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1 Introduction

The AdS/CFT gives a realization in string theory of the holographic principle, providing,
at least conceptually, a non-perturbative formulation of string theory on AdS background
in terms of a boundary conformal field theory [1–3]. In its most general formulation, the
correspondence is conjectured to be a duality between a quantum gravity theory formulated
on a (d+ 1)-dimensional asymptotically locally AdS background (AlAdS) times a compact
manifold and a d-dimensional quantum field theory located on the boundary of AlAdS [4, 5].
The strong/weak nature of this duality can be exploited to explore the strong-coupling regime
of the dual conformal field theories which are dual to a weakly coupled classical bulk theory.
A weakly coupled bulk theory corresponds to the large radius limit of AdS. As the AdS
radius approaches infinity, the AdS geometry reduces to the flat space geometry1 and, for
consistency, the physics in AdS in this limit should match that of flat space (at least locally).
In particular, we could obtain some insight about quantum gravity in flat space by using
the flat-space limit of the AdS/CFT correspondence.

Motivated by this there has been a body of work since the early days of the AdS/CFT
correspondence discussing the flat limit of AdS results, starting from [6–9]. Due to the
AdS/CFT correspondence, the limit should also make sense on the CFT side at the level
of CFT correlators, at least for holographic CFTs, and (d+ 1) dimensional flat space-time
should emerge from d-dimensional CFT correlator in a suitable limit. However, it was also
clear from the very beginning that the limit is subtle, and it has been a challenge to make the
plausible physical picture into a precise and mathematically well-defined limit. The limit has
been analyzed in a variety of different formulations and setups: position space [10–13], Mellin
space [14–16], partial wave expansion [12, 15], momentum space [17–22], see also [23] for a
comparison of the different formulations, and [24–35] for further work. One outcome of these
works is that the flat space limit is a singular limit. For example, in the momentum space
approach of [17, 18], (d+1)-dimensional flat space amplitudes involving gluons and gravitons

1In the most well understood example of duality, namely when the bulk type IIB string theory is dual to
N = 4 SYM, the relation between the AdS radius and the boundary parameters is

L ∼
(
g2

Y M N
) 1

4 (1.1)

In the ’t Hooft limit, one simultaneously sends N to infinity and g2
Y M to zero keeping L large but fixed. For

the flat space limit, one needs to consider the more subtle limit in which we again send N to infinity but we
now keep g2

Y M fixed so that L → ∞ [6, 7].
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were obtained from the coefficients of singular terms of the flat limit of d-dimensional CFT
correlators involving the conserved currents and stress-energy tensor, respectively.

The flat-space limit provides a link to flat space holography. There have been different
approaches to flat space holography, including celestial holography and Carrollian holography,
and connections to the flat-space limit have been discussed, for example, in [36–45]. We are
not going to discuss these interesting proposals in this paper,2 but we note that a minimal
possibility for flat space holography is that it is the flat-space limit of the AdS/CFT, with the
flat space results emerging from correlators of standard relativistic CFT in a suitable limit.

Many of the prior works focused on special cases (e.g. scalar 4-point functions computed
by Witten diagrams, bulk massless fields, etc.). In this work we aim to provide a formulation
that would apply in generality: any n-point function of massless and massive spinning fields
with general interactions. We will focus our analysis in the simplest setup that involves most
of these ingredients while it is also physically interesting: the 3-point function of an abelian
gauge field with a massive spin-1 complex Proca field. Our aim is to obtain the scattering
of the photon off a massive vector field (figure 1) by taking a limit of the corresponding
process in AdS (figure 2). In flat space this scattering process captures the electromagnetic
properties of the massive particle (charge, magnetic and quadrupole moments for a spin one
particle) and as such it is interesting on its own right. In particular, our analysis may pave
a way to obtain non-perturbative results about electromagnetic form factors of higher-spin
(hadronic) states using holography and CFT results.

3-point functions in CFT are fixed by conformal invariance, up to constants, so this is a
case where the results is known non-perturbatively, and it would allow us to directly take
the limit on the CFT side. On the other hand, to understand what is the precise limit to be
taken, it is useful to have a bulk realization in AdS. We will work with Euclidean signature in
AdS with flat boundary (AdS in Poincaré coordinates, or more accurately with the boundary
conformal structure of AdS represented by a flat metric). We will Fourier transform along
the boundary directions and, correspondingly, we will consider the CFT in momentum space.

In AdS/CFT correspondence, the massive field is dual to a non conserved operator
whereas the gauge field is dual to a conserved current in the boundary theory, so the relevant
CFT 3-point function is that of a conserved current with a non-conserved vector operator and
its complex conjugate. This 3-point function (in momentum space) was determined in our
earlier work [47] by solving the conformal Ward identities, following [48–51], and it depends
on the conformal dimension ∆ of the non-conserved operator, the spacetime dimension d

and three parameters, whose values are theory-specific.
In AdS, we work with the most general effective action of the Proca field coupled of

an abelian gauge field, including up to three derivative terms. This action involves three
coupling constants: the minimal coupling, and two more couplings that may be associated
with the magnetic and quadrupole moments of the massive spin-one field. This action might
be thought as arising from a compactification of ten or eleven dimensional supergravity,
where the massive vectors correspond to Kaluza-Klein modes of some higher-dimensional
field. The boundary values of the bulk fields act as the sources of the corresponding boundary

2We will also not discuss whether the limit exists as a limit of the dual CFT as a theory (cf. footnote 1) or
as a limit of the bulk geometry (cf., for example, [46]).
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Figure 1. Scattering of a photon γ off a
massive spin-1 particle W in Minkowski space-
time.

W

W

γ

Figure 2. Same process as in figure 1 but
now in Euclidean AdS.

operators and the holographically renormalized bulk partition function provides the generating
functional of the boundary CFT correlators. We work out the 3-point function using the
original GKPW prescription [4, 5] and holographic renormalization [52]. Comparison of the
3-point function computed using the AdS/CFT correspondence with the general CFT 3-point
function shows that there is an 1-1 relation between the three arbitrary parameters that
appear in the solution of the conformal Ward identities and the three AdS bulk coupling. This
relation depends on the AdS radius L and the conformal dimension ∆ of the non conserved
operators and is valid in the regime where the boundary theory is strongly coupled. This
explicit matching provides a non trivial test of AdS/CFT correspondence for the massive
spin-1 field described by a higher derivative effective action.

After computing the above 3-point function, we analyse it in the flat limit where we send
the AdS radius L to infinity. The flat space amplitudes arise from the bulk region where the
AdS metric reduces to the flat metric with the vanishing Ricci tensor and Ricci scalar. In the
standard Poincaré coordinates (see equation (A.6)), the Ricci tensor can be expressed in terms
of the radial coordinate z as RMN = −d δMN/z

2 (M,N = 0, . . . d). Therefore, the dominant
region in the flat limit corresponds to the deep interior of the AdS background where z is
large. We parametrized this AdS region as z = Le

τ
L . In the flat limit, τ is interpreted as

Euclidean time.3 Further, in this flat region, the AdS isometry algebra becomes the Poincaré
algebra through the Inonu Wigner contraction [53]. In particular, the AdS isometries include
scaling and special conformal transformation, and we show how in the flat space limit these
isometries disappear and instead we obtain translational invariance in τ together with Lorentz
transformations that rotate τ to the other boundary directions.

We would like to take the flat space limit in a way that keeps the physics we want to
probe. Suppose we want to compute the scattering amplitudes for a theory described by flat
space by a Lagrangian Lflat[m2

i , gj ] that depends on set of massless fields, massive fields with

3We work in the Euclidean AdS signature and Wick rotate the radial direction to make it time like after
taking the flat limit.
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masses m2
i and coupling gj via a flat-space limit from AdS. Then the proposal is to start

with the same action now in AdS (with AdS radius L) and then consider the flat space limit
L→ ∞ keeping fixed the masses m2

i and coupling gj (in Planck units). Given the standard
relation between masses and conformal dimensions, for example m2L2 = ∆(∆− d) for scalar
fields (or equation (4.8) for the case we consider), keeping fixed the mass implies that the
conformal dimension must tend to infinity, ∆ → ∞, as L→ ∞. The crucial question is then
whether AdS amplitudes, or more generally CFT correlators, admit such a limit.

The main building blocks for momentum space CFT 3-point functions are the so-called
triple-K integrals [48],

JN{k1,k2,k3}(p1, p2, p3) ≡
∫ ∞

0
dxx

d
2 +N−1

3∏
i=1

p
∆i− d

2 +ki

i K∆i− d
2 +ki

(xpi) . (1.2)

where pi are the magnitudes of momenta, pi =
√

p2
i , K∆i− d

2 +ki
(xpi) are modified Bessel

functions of the second kind and N and ki are parameters (which are integers in the cases we
discuss). In this integral, the x = 0 region is the UV part of the integral, while the x→ ∞
corresponds to the IR part of the integral. In the AdS computation these integrals arise from
the corresponding Witten diagrams with the Bessel functions being the (momentum-space)
bulk-to-boundary propagators and the integral over x originating from the integral over the
bulk vertex, with x identified with the AdS radial coordinate. The flat-space limit corresponds
to considering the deep interior of AdS, z → ∞, and thus the IR region of the triple-K
integral. In the flat-space limit the momenta along the boundary directions become the
spatial momenta of the flat-space scattering amplitude, and thus we want to keep fixed pi as
x→ ∞. In addition, we need to send ∆ → ∞ when the corresponding bulk field is massive.

Thus, the flat-space limit rests (in part) in our ability to take the limit of the triple-K
integrals. For massless fields this involves taking the large argument limit of a modified
Bessel function, while for massive fields we need to take a limit where both the argument
and the order and the argument of the Bessel function tends to infinity. This former limit is
well known, but the latter (called uniform expansion in the mathematics literature) is less
known and we review it in detail in appendix B. The limits of the Bessel function also tell
us how the AdS bulk-to-boundary propagators behave in this limit, and after Wick-rotating
to Minkowski spacetime, the answer is that they tend to plane waves,

K∆− d
2 +ℓ(z k) →

1√
Z∆

e−iEt (1.3)

where t = −iτ is Minkowski time (with τ = L log(z/L)). E = ±
√
k2 +m2 is the energy

variable of the flat-space (d+ 1)-momentum vector, (E,k), where k is the momentum vector
in the CFT. In other words, the momentum variable of the CFT directly becomes the spatial
part of the momentum variable in flat space and the energy variable is what is dictated by
the on-shell condition. Note that the correct on-shell relation for E automatically emerges
from the limit. The two signs correspond to whether after Wick-rotation the plane wave
corresponds to in- or out-state. The factor Z∆ is a renormalization factor. In the cases we
discuss, the Z-factor tends to infinity for the massless photon and to zero for the massive
vector. One would need to renormalize the CFT operators by precisely these factors in
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order for the flat-space limit to exist. Using (1.3) in (1.2) we find that the triple-K integral
becomes (proportional) to the energy-preserving delta function,

lim
L→∞

JN{k1,k2,k3}(p1, p2, p3) ∼ δ(E1 + E2 + E3) (1.4)

where the limit is taken with ∆i/L = mi fixed. Note that the conservation of the spatial
momentum is automatic since the momentum space CFT 3-point functions already contain
the momentum-preserving delta function, δ(k1 + k2 + k3). To complete the flat-space
limit of the 3-point function one needs to take the limit of the form factors (introduced in
equation (2.5)) and these involve factors of ∆ (which follow from the solution of the conformal
Ward identities). These factors are crucial in order to obtain the correct flat space result,

lim
L→∞

√
ZW1ZAZW3 A

µ1µ2µ3
3 = −2πiδ(E1 + E2 + E3)Mµ1µ2µ3

3 , (1.5)

where Aµ1µ2µ3
3 is the momentum-space CFT 3-point function and Mµ1µ2µ3

3 is the flat space
scattering amplitude.

Together with the 3-point function we also analyse the flat limit of the AdS propagators,
with the boundary directions Fourier transformed to momentum space. Again, the flat limit
of these propagators corresponds to sending L and ∆ to infinity. An important role is played
by the bulk to boundary (Btb) propagators of the gauge and Proca fields. These dictate the
external leg factors of the fields in the flat limit which turns out to be very crucial for matching
the flat space 3-point amplitude with the CFT 3-point function. More generally, the solution
of the field equations in AdS properly limit into corresponding solutions in flat space. The
AdS solutions depend on the fields that parametrize their boundary conditions (which play the
role of sources in AdS/CFT) and these morph into polarization vectors in the flat space limit.

We also consider the bulk-to-bulk (BtB) propagator of the gauge field. Even though we
only need its near boundary behaviour in computing the 3-point function via holographic
renormalisation, we have analysed the flat limit of the full BtB propagator in momentum
space. Since this propagator plays the role of Green’s function in AdS, we expect it to limit to
the Feynman propagator since the latter also plays the role of Green’s function in flat space.
We find that this is indeed the case, as expected. However, this analysis gives an interesting
insight about the longitudinal part of the propagator. As is common in AdS/CFT, we used
the radial/axial gauge where A0 = 0. In the flat space limit, the transverse part of the gauge
BtB propagator matches exactly with the transverse part of the Feynman propagator in the
flat space limit, while the longitudinal part divergences. This divergence is precisely linked
with an additional singularity (an unphysical double pole) that is present in the Feynman
propagator in the axial gauge in flat space [54, 55], and our results match these earlier results.

The rest of the paper is organised as follows. In section 2, we review results obtained
in previous literature: we summarise the expression of the momentum-space CFT 3-point
function involving a conserved current and two generic non conserved operators having the
same conformal dimension, and we also review results about the flat limit of AdS at the
geometric and group algebra level. In section 3, we explicitly show how the AdS isometries
limit to the Poincaré isometries and how the scaling and special conformal symmetry of the
CFT correlators recombine to Poincaré transformations in the large L limit. In section 4, we

– 6 –
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shall introduce the bulk theory involving a gauge field and two charged massive spin-1 fields
and derive the boundary CFT 3-point function using this bulk theory and the procedure of
holographic renormalisation. This fixes the coefficients appearing in the CFT 3-point function
in terms of bulk quantities. In section 5, we analyse the flat limit of the BtB propagator of
the gauge field and Btb propagators of the gauge and Proca fields. In section 6, we consider
the flat space limit of the 3-point function and show that it matches with the expected result
in the flat space. We end with some discussion in section 7.

The papers contains a number of technical computations, which require dealing with
many subtle issues. While the techniques and subtleties are all known by the experts, detailed
expositions are rare in the literature and we present a comprehensive analysis in a series of
appendices. Appendix A contains our conventions, and in appendix B we discuss the limiting
behaviour of the modified Bessel functions. In particular, we present a self-contained discussion
of the uniform expansion of the Bessel function when both the argument and the order of the
Bessel function goes to infinity. Appendix C contains a derivation of the most general form of
effective action in AdS, which contains up to cubic terms in the gauge and Proca fields, and
up to the three derivative terms. This is the starting point for our holographic computation in
section 4. In appendix D we compute the bulk-to-boundary and the bulk-to-bulk propagators
of the gauge field in axial gauge, and the bulk-to-boundary propagator for the Proca field.
Appendix E contains the computation of the gauge field bulk-to-boundary propagator in
Lorenz gauge. In appendices F and G we work out holographic renormalization for the Proca
and gauge field, respectively. The massive spin-1 field corresponds to an irrelevant operator
and this requires special attention. Appendix H contains the computation of the corresponding
flat space scattering amplitude. Finally, in appendix I we present a self-contained summary
of the relation between electromagnetic form factors and couplings in the effective action.

2 Review of CFT results

In this section, we summarise the CFT 3-point function involving a conserved current and
two non conserved spin 1 fields in momentum space following [47]. This will be needed later
to compare with the bulk 3-point function of a gauge field and two massive spin-1 Proca
fields. The results in [47] are given in an index free notation where Lorentz indices have
been contracted with auxiliary vectors. Here, we state the result in terms of explicit indices
which will be more useful for our purposes.

The desired 3-point correlator was determined from the CFT Ward identities. Extracting
the momentum conserving delta function, it can be expressed as

Aµ1µ2µ3
3 = (2π)dδd(p1 + p2 + p3)

〈〈
Oµ1

1 (p1)J µ2(p2)Oµ3
3 (p3)

〉〉
(2.1)

The operators O1 and O3 can have different conformal dimensions, say ∆1 and ∆3 respectively.
However, in our case, they will correspond to bulk fields with the same mass, hence, we
shall take ∆1 = ∆3 = ∆. The reduced correlator in (2.1) can be decomposed in a transverse
and longitudinal part as〈〈

Oµ1
1 (p1)J µ2(p2)Oµ3

3 (p3)
〉〉

=
〈〈
Oµ1

1 (p1) jµ2(p2)Oµ3
3 (p3)

〉〉
+p

µ2
2
p2

2

〈〈
Oµ1

1 (p1) p2νJ ν(p2)Oµ3
3 (p3)

〉〉
, (2.2)

– 7 –
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where jµ denotes the transverse part of the conserved current

jµ(p2) = πµ
ν(p2)J ν(p2), πµν(p2) = δµν − pµ

2p
ν
2

p2
2
, pµ

2 πµν(p2) = 0 . (2.3)

The second term on the right hand side of (2.2) is the longitudinal contribution and the
conservation Ward identity for the symmetry current relates it to the 2-point function of
the operators Oµ. This relates one of the coefficients of the 3-point function with the
normalization of the 2-point function of Oµ, as we discuss below. Focusing on the transverse
part, we decompose it in form factors,〈〈

Oµ1
1 (p1) jµ2(p2)Oµ3

3 (p3)
〉〉

= (π · p1)µ2Aµ1µ3 + πµ2µ1Bµ3 + πµ2µ3Cµ1 , (2.4)

where

Aµ1µ3 = A1 δ
µ1µ3 +A2 p

µ1
1 (p1 + p2)µ3 +A3 p

µ1
2 (p1 + p2)µ3 +A4 p

µ1
1 pµ3

2 +A5 p
µ1
2 pµ3

2 ;
Bµ3 = B1 (p1 + p2)µ3 +B2 p

µ3
2 ;

Cµ1 = C1 p
µ1
1 + C2 p

µ1
2 . (2.5)

The form factors Ai, Bk, Ck (i = 1, . . . , 5, k = 1, 2) depend on the magnitudes of the momenta,
pj = |pj | =

√
p2

j (j = 1, 2, 3). In the above expressions we used the momentum conserving
delta function to express pµ

3 = −pµ
1 − pµ

2 .4

As discussed in section 3.5 of [47], the correlator is antisymmetric under exchange of
(µ1, p1) and (µ3, p3) that this implies,

Ai(p1, p2, p3) = Ai(p3, p2, p1), i = 1, 2, 5, A3(p1, p2, p3) = −A4(p3, p2, p1) (2.6)
B1(p1, p2, p3) = C1(p3, p2, p1), B2(p1, p2, p3) = −C2(p3, p2, p1).

The functions Ai, Bi and Ci are determined by solving the Ward identities, and they
are given in terms of triple-K integrals:

A1 = −a5J2{0,1,0} + a1J1{0,0,0} ;
A2 = −a5J3{−1,2,−1} + a2J1{−1,0,−1} + 2a4J2{−1,1,−1} ;
A3 = −A4 = a5J3{0,1,−1} − a4J2{0,0,−1} ;
A5 = a5J3{0,0,0} ;
B1 = C1 = −a5J2{0,1,0} + b1J1{0,1,−1} + (b1 − b2)J1{1,0,−1} + (b1 − b2 + a4)J1{0,0,0} ;
B2 = −C2 = −a5J2{0,0,1} + b2J1{0,0,0} ; (2.7)

where JN{k1,k2,k3} denote the triple K integrals and are defined by

JN{k1,k2,k3}(p1, p2, p3) ≡
∫ ∞

0
dxx

d
2 +N−1

3∏
i=1

p
∆i− d

2 +ki

i K∆i− d
2 +ki

(xpi) . (2.8)

4In [48] the momentum conserving delta function was solved differently for different indices, µ1 →
p1, p2, µ2 → p2, p3, µ3 → p3, p1. This results in form factors Ã, B̃, C̃ that relate to the ones we use here by

A1 = −Ã1, A2 = Ã4 − Ã2, A3 = Ã5 − Ã3, A4 = Ã4, A5 = Ã5

B1 = B̃2 − B̃1, B2 = −B̃2, C1 = C̃1, C2 = C̃2.

– 8 –
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For more details and useful properties of these integrals, see [48, 49, 56]. Note that (2.7)
already satisfy the symmetry constraints (2.6).

The 3 point function of a conserved current and two arbitrary spin 1 operators with
the same conformal dimension ∆1 = ∆3 = ∆ is given in terms of only 3 independent
parameters. This means that not all the parameters ai, bi in (2.7) are independent. There
are relations among different constants and three of the constants are fixed in terms of
the remaining three as

a1 = (d− 2)∆a5 − (∆− 1)a4 + b2; a2 = 2(d− 2)∆a5 − (2∆ + d− 4)a4 +
(2∆− d)
(∆− 1) b2

b1 = (2∆− d)
2(∆− 1)b2 . (2.9)

Thus, the 3-point function is parametrised by three independent parameters as expected,
and we have chosen a4, a5 and b2 to be the three independent parameters. One of these
parameters is fixed in terms of the normalisation of the non-conserved operator. Indeed, the
2-point function of operators O1 and O3 is given by [47]〈〈

O∗
µ(p)Oν(−p)

〉〉
= a0

[
δµν −

(2∆− d

∆− 1

)
pµpν

p2

]
p2∆−d , (2.10)

Now, the generating functional of the CFT correlators is given by

Z[A(0)µ,W(0)µ,W
∗
(0)µ] =

∫
DΦ exp

[
−SCF T −

∫
ddx

(
J µA(0)µ +O∗µW(0)µ +OµW∗

(0)µ

)]
(2.11)

where A(0)µ,W(0)µ and W∗
(0)µ are the sources for the CFT operators J µ,O∗µ and Oµ, re-

spectively. In the AdS/CFT correspondence, these sources are the fields that determine the
boundary conditions of the corresponding bulk fields. Demanding invariance of the generating
functional under the U(1) transformation, namely

δA(0)µ(x) = ∂µλ(x); δW(0)µ = igλ(x)W(0)µ; δW∗
(0)µ = −igλ(x)W∗

(0)µ (2.12)

we find the conservation ward identity

∂µ⟨J µ(x)⟩s = ig
(
W(0)µ(x)⟨O

∗µ(x)⟩s −W∗
(0)µ(x)⟨O

µ(x)⟩s

)
, (2.13)

where the subscript s indicates that these are identities for expectation values in the presence
of sources. Differentiating w.r.t. W(0)µ1

(x1),W(0)µ3
(x3), (and renaming x, µ→ x2, µ2), and

Fourier transforming to momentum space yields,〈〈
O∗µ1(p1)p2µ2J µ2(p2)Oµ3(p3)

〉〉
=
(
g
〈〈
O∗µ1(−p3)Oµ3(p3)

〉〉
− g

〈〈
O∗µ1(p1)Oµ3(−p1)

〉〉)
(2.14)

Using this, we find [47]

a0 = 2
d
2−4 (d− 2∆)

g(d− 2) Γ
(
d− 2∆

2

)
Γ
(2∆− d

2

)
Γ
(
d

2

) [
(∆−1) (−a4 + (d− 2)a5)+b2

]
(2.15)

Note that this relation involves a new parameter, namely g, which enters via the Ward identity.
Altogether, the Ward identity introduces one relation between the parameters in the 3-point
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function and the normalization of the 2-point, but it also contains an additional parameter
(the gauge coupling). Thus, up to 3-point functions we need a total of three parameters.

Finally, we comment about the divergences appearing in the 3-point function. For integer
values of ∆, many of the triple-K integrals appearing in (2.7) diverge and hence regularisation
is required and renormalization may be needed. However, in this paper we consider ∆ to be non-
integer. In this case also some of the triple K integrals, namely J1{0,1,−1}, J1{1,0,−1}, J1{−1,1,0}
and J1{−1,0,1} are individually divergent. However, the divergences cancel for the combination
in which they appear in the 3-point function. The details of this analysis can be found in [47].

3 Poincaré symmetry from AdS isometries

3.1 Flat space limit of AdS

At the geometric level, taking the flat space limit of AdS corresponds to sending L to infinity.
The AdS metric in the Poincaré coordinates is given by

ds2 = L2

z2

(
dz2 + δµνdx

µdxν
)
; xa = (z, xµ) (3.1)

In the limit L→ ∞, taken such that the metric GMN has a (finite) limit, the Riemann, Ricci
and scalar curvatures vanish and one gets a flat geometry (see equation (A.11)). To analyse
this limit efficiently, it is convenient to parametrise the radial coordinate z as [23]

z

L
= e

τ
L ; τ ∈ (−∞, ∞) (3.2)

In the large L limit, τ becomes (d+ 1)th flat space direction. Indeed, in this limit, the AdS
metric (3.1) becomes the flat space metric as

ds2 = (dτ)2 + e−2 τ
L

δµνdxµdxν = δabdx
adxb +O

( 1
L

)
(3.3)

where a, b = 1, · · · , d+ 1 and we have denoted τ by xd+1 in the second equality. To get to
Minkowski space one may additionally Wick rotate τ = −it .5

It is also instructive to see how the Poincaré algebra emerges from the AdS isometry
algebra in the flat limit. The isometry algebra of Euclidean AdSd+1 is so(d+ 1, 1) , which
is also the conformal algebra on Rd, is given by

[MAB,MCD] = ηBCMAD − ηACMBD + ηADMBC − ηBDMAC (3.4)

where, ηAB = (+, . . . ,+, −) and

A,B,C,D = 1, 2, · · · , d+ 1, d+ 2 ≡ {a, d+ 2} ≡ {µ, d+ 1, d+ 2}

To recast (3.4) in the conformal algebra, we need to make the following redefinitions [57]

Mµν = Lµν ; Md+1,µ = 1
2(Pµ +Kµ); Md+2,µ = 1

2(Pµ −Kµ); Md+2,d+1 = D (3.5)

5Note that the analogous flat space limit of the de Sitter metric directly leads to Minkowski space.
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With this, the algebra (3.4) reduces to

[Lµν , Lρσ] = δνρLµσ − δµρLνσ + δµσLνρ − δνσLµρ

[Lµν , Pρ] = δνρPµ − δµρPν ; [Lµν ,Kρ] = δνρKµ − δµρKν

[Kµ, Pν ] = 2δµνD − 2Lµν ; [D,Pµ] = Pµ; [D,Kµ] = −Kµ (3.6)

This is the standard conformal algebra: Lµν , Pµ,Kµ, D represent the rotation, translation,
special conformal transformation and the dilatation generator, respectively.

The (Euclidean) AdS isometry algebra (3.4) reduces to the algebra of the Euclidean
group in the flat space limit via the Inonu Wigner contraction [53]. Upon Wick rotation this
becomes the Poincaré algebra, and we will loosely use this terminology even when we work
with Euclidean signature. To see this, we note that upon splitting the (d+ 2)th component
the algebra (3.4) can be written as

[Mab,Mce] = δbcMae − δacMbe + δaeMbc − δbeMac

[Mab,Mc,d+2] = δbcMa,d+2 − δacMb,d+2; [Ma,d+2,Mb,d+2] =Mab (3.7)

Now, writing Ma,d+2 ≡ LPa and taking the limit L → ∞, the algebra (3.7) reduces to

[Mab,Mce] = δbcMae − δacMbe + δaeMbc − δbeMac

[Mab,Pc] = δbcPa − δacPb; [Pa,Pb] = 0 (3.8)

This is the standard algebra of the Euclidean group in flat d+ 1 dimensional space.

3.2 From AdS to Poincaré

It was mentioned in the introduction that CFT correlators are expected to turn into S-matrix
in the flat limit. This means that the conformal symmetry should morph into the Poincaré
symmetries in the flat limit. In this subsection, we explicitly show how this happens.

We begin by noting that the generator Ma,d+2 introduced in the previous subsection
becomes the momentum generator in d+ 1 dimensional flat space, up to a rescaling by the
AdS radius. From equation (3.5), this implies that the combination Pµ −Kµ of the CFT
algebra becomes the momentum component Pµ ( with µ = 1, 2, · · · , d) whereas the CFT
generator D becomes the momentum component Pd+1 in the flat limit. Together, they form
the flat space momentum in d + 1 dimensions

Pa = (Pµ,Pd+1) ∼ (Pµ −Kµ, D) (3.9)

On the other hand, the combination Pµ + Kµ of the CFT generators provides Md+1,µ

components of the Lorentz generator in the flat limit, i.e.

Mab = (Mµν ,Md+1,µ) ∼ (Lµν , Pµ +Kµ) (3.10)

To see these relations more explicitly at the level of symmetry transformations, we note that
the AdS isometry transformations in (τ, xµ) coordinates are given by [58]

1. Rotations and translation of xµ.

δxµ = αµ
νx

ν + bµ (3.11)
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2. Scaling of xµ and translation of τ

δxµ = λxµ; δτ = Lλ (3.12)

3. Special conformal transformation of (τ, xµ)

δxµ = 2(δσνc
σxν)xµ − x2cµ; δτ = 2L(δµνc

µxν) (3.13)

where, x2 ≡ L2e
2τ
L + δµνx

µxν .

On the other hand, we have the following isometries in flat space

δxµ = ωµ
MxM + aµ = ωµ

νx
ν + ωµ

ττ+ aµ (3.14)
δτ = ωτ

MxM + β = ωτ
µx

µ + β (3.15)

We shall now show how to recover these isometries from the flat limit of AdS and relate the
flat space parameters ωµ

ν , ω
τ
µ, a

µ, β in terms of the AdS isometry parameters αµ
ν , b

µ, cµ and
λ. We start with the transformation of τ. From (3.12), we find that it has the structure of
translation in the limit L → ∞ if we simultaneously send λ to 0, i.e.

β = lim
L→∞
λ→0

Lλ =⇒ δτ = β (3.16)

We also see that in this limit the scaling transformation of xµ disappears. We now consider
the rotation of τ. From equation (3.13), we see that it has the correct flat space structure
if we define

ωτ
ν ≡ lim

L→∞
cν→0

2Lcν =⇒ δτ = ωτ
νx

ν (3.17)

This completes the analysis for the transformations of τ. Next, we consider the transformations
of xµ. In the limit L → ∞ and cν → 0, equation (3.13) gives

δxµ = lim
L→∞
cν→0

2(δσνc
σxν)xµ −

[
L2
(
1 + 2τ

L
+ 4τ2

L2 + · · ·
)
+δσνx

σxν
]
cµ

= ωµ
ττ− lim

L→∞
cν→0

L2cµ (3.18)

where, we have ignored the terms which vanish when L → ∞ or cµ → 0. In writing the
last equality, we have used equation (3.17) and ωµ

τ = −ω µ
τ . Combining the above equation

with (3.11), we find

δxµ = αµ
νx

ν + ωµ
ττ+ bµ − lim

L→∞
cν→0

L2cµ (3.19)

Finally we consider bµ = L2cµ + aµ, where aµ is independent of L, so that the combination
(bµ − L2cµ) = aµ has a finite limit giving a finite translation and we recover the expected
Poincaré transformation of xµ, as given in (3.14), in the flat limit. From the above derivation,
we also see that the translation of xµ in the flat limit comes from a combination of original
translation and special conformal transformation as indicated in (3.9). Similarly, the rotation
of xa comes from a linear combination of the original rotation and translation of xµ and the
special conformal transformation of (xµ, τ) as suggested by equation (3.10).
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4 3-point function from bulk theory

4.1 Bulk theory

In this section we derive the CFT 3-point function
〈
O∗µJ τOν

〉
of a U(1) conserved current

J µ with a vector operator Oν charged under the U(1) using AdS/CFT. For this purpose we
need a bulk action in AdS, whose cubic terms are linear in the gauge field AM and quadratic in
massive vector fields, WN . As shown in appendix D, the most general such action in Euclidean
signature describing the interaction between a U(1) gauge field and a complex massive spin
one field in d+ 1 dimensional curved spacetime up to 3 derivative terms is given by

S =
∫
dd+1x

√
G

[
− 1
16πGN

(R− 2Λ) + 1
4F

MNFMN + 1
2W

∗
MNW

MN +m2W ∗
MWM

−ig αFMNW ∗
MWN + igβFMN

(
∇MW ∗

P∇PWN −∇MWP∇PW ∗
N

)]
, (4.1)

where M, N,P run from 0 to d, Λ is the cosmological constant and FMN = ∂MAN − ∂NAM

is the field strength of the gauge field. We have also introduced the field strength of the
massive spin 1 field as

WMN = DMWN −DNWM , DM = ∇M + igAM , (4.2)

with ∇M being the diffeomorphism covariant derivative. The cubic terms are parametrized
by three independent parameters, g, α, β, matching the number of independent parameters
that we found in the CFT analysis. One of them is the gauge coupling constant g and it
multiples the terms introduced by minimal coupling. The other two, α and β, were first
introduced in the context of zero cosmological constant and their physical meaning is as
follows: α is the gyromagnetic coupling which is related to the magnetic moment of the
massive vector field WM and β is related to its quadrupole moment, see, e.g., [59–63] and
the discussion in appendix I.

We shall use the above action in an AdS background. Einstein equations imply that the
matter fields AM and WM couple to the metric through their energy momentum tensor. This
back-reaction can modify the AdS background. However, we shall ignore such back-reaction.
The reason is that we are interested in computing the 3-point function in the CFT, so the
corresponding sources are only turned on infinitesimally (to implement the operator insertion)
and then are turned off. As the bulk energy momentum tensor is quadratic in the fields,
one may then neglect the backreaction. The gauge field equation derived from (4.1) in the
AdS background is given by

∇M FMN = JN =⇒
(
∇M∇M + d

L2

)
AN −∇N∇MAM = JN (4.3)

with the source current given by

JN = 2ig
(
W ∗

M∇[MWN ] −WM∇[MW ∗N ]
)
+ 2ig α∇M

(
W ∗[M WN ]

)
−2ig β∇M

(
∇[M |W ∗

P ∇PW |N ] −∇[M |WP ∇PW ∗|N ]
)
, (4.4)
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where the antisymmetrization on right hand side is only over the indices M and N . In
writing (4.4) we have neglected terms with higher powers in the gauge coupling g since we
shall be only interested in the cubic interactions, which are linear in the gauge field, in what
follows. Taking the covariant derivative of both sides of (4.3), we find that the left hand side
vanishes identically giving the conservation equation ∇MJM = 0. It is easy to check that the
current given in (4.4) satisfies this conservation condition on-shell. For doing calculations,
we shall Fourier transform the boundary directions as

TM (z, k) =
∫
ddx e−ik·x TM (z, x), (4.5)

where TM can be any bulk quantity. From now on, we shall work in this Fourier basis.
To proceed further, we need to gauge fix AM (z, k). We shall work in the axial gauge

and in Euclidean signature, setting A0(z, k) = 0. For the 3-point function, we shall need
the perturbative solution of the gauge field up to first order in the coupling g. It is given
by (see appendix G.4 for details)

Aµ(z, k) = K ν
µ (z, k)A(0)ν(k) +

∫
dw

√
G Gµν(z, w; k) Jν(w, k) , (4.6)

where K ν
µ (z, k) and Gµν(z, w; k) denote the bulk-to-boundary and bulk-to-bulk propagators

of the gauge field, respectively. Their expressions are given in equations (D.16) and (D.30).
The field A(0)µ(k) denotes the boundary value of the gauge field and Jν(w, k) can be obtained
from (4.4) by specialising N to the boundary index ν.

Next, we consider the massive fields. For the 3-point function we are interested in, we
only need the free field classical solution for these massive fields. The reason is that we
will determine the 3-point function through the back reaction of the massive fields to Aµ,
using (4.6), and since the massive field enters quadratically there, higher-order corrections to
the massive field will not contribute to the 3-point function of interest. These can be expressed
in terms of the massive spin-1 bulk-to-boundary propagators K µ

M (z; k) and K̄ µ
M (z; k) as

WM (z, k) = K µ
M (z, k)wµ(k); W ∗

M (z, k) = K̄ µ
M (z, k)w∗

µ(k) (4.7)

The propagators K µ
M (z; k) and K̄ µ

M (z; k) are given in equations (D.47) and (D.49), respectively.
The wµ and w∗

ν are related to the boundary values of Wµ and W ∗
ν , respectively. Note that

we only need to specify the boundary component of the massive fields. The radial component
Wz gets fixed in terms of the boundary components.

The bulk fields WM and W ∗
M are dual to the non conserved CFT operators of section 2.

Their mass m is related to the conformal dimension ∆ of the boundary operators by the relation

L2m2 = (∆− 1)(∆ + 1− d) (4.8)

which follows from equation (D.38) of appendix D.2.

4.2 Three-point function

In this subsection, we use the AdS/CFT correspondence to obtain the 3-point function
involving two spin-1 operators and a conserved current in the CFT dual to the bulk theory
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described above. This 3-point function will be a special case of the 3-point function given
in section 2. The 3 arbitrary parameters appearing in the CFT result (2.4) will be fixed
in terms of the bulk parameters.

According to the AdS/CFT correspondence, the on-shell bulk partition function Zonshell
with given boundary behaviour of the bulk fields is identified with the generating functional
of the dual CFT-correlation functions [4, 5] ,

Zonshell[Φ(0)] =
〈
e−
∫

ddx Φ(0)(x)O(x)
〉

(4.9)

where Φ(0) denotes the field parametrizing the Dirichlet boundary conditions of the bulk
field Φ which is dual to the CFT operator O.

In the saddle point approximation, the generator of the connected QFT correlators,
denoted by W [Φ(0)], is given by the on-shell value of the action, namely,

W [Φ(0)] = −Sonshell (4.10)

This is the main ingredient to compute the correlation functions of boundary CFT operators
from the bulk action. To obtain renormalized correlators we still need to holographically
renormalize [52]. We regulate the theory by putting the boundary at z = ϵ and add
counterterms to cancel the infinities. The full renormalized action is obtained by

Sren = lim
ϵ→0

(
Sreg + Sct

)
(4.11)

where Sreg denotes the regularised action and Sct denotes the counterterms.
The details of the holographic renormalisation for the bulk theory described by action (4.1)

is given in appendix G. Given the renormalized on-shell action, we can now evaluate the
desired 3-point function. The first step for this is to obtain the exact renormalized 1-point
function of the conserved current. It is given by (for details, see appendix G)

⟨J µ(k)⟩ = lim
ϵ→0

1
ϵ

d
2
√
γ

δSren
δAµ(k, ϵ)

(4.12)

where we have used the Fefferman Graham coordinates,

ds2 = L2dρ
2

4ρ2 + γµνdx
µdxν , γµν = L

ρ
δµν . (4.13)

Here γµν is the induced metric at ρ =constant and the IR regulating boundary is at ρ = Lϵ.
The CFT 3-point function of the conserved current and two spin-1 operators is obtained

by differentiating (4.12) with respect to the sources of the spin-1 operators. The final
result is given by

〈
O∗µ(p1)J τ (p2)Oν(p3)

〉
= δτλ (2π)d(2π)dδ2

δW(0)µ(−p1)δW∗
(0)ν(−p3)

∫ ∞

0
dσ

√
G Kλκ(σ; p2)Jκ

(0)(σ, p2) ,

(4.14)
where W(0)µ and W∗

(0)µ denote the fields associated with the boundary conditions of the
bulk fields WM and W ∗

M , respectively (see (F.6), (F.10)). These are the sources of the
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boundary operators O∗
µ and Oµ respectively. The Jκ

(0) denotes the boundary component of
the current (4.4) but with terms only up to O(g) in the coupling constant. Terms with higher
orders in g are relevant for bulk calculations of four and higher point correlation functions but
do not contribute to the 3-point function considered in this section. The source current Jκ

(0) is a
function of the massive fields Wµ and W ∗

µ whose classical solutions are given in equation (4.7).
After a long but straightforward calculation and using the definition of triple-K integrals

given in (2.8), the transverse contribution to the 3-point function is obtained to be

〈〈
O∗

ν(p1)Jµ(p2)Oρ(p3)
〉〉

= (π2 · p1)µ Aνρ + (π2)µν Bρ + (π2)µρ Cν (4.15)

The form factors A, B and C, have the same structure as in equations (2.5) and (2.7).
However, the coefficients ai and bi appearing in (2.7) are now given in terms of the AdS
bulk parameters as

a1 = gC0

[
−2 + 2(d− 2)

L2 β

]
a2 = gC0

[
−4 + 2(d− 2)

∆− 1 α+ 1
L2

2(d− 2)(2(2−∆) + d(∆− 1))
(1−∆) β

]
a4 = gC0

[ 1− α

∆− 1 + 1
L2

2(d− 2 + ∆(1− d))
1−∆ β

]
a5 = gC0

[2β
L2

]
b1 = gC0

[
d− 2∆
2(∆− 1)

(
1 + α− 2∆

L2 β

)]
b2 = gC0

[
−(1 + α) + 2∆

L2 β

]
(4.16)

where, we have defined6

C0 = − 22− d
2

Γ
(

d
2 − 1

)
 2

d
2 +1−∆

Γ
(
∆− d

2

)
2

L2∆−d−1 (4.17)

The relations given in equation (2.9) can be easily seen to be satisfied for the values of a4, a5
and b2 given above. The AdS/CFT correspondence has fixed the 3 arbitrary parameters in
the boundary CFT 3-point function in terms of the bulk coupling parameters.

The CFT 3-point function, reviewed in section 2, of one conserved current and two non
conserved operators ( with same conformal dimensions ) spans a 3-dimensional space. In the
bulk effective theory also, we have 3 parameters g, α and β which also span a 3-dimensional
space. The 3 independent parameters in the CFT side were chosen to be a4, a5 and b2. Their
expression in terms of the bulk parameters is given above. We can also invert these relations

6The AdS-radius L2∆−d−1 that appears in the definition of C0 has been extracted from the metric factors
involved in the integral of three Btb-propagators. All the other factors appearing in the definition of C0 collect
the overall constants present in equations (D.15) and (D.47).
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to express the bulk parameters in terms of the independent boundary CFT parameters as

g = −(∆− 1) (−a4 + (d− 2)a5) + b2
2C0

(4.18)

α = −(∆− 1)(−a4 + da5) + 2a5 − b2
(∆− 1) (−a4 + (d− 2)a5) + b2

(4.19)

β =− a5L
2

(∆− 1) (−a4 + (d− 2)a5) + b2
(4.20)

If we had less than 3 parameters in the bulk, then they would not span the full 3-dimensional
CFT space mentioned above. Similarly, if we had more than 3-parameters in the bulk,
say coming from the higher derivative terms, then the relation between the CFT and bulk
parameters would be degenerate.

One important point to note is that each coupling in the bulk (minimal, gyromagnetic,
quadrupole) is consistent with the boundary CFT 3-point function by itself. This follows
from the fact that the bulk action is AdS invariant for any value of the couplings, and the
AdS isometries imply that the contribution of each term in the boundary correlator is a
CFT correlator on its own. Moreover, the matching happens for arbitrary values of these
parameters. The matching of the 3-point function considered here is a non-trivial confirmation
of the gauge/gravity correspondence for an effective field theory of charged massive spin-1
and gauge field up to three derivative terms.

4.3 Conservation Ward identity from the bulk

The transverse ward identity (2.14) relates the 2-point function with the longitudinal part of
the 3-point function involving the divergence of the conserved current. We shall now show
that it is consistent with our bulk analysis. The Ward identity (2.14) is easiest to derive by
the procedure of holographic renormalisation. Using (G.21), we find the 1-point function
of the divergence of the current to be (focusing on odd d for now)

⟨⟨p2µJ µ(p2)⟩⟩ = − 2
L
δµν

(
d

2 − 1
)
p2µA

(d−2)
ν (4.21)

where A(d−2)
ν appears in the asymptotic expansion of the gauge field (see equation (G.10)).

Now, up to O(g), the r.h.s. of the above equation in momentum space takes the form
(see equation (G.7))

(d− 2)δµνpµA
(d−2)
ν (p)

= g(2∆− d)
∫

ddk

(2π)d
δµν
[
W∗(0)

µ (k)W(2∆−d)
ν (p − k)−W(0)

µ (k)W∗(2∆−d)
ν (p − k)

]
(4.22)

where W(0)
µ and W(2∆−d)

ν (and their complex conjugates) are the source and vev part of the
near boundary expansion of the Proca field as given in equations (F.6) and (F.10) respectively.
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Now, using the 1-point function (4.21) and the expressions of W(2∆−d)
µ (and its complex

conjugate) given in (F.17), we find〈
O∗ν(p1)p2µJ µ(p2)Oσ(p3)

〉
= − 1

L
(d− 2)δµτ p2µ

δ2A
(d−2)
τ (p2)

δW(0)
ν (−p1)W∗(0)

σ (−p3)
(2π)d(2π)d

= − 1
L
g(2∆− d)

[(
p1
2

)2∆−d Γ
(

d
2 −∆

)
L2∆−d

Γ
(
∆− d

2

) (
δνσ + pν

1pσ
1 (d− 2∆)

p2
1(∆− 1)

)

−
(
p3
2

)2∆−d Γ
(

d
2 −∆

)
L2∆−d

Γ
(
∆− d

2

) (
δσν + pν

3pσ
3 (d− 2∆)

p2
3(∆− 1)

)]
(2π)dδd(p1 + p2 + p3)

= g

[〈〈
O∗ν(−p3)Oσ(p3)

〉〉
−
〈〈
O∗ν(p1)Oσ(−p1)

〉〉]
(2π)dδd(p1 + p2 + p3) (4.23)

In going to the last equality, we have used the expression of two point function (F.32) obtained
using holographic renormalization. The above result (4.23) is exactly the transverse ward
identity (2.14) we wanted to show. We can also verify the above Ward identity by directly
using (4.14) and contracting it with the momenta of the current J µ. In this derivation, we
considered the case of odd dimensions and arbitrary ∆. The analysis for even dimension
and arbitrary ∆ is similar and yields the same final result (4.23).

The Ward identity (2.14) also gives the relation (2.15) between the CFT 2- and 3-point
function coefficients. Using (4.18) we see that the CFT 2-point function coefficient a0 becomes

a0 = 2d−2∆(2∆− d)
Γ
(

d
2 −∆

)
L2∆−d−1

Γ
(
∆− d

2

) (4.24)

This agrees exactly with the two point function coefficient appearing in the 2-point function
of Proca field in equation (F.32) obtained using holographic renormalisation.

5 Flat space limit of propagators

In this section, we consider the AdS propagators for the gauge and Proca fields and analyse
them in the flat space limit. More specifically, we shall consider the bulk-to-bulk (BtB)
propagator of the gauge field and the bulk-to-boundary (Btb) propagators of both gauge and
Proca fields. We shall show how the BtB propagator of gauge field turns into the momentum
representation of the gauge Feynman propagator in the limit to flat space. On the other
hand, the Btb propagators will turn out to be related to the external leg factors of the
corresponding fields in the flat limit.

In section 3.1, we reviewed how the AdS geometry locally reduces to the flat space
geometry when the AdS radius L is taken to be large. We introduced the bulk coordinate τ

via the relation z
L = e

τ
L . The flat metric corresponds to keeping z

L to be O(1) and neglecting
the O( 1

L) terms in the AdS metric (see equation (3.3)). It is clear that in this limit, the
radial coordinate z is very large. It is consistent with the bulk kinematic region z k ≫ 1
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taken in [31] as the bulk region relevant for reproducing the flat space S matrix in the flat
limit. This will also be the limit that we shall consider in this and next section for the
BtB and Btb propagators and on the three point correlator for getting the corresponding
quantities in flat space.

5.1 Gauge bulk-to-bulk propagator

The derivation of the bulk-to-bulk propagator of an abelian gauge field in momentum space
in the radial/axial gauge A0 = 0 has been reviewed in appendix D.1.2 and is given by

Gµν(z, w; k) = − 1
Ld−3

(zw)
d
2−1I d

2−1(kz)K d
2−1(kw)πµν + zd−2

d−2
kµkν

k2 , if z < w

(zw)
d
2−1I d

2−1(kw)K d
2−1(kz)πµν + wd−2

d−2
kµkν

k2 , if z > w
(5.1)

For taking the flat space limit, we shall work in the τ coordinate introduced in (3.2) and write

Kd−1(z k) = Kd−1(e
τz
L k L); Id−1(w k) = Id−1(e

τw
L k L) (5.2)

Using the asymptotic expansion of the Bessel function for the large argument given in (B.1),
we find

Kd−1(z k) =
(

π

2Lk

) 1
2
e−k (1+ τz

L )L +O
( 1
L

)
; Id−1(w k) =

1√
2π Lk

ek (1+ τw
L )L +O

( 1
L

)
With these results, the bulk-to-bulk propagator takes the form

Gµν(z, w; k)
∣∣∣
L→∞

= −


e−k(τw−τz)

2k πµν +
(

L
d−2 + τz

)
kµkν

k2 +O
(

1
L

)
, if τz < τw

e−k(τz−τw)

2k πµν +
(

L
d−2 + τw

)
kµkν

k2 +O
(

1
L

)
, if τz > τw

(5.3)

To proceed further, we observe that the longitudinal part of the bulk-to-bulk propagator
in the flat space limit can be manipulated as7

− L

d− 2

[(
z

L

)d−2
Θ(w − z) +

(
w

L

)d−2
Θ(z − w)

]
= L

2− d

[
e(d−2)( τz+τw

2L
+ τz−τw

2L )Θ
(
Le

τw
L − Le

τz
L

)
+ z ↔ w

]
=
(

L

2− d
− τw + τz

2

)
− (τz − τw)

2 Θ(τw − τz)−
(τw − τz)

2 Θ(τz − τw) +O
( 1
L

)
(5.4)

where we have kept only the leading order terms in L. In the limit L→ ∞, the first term in
the above expression diverges. We shall shortly connect this divergence with the singularity
of the axial gauge propagator in flat space.

The non-translational invariant piece is a consequence of the divergence. To see this, recall
that time translations originate from scaling, xµ′ = eλxµ, z′ = eλz in the limit λ→ 0,Λ → ∞,
with β = λL fixed, see (3.16). In momentum space, qµ′ = e−λqµ, and the arguments of the
Bessel function, kz and kw are invariant under such rescaling. It follows that

Gµν(eλz, eλw; e−λk) = e(d−2)λGµν(z, w; k) ⇒ δλGµν(z, w; k) = (d− 2)λGµν(z, w; k) . (5.5)
7The same result can be obtained by writing in equation (5.3) τz = 1

2 (τz + τw) + 1
2 (τz − τw) and similarly

for τw.
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|⃗k|
−|⃗k|

Figure 3. For x0 < y0, we close the contour in the upper half plane and use the blue contour. For
x0 > y0, we close the contour in the lower half plane and use the red contour.

Our computation above shows that the transverse part of the correlation is finite as L→ ∞
and thus as λ → 0 the transverse part is invariant under time translations,

lim
L→∞,λ→0

δλG⊥
µν(z, w; k) = 0 . (5.6)

On the other hand, the longitudinal part diverges linearly in L, and thus

lim
L→∞,λ→0

δλG||
µν(z, w; k) = −β , (5.7)

since λL = β in this limit. This is precisely how the longitudinal part in (5.4) transforms
under δτ = β. Thus, if we remove the divergence, the correlator will also be time-translation
invariant. Ignoring the non-translation invariant part, we have

GTI
µν(z, w; k)

∣∣∣
L→∞

= −


e−k(τw−τz)

2k πµν +
(

L
d−2 + τz−τw

2

)
kµkν

k2 +O
(

1
L

)
, if τz < τw

e−k(τz−τw)

2k πµν +
(

L
d−2 + τw−τz

2

)
kµkν

k2 +O
(

1
L

)
, if τz > τw

(5.8)

where the superscript TI indicates that we kept only the translational invariant part.
To see how to proceed, let us consider the Feynman propagator of an Abelian gauge field

in the axial gauge in flat space. In position space, it is given by [55]

∆ab(x− y) =
∫

dd+1q

(2π)d+1 e
−iq·(x−y)Dab(q) (5.9)

with

Dab(q) =
i

q2

{
gab −

qa nb + qb na

q · n
+ qa qb(n2 + ξ q2)

(q · n)2

}
(5.10)

where we work with mostly minus Minkowski metric, and na is a constant four-vector used
to impose the gauge condition naA

a = 0. The axial temporal gauge is imposed by taking
na ≡ (1, 0, . . . , 0) and ξ = 0 which gives

Dµν(q) =
−i
q2

[
δµν − qµ qν

q2
0

]
; Dµ0 = D00 = 0 . (5.11)

To compare it with the flat space limit result (5.8), we need to perform the integration
over q0 component in (5.9). To perform this integral, we note that the integrand given
by (5.11) has the standard single poles of the propagator at the point q0 = ±|q⃗| = ±E
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+E

−E

+µ

−µ

Figure 4. The axial gauge propagator in flat space can be regularised by shifting the double poles at
the origin along the imaginary axis. This gives the principle value of the integral.

(see figure 4), and an unphysical double pole at q0 = 0. The presence of this double pole
makes the integration over q0 divergent. We shall compute this divergent part explicitly.
For this, we note that we want to evaluate

I = −i
∫

dq0

(2π)e
−iq0(x0−y0) 1

(q0)2 − |q⃗|2
(
δµν − qµqν

(q0)2

)
(5.12)

We can use the standard Feynman prescription for the single poles. However, we need to
avoid the double pole at the origin. Thus, for x0 < y0 and x0 > y0, we use the blue and
red contours respectively given in figure 3. Denoting the radius of the small semi circles
around the origin by ϵ and following the standard method, we find that the result of the
above integral is given by

I =

− ei|q⃗|(x0−y0)

2|q⃗| πµν − iqµqν

|q⃗|2
(

1
πϵ +

1
2(x0 − y0)

)
, if x0 < y0

− e−i|q⃗|(x0−y0)

2|q⃗| πµν − iqµqν

|q⃗|2
(

1
πϵ −

1
2(x0 − y0)

)
, if x0 > y0

(5.13)

Making use of the step theta function, the longitudinal part can be written as

1
πϵ

−
[1
2(x0 − y0)θ(x0 − y0)−

1
2(x0 − y0)θ(y0 − x0)

]
(5.14)

This is identical with the longitudinal part of the flat space limit of the bulk-to-bulk propagator
of the gauge field given in equation (5.8), if we Wick rotate (x0, y0) = −i(τz, τw) and identify
ϵ ∼ 1/L.

In flat space, a standard approach to regularise the axial gauge propagator is to use the
principle value (PV) prescription for the double pole as shown in figure 4[55]

PV
( 1
(q0)2

)
= 1

2

[ 1
(q0 + iµ)2 + 1

(q0 − iµ)2

]
; µ > 0 (5.15)

With this prescription, the double pole at q0 = 0 gets shifted to q0 = ±iµ (see figure 4).
We can now use the standard Feynman contour prescription to perform the integration
over q0 and then send µ → 0. This gives the same expression as given in (5.14) except
that the terms involving 1

ϵ are now absent. Note that different prescriptions to deal with
the double pole involve a time-translational non-invariant term in the longitudinal part of
the propagator [54], as in (5.4).
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Thus, with the understanding that L → ∞ limit is treated in this way, we obtain
the final result

GFV
µν (z, w; k)

∣∣∣
L→∞

≃
{
− 1

2ke
−k(τw−τz)πµν − kµ kν

k2
(τz−τw)

2 if τz < τw

− 1
2ke

−k(τz−τw)πµν − kµ kν

k2
(τw−τz)

2 if τw < τz

(5.16)

where FV stands for “Finite Value”.

5.2 Bulk-to-boundary propagators

The bulk-to-boundary propagators dictate the external leg factors of the corresponding field
in the flat space limit. We start with the gauge field whose bulk-to-boundary propagator
is given in equation (D.16). Its flat space limit is easily obtained by using the asymptotic
expansion given in equation (B.1)

Kµν(e
τ
LL, k)

∣∣∣
L→∞

= L
d−3

2

[(
π

2

) 1
2 22− d

2 e−L k

Γ
(

d
2 − 1

) k d−3
2 πµν e

−k τ +O
( 1
L

)]
+kµkν

k2 (5.17)

Noting (D.17), the gauge field in the flat limit can be written as

A0 = 0, A⊥
µ (k) ≃ πµν

1√
ZA

Aν
(0)(k)e

−k Le−k τ, A||
µ(k) ≃ −i

kµkνA
ν
(0)(k)

k2 (5.18)

where Aν
(0)(k) is the AdS boundary condition (D.9), and we have introduced the normalization

functions ZA which depends on the AdS radius and the momentum as

1√
ZA

= π
1
2 k

d−3
2 L

d−3
2

2
3−d

2

Γ
(

d−2
2

) . (5.19)

The factor e−k L in (5.18) may be removed by shifting τ by L. If we leave this factor in (5.18)
it will cancel out in correlators as a consequence of the time translation invariance of the
flat space correlators, or (what is the same) because of the energy-conserving delta function.
We will see this explicitly in the next section. The longitudinal part of the gauge fields Aµ

is independent of τ, and thus we set it to zero by a gauge transformation that preserves
the axial gauge, A0 = 0. We further define

aµ
R = 1√

ZA
Aµ

(0)(k) . (5.20)

The factor 1/
√
ZA tends to infinity as L→ ∞, and thus we need to scale the source A(0)µ to

zero in order for aµ
R to be finite. As the AdS source is arbitrary one may always arrange such

that aµ
R is finite in the flat-space limit. Thus the flat-space limit of the gauge field becomes

Aa(τ, k) = Aae
−k τ, Aa ≡

(
0, πµνa

ν
R(k)

)
. (5.21)

The Aa thus defined satisfies the transversality condition qa Aa = 0, where the (d + 1)
dimensional null momenta is defined as [17]

qa = (q0, qµ) = (±ik, kµ), q2 ≡ δab q
a qb = 0 , (5.22)
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with k being the magnitude of kµ. After Wick rotation to Minkowski spacetime, qa
M = (±k, kµ)

and τ = it, the factor e−kτ becomes plane waves, e∓iq0
M t, and the two signs are related to

whether the external leg is associated with an in- or out-state. The factor Aa encodes the (d−1)-
polarization vectors of the (d+1) vector field in flat space. To see this, let us consider a frame
such that the momentum of the photon is along the d-direction, qa = (±ikd, 0, . . . , 0, kq), then

Aa(k) =
d−1∑
λ=1

a(λ)(k)ϵ(λ)
a , ϵ(λ)

a = (0, δλ
i , 0), i = 1, . . . , d− 1 , (5.23)

where ϵ(λ)
a are (d − 1) polarisation vectors and a(λ) is determined by the AdS boundary

condition by a(λ) = aλ
R. Upon quantization a(λ) become the annihilation or creation operators

(depending on the signs ± in qa) of the mode with polarization vector ϵ(λ)
a .8 One may check

that the polarisation vectors satisfy the expected normalization condition,

δabϵ(λ)
a ϵ

(σ)
b = δλσ, λ, σ = 1, . . . , d− 1 , (5.24)

and the expected completeness relation,

d−1∑
λ=1

ϵ(λ)
a ϵ

(λ)
b = δab +

n2

(n · q)2 q
aqb − 1

(n · q)(n
aqb + nbqa) , (5.25)

where na = (1, 0, . . . , 0) is vector imposing the temporal gauge naAa = 0.
Next, we consider the massive Proca field whose Btb propagator is given in equa-

tion (D.47). The extension of the above analysis to the massive Proca field is more involved
due to the relation among mass, AdS-radius and the conformal dimension of the dual operator
given in equation (4.8). Due to this relation, a finite mass in the large AdS radius limit
requires that ∆ is also taken to be large keeping ∆/L ≃ m finite. This implies that we need
to analyse the modified Bessel function appearing in the Btb propagator in the limit of both
large argument and large order. This is known as uniform expansion [69] and is reviewed
in appendix B. For the modified Bessel functions appearing in the Proca Btb propagator,
the uniform expansion gives (see equation (B.25))

K∆− d
2 +ℓ(z k) =

(
π

2L

) 1
2
(k2 +m2)−

1
4

(
k

m+
√
k2 +m2

)−m L−ℓ

e−
√

k2+m2(L+τ) +O
( 1
L

)
(5.26)

With the expansion (5.26), the flat space limit of the Proca Btb propagator or equivalently
the classical solution can be easily worked out. Here, we note the flat space limit of classical

8Note that this is similar to what happens in Lorentzian AdS solutions that correspond to CFT excited
states. The CFT state may be generated by an Euclidean path integral by turning on a source for a dual
operator on the boundary of AdS. Using the real-time AdS formalism of [64, 65] one may obtain the bulk
Lorentzian solution corresponding to this state and in this solution the annihilation and creation operators
are given in terms of the boundary sources [66, 67]. It turns out the resulting solution is precisely that of
HKLL [68], which is then interpreted as corresponding to a bulk coherent state [66, 67].
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solutions given in equations (D.44) and (D.45)

Wa(k) ≃ Wa(k)e−L
√

k2+m2
e−

√
k2+m2τ +O

( 1
L

d−5
2

)
,

wµ
R = 1√

ZW
wµ, Wa(k) =

(
i
kµw

µ
R

m
, π̃µνw

ν
R

)
, (5.27)

where wµ is the AdS boundary condition for the Proca field, see (D.42). The factor of
e−L

√
k2+m2 will cancel out in correlator as a consequence of time translation invariance. The

expression of ZW and π̃µν are given by

π̃µν = δµν + kµ kν

m(m+
√
k2 +m2)

, (5.28)

1√
ZW

≡ L
d−3

2

(k2 +m2)
1
4

(
(m+

√
m2 + k2)/2

)mL

(mL)mL− 1
2

emL
(
1 +O

( 1
mL

))
(5.29)

Notice that 1/
√
ZW goes to zero as L→ ∞, opposite to what happens for 1/

√
ZA, so to keep

wµ
R finite in the flat-space limit we now need to send the AdS source wµ to infinity, which

is always possible since wµ is arbitrary. The uplifted Euclidean momenta of the Proca field
in (d + 1) dimensions in the flat-space limit can be written as

qa = (±i
√
k2 +m2, kµ) , q2 = −m2 (5.30)

After Wick rotation to Minkowski spacetime, qa
M = (±

√
k2 +m2, kµ) and τ = it, the factor

e−
√

k2+m2τ becomes plane waves, e∓iq0
M t, and the two signs are related to whether the

external leg is associated with an in- or out-state.
It is easy to check that the subsidiary condition Waqa = 0 is satisfied as expected (where

the indices in Waqa are contracted using the (d + 1) dimensional Euclidean metric δab).
Exactly as in the gauge field case, we can write Wa in terms of polarization vectors. Indeed,
let ϵ(r)

µ = δr
µ, r = 1, . . . , d, the d-unit vectors along the boundary directions. Then

wµ
R =

d∑
r=1

w(r)(k)ϵ(r)
µ , (5.31)

i.e w(r)(k) are Cartesian coordinates of wµ
R. We now introduce the polarization vectors,

ε(r)
a =

(
i
kρϵ

(r)
ρ

m
, π̃µ

νϵ(r)
ν

)
(5.32)

One may check that they satisfy the expected normalization condition,

δabε(r)
a ε

(s)
b = δrs, r, s = 1, . . . , d , (5.33)

and the expected completeness relation,

d∑
r=1

ε(r)
a ε

(s)
b = δab +

qaqb

m2 . (5.34)
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It terms of those,

Wa(k) =
d∑

r=1
w(r)(k)ε(r)

a . (5.35)

Exactly as in the gauge field case the field wµ that parametrizes the AdS boundary condition
has morphed into he creation and annihilation operator (depending on the ± signs in (5.30)),
which upon quantization give rise to massive modes associated with corresponding polarization
vectors, and the AdS radial dependence gave rise to the expected plane wave behavior.

6 Flat limit of 3-point function

In this section we analyse the flat space limit of the CFT 3-point function between a
conserved current and two spin one CFT operators computed in section 4 using AdS/CFT
correspondence and compare the resulting expression with the 3-point amplitude involving a
gauge field and two massive spin-1 Proca fields in flat space. As we discussed in the previous
section the sources must be scaled in order for the limit to be finite, (5.20), (5.27), thus
(using the chain rule) we expect,

lim
L→∞

√
ZW1ZAZW3 A

µ1µ2µ3
3 ∼ δ(E1 + E2 + E3)Mµ1µ2µ3

3 (6.1)

where ZA and ZW are defined in (5.19) and (5.29), respectively, Aµ1µ2µ3
3 is the AdS 3-point

momentum space 3-point amplitude and Mµ1µ2µ3
3 is the corresponding flat space scattering

amplitude. As we are working in momentum space, the momentum conserving delta function
is already present, but the energy conserving delta function should emerge in the limit.

6.1 Asymptotic expression of triple K integrals

The 3-point CFT correlator given in (4.15) in momentum space are expressed in terms of
the triple-K integrals. The specific integrals appearing in our correlator take the general
form (see equation (2.8))

JN{ki} =∫ ∞

0
dz z

d
2−1+N p

∆− d
2 +k1

1 K∆− d
2 +k1

(z p1) p
d
2−1+k2
2 K d

2−1+k2
(z p2) p

∆− d
2 +k3

3 K∆− d
2 +k3

(z p3)

We want to evaluate these integrals in the limit L,∆ → ∞ keeping ∆
L fixed. For doing this,

we use the asymptotic expansions given in equations (B.1) and (B.25) to obtain,

JN{ki} ≃
(
π

2

) 3
2
L

d−5
2 +N

(m+
√
p2

1 +m2)mL+k1 p
d−3

2 +k2
2 (m+

√
p2

2 +m2)m L+k3

(p2
1 +m2)1/4 (p2

3 +m2)1/4

e−L(
√

p2
1+m2+p2+

√
p2

3+m2)
∫ ∞

−∞
dτ e−τ(

√
p2

1+m2+p2+
√

p2
3+m2) + · · · (6.2)

where · · · terms denote the terms subleading in L and ∆.
In the flat space limit, τ is interpreted as Euclidean time. We want to perform the

integration over this variable. To do this, we use equations (5.22) and (5.30) and using the
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convention to treat all momenta as incoming (or choosing the plus sign in (5.22) and (5.30) )
we write p2 = −iq0

2 and −iq0
1,3 =

√
p2

1,3 +m2. Substituting these in the integral in (6.2) gives

∫ ∞

−∞
dτ eiτ(q0

1+q0
2+q0

3) = 2π δ(q0
1 + q0

2 + q0
3) (6.3)

Thus, we see that the energy conserving delta function, as needed in equation (6.1) to interpret
the flat limit of the d-dimensional CFT correlator as an amplitude in the flat space-time
with one more dimension, emerges from the integration over the AdS radial direction. To
account for both in-coming and out-going momenta, one may consider either q0 > 0 and
appropriately adjusts the signs in the delta function or use the convention to consider only
plus signs in delta function and consider q0 < 0 for out-going momenta. In the remainder
we choose the latter convention. With this, the expression in (6.2) becomes

JN{ki} ≃

(−i)
d−5

2 +k2LN+ d−5
2

(
π

2

)3/2 (m− iq0
1)m L+k1√
q0

1

(q0
2)

d−3
2 +k2 (m− iq0

3)m L+k3√
q0

3

(2π)δ(q0
1 + q0

2 + q0
3)

where, on the support of the delta function, the exponential factor eiL(q0
1+q0

2+q0
3) has been

set to 1.
For comparing with the flat space result, we need to analytically continue the above

result to Lorentzian signature. This is achieved by performing the inverse Wick rotation
−iq0 = E with E denoting the energy of the particles. This gives

JN{ki} ≃ LN−1

C0

(m+ E1)k1 Ek2
2 (m+ E3)k3√

ZW1 ZA ZW3

(2π i)δ(E1 + E2 + E3) (6.4)

where ZA and ZW are defined in equations (5.19) and (5.29) respectively and C0 is defined
in equation (4.17) (with ∆ replaced by mL + d

2).
As mentioned in section 2, some of the triple K integrals appearing in the 3-point function

are divergent. However, one can show that these divergences correspond to the z → 0 end
of the integral. Here, we are concerned with the opposite end z → ∞. In this region,
the integrals are well behaved. Due to this, we do not encounter any issue related to the
divergences of triple K integrals in the flat limit.

Scalar 3-point functions of primary operators are also given in terms of triple-K inte-
grals [48], and our discussion suffices to compute their flat-space limit, yielding the expected
answer, i.e. a delta function in energy and momentum.

6.2 CFT correlator in flat limit

We are now ready to take the flat limit of our 3-point function in (4.15). This is easily done
by using (6.4). Replacing the triple K integrals appearing in the 3-point function by (6.4)
and keeping the leading order terms in L, we find after some rearrangement

Aµ1µ2µ3
3

∣∣∣
L→∞

= 2πi δ(E1 + E2 + E3)
g√

ZW1 ZA ZW3

Cµ1µ2µ3 (6.5)
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where,

Cµ1µ2µ3

= −(1 + α)πµ2
µ

[(
ηµ1µ + pµ1

1 pµ
1

m(E1 +m)

)((p1 + p2)µ3 p2
E3 +m

+ pµ3
2

)

+
(
ηµµ3 + pµ3

3 pµ
3

m(E3 +m)

)(
pµ1

1 p2
E1 +m

− pµ1
2

)]
− 2p1 µπ

µµ2

[
ηµ1µ3 − pµ1

1 pµ3
2

m(E1 +m)

+ 2 pµ1
1 (p1 + p2)µ3

(E1 +m) (E3 +m) −
2E2 p

µ1
1 (p1 + p2)µ3

m(E1 +m) (E3 +m) +
pµ1

2 (p1 + p2)µ3

m(E3 +m)

]

+ 2β p1 µπ
µµ2

[
pµ1

1 E2
(E1 +m)

(p1 + p2)µ3 E2
(E3 +m) − pµ1

2 (p2 + p1)µ3 E2
(E3 +m) + pµ1

1 pµ3
2 p2

E1 +m
− pµ1

2 pµ3
2

]
(6.6)

This expression may look complicated, but we shall show in the next subsection that it
precisely has the structure to match with the desired flat space 3-point function.

6.3 Matching with flat space result

The expression (6.5) should be compared with the flat space 3-point amplitude of a U(1) gauge
field and two massive spin-1 fields in d+ 1 dimensions at tree level. This has been computed
in appendix H and equation (H.11) gives the final expression of the flat space amplitude in
terms of the (d+ 1) dimensional polarizations of the external fields. To compare (H.11) with
the result obtained in (6.5), we need to use the representation of the polarizations suggested
by the flat limit of the Btb propagators as given in equations (5.18) and (5.30), for the gauge
and Proca field, respectively. In Minkowski signature, they can be written as

εW
a =

((p · ε)
m

, εµ + (p · ε)
m(E +m) pµ

)
; εA

a = (0, πµνϵ
ν) , (6.7)

where εµ is any of the vectors ε(r)
µ introduced in (5.31) and ϵν is any of the vectors ϵ(λ)

ν

introduced in (5.23). Below we shall denote these vectors by ϵ1µ, ϵ2µ, ϵ3µ according to which
vector they are associated in the order they appear in the correlator. It is easy to see that
these polarization vectors satisfy the condition p · ε(p) = 0 with pa = (E, pµ) where the
inner product now involves the Minkowski metric ηab. For the above basis of the transverse
polarization vectors, we have

εa
1 ε3a = ϵ1µ ϵ3ν

[
ηµν + 2 (p1 + p2)ν pµ

1
(E1 +m)(E3 +m) −

2 p2 (p1 + p2)ν pµ
1

m(E1 +m)(E3 +m) +
(p1 + p2)ν pµ

2
m(E3 +m)

− pµ
1 p

ν
2

m(E1 +m)

]
,

pa
2 ε1a = ϵ1µ

[
pµ

2 − p2 p
µ
1

E1 +m

]
; pa

2 ε3a = ϵ3µ

[
pµ

2 + p2 (p1 + p2)µ

E3 +m

]
(6.8)

– 27 –



J
H
E
P
0
8
(
2
0
2
4
)
2
2
6

Using these in equation (H.11) gives

M3 =

ĝ ϵ1µ1 ϵ2µ2 ϵ3µ3

[
2p1µ π

µµ2

(
ηµ1µ3 + 2 (p1 + p2)µ3 pµ1

1
(E1 +m)(E3 +m) −

2 p2 (p1 + p2)µ3 pµ1
1

m(E1 +m)(E3 +m)

+(p1 + p2)µ3 pµ1
2

m(E3 +m) − pµ1
1 pµ3

2
m(E1 +m)

)
+ 2β̂ p1µ π

µµ2

(
pµ1

2 − p2 p
µ1
1

E1 +m

)(
pµ3

2 + p2 (p1 + p2)µ3

E3 +m

)

− (1 + α̂)πµ2
µ

{
− π̃µ1µ

1

(
pµ3

2 + p2 (p1 + p2)µ3

E3 +m

)
+ π̃µ3µ

3

(
pµ1

2 − p2 p
µ1
1

E1 +m

)}]
(6.9)

By comparing this (d+ 1) dimensional amplitude with the d-dimensional CFT correlator in
flat limit given in equation (6.5), we see that they match exactly provided we identify the
flat space gyromagnetic ratio α̂ and quadrupole couplings β̂ with their AdS counterparts
α, β, respectively. Doing this, we find

lim
L→∞

√
ZW1ZAZW3 A

µ1µ2µ3
3 = −2πiδ(E1 + E2 + E3)Mµ1µ2µ3

3 , (6.10)

Thus the flat space limit of the CFT correlator correctly reproduces the interacting part
of the flat-space S-matrix.

7 Discussion

We discussed in this paper the computation of the flat space scattering amplitude of massive
spin 1 field, its complex conjugate and a U(1) gauge field in d+ 1 dimensions via a flat-space
limit of a d-dimensional 3-point CFT correlator of a conserved current, a non-conserved
vector current and its complex conjugate. This computation may also be formulated as
a flat space limit of a corresponding tree-level AdS amplitude, with the bulk interactions
involving both minimal and non-minimal couplings, with the latter being the gyromagnetic
and the quadrupole couplings.

The bulk AdS computation and the agreement with the CFT result is in itself a new
test of the AdS/CFT. We computed the boundary 3-point correlation function following
the procedure of holographic renormalization. This fixes the three coefficients appearing in
the general CFT 3-point function of a conserved current and two non conserved operators
in terms of bulk parameters. One feature of this matching is that each bulk coupling is
separately consistent with the expected conformal invariance. This is not surprising since
each bulk coupling is invariant under the AdS isometries by itself. Further, since the matching
occurs for arbitrary values of the bulk couplings, conformal symmetry does not impose
any restriction on the bulk couplings at the level of 3-point function, leaving for example,
the AdS gyromagnetic ratio α completely arbitrary. Unitarity and crossing symmetry may
impose constraints which may fix or restrict the allowed values of α but this would require
analysing higher point functions.

The flat-space limit amounts to sending the AdS radius L to infinity while keeping fixed
all parameters (masses and coupling constants) that appear in the bulk action. From the CFT
perspective, one zooms in on the IR region while sending to infinity the conformal dimension
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of the operator dual to the massive fields. In this limit, we show that the d dimensional
CFT 3-point function matches with a corresponding 3-point scattering amplitude in d+ 1
dimensional flat space. The flat-space limit turns AdS isometries into Poincaré isometries and
classical solutions in AdS to plane wave solutions in flat space, with the fields parametrizing
the boundary condition in AdS becoming polarization vectors in flat space.

We also analysed the flat-space limit of the BtB propagator of the gauge field in the
axial gauge and explicitly showed that it matches with the flat space Feynman propagator
in the axial gauge. The longitudinal part of the Feynman propagator in the axial gauge
is prescription dependent and we show that the principle value prescription in flat space
agrees with the translation invariant part of AdS expression in the flat limit (as one may
have anticipated based on earlier flat space analyses). The polarisation vectors of the fields in
the flat-space limit are also dictated by the Btb propagators. In particular, the matching of
the 3-point function requires matching the flat space polarisation vectors to that that emerge
from the flat-space limit of AdS. The conservation of the spatial momenta in the flat-space
limit is ensured by working with momentum space CFT. On the other hand, the energy
conserving delta function emerges from the triple-K integrals that underlie momentum space
CFT 3-point functions. One of the main ingredients for the flat-space limit matching was the
uniform expansion of modified Bessel functions in which both the argument as well as the
order of the modified Bessel functions were taken to be large. This was crucial for taking the
limit of the modified Bessel functions associated with the non conserved operators.

The bulk AdS computation was done at tree-level, but the CFT three-point function is
fixed non-perturbatively by conformal invariance. This implies that bulk loops in AdS will
lead to an AdS amplitudes of the same form as at tree-level but with quantum corrected
parameters. Moreover, quantum corrections of the flat space gyromagnetic and quadruple
coupling may be directly obtained by the flat-space limit of the corresponding AdS diagrams.
The reason is that the Feynman rules map 1-1 in the limit: BtB propagators map to Feynman
propagators, Btb propagators map to plane waves and interaction vertices are kept fixed
in the limit. There were recent progress in setting up loop computation in AdS, see [70]
and references therein, and it would be interesting to combine the methods described there
with the results we present here in order to obtain explicit loop-level results for flat space
scattering amplitudes from AdS.

Note that the matching using the CFT 3-point function is non-perturbative, so if we know
the coefficients of the low-energy effective action non-perturbatively this would provide a
non-perturbative determination of the gyromagnetic and quadruple couplings. The coefficients
in the low-energy effective action in d + 1 dimension are linked to coefficients in the low-
energy effective action in 10d and 11d supergravity via compactification, and some of these
coefficient may be fixed non-perturbatively using U-duality. It would be interesting to track
these relations in detail.

In flat space, we know that the gyromagnetic ratios can take two values α = 2 or
α = 1 (see, e.g., [71, 72] for recent works on this). Massive fields charged under the gauge
fields, which arise from the closed string degrees of freedom (such as the graviton or the
Kalb-Ramond field), have gyromagnetic ratio 1 whereas massive fields which are charged
under the gauge fields arising from open strings have gyromagnetic ratio 2 [72, 73]. Now, the
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gyromagnetic ratio α appears in the 3-point function. Hence, noting that α is a constant at
tree level, the exact matching of the 3-point amplitude implies that its value in AdS should
also be 1 or 2. The fixing of the gyromagnetic ratio in AdS will have implications for the
bootstrap program in the dual CFT as the constraints on the bulk coupling will restrict
the OPE coefficients in the boundary CFT theory.

We expect our analysis to extend to higher-point functions. As already noted, the
perturbative Feynman rules map 1-1 between AdS and flat space, i.e. for each Witten diagram
there is a corresponding flat space Feynman diagram. Moreover, as we recover translational
invariance in the flat-space limit, the energy-preserving delta function should arise from
the Bulk-to-boundary propagators. It would be interesting to work out the details. Non-
perturbative things are less clear but also more interesting. The general CFT n-point function
of scalar operators in momentum space is known [74, 75] (but the corresponding answer for
spinning operators is still missing). It would be interesting to analyze the flat-space limit of
the general momentum-space CFT n-point functions, starting from scalar ones.

Another application of our analysis is in the context of higher spin theories. In 4-
dimensional flat space, a fully consistent formulation of massive higher spin theories is still
missing and is an active area of research (see e.g. the review [76]). Holography allows us to
construct the flat-space couplings from the CFT correlators as we have seen for the massive
spin 1 case in this paper. Using this approach should be promising for constructing the
consistent massive higher spin theories in the flat space.
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A Conventions and useful identities

In this appendix, we summarise our conventions and note some useful identities which have
been used in this work. We denote the indices corresponding to the d+ 1 dimensional AdS
directions by M, N,P . . . which run from 0 to d. On the other hand, the d dimensional
boundary indices are denoted by Greek letters µ, ν, ρ, · · · which run from 1 to d. The d+ 1
dimensional flat space indices have been denoted by a, b, · · · which run from 1 to d+ 1. The
anti-symmetrization of two fields is defined as

A[M BN ] =
1
2
(
AM BN −AN BM

)
. (A.1)

Throughout this paper, we have worked in the Euclidian AdSd+1. Only after taking the
flat limit, we perform a Wick rotation z ≡ xE

0 = ix0, with x0 the time coordinate, of the
radial direction. We use mostly positive signature convention for the Minkowski metric.
The Wick-rotation transforms the zero component of a generic vector field M in mostly
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positive metric as [77, 78]:

V0 = −V 0 = iV E
0 , V0µ = ∂0Vµ − ∂µV0 = i(∂0Vµ − ∂µV

E
0 ) (A.2)

where VM can be either a massless or massive vector field. According to this rule, the square
of the field strength of the vector field remains unchanged under the rotation. The Lorentzian
action eiSL is transformed in the Euclidean one e−SE getting the identity SE = −iSL. The
action of a massive complex vector field in mostly positive signature therefore transforms
under the wick rotation as

iSL = i

∫
dd+1x

[
−1
2V

†
MN VMN − m2V †

M V M
]

=
∫
dd+1xE

[
−1
4V

†
MN VMN −m2V †

M V M
]

E

= −SE (A.3)

where we are treating VM and V †
M as two independent fields.

Our convention for the Riemann tensor is

RP
LMN = ∂MΓP

LN − ∂NΓP
LM + ΓP

QMΓQ
LN − ΓP

QNΓQ
LN ; RMN = gP QRP MQN (A.4)

For any tensor TP Q, we have

[∇M ,∇N ]TP Q = −RL
P MNTLQ −RL

QMNTP L (A.5)

The AdS metric in the Poincaré coordinates is given by

ds2 = L2

z2
(
dz2 + δµν dx

µ dxν); √
G =

(
L

z

)d+1
(A.6)

with L being the AdS-radius. The Christoffel symbols in this coordinates are

Γz
zz = −1

z
Γz

µz = 0 Γz
µν = 1

z
δµν ; Γµ

zz = 0; Γµ
νz = − δµ

ν

z
; Γµ

νλ = 0 (A.7)

The above equation can be compactly written as

ΓM
NP = −1

z

(
δM

N δP z + δM
P δNz − δM

z δNP

)
= − z

L2

(
δM

N gP z + δM
P gNz − δM

z gNP

)
(A.8)

where gMN denotes the AdS-metric in the Poincaré coordinates.
For the purposes of holographic renomalization, it is convenient to use the Fefferman-

Graham (FG) coordinates which is related to the Poincaré coordinates by ρ = z2

L .9 Thus,
in FG coordinates, the metric takes the form

ds2 = L2dρ
2

4ρ2 + L
δµν dx

µ dxν

ρ
;

√
G = 1

2

(
L

ρ

) d+2
2

(A.9)

The Christoffel symbols in this coordinates are given by

Γρ
ρρ = −1

ρ
; Γρ

µν = 2
L
δµν ; Γµ

ρρ = 0; Γν
ρµ = − 1

2ρδ
µ
ν ; Γσ

νµ = 0 (A.10)

9The purpose of keeping the AdS radius L in ρ = z2

L
is to give both ρ and z the dimension of length.
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The Riemann tensor, Ricci tensor and the scalar curvature for the AdS can be expressed
in coordinate independent manner as

RMNP Q = GMQGNP −GMPGNQ

L2 ; RMN = − d

L2 GMN ; R = −d(d+ 1)
L2 (A.11)

with GMN denoting the AdS metric in the corresponding coordinate system.

B Limiting behaviours of modified Bessel functions

For the calculation of holographic renormalisation and taking the flat limit, we need the
expressions of modified Bessel functions in various limits. In this appendix, we review the
required results.

B.1 Expansions for large and small arguments

For the large arguments, the asymptotic expansions of the modified Bessel functions are
given by

Iν(z) → ez

(2πz)
1
2

and Kν(z) →
(
π

2z

) 1
2
e−z as z → ∞ (B.1)

On the other hand, in the limit z → 0, we have following leading order approximations

Iν(z) → 2−ν

Γ(ν + 1)z
ν and Kν(z) → 2ν−1Γ(ν) z−ν as z → 0 (B.2)

In the above equation (B.2), the approximation for Iν(z) is valid for ν ̸= −1,−2, · · · and
the approximation for Kν(z) is valid for ν > 0. For the holographic renormalisation of
the Proca field, we shall need the expansion of Kν(z) in the limit z → 0 in more detail.
For non-integer ν we have

Kν(z) = π

2
I−ν(z)− Iν(z)

sin(πν) ; Iν(z) =
∞∑

j=0

1
Γ(j + 1)Γ(ν + j + 1)

(
z

2

)ν+2j

, (B.3)

while for positive integer n the expansion reads

Kn(x) = 1
2

(
x

2

)−n n−1∑
j=0

Γ(n− j)
Γ(j + 1) (−1)j

(
x

2

)2j

+ (−1)n+1 ln
(
x

2

)
In(x) +

+(−1)n 1
2

(
x

2

)n ∞∑
j=0

ψ(j + 1) + ψ(n+ j + 1)
Γ(j + 1)Γ(n+ j + 1)

(
x

2

)2j

(B.4)

where

ψ(z) =
∞∑

k=1

(1
k
− 1
z + k − 1

)
− γ (B.5)

and γ is the Euler Mascheroni constant.
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B.2 Uniform expansions

The uniform expansion involves taking the argument as well as the order of the modified
Bessel function to be large. Here, we review the derivation of such expansion following [69].
We start by noting that the modified Bessel functions satisfy the differential equation

z2 d
2

dz2Fν + z
d

dz
Fν − (z2 + ν2)Fν = 0 (B.6)

where Fν can be Kν(z) or Iν(z).
Let us start by deriving the asymptotic expansion when ν is large and z bounded. To

this end, it is convenient to first perform the Liouville-type transformation

hν(z) = z
1
2 F , (B.7)

and rewrite the differential equation (B.6) in the form [69]

d2

dz2hν(z) =
(
ν2f(z) + g(z)

)
hν(z), f(z) = 1

z2 , g(z) = 1− 1
4 z2 . (B.8)

We can remove the z-dependence from the coefficient of ν2 by further change of dependent
and independent variables,

ξ =
∫
f

1
2 (z) dz; hν = f−

1
4 (z)Hν(ξ) (B.9)

In terms of them, equation (B.8) can be expressed as

d2

dξ2Hν(ξ) =
(
ν2 + ψ(ξ)

)
Hν(ξ), ψ(ξ) = g(z)

f(z) −
1

f3/4(z)
d2

dz2

( 1
f1/4(z)

)
(B.10)

With ν large and z bounded such that ν ≫ ψ(ξ), the differential equation (B.10) can be
solved perturbatively in 1/ν,

Hν(ξ) = e−ν ξ
∞∑

s=0

As(ξ)
νs

(B.11)

As (B.10) is invariant under ν → −ν, there is a second asymptotic expansion which is related
to (B.11) by ν with −ν. The coefficients As in (B.11) can be determined recursively by
plugging the above series expansion in equation (B.10):

2A′
s+1 = A′′

s − ψ(ξ)As(ξ) =⇒ As+1 = 1
2f

−1/2(z)dAs

dz
− 1

2

∫
dz Λ(z)As dz (B.12)

where

Λ(z) = f1/2(z)ψ(ξ(z)) = f1/2(z)
[
g(z)
f(z) − f(z)−1/2

(
5
16

(f ′(z))2

f(z)2 + 1
4
f ′′(z)
f(z)

)]
(B.13)

Taking s = −1 in the differential equation in (B.12) we find that A0 should be constant
(since A−1 = 0 – there are no the coefficients with negative order in (B.11)). One may
recursively solve for the higher order coefficients. However, it turns out that the coefficients
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are, in general, divergent near z → ∞ for the functions f(z) and g(z) given in equation (B.8),
as explained in [69].

To discuss the case when both ν and z going to infinity, we rescale z to zν (B.6) and
repeat the analysis. It turns out one gets the same equation as in (B.8) but with different
f(z) and g(z), namely,

d2

dz2hν(νz) =
(
ν2f(z) + g(z)

)
hν(νz), f(z) = 1 + z2

z2 , g(z) = − 1
4 z2 (B.14)

Assuming ν to be real and positive (more generally it suffices for the real part of ν to be
positive | arg(ν)| < 1

2π), the above expression of f(z) when used in equation (B.9) gives

ξ(z) = (1 + z2)1/2 + ln z

1 + (1 + z2)1/2 ; hν =
(

z2

1 + z2

) 1
4

Hν(ξ) (B.15)

In writing the expression of ξ, we have set the integration constant to zero. This is allowed
because equation (B.9) is nothing but a change of variable. Finally, we can write a series
solution of the modified Bessel function Kν(νz) by using equation (B.11) and the relation
between hν(νz), Hν(νz) and Kν(νz)

Kν(νz) = (ν z)−
1
2 f−

1
4Hν(νz) =

e−νξ(z)

(1 + z2)
1
4

∞∑
s=0

As

νs
(B.16)

where ξ(z) is given in (B.15) and the overall factor
√
ν originates from the rescaling of the

z-variable discussed before.
Next, we want to find the leading order term of the above series solution. As before,

the recursive relation (B.12) again implies that A0 is constant. To find its value, we make
use of the fact that for large z, we have [69, 79]

Kν(νz) ∼
√

π

2 ν
e−ν z

z1/2 (B.17)

Now, the expression of ξ(z) given in (B.15) for large z gives ξ = z+O(1
z ). Hence, e−νξ ∼ e−νz.

Thus, the leading order term in (B.16) for large z becomes

Kν(νz) = A0
e−ν z

(ν z)1/2 (B.18)

Comparing this with the expected result (B.17), we find A0 =
√

π
2 . Using this, we see that the

leading order expression for the uniform expansion of the modified Bessel function is given by

Kν(ν z)
∣∣∣∣∣
ν→∞

≃
(
π

2ν

) 1
2 e−ν ξ(z)

(1 + z2)
1
4
; ξ(z) = (1 + z2)

1
2 + ln

(
z

1 + (1 + z2)
1
2

)
(B.19)

A similar analysis yields,

Iν(ν z)
∣∣∣∣∣
ν→∞

≃
( 1
2π ν

) 1
2 eν ξ(z)

(1 + z2)
1
4

(B.20)

with the same ξ(z) as in equation (B.19).
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B.3 Expansion for K∆− d
2 +ℓ(zk)

For taking the flat limit, we need to know the expansion of K∆− d
2 +ℓ(zk) with z parametrized

by z = Le
τ
L in the limit ∆, L → ∞. Using (4.8), we find

∆− d

2 + ℓ = ℓ+mL

√
1 + (d− 2)2

4m2L2 = mL+ ℓ+O

( 1
L

)
≡ mL+ β (B.21)

where β = ℓ + O
(

1
L

)
.

We have

K∆− d
2 +ℓ(zk) = KmL+β

(
kL+ kτ +O

( 1
L

))
= Kν+β(p ν + kτ) +O

( 1
L

)
= Kν+β(pν) + kτK ′

ν+β(pν) +
(kτ)2

2 K ′′
ν+β(pν) +

(kτ)3

3! K ′′′
ν+β(pν) + · · ·(B.22)

where, we have defined p = k/m and ν = mL. The derivatives of modified Bessel functions
can be expressed in terms of linear combinations of the modified Bessel functions with
different orders. E.g.,

dKσ(x)
dx

= −1
2
[
Kσ−1(x) +Kσ+1(x)

]
d2Kσ(x)
dx2 = 1

4
[
Kσ−2(x) + 2Kσ(x) +Kσ+2(x)

]
d3Kσ(x)
dx3 = −1

8
[
Kσ−3(x) + 3(Kσ−1(x) +Kσ+1(x)) +Kσ+3(x)

]
(B.23)

Now, using the identity [80]

Kν+α(νz)
Kν(νz)

=
(
1 +

√
1 + z2

z

)α [
1− 1− α

√
z2 + 1

2(1 + z2)
α

ν
+O

( 1
ν2

)]
(B.24)

and the uniform expansion result for Kν(νz) reviewed in the previous subsection, we find

K∆− d
2 +ℓ(zk) =(
π

2EL

) 1
2
(

k

m+ E

)−mL−ℓ

e−EL

(
1− Eτ + E2τ2

2 − E3τ3

3! + · · ·
)[

1 +O

( 1
L

)]

where E =
√
k2 +m2.

In the above expression, we have kept only the leading order terms in the expansion in
1/L. The O(1/ν) term in (B.24) is of order 1/L does not contribute to the leading order
term. All terms in the series in Eτ present in the above expression are of the same order
w.r.t. expansion in 1/L and resum to give an exponential function. Hence, we get

K∆− d
2 +ℓ(zk) =

(
π

2EL

) 1
2
(

k

m+ E

)−mL−ℓ

e−EL−Eτ
[
1 +O

( 1
L

)]
(B.25)

– 35 –



J
H
E
P
0
8
(
2
0
2
4
)
2
2
6

Following a similar analysis and using [80]

Iν+α(νz)
Iν(νz)

=
(
1 +

√
1 + z2

z

)−α [
1− 1 + α

√
z2 + 1

2(1 + z2)
α

ν
+O

( 1
ν2

)]
(B.26)

we also find

I∆− d
2 +ℓ(zk) =

( 1
2πEL

) 1
2
(

k

m+ E

)mL+ℓ

eEL+Eτ
[
1 +O

( 1
L

)]
(B.27)

C General cubic action in AdS for gauge and Proca fields

In this appendix, we construct the general cubic action involving a gauge field and a complex
Proca field in AdSd+1. There are general group theoretic constructions of cubic interaction
terms involving fields of arbitrary spins (see, e.g., [81, 82]). However, for our purposes, it
would be sufficient to consider a perturbative effective field theory approach.

If we are working at a fixed order in perturbation theory, we can eliminate those terms
in the Lagrangian which are proportional to lowest order equation of motion. More precisely,
we can use field redefinitions to transfer these terms to higher order terms in the perturbative
expansion. We start by reviewing this procedure for a general action following [83]. Suppose,
we have an action S[ϕ] involving a generic field ϕ in which terms with different orders are
parametrised by a parameter ϵ

S[ϕ] = S0[ϕ] + ϵS1[ϕ] + ϵ2S2[ϕ] + · · · (C.1)

Now, suppose at O(ϵn), the Sn[ϕ] includes a term Sn[ϕ] which is proportional to the equation
of motion for the lowest order action S0[ϕ], i.e.,

Sn[ϕ] =
∫
ddx f(x) δS0

δϕ(x) , (C.2)

Here f(x) denotes some arbitrary function of the field and its derivatives. We now make
the field redefinition

ϕ(x) → ϕ̃(x) = ϕ(x)− ϵn f(x) (C.3)

Under this redefinition, the action (C.1) becomes

S[ϕ] → S[ϕ̃] = S[ϕ]− ϵn
∫
ddxf(x) δS0

δϕ(x) +O(ϵn+1) (C.4)

The second term on the right hand side cancels Sn[ϕ]. This shows that the effect of the field
redefinition (C.3) is to remove the term proportional to the lowest order equation of motion
in the action without changing any other term up to O(ϵn). Thus, we can only focus on those
terms which do not involve lower order equations of motion if we are working at a fixed order in
perturbation theory. Note that the use of the lowest order equation of motion (instead of the
full non-linear equations) in the field redefinition was useful in that the redefinition does not
mix different orders in the perturbative expansion. Had we used the full non-linear equations,
one would need to keep track of how nonlinearities mix different orders in the ϵ expansion.
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We can now apply the above procedure to write the cubic action involving a gauge and
the complex Proca field. Gauge invariance implies that the gauge field can appear only in
terms of the field strength FMN . Further, the complex Proca field is taken to be charged
under this gauge field and the conservation of the charge implies that each term involving
the Proca field WM must also have its complex conjugate W ∗

M . Now, the kinetic terms of
the action involving the gauge and complex Proca field are given by

S2 =
∫
dd+1x

√
G

[1
4F

MNFMN + 1
2W

∗MNWMN +m2W ∗MWM

]
(C.5)

where, the indices M,N run from 0 to d and FMN denotes the field strength of the gauge
field AM ,

FMN = ∇MAN −∇NAM = ∂MAN − ∂NAM . (C.6)

We have also introduced WMN = DMWN − DNWM with

DMWN = ∇MWN + igAMWN = ∂MWN − ΓP
MNWP + igAMWN . (C.7)

This ensures that the kinetic term is invariant under the gauge transformation

WM → eigλ(x)WM , W ∗
M → e−igλ(x)W ∗

M ; AM → AM − ∂Mλ(x) . (C.8)

The lowest order equations of motion of the gauge and the Proca field follow from the
variation of the kinetic terms and are given by

∇MFMN = 0; DMWMN +m2WN = 0; DMW ∗MN +m2W ∗N = 0 . (C.9)

An important condition on the massive Proca fields can be obtained by taking the divergence
of their equations which gives

m2DMWM = DMDNW
NM = D[MDN ]W

NM = ig

2 FMNW
MN . (C.10)

This shows that the divergence DMWM is actually quadratic in the fields. This will be useful
below, as we shall see. Another set of useful equations are

∇MFMN = 0 =⇒ □AN = ∇N (∇ ·A) +RNPAP =⇒ □FMN = (2d+ 2)
L2 FMN (C.11)

where the last equality holds in AdS.
Next, we want to write the cubic interaction terms. We shall write down all possible

cubic terms and then eliminate the redundant terms using the procedure described above.
We shall focus on terms with up to 3 derivatives. At the lowest order in derivatives (i.e.
one derivative), there is only one possible term,

I1 = i
a1
2 FMN

(
W ∗MWN −W ∗NWM) . (C.12)

An important point to note is that after integration by parts in the above term, its tensor
structure matches with one of the terms in W ∗MNWMN . So, naively, it would seem as if
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we could forget about the a1 term in (C.12). However, the structure of W ∗MNWMN follows
from the minimal coupling procedure when we promote the global phase invariance to local
gauge invariance, while the term involving a1 in (C.12) is gauge invariant by itself and does
not follow from minimal coupling. Hence, its coefficient is independent of the coefficient in
the minimal coupling term in W ∗MNWMN . Thus, we must keep the a1 term. The existence
of a new gauge invariant term is responsible for the gyromagnetic coupling.

At the level of 3 derivatives, the terms need to be constructed using FMN ,WM ,W ∗
M and

two derivatives DM . Using an integration by parts we can ensure that DM acts only on
the Proca fields. Using these rules, the most general cubic structure involving 3 derivatives
can be written as

I3 =FMN
[(
c0DMW ∗

PD
PWN + c∗0DMWPD

PW ∗
N

)
+
(
c1DPW

∗
MDPWN + c∗1DPWMDPW ∗

N

)
+
(
c2DMW ∗

PDNW
P + c∗2DMWPDNW

∗P
)
+
(
c3DPW

∗PDMWN + c∗3DPW
PDMW ∗

N

)
+
(
c4W

∗
MDPD

PWN + c∗4WMDPD
PW ∗

N

)
+
(
c5W

∗
PD

PDMWN + c∗5W
PDPDMW ∗

N

)
+
(
c6W

∗
MDNDPW

P + c∗6WMDNDPW
∗P
)
+
(
c7W

∗
PDMDNW

P + c∗7WPDMDNW
∗P
)

+
(
c8W

∗
PDMDPWN + c∗8W

PDMDPW
∗
N

)
+
(
c9W

∗
MDPDNW

P + c∗9WMDPDNW
∗P
)]

(C.13)

The coefficients ci are in general complex. Now using integration by parts, the explicit form
of the AdS curvature and the lower order equations of motion (C.9), (C.10) and (C.11), one
can show that all terms except first one is either higher order in fields or give the same
structures as either the first term in (C.13) or the term in (C.12). Hence, we can ignore all
terms in (C.13) except the first one. Further, for the action to be real the constants c0 may
be complex but an explicit computation shows that the real part of c0 does not contribute to
the three-point amplitude on AdS backgrounds (see appendix H for the similar result on flat
background). Hence, we shall take c0 also to be purely imaginary and write c0 = iβ with
β ∈ R. Thus, we can express the 3 derivative cubic terms in the form

I3 = igFMN
[
β
(
∇MW ∗

P∇PWN −∇MWP∇PW ∗
N

)]
(C.14)

Thus, the most general cubic Lagrangian involving a gauge field and complex massive
spin 1 field takes the form

L = igFMN
[
−αW ∗

MWN + β
(
∇MW ∗

P∇PWN −∇MWP∇PW ∗
N

)]
(C.15)

We shall work with the above form of cubic interaction terms in this paper.

D Classical solutions on AdS background

In this appendix, we summarise the classical solutions of the gauge and Proca fields in AdS
background from the perspective of the AdS/CFT correspondence.
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D.1 Classical solution of gauge field

In this section, we give some details of the solution of the gauge field equation of motion
obtained from the Euclidean massive spin-1 Lagrangian

S =
∫
dd+1x

√
G

[
1
4F

MNFMN + 1
2W

∗
MNW

MN +m2W ∗
MWM − ig αFMNW ∗

MWN

+ igβFMN
(
∇MW ∗

P∇PWN −∇MWP∇PW ∗
N

)]
(D.1)

The length dimension of various quantities appearing in the above action are given by

[WM ] = 1− d

2 ; [AM ] = 1− d

2 ; [g] = d− 3
2 ; [α] = 0; [β] = 2 (D.2)

The gauge field equation of motion in the AdS background is given in equation (4.3). In the
Poincaré coordinates, the z and µ components of this equation take the form

z2

L2 δ
µν kµ ∂z Aν(z, k) = i Jz(z, k);

z2

L2∂
2
zAµ + (3− d) z

L2∂zAµ − k2

L2 π
ν

µ Aν = Jµ (D.3)

where k2 = δµν kµ kν and we have introduced the transverse projector

πµν = δµν − kµ kν

k2 ; δµνkµπνσ = 0; πµν δ
ντπτσ = πµσ . (D.4)

In the following we shall solve the classical equations of motion of the gauge field pertur-
batively in g as

Aµ(z, k) = A[0]
µ (z, k) + gA[1]

µ (z, k) , (D.5)

where A[1]
µ (z, k) and A[0]

µ (z, k) satisfy (D.3) with and without the source term, respectively.
The A[0]

µ (z, k) and A[1]
µ (z, k) can be solved easily in terms of the bulk-to-boundary (Btb)

and bulk-to-bulk (BtB) propagators. This will be done below. However, before doing this,
we note that for solving the equations of motion, it is convenient to split Aµ and Jµ in the
transverse and longitudinal components as [84]

Aµ = A⊥
µ + i kµA

||; Jµ = π ν
µ Jµ = J⊥

µ + i kµ J
|| (D.6)

where A⊥
µ = π ν

µ Aν , A
|| = −ikµAµ/k

2 and similar for J⊥
µ and J || (indices are contracted

with the flat metric δµν).
Using the two equations in (D.3), the equations of motion for the longitudinal modes

is found to be

J || = 1
k2∂zJz +

(1− d)
k2

Jz

z
. (D.7)

This is same as the conservation condition ∇MJM = 0 and hence it is identically satisfied.
This also shows that the z component of the equation of motion is satisfied automatically
provided the current JM is conserved.
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D.1.1 Bulk-to-boundary propagator

Substituting (D.5) in (D.3), we find that A(0)
µ satisfies (D.3) without the source terms Jµ and

Jz since the source term is linear in the coupling g. We can solve the resulting homogeneous
equation by introducing the bulk-to-boundary (Btb) propagator K ν

µ (z, k) defined as

A[0]
µ (z, k) = K ν

µ (z, k)A(0)ν(k) , (D.8)

where A(0)ν(k) is the boundary value of the gauge field, i.e.,

A(0)
µ (z → 0, k) = A(0)ν(k) . (D.9)

The K ν
µ (z, k) satisfies the differential equation(

z2∂2
z + (3− d)z∂z

)
K ν

µ (z, k)− k2 π σ
µ K ν

σ (z, k) = 0 , (D.10)

with the boundary condition

lim
z→0

z∆−d+1 K ν
µ (z, k) = δν

µ; ∆ = d− 1 . (D.11)

The solution of (D.10) is easily obtained by splitting the longitudinal and transverse parts as

K ν
µ (z, k) = K⊥(z, k)π ν

µ +K||(z, k)kµk
ν

k2 (D.12)

These longitudinal and transverse components satisfy decoupled differential equations

z2∂2
zK⊥ + (3− d)z∂zK⊥ − z2k2K⊥ = 0; z2∂2

zK|| + (3− d)z∂zK|| = 0 . (D.13)

These have the solution

K⊥ = c0(k)z
d−2

2 K d
2−1(zk), K|| = c1(k)zd−2 + c2(k) . (D.14)

Imposing the boundary condition (D.11), we find

c0(k) =
22− d

2

Γ
(

d
2 − 1

)k d
2−1, c1(k) = 0, c2(k) = 1 . (D.15)

Thus, the bulk-to-boundary propagator can be written as

Kµν(z, k) = c0(k)z
d−2

2 K d
2−1(zk)πµν + kµkν

k2 , (D.16)

where we have lowered the boundary indices using the flat metric δµν .
The leading order solution A(0)

µ is, thus, given by

A[0]
µ (z, k) = c0(k)z

d−2
2 K d

2−1(zk)π
ν

µ (k)A(0)ν(k) +
kµk

ν

k2 A(0)ν(k)

= A[0]⊥
µ (z, k) + ikµA[0]||

µ (D.17)

It is straightforward to verify that the above solution automatically satisfies both the
equations in (D.3) with JM = 0.
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D.1.2 Bulk-to-bulk propagator

The solution of (D.3) at first order in the gauge coupling constant g can be obtained using
the bulk-to-bulk propagator Gµν(z, w; k) defined by[(

z

L2 (3− d)∂z +
z2

L2∂
2
z

)
δ σ

µ − k2

L2 z
2π σ

µ

]
Gσν(z, w; k) = Gµν√

G
δ(z − w) , (D.18)

with the boundary condition at the conformal boundary,

lim
z→0

z∆−d+1Gµν(z, w; k) = 0, ∆ = d− 1 (D.19)

and the regularity in the interior. The solution of the gauge field equation to first order
in the gauge coupling can now be expressed as

A[1]
µ (z, k) =

∫
dw

√
GGµν(z, w; k) Jν(w, k) . (D.20)

Equation (D.18) can again be solved by splitting Gµν(z, w; k) in the transverse and longitudinal
components as

Gµν(z, w; k) = πµνG⊥(z, w; k) + kµkν

k2 G∥(z, w; k) . (D.21)

These components satisfy the equations[
d

dz

(
ẑ3−d d

dz

)
− ẑ3−dk2

]
G⊥ = δ(z − w);

[
d

dz

(
ẑ3−d d

dz

)]
G∥(z, w; k) = δ(z − w),

(D.22)
where, to simplify the notation, we have introduced ẑ = z

L .
To solve the two equations in (D.22), it is useful to recall the Green’s function solution

of first order inhomogeneous differential equations of the form

L y(z) = f(z); L = d

dz

(
p(z) d

dz

)
+ q(z) , (D.23)

where L is a self-adjoint differential operator. The Green’s function for this equation is
defined by

LG(z, w) = δ(z − w) , (D.24)

and its solution is obtained by following a standard procedure, see e.g., [85]. The general
solution, in an interval (a, b), is given by

G(z, w) =
{
Ay1(z) y2(w), for z < w

Ay2(z) y1(w), for z > w
(D.25)

y1 and y2 satisfy L y1 = 0 = L y2, and y1(z) satisfies the suitable boundary condition
at z = a while y2(z) satisfies the suitable boundary condition at z = b. The coefficient
A is determined by requiring the Green’s function to be continuous at z = w but with a
discontinuous derivative. This gives

A
[
y′2(w) y1(w)− y′1(w) y2(w)

]
= 1
p(w) . (D.26)
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Following this procedure to solve the two equations in (D.22), we find that the solution of
the homogeneous equation corresponding to the first equation in (D.22) is given by Bessel
functions of the first and second kinds as

y1(k, z) = ẑ
d
2−1I d

2−1(kz), y2(k, z) = ẑ
d
2−1K d

2−1(kz) (D.27)

where y1 satisfies the boundary condition at z = 0 (i.e. for z < w) and y2 satisfies the
boundary condition at z = ∞ (i.e. for z > w). The constant A in (D.25) is evaluated to be
A = −1. Thus, the transverse component G⊥(z, w; k) can be expressed as

G⊥(z, w; k) = −L

(ẑŵ)
d
2−1I d

2−1(kz)K d
2−1(kw), for z < w

(ẑŵ)
d
2−1I d

2−1(kw)K d
2−1(kz), for z > w

(D.28)

Following similar steps, the longitudinal component is obtained to be

G||
µν(z, w; k) = − L

d− 2
kµkν

k2

ẑd−2, if z < w

ŵd−2, if z > w
(D.29)

Combining the transverse and longitudinal parts, the full bulk-to-bulk propagator for the
gauge field is obtained to be

Gµν(z, w; k) = −L

(ẑŵ)
d
2−1I d

2−1(kz)K d
2−1(kw)πµν + ẑd−2

d−2
kµkν

k2 , if z < w

(ẑŵ)
d
2−1I d

2−1(kw)K d
2−1(kz)πµν + ŵd−2

d−2
kµkν

k2 , if z > w
(D.30)

By construction, the bulk-to-bulk propagator satify the second equation in (D.3). Let us now
verify that it satisfies the first equation as well. Using (D.20) we compute,

kµA[1]
µ (z, k) =

∫
dw

√
GkµGµν(z, w; k) Jν(w, k)

= − L2

d− 2

∫ ∞

0

dw

wd−1

(
Θ(z − w)wd−2 +Θ(w − z)zd−2

)
kµJµ(w, k) (D.31)

where in the second equality we used (D.30). Using (D.6) and (D.7) we find

kµJµ(w, k) = i

(
∂wJw + (1− d)Jw

w

)
⇒ kµJµ(w, k)

wd−1 = i∂w

(
Jw

wd−1

)
. (D.32)

Thus,

kµA[1]
µ (z, k) = −i L2

d− 2

∫ ∞

0
dw
(
Θ(z − w)wd−2 +Θ(w − z)zd−2

)
∂w

(
Jw

wd−1

)
= −i L2

d− 2

([(
Θ(z − w)wd−2 +Θ(w − z)zd−2

) Jw

wd−1

]∞
0

−
∫ ∞

0
dw
(
δ(w − z)(zd−2 − wd−2)− (d− 2)wd−3Θ(z − w)

) Jw

wd−1

)
= iL2

∫ ∞

0
dwΘ(z − w)Jw

w2 (D.33)
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where the vanishing of the boundary term at w = 0 requires that Jw goes to zero faster
than w, which is guaranteed by the first of (D.3) and the boundary conditions in (D.19).
Differentiating (D.33) w.r.t. z and rearranging yields the first of (D.3).

In computing the 3-point function, we need the expression of the bulk-to-bulk propagator
near the boundary z → 0. In this limit, the expression (D.30) gives

Gµν(z → 0, w; k) = − L

2
d
2−1Γ(d

2)
(k)

d
2−1(ẑ2w)

d
2−1K d

2−1(kw)πµν − L
ẑd−2

d− 2
kµkν

k2

= − L3−d

(d− 2)z
d−2Kµν(w, k) (D.34)

D.2 Classical solution of massive spin-1 field

In this section, we review the solution of the massive spin-1 field following the approach
given in [86]. We are interested in getting the classical solution of the massive field at the
leading order in the gauge coupling g. As we shall see below, this can be obtained in terms
of the bulk-to-boundary propagator of the massive field. The equation of motion of the
massive spin-1 field is given by

2∇M∇[MWN ] −m2WN = 0 +O(g) . (D.35)

By acting with the covariant derivative ∇N , we obtain the following subsidiary condition

∇MWM = 0 +O(g) =⇒ δµν∂µWν + ∂zWz −
(d− 1)
z

Wz = 0 +O(g) . (D.36)

The classical profile of the massive spin-1 fields must satisfy this constraint at the leading
order in the gauge coupling expansion.

Fourier transforming the boundary directions and using the subsidiary condition (D.36),
the z component of the equation of motion (D.35) gives in Poincaré coordinates,

z2∂2
zWz − (d− 1)z∂zWz − k2z2Wz +

(
d− 1− m2L2

)
Wz = 0 . (D.37)

Demanding regularity at z = ∞, the above equation has the solution

Wz(z, k) = c(k) z
d
2 Kβ(z k); β2 = (d− 2)2

4 +m2L2; β = ∆− d

2 , (D.38)

where Kβ(z k) is the modified Bessel function of the second kind and c(k) is an arbitrary
function.

Similarly, the µ component of the equation of motion (D.35) on using (D.38) gives

z2∂2
zWµ + (3− d)z ∂zWµ − (z2 k2 +m2L2)Wµ = 2izkµWz = 2i c(k) kµz

d
2 +1Kβ(z k) .(D.39)

The solution of this equation has a homogeneous and an inhomegeneous part. The inhomo-
geneous part should be proportional to kµ. It is easy to see that the above equation has
the following solution consistent with the constraint (D.36)

Wµ(z, k) =
[
δν

µz
d−2

2 Kβ(kz) +
kνkµ

k(d−∆− 1)z
d
2Kβ+1(zk)

]
aν(k) . (D.40)
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For later use, we note that the relation between c(k) and aµ following from the con-
straint (D.36) is

c(k)
(
d

2 − β − 1
)
= ikµaµ(k) . (D.41)

We can obtain the bulk-to-boundary propagator of the massive spin-1 field using the above
solution. For this, we need to relate aµ(k) to the boundary value of the field Wµ(z, k).
Writing aµ = bµ + i kµb and using the expression of the modified Bessel function in z → 0
limit given in equation (B.2), we find

Wµ(z → 0, k) ≡ zd−∆−1wµ(k) , (D.42)

where

wµ(k) = 1
2

(
k

2

) d
2−∆

Γ
(
∆− d

2

)bµ + kµ

 (∆− 1)
(d−∆− 1)b+

2kνbν

(
∆− d

2

)
k2(d−∆− 1)


 . (D.43)

We can get rid of term proportional to kµ by choosing b to be (d−2∆)
(∆−1)

kνbν
k2 . This allows us to

relate the integration constant with the boundary value of the field. Collecting all results
and using Bessel function identities, we can write

Wµ(z, k) = 2 z
d−2

2

Γ(∆− d
2)

(k
2
)∆− d

2
[
δν

µ K∆− d
2
(kz) + z kνkµ

k(∆− 1)K∆− d
2−1(zk)

]
wν(k) (D.44)

Wz(z, k) = i
2

d
2 +1−∆

Γ(∆− d
2)

1
∆− 1k

∆− d
2 z

d
2 K∆− d

2
(z k) kν wν(k) (D.45)

The bulk-to-boundary propagator K µ
M (z, k) for the massive spin-1 field can now be defined by

WM (z, k) = K µ
M (z, k)wµ(k); lim

z→0
z−d+∆+1 K µ

M (z, k)wµ(k) = δµ
M . (D.46)

Comparing (D.46) with (D.44) and (D.45), we get

K ν
µ (z, k) = 2

d
2 +1−∆

Γ
(
∆− d

2

) k∆− d
2 z

d
2−1

[
δν

µ K∆− d
2
(zk) + kµ k

ν

k

z

∆− 1 K∆− d
2−1(zk)

]
,

K ν
z (z, k) = i

2
d
2 +1−∆

Γ
(
∆− d

2

) kν k∆− d
2

∆− 1 z
d
2 K∆− d

2
(zk) . (D.47)

We also need the bulk-to-boundary propagator of the complex conjugate field W ∗
M . This is

considered independent of WM and its boundary Fourier transform is defined by

W ∗
M (z, x) =

∫
ddk

(2π)d
eik·xW ∗

M (z, k) , (D.48)

The W ∗
M satisfies the same equation of motion as WM . From this, we find that the bulk to

propagator for W ∗
M , denoted with K̄ µ

M (z, k), coincides with equation (D.47), i.e.,

K̄ ν
M (z, k) = K ν

M (z, k) = K∗ν
M (z, −k) (D.49)

where K∗ν
M denotes the complex conjugate of K ν

M .
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E Analysis in Lorenz gauge

In the previous appendix and in the main text, we had worked with the axial gauge in
which we set Az = 0. It is also instructive to consider the standard Lorenz gauge where
we set ∇MAM = 0. This condition is imposed by adding to the action a gauge fixing term
so that the gauge field action becomes

S =
∫
dd+1x

√
g

[1
4F

MNFMN + 1
2ξ (∇MAM )2 +ANJ

N
]
, (E.1)

and taking the limit ξ → 0 (sometimes this is also referred as Landau gauge). The equation
of motion is given by

∇MFMN + 1
ξ
∇N∇MAM =

(
□+ d

L2

)
AN −

(
1− 1

ξ

)
∇N∇MAM = JN , (E.2)

where the first equality is valid in AdS space. For N = z and N = µ, the above equation gives

L2Jz = −z2δµν∂z∂µAν + z2δµν∂µ∂νAz

+ 1
ξ

(
z2∂2

zAz + (3− d)z∂zAz + z2δµν∂µ∂zAν + 2zδµν∂µAν + (1− d)Az

)
, (E.3)

L2Jµ =
[
z2∂2

z + (3− d)z∂z + z2δνσ∂ν∂σ

]
Aµ − z2δνσ∂ν∂µAσ − z2∂z∂µAz − (3− d)z∂µAz

+ 1
ξ

(
z2δσν∂µ∂σAν + z2∂µ∂zAz + (1− d)z∂µAz

)
. (E.4)

Next, we use the condition ∇MAM = 0. For the source free case, the above equations take
the same form as in (D.37) and (D.39) for the corresponding equations for the massive spin-1
fields but with m = 0. Thus, we can immediately write down the solution

Az(z, k) = e(k)z
d
2K d

2−1(kz)

Aµ(z, k) = eµ(k)z
d−2

2 K d
2−1(kz)− i

e(k)
k
kµz

d
2K d

2
(zk) (E.5)

Substituting the above solution in the Lorenz condition ∇MAM = 0 gives eµk
µ = 0. Thus,

we can parametrise eµ as eµ = π ν
µ αν where πµν is the transverse projector defined in

equation (D.4). Writing αµ = b0aµ + b1kµ where aµ is the boundary value of the field and
following the same manipulations we did for the Proca field, we can fix the constants in
terms of the boundary value of the fields to be

Aµ(z k) = 22− d
2

Γ
[

d
2 − 1

] (z k) d
2−1

[
aν πνµK d

2−1(z k) +
(k · a) z kµ

(d− 2) k K d
2
(z k)

]
,

Az(z, k) = i
22− d

2

Γ
[

d
2 − 1

] k d
2−1 z

d
2
(k · a)
(d− 2) K d

2−1(z, k) . (E.6)

These expressions can also be obtained from the corresponding solutions of the Proca field
given in equations (D.44) and (D.45) by substituting ∆ = d − 1. The above expressions
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also give the bulk-to boundary propagator of the gauge field in the Lorenz gauge by writing
AM = K µ

M aµ.

This is not the end of the story. We still have a residual gauge freedom allowed by
the Lorenz gauge condition. More specifically, even after fixing the Lorenz gauge, a further
gauge transformation

AM → AM − i∂Mg(z, x) ⇐⇒ Aµ → Aµ + kµg(z, k) and Az → Az − i∂zg(z, k) , (E.7)

will be a residual gauge transformation if the function g(z, k) satisfies the condition □g = 0, i.e.,

∂2
zg(z, k)−

(d− 1)
z

∂zg(z, k)− k2g(z, k) = 0 (E.8)

The solution of this equation is given by

g(z, k) = λ(k) z
d
2 K d

2
(z k) (E.9)

The λ is an arbitrary function of the momentum. If we choose it to be

λ(k) = −22− d
2 k

d
2−1

Γ
[

d
2 − 1

] (k · a)
(d− 2) k (E.10)

then taking into account the residual gauge transformation (E.7), the boundary component
of the gauge field becomes completely transverse, i.e.,

Aµ(z k) =
22− d

2

Γ
[

d
2 − 1

] (z k) d
2−1 aν πνµK d

2−1(z k); Az(z, k) = 0 (E.11)

This also gives a proof of the result we have used, namely, we can choose the gauge field
to be completely transverse in the axial gauge Az = 0.

F Holographic renormalization of massive spin-1 field

In this appendix, we compute the 2-point function of the boundary operators that are dual to
the Proca field by applying the holographic renormalization procedure to the Euclidean action
on the AdS background given in section 4.1. This would be needed to fix the longitudinal part
of our 3-point function as well as for verifying the conservation Ward identity (2.14) using a
bulk computation. We give the details for the WM field; the analysis for the corresponding
complex conjugate field W ∗

M is identical. We start by solving the Proca equations of motion
asymptotically.

F.1 Asymptotic analysis

We want to solve the free Proca field equation in AdS, which is given by(
□+ d

L2

)
WM − gP Q∇M∇PWQ −m2WM = 0; ∇MWM = 0 , (F.1)
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where the second equation (the subsidiary condition) follows from the first upon contracting
with ∇M , see section D.2. In Fefferman Graham coordinates, (A.9), we have

L2□WM =
[
4ρ2∂2

ρ + ρLδµν∂µ∂ν + 2(2− d)ρ∂ρ

]
WM +

[
4ρ(∂ρWν − ∂νWρ)− dWν

]
δν

M

L2∇M (∇NW
N ) = (4− 2d)ρ∂MWρ + 4ρ2∂M∂ρWρ + ρLδνσ∂M∂νWσ

+
[
8ρ∂ρWρ + Lδνσ∂νWσ + (4− 2d)Wρ

]
δρM

∇MWM = ρ

L
δµν∂µWν + 4ρ2

L2 ∂ρWρ +
(4− 2d)
L2 ρWρ (F.2)

Using these equations, the boundary and radial components of the equation of motion can
be expressed as

0 = 4ρ2∂2
ρWµ + 2(4− d)ρ∂ρWµ + ρLδσν∂σ∂νWµ −m2L2Wµ − 4ρL∂νWρ ,

0 = 4ρ2∂2
ρWρ + 2(4− d)ρ∂ρWρ + ρLδσν∂σ∂νWρ −m2L2Wρ , (F.3)

where we have used the subsidiary condition, ∇MWM = 0, to simplify the expressions.
The above equations can also be derived by transforming the equations of motion given in
section D.2 in Poincaré coordinates to the Fefferman Graham coordinates.

We want to obtain the general asymptotic solution of (F.3). To this end, we first need to
obtain the leading radial dependence as ρ→ 0, and to determine this it suffices to consider a
solution that only depends on ρ. In this case, both of the above equations take the same form

4ρ2∂2
ρWM (ρ) + 2(4− d)ρ∂ρWM (ρ)−m2L2WM (ρ) = 0 , (F.4)

with solution given by

WM (ρ) = cMρ∆− + eMρ∆+ (F.5)

where cM and eM are integration constants and

2∆+ = d− 2
2 +

√
m2L2 + (d− 2)2

4 = ∆− 1; 2∆− = d− 2− 2∆+ = d−∆− 1 .

The leading behaviour as ρ→ is given by ∆− and its coefficient plays the role of the source
for the dual boundary operator, while the coefficient of ∆+ is linked with the 1-point function
in the presence of sources [52], as will be seen below.

Next, we turn to obtain the general asymptotic solution by solving the equations order by
order in the ρ variable near ρ = 0. This is achieved by factoring out the leading behavior, using

Wρ =
(
ρ

L

) d−∆−1
2

Wρ(ρ, x); Wµ =
(
ρ

L

) d−∆−1
2

Wµ(ρ, x) (F.6)

and then solving for Wρ(ρ, x),Wµ(ρ, x). By construction, these variables are finite at ρ = 0.
Substituting these in the equations of motion one finds at leading order the relation between
the mass of the bulk field and the conformal dimension ∆, namely m2L2 = (∆−1)(∆−d+1).
After cancelling an overall factor of ρ the field equations become,

0 = 4ρ∂2
ρWµ + 2(2 + d− 2∆)∂ρWµ + Lδνσ∂ν∂σWµ − Lδνσ∂µ∂νWσ − 4ρ∂ρ∂µWρ

+ 2(∆− 3)∂µWρ;
(F.7)
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In addition, the subsidiary condition, ∇MWM = 0, shows that the asymptotic expansion of Wρ

is fully determined in terms of that of Wµ. Indeed, using (F.6) in (F.2) and rearranging yields

2(1−∆)Wρ + 4ρ∂ρWρ + Lδµν∂µWν = 0 . (F.8)

These equations are now solved by setting ρ = 0 and solving them, then differentiating w.r.t.
ρ, setting ρ = 0 and solving them, and so on. This determines recursively the derivatives
∂nWρ(ρ=0,x)

∂ρn ,
∂nWµ(ρ=0,x)

∂ρn at ρ = 0 in terms of lower order terms, provided that the coefficient
that multiplies the term with the highest number of derivatives is non-zero. This is indeed
the case till order ⌊∆− d

2⌋, where ⌊x⌋ indicates the integer part of x. At order ∆− d
2 , a new

asymptotic solution appears, associated with the ∆+ solution in (F.5), and its coefficient
is unconstrained by asymptotic analysis. When ∆ − d

2 = n is an integer, the equations
do not admit a solution unless there is a logarithmic term in the asymptotic solution. We
thus obtain the asymptotic solution,

Wρ(ρ, x) =
⌊∆− d

2 ⌋∑
j=0

(
ρ

L

)j

W(2j)
ρ (x) +

(
ρ

L

)∆− d
2
(
W(2∆−d)

ρ (x) + δ∆, d
2 +nV

(2∆−d)
ρ (x) ln ρ

L

)
,

(F.9)

Wµ(ρ, x) =
⌊∆− d

2 ⌋∑
j=0

(
ρ

L

)j

W(2j)
µ (x) +

(
ρ

L

)∆− d
2
(
W(2∆−d)

µ (x) + δ∆, d
2 +nV

(2∆−d)
µ (x) ln ρ

L

)
.

(F.10)

The subsidiary conditions yields,

W(2j)
ρ = − L

2(1−∆+ 2j)δ
µν∂µW(2j)

ν , j ≤ ∆− d

2
(2 + 2n− d)W(2∆−d)

ρ + 4V(2∆−d)
ρ = −Lδµν∂νW(2∆−d)

µ , (F.11)

(2 + 2n− d)V(2∆−d)
ρ = −Lδµν∂νV(2∆−d)

µ ,

where the second line holds only when ∆ = d/2 + n, with n an integer. In our case, we
are considering generic ∆, not satisfying this condition, and the logarithmic terms will not
be important, but for completeness we quote them below. The coefficients appearing in
the above expansion are given by

W(2j)
µ = Bj(L2□0)j−1L2

(
□0δ

ν
µ + 2j

(1−∆)δ
κν∂µ∂κ

)
W(0)

ν ; j < ∆− d

2

V(2∆−d)
µ = − 1

22nΓ(n)Γ(n+ 1)(□0)j−1L2
(
□0δ

ν
µ + 4n

(2− d− 2n)δ
κν∂µ∂κ

)
W(0)

ν , (F.12)

where □0 = δµν∂µ∂ν , the last equation holds only when ∆ = d/2 + n, and

Bj =
j∏

q=1

1
2q(2∆− d− 2q) . (F.13)
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For completeness, we also quote the asymptotic coefficients of Wρ as they directly follow
from (F.3),

W(2j)
ρ (x) = Bj(L2□0)jW(0)

ρ (x); j < ∆− d

2
V(2∆−d)

ρ (x) = − 1
22nΓ(n)Γ(n+ 1)(L

2□0)nW(0)
ρ (F.14)

These values are consistent with (F.12) and (F.11).
The asymptotic analysis does not determine W(2∆−d)

µ and W(2∆−d)
ρ , but when W(2∆−d)

µ

is known W(2∆−d)
ρ follows from its divergence. This is expected since these play the role of

1-point functions in the presence of sources, and higher point correlators can be determined by
differentiating them. However, the asymptotic analysis should not be enough to completely
fix the full correlators, and this is reflected by the fact that these coefficients are undetermined
from the asymptotic analysis. To find their expression, we need to use the exact solution of
the free Proca field given in equations (D.44) and (D.45) and expand them near the boundary.
The relation between the solutions in the FG and Poincaré coordinates is given by

Wρ(ρ, x) =
∂z

∂ρ
Wz(z(ρ), x) =

1
2

√
L

ρ
Wz(z(ρ), x); Wµ(ρ, x) =Wµ(z(ρ), x) (F.15)

This gives in momentum space

Wρ(ρ,k) = i
2

d
2−∆

Γ
(
∆− d

2
) 1
∆− 1k

∆− d
2

√
L

ρ
(ρL)

d
4Kβ(k

√
ρL)kνwν

Wµ(ρ,k) =
2

Γ
(
∆− d

2
) (k2

)∆− d
2
(ρL)

d−2
4

[
δν

µKβ(k
√
ρL) + kνkµ

k(∆− 1)(ρL)
1
2Kβ−1(k

√
ρL)

]
wν

Using the asymptotic expansion of Bessel function given in (B.3), the above exact solution
can be expanded near the boundary as

Wµ(ρ,k)= (ρL)
d−∆−1

2

[
wµ+· · ·+(−1)j(ρLk2)jBj

(
wµ−

2jwνkνkµ

k2(∆−1)
)
+ · · ·

]

+(ρL)
d−∆−1

2

[(
k

2

)2∆−d π (ρL)∆− d
2 cosec

(
(d−2∆)π

2

)
Γ
(
∆− d

2

)
Γ
(
∆− d

2+1
) (

wµ+
wνkνkµ(d−2∆)

k2(∆−1)
)
+ · · ·

]

Wρ(ρ,k)=
iπL cosec

(
(2∆−d)π

2

)
(∆−1)Γ

(
∆− d

2

) (ρL)
d−∆−1

2

[
1

2Γ
(

d
2−∆+1

)+ k2(Lρ)
23Γ

(
d
2−∆+2

)+· · ·

− (ρL)∆− d
2

2Γ
(
∆− d

2+1
) (k

2

)2∆−d

− (ρL)∆− d
2 +1

25Γ
(
∆− d

2+2
) (k

2

)2∆−d+2
+· · ·

]
kνwν (F.16)

with Bj given in (F.13). Comparing the above expansion with asymptotic analysis and using
the identity Γ(x)Γ(−x) = −π

x cosec(πx), we find

W(0)
µ (k) = Ld−∆−1 wµ(k)

W(2∆−d)
µ (k) =

(
k

2

)2∆−d Γ
(

d
2 −∆

)
L2∆−d

Γ
(
∆− d

2

) (
δν

µ + kνkµ(d− 2∆)
k2(∆− 1)

)
W(0)

µ (k) (F.17)
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W(0)
ρ (k) = i Ld−∆

2(∆− 1) kνwν(k)

W(2∆−d)
ρ (k) = −

L2∆−dΓ
(

d
2 −∆+ 1

)
Γ
(
∆− d

2 + 1
) (

k

2

)2∆−d

W(0)
ρ (k) (F.18)

Note that the length dimension of wµ and W(0)
µ are different. The W(0)

µ has the same dimension
as the Proca field WM , namely 1−d

2 whereas the length dimension of wµ is 3(1−d)
2 +∆.

F.2 Regularised action and counter terms

The bulk on-shell action diverges due to the near boundary contributions. To regularise
the action, we first place the AdS boundary at ρ = Lϵ and then evaluate the resulting
on-shell action. Doing an integration by parts and using the free field equation of motion
of the Proca field, we find

Sreg =
∫

ρ≥Lϵ
dd+1x

√
g
[1
2W

∗
MNW

MN +m2W ∗
MWM

]
=
∫

ρ=Lϵ
dd+1x

√
γ nM (W ∗

NW
MN )

= −2
∫

ρ=Lϵ
ddx

(
ρ

L

) d
2−∆ [

δµνW∗
µ

((d−∆− 1)
2L Wν + ρ

L
∂ρWν − ρ

L
∂νWρ

)]
. (F.19)

In going to the last equality, we have used the fact that the boundary hypersurface is defined
by ρ = constant. Hence, the induced metric and the unit normal space like vector on this
hypersurface are given by

nM = − ∂Mρ√
gP QnPnQ

= − ∂Mρ√
gρρ

= − L

2ρδ
ρ
M ; γµν(x) =

L

ρ
δµν ;

√
γ =

(
L

ρ

) d
2
. (F.20)

Now, using the asymptotic solution, we get

Sreg = −2
∫
ddx

[
ϵ

d
2−∆a(0) + ϵ

d
2−∆+1a(2) + · · ·+ ln ϵ b(2∆−d) +O(ϵ)

]
, (F.21)

where

a(2j) = δµνW∗(0)
µ T (2j)

ν + δµνW∗(2)
µ T (2j−2)

ν + · · ·+ δµνW∗(2j−2)
µ T (2)

ν + δµνW∗(2j)
µ T (0)

ν

b(2∆−d) = ∆− 1
2L δµνW∗(0)

µ V(2∆−d)
ν + d−∆− 1

2L δµνV∗(2∆−d)
µ W(0)

ν (F.22)

with T
(2j)
ν given by

T (2j)
ν = d−∆− 1 + 2j

2L W(2j)
ν + L

2(2j −∆− 1)δ
στ∂ν∂σW(2j−2)

τ ; 0 ≤ j < ∆− d

2 . (F.23)

We can express the regularised action in (F.21) in a covariant form. For this, we need to invert
the asymptotic expansion of WM to express W(0)

M in terms of WM . Up to O(ρj), this is given by

W(0)
µ (x) =

(
ρ

L

)∆−d+1
2

j∑
q=0

[
bq(L2□γ)qWµ(ρ, x) + dqL

2(L2□γ)q−1γσν∂µ∂σWν(ρ, x)
]
,

W(0)
ρ (x) =

(
ρ

L

)∆−d+1
2

j∑
q=0

bq(L2□γ)qWρ(ρ, x) , (F.24)
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where for completeness we have also given the expression of W(0)
ρ in terms of Wρ. The notation

□γ denotes □γ = γµν∂µ∂ν and the coefficients bq and dq are determined recursively by

bq = −
∑

m+n=q
m≥1;n≥0

Bmbn; b0 = 1 ,

dq = −
∑

m+n=q
m≥1;n≥0

[(
1 + 2m

1−∆

)
Bmdn + 2m

1−∆Bmbn

]
; d0 = 0 , (F.25)

with Bm defined in equation (F.13). Here, m,n are integer numbers less than (2∆−d)
2 .

Using (F.24), we can express the divergent terms in the regularised action in covariant
form. The role of counterterms is to get rid of the divergent terms in the above expression
when we take the limit ϵ → 0. Hence, the counterterms are simply given by the negative
of the divergent terms in the regularised action,

Sct = 2
∫
ddx

√
γ

[
d−∆− 1

2L γµνW ∗
µWν

+ L

2(2∆− d− 2)W
∗
µ

(
γµν□γ − (2∆− d)

(∆− 1) γ
µσγτν∂σ∂τ

)
Wν + · · ·

]
, (F.26)

and the renormalised action is then the sum of regularised and counterterm actions, namely

Sren = lim
ϵ→0

(Sreg + Sct) . (F.27)

The above counterterm agrees with the first counter term obtained in equation (G.14) for the
gauge field when we substitute ∆ = d− 1 (and in particular it is manifestly gauge invariant).

F.3 Two-point function

To derive the correctly normalised 2-point function of the operators dual to the Proca field,
we first note that the one point function of the boundary operator Oµ which is dual to
W ∗

µ is given by

⟨Oµ(x)⟩ = δSren

δW(0)∗
µ (x)

= lim
ϵ→0

1
ϵ

∆+1
2

1
√
γ

δSren
δW ∗

µ(x, ϵ)
(F.28)

Using the renormalised action obtained in the previous subsection, we find

⟨Oµ(x)⟩ = −δµν

(
2∆− d

)
L

W(2∆−d)
ν (x) (F.29)

The 2-point function can be computed by differentiating the above expression with respect
to the source W(0)

µ . Using the expression of W(2∆−d)
ν given in (F.17), we find at O(g0)

in coupling10

⟨O∗ν(p)Oµ(k)⟩ = −(2π)d δ⟨Oµ(k)⟩
δW(0)

ν (−p)
= (2π)dδd(p + k)a0

(
δµν + kνkµ(d− 2∆)

k2(∆− 1)
)
k2∆−d

(F.32)
10Note that to compute the correlators in momentum space we need to multiply by the factor of (2π)d. To

see this, we note that the expression of the generating functional is given by

Z[J ] =
〈

exp
(
−
∫

ddxJ(x)ϕ(x)
)〉

=
〈

exp
(
−
∫

ddp

(2π)d
J(−p)ϕ(p)

)〉
(F.30)

– 51 –



J
H
E
P
0
8
(
2
0
2
4
)
2
2
6

where

a0 ≡
(
2∆− d

)(1
2

)2∆−d Γ
(

d
2 −∆

)
Γ
(
∆− d

2

) L2∆−d−1 (F.33)

and we have used the functional identity

δW(0)
µ (p)

δW(0)
ν (q)

= δν
µ δ

d(p − q) (F.34)

G Holographic renormalization of gauge field

In this appendix we discuss how to obtain from the gravity dual the CFT three-point
correlator involving two (non-conserved) spin-one operators and one conserved current using
the holographic renormalization procedure. The UV divergences of the boundary conformal
theory (which arise when two operators approach each other), manifest themselves as long
range IR divergences in the bulk gravity theory when we approach the boundary. The standard
procedure to deal with these divergences in the bulk theory is to first obtain the near boundary
solution of the bulk equations of motion and then regularise the action by introducing a radial
cutoff ϵ [87, 88]. The action diverges as we remove the boundary cut-off, and these divergences
may be cancelled by adding boundary covariant counterterms. The full renormalized on-shell
action is the sum of the regularized action plus the counterterms in the limit ϵ → 0

Sren = lim
ϵ→0

[
Sreg + Sct

]
(G.1)

The connected correlators can now be computed by taking the functional derivative of the
renormalised action with respect to the bulk sources. Below, we shall describe this procedure
in detail for the case of interest. For further information on holographic renormalization,
see [89–95].

G.1 Asymptotic solution

The first step in obtaining the renormalised correlators in AdS is to obtain the asymptotic
solution of the equations of motion. We are interested in computing the 3-point function
that only involves a single insertion of the symmetry current and two insertions of the
non-conserved vector operator. For the purpose of computing this 3-point function, the
1-point function of J µ in the presence of sources, as defined in equation (4.12), may be
computed from the bulk action truncated to quadratic order in the number of bulk gauge
fields. The non-conserved operators are irrelevant operators, and correlators of the irrelevant

Thus, in momentum space we have〈
ϕ(p1) · · ·ϕ(pn)

〉
c
= (−1)n (2π)dδ

δJ(−p1) · · · (2π)dδ

δJ(−pn)W [J ]
∣∣∣
J=0

(F.31)

where the subscript c denotes the connected part of the correlator and we have used the definition W [J ] =
ln Z[J ]. In writing (F.28), we have used the relation Z ≃ e−Sren which gives W ≃ −Sren for the boundary
CFT correlators.
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operators have complicated UV structure. To avoid this problem we will only consider the
irrelevant operators inserted at non-coincident points. This can be achieved by working with
infinitesimal sources which have support at separated points [5, 89]. This then implies that
most of the contributions of the cubic interaction terms to the gauge field equation vanish
because they are quadratic in the source part of the massive vector field, which vanish when
the sources have support on non-coincident points.

Thus, for the purpose of this analysis, it is sufficient to use the equation of motion,

1√
G
∂M

(√
GFMN

)
=
(
□+ d

L2

)
AN −∇N∇MAM = JN , (G.2)

where JN is constructed from the massive vector fields and is given in (4.4). In axial
gauge A0 = 0 and in Fefferman Graham coordinates (defined in equation (A.9)) the above
equation gives

−ρLδµν∂ρ∂µAν = L2Jρ; 4ρ2∂2
ρAµ + 2(4− d)ρ∂ρAµ + ρL□0Aµ − ρLδνσ∂µ∂νAσ = L2Jµ .

(G.3)
where □0 ≡ δµν∂µ∂ν .

We need to obtain the asymptotic solution of the above equation without splitting the
gauge field in the transverse and longitudinal components. This is due to the fact that the
projection operators (which project onto these components) are non-local whereas locality
is essential for renormalisation. To obtain the asymptotic solution, the general strategy is
to solve the equations order by order in the radial direction ρ. Setting ρ = 0, we find that
the equations are satisfied. Next, we take the derivative of these equations with respect to
ρ and then set ρ = 0. For the next order, we take the second derivative of the equations
with respect to ρ and then set ρ = 0 and so on. We need to treat the case of even and
odd dimensions separately.

Even dimensions. Following the procedure described above and solving the resulting
equations, we find that the asymptotic solution for gauge field for even d has the following
structure

Aµ(ρ, x) =
d
2−2∑
j=0

A(2j)
µ (x) ρ

j

Lj
+ ρ

d
2−1

L
d
2−1

(
A(d−2)

µ (x) +B(d−2)
µ (x) log ρ

L

)
+ . . . (G.4)

where the dots denote higher powers in ρ which are irrelevant in the forthcoming discussion.
The need to introduce the log term at O(ρ

d
2−1) is due to the fact that the equations of

motion at this order develop a pole and the resulting equations cannot be satisfied without
the log term. The equations of motion give the following solutions

A(2j)
µ = L2

4j
(

d
2 − 1− j

) (□0δ
µ
ν − ∂µ∂

ν)A(2j−2)
ν , 1 ≤ j <

d

2 − 2 (G.5)

B(d−2)
µ = L2

2(2− d) (□0δ
µ
ν − ∂µ∂

ν)A(d−4)
ν , (G.6)
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where indices are raised with δµν . It follows from these equations that ∂µA
(2j)
µ = ∂µB

(d−2)
µ =

0. In addition the field equations determine the divergence of A(d−2)
µ ,

∂µA(d−2)
µ = 2ig

(d− 2)

(
∆− d

2

)
δµν

(
W∗(0)

µ W(2∆−d)
ν − c.c.

)
, (G.7)

where c.c. stands for complex conjugate. Equation (G.7) comes from solving the first equation
in (G.3) near the boundary, and the r.h.s. comes from Jρ. Note that it involves a source times
a vev piece: all other terms that are quadratic in the sources are automatically zero since by
assumption the sources have disjoint support. The r.h.s. of (G.7) is crucial for deriving the
correct conservation Ward identity from the bulk. The solution shows that all the coefficients
except the transverse part of A(d−2)

µ are locally determined in terms of A(0)
µ .

In deriving (G.7), we have assumed an arbitrary value of ∆, which is appropriate when
the mass of the bulk Proca fields is taken to be arbitrary. For special values of ∆ the solution
is modified: if ∆ = d/2 + n, for some integer n, then the r.h.s. of (G.7) is modified as follows

∂µA(d−2)
µ = 2ig

(d− 2)δ
µν
(
W∗(0)

µ

((
∆− d

2

)
W(2∆−d)

ν + V(2∆−d)
ν

)
− c.c.

)
However, we shall not make use of this since we work with arbitrary ∆ in this paper.

The solutions in (G.6) can also be written using the field strength for A(0)
µ , which makes

gauge invariance manifest,

A(2j)
µ = L2j □j−1

0 ∂νF
(0)
νµ

22jΓ[j + 1]
∏j

n=1

(
d−2

2 − n
) ; 1 ≤ j ≤ d

2 − 2 (G.8)

B(d−2)
µ = −22(1− d

2 ) Ld−2 □
d
2−2
0 ∂νF

(0)
νµ

Γ
[

d
2

]∏ d
2−2
n=1

(
d−2

2 − n
) . (G.9)

Odd dimensions. The procedure for the case of odd d is similar to the case of even d

considered above. The main difference is that the expansion no longer has a logarithmic term,

Aµ(ρ, x) =
d−3

2∑
j=0

(
ρ

L

)j

A(2j)
µ (x) +

(
ρ

L

) d−2
2
A(d−2)

µ (x) + . . . (G.10)

The coefficients A(2j)
µ , 1 ≤ j ≤ (d− 3)/2, are the same as in the (G.5) (or equivalently (G.8)),

and only the longitudinal part of A(d−2)
µ is determined by the asymptotic analysis and is

given by (G.7).

G.2 Regularization

We regularize the action by introducing a small cut-off L ϵ on the radial coordinate ρ close
to the boundary. The action will be evaluated on this regularized action on the asymptotic
solution. The cubic terms do not contribute to the divergences when the sources of the
massive vector fields have disjoint support, so it suffices to consider the regularised gauge
kinetic term only,

Sreg = 1
4

∫
ρ≥Lϵ

dd+1x
√
G FMNF

MN = 1
2

∫
ρ=Lϵ

ddx
√
γ nMANF

MN . (G.11)
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In going to the second equality, we have used integration by parts and used the gauge field
equation of motion at leading order in the coupling constant to set the bulk term to zero.
The γµν = 1

ϵ δµν and nM represent the induced metric and the spacelike normal vector on the
boundary hypersurface ρ = Lϵ. Evaluating the above regularised action on the asymptotic
solution, we find for even d

Sreg = − 1
L

∫
ρ=Lϵ

ddx δµν

[ d
2−2−j∑

k=0

d
2−2∑
j=0

k ϵj+k+1− d
2A(2j)

µ A(2k)
ν +

(
d

2 − 1
)
log ϵ A(0)

µ B(d−2)
ν + . . .

]
(G.12)

The · · · terms are non singular and hence are irrelevant for our discussion. For odd d, we
have the same expression but the factors (d − 2)/2 in the upper limit of the summations
over j and k are replaced by (d − 3)/2 and there is no logarithmic term. From the above
expressions, we see that the number and the structure of the divergent terms depend on
the dimensionality of the space-time. In d = 3, e.g., there are no divergences. In d = 4,
there is only a logarithmic divergence and so on.

G.3 Counterterms

We need to add counterterms to cancel the divergences,

Sct = −divergent terms of Sreg (G.13)

Equation (G.12) shows the relationship between the number of counterterms and the dimension
d of the AdS boundary. These counterterms are obtained by expressing the divergent terms
appearing in Sreg on the right hand side in terms of the induced metric γµν defined on the
regularized surface and express the coefficients A(2j)

µ etc. in terms of the bulk field Aµ(ρ, x)
by inverting the series in (G.4) and (G.10). For even d up to d = 10, this procedure yields

Sct = −L2

∫
ρ=Lϵ

ddx
√
γ γµν γασ Fσµ

[
C1 + (2C2 − C2

1 ) (L2□γ)

+
(
C1(2b̃2 + b̃2

1) + 4C2 b̃1 + 3C3 + 2C2
1 b̃1 + 3C1C2

)
(L2□γ)2

+
(
d

2 − 1
)
C d

2−1 L
d−4 log ϵ□

d
2−2
γ

]
Fαν (G.14)

where the first term appears at d = 6 dimensions (d = 5 for odd dimension). The second
term is necessary from d = 8 ( respectively d = 7) dimensions, and the third one is present
from d = 10 dimensions (d = 9 in odd-dimensions). Here, the coefficients are defined as:

C d
2−1 = − 22−d

Γ
[

d
2
]∏ d

2−2
n=1

(
d−2

2 − n
) ; Cj = 2−2j

Γ
[
j + 1

]∏j
n=1

(
d−2

2 − n
) , 1 ≤ j ≤ d

2 − 2 :

(G.15)
Additionally, we introduce the inversion coefficients for the gauge field as given in (F.25)
for Proca’s field:

b̃q = −
∑

m+ n = q

m ≥ 1; n ≥ 0

Cm b̃n; b̃0 = 1 (G.16)
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The explicit expression for all quantities introduced in eq. (G.14) are:

C1 = 1
2(D − 5) ; 2C2 − C2

1 = 1
2(D − 5)2(D − 7) ; D = d+ 1

C1(2b̃2 + b̃2
1) + 4C2 b̃1 + 3C3 + 2C2

1 b̃1 + 3C1C2 = 1
(D − 5)3(D − 7)(D − 9) (G.17)

These expressions agree with those provided in [96].11

For odd d, the structure of the counterterms remains the same but without the logarithmic
contribution.

G.4 Renormalised correlators

After computing the regularised action, we now have all the ingredients to write down
the expression of 1-point function of the gauge field. For this, we define the renormalised
on-shell action as

Sren = Sreg + Sct (G.18)

The exact renormalized 1-point function is obtained by considering functional derivatives of
the renormalized action with respect to the bulk sources and then removing the IR cutoff.
More precisely, we have

⟨J µ(x)⟩ = δSren
δA(0)µ(x)

= lim
ϵ→0

1
ϵ

d
2
√
γ

δ(Sreg + Sct)
δAµ(ϵ, x)

(G.19)

By construction, this limit is finite. Due to the counterterms, all the divergent terms cancel
and we are left with the finite non-vanishing result in the limit ϵ→ 0. Using the expressions
of Sreg and Sct given in previous sections, we find

⟨J µ(x)⟩ = − 2
L
δµν

[(
d

2 − 1
)
A(d−2)

ν +B(d−2)
ν

]
(G.20)

for d even and

⟨J µ(x)⟩ = − 2
L
δµν

(
d

2 − 1
)
A(d−2)

ν (G.21)

for d odd.
The coefficient B(d−2)

µ present in (G.20) was determined in terms of A(0)
µ (see equa-

tion (G.9)). It turns out that this term contributes only a contact term (which is related
linked with a conformal anomaly [52]). Ignoring this term, we see that the exact 1-point
function of the gauge field has same expression in both even as well as odd d. Further, the
1-point function is given in terms of the coefficient A(d−2)

µ which was undetermined from
the asymptotic analysis. We can determine this coefficient by solving the field equations

11The logarithmic counterterm in equation (G.14) is in agreement with the corresponding one given in v3 of
ref. [96], where several misprints were addressed through email correspondence. We are also in agreement
with [97], which derived the logarithmic term for d = 4.
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perturbatively. Up to the first order in the gauge coupling constant g (which is needed for
the three-point correlation function), we have

Aµ(z, x) =
∫
ddy

√
GK ν

µ (z, x, y)Aν(x) +
∫
ddy dw

√
GGµν(z, w;x, y)Jν(y, w) (G.22)

In the above equation, Kµν and Gµν are the bulk- to-boundary and the bulk-to-bulk propa-
gators of the gauge field given in equations (D.16) and (D.30), respectively, in the Poincaré
coordinates where z =

√
Lρ. The source Jµ at O(g) is defined in equation (4.4).

To determine A(d−2)
µ , we note that it is the coefficient of ρ

d
2−1 in the asymptotic expansion.

The contribution of the first term in (G.22) to ρ
d
2−1 can be obtained by expanding the Bessel

function in the definition of Kµν . However, this term does not contribute to the 3-point
function since it is independent of the massive spin-1 fields. To obtain the contribution
of the second term of (G.22) to ρ

d
2−1, we note that the relation between Poincaré and

Fefferman Graham coordinates implies ρ
d
2−1 ≡ zd−2

L
d
2 −1

. Using this in (D.34), we see that
the near boundary expansion of Gµν precisely gives the correct power of ρ to contribute to
A

(d−2)
µ up to O(g). Thus, we have

⟨J µ(x)⟩ = δµτ
∫
ddy dw

√
GK ν

τ (w;x, y)Jν(y, w) (G.23)

This expression is valid for both even as well as odd d. The desired 3-point function can
now be obtained by differentiating the above expression with respect to sources for the
massive fields, i.e.,

⟨O∗ν(x1)J µ(x2)Oσ(x3)⟩ =
δ2⟨J µ(x2)⟩

δW(0)
ν (x1) δW∗(0)

σ (x3)

= δµτ
∫
ddy dw

√
G K λ

τ (w;x2, y)
δ2Jλ(y)

δW(0)
ν (x1) δW∗(0)

σ (x3)

(G.24)

In section 4, we work in Fourier space and the above expression (G.24) in Fourier space
yields (4.14).

H Expected 3-point amplitude in flat space

In this appendix, we summarize the computation of the 3-point function in Minkowski space
with mostly minus metric, involving a photon γ and the massive charged spin one field
W in d + 1 dimensional flat spacetime. Before discussing the computation of the 3-point
scattering amplitude we comment on the kinematics of the process W → γ +W . Energy
and momentum conservation yields,√

m2 + k2
1 = k2 +

√
m2 + k2

3 (H.1)

k⃗1 = −k⃗2 − k⃗3 (H.2)

where k⃗i are the spatial momenta and ki =
√
k⃗i · k⃗i. A short computation shows that for

generic momenta these above equations imply,

cos θ =
√
1 + m2

k2
3
, (H.3)
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where cos θ = k⃗2 · k⃗3/(k2k3), which cannot be satisfied with real momenta, unless k3 → ∞, or
k2 → 0. The k2 = 0 case may be thought as a special case of the Breit or brick-wall frame
(sometimes also called infinite momentum frame). In this frame (that we also discuss in the
next appendix) the spatial momentum of the massive vector is reversed after the scattering
and thus k⃗2 = 0. For a real photon this then implies k2 = 0. The special kinematics is a
peculiarity of 3-point functions, and if one wants to work with generic momenta one may
either work with complex momenta or consider the mass of the incoming particle to be
different than that of the out-going. In this case one would get the same tree-level scattering
amplitude (H.11) by introducing two massive vectors, Wa and W ′

a in (H.4) below, with masses
m2 and m′2, respectively, and change the interaction terms by replacing W ∗

a by W ′
a
∗. In

the remainder of this appendix, we will assume that one may use either options to ensure
that the 3-point function is kinematically allowed for generic momenta, but we will not
explicitly implement the one or the other option, to keep the discussion similar to that of
higher-point scattering amplitudes.

The action describing these fields in flat space is given by

S =
∫
dd+1x

[
−1
4F

abFab −
1
2W

∗abWab +m2W ∗aWa + iĝα̂ FabW
∗aW b + FabT

ab
]

(H.4)

where Fab = ∂aAb − ∂bAa and

Wab = DaWb −DbWa; DaWb = ∂aWb + igAaWb (H.5)

The cubic interaction terms can again be found by following the same procedure as described
in the appendix C. As discussed there, the general form of the last term can be written as

FabT
ab = F ab

(
c0∂aW

∗
c ∂

cWb + c∗0∂aWc∂
cW ∗

b

)
(H.6)

However, as we shall discuss below, the real part of c0 does not contribute to the amplitude.
Hence, we can write the above expression as

FabT
ab = iĝβ̂F ab(∂aW

∗
c ∂

cWb − ∂aWc∂
cW ∗

b

)
(H.7)

To proceed further, we denote the momenta and polarisation vector of W ∗
a by (k1, ε1a), those

of the gauge field by (k2, ε2a) and those of Wa by (k3, ε3a). The equation of motion of the
massive fields imply the transversality condition ∂aW

a = 0 + O(ĝ). Using this and the
transversality of the gauge field, we find

ε1 · k1 = O(ĝ); ε2 · k2 = 0; ε3 · k3 = O(ĝ) (H.8)

where the inner products are computed using the flat space metric.
Taking all the momenta to be ingoing in the cubic vertex, the momentum conservation

condition ka
1 + ka

2 + ka
3 = 0 gives

k1 · k3 = m2; k1 · k2 = 0; k2 · k3 = 0 (H.9)

Next, we consider the Feynman rules. We shall only need the expression of the momentum
space cubic vertex describing the interaction between the gauge field and the massive charged
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spin one field. This is given by

V abc(k1, k2, k3) = −ĝ
[
ηbaηcdk1d − ηbdηcak1d − ηbcηadk3d + ηbdηcak3d

+α̂
(
ηadηbck2d − ηabηdck2d

)
(H.10)

−β̂ k2d k1e k3f

(
ηaf (ηedηbc − ηebηdc)− ηce(ηfdηba − ηfbηad)

)]
Using (H.8) and (H.9), the desired 3 point function is obtained to be

A3 = ε1 a(k1)ε2 b(k2)ε3 c(k3)V abc(k1, k2, k3)

= ĝ

[
2(ε1 · ε3)(ε2 · k1) + (1 + α̂)(ε2 · ε1)(ε3 · k2)− (1 + α̂)(ε2 · ε3)(ε1 · k2)

+2β̂(ε2 · k1)(ε3 · k2)(ε1 · k2)
]
. (H.11)

Gauge invariance implies that the amplitude vanishes when ε2 is replaced by k2.
We shall now show that the real part of c0 in (H.6) does not contribute to the amplitude.

For this, we just focus on the terms containing c0 and its complex conjugate in the action.
In momentum space, this is given by

I =
∫ 3∏

i=1

dd+1pi

(2π)d+1 W
∗
a (p1)Ab(p2)Wc(p3)Aabc

3 (p1, p2, p3) (H.12)

with

Aabc
3 (p1, p2, p3) = −i

[
c0η

bc pa
3 (p1 · p2) + c∗0 p

c
1 (p2 · p3) ηab − c0p

c
2 p

b
1 p

a
3 − c∗0p

a
2 p

b
3 p

c
1

]
(H.13)

The above expression implies

Aabc
3 (p1, p2, p3) +Acba

3 (p3, p2, p1)

= −i(c0 + c∗0)
[
ηbcpa

3(p2 · p1) + pc
1(p3 · p2)ηab − pc

2p
b
1p

a
3 − pa

2p
b
3p

c
1

] (H.14)

Now, the on shell momenta and polarizations satisfy

p2 · p3 = 0; p1 · p2 = 0; εa · pa = 0 , a = 1, 2, 3 (H.15)

The condition on momenta imply that the first two terms in r.h.s. of (H.14) vanish. Next,
noting that the amplitude is given by dressing Aabc

3 with the external polarization vectors, we
contract (H.14) with polarization vectors and use the transversality condition on polarization
vectors to obtain

ε1a ε2b ε3c

[
Aabc

3 (p1, p2, p3) +Acba
3 (p3, p2, p1)

]
= i(c0 + c∗0) [(ε1 · p3)(ε2 · p1)(ε3 p2) + (ε1 · p2)(ε2 p3)(ε3 · p1)]
= 2i Re(c0) [−(ε1 · p2)(ε2 · p1)(ε3 · p2) + (ε1 · p2)(ε2 · p1)(ε3 · p2)]
= 0 (H.16)
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Thus, we have

ε1a ε2b ε3cA
abc
3 (p1, p2, p3) = −ε1a ε2b ε3cA

cba
3 (p3, p2, p1) (H.17)

From this, it is clear that the real part of the coefficient c0 does not appear in the flat space
amplitude. Further, it also shows the antisymmetry of the on shell amplitude under the
exchange (ε1, p1) ↔ (ε3, p3). This is also the property of the CFT 3-point function reviewed
in section 2. Hence, the flat space result is consistent with this expectation.

I Multipole moments

The coupling constants (Wilson coefficients) appearing in an effective field theory involving
an Abelian gauge field encode information about how the gauge field interacts with the other
massive fields. These coupling constants can be related to the electromagnetic moments.
Here, we summarise some results regarding this relation in 4 dimensional Minkowski space
following [98].

We start by recalling some basic facts about electromagnetic form factors and multipole
expansion of the electromagnetic currents. This is a topic with a long history, see [59, 60,
98–102] for a selection of early papers. The main object is the expectation value of the
electromagnetic current in a single-particle state

Ja(x) ≡ ĝ

2m⟨p′, s|Ja(x)|p, s⟩ = eiq·x ĝ

2m⟨p′, s|Ja(0)|p, s⟩ (I.1)

where ĝ and m denote the charge and mass of the massive particle and q = p + p′ is the
momentum transfer.12 The state |p, s⟩ is the spin-s single particle state with 4-momentum
pa. The dependence of Ja on x is simple because translational invariance implies that
Ja(x) = eix·P̂Ja(0)e−ix·P̂ , where P̂ is the 4-momentum operator, and we take the expectation
value between momentum eigenstates.

We now consider (I.1) in the Breit (or brick-wall) frame. In this frame, there is no
energy transfer from the photon to the system, i.e. q = (0,q) and Ja(0, r) = (ρ(r),J(r))
is static. The electric and magnetic multipoles can be obtained from the moments of the
electric density, ρ(r), and magnetic density, ρM (r) = ∇ · (J(r)× r), using standard results
from electrostatics and magnetostatics.

With no loss of generality we may impose azimuthal symmetry, Fourier transform and

12 We are taking all the momenta to be ingoing. In [98], the definitions of qµ and P µ (appearing below
in (I.5)) are interchanged as compared to the definitions given above since [98] takes the momenta of the
initial state to be in-going and of the final state to be out-going.
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expand in the spherical harmonics to obtain [98]

ρ(q)= J0(q)= ĝ
2s∑

l=0
l even

(−τ)
l
2

√
4π

2l+1
l!

(2l−1)!! GEl(Q2)Yl0(Ωq) (I.2)

= ĝ

[
GE0(Q2)− 2

3τGE2(Q2)
√

4π
5 Y20(Ωq)+· · ·

]

ρM (q)= ∇⃗·(J(q)×q)= i ĝ
√
τ

2s∑
l=1

l odd

(l+1)(−τ)
l−1

2

√
4π

2l+1
l!

(2l−1)!! GMl(Q2)Yl0(Ωq) (I.3)

=2i ĝ
√
τ

[
GM1(Q2)

√
4π
3 Y10(Ωq)−

4
5τGM3(Q2)

√
4π
7 Y30(Ωq)+· · ·

]
where GEl and GMl are the electric and magnetic multipoles, Ylm(Ωq) are spherical harmonics,
Ωq denotes the solid angle associated with the vector q, Q2 = −q2 denotes the momentum
transfer squared (Q2 = −q2 in the Breit frame) and τ = Q2

4m2 . As mentioned we consider a
system with azimuthal symmetry and we took the symmetry axis to be the z-axis, so only the
m = 0 components of the spherical harmonics Ylm contribute in (I.2) and (I.3). The lth electric
moment Ql and the lth magnetic moment µl are given by the Q2 = 0 value of the multipoles,

Ql =
ĝ

ml

(l!)2

2l
GEl(0); µl =

ĝ

2ml

(l!)2

2l−1GMl(0) (I.4)

The form of the electromagnetic current Ja(q) in terms of form factors follows from
Lorentz covariance, and goes back to [100, 101]. The analysis is similar to the determination
of the form factor decomposition of the 3-point functions reviewed in section 2. For the case
of massive spin-1 particles, this has also been discussed in the context of tri-linear gauge
coupling in the standard model [103, 104]. When d = 4 and s is integer or half-integer, the
combination of Lorentz covariance, gauge invariance (conservation of the current) and parity
and time-reversal symmetries imply that the current involves (2s + 1) form factors [101].
The connection to CFT 3-point functions we discuss in this paper suggests that this number
continues to be the same for any d. It would be interesting to show this explicitly. The
explicit form of the electromagnetic current for the case of integer s (in the form given
in [98]13) is as follows:

Ja
(s) = (−1)sε∗b1···bs

(p′)
[
P a

∑
(k,s)

F2k+1(Q2) + (gacsqbs − gabsqcs)
∑

(k,s−1)
F2k+2(Q2)

]
ε∗c1···cs

(p)

(I.5)
where ϵa1···as denote the polarisation tensor of the spin s particle, P a = pa − p′a and
qa = pa + p′a and

∑
(k,s)

≡
s∑

k=0

[ k∏
i=1

(
−q

biqci

2m2

)
s∏

i=k+1
gbici

]
(I.6)

For s = 1, the above expressions give

Ja = −W ∗
b (p′)

[
gbcP aF1(Q2) +

(
gacqb − gabqc)F2(Q2)− qbqc

2m2P
aF3(Q2)

]
Wc(p) . (I.7)

13See footnote 12 regarding our conventions relative to that of [98].
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Comparing (I.2), (I.3) and (I.5) shows that the electric and magnetic multipoles GEl(Q2)
and GMl(Q2) are linear combinations of the form factors Fi(Q2). E.g., for s = 1, we have [98]

GE0(Q2)− 2
3τ GE2(Q2) =

√
1 + τ F1(Q2)

GE2(Q2) =
√
1 + τ

[
F1(Q2)− F2(Q2) + (1 + τ)F3(Q2)

]
GM1(Q2) =

√
1 + τ F2(Q2) (I.8)

In perturbation theory, the electromagnetic form factor captures the lowest order terms
in the scattering amplitude of the photon with the massive vector boson. Now however
the photon must me on-shell, Q2 = 0. To avoid using special kinematics we may work
with complex momenta (one may check that one can reach the Breit frame with complex
momenta and non-trivial on-shell momentum for the photon). We can now see how the Wilson
coefficients α̂ and β̂ appearing in the flat space action are related to the electromagnetic
moments. Stripping (H.11) of the gauge field polarisation and comparing with (I.7) we find

F1(0) = 1; F2(0) = (1 + α̂); F3(0) = −2m2β̂ . (I.9)

For virtual photon the form factors may have q2-dependence, see for example [60]. Also,
in general, the electromagnetic form factors for hadronic higher spin states are non-trivial
functions of Q2. Using (I.9) in (I.8) we find,

GE0(0) = 1; GE2(0) = −(α̂+ 2m2β̂); GM1(0) = (1 + α̂) , (I.10)

and then (I.4) leads to the electric and magnetic moments,

Q0 = ĝ; Q2 = − ĝ

m2 (α̂+ 2m2β̂); µ1 = ĝ

2m(1 + α̂) . (I.11)

This is in exact agreement with the results in [60].

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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