 1-1 between AdS and flat space, i.e. for each Witten diagram there is a
corresponding flat space Feynman diagram. Moreover, as we recover translational invariance in the
flat-space limit, the energy-preserving delta function should arise from the Bulk-to-boundary prop-
agators. It would be interesting to work out the details. Non-perturbative things are less clear but
also more interesting. The general CFT n-point function of scalar operators in momentum space is
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known [74, 75] (but the corresponding answer for spinning operators is still missing). It would be
interesting to analyze the flat-space limit of the general momentum-space CFT n-point functions,
starting from scalar ones.

Another application of our analysis is in the context of higher spin theories. In 4-dimensional
flat space, a fully consistent formulation of massive higher spin theories is still missing and is an
active area of research (see e.g. the review [76]). Holography allows us to construct the flat-space
couplings from the CFT correlators as we have seen for the massive spin 1 case in this paper. Using
this approach should be promising for constructing the consistent massive higher spin theories in the
flat space.
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A Conventions and useful identities

In this appendix, we summarise our conventions and note some useful identities which have been
used in this work. We denote the indices corresponding to the d + 1 dimensional AdS directions
by M, N,P . . . which run from 0 to d. On the other hand, the d dimensional boundary indices are
denoted by Greek letters µ, ν, ρ, · · · which run from 1 to d. The d+ 1 dimensional flat space indices
have been denoted by a, b, · · · which run from 1 to d + 1. The anti-symmetrization of two fields is
defined as

A[M BN ] = 1
2
(
AM BN −AN BM

)
. (A.109)

Throughout this paper, we have worked in the Euclidian AdSd+1. Only after taking the flat limit, we
perform a Wick rotation z ≡ xE

0 = ix0, with x0 the time coordinate, of the radial direction. We use
mostly positive signature convention for the Minkowski metric. The Wick-rotation transforms the
zero component of a generic vector field M in mostly positive metric as [77,78]:

V0 = −V 0 = iV E
0 , V0µ = ∂0Vµ − ∂µV0 = i(∂0Vµ − ∂µV

E
0 ) (A.110)

where VM can be either a massless or massive vector field. According to this rule, the square of the
field strength of the vector field remains unchanged under the rotation. The Lorentzian action eiSL

is transformed in the Euclidean one e−SE getting the identity SE = −iSL. The action of a massive
complex vector field in mostly positive signature therefore transforms under the wick rotation as

iSL = i

∫
dd+1x

[
−1

2V†
MN VMN − m2V †

M V M
]

=
∫
dd+1xE

[
−1

4V†
MN VMN −m2V †

M V M
]

E

= −SE (A.111)

where we are treating VM and V †
M as two independent fields.
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Our convention for the Riemann tensor is

RP
LMN = ∂M ΓP

LN − ∂N ΓP
LM + ΓP

QM ΓQ
LN − ΓP

QN ΓQ
LN ; RMN = gP QRP MQN (A.112)

For any tensor TP Q, we have

[∇M ,∇N ]TP Q = −RL
P MN TLQ −RL

QMN TP L (A.113)

The AdS metric in the Poincaré coordinates is given by

ds2 = L2

z2
(
dz2 + δµν dx

µ dxν) ;
√
G =

(
L

z

)d+1
(A.114)

with L being the AdS-radius. The Christoffel symbols in this coordinates are

Γz
zz = −1

z
; Γz

µz = 0 ; Γz
µν = 1

z
δµν ; Γµ

zz = 0 ; Γµ
νz = − δµ

ν

z
; Γµ

νλ = 0 (A.115)

The above equation can be compactly written as

ΓM
NP = −1

z

(
δM

N δP z + δM
P δNz − δM

z δNP

)
= − z

L2

(
δM

N gP z + δM
P gNz − δM

z gNP

)
(A.116)

where gMN denotes the AdS-metric in the Poincaré coordinates.
For the purposes of holographic renomalization, it is convenient to use the Fefferman-Graham

(FG) coordinates which is related to the Poincaré coordinates by ρ = z2

L .9 Thus, in FG coordinates,
the metric takes the form

ds2 = L2dρ
2

4ρ2 + L
δµν dx

µ dxν

ρ
;

√
G = 1

2

(
L

ρ

) d+2
2

(A.117)

The Christoffel symbols in this coordinates are given by

Γρ
ρρ = −1

ρ
; Γρ

µν = 2
L
δµν ; Γµ

ρρ = 0 ; Γν
ρµ = − 1

2ρδ
µ
ν ; Γσ

νµ = 0 (A.118)

The Riemann tensor, Ricci tensor and the scalar curvature for the AdS can be expressed in coordinate
independent manner as

RMNP Q = GMQGNP −GMPGNQ

L2 ; RMN = − d

L2 GMN ; R = −d(d+ 1)
L2 (A.119)

with GMN denoting the AdS metric in the corresponding coordinate system.

B Limiting behaviours of modified Bessel functions

For the calculation of holographic renormalisation and taking the flat limit, we need the expressions
of modified Bessel functions in various limits. In this appendix, we review the required results.

9The purpose of keeping the AdS radius L in ρ = z2

L
is to give both ρ and z the dimension of length.
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B.1 Expansions for large and small arguments

For the large arguments, the asymptotic expansions of the modified Bessel functions are given by

Iν(z) → ez

(2πz)
1
2

and Kν(z) →
(
π

2z

) 1
2
e−z as z → ∞ (B.120)

On the other hand, in the limit z → 0, we have following leading order approximations

Iν(z) → 2−ν

Γ(ν + 1)z
ν and Kν(z) → 2ν−1Γ(ν) z−ν as z → 0 (B.121)

In the above equation (B.121), the approximation for Iν(z) is valid for ν ̸= −1,−2, · · · and the
approximation for Kν(z) is valid for ν > 0. For the holographic renormalisation of the Proca field,
we shall need the expansion of Kν(z) in the limit z → 0 in more detail. For non-integer ν we have

Kν(z) = π

2
I−ν(z) − Iν(z)

sin(πν) ; Iν(z) =
∞∑

j=0

1
Γ(j + 1)Γ(ν + j + 1)

(
z

2

)ν+2j

, (B.122)

while for positive integer n the expansion reads

Kn(x) = 1
2

(
x

2

)−n n−1∑
j=0

Γ(n− j)
Γ(j + 1) (−1)j

(
x

2

)2j

+ (−1)n+1 ln
(
x

2

)
In(x) +

+(−1)n 1
2

(
x

2

)n ∞∑
j=0

ψ(j + 1) + ψ(n+ j + 1)
Γ(j + 1)Γ(n+ j + 1)

(
x

2

)2j

(B.123)

where

ψ(z) =
∞∑

k=1

(1
k

− 1
z + k − 1

)
− γ (B.124)

and γ is the Euler Mascheroni constant.

B.2 Uniform expansions

The uniform expansion involves taking the argument as well as the order of the modified Bessel
function to be large. Here, we review the derivation of such expansion following [69]. We start by
noting that the modified Bessel functions satisfy the differential equation

z2 d
2

dz2Fν + z
d

dz
Fν − (z2 + ν2)Fν = 0 (B.125)

where Fν can be Kν(z) or Iν(z).
Let us start by deriving the asymptotic expansion when ν is large and z bounded. To this end, it

is convenient to first perform the Liouville-type transformation

hν(z) = z
1
2 F , (B.126)

and rewrite the differential equation (B.125) in the form [69]

d2

dz2hν(z) =
(
ν2f(z) + g(z)

)
hν(z), f(z) = 1

z2 , g(z) = 1 − 1
4 z2 . (B.127)
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We can remove the z-dependence from the coefficient of ν2 by further change of dependent and
independent variables,

ξ =
∫
f

1
2 (z) dz ; hν = f− 1

4 (z)Hν(ξ) (B.128)

In terms of them, equation (B.127) can be expressed as

d2

dξ2Hν(ξ) =
(
ν2 + ψ(ξ)

)
Hν(ξ), ψ(ξ) = g(z)

f(z) − 1
f3/4(z)

d2

dz2

( 1
f1/4(z)

)
(B.129)

With ν large and z bounded such that ν ≫ ψ(ξ), the differential equation (B.129) can be solved
perturbatively in 1/ν,

Hν(ξ) = e−ν ξ
∞∑

s=0

As(ξ)
νs

(B.130)

As (B.129) is invariant under ν → −ν, there is a second asymptotic expansion which is related to
(B.130) by ν with −ν. The coefficients As in (B.130) can be determined recursively by plugging the
above series expansion in equation (B.129):

2A′
s+1 = A′′

s − ψ(ξ)As(ξ) =⇒ As+1 = 1
2f

−1/2(z)dAs

dz
− 1

2

∫
dz Λ(z)As dz (B.131)

where

Λ(z) = f1/2(z)ψ(ξ(z)) = f1/2(z)
[
g(z)
f(z) − f(z)−1/2

(
5
16

(f ′(z))2

f(z)2 + 1
4
f ′′(z)
f(z)

)]
(B.132)

Taking s = −1 in the differential equation in (B.131) we find that A0 should be constant (since
A−1 = 0 – there are no the coefficients with negative order in (B.130)). One may recursively solve
for the higher order coefficients. However, it turns out that the coefficients are, in general, divergent
near z → ∞ for the functions f(z) and g(z) given in equation (B.127), as explained in [69].

To discuss the case when both ν and z going to infinity, we rescale z to zν (B.125) and repeat
the analysis. It turns out one gets the same equation as in (B.127) but with different f(z) and g(z),
namely,

d2

dz2hν(νz) =
(
ν2f(z) + g(z)

)
hν(νz), f(z) = 1 + z2

z2 , g(z) = − 1
4 z2 (B.133)

Assuming ν to be real and positive (more generally it suffices for the real part of ν to be positive
| arg(ν)| < 1

2π), the above expression of f(z) when used in equation (B.128) gives

ξ(z) = (1 + z2)1/2 + ln z

1 + (1 + z2)1/2 ; hν =
(

z2

1 + z2

) 1
4

Hν(ξ) (B.134)

In writing the expression of ξ, we have set the integration constant to zero. This is allowed because
equation (B.128) is nothing but a change of variable. Finally, we can write a series solution of the
modified Bessel function Kν(νz) by using equation (B.130) and the relation between hν(νz), Hν(νz)
and Kν(νz)

Kν(νz) = (ν z)− 1
2 f− 1

4Hν(νz) = e−νξ(z)

(1 + z2)
1
4

∞∑
s=0

As

νs
(B.135)
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where ξ(z) is given in (B.134) and the overall factor
√
ν originates from the rescaling of the z-variable

discussed before.
Next, we want to find the leading order term of the above series solution. As before, the recursive

relation (B.131) again implies that A0 is constant. To find its value, we make use of the fact that for
large z, we have [69,79]

Kν(νz) ∼
√

π

2 ν
e−ν z

z1/2 (B.136)

Now, the expression of ξ(z) given in (B.134) for large z gives ξ = z + O(1
z ). Hence, e−νξ ∼ e−νz.

Thus, the leading order term in (B.135) for large z becomes

Kν(νz) = A0
e−ν z

(ν z)1/2 (B.137)

Comparing this with the expected result (B.136), we find A0 =
√

π
2 . Using this, we see that the

leading order expression for the uniform expansion of the modified Bessel function is given by

Kν(ν z)
∣∣∣∣∣
ν→∞

≃
(
π

2ν

) 1
2 e−ν ξ(z)

(1 + z2)
1
4

; ξ(z) = (1 + z2)
1
2 + ln

(
z

1 + (1 + z2)
1
2

)
(B.138)

A similar analysis yields,

Iν(ν z)
∣∣∣∣∣
ν→∞

≃
( 1

2π ν

) 1
2 eν ξ(z)

(1 + z2)
1
4

(B.139)

with the same ξ(z) as in equation (B.138).

B.3 Expansion for K∆− d
2 +ℓ(zk)

For taking the flat limit, we need to know the expansion of K∆− d
2 +ℓ(zk) with z parametrized by

z = Le
τ
L in the limit ∆, L → ∞. Using (4.47), we find

∆ − d

2 + ℓ = ℓ+mL

√
1 + (d− 2)2

4m2L2 = mL+ ℓ+O

( 1
L

)
≡ mL+ β (B.140)

where β = ℓ+O
(

1
L

)
.

We have

K∆− d
2 +ℓ(zk) = KmL+β

(
kL+ kτ +O( 1

L
)
)

= Kν+β(p ν + kτ) +O

( 1
L

)

= Kν+β(pν) + kτK ′
ν+β(pν) + (kτ)2

2 K ′′
ν+β(pν) + (kτ)3

3! K ′′′
ν+β(pν) + · · ·(B.141)

where, we have defined p = k/m and ν = mL. The derivatives of modified Bessel functions can be
expressed in terms of linear combinations of the modified Bessel functions with different orders. E.g.,

dKσ(x)
dx

= −1
2
[
Kσ−1(x) +Kσ+1(x)

]
d2Kσ(x)
dx2 = 1

4
[
Kσ−2(x) + 2Kσ(x) +Kσ+2(x)

]
d3Kσ(x)
dx3 = −1

8
[
Kσ−3(x) + 3(Kσ−1(x) +Kσ+1(x)) +Kσ+3(x)

]
(B.142)
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Now, using the identity [80]

Kν+α(νz)
Kν(νz) =

(
1 +

√
1 + z2

z

)α [
1 − 1 − α

√
z2 + 1

2(1 + z2)
α

ν
+O

( 1
ν2

)]
(B.143)

and the uniform expansion result for Kν(νz) reviewed in the previous subsection, we find

K∆− d
2 +ℓ(zk) =

(
π

2EL

) 1
2
(

k

m+ E

)−mL−ℓ

e−EL

(
1 − Eτ + E2τ2

2 − E3τ3

3! + · · ·
)[

1 +O

( 1
L

)]
where E =

√
k2 +m2.

In the above expression, we have kept only the leading order terms in the expansion in 1/L. The
O(1/ν) term in (B.143) is of order 1/L does not contribute to the leading order term. All terms in
the series in Eτ present in the above expression are of the same order w.r.t. expansion in 1/L and
resum to give an exponential function. Hence, we get

K∆− d
2 +ℓ(zk) =

(
π

2EL

) 1
2
(

k

m+ E

)−mL−ℓ

e−EL−Eτ
[
1 +O

( 1
L

)]
(B.144)

Following a similar analysis and using [80]

Iν+α(νz)
Iν(νz) =

(
1 +

√
1 + z2

z

)−α [
1 − 1 + α

√
z2 + 1

2(1 + z2)
α

ν
+O

( 1
ν2

)]
(B.145)

we also find

I∆− d
2 +ℓ(zk) =

( 1
2πEL

) 1
2
(

k

m+ E

)mL+ℓ

eEL+Eτ
[
1 +O

( 1
L

)]
(B.146)

C General cubic action in AdS for gauge and Proca fields

In this appendix, we construct the general cubic action involving a gauge field and a complex Proca
field in AdSd+1. There are general group theoretic constructions of cubic interaction terms involving
fields of arbitrary spins (see, e.g., [81,82]). However, for our purposes, it would be sufficient to consider
a perturbative effective field theory approach.

If we are working at a fixed order in perturbation theory, we can eliminate those terms in the
Lagrangian which are proportional to lowest order equation of motion. More precisely, we can use
field redefinitions to transfer these terms to higher order terms in the perturbative expansion. We
start by reviewing this procedure for a general action following [83]. Suppose, we have an action S[ϕ]
involving a generic field ϕ in which terms with different orders are parametrised by a parameter ϵ

S[ϕ] = S0[ϕ] + ϵS1[ϕ] + ϵ2S2[ϕ] + · · · (C.147)

Now, suppose at O(ϵn), the Sn[ϕ] includes a term Sn[ϕ] which is proportional to the equation of
motion for the lowest order action S0[ϕ], i.e.,

Sn[ϕ] =
∫
ddx f(x) δS0

δϕ(x) , (C.148)

Here f(x) denotes some arbitrary function of the field and its derivatives. We now make the field
redefinition

ϕ(x) → ϕ̃(x) = ϕ(x) − ϵn f(x) (C.149)
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Under this redefinition, the action (C.147) becomes

S[ϕ] → S[ϕ̃] = S[ϕ] − ϵn
∫
ddxf(x) δS0

δϕ(x) +O(ϵn+1) (C.150)

The second term on the right hand side cancels Sn[ϕ]. This shows that the effect of the field redefinition
(C.149) is to remove the term proportional to the lowest order equation of motion in the action
without changing any other term up to O(ϵn). Thus, we can only focus on those terms which
do not involve lower order equations of motion if we are working at a fixed order in perturbation
theory. Note that the use of the lowest order equation of motion (instead of the full non-linear
equations) in the field redefinition was useful in that the redefinition does not mix different orders in
the perturbative expansion. Had we used the full non-linear equations, one would need to keep track
of how nonlinearities mix different orders in the ϵ expansion.

We can now apply the above procedure to write the cubic action involving a gauge and the
complex Proca field. Gauge invariance implies that the gauge field can appear only in terms of the
field strength FMN . Further, the complex Proca field is taken to be charged under this gauge field and
the conservation of the charge implies that each term involving the Proca field WM must also have
its complex conjugate W ∗

M . Now, the kinetic terms of the action involving the gauge and complex
Proca field are given by

S2 =
∫
dd+1x

√
G

[1
4F

MNFMN + 1
2W

∗MNWMN +m2W ∗MWM

]
(C.151)

where, the indices M,N run from 0 to d and FMN denotes the field strength of the gauge field AM ,

FMN = ∇MAN − ∇NAM = ∂MAN − ∂NAM . (C.152)

We have also introduced WMN = DMWN −DNWM with

DMWN = ∇MWN + igAMWN = ∂MWN − ΓP
MNWP + igAMWN . (C.153)

This ensures that the kinetic term is invariant under the gauge transformation

WM → eigλ(x)WM , W ∗
M → e−igλ(x)W ∗

M ; AM → AM − ∂Mλ(x) . (C.154)

The lowest order equations of motion of the gauge and the Proca field follow from the variation of
the kinetic terms and are given by

∇MFMN = 0 ; DMWMN +m2WN = 0 ; DMW ∗MN +m2W ∗N = 0 . (C.155)

An important condition on the massive Proca fields can be obtained by taking the divergence of their
equations which gives

m2DMWM = DMDNW
NM = D[MDN ]W

NM = ig

2 FMNW
MN . (C.156)

This shows that the divergence DMWM is actually quadratic in the fields. This will be useful below,
as we shall see. Another set of useful equations are

∇MFMN = 0 =⇒ □AN = ∇N (∇ ·A) +RNPAP =⇒ □FMN = (2d+ 2)
L2 FMN (C.157)
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where the last equality holds in AdS.
Next, we want to write the cubic interaction terms. We shall write down all possible cubic terms

and then eliminate the redundant terms using the procedure described above. We shall focus on
terms with up to 3 derivatives. At the lowest order in derivatives (i.e. one derivative), there is only
one possible term,

I1 = i
a1
2 FMN

(
W ∗MWN −W ∗NWM) . (C.158)

An important point to note is that after integration by parts in the above term, its tensor structure
matches with one of the terms in W ∗MNWMN . So, naively, it would seem as if we could forget
about the a1 term in (C.158). However, the structure of W ∗MNWMN follows from the minimal
coupling procedure when we promote the global phase invariance to local gauge invariance, while the
term involving a1 in (C.158) is gauge invariant by itself and does not follow from minimal coupling.
Hence, its coefficient is independent of the coefficient in the minimal coupling term in W ∗MNWMN .
Thus, we must keep the a1 term. The existence of a new gauge invariant term is responsible for the
gyromagnetic coupling.

At the level of 3 derivatives, the terms need to be constructed using FMN ,WM ,W ∗
M and two

derivatives DM . Using an integration by parts we can ensure that DM acts only on the Proca fields.
Using these rules, the most general cubic structure involving 3 derivatives can be written as

I3 = FMN
[(
c0DMW ∗

PD
PWN + c∗

0DMWPD
PW ∗

N

)
+
(
c1DPW

∗
MDPWN + c∗

1DPWMDPW ∗
N

)
+

(
c2DMW ∗

PDNW
P + c∗

2DMWPDNW
∗P
)
+
(
c3DPW

∗PDMWN + c∗
3DPW

PDMW ∗
N

)
+

(
c4W

∗
MDPD

PWN + c∗
4WMDPD

PW ∗
N

)
+
(
c5W

∗
PD

PDMWN + c∗
5W

PDPDMW ∗
N

)
+

(
c6W

∗
MDNDPW

P + c∗
6WMDNDPW

∗P
)
+
(
c7W

∗
PDMDNW

P + c∗
7WPDMDNW

∗P
)

+
(
c8W

∗
PDMDPWN + c∗

8W
PDMDPW

∗
N

)
+
(
c9W

∗
MDPDNW

P + c∗
9WMDPDNW

∗P
)]

(C.159)

The coefficients ci are in general complex. Now using integration by parts, the explicit form of the
AdS curvature and the lower order equations of motion (C.155), (C.156) and (C.157), one can show
that all terms except first one is either higher order in fields or give the same structures as either the
first term in (C.159) or the term in (C.158). Hence, we can ignore all terms in (C.159) except the first
one. Further, for the action to be real the constants c0 may be complex but an explicit computation
shows that the real part of c0 does not contribute to the three-point amplitude on AdS backgrounds
(see appendix H for the similar result on flat background). Hence, we shall take c0 also to be purely
imaginary and write c0 = iβ with β ∈ R. Thus, we can express the 3 derivative cubic terms in the
form

I3 = igFMN
[
β
(
∇MW ∗

P ∇PWN − ∇MWP ∇PW ∗
N

)]
(C.160)

Thus, the most general cubic Lagrangian involving a gauge field and complex massive spin 1 field
takes the form

L = igFMN
[
−αW ∗

MWN + β
(
∇MW ∗

P ∇PWN − ∇MWP ∇PW ∗
N

)]
(C.161)

We shall work with the above form of cubic interaction terms in this paper.
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D Classical Solutions on AdS Background

In this appendix, we summarise the classical solutions of the gauge and Proca fields in AdS background
from the perspective of the AdS/CFT correspondence.

D.1 Classical Solution of Gauge Field

In this section, we give some details of the solution of the gauge field equation of motion obtained
from the Euclidean massive spin-1 Lagrangian

S =
∫
dd+1x

√
G
[1
4F

MNFMN + 1
2W

∗
MNW

MN +m2W ∗
MWM − ig αFMNW ∗

MWN

+ igβFMN
(
∇MW ∗

P ∇PWN − ∇MWP ∇PW ∗
N

)]
(D.162)

The length dimension of various quantities appearing in the above action are given by

[WM ] = 1 − d

2 ; [AM ] = 1 − d

2 ; [g] = d− 3
2 ; [α] = 0; [β] = 2 (D.163)

The gauge field equation of motion in the AdS background is given in equation (4.42). In the Poincaré
coordinates, the z and µ components of this equation take the form

z2

L2 δ
µν kµ ∂z Aν(z, k) = i Jz(z, k) ; z2

L2∂
2
zAµ + (3 − d) z

L2∂zAµ − k2

L2 π
ν

µ Aν = Jµ (D.164)

where k2 = δµν kµ kν and we have introduced the transverse projector

πµν = δµν − kµ kν

k2 ; δµνkµπνσ = 0 ; πµν δ
ντπτσ = πµσ . (D.165)

In the following we shall solve the classical equations of motion of the gauge field perturbatively in g
as

Aµ(z, k) = A[0]
µ (z, k) + gA[1]

µ (z, k) , (D.166)

where A[1]
µ (z, k) and A[0]

µ (z, k) satisfy (D.164) with and without the source term, respectively. The
A[0]

µ (z, k) and A[1]
µ (z, k) can be solved easily in terms of the bulk-to-boundary (Btb) and bulk-to-bulk

(BtB) propagators. This will be done below. However, before doing this, we note that for solving the
equations of motion, it is convenient to split Aµ and Jµ in the transverse and longitudinal components
as [84]

Aµ = A⊥
µ + i kµA

|| ; Jµ = π ν
µ Jµ = J⊥

µ + i kµ J
|| (D.167)

where A⊥
µ = π ν

µ Aν , A
|| = −ikµAµ/k

2 and similar for J⊥
µ and J || (indices are contracted with the flat

metric δµν).
Using the two equations in (D.164), the equations of motion for the longitudinal modes is found

to be

J || = 1
k2∂zJz + (1 − d)

k2
Jz

z
. (D.168)

This is same as the conservation condition ∇MJM = 0 and hence it is identically satisfied. This also
shows that the z component of the equation of motion is satisfied automatically provided the current
JM is conserved.
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D.1.1 Bulk-to-boundary propagator

Substituting (D.166) in (D.164), we find that A(0)
µ satisfies (D.164) without the source terms Jµ and

Jz since the source term is linear in the coupling g. We can solve the resulting homogeneous equation
by introducing the bulk-to-boundary (Btb) propagator K ν

µ (z, k) defined as

A[0]
µ (z, k) = K ν

µ (z, k)A(0)ν(k) , (D.169)

where A(0)ν(k) is the boundary value of the gauge field, i.e.,

A(0)
µ (z → 0, k) = A(0)ν(k) . (D.170)

The K ν
µ (z, k) satisfies the differential equation(

z2∂2
z + (3 − d)z∂z

)
K ν

µ (z, k) − k2 π σ
µ K ν

σ (z, k) = 0 , (D.171)

with the boundary condition

lim
z→0

z∆−d+1 K ν
µ (z, k) = δν

µ ; ∆ = d− 1 . (D.172)

The solution of (D.171) is easily obtained by splitting the longitudinal and transverse parts as

K ν
µ (z, k) = K⊥(z, k)π ν

µ + K||(z, k)kµk
ν

k2 (D.173)

These longitudinal and transverse components satisfy decoupled differential equations

z2∂2
zK⊥ + (3 − d)z∂zK⊥ − z2k2K⊥ = 0 ; z2∂2

zK|| + (3 − d)z∂zK|| = 0 . (D.174)

These have the solution

K⊥ = c0(k)z
d−2

2 K d
2 −1(zk) , K|| = c1(k)zd−2 + c2(k) . (D.175)

Imposing the boundary condition (D.172), we find

c0(k) = 22− d
2

Γ
(

d
2 − 1

)k d
2 −1 , c1(k) = 0 , c2(k) = 1 . (D.176)

Thus, the bulk-to-boundary propagator can be written as

Kµν(z, k) = c0(k)z
d−2

2 K d
2 −1(zk)πµν + kµkν

k2 , (D.177)

where we have lowered the boundary indices using the flat metric δµν .
The leading order solution A(0)

µ is, thus, given by

A[0]
µ (z, k) = c0(k)z

d−2
2 K d

2 −1(zk)π ν
µ (k)A(0)ν(k) + kµk

ν

k2 A(0)ν(k)

= A[0]⊥
µ (z, k) + ikµA[0]||

µ (D.178)

It is straightforward to verify that the above solution automatically satisfies both the equations in
(D.164) with JM = 0.
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D.1.2 Bulk-to-bulk propagator

The solution of (D.164) at first order in the gauge coupling constant g can be obtained using the
bulk-to-bulk propagator Gµν(z, w; k) defined by[(

z

L2 (3 − d)∂z + z2

L2∂
2
z

)
δ σ

µ − k2

L2 z
2π σ

µ

]
Gσν(z, w; k) = Gµν√

G
δ(z − w) , (D.179)

with the boundary condition at the conformal boundary,

lim
z→0

z∆−d+1Gµν(z, w; k) = 0, ∆ = d− 1 , (D.180)

and regularity in the interior. The solution of the gauge field equation to first order in the gauge
coupling can now be expressed as

A[1]
µ (z, k) =

∫
dw

√
GGµν(z, w; k) Jν(w, k) . (D.181)

Equation (D.179) can again be solved by splitting Gµν(z, w; k) in the transverse and longitudinal
components as

Gµν(z, w; k) = πµνG⊥(z, w; k) + kµkν

k2 G∥(z, w; k) . (D.182)

These components satisfy the equations[
d

dz

(
ẑ3−d d

dz

)
− ẑ3−dk2

]
G⊥ = δ(z − w) ;

[
d

dz

(
ẑ3−d d

dz

)]
G∥(z, w; k) = δ(z − w) , (D.183)

where, to simplify the notation, we have introduced ẑ = z
L .

To solve the two equations in (D.183), it is useful to recall the Green’s function solution of first
order inhomogeneous differential equations of the form

L y(z) = f(z) ; L = d

dz

(
p(z) d

dz

)
+ q(z) , (D.184)

where L is a self-adjoint differential operator. The Green’s function for this equation is defined by

LG(z, w) = δ(z − w) , (D.185)

and its solution is obtained by following a standard procedure, see e.g., [85]. The general solution, in
an interval (a, b), is given by

G(z, w) =
{
Ay1(z) y2(w), for z < w

Ay2(z) y1(w), for z > w
(D.186)

y1 and y2 satisfy L y1 = 0 = L y2, and y1(z) satisfies the suitable boundary condition at z = a while
y2(z) satisfies the suitable boundary condition at z = b. The coefficient A is determined by requiring
the Green’s function to be continuous at z = w but with a discontinuous derivative. This gives

A
[
y′

2(w) y1(w) − y′
1(w) y2(w)

]
= 1
p(w) . (D.187)

Following this procedure to solve the two equations in (D.183), we find that the solution of the
homogeneous equation corresponding to the first equation in (D.183) is given by Bessel functions of
the first and second kinds as

y1(k, z) = ẑ
d
2 −1I d

2 −1(kz) , y2(k, z) = ẑ
d
2 −1K d

2 −1(kz) (D.188)
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where y1 satisfies the boundary condition at z = 0 (i.e. for z < w) and y2 satisfies the boundary
condition at z = ∞ (i.e. for z > w). The constant A in (D.186) is evaluated to be A = −1. Thus,
the transverse component G⊥(z, w; k) can be expressed as

G⊥(z, w; k) = −L


(ẑŵ)

d
2 −1I d

2 −1(kz)K d
2 −1(kw), for z < w

(ẑŵ)
d
2 −1I d

2 −1(kw)K d
2 −1(kz), for z > w

(D.189)

Following similar steps, the longitudinal component is obtained to be

G||
µν(z, w; k) = − L

d− 2
kµkν

k2


ẑd−2, if z < w

ŵd−2, if z > w

(D.190)

Combining the transverse and longitudinal parts, the full bulk-to-bulk propagator for the gauge field
is obtained to be

Gµν(z, w; k) = −L


(ẑŵ)

d
2 −1I d

2 −1(kz)K d
2 −1(kw)πµν + ẑd−2

d−2
kµkν

k2 , if z < w

(ẑŵ)
d
2 −1I d

2 −1(kw)K d
2 −1(kz)πµν + ŵd−2

d−2
kµkν

k2 , if z > w

(D.191)

By construction, the bulk-to-bulk propagator satify the second equation in (D.164). Let us now verify
that it satisfies the first equation as well. Using (D.181) we compute,

kµA[1]
µ (z, k) =

∫
dw

√
GkµGµν(z, w; k) Jν(w, k)

= − L2

d− 2

∫ ∞

0

dw

wd−1

(
Θ(z − w)wd−2 + Θ(w − z)zd−2

)
kµJµ(w, k) (D.192)

where in the second equality we used (D.191). Using (D.167) and (D.168) we find

kµJµ(w, k) = i

(
∂wJw + (1 − d)Jw

w

)
⇒ kµJµ(w, k)

wd−1 = i∂w

(
Jw

wd−1

)
. (D.193)

Thus,

kµA[1]
µ (z, k) = −i L2

d− 2

∫ ∞

0
dw
(
Θ(z − w)wd−2 + Θ(w − z)zd−2

)
∂w

(
Jw

wd−1

)
= −i L2

d− 2

([(
Θ(z − w)wd−2 + Θ(w − z)zd−2

) Jw

wd−1

]∞

0

−
∫ ∞

0
dw
(
δ(w − z)(zd−2 − wd−2) − (d− 2)wd−3Θ(z − w)

) Jw

wd−1

)
= iL2

∫ ∞

0
dwΘ(z − w)Jw

w2 (D.194)

where the vanishing of the boundary term at w = 0 requires that Jw goes to zero faster than w, which
is guaranteed by the first of (D.164) and the boundary condition in (D.180). Differentiating (D.194)
w.r.t. z and rearranging yields the first of (D.164).

In computing the 3-point function, we need the expression of the bulk-to-bulk propagator near
the boundary z → 0. In this limit, the expression (D.191) gives

Gµν(z → 0, w; k) = − L

2
d
2 −1Γ(d

2)
(k)

d
2 −1(ẑ2w)

d
2 −1K d

2 −1(kw)πµν − L
ẑd−2

d− 2
kµkν

k2

= − L3−d

(d− 2)z
d−2Kµν(w, k) (D.195)
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D.2 Classical Solution of Massive Spin-1 Field

In this section, we review the solution of the massive spin-1 field following the approach given in [86].
We are interested in getting the classical solution of the massive field at the leading order in the gauge
coupling g. As we shall see below, this can be obtained in terms of the bulk-to-boundary propagator
of the massive field. The equation of motion of the massive spin-1 field is given by

2∇M ∇[MWN ] −m2WN = 0 + O(g) . (D.196)

By acting with the covariant derivative ∇N , we obtain the following subsidiary condition

∇MWM = 0 + O(g) =⇒ δµν∂µWν + ∂zWz − (d− 1)
z

Wz = 0 + O(g) . (D.197)

The classical profile of the massive spin-1 fields must satisfy this constraint at the leading order in
the gauge coupling expansion.

Fourier transforming the boundary directions and using the subsidiary condition (D.197), the z
component of the equation of motion (D.196) gives in Poincaré coordinates,

z2∂2
zWz − (d− 1)z∂zWz − k2z2Wz +

(
d− 1 − m2L2

)
Wz = 0 . (D.198)

Demanding regularity at z = ∞, the above equation has the solution

Wz(z, k) = c(k) z
d
2 Kβ(z k) ; β2 = (d− 2)2

4 +m2L2 ; β = ∆ − d

2 , (D.199)

where Kβ(z k) is the modified Bessel function of the second kind and c(k) is an arbitrary function.
Similarly, the µ component of the equation of motion (D.196) on using (D.199) gives

z2∂2
zWµ + (3 − d)z ∂zWµ − (z2 k2 +m2L2)Wµ = 2izkµWz = 2i c(k) kµz

d
2 +1Kβ(z k) . (D.200)

The solution of this equation has a homogeneous and an inhomegeneous part. The inhomogeneous
part should be proportional to kµ. It is easy to see that the above equation has the following solution
consistent with the constraint (D.197)

Wµ(z, k) =
[
δν

µz
d−2

2 Kβ(kz) + kνkµ

k(d− ∆ − 1)z
d
2Kβ+1(zk)

]
aν(k) . (D.201)

For later use, we note that the relation between c(k) and aµ following from the constraint (D.197) is

c(k)
(d

2 − β − 1
)
= ikµaµ(k) . (D.202)

We can obtain the bulk-to-boundary propagator of the massive spin-1 field using the above solution.
For this, we need to relate aµ(k) to the boundary value of the field Wµ(z, k). Writing aµ = bµ + i kµb

and using the expression of the modified Bessel function in z → 0 limit given in equation (B.121), we
find

Wµ(z → 0, k) ≡ zd−∆−1wµ(k) , (D.203)

where

wµ(k) = 1
2

(
k

2

) d
2 −∆

Γ
(
∆ − d

2
)bµ + kµ

 (∆ − 1)
(d− ∆ − 1)b+

2kνbν

(
∆ − d

2

)
k2(d− ∆ − 1)


 . (D.204)
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We can get rid of term proportional to kµ by choosing b to be (d−2∆)
(∆−1)

kνbν
k2 . This allows us to relate

the integration constant with the boundary value of the field. Collecting all results and using Bessel
function identities, we can write

Wµ(z, k) = 2 z
d−2

2

Γ(∆ − d
2)

(k
2
)∆− d

2
[
δν

µ K∆− d
2
(kz) + z kνkµ

k(∆ − 1)K∆− d
2 −1(zk)

]
wν(k) (D.205)

Wz(z, k) = i
2

d
2 +1−∆

Γ(∆ − d
2)

1
∆ − 1k

∆− d
2 z

d
2 K∆− d

2
(z k) kν wν(k) (D.206)

The bulk-to-boundary propagator K µ
M (z, k) for the massive spin-1 field can now be defined by

WM (z, k) = K µ
M (z, k)wµ(k) ; lim

z→0
z−d+∆+1 K µ

M (z, k)wµ(k) = δµ
M . (D.207)

Comparing (D.207) with (D.205) and (D.206), we get

K ν
µ (z, k) = 2

d
2 +1−∆

Γ
(
∆ − d

2

) k∆− d
2 z

d
2 −1

[
δν

µ K∆− d
2
(zk) + kµ k

ν

k

z

∆ − 1 K∆− d
2 −1(zk)

]
,

K ν
z (z, k) = i

2
d
2 +1−∆

Γ
(
∆ − d

2

) kν k∆− d
2

∆ − 1 z
d
2 K∆− d

2
(zk) . (D.208)

We also need the bulk-to-boundary propagator of the complex conjugate field W ∗
M . This is considered

independent of WM and its boundary Fourier transform is defined by

W ∗
M (z, x) =

∫
ddk

(2π)d
eik·xW ∗

M (z, k) , (D.209)

The W ∗
M satisfies the same equation of motion as WM . From this, we find that the bulk to propagator

for W ∗
M , denoted with K̄ µ

M (z, k), coincides with equation (D.208), i.e.,

K̄ ν
M (z, k) = K ν

M (z, k) = K∗ν
M (z, −k) (D.210)

where K∗ν
M denotes the complex conjugate of K ν

M .

E Analysis in Lorenz Gauge

In the previous appendix and in the main text, we had worked with the axial gauge in which we
set Az = 0. It is also instructive to consider the standard Lorenz gauge where we set ∇MAM = 0.
This condition is imposed by adding to the action a gauge fixing term so that the gauge field action
becomes

S =
∫
dd+1x

√
g

[1
4F

MNFMN + 1
2ξ (∇MAM )2 +ANJ

N
]
, (E.211)

and taking the limit ξ → 0 (sometimes this is also referred as Landau gauge). The equation of motion
is given by

∇MFMN + 1
ξ

∇N ∇MAM =
(
□ + d

L2

)
AN −

(
1 − 1

ξ

)
∇N ∇MAM = JN , (E.212)
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where the first equality is valid in AdS space. For N = z and N = µ, the above equation gives

L2Jz = −z2δµν∂z∂µAν + z2δµν∂µ∂νAz

+1
ξ

(
z2∂2

zAz + (3 − d)z∂zAz + z2δµν∂µ∂zAν + 2zδµν∂µAν + (1 − d)Az

)
, (E.213)

L2Jµ =
[
z2∂2

z + (3 − d)z∂z + z2δνσ∂ν∂σ

]
Aµ − z2δνσ∂ν∂µAσ − z2∂z∂µAz − (3 − d)z∂µAz

+1
ξ

(
z2δσν∂µ∂σAν + z2∂µ∂zAz + (1 − d)z∂µAz

)
. (E.214)

Next, we use the condition ∇MAM = 0. For the source free case, the above equations take the same
form as in (D.198) and (D.200) for the corresponding equations for the massive spin-1 fields but with
m = 0. Thus, we can immediately write down the solution

Az(z, k) = e(k)z
d
2K d

2 −1(kz)

Aµ(z, k) = eµ(k)z
d−2

2 K d
2 −1(kz) − i

e(k)
k
kµz

d
2K d

2
(zk) (E.215)

Substituting the above solution in the Lorenz condition ∇MAM = 0 gives eµk
µ = 0. Thus, we can

parametrise eµ as eµ = π ν
µ αν where πµν is the transverse projector defined in equation (D.165).

Writing αµ = b0aµ + b1kµ where aµ is the boundary value of the field and following the same manip-
ulations we did for the Proca field, we can fix the constants in terms of the boundary value of the
fields to be

Aµ(z k) = 22− d
2

Γ
[

d
2 − 1

] (z k)
d
2 −1

[
aν πνµK d

2 −1(z k) + (k · a) z kµ

(d− 2) k K d
2
(z k)

]
,

Az(z, k) = i
22− d

2

Γ
[

d
2 − 1

] k d
2 −1 z

d
2

(k · a)
(d− 2) K d

2 −1(z, k) . (E.216)

These expressions can also be obtained from the corresponding solutions of the Proca field given in
equations (D.205) and (D.206) by substituting ∆ = d−1. The above expressions also give the bulk-to
boundary propagator of the gauge field in the Lorenz gauge by writing AM = K µ

M aµ.

This is not the end of the story. We still have a residual gauge freedom allowed by the Lorenz
gauge condition. More specifically, even after fixing the Lorenz gauge, a further gauge transformation

AM → AM − i∂Mg(z, x) ⇐⇒ Aµ → Aµ + kµg(z, k) and Az → Az − i∂zg(z, k) , (E.217)

will be a residual gauge transformation if the function g(z, k) satisfies the condition □g = 0, i.e.,

∂2
zg(z, k) − (d− 1)

z
∂zg(z, k) − k2g(z, k) = 0 (E.218)

The solution of this equation is given by

g(z, k) = λ(k) z
d
2 K d

2
(z k) (E.219)

The λ is an arbitrary function of the momentum. If we choose it to be

λ(k) = −22− d
2 k

d
2 −1

Γ
[

d
2 − 1

] (k · a)
(d− 2) k (E.220)
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then taking into account the residual gauge transformation (E.217), the boundary component of the
gauge field becomes completely transverse, i.e.,

Aµ(z k) = 22− d
2

Γ
[

d
2 − 1

] (z k)
d
2 −1 aν πνµK d

2 −1(z k) ; Az(z, k) = 0 (E.221)

This also gives a proof of the result we have used, namely, we can choose the gauge field to be
completely transverse in the axial gauge Az = 0.

F Holographic renormalization of massive spin-1 field

In this appendix, we compute the 2-point function of the boundary operators that are dual to the
Proca field by applying the holographic renormalization procedure to the Euclidean action on the AdS
background given in Section 4.1. This would be needed to fix the longitudinal part of our 3-point
function as well as for verifying the conservation Ward identity (2.19) using a bulk computation. We
give the details for the WM field; the analysis for the corresponding complex conjugate field W ∗

M is
identical. We start by solving the Proca equations of motion asymptotically.

F.1 Asymptotic analysis

We want to solve the free Proca field equation in AdS, which is given by(
□ + d

L2

)
WM − gP Q∇M ∇PWQ −m2WM = 0 ; ∇MWM = 0 , (F.222)

where the second equation (the subsidiary condition) follows from the first upon contracting with
∇M , see section D.2. In Fefferman Graham coordinates, (A.117), we have

L2□WM =
[
4ρ2∂2

ρ + ρLδµν∂µ∂ν + 2(2 − d)ρ∂ρ

]
WM +

[
4ρ(∂ρWν − ∂νWρ) − dWν

]
δν

M

L2∇M (∇NW
N ) = (4 − 2d)ρ∂MWρ + 4ρ2∂M∂ρWρ + ρLδνσ∂M∂νWσ

+
[
8ρ∂ρWρ + Lδνσ∂νWσ + (4 − 2d)Wρ

]
δρM

∇MWM = ρ

L
δµν∂µWν + 4ρ2

L2 ∂ρWρ + (4 − 2d)
L2 ρWρ (F.223)

Using these equations, the boundary and radial components of the equation of motion can be expressed
as

0 = 4ρ2∂2
ρWµ + 2(4 − d)ρ∂ρWµ + ρLδσν∂σ∂νWµ −m2L2Wµ − 4ρL∂νWρ ,

0 = 4ρ2∂2
ρWρ + 2(4 − d)ρ∂ρWρ + ρLδσν∂σ∂νWρ −m2L2Wρ , (F.224)

where we have used the subsidiary condition, ∇MWM = 0, to simplify the expressions. The above
equations can also be derived by transforming the equations of motion given in section D.2 in Poincaré
coordinates to the Fefferman Graham coordinates.

We want to obtain the general asymptotic solution of (F.224). To this end, we first need to obtain
the leading radial dependence as ρ → 0, and to determine this it suffices to consider a solution that
only depends on ρ. In this case, both of the above equations take the same form

4ρ2∂2
ρWM (ρ) + 2(4 − d)ρ∂ρWM (ρ) −m2L2WM (ρ) = 0 , (F.225)
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with solution given by

WM (ρ) = cMρ∆− + eMρ∆+ (F.226)

where cM and eM are integration constants and

2∆+ = d− 2
2 +

√
m2L2 + (d− 2)2

4 = ∆ − 1 ; 2∆− = d− 2 − 2∆+ = d− ∆ − 1 .

The leading behaviour as ρ → is given by ∆− and its coefficient plays the role of the source for the
dual boundary operator, while the coefficient of ∆+ is linked with the 1-point function in the presence
of sources [52], as will be seen below.

Next, we turn to obtain the general asymptotic solution by solving the equations order by order
in the ρ variable near ρ = 0. This is achieved by factoring out the leading behavior, using

Wρ =
(
ρ

L

) d−∆−1
2

Wρ(ρ, x) ; Wµ =
(
ρ

L

) d−∆−1
2

Wµ(ρ, x) (F.227)

and then solving for Wρ(ρ, x),Wµ(ρ, x). By construction, these variables are finite at ρ = 0. Substi-
tuting these in the equations of motion one finds at leading order the relation between the mass of
the bulk field and the conformal dimension ∆, namely m2L2 = (∆ − 1)(∆ − d+ 1). After cancelling
an overall factor of ρ the field equations become,

0 = 4ρ∂2
ρWµ + 2(2 + d− 2∆)∂ρWµ + Lδνσ∂ν∂σWµ − Lδνσ∂µ∂νWσ − 4ρ∂ρ∂µWρ + 2(∆ − 3)∂µWρ ;

(F.228)

In addition, the subsidiary condition, ∇MWM = 0, shows that the asymptotic expansion of Wρ is
fully determined in terms of that of Wµ. Indeed, using (F.227) in (F.223) and rearranging yields

2(1 − ∆)Wρ + 4ρ∂ρWρ + Lδµν∂µWν = 0 . (F.229)

These equations are now solved by setting ρ = 0 and solving them, then differentiating w.r.t. ρ, setting
ρ = 0 and solving them, and so on. This determines recursively the derivatives ∂nWρ(ρ=0,x)

∂ρn ,
∂nWµ(ρ=0,x)

∂ρn

at ρ = 0 in terms of lower order terms, provided that the coefficient that multiplies the term with
the highest number of derivatives is non-zero. This is indeed the case till order ⌊∆ − d

2⌋, where
⌊x⌋ indicates the integer part of x. At order ∆ − d

2 , a new asymptotic solution appears, associated
with the ∆+ solution in (F.226), and its coefficient is unconstrained by asymptotic analysis. When
∆ − d

2 = n is an integer, the equations do not admit a solution unless there is a logarithmic term in
the asymptotic solution. We thus obtain the asymptotic solution,

Wρ(ρ, x) =
⌊∆− d

2 ⌋∑
j=0

(
ρ

L

)j

W(2j)
ρ (x) +

(
ρ

L

)∆− d
2
(

W(2∆−d)
ρ (x) + δ∆, d

2 +nV(2∆−d)
ρ (x) ln ρ

L

)
,

(F.230)

Wµ(ρ, x) =
⌊∆− d

2 ⌋∑
j=0

(
ρ

L

)j

W(2j)
µ (x) +

(
ρ

L

)∆− d
2
(

W(2∆−d)
µ (x) + δ∆, d

2 +nV(2∆−d)
µ (x) ln ρ

L

)
.

(F.231)
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The subsidiary conditions yields,

W(2j)
ρ = − L

2(1 − ∆ + 2j)δ
µν∂µW(2j)

ν , j ≤ ∆ − d

2 (F.232)

(2 + 2n− d)W(2∆−d)
ρ + 4V(2∆−d)

ρ = −Lδµν∂νW(2∆−d)
µ , (2 + 2n− d)V(2∆−d)

ρ = −Lδµν∂νV(2∆−d)
µ ,

where the second line holds only when ∆ = d/2+n, with n an integer. In our case, we are considering
generic ∆, not satisfying this condition, and the logarithmic terms will not be important, but for
completeness we quote them below. The coefficients appearing in the above expansion are given by

W(2j)
µ = Bj(L2□0)j−1L2

(
□0δ

ν
µ + 2j

(1 − ∆)δ
κν∂µ∂κ

)
W(0)

ν ; j < ∆ − d

2

V(2∆−d)
µ = − 1

22nΓ(n)Γ(n+ 1)(□0)j−1L2
(
□0δ

ν
µ + 4n

(2 − d− 2n)δ
κν∂µ∂κ

)
W(0)

ν , (F.233)

where □0 = δµν∂µ∂ν , the last equation holds only when ∆ = d/2 + n, and

Bj =
j∏

q=1

1
2q(2∆ − d− 2q) . (F.234)

For completeness, we also quote the asymptotic coefficients of Wρ as they directly follow from (F.224),

W(2j)
ρ (x) = Bj(L2□0)jW(0)

ρ (x) ; j < ∆ − d

2

V(2∆−d)
ρ (x) = − 1

22nΓ(n)Γ(n+ 1)(L2□0)nW(0)
ρ (F.235)

These values are consistent with (F.233) and (F.232).
The asymptotic analysis does not determine W(2∆−d)

µ and W(2∆−d)
ρ , but when W(2∆−d)

µ is known
W(2∆−d)

ρ follows from its divergence. This is expected since these play the role of 1-point functions
in the presence of sources, and higher point correlators can be determined by differentiating them.
However, the asymptotic analysis should not be enough to completely fix the full correlators, and this
is reflected by the fact that these coefficients are undetermined from the asymptotic analysis. To find
their expression, we need to use the exact solution of the free Proca field given in equations (D.205)
and (D.206) and expand them near the boundary. The relation between the solutions in the FG and
Poincaré coordinates is given by

Wρ(ρ, x) = ∂z

∂ρ
Wz(z(ρ), x) = 1

2

√
L

ρ
Wz(z(ρ), x) ; Wµ(ρ, x) = Wµ(z(ρ), x) (F.236)

This gives in momentum space

Wρ(ρ,k) = i
2

d
2 −∆

Γ
(
∆ − d

2
) 1

∆ − 1k
∆− d

2

√
L

ρ
(ρL)

d
4Kβ(k

√
ρL)kνwν

Wµ(ρ,k) = 2
Γ
(
∆ − d

2
) (k2

)∆− d
2

(ρL)
d−2

4

[
δν

µKβ(k
√
ρL) + kνkµ

k(∆ − 1)(ρL)
1
2Kβ−1(k

√
ρL)

]
wν

Using the asymptotic expansion of Bessel function given in (B.122), the above exact solution can be
expanded near the boundary as

Wµ(ρ,k) = (ρL)
d−∆−1

2

[
wµ + · · · + (−1)j(ρLk2)j Bj

(
wµ − 2jwνkνkµ

k2(∆ − 1)
)
+ · · ·

]

+(ρL)
d−∆−1

2

[(
k

2

)2∆−d π (ρL)∆− d
2 cosec

(
(d−2∆)π

2

)
Γ
(
∆ − d

2

)
Γ
(
∆ − d

2 + 1
) (

wµ + wνkνkµ(d− 2∆)
k2(∆ − 1)

)
+ · · ·

]
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Wρ(ρ,k) =
iπL cosec

(
(2∆−d)π

2

)
(∆ − 1)Γ

(
∆ − d

2

) (ρL)
d−∆−1

2

[
1

2Γ
(

d
2 − ∆ + 1

) + k2(Lρ)
23Γ

(
d
2 − ∆ + 2

) + · · ·

− (ρL)∆− d
2

2Γ
(
∆ − d

2 + 1
) (k

2

)2∆−d

− (ρL)∆− d
2 +1

25Γ
(
∆ − d

2 + 2
) (k

2

)2∆−d+2
+ · · ·

]
kνwν (F.237)

with Bj given in (F.234). Comparing the above expansion with asymptotic analysis and using the
identity Γ(x)Γ(−x) = −π

x cosec(πx), we find

W(0)
µ (k) = Ld−∆−1 wµ(k)

W(2∆−d)
µ (k) =

(
k

2

)2∆−d Γ
(

d
2 − ∆

)
L2∆−d

Γ
(
∆ − d

2

) (
δν

µ + kνkµ(d− 2∆)
k2(∆ − 1)

)
W(0)

µ (k) (F.238)

W(0)
ρ (k) = i Ld−∆

2(∆ − 1) kνwν(k)

W(2∆−d)
ρ (k) = −

L2∆−dΓ
(

d
2 − ∆ + 1

)
Γ
(
∆ − d

2 + 1
) (

k

2

)2∆−d

W(0)
ρ (k) (F.239)

Note that the length dimension of wµ and W(0)
µ are different. The W(0)

µ has the same dimension as
the Proca field WM , namely 1−d

2 whereas the length dimension of wµ is 3(1−d)
2 + ∆.

F.2 Regularised action and counter terms

The bulk on-shell action diverges due to the near boundary contributions. To regularise the action,
we first place the AdS boundary at ρ = Lϵ and then evaluate the resulting on-shell action. Doing an
integration by parts and using the free field equation of motion of the Proca field, we find

Sreg =
∫

ρ≥Lϵ
dd+1x

√
g
[1
2W

∗
MNW

MN +m2W ∗
MWM

]
=

∫
ρ=Lϵ

dd+1x
√
γ nM (W ∗

NW
MN )

= −2
∫

ρ=Lϵ
ddx

(
ρ

L

) d
2 −∆ [

δµνW∗
µ

((d− ∆ − 1)
2L Wν + ρ

L
∂ρWν − ρ

L
∂νWρ

)]
. (F.240)

In going to the last equality, we have used the fact that the boundary hypersurface is defined by ρ =
constant. Hence, the induced metric and the unit normal space like vector on this hypersurface are
given by

nM = − ∂Mρ√
gP QnPnQ

= − ∂Mρ√
gρρ

= − L

2ρδ
ρ
M ; γµν(x) = L

ρ
δµν ; √

γ =
(
L

ρ

) d
2
. (F.241)

Now, using the asymptotic solution, we get

Sreg = −2
∫
ddx

[
ϵ

d
2 −∆a(0) + ϵ

d
2 −∆+1a(2) + · · · + ln ϵ b(2∆−d) +O(ϵ)

]
, (F.242)

where

a(2j) = δµνW∗(0)
µ T (2j)

ν + δµνW∗(2)
µ T (2j−2)

ν + · · · + δµνW∗(2j−2)
µ T (2)

ν + δµνW∗(2j)
µ T (0)

ν

b(2∆−d) = ∆ − 1
2L δµνW∗(0)

µ V(2∆−d)
ν + d− ∆ − 1

2L δµνV∗(2∆−d)
µ W(0)

ν (F.243)
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with T
(2j)
ν given by

T (2j)
ν = d− ∆ − 1 + 2j

2L W(2j)
ν + L

2(2j − ∆ − 1)δ
στ∂ν∂σW(2j−2)

τ ; 0 ≤ j < ∆ − d

2 . (F.244)

We can express the regularised action in (F.242) in a covariant form. For this, we need to invert the
asymptotic expansion of WM to express W(0)

M in terms of WM . Up to O(ρj), this is given by

W(0)
µ (x) =

(
ρ

L

)∆−d+1
2

j∑
q=0

[
bq(L2□γ)qWµ(ρ, x) + dqL

2(L2□γ)q−1γσν∂µ∂σWν(ρ, x)
]
,

W(0)
ρ (x) =

(
ρ

L

)∆−d+1
2

j∑
q=0

bq(L2□γ)qWρ(ρ, x) , (F.245)

where for completeness we have also given the expression of W(0)
ρ in terms of Wρ. The notation □γ

denotes □γ = γµν∂µ∂ν and the coefficients bq and dq are determined recursively by

bq = −
∑

m+n=q
m≥1;n≥0

Bmbn ; b0 = 1 ,

dq = −
∑

m+n=q
m≥1;n≥0

[(
1 + 2m

1 − ∆

)
Bmdn + 2m

1 − ∆Bmbn

]
; d0 = 0 , (F.246)

with Bm defined in equation (F.234). Here, m,n are integer numbers less than (2∆−d)
2 .

Using (F.245), we can express the divergent terms in the regularised action in covariant form.
The role of counterterms is to get rid of the divergent terms in the above expression when we take
the limit ϵ → 0. Hence, the counterterms are simply given by the negative of the divergent terms in
the regularised action,

Sct = 2
∫
ddx

√
γ

[
d− ∆ − 1

2L γµνW ∗
µWν

+ L

2(2∆ − d− 2)W
∗
µ

(
γµν□γ − (2∆ − d)

(∆ − 1) γ
µσγτν∂σ∂τ

)
Wν + · · ·

]
, (F.247)

and the renormalised action is then the sum of regularised and counterterm actions, namely

Sren = lim
ϵ→0

(Sreg + Sct) . (F.248)

The above counterterm agrees with the first counter term obtained in equation (G.269) for the gauge
field when we substitute ∆ = d− 1 (and in particular it is manifestly gauge invariant).

F.3 Two-point function

To derive the correctly normalised 2-point function of the operators dual to the Proca field, we first
note that the one point function of the boundary operator Oµ which is dual to W ∗

µ is given by

⟨Oµ(x)⟩ = δSren

δW(0)∗
µ (x)

= lim
ϵ→0

1
ϵ

∆+1
2

1
√
γ

δSren
δW ∗

µ(x, ϵ) (F.249)

Using the renormalised action obtained in the previous subsection, we find

⟨Oµ(x)⟩ = −δµν

(
2∆ − d

)
L

W(2∆−d)
ν (x) (F.250)
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The 2-point function can be computed by differentiating the above expression with respect to the
source W(0)

µ . Using the expression of W(2∆−d)
ν given in (F.238), we find at O(g0) in coupling10

⟨O∗ν(p)Oµ(k)⟩ = −(2π)d δ⟨Oµ(k)⟩
δW(0)

ν (−p)
= (2π)dδd(p + k)a0

(
δµν + kνkµ(d− 2∆)

k2(∆ − 1)
)
k2∆−d (F.253)

where

a0 ≡
(
2∆ − d

)(1
2

)2∆−d Γ
(

d
2 − ∆

)
Γ
(
∆ − d

2

) L2∆−d−1 (F.254)

and we have used the functional identity

δW(0)
µ (p)

δW(0)
ν (q)

= δν
µ δ

d(p − q) (F.255)

G Holographic renormalization of gauge field

In this appendix we discuss how to obtain from the gravity dual the CFT three-point correlator
involving two (non-conserved) spin-one operators and one conserved current using the holographic
renormalization procedure. The UV divergences of the boundary conformal theory (which arise
when two operators approach each other), manifest themselves as long range IR divergences in the
bulk gravity theory when we approach the boundary. The standard procedure to deal with these
divergences in the bulk theory is to first obtain the near boundary solution of the bulk equations of
motion and then regularise the action by introducing a radial cutoff ϵ [87]. The action diverges as we
remove the boundary cut-off, and these divergences may be cancelled by adding boundary covariant
counterterms. The full renormalized on-shell action is the sum of the regularized action plus the
counterterms in the limit ϵ → 0

Sren = lim
ϵ→0

[
Sreg + Sct

]
(G.256)

The connected correlators can now be computed by taking the functional derivative of the renor-
malised action with respect to the bulk sources. Below, we shall describe this procedure in detail for
the case of interest. For further information on holographic renormalization, see [88–94].

G.1 Asymptotic Solution

The first step in obtaining the renormalised correlators in AdS is to obtain the asymptotic solution
of the equations of motion. We are interested in computing the 3-point function that only involves

10Note that to compute the correlators in momentum space we need to multiply by the factor of (2π)d. To see this,
we note that the expression of the generating functional is given by

Z[J ] =
〈

exp
(

−
∫

ddxJ(x)ϕ(x)
)〉

=
〈

exp
(

−
∫

ddp

(2π)d
J(−p)ϕ(p)

)〉
(F.251)

Thus, in momentum space we have〈
ϕ(p1) · · · ϕ(pn)

〉
c

= (−1)n (2π)dδ

δJ(−p1) · · · (2π)dδ

δJ(−pn)W [J ]
∣∣∣
J=0

(F.252)

where the subscript c denotes the connected part of the correlator and we have used the definition W [J ] = ln Z[J ]. In
writing (F.249), we have used the relation Z ≃ e−Sren which gives W ≃ −Sren for the boundary CFT correlators.
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a single insertion of the symmetry current and two insertions of the non-conserved vector operator.
For the purpose of computing this 3-point function, the 1-point function of J µ in the presence of
sources, as defined in equation (4.51), may be computed from the bulk action truncated to quadratic
order in the number of bulk gauge fields. The non-conserved operators are irrelevant operators, and
correlators of the irrelevant operators have complicated UV structure. To avoid this problem we will
only consider the irrelevant operators inserted at non-coincident points. This can be achieved by
working with infinitesimal sources which have support at separated points [5, 88]. This then implies
that most of the contributions of the cubic interaction terms to the gauge field equation vanish because
they are quadratic in the source part of the massive vector field, which vanish when the sources have
support on non-coincident points.

Thus, for the purpose of this analysis, it is sufficient to use the equation of motion,
1√
G
∂M

(√
GFMN

)
=
(
□ + d

L2

)
AN − ∇N ∇MAM = JN , (G.257)

where JN is constructed from the massive vector fields and is given in (4.43). In axial gauge A0 = 0
and in Fefferman Graham coordinates (defined in equation (A.117)) the above equation gives

−ρLδµν∂ρ∂µAν = L2Jρ ; 4ρ2∂2
ρAµ + 2(4 − d)ρ∂ρAµ + ρL□0Aµ − ρLδνσ∂µ∂νAσ = L2Jµ .(G.258)

where □0 ≡ δµν∂µ∂ν .
We need to obtain the asymptotic solution of the above equation without splitting the gauge field

in the transverse and longitudinal components. This is due to the fact that the projection operators
(which project onto these components) are non-local whereas locality is essential for renormalisation.
To obtain the asymptotic solution, the general strategy is to solve the equations order by order in
the radial direction ρ. Setting ρ = 0, we find that the equations are satisfied. Next, we take the
derivative of these equations with respect to ρ and then set ρ = 0. For the next order, we take the
second derivative of the equations with respect to ρ and then set ρ = 0 and so on. We need to treat
the case of even and odd dimensions separately.

Even Dimensions

Following the procedure described above and solving the resulting equations, we find that the asymp-
totic solution for gauge field for even d has the following structure

Aµ(ρ, x) =
d
2 −2∑
j=0

A(2j)
µ (x) ρ

j

Lj
+ ρ

d
2 −1

L
d
2 −1

(
A(d−2)

µ (x) +B(d−2)
µ (x) log ρ

L

)
+ . . . (G.259)

where the dots denote higher powers in ρ which are irrelevant in the forthcoming discussion.
The need to introduce the log term at O(ρ

d
2 −1) is due to the fact that the equations of motion at

this order develop a pole and the resulting equations cannot be satisfied without the log term. The
equations of motion give the following solutions

A(2j)
µ = L2

4j
(

d
2 − 1 − j

) (□0δ
µ
ν − ∂µ∂

ν)A(2j−2)
ν , 1 ≤ j <

d

2 − 2 (G.260)

B(d−2)
µ = L2

2(2 − d) (□0δ
µ
ν − ∂µ∂

ν)A(d−4)
ν , (G.261)
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where indices are raised with δµν . It follows from these equations that ∂µA
(2j)
µ = ∂µB

(d−2)
µ = 0. In

addition the field equations determine the divergence of A(d−2)
µ ,

∂µA(d−2)
µ = 2ig

(d− 2)

(
∆ − d

2

)
δµν

(
W∗(0)

µ W(2∆−d)
ν − c.c.

)
, (G.262)

where c.c. stands for complex conjugate. Equation (G.262) comes from solving the first equation in
(G.258) near the boundary, and the r.h.s. comes from Jρ. Note that it involves a source times a vev
piece: all other terms that are quadratic in the sources are automatically zero since by assumption
the sources have disjoint support. The r.h.s. of (G.262) is crucial for deriving the correct conservation
Ward identity from the bulk. The solution shows that all the coefficients except the transverse part
of A(d−2)

µ are locally determined in terms of A(0)
µ .

In deriving (G.262), we have assumed an arbitrary value of ∆, which is appropriate when the
mass of the bulk Proca fields is taken to be arbitrary. For special values of ∆ the solution is modified:
if ∆ = d/2 + n, for some integer n, then the r.h.s. of (G.262) is modified as follows

∂µA(d−2)
µ = 2ig

(d− 2)δ
µν
(
W∗(0)

µ

((
∆ − d

2

)
W(2∆−d)

ν + V(2∆−d)
ν

)
− c.c.

)
However, we shall not make use of this since we work with arbitrary ∆ in this paper.

The solutions in (G.261) can also be written using the field strength for A(0)
µ , which makes gauge

invariance manifest,

A(2j)
µ = L2j □j−1

0 ∂νF
(0)
νµ

22jΓ[j + 1]
∏j

n=1

(
d−2

2 − n
) ; 1 ≤ j ≤ d

2 − 2 (G.263)

B(d−2)
µ = −22(1− d

2 ) Ld−2 □
d
2 −2
0 ∂νF

(0)
νµ

Γ
[

d
2

]∏ d
2 −2
n=1

(
d−2

2 − n
) . (G.264)

Odd Dimensions

The procedure for the case of odd d is similar to the case of even d considered above. The main
difference is that the expansion no longer has a logarithmic term,

Aµ(ρ, x) =
d−3

2∑
j=0

(
ρ

L

)j

A(2j)
µ (x) +

(
ρ

L

) d−2
2
A(d−2)

µ (x) + . . . (G.265)

The coefficients A(2j)
µ , 1 ≤ j ≤ (d − 3)/2, are the same as in the (G.260) (or equivalently (G.263)),

and only the longitudinal part of A(d−2)
µ is determined by the asymptotic analysis and is given by

(G.262).

G.2 Regularization

We regularize the action by introducing a small cut-off L ϵ on the radial coordinate ρ close to the
boundary. The action will be evaluated on this regularized action on the asymptotic solution. The
cubic terms do not contribute to the divergences when the sources of the massive vector fields have
disjoint support, so it suffices to consider the regularised gauge kinetic term only,

Sreg = 1
4

∫
ρ≥Lϵ

dd+1x
√
G FMNF

MN = 1
2

∫
ρ=Lϵ

ddx
√
γ nMANF

MN . (G.266)
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In going to the second equality, we have used integration by parts and used the gauge field equation
of motion at leading order in the coupling constant to set the bulk term to zero. The γµν = 1

ϵ δµν

and nM represent the induced metric and the spacelike normal vector on the boundary hypersurface
ρ = Lϵ. Evaluating the above regularised action on the asymptotic solution, we find for even d

Sreg = − 1
L

∫
ρ=Lϵ

ddx δµν

[ d
2 −2−j∑

k=0

d
2 −2∑
j=0

k ϵj+k+1− d
2A(2j)

µ A(2k)
ν +

(
d

2 − 1
)

log ϵ A(0)
µ B(d−2)

ν + . . .

]
(G.267)

The · · · terms are non singular and hence are irrelevant for our discussion. For odd d, we have the
same expression but the factors (d − 2)/2 in the upper limit of the summations over j and k are
replaced by (d− 3)/2 and there is no logarithmic term. From the above expressions, we see that the
number and the structure of the divergent terms depend on the dimensionality of the space-time. In
d = 3, e.g., there are no divergences. In d = 4, there is only a logarithmic divergence and so on.

G.3 Counterterms

We need to add counterterms to cancel the divergences,

Sct = −divergent terms of Sreg (G.268)

Equation (G.267) shows the relationship between the number of counterterms and the dimension d of
the AdS boundary. These counterterms are obtained by expressing the divergent terms appearing in
Sreg on the right hand side in terms of the induced metric γµν defined on the regularized surface and
express the coefficients A(2j)

µ etc. in terms of the bulk field Aµ(ρ, x) by inverting the series in (G.259)
and (G.265). For even d up to d = 10, this procedure yields

Sct = −L

2

∫
ρ=Lϵ

ddx
√
γ γµν γασ Fσµ

[
C1 + (2C2 − C2

1 ) (L2□γ)

+
(
C1(2b̃2 + b̃2

1) + 4C2 b̃1 + 3C3 + 2C2
1 b̃1 + 3C1C2

)
(L2□γ)2 +

(
d

2 − 1
)
C d

2 −1 L
d−4 log ϵ□

d
2 −2
γ

]
Fαν

(G.269)

where the first term appears at d = 6 dimensions (d = 5 for odd dimension). The second term is
necessary from d = 8 ( respectively d = 7) dimensions, and the third one is present from d = 10
dimensions (d = 9 in odd-dimensions). Here, the coefficients are defined as:

C d
2 −1 = − 22−d

Γ
[

d
2
]∏ d

2 −2
n=1

(
d−2

2 − n
) ; Cj = 2−2j

Γ
[
j + 1

]∏j
n=1

(
d−2

2 − n
) , 1 ≤ j ≤ d

2 − 2 :(G.270)

Additionally, we introduce the inversion coefficients for the gauge field as given in (F.246) for Proca’s
field:

b̃q = −
∑

m+ n = q

m ≥ 1; n ≥ 0

Cm b̃n ; b̃0 = 1 (G.271)
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The explicit expression for all quantities introduced in Eq.(G.269) are:

C1 = 1
2(D − 5) ; 2C2 − C2

1 = 1
2(D − 5)2(D − 7) ; D = d+ 1

C1(2b̃2 + b̃2
1) + 4C2 b̃1 + 3C3 + 2C2

1 b̃1 + 3C1C2 = 1
(D − 5)3(D − 7)(D − 9) (G.272)

These expressions agree with those provided in [95]11.
For odd d, the structure of the counterterms remains the same but without the logarithmic

contribution.

G.4 Renormalised Correlators

After computing the regularised action, we now have all the ingredients to write down the expression
of 1-point function of the gauge field. For this, we define the renormalised on-shell action as

Sren = Sreg + Sct (G.273)

The exact renormalized 1-point function is obtained by considering functional derivatives of the
renormalized action with respect to the bulk sources and then removing the IR cutoff. More precisely,
we have

⟨J µ(x)⟩ = δSren
δA(0)µ(x) = lim

ϵ→0

1
ϵ

d
2
√
γ

δ(Sreg + Sct)
δAµ(ϵ, x) (G.274)

By construction, this limit is finite. Due to the counterterms, all the divergent terms cancel and we
are left with the finite non-vanishing result in the limit ϵ → 0. Using the expressions of Sreg and Sct

given in previous sections, we find

⟨J µ(x)⟩ = − 2
L
δµν

[(
d

2 − 1
)
A(d−2)

ν +B(d−2)
ν

]
(G.275)

for d even and

⟨J µ(x)⟩ = − 2
L
δµν

(
d

2 − 1
)
A(d−2)

ν (G.276)

for d odd.
The coefficient B(d−2)

µ present in (G.275) was determined in terms of A(0)
µ (see equation (G.264)).

It turns out that this term contributes only a contact term (which is related linked with a conformal
anomaly [52]). Ignoring this term, we see that the exact 1-point function of the gauge field has
same expression in both even as well as odd d. Further, the 1-point function is given in terms of
the coefficient A(d−2)

µ which was undetermined from the asymptotic analysis. We can determine this
coefficient by solving the field equations perturbatively. Up to the first order in the gauge coupling
constant g (which is needed for the three-point correlation function), we have

Aµ(z, x) =
∫
ddy

√
GK ν

µ (z, x, y)Aν(x) +
∫
ddy dw

√
GGµν(z, w;x, y)Jν(y, w) (G.277)

11The logarithmic counterterm in equation (G.269) is in agreement with the corresponding one given in v3 of Ref. [95],
where several misprints were addressed through email correspondence. We are also in agreement with [96], which derived
the logarithmic term for d = 4.
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In the above equation, Kµν and Gµν are the bulk- to-boundary and the bulk-to-bulk propagators
of the gauge field given in equations (D.177) and (D.191), respectively, in the Poincaré coordinates
where z =

√
Lρ. The source Jµ at O(g) is defined in equation (4.43).

To determine A(d−2)
µ , we note that it is the coefficient of ρ

d
2 −1 in the asymptotic expansion. The

contribution of the first term in (G.277) to ρ
d
2 −1 can be obtained by expanding the Bessel function

in the definition of Kµν . However, this term does not contribute to the 3-point function since it is
independent of the massive spin-1 fields. To obtain the contribution of the second term of (G.277)
to ρ

d
2 −1, we note that the relation between Poincaré and Fefferman Graham coordinates implies

ρ
d
2 −1 ≡ zd−2

L
d
2 −1

. Using this in (D.195), we see that the near boundary expansion of Gµν precisely gives

the correct power of ρ to contribute to A(d−2)
µ up to O(g). Thus, we have

⟨J µ(x)⟩ = δµτ
∫
ddy dw

√
GK ν

τ (w;x, y)Jν(y, w) (G.278)

This expression is valid for both even as well as odd d. The desired 3-point function can now be
obtained by differentiating the above expression with respect to sources for the massive fields, i.e.,

⟨O∗ν(x1) J µ(x2) Oσ(x3)⟩ = δ2⟨J µ(x2)⟩
δW(0)

ν (x1) δW∗(0)
σ (x3)

= δµτ
∫
ddy dw

√
G K λ

τ (w;x2, y) δ2Jλ(y)
δW(0)

ν (x1) δW∗(0)
σ (x3)

(G.279)

In section 4, we work in Fourier space and the above expression (G.279) in Fourier space yields (4.53).

H Expected 3-point amplitude in flat space

In this appendix, we summarize the computation of the 3-point function in Minkowski space with
mostly minus metric, involving a photon γ and the massive charged spin one field W in d + 1 di-
mensional flat spacetime. Before discussing the computation of the 3-point scattering amplitude we
comment on the kinematics of the process W → γ +W . Energy and momentum conservation yields,√

m2 + k2
1 = k2 +

√
m2 + k2

3 (H.280)

k⃗1 = −k⃗2 − k⃗3 (H.281)

where k⃗i are the spatial momenta and ki =
√
k⃗i · k⃗i. A short computation shows that for generic

momenta these above equations imply,

cos θ =
√

1 + m2

k2
3
, (H.282)

where cos θ = k⃗2 · k⃗3/(k2k3), which cannot be satisfied with real momenta, unless k3 → ∞, or k2 → 0.
The k2 = 0 case may be thought as a special case of the Breit or brick-wall frame (sometimes also
called infinite momentum frame). In this frame (that we also discuss in the next appendix) the
spatial momentum of the massive vector is reversed after the scattering and thus k⃗2 = 0. For a real
photon this then implies k2 = 0. The special kinematics is a peculiarity of 3-point functions, and if
one wants to work with generic momenta one may either work with complex momenta or consider
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the mass of the incoming particle to be different than that of the out-going. In this case one would
get the same tree-level scattering amplitude (H.290) by introducing two massive vectors, Wa and
W ′

a in (H.283) below, with masses m2 and m′2, respectively, and change the interaction terms by
replacing W ∗

a by W ′
a

∗. In the remainder of this appendix, we will assume that one may use either
options to ensure that the 3-point function is kinematically allowed for generic momenta, but we
will not explicitly implement the one or the other option, to keep the discussion similar to that of
higher-point scattering amplitudes.

The action describing these fields in flat space is given by

S =
∫
dd+1x

[
−1

4F
abFab − 1

2W
∗abWab +m2W ∗aWa + iĝα̂ FabW

∗aW b + FabT
ab
]

(H.283)

where Fab = ∂aAb − ∂bAa and

Wab = DaWb −DbWa ; DaWb = ∂aWb + igAaWb (H.284)

The cubic interaction terms can again be found by following the same procedure as described in the
appendix C. As discussed there, the general form of the last term can be written as

FabT
ab = F ab

(
c0∂aW

∗
c ∂

cWb + c∗
0∂aWc∂

cW ∗
b

)
(H.285)

However, as we shall discuss below, the real part of c0 does not contribute to the amplitude. Hence,
we can write the above expression as

FabT
ab = iĝβ̂F ab(∂aW

∗
c ∂

cWb − ∂aWc∂
cW ∗

b

)
(H.286)

To proceed further, we denote the momenta and polarisation vector of W ∗
a by (k1, ε1a), those of the

gauge field by (k2, ε2a) and those of Wa by (k3, ε3a). The equation of motion of the massive fields
imply the transversality condition ∂aW

a = 0 + O(ĝ). Using this and the transversality of the gauge
field, we find

ε1 · k1 = O(ĝ) ; ε2 · k2 = 0 ; ε3 · k3 = O(ĝ) (H.287)

where the inner products are computed using the flat space metric.
Taking all the momenta to be ingoing in the cubic vertex, the momentum conservation condition

ka
1 + ka

2 + ka
3 = 0 gives

k1 · k3 = m2 ; k1 · k2 = 0 ; k2 · k3 = 0 (H.288)

Next, we consider the Feynman rules. We shall only need the expression of the momentum space
cubic vertex describing the interaction between the gauge field and the massive charged spin one field.
This is given by

V abc(k1, k2, k3) = −ĝ
[
ηbaηcdk1d − ηbdηcak1d − ηbcηadk3d + ηbdηcak3d + α̂

(
ηadηbck2d − ηabηdck2d

)
−β̂ k2d k1e k3f

(
ηaf (ηedηbc − ηebηdc) − ηce(ηfdηba − ηfbηad)

)]
(H.289)
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Using (H.287) and (H.288), the desired 3 point function is obtained to be

A3 = ε1 a(k1)ε2 b(k2)ε3 c(k3)V abc(k1, k2, k3)

= ĝ

[
2(ε1 · ε3)(ε2 · k1) + (1 + α̂)(ε2 · ε1)(ε3 · k2) − (1 + α̂)(ε2 · ε3)(ε1 · k2)

+2β̂(ε2 · k1)(ε3 · k2)(ε1 · k2)
]
. (H.290)

Gauge invariance implies that the amplitude vanishes when ε2 is replaced by k2.
We shall now show that the real part of c0 in (H.285) does not contribute to the amplitude. For

this, we just focus on the terms containing c0 and its complex conjugate in the action. In momentum
space, this is given by

I =
∫ 3∏

i=1

dd+1pi

(2π)d+1 W
∗
a (p1)Ab(p2)Wc(p3)Aabc

3 (p1, p2, p3) (H.291)

with

Aabc
3 (p1, p2, p3) = −i

[
c0η

bc pa
3 (p1 · p2) + c∗

0 p
c
1 (p2 · p3) ηab − c0p

c
2 p

b
1 p

a
3 − c∗

0p
a
2 p

b
3 p

c
1

]
(H.292)

The above expression implies

Aabc
3 (p1, p2, p3) +Acba

3 (p3, p2, p1) = −i(c0 + c∗
0)
[
ηbcpa

3(p2 · p1) + pc
1(p3 · p2)ηab − pc

2p
b
1p

a
3 − pa

2p
b
3p

c
1

]
(H.293)

Now, the on shell momenta and polarizations satisfy

p2 · p3 = 0 ; p1 · p2 = 0 ; εa · pa = 0 , a = 1, 2, 3 (H.294)

The condition on momenta imply that the first two terms in RHS of (H.293) vanish. Next, noting that
the amplitude is given by dressing Aabc

3 with the external polarization vectors, we contract (H.293)
with polarization vectors and use the transversality condition on polarization vectors to obtain

ε1a ε2b ε3c

[
Aabc

3 (p1, p2, p3) +Acba
3 (p3, p2, p1)

]
= i(c0 + c∗

0) [(ε1 · p3)(ε2 · p1)(ε3 p2) + (ε1 · p2)(ε2 p3)(ε3 · p1)]

= 2i Re(c0) [−(ε1 · p2)(ε2 · p1)(ε3 · p2) + (ε1 · p2)(ε2 · p1)(ε3 · p2)]

= 0 (H.295)

Thus, we have

ε1a ε2b ε3cA
abc
3 (p1, p2, p3) = −ε1a ε2b ε3cA

cba
3 (p3, p2, p1) (H.296)

From this, it is clear that the real part of the coefficient c0 does not appear in the flat space amplitude.
Further, it also shows the antisymmetry of the on shell amplitude under the exchange (ε1, p1) ↔
(ε3, p3). This is also the property of the CFT 3-point function reviewed in section 2. Hence, the flat
space result is consistent with this expectation.
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I Multipole moments

The coupling constants (Wilson coefficients) appearing in an effective field theory involving an Abelian
gauge field encode information about how the gauge field interacts with the other massive fields. These
coupling constants can be related to the electromagnetic moments. Here, we summarise some results
regarding this relation in 4 dimensional Minkowski space following [97].

We start by recalling some basic facts about electromagnetic form factors and multipole expansion
of the electromagnetic currents. This is a topic with a long history, see [59,60,97–101] for a selection
of early papers. The main object is the expectation value of the electromagnetic current in a single-
particle state

Ja(x) ≡ ĝ

2m⟨p′, s|Ja(x)|p, s⟩ = eiq·x ĝ

2m⟨p′, s|Ja(0)|p, s⟩ (I.297)

where ĝ and m denote the charge and mass of the massive particle and q = p+ p′ is the momentum
transfer12 . The state |p, s⟩ is the spin-s single particle state with 4-momentum pa. The dependence
of Ja on x is simple because translational invariance implies that Ja(x) = eix·P̂Ja(0)e−ix·P̂ , where P̂
is the 4-momentum operator, and we take the expectation value between momentum eigenstates.

We now consider (I.297) in the Breit (or brick-wall) frame. In this frame, there is no energy transfer
from the photon to the system, i.e. q = (0,q) and Ja(0, r) = (ρ(r),J(r)) is static. The electric and
magnetic multipoles can be obtained from the moments of the electric density, ρ(r), and magnetic
density, ρM (r) = ∇ · (J(r) × r), using standard results from electrostatics and magnetostatics.

With no loss of generality we may impose azimuthal symmetry, Fourier transform and expand in
the spherical harmonics to obtain [97]

ρ(q) = J0(q) = ĝ
2s∑

l=0
l even

(−τ)
l
2

√
4π

2l + 1
l!

(2l − 1)!! GEl(Q2)Yl0(Ωq) (I.298)

= ĝ

[
GE0(Q2) − 2

3τGE2(Q2)
√

4π
5 Y20(Ωq) + · · ·

]

ρM (q) = ∇⃗ · (J(q) × q) = i ĝ
√
τ

2s∑
l=1

l odd

(l + 1)(−τ)
l−1

2

√
4π

2l + 1
l!

(2l − 1)!! GMl(Q2)Yl0(Ωq) (I.299)

= 2i ĝ
√
τ

[
GM1(Q2)

√
4π
3 Y10(Ωq) − 4

5τGM3(Q2)
√

4π
7 Y30(Ωq) + · · ·

]
where GEl and GMl are the electric and magnetic multipoles, Ylm(Ωq) are spherical harmonics, Ωq

denotes the solid angle associated with the vector q, Q2 = −q2 denotes the momentum transfer
squared (Q2 = −q2 in the Breit frame) and τ = Q2

4m2 . As mentioned we consider a system with
azimuthal symmetry and we took the symmetry axis to be the z-axis, so only the m = 0 components
of the spherical harmonics Ylm contribute in (I.298) and (I.299). The lth electric moment Ql and the
lth magnetic moment µl are given by the Q2 = 0 value of the multipoles,

Ql = ĝ

ml

(l!)2

2l
GEl(0); µl = ĝ

2ml

(l!)2

2l−1GMl(0) (I.300)

12 We are taking all the momenta to be ingoing. In [97], the definitions of qµ and P µ (appearing below in (I.301)) are
interchanged as compared to the definitions given above since [97] takes the momenta of the initial state to be in-going
and of the final state to be out-going.
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The form of the electromagnetic current Ja(q) in terms of form factors follows from Lorentz
covariance, and goes back to [99,100]. The analysis is similar to the determination of the form factor
decomposition of the 3-point functions reviewed in section 2. For the case of massive spin-1 particles,
this has also been discussed in the context of tri-linear gauge coupling in the standard model [102,103].
When d = 4 and s is integer or half-integer, the combination of Lorentz covariance, gauge invariance
(conservation of the current) and parity and time-reversal symmetries imply that the current involves
(2s+1) form factors [100]. The connection to CFT 3-point functions we discuss in this paper suggests
that this number continues to be the same for any d. It would be interesting to show this explicitly.
The explicit form of the electromagnetic current for the case of integer s (in the form given in [97]13)
is as follows:

Ja
(s) = (−1)sε∗

b1···bs
(p′)

[
P a

∑
(k,s)

F2k+1(Q2) + (gacsqbs − gabsqcs)
∑

(k,s−1)
F2k+2(Q2)

]
ε∗

c1···cs
(p) (I.301)

where ϵa1···as denote the polarisation tensor of the spin s particle, P a = pa −p′a and qa = pa +p′a and

∑
(k,s)

≡
s∑

k=0

[ k∏
i=1

(
−qbiqci

2m2

)
s∏

i=k+1
gbici

]
(I.302)

For s = 1, the above expressions give

Ja = −W ∗
b (p′)

[
gbcP aF1(Q2) +

(
gacqb − gabqc)F2(Q2) − qbqc

2m2P
aF3(Q2)

]
Wc(p) . (I.303)

Comparing (I.298), (I.299) and (I.301) shows that the electric and magnetic multipoles GEl(Q2)
and GMl(Q2) are linear combinations of the form factors Fi(Q2). E.g., for s = 1, we have [97]

GE0(Q2) − 2
3τ GE2(Q2) =

√
1 + τ F1(Q2)

GE2(Q2) =
√

1 + τ
[
F1(Q2) − F2(Q2) + (1 + τ)F3(Q2)

]
GM1(Q2) =

√
1 + τ F2(Q2) (I.304)

In perturbation theory, the electromagnetic form factor captures the lowest order terms in the
scattering amplitude of the photon with the massive vector boson. Now however the photon must me
on-shell, Q2 = 0. To avoid using special kinematics we may work with complex momenta (one may
check that one can reach the Breit frame with complex momenta and non-trivial on-shell momentum
for the photon). We can now see how the Wilson coefficients α̂ and β̂ appearing in the flat space
action are related to the electromagnetic moments. Stripping (H.290) of the gauge field polarisation
and comparing with (I.303) we find

F1(0) = 1; F2(0) = (1 + α̂); F3(0) = −2m2β̂ . (I.305)

For virtual photon the form factors may have q2-dependence, see for example [60]. Also, in general,
the electromagnetic form factors for hadronic higher spin states are non-trivial functions of Q2. Using
(I.305) in (I.304) we find,

GE0(0) = 1; GE2(0) = −(α̂+ 2m2β̂); GM1(0) = (1 + α̂) , (I.306)
13See footnote 12 regarding our conventions relative to that of [97].
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and then (I.300) leads to the electric and magnetic moments,

Q0 = ĝ; Q2 = − ĝ

m2 (α̂+ 2m2β̂); µ1 = ĝ

2m(1 + α̂) . (I.307)

This is in exact agreement with the results in [60].
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