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Depth Estimation for Indoor Single Omnidirectional Images

by Yihong Wu

Omnidirectional cameras are becoming popular in various applications owing to their

ability to capture the full surrounding scene in one frame. However, depth estimation

for an omnidirectional scene is more difficult than for general images due to its dif-

ferent system properties and distortions. Monocular depth estimation for single-view

using deep learning can be a good solution, but it requires a large labelled depth dataset

with various scenes. Currently published omnidirectional depth datasets cover limited

types of scenes and are not suitable for depth estimation for various real-world scenes.

In addition, the existing methods are basically data-driven, and the depth estimation

process based on deep learning is still a black box. In order to overcome these prob-

lems, we first proposed a depth estimation architecture for a single omnidirectional

image using domain adaptation, only with limited labelled real-world scenes. With

the challenge of getting labelled real-world datasets and stability of the performance,

we updated the components of architecture and proposed a reverse-gradient warming-

up threshold discriminator (RWTD) to estimate real-world depth maps from synthetic

ground truth. It takes labelled synthetic scenes of a source domain and unlabelled real-

world scenes of a target domain as inputs to predict the corresponding depth maps. To

solve the black-box depth estimation process, we analyse the role of gravity in depth

estimation and propose a slicing method based on the gravity direction. Equally cru-

cial to our investigation is the examination of the contributions of different cues to the

results of indoor depth estimation. The results show that the four factors of colour, sat-

uration, local texture and shape show different extent contributions, and among them,

the shape feature plays a dominant role in the performance of depth estimation. These

works present solutions for depth estimation of omnidirectional images in real-world

applications and delve into the critical role of gravity alignment, as well as the ex-

ploration of how machines perceive depth, providing a foundation for subsequent re-

search.
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Chapter 1

Introduction

3D scene reconstruction and representation have been essential tasks in computer vi-

sion and robot vision in the past decades. As one of the most important tasks of 3D

scene reconstruction, depth estimation predicts the distance between the visible sur-

face and the sensors (Steger et al., 2018). Specifically, it is a pixel-to-pixel level task that

involves taking an input RGB image and predicting the distance of each pixel in the

image from the camera (shown in Fig. 1.1).

1.1 Depth Estimation from Visual Inputs

1.1.1 Traditional Depth Estimation

Early research on depth estimation focused on methods based on traditional geometry

and vision. Stereo vision (Szeliski, 2010) is one of the early depth estimation methods

(A) RGB Sample (B) Corresponding Depth

FIGURE 1.1: Depth Estimation Example. The left image is an RGB image, while the
right image is the corresponding pixel-level depth map.
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that estimate depth by comparing two or more images taken from different perspec-

tives. The stereo vision method mainly relies on finding corresponding points between

images and then calculating the disparity between these points to estimate depth.

Structured light (Szeliski, 2010) is also a popular early method for depth estimation re-

search. This method estimates depth information by projecting known patterns of light

into a scene and then observing how those patterns deform due to different depths of

the surface. For example, the stripe pattern, a common example of a structured light

pattern, is utilised for depth information estimation. This involves projecting horizon-

tal or vertical stripes onto a scene. The stripes deform in response to the surface geom-

etry, thereby reflecting depth information. In addition, there are a variety of structured

light methods, such as grid patterns and dot patterns.

Time-of-flight (ToF) (Szeliski, 2010) technology employs a ToF camera that emits a light

pulse, typically infrared, onto an object. The light reflects back from the object’s surface

and is captured by the sensor. The ToF camera measures the total time of the light

pulse from transmission to return. Since the speed of light is known, distances can be

calculated based on the time it takes the light to travel. By repeating this process for

measurements at each point in the scene, the ToF camera can generate a depth map

where the value of each pixel represents the distance of the corresponding point from

the camera. Different from the stereo vision, ToF method measures distance directly

rather than relying on image contrast as stereo vision does. However, this method has

the problem of low resolution, and it is sensitive to the properties of the surface of

the object and will affect the accuracy of the measurement for the surface of the object

with low reflectivity. In addition, this method may encounter the problem of multipath

interference in complex environments; that is, the light pulse may be reflected several

times before reaching the sensor, thus affecting the accuracy of the measurement.

1.1.2 Depth Estimation from Sensors

Depth sensors are based on the above traditional foundations.

LiDARs work by emitting laser pulses and receiving the reflection and then measuring

the duration for these pulses to travel (Collis, 1970; Wandinger, 2005). Based on the time

it takes for the light to travel back and forth, the system is able to calculate the distance

from the laser to the object. It is often used to accurately measure large areas of three-

dimensional space, such as terrain mapping, self-driving cars, drone navigation, and

other fields. However, due to complex mechanical components, optical components,

and accurate time measurement systems, LiDARs are expensive.

Infrared sensors (Yuzbasioglu and Barshan, 2005) and ultrasonic sensors (Shahira et al.,

2019) are also used in the field of depth estimation. For example, Kinect uses structured

light and time of fly (Smisek et al., 2013). Specifically, infrared is used to project a
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specific pattern into the observed scene, and then the infrared camera captures the

deformation of the pattern on the scene object and calculates the depth information

of the object by analyzing the deformation. Combined with the time it takes the light

pulse to be transmitted to the scene and reflected back to the sensor, depth estimation

is made. However, they have deficiencies such as low-resolution (Zioulis et al., 2018),

inaccuracy in textureless regions, short sensing range and an expensive reconstruction

process (Alhashim and Wonka, 2018).

1.1.3 Deep Learning based Methods

There have been many different approaches for depth estimation from visual inputs,

such as using motion parallax in videos (Lei et al., 2015), multi-view geometry from

multiple cameras (Steger et al., 2018), and depth cues from a single image (Bhoi, 2019).

The stereo or multi-view approaches require more constraints in system configura-

tion, such as camera calibration and synchronisation between cameras. In contrast, the

single-view approach has more flexibility in its applications, although estimating depth

from single images is a challenge for artificial intelligence (AI). A human can perceive

depth even from one eye through various monocular depth cues about the scene, e.g.,

shadow, motion parallax, relative size, etc., based on prior knowledge and experiences

(Howard, 2012). By following this way, AI can take computer vision beyond simple

tasks such as object recognition and localisation segmentation to complicated tasks like

scene understanding. The comparative experiments have been conducted on various

aspects, such as object size and camera pose, to reveal exactly how the network learns

depth from a single image input (Dijk and Croon, 2019).

1.2 Applications

Depth estimation has a wide range of applications. It is one of the key technologies

for self-driving cars, as it needs to measure and estimate the distance to surrounding

cars, pedestrians, and barriers (Luo et al., 2018; Wang et al., 2019; Janai et al., 2020).

Augmented reality (AR) applications require depth information of a scene to provide

users with an immersive experience and correct spatial perception (Lee et al., 2011;

El Jamiy and Marsh, 2019). Depth estimation is also useful in surveillance applications

(Lamża et al., 2013; Alphonse and Sriharsha, 2021), indoor navigation (Machkour et al.,

2023; Kang et al., 2014) and 3D reconstruction (Kim et al., 2022; Zhang et al., 2020; Pan

et al., 2020; Alawadh et al., 2022).
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1.2.1 Virtual Reality and Augmented Reality

Depth estimation is used in virtual and augmented reality to achieve a more realistic

perception of the scene, which can help improve the user’s sense of interacting with the

virtual world (Lee et al., 2011; El Jamiy and Marsh, 2019). By obtaining depth informa-

tion about objects in the scene through depth estimation, virtual and augmented reality

systems can more accurately overlay virtual objects into the real world, making these

virtual objects more integrated with the real-world environment, thereby improving

the user experience.

1.2.2 Autonomous Driving Systems

Depth estimation is one of the key techniques in autonomous driving systems. It helps

to identify objects on the road, estimate the distance between pedestrians, vehicles, and

obstacles, and create environmental maps (Luo et al., 2018; Wang et al., 2019; Janai et al.,

2020). It enables automated driving systems to effectively detect and avoid obstacles

and understand road structures to ensure safe driving. It is of great significance for

realising the safety, and reliability of autonomous driving.

1.2.3 Indoor navigation

Depth estimation helps indoor navigation systems to navigate within buildings (Machk-

our et al., 2023). This includes detecting walls, furniture, etc., as well as providing accu-

rate depth information about the current location relative to the target. For example, a

household robot vacuum cleaner can avoid obstacles during the cleaning process with

the help of depth estimation (Kang et al., 2014).

1.2.4 Surveillance

Depth estimation can also be used for video analysis in surveillance cameras, including

target recognition, motion tracking, and behaviour analysis (Lamża et al., 2013). By

estimating the depth of the object, the system can more accurately understand the scene

and provide a more intelligent monitoring system. With the help of depth estimation,

for example, surveillance systems can interpret human actions and identify criminal

activity using a single RGB camera (Alphonse and Sriharsha, 2021).
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1.2.5 3D Reconstruction

Depth estimation plays an important role in the field of 3D reconstruction, which re-

alises 3D modelling by obtaining depth information from 2D images (Kim et al., 2022).

For example, depth estimation can be used to help generate indoor layouts of buildings

(Zhang et al., 2020), helping architects visualise designs and make more precise plans

in indoor architectural design. In cultural heritage conservation, depth estimation can

be used to reconstruct heritage (Pan et al., 2020), which can digitise tangible cultural

heritage to ensure their integrity and preservation and provide a powerful tool for re-

search and education. Depth estimation can also help generate initial 3D scenes from a

single image (Alawadh et al., 2022), which contributes to game design.

1.3 Indoor Depth Estimation

Indoor depth estimation holds significant practical application value for specific sce-

narios, such as indoor navigation (Zhong et al., 2004), augmented reality (Sari et al.,

2023), and domestic robots (Zhou et al., 2014). These applications often require a pre-

cise understanding of indoor spaces and the complexity and variability of indoor envi-

ronments necessitate dedicated research.

Given the critical importance of indoor depth estimation, where scenes are densely

populated with small objects and intricate details within a constrained spatial scale,

researchers need to address issues arising from the presence of numerous small objects

and details within the scene, predict the scale of the scene (Torralba and Oliva, 2002),

and also contend with a smaller dynamic range of lighting and more complex and vari-

able lighting conditions (Miled et al., 2009), such as the effects of natural light coming

through windows interacting with indoor artificial light sources.

1.3.1 Omnidiretional Depth Estimation

Methods based on deep learning are predominantly focused on general images (Ming

et al., 2021; Mertan et al., 2022). The emergence of efficient spherical cameras and om-

nidirectional cameras has made the production of 360° content much easier. The 360°

content has been widely adopted in fields such as entertainment, and robotics appli-

cations, as well as in marketing production, events, and news reporting (Zioulis et al.,

2018)

One barrier to depth estimation with a general perspective camera is that the limited

field-of-view (FoV) provides only a partial observation of the scene. Observation of

the whole surrounding 3D environment requires multiple calibrated and synchronised
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sensors. Omnidirectional cameras provide a good solution, as they capture the full sur-

rounding scenes in one image (Kim and Hilton, 2013). Due to the distortion in omnidi-

rectional images, the process of these images is different from that of general perspec-

tive images, and there have been several end-to-end models on omnidirectional single

image for depth estimation (Zioulis et al., 2018; Wang et al., 2020b). These encoder-

decoder models require large labelled datasets containing different scenes for model

learning.

1.4 Challenges

1.4.1 Insufficient Real-world Data

The majority of models (Bhat et al., 2021; Alhashim and Wonka, 2018) were developed

for general perspective images and the trained models cannot predict depth maps for

omnidirectional images. This is because omnidirectional images contain more distor-

tion than general perspective images (shown in Figure 2.2), and this distortion prevents

the trained model for general perspective images from correctly estimating omnidirec-

tional depth maps. As for the supervised learning models (Zioulis et al., 2018) for om-

nidirectional images, they perform well on labelled datasets but poorly on the dataset

from another domain because of insufficient varieties of scenes for training (Wu et al.,

2021). Currently available real-world datasets, such as Stanford2D3D (Armeni et al.,

2017) and Matterport3D (Chang et al., 2017), cover limited scenes, such as office rooms

or houses. Generating new data sets and measuring the depth of different scenes can be

a solution, but it is difficult to collect a large depth-labelled dataset because a synchro-

nised RGB-D sensor for omnidirectional capture is not generally available. Currently,

published omnidirectional depth datasets contain limited types of scenes. Even the

largest depth datasets, such as 3D60 (Zioulis et al., 2018) and Pano3D (Albanis et al.,

2021), contain similar depth distribution and limited real-world scene types. The real-

world scenes with different room-scale or different objects will perform poorly even

with a model learned from these large datasets because of the difference between train-

ing datasets and real-world testing datasets (Wu et al., 2021). Learning information

from scenes that are similar to target scenes and inferring depth maps can be an efficient

solution. With this idea, we proposed an architecture based on an encoder-decoder

model with domain adaptation, which only requires limited real-world depth maps for

training and predicting the depth maps for other real-world scenes.

However, sometimes even limited ground-truth depth maps are difficult to get. Com-

puter Graphics (CG) models can solve this problem as they can easily generate a huge

amount of rendered images with corresponding depth from 3D models at a low cost,

and users have full control of the synthetic datasets, such as adding objects and chang-

ing the scene light (Ren and Lee, 2018). Therefore, it is possible to use CG scenes for
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training, and domain adaptation can help map the two different domains to a similar

feature space (Ganin and Lempitsky, 2015). Ren and Lee (2018) stated that domain

adaptation had been used for a general classification problem between photographic

and synthetic imagery, and they used general perspective synthetic images to predict

depth maps by using physical property maps, such as depth maps and surface normal

maps. Inspired by this work, it is hypothesised that domain adaptation can be utilised

for depth estimation of unlabelled real-world scenes by learning from synthetic images.

SunCG dataset from Zioulis et al. (2018) contains 12,863 scenes and various types of

indoor scenes. The CG scenes are different from the real-world scenes, though some

of them are similar to the real-world scenes. The challenge is that if CG datasets are

used directly for training and for predicting the depth of real-world scenes, the models

do not perform well due to the gap between CG and real-world scenes. The proposed

reverse-gradient warming-up threshold discriminator (RWTD) solves this problem by

its components. First, the reverse-gradient layer (Ganin and Lempitsky, 2015) enables

similar features of source and target domains to be extracted. Second, the idea of focal

loss (Lin et al., 2017) enables the model to focus on learning information for the target

domain by focusing on images in the source domain that are similar to that in the target

domain and ignoring the more differentiated ones. Third, the constrained increasing

domain label losses prevent training loss from becoming too large to crash the training.

Besides RWTD, the components of the updated architecture, such as the EfficientNet

(Tan and Le, 2019) backbone and transformer encoder, also help improve the perfor-

mance. EfficientNet integrates width, depth and resolution into a comprehensive task,

while vision transformer (Dosovitskiy et al., 2020) can apply the attention to the vi-

sual input and learn the global information. Based on these ideas, the new single-view

depth estimation architecture is able to better predict real-world scene depth by learn-

ing information only from CG datasets without using any real-world depth maps for

training.

1.4.2 Unclear Insight

1.4.2.1 Gravity

Gravity as a physical constraint plays an important role on indoor scenes (Sun et al.,

2021; Pintore et al., 2021). Due to gravity, the depth distribution of the object will show

a certain pattern. Specifically, for objects placed on the ground, the depth from bottom

to top is usually from near to far. This is because nearby objects block distant objects,

creating a pattern of depth change. Therefore, the depth change in the vertical direction

may be regular, that is, it may exhibit some predictability in the direction of gravity. In

contrast, the horizontal depth does not have such a rule but shows different depths



8 Chapter 1. Introduction

according to the indoor scene and objects. Based on these motivations, aligning omni-

directional image acquisition with the gravity direction may benefit the models to learn

information from these images.

Despite noticing these things, it is still not sure exactly how much gravity affects depth

estimates. Figuring out to what extent gravity alignment impacts indoor depth estima-

tion is still a puzzle that needs examination and analysis.

1.4.2.2 Depth Estimation Contribution Factors

Indoor single-image depth estimation using deep learning encounters a challenge re-

lated to the adopted deep neural network structure, characterised by a black-box na-

ture. In other words, the internal workings of the network are opaque and resist easy

explication. This ambiguity inhibits researchers from obtaining a detailed comprehen-

sion of the processes involved in depth estimation, specifically, the extraction and util-

isation of visual cues from images and to what extent these factors contribute to depth

estimation. Consequently, a comprehensive understanding of the operational mecha-

nisms of depth estimation models is lacking.

1.5 Contributions

In this thesis, there are four main contributions. The first main contribution is to pro-

pose an architecture to estimate the depth field of a single omnidirectional scene im-

age based on generative adversarial network (GAN) and domain adaptation, which is

used to obfuscate domain labels in the training process so that different domains can

be mapped to similar feature distribution, resulting in the domain-invariant features.

The proposed architecture takes the labelled and unlabelled data as the source and tar-

get domains, respectively. The goal of the architecture is to predict the depth maps

for target domain scenes. This architecture provides a good solution when the limited

labelled dataset is available for the source domain data. It was evaluated on existing

datasets by limiting the number of ground-truth depth maps to simulate the situation

that has limited labels. The result showed that the proposed architecture outperforms

a traditional encoder-decoder model by over 10% points in first threshold depth accu-

racy when the labelled set is very limited.

For the second main contribution, considering that it is sometimes difficult to obtain

even a small amount of real-world depth maps that are similar to the target domain

scenes, the reverse warming-up threshold discriminator (RWTD) was proposed. It is

part of an architecture that has a similar structure to previous architecture but with

different components, containing a U-Net encoder-decoder model, transformer en-

coder, and RWTD. This proposed RWTD contains a reverse-gradient layer, warming-up
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threshold and focal weights. Reverse-gradient layer makes the gradient descent direc-

tion reverse to make the model unable to recognise the images coming from which do-

main so that they are mapped into the common feature space. Warming-up threshold

prevents the domain label losses from increasing too fast and dominating the training

loss function. Focal weights will let the RWTD focus on learning information from

scenes that are similar to that in the target domain and ignore the different ones. These

make the architecture train with CG images without any real ground-truth depth maps.

These are explained in detail in Chapter 4. This proposed architecture solves the prob-

lem of insufficient ground-truth depth labels in the target domain and infers the depth

of the target domain images by learning information from the source domain. Its per-

formance was evaluated by applying models trained on CG scenes to a real-world pub-

lic dataset and self-recorded real-world scenes, and the results demonstrate notable sta-

bility and exceptional depth accuracy.

For the third contribution, taking into account the important role that gravity plays in

artificial scenes, the role of gravity in depth estimation was analysed. On this basis,

we propose a model that takes into account gravity alignment. In Chapter 5, the im-

ages are divided into vertical and horizontal directions as input to study the difference

between gravity alignment directions and non-gravity directions. The results show

that the alignment of gravity direction can provide more information for the model to

obtain better performance. Based on this research, a model based on the direction of

gravity was proposed. It includes an encoder-decoder for extracting image features

and a slice-based transformer for dividing extracted features according to gravity di-

rection and predicting the final depth map with attention. These are explained in detail

in Chapter 5. This study demonstrates the important role of gravity in depth estima-

tion and indicates that gravity should be considered as a significant physical constraint

in future studies. It provides a boost to model performance and interoperability, since

many existing models are based on data-driven, and the physical factors that directly

affect the model performance are not deeply analysed.

As for the fourth contribution, considering that the existing indoor single-image depth

estimation methods are based on data-driven black-box models, a study is proposed

based on the split analysis of specific factors affecting depth estimation. In Chapter 6,

the relative contributions of the known cues of depth in a single-image depth estima-

tion setting using an indoor scene. This work uses feature extraction techniques to iso-

late individual features of shape, texture, colour, and saturation to predict depth. The

study found that the shape of objects extracted by edge detection contributed more than

other objects in the considered indoor setting, while other features also contributed to

varying degrees. These insights will help depth estimation models, thereby improv-

ing their accuracy and robustness. This decomposition can be used to transform the

study and interpretation of powerful models (such as deep neural networks) working
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in scene understanding, rather than simply treating estimated performance as black-

box function approximators.

In summary, the main contributions are listed as the following:

Contribution A

• A good solution for the problem of single omnidirectional image depth estimation

when only a limited labelled set is available for the source scenes.

• A domain adaptation-based architecture for single-view omnidirectional depth

estimation.

• A published paper of this work with open-source code (shown in Declaration of

Authorship).

Contribution B

• A good solution for the problem of single omnidirectional image depth estimation

without any real-world ground truth labels.

• A RWTD discriminator that contributes a stable performance for domain adapta-

tion of single-view omnidirectional depth estimation.

• Test and analysis for our own dataset captured in various indoor scenes.

• A published paper of this work with open-source code.

Contribution C

• Analysis of the importance of gravity factor in depth estimation.

• An architecture is introduced for deep dense depth estimation from a single in-

door omnidirectional image utilising a slice-based transformer.

• A published paper and a submitted paper of this work with open-source code.

Contribution D

• Development of single-feature isolation techniques.

• Assessment and identification of the varying contributions of colour, saturation,

local texture, and shape in depth estimation.

• Discovery of insights that can enhance depth estimation models, improving accu-

racy and robustness, while offering a novel perspective on deep neural networks

in scene analysis.

• Submission of a paper on this work with open-source code available.
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1.6 Structure of Thesis

This study is dedicated to advancing the field of deep learning-based depth estimation,

with a specific emphasis on its applicability to real-world indoor scenes. The primary

objective is to improve the performance of depth estimation in real-world applications

and to explore and analyse the factors that contribute to depth estimation.

Chapter 1 introduces the theme and research background of this paper. Chapter 2 com-

prehensively reviews relevant literature, establishing a theoretical foundation for the

following research. In Chapter 3, an innovative approach is introduced for realistic-

scene depth estimation utilising a limited real-world dataset. Progressing to Chapter

4, the research addresses the challenge of the dependence on realistic data for real-

world depth estimation, and training with synthetic data only. In Chapter 5, consider-

ing the physical constraints, the influence of gravity alignment is specifically analysed.

Consequently, a model is proposed that considers the alignment of gravity alignment.

Chapter 6 delves into the analysis of various factors influencing the depth estimation

performance in single images and evaluates their respective contributions. Chapter 7

concludes with a discussion of the broader implications of these findings and potential

future works to provide the direction for the subsequent research investigative endeav-

ours. Finally, the Appendix chapter shows supplement materials to the experiment.
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Chapter 2

Related Work

2.1 Depth Estimation

Depth estimation is a pixel-level method to measure the distance from the object surface

and capturing devices (Steger et al., 2018). Most classic depth estimation methods can

only be applied to the constraint scenes, depending on depth cues, such as shadow and

vanishing points (Ming et al., 2021).

2.1.1 Stereo Approach

Stereo vision is an interesting topic for humans. Since the beginning of the study of

visual perception, humans have realised that we do depth perception based on the

disparity between the left and right eyes. It is also an important research direction in

computer vision (Barnard and Fischler, 1982; Brown et al., 2003; Seitz et al., 2006).

Stereo matching is a common method of depth estimation that measures depth infor-

mation for objects in a scene based on two or more images taken from different viewing

perspectives. That is, the disparity map of the images is obtained through stereo match-

ing, and the distance between the object and the observer is then calculated.

2.1.1.1 Pixel Matching

Early stereo matching was achieved by sparse correspondence (Bolles, 1993; Ohta and

Kanade, 1985; Hsieh et al., 1992). The algorithm first relied on specific methods such as

a point of interest detection algorithm or edge detector to identify possible correspond-

ing feature positions in the image. They then matched these features by looking for

areas in another image that matched them. This process is usually done by comparing

the similarity of a small area in the image, such as corners, edges, or other significant
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visual features. They can provide important information about the content of the im-

age. Thus, the matching process is based on these selected, relatively small number of

points, rather than each pixel in the image, resulting in a sparse correspondence.

Although sparse correspondences are computationally more efficient, they may not be

as accurate as methods based on full-pixel (dense) correspondences.

Dense stereo approach algorithms typically perform the following four steps, or some

of them (Scharstein and Szeliski, 2002): matching cost computation, cost aggregation,

disparity computation and optimisation, and disparity refinement. In dense match-

ing algorithms, similarity measures play a crucial role in assessing the likelihood of

matching by comparing pixel values. This includes match loss functions at the pixel

level, such as sums of squared intensity differences and absolute intensity differences,

as well as approaches employing more robust techniques, such as truncated quadratics

and contaminated Gaussians (Szeliski, 2010).

2.1.1.2 Deep-learning-based Methods

With the advancement of deep learning, models based on deep learning are also being

utilised for stereo vision due to their strong capability to extract features and broad

generalisation ability (Poggi et al., 2021). Deep-learning-based stereo approaches can

be categorised into three types (Poggi et al., 2021):

Stereo Pipeline. Zbontar et al. (2016) describes a method for extracting depth infor-

mation from corresponding image pairs by training convolutional neural networks to

compare image blocks. Its contributions focus on matching cost computation. Specif-

ically, using supervised learning methods, a binary classification dataset containing

similar and dissimilar block pairs is constructed. By comparing pairs of small image

blocks from left and right images, the neural network learns to determine whether these

blocks match. Moreover, the publication of large datasets, such as Freiburg SceneFlow

(Mayer et al., 2016), has enabled end-to-end training of stereoscopic networks and led

to an increase in new methods.

End-to-end 2D Architecture. Knobelreiter et al. (2017) proposed a model that com-

bined the strengths of convolutional neural networks (CNNs) and conditional random

fields (CRFs), taking advantage of both in a unified approach. Multi-task learning is

also an effective method for 2D architectures. Yang et al. (2018) proposes a method for

binocular stereoscopic images, combined with a parallax estimation method for seman-

tic cues, which improves prediction performance by blending semantic cues. Similarly,

Jiang et al. (2019) combines four closely related tasks, such as semantic segmentation
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and stereo parallax estimation, based on the motivation that sharing features can make

the network more compact and promote better feature representation.

End-to-end 3D Architecture. 3D architecture is able to simulate and understand the

3D structure of a scene more accurately than 2D architecture, although it requires more

memory and computing resources. Kendall et al. (2017) proposes an end-to-end deep

learning method to estimate the parallax of each pixel from a pair of corresponding

images. The architecture explicitly takes geometric information into account by form-

ing cost volume, using 3D convolution to learn how to merge context from data, while

the cost column is used to represent the cost or similarity of the potential disparity

of each pixel calculated from a pair of stereoscopic images. Specifically, it is a three-

dimensional data structure in which two dimensions correspond to the width and

height of the image, and the third dimension corresponds to the possible value of paral-

lax. Chang and Chen (2018) proposes a pyramid stereoscopic matching network, which

uses global context information to improve the accuracy of stereoscopic image depth

estimation through two modules of spatial pyramid pooling and a 3D convolutional

neural network.

2.1.1.3 Multi-view Stereo

Stereo depth estimation methods calculate the disparity map between two images for

the same scene and leverage stereo matching and triangulation for estimating depth

maps (Zbontar et al., 2016). These methods require at least two fixed cameras to capture

images (Zhang, 2000), which is expensive and inconvenient. There were significant

works for depth estimation from stereo approaches (Rajagopalan et al., 2004; Ha et al.,

2016). However, it is difficult to get enough features from images to match when the

scene contains less texture (Liu et al., 2019), and they require more data and resources

when compared with monocular depth estimation (Bhoi, 2019).

However, Stereo depth estimation relies on finding identical feature points across two

or more views. Several factors limit its precision, including the calibration of cameras,

the resolution of images, and the geometric constraints of the imaging system. Should

these factors be improperly managed, it may result in inaccurate depth estimation. In

complex scenarios, such as those involving occlusions, reflections, and transparent ob-

jects, stereo-matching becomes significantly more challenging, or even fails, due to the

absence of matching points. Moreover, the disparity in the camera views may be mini-

mal for distant objects, leading to an increase in the uncertainty of depth estimation.
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2.1.2 Monocular Video Depth Estimation

Video-based monocular depth estimation is defined as using a single lens to obtain

video sequences without requiring additional professional and complicated equipment

to measure the scene depth (Ming et al., 2021). Video-based monocular depth estima-

tion usually works with simultaneous localisation and mapping (SLAM) and struc-

ture from motion (SfM). SLAM is mainly used to solve the problems of robot localisa-

tion and map construction when moving in an unknown environment (Szeliski, 2010).

Depth estimation contributes as an essential part of SLAM. Visual SLAM mainly adopts

a depth camera and visual SLAM scheme based on monocular, binocular and fish-eye

cameras. By inputting a series of frames taken in the same scene, SfM outputs the

camera pose corresponding to each frame and 3D point cloud in the scene (Szeliski,

2010). With these methods, in a video, multiple frames are used to estimate camera

pose changes, and then the distance of the object is calculated by accumulative pose

changes.

Monocular video depth estimation does not face the calibration issues present in stereo

approaches and requires only one camera, as opposed to stereo vision which neces-

sitates at least two or more cameras. This affords monocular methods advantages in

terms of hardware costs and ease of use. However, video depth estimation necessitates

the storage of information from successive frames, leading to high memory require-

ments and computational costs.

2.1.3 Depth Estimation with Deep Learning

Deep learning methods bring significant advantages over traditional methods in depth

estimation Bhoi (2019); Ming et al. (2021). It can automatically learn complex feature

representations from data without the need for manual feature design, especially for

processing image data. In addition, deep learning models such as convolutional neural

networks achieve end-to-end learning from input images to deep information, simpli-

fying the processing process and reducing errors. Moreover, the more general depth

representations learned by deep learning models through large-scale dataset training

significantly improve the generalisation of models.

2.1.3.1 Deep Learning Models

Convolution Neural Network Since AlexNet (Krizhevsky et al., 2012) came out, com-

plex convolutional neural networks supported by GPU computing clusters have been

widely used. General convolutional neural networks consist of input layers, hidden

layers, and output layers. In computer vision, an input layer is usually taking two-

dimensional or three-dimensional features as inputs, such as images (Krizhevsky et al.,



2.1. Depth Estimation 17

2012) and point clouds (Yan et al., 2018). The hidden layer usually includes the convo-

lution layers, pooling layers, and fully connected layers. Among them, the function of

the convolution layer is to extract the features of the input data. It contains multiple

convolution cores, and each element of the convolution kernel corresponds to a weight

coefficient and a deviation quantity. The main function of a pooling layer is to reduce

the spatial dimension of the feature map, therefore reducing the amount of computa-

tion, and achieving the location invariance of the feature. The fully connected layer

plays the role of feature integration, nonlinear transformation, and classification in the

neural network. With the CNN-based backbones, the encoder-decoder of our proposed

model helps extract features from RGB image inputs.

Recurrent Neural Network Recurrent neural networks (RNNs) are commonly used

to process sequential data. Its basic structure consists of a cyclic unit with the input

data of the current time step and the hidden state of the previous time step (Medsker

and Jain, 2001). There are many variants of the RNN architecture. Common vari-

ants are bidirectional recurrent neural networks (BiRNNs) (Schuster and Paliwal, 1997),

long short-term memory networks (LSTM) (Yu et al., 2019), and gated recurrent units

(GRUs) (Cho et al., 2014). BiRNN extends the traditional RNNs by consisting of two

RNNs that handle the forward and reverse directions of the data. It captures contextual

information in a sequence and is often used for tasks that require understanding the en-

tire sequence to make decisions, such as text translation. LSTM can solve the long-term

dependence problem of traditional RNNs in processing long sequence data, and it en-

ables the network to learn what information needs to be retained for a long time. The

GRU is a simplified structure of the LSTM, which makes the model structure simpler

with fewer parameters by merging the forgotten and input gates into one update gate

and merging the unit and hidden states. Leveraging the characteristics of RNNs, we

employed LSTM to examine the contributions of slices in the direction of gravity and

those perpendicular to it towards depth estimation, with details presented in Chapter

5.

Generative Adversarial Network The generative adversarial network (GAN) archi-

tecture works by training two neural networks to compete against each other to gener-

ate similar data from a given training dataset (Goodfellow et al., 2014). Its main struc-

ture consists of a generator and a discriminator. The two structures compete with each

other during training, eventually allowing the generator to learn to produce data that

cannot be distinguished by the discriminator. For example, GANs can learn data dis-

tribution and generate new images that look similar to real handwritten digital images

(Goodfellow et al., 2014). These characteristics of GAN make unsupervised domian

adaptation available, as shown in Sec. 2.2.
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Transformer The Transformer architecture has become a pivotal framework in the

field of deep learning. It is implemented through a self-attention mechanism (Vaswani

et al., 2017). The input sequence is represented in context by multiple layers of self-

attention and feedforward neural network encoders. The decoder then generates the

output sequence using the same structure, gradually generating the target sequence

through self-attention and feedforward operations on the representation of the encoder.

Specifically, the model input is first embedded, and then positional encoding is applied

according to Equation (2.1):

PE(pos,2i) = sin
(

pos/100002i/dmodel

)

PE(pos,2i+1) = cos
(

pos/100002i/dmodel

)

.
(2.1)

Subsequently, attention, defined as

Attention(Q, K, V) = softmax

(

QKT

√
dk

)

V, (2.2)

is applied, that is, multiplied by three different weight matrices to get Q, K, and V

(Equation (2.2)). By calculating the scaled dot-product attention between Q and K and

applying the resulting attention score to the value matrix V, the output of self-attention

FIGURE 2.1: Transformer Architecture from Vaswani et al. (2017)
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is finally obtained. This process is performed multiple times in both the encoder and

decoder, which are the core architecture of the transformer. The whole process of en-

coding and decoding is end-to-end. Compared to RNNS, a transformer can process

information in a sequence in parallel (process shown in Figure 2.1).

Subsequently, the transformer is applied to an image classification model, which is

called the vision transformer (ViT) (Dosovitskiy et al., 2020). ViT divides the input

image into multiple 16 × 16 patches and then projects each patch into a fixed-length

vector into the transformer. The operation of the subsequent encoder is almost the

same as in the original transformer.

With similar architecture on ViT, Bhat et al. (2021) introduces the mViT model, employ-

ing the transformer encoder for depth estimation predicated on ordinal regression. This

approach enhances the model’s performance. Inspired by it, we have contemplated

such a mechanism within the structure we propose, as shown in Chapter 4.

2.1.3.2 Single-view Depth Estimation

Bhoi (2019) and Mertan et al. (2022) defined the monocular depth estimation as single-

view depth estimation. Compared with multi-view and video-based monocular depth

estimation, single-view monocular depth estimation takes less computing cost and data

because it takes a single frame as input. The common deep learning models for monoc-

ular depth estimation are based on convolutional neural networks, recursive neural

networks and generative adversarial networks (Ming et al., 2021) as mentioned in Sec.

2.1.3.1.

Single-view depth estimation is often seen as a regression task from an RGB image

to a depth map (Fu et al., 2018). Eigen et al. (2014) proposed an end-to-end model

concatenating AlexNet-based coarse and fine networks for depth estimation of general

perspective images, and the output of the coarse network is concatenated as part of the

input of the fine network. This work is the first to use CNN for single-view depth es-

timation. In order to get higher performance, Alhashim and Wonka (2018) proposed a

U-Net end-to-end model with a deeper encoder with DenseNet-169 (Huang et al., 2017)

and a shallow decoder to estimate depth maps with RGB images as input. Simultane-

ously, the encoder is initialised using a network pre-trained on ImageNet (Deng et al.,

2009). This approach facilitates the easier transfer of learned features in other fields to

depth estimation.

S2DNet (Hambarde and Murala, 2020) estimates a coarse depth map through the coarse

depth network (S2DCNet) and then combines the estimated coarse depth map with the

input image to further estimate a refined depth map through the fine depth network

(S2DFNet). Moreover, S2DFNet incorporates the attention mechanism, where the atten-

tion block takes features from both the encoder and the decoder in S2DFNet as input.
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(A) general perspective Sample Image
(Silberman et al., 2012)

(B) Omnidirectional Sample Image
(Zioulis et al., 2018)

FIGURE 2.2: Comparison of Different Types of Images

By assigning weights to each feature, it allows the network to focus on those features

crucial for depth estimation, thereby achieving the depth map.

Although many models have good performance with general perspective images (Fu

et al., 2018; Alhashim and Wonka, 2018; Hambarde and Murala, 2020; Abuowaida and

Chan, 2020), the small field-of-view (FoV) of general perspective images includes lim-

ited content (comparison shown in Figure 2.2). In practical applications, only the partial

surface depth of the scene can be estimated. This means that getting a complete scene

depth map requires multiple estimates of the depth of a scene.

2.1.3.3 Extension to Omnidirectional Images

Different from the general perspective image, an omnidirectional image can get the

whole surrounding information in one capture. There have been models focused on

the supervised omnidirectional depth estimation task (Zioulis et al., 2018; Wang et al.,

2020b), trained with public omnidirectional depth datasets, such as Matterport3D and

StanFord2D3D (Zioulis et al., 2018). Similar to the depth estimation of general per-

spective images, there was an end-to-end neural network based on U-Net to train the

omnidirectional RGB images and predict the depth maps (Zioulis et al., 2018). Wang

et al. (2020b) proposed to combine two networks with an equirectangular image and

its corresponding cubic projection map to avoid the distortion problem of omnidirec-

tional images. Although these models show good performance with the given labelled

datasets, they may not perform well for other real-world scenes because the model can

only predict certain types of scene depth due to the limited variety of training datasets

(Wu et al., 2021), and they need a large number of labelled datasets for training. This

different data distribution of different scenes problem can be solved by mapping infor-

mation in different fields to a feature space (Pan and Yang, 2009). With this motivation,

we consider the domain adaptation method in our research.



2.2. Domain Adaptation 21

2.2 Domain Adaptation

For datasets with different distributions, a model trained on one dataset usually does

not perform well on another. Domain adaptation can be a solution to map different

domain data into a common feature space (Wang and Deng, 2018). In the context of

domain adaptation, it is presupposed that there exists a certain degree of distribution

discrepancy between the source domain and the target domain, with the two being

related yet not entirely identical. It is commonly assumed that the task remains un-

changed, meaning that the class labels are shared between the source and target do-

mains (Csurka, 2017; Farahani et al., 2021). Should the two domains be entirely unre-

lated, domain adaptation may not be applicable.

2.2.1 Domain Adaptation Methods

Domain adaptation based on deep learning can be divided into the following categories

(Farahani et al., 2021):

2.2.1.1 Discrepancy-based

The basic idea of discrepancy-based methods is to focus on reducing the difference

between the source domain and the target domain, usually by measuring and minimis-

ing some kind of statistical difference between the two domains. (Long et al., 2015)

proposes deep adaptation networks (DAN) to solve the challenge of domain adapta-

tion problems. It starts with a deep learning model that has already been trained on

a large dataset and then tweaks this model through a fine-tuning process so that it

can better cope with the new target task. Specifically, DAN achieves this by making

the data representations of the source and target domains as similar as possible in a

high-dimensional space, allowing the model to efficiently process and compare differ-

ent data distributions. Since features close to the input layers are more general, while

features close to the output layers are more task-specific in deep neural networks, DAN

improves feature transferability by reducing differences within the network, especially

at the task-specific level, between source and target domains, thereby enhancing the

expressiveness of the model on new tasks.

2.2.1.2 Reconstruction-based

The basic idea of reconstruction-based domain adaptation is to learn a universal fea-

ture representation that can capture the common features between different domains

(Farahani et al., 2021). The model learns this feature representation by reducing re-

construction errors, aiming to maintain information that is important to both domains
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while ignoring domain-specific information that is not relevant to the task. For ex-

ample, for the sentiment classification problem, Glorot et al. (2011) processes the text

comment data by adding random noise to the input data and attempting to recover the

original data, a process needed to minimise the differences between the input data and

its corresponding reconstructed data. After learning these high-level features, a simple

linear classifier, such as SVM, is then trained based on these features, whose task is to

determine whether a comment is positive or negative based on the extracted features.

2.2.1.3 Adversarial-based

The basic idea of adversarial-based methods is to learn how to generate labels of data

in the target domain by using the framework of a generative adversarial network, to

achieve domain adaptation. Ganin and Lempitsky (2015) proposed a generative adver-

sarial network (GAN) (Goodfellow et al., 2014) based model for depth estimation. This

model learned from the digital handwriting dataset can recognise a different digital

dataset with colourful handwriting images. It is a feedforward architecture comprising

a deep feature extractor and a category label predictor. Specifically, its operation is facil-

itated by unsupervised domain adaptation through the addition of a gradient reversal

layer linked to the feature extractor and a domain classifier. The gradient reversal layer

guides the feature distributions of both domains to evolve towards similarity during

the training process. The training procedure aligns with conventional training meth-

ods, aiming to minimise the label prediction loss for the source domain, along with the

domain classification loss for both the source and target domains.

In summary, the discrepancy-based method may align the marginal distribution, and

ignore the inconsistency of the conditional distribution. So its performance is limited

by the ability of the feature extraction layer, which easily leads to poor performance.

Furthermore, the reconstruction-based method may over-rely on the feature represen-

tation of the source domain, which affects the generalisation ability of the target do-

main. In contrast, although the adversarial-based approach requires expensive compu-

tational resources, it can automatically find suitable feature alignment through adver-

sarial training, which can generate more robust, domain-invariant feature representa-

tions.

2.2.2 Domain Adaptation for Depth Estimation

Domain adaptation has been used for a general classification problem between photo-

graphic and synthetic imagery (Ren and Lee, 2018). There is a work for general im-

ages to comprehensively predict depth maps, surface normals, and edge contour maps

(Ren and Lee, 2018). Considering that there are domain differences between synthetic
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images and real images, it adopts unsupervised feature space domain adaptation tech-

niques based on adversarial learning to reduce such differences. Specifically, domain

adaptation is achieved by training a domain classifier to distinguish between synthetic

image features and real image features, while optimising the generation network to

deceive the domain classifier so that it cannot distinguish between the two feature

sources. Similarly, Wu et al. (2021) proposed a domain adaptation-based model for

predicting the omnidirectional depth maps with limited labelled data available with

two similar domains. This work shows that domain adaptation can work for omni-

directional depth estimation, but it still requires similar real-world scenes for train-

ing. Furthermore, Wu et al. (2023) achieved the task of estimating real-world depth

maps from a single panoramic image by combining encoder-decoder architecture and

reverse-gradient warm-up threshold discriminator. First, the encoder-decoder struc-

ture is used to process the input panoramic RGB image and generate the depth feature

vector. The adaptation between domains is then achieved by having the model confuse

the feature representations of the synthetic data and the real-world data. This allows

the model to effectively predict depth maps of real-world scenarios when trained using

only synthetic data.

2.3 From Regression to Classification

Niu et al. (2016) demonstrated that the regression problem could be transformed into a

series of ordinal multiple binary classification tasks. This work presents a CNN model

with multiple output layers to solve the problem of age estimation. In particular, the

ordinal regression problem is transformed into a series of binary classification subprob-

lems. The basic idea of this transformation is to break down the entire age prediction

task into multiple simple yes-no tasks, each corresponding to a specific age cut-off point

that determines whether a person is older than this cut-off point. Therefore, by com-

bining the predictions of all binary classifiers, the age of the sample can be predicted.

With this method, the order information of age can be used more effectively and the

complexity of the problem can be simplified

Similarly, ordinal regression can also be applied to depth estimation. Figure 2.3 illus-

trates the process of predicting a pixel’s depth based on ordinal regression. Fu et al.

(2018) proposed depth estimation by an ordinal regression network, which divides a

depth range into a set of discrete intervals. Each interval represents a binary classifier

that determines whether it is greater than a particular depth, and the final depth result

is the cumulative truth values of these binary classifiers. This work proposes a spacing-

increasing discretisation strategy to discretise depth values, convert continuous depth

into a series of intervals, and treat deep network learning as an order regression prob-

lem. Different from the uniform discretisation strategy, it takes into account that the
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FIGURE 2.3: Process of Ordinal Regression for Depth Estimation. In the prediction of
depth maps, the continuous depth values for each pixel are discretised into a sequence
of binary classifications, each corresponding to a specific depth interval. The ultimate
depth value of the pixel is ascertained by summing the depth interval values repre-
sented by all binary classifications deemed to be true. This method allows converting
the task of depth estimation into a series of binary classification problems, with each
problem determining whether the pixel’s depth surpasses a certain threshold, thereby

incrementally building accurate depth information.

uncertainty of depth prediction increases with the increase of true depth value, so it

allows large errors when predicting larger depth values.

Bhat et al. (2021) added a transformer encoder to the model based on the work of Fu

et al. (2018) to predict the adaptive depth intervals of different images rather than fix

them, therefore matching the depth distribution of each input image, thus obtaining

more accurate depth maps. Finally, instead of directly predicting the centre value of

the most likely box as the depth value, the weighted average of the centre value of all

boxes and the corresponding softmax score is used to calculate the final depth value,

resulting in a smoother predicted depth map compared with that from Fu et al. (2018).

Given the advantages of converting regression to classification, we employed this ap-

proach in our suggested architecture. By predicting various depth intervals for differ-

ent images, we aimed to produce precise and smooth depth maps.

2.4 Gravity Alignment

Sun et al. (2019) uses a method of splitting features into 1D representations with LSTMs

(Yu et al., 2019) to estimate 3D room layouts from a single panoramic image. Following

Sun et al. (2019), Sun et al. (2021) adopted a similar structure, suggesting that when

the vertical axis of an image aligns with the direction of gravity, the information in the
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image columns becomes more compressible and representable. By aligning the verti-

cal direction of the image with the gravitational direction, the structural information

within the image columns, such as walls and boundaries, is distributed more regularly

in space. This alignment can aid models in more effectively capturing and utilising this

structural information.

SliceNet realises depth estimation from a single image by segmenting the output fea-

tures of the encoder-decoder and using BiLSTM for processing (Pintore et al., 2021).

Specifically, it introduces a compact representation method that segments a single in-

door omnidirectional image into vertical slices. These slices are generated by slicing

the output features of the encoder-decoder along the direction of gravity, resulting in

a sequence of feature sets. To maintain global information, the slicing operation con-

catenates across four different resolution levels. The concatenated features from multi-

channel slicing are then processed through an LSTM to learn the relationships between

slices, ultimately predicting the corresponding depth map.

Nevertheless, they only proposed the concept of gravitational alignment but did not

conduct a detailed analysis of the specific influence of gravity on the depth estima-

tion results and its contribution throughout the process, and our study addresses this

problem. In our work, we deeply analyse the influence and contribution of gravity

alignment on performance in different settings in single image depth estimation, such

as FoVs, pitch angles, etc.

2.5 Monocular Depth Cues

The studies of human vision have shown that humans can use multiple cues for monoc-

ular depth estimation Szeliski (2010); Howard (2002); Lebreton et al. (2014); Reichelt

et al. (2010); Saxena et al. (2007); Landy et al. (1995); Kelly (1977). Here are some com-

mon depth estimation cues:

2.5.1 Relative Size

Relative size is one of the depth cues (Torralba and Oliva, 2002), visually, as distance

increases, the size of the object projected on the retina decreases. Therefore, when two

objects are similar in actual size, the smaller object in the image is usually seen as farther

away. For example, in an indoor environment, people tend to think that a chair that

looks smaller will be farther away from the observer.
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2.5.2 Occlusion

Occlusion is a depth cue for depth estimation (Marshall et al., 1996), which describes

the relationship between objects before and after, that is, near and far. Visually, when

an object partially or completely blocks another object, it is usually interpreted to mean

that, to the observer, it is in front of the latter. For example, when there are two cups on

a table and one cup partly covers the other, then to the observer, the first cup is in front

of the second cup and thus covers the second cup. This is a common depth cue used to

determine the relationship between objects.

2.5.3 Linear Perspective

In the realm of visual perception, parallel lines visually converge in the distance (Mula-

jkar and Gohokar, 2017). For example, on a straight road, the edges of the road appear

to intersect in the distance. This linear perspective allows humans to estimate the rela-

tionship between objects near and far.

2.5.4 Texture Gradient

Texture is a fine pattern or texture element on the surface of an object. In visual percep-

tion, gradient changes due to the texture on the surface of an object as the distance from

which it is observed changes. This gradient change can affect human perception of the

distance of objects (Gibson, 1950). Specifically, the texture of the surface of an object

visually becomes more compact and less with the increase in distance. For example,

bricks or grass on the ground will look denser from a distance. This is more obvious in

outdoor settings.

2.5.5 Aerial Perspective

When observing objects from afar, distant items seem to have reduced contrast and

saturation, and might even appear blurred, due to the scattering and absorption of

light by the air in the atmosphere (Mulajkar and Gohokar, 2017). This phenomenon

affects the human visual perception of distant objects. Mountains or distant buildings

often exhibit this characteristic.

2.5.6 Shading

Lighting conditions have an impact on the degree of light and darkness of objects,

which affects the human perception of the depth of the scene (Langer and Bülthoff,
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2000). The light and shade changes on the surface of the object, the shape and position

of the shadow, etc., can provide important information about the depth and location

of the objects. These clues help humans understand the position of objects in three-

dimensional space.

These human visual cues are not only related to the objective environment but also to

psychophysics. For neural networks, is it also possible to predict depth maps based

on such cues? How does the Machine Perceive Depth for Indoor Single Images? In

Chapter 6, several features that can be independently separated from RGB images are

selected for experiment and analysis.





29

Chapter 3

Depth Estimation with Limited

Real-world Labels

A difficult problem in depth estimation research relates to limitations imposed by avail-

able datasets. Owing to substantial expenses, it is often difficult to capture a large num-

ber of paired RGB images and corresponding depth maps of different scenes. In this

Chapter, we explore a strategy that leverages a limited quantity of real-world data for

depth estimation.

The performance of a well-trained model with a large dataset can be poor when it is

implemented on an unlabeled different image set. Figure 3.1 shows an example. Rect-

Net model (Zioulis et al., 2018) was trained with Stanford2D3D dataset from Zioulis

et al. (2018) and shows high performance on test data from the same dataset (95% for

a1 depth accuracy). However, it showed poor results when it was applied to a different

indoor scene image capture in the studio. It is obvious that the estimated depth map

includes lots of errors, especially on planar regions such as the walls, ceiling and floor,

where a smoother transition of depth field is expected. The model does not get high

performance because the existing training dataset covers only a few types of scenes,

which leads to an overfitting problem of the model during the training process. In

addition, it is much more difficult to generate ground-truth depth maps for omnidirec-

tional images than for general perspective images because there is no omnidirectional

depth sensor available. A depth sensor takes a lot of time to scan and capture a high-

resolution depth map, and manual depth map generation is also hard due to its image

distortion and wide FoV. Therefore, the lack of a training depth label set is a serious

problem in single omnidirectional image depth estimation.

In order to overcome the poor performance with a new dataset from a different do-

main and the difficulty of getting a large number of labelled images from new scenes,
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an architecture based on domain adaptation is proposed. By considering the unla-

belled target domain RGB images, the proposed architecture outperforms the tradi-

tional encoder-decoder model, with only limited labelled images.

3.1 Method

3.1.1 Overview

The overview of the proposed architecture is illustrated in Figure 3.2. The proposed

domain adaptation-based architecture not only allows the model to accurately predict

the depth of the input RGB images but also cannot distinguish their domain labels,

therefore mapping the domains to a common feature space. This architecture lever-

ages the domain adaptation technique for omnidirectional depth estimation with input

images from different domains, including unlabelled images. In this architecture, the

FIGURE 3.1: Depth Estimation Result for a Different Real-world Indoor Scene

FIGURE 3.2: Overview of Proposed Architecture. It takes omnidirectional RGB im-
ages from both source and target domains as inputs and outputs corresponding depth
maps. During training, the source domain has omnidirectional RGB images and cor-
responding depth map labels, while the target domain has only RGB images without
labels. The training involves back propagation where the gradients are calculated for
each layer from the output towards the input (the solid arrows are shown in the fig-
ure). In the testing phase, only the target domain’s RGB images are used as input to
predict the corresponding depth maps. Specifically, the U-Net network is trained to
predict the depth of images of a source domain. The features learnt by the model are
constrained by the parallel discriminator branch, which is trained to separate source
and target domain images by propagating a reverse gradient through the encoder

weights. Therefore, the domains are mapped to the common feature space.
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input images are omnidirectional RGB images with given domain labels 1 (source) and

0 (target).

3.1.2 Proposed Architecture

The architecture can be divided into three parts, the encoder, decoder and domain clas-

sifier. The end-to-end model was improved from Alhashim and Wonka (2018) by using

a ResNet50 backbone, as the experimental results show a better performance with it.

This is because the new backbone is not easy to get overfitting, and the fit is achieved

using fewer resources and lower complexity.

For the training process, the encoder transforms the RGB images into embedded fea-

tures, while the decoder predicts the depth maps based on these embedded features.

The encoder-decoder is called a depth predictor, and the training process tries to make

the loss of the predictor as small as possible. The green part in Figure 3.3 shows the

reverse-gradient layer. The domain classifier predicts domain labels based on the re-

verse features outputted from this reverse-gradient layer and makes gradient descent

towards the direction of loss increase. It is used to obfuscate domain labels in the train-

ing process so that different domains can be mapped to the common feature space with

similar feature distribution, resulting in domain-invariant features.

Therefore, there are two directions of gradient descent during the training process, the

loss of the encoder-decoder model is expected to be as low as possible, while the loss

of the domain classifier is expected to be as high as possible. By adding a domain

classifier to the end-to-end model, it makes the model unable to identify which domain

the images come from (Ganin and Lempitsky, 2015). By loading the model with depth-

labelled images as the source domain and unlabelled images in the target domain, the

model can predict the depth maps of the target domain images.

3.1.3 Loss Function

The training loss function is defined as:

L(G,O) = λLdepth(G,O) + LSSIM(G,O) + Llabels(G,O) + Llabelt(G,O). (3.1)

That is, it is a combination of four loss functions (Equation (3.1)), including depth loss,

defined as

Ldepth(G,O) =
1

n

n

∑
p=1

∣

∣Gp −Op

∣

∣ ; (3.2)
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FIGURE 3.3: Structure of domain adaptation

Structural Similarity (SSIM) loss, defined as

LSSIM(G,O) =
1

n

n

∑
p=1

1− SSIM(Gp,Op)

2
; (3.3)

and two domain label losses for the source domain and target domain, respectively. G

represents the ground truth depth map and O represents the depth map of the model

output. SSIM loss is useful for comparing the difference between two images as it

considers the difference in brightness, contrast and structural similarity (Wang et al.,

2004).

λ is a weight parameter and set as 0.1 according to empirical result (Alhashim and

Wonka, 2018). G represents ground truth depth maps, whileO demonstrates the output

depth map from the network, and p means the pixel in the image.

The source and target domain label losses, Llabels and Llabelt , are calculated with Neg-

ative Log-Likelihood Loss (NLLLoss). Note that through the gradient reversal layer,

the training process tries to increase the loss of the domain classifier to promote the

feature learning of domain indiscriminability. The process is dynamically adjusted and

the goal is to reach a balance, rather than unilaterally increasing field losses.
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3.2 Evaluation Metrics

In order to quantify and accurately describe the performance of the model, the six met-

rics about accuracy and loss of models are often used as evaluation indicators as they

are all correlated to the performance of models (Eigen et al., 2014; Alhashim and Wonka,

2018; Zioulis et al., 2018; Bhat et al., 2021). In this section, these six evaluation metrics

will be introduced: a1, a2, a3, rel, rms, and log10.

3.2.1 Accuracy Metrics

For comparing the performance of the models, three accuracies were used with thresh-

olds 1.25, 1.252, and 1.253 (a1, a2, a3) (Eigen et al., 2014; Alhashim and Wonka, 2018;

Zioulis et al., 2018; Bhat et al., 2021), defined as

max

(

Gp

Op
,
Op

Gp

)

= δ < τ, τ = a1, a2, a3. (3.4)

Different thresholds correspond to the varying sensitivity of the accuracy metric to pre-

dicted depth maps and ground truth depth maps. Shown in Equation (3.4), p represents

the pixels on depth maps. It shows the differences by comparing the ground truth

depth maps with the output depth maps of the models. Every pixel on a predicted

depth map and corresponding ground truth will be accumulated, and the percentage

of all points smaller than this threshold in the number of the total pixels is defined as

first-threshold accuracy, second-threshold accuracy and third-threshold accuracy. The

larger the accuracy values, the better the performance (marked as ↑).

3.2.2 Error Metrics

There are three error metrics to evaluate the models: Abs Relative Difference, defined

as

rel =
1

|T |

T

∑
p=1

∣

∣Gp −Op

∣

∣

Op
, (3.5)

Linear RMSE, defined as

rms =

√

√

√

√

1

|T |

T

∑
p=1

∣

∣Gp −Op

∣

∣

2
, (3.6)

and Log10 RMSE, defined as

log10 =
1

T

T

∑
p=1

∣

∣log10 (Gp)− log10

(

Op

)∣

∣ , (3.7)
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as referenced in Eigen et al. (2014); Alhashim and Wonka (2018). They are shown as

rel, rms, and log10, respectively, in the result tables. T represents the total number

of pixels in an image. rel is a traditional method that is mainly used to evaluate the

relative size of the prediction error per pixel. Linear RMSE calculates the square root

of the mean of the square of the difference between the predicted and true values, so

it is more sensitive to large prediction errors, while Log10 RMSE reduces the impact of

large distance errors. The smaller the loss values, the better the performance (marked

as ³).

3.3 Implementation

In this section, the proposed architecture is trained and tested at the pixel level and re-

garded as a depth regression problem. In order to prove that the depth prediction pro-

posed in this research can be used for unlabelled omnidirectional images, the architec-

ture for omnidirectional image depth estimation with a house-scene-based dataset and

an office-scene-based dataset from 3D60 dataset (Zioulis et al., 2018) is implemented.

The proposed architecture and models are trained on NVIDIA RTX 3090, with 24GB of

CUDA memory.

3.3.1 Data Exploration

3D60 dataset (Zioulis et al., 2018) was released with three omnidirectional image datasets,

including Matterport3D, Standford 2D3D, and SUNCG. SUNCG is a computer graphic

dataset, while Matterport3D and Standford 2D3D are real-world captures. Figure 3.4

shows some samples of the Matterport3D dataset, presenting house scenes, while the

Stanford2D3D dataset demonstrates the scenes in office rooms dataset in Figure 3.5.

It should be noted that these sets contain outliers even though they are used as the

ground truth. They were captured by RGB cameras and LiDAR sensors and then were

synthesised. These sensors have limitations of scanning density and also false (or miss-

ing) depth in transparent or reflective surface areas. Due to these hardware limitations,

there are some missing depth areas. These pixels are recorded as 1,000,000 meters and

marked as outliers (Zioulis et al., 2018). There are also false depth regions, such as the

area behind glass or windows, and it is difficult to filter them out.

Stanford2D3D dataset contains 898 images that are divided into six parts as they are

taken in 6 different office buildings. Among them, Area1 with 190 images is selected as

a training dataset in the experiments. For data preprocessing, the scenes that contain

more than 5% of outliers were removed. After that, the source domain of Stanford2D3D

Area1 contains 128 images. The Matterport3D dataset contained 1280 images. One
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FIGURE 3.4: Samples of Matterport3D. The left is original RGB image and right is its
corresponding depth map. In the depth map, the brightness represents its depth (the

brighter, the closer)

FIGURE 3.5: Samples of StanFord2D3D

area (88 images after removing scenes containing more than 5% outliers) of this house-

scene dataset is chosen for the target domain, called ‘Matterport3D Area2’. As the 2D

projection of 3D scenes, equirectangular images contain obvious distortion. Compared

with the middle part of the horizontal direction, the top and bottom parts show an

exaggerated distortion.

The distribution of depth maps shows that depth in the scene is between 0.5 metres

and 10 metres, and very few areas are above 10 metres. In order to compensate for the

inherent problem with the loss terms (Ummenhofer et al., 2017; Huang et al., 2018), the

maximum distance of depth maps is set as 10 meters and normalised all depth fields

considering the reciprocal of the depth (Alhashim and Wonka, 2018). As shown in

Nd =Md/Dmax, (3.8)

Nd denotes the result after depth normalisation, whileMd represents the depth map,

and Dmax denotes the maximum depth. .
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These datasets were acquired in different circumstances with different cameras but

with some similar objects, such as doors and chairs.

3.3.2 Data Augmentation

In the training process, due to the convolution, the accuracy of the edge part may be

affected by the padding. We assumed that the performance of the middle parts would

be better than the edges and wanted to see if the edges could sometimes be moved to

the middle. Based on this hypothesis, this experiment was conducted by separating the

equirectangular images into several chunks and shifting the chunks to check whether

image shift data augmentation helps for a small dataset. Experiment details can be

checked in Appendix A.

However, this data augmentation method only improves less than 1% point of first-

threshold accuracy but makes the computing cost four times. Therefore, in the later

experiments, this data augmentation method will not be used because of the cost of

using it, although it tempts the model to slightly improve the performance.

3.3.3 Implementation Details

In the experiments, the input image resolution was 256 × 512, and the batch size was

16. The learning rate was set as 0.0001, and the number of the epoch was set as 100.

The Adam optimiser was adopted, with parameter β1 = 0.9, β2 = 0.999.

There is no crop of any part of the input images, even though they contained missing

points or outliers due to correction preprocessing. There is also no crop of the output

images before computing the accuracies and losses. This is because, in practice, the

image contains different amounts of outliers, which affects the output of the model

to some extent. In addition, the purpose of this work is not to simply improve the

accuracy of the predicted depth map but to verify that the proposed semi-supervised

architecture based on the domain adaptation method can outperform the traditional

supervised model with limited labelled data.

3.4 Experiments

3.4.1 Baseline

In order to simulate the situation of limited labelled images in different scene types,

the performance of depth estimation was evaluated according to the size of the la-

belled training dataset. The proposed architecture trained the end-to-end models with
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TABLE 3.1: Performance of Models with Different Sizes of Dataset. All models were
tested on the Matterport3D Area2 dataset. The first row shows the upper-bound per-
formance of RestNet50 when there is no domain gap. The training dataset is the whole

Matterport3D (except Area2).

Model Training Dataset a1 ↑ a2 ↑ a3 ↑ rel ³ rms ³ log10 ³

ResNet50 Backbone Encoder-decoder Whole Matterport3D 0.8996 0.9774 0.9918 0.1039 0.9017 0.0442

Whole Stanford2D3D Area1 (128 images) 0.6576 0.8986 0.9585 0.1918 1.8300 0.0908
ResNet50 Backbone Encoder-decoder 40% Stanford2D3D Area1 (51 images) 0.6494 0.8871 0.9587 0.2077 1.9669 0.0935

20% Stanford2D3D Area1 (25 images) 0.6135 0.8394 0.9390 0.2376 2.2732 0.1033

Whole Stanford2D3D Area1 (128 images) 0.7259 0.8994 0.9557 0.2189 1.7223 0.0839
Proposed Architecture 40% Stanford2D3D Area1 (51 images) 0.7191 0.9063 0.9546 0.1805 1.6025 0.0827

20% Stanford2D3D Area1 (25 images) 0.7181 0.9252 0.9709 0.1871 1.5431 0.0799

Stanford2D3D Area1 as the training dataset and Matterport Area2 as the testing set.

With a gradual reduction of the proportion of the training set randomly, the scenario is

simulated in which a limited amount of data is used to train and predict depth maps of

unlabelled RGB images.

Table 3.1 shows the upperbound performance of RestNet50 when there is no domain

gap. In addition , for cross-domain task, it shows that the accuracy of estimated depth

by the ResNet50 backbone encoder-decoder model decreased to 61.35% of first thresh-

olding accuracy when only 20% of the training set (25 images) were used.

3.4.2 Domain Adaptation

For the experiments, the source domain is Stanford2D3D Area1, and the testing dataset

is Matterport3D Area2. Table 3.1 shows the output of the proposed domain adaptation

architecture with decreasing number of labelled training images. Overall the proposed

architecture shows higher accuracy of depth estimation than the baseline method. One

more important observation is that the proposed method kept a similar level of perfor-

mance (72.59% to 71.81% for a1) when the number of the labelled training set was re-

duced, while the performance of the baseline method decreased from 65.76% to 61.35%.

Other metrics also showed similar performance even though the size of the training set

had been decreased. They sometimes showed even slightly better performance with

less training set (source domain). It may be because the training has been less biased to

the source domain.

Obtained results of the proposed architecture with 20% data are shown in Figure 3.6.

The first and second ones are close to the ground truth though they are a bit blurry. It

can be observed in the third image that if a wall has some patterns, it influences the

depth map and make it bumpy. The fourth one shows some depth errors around the

stairs region, but even the ground truth map also has errors in the region. The fifth and

sixth ones show errors in the window regions as they are transparent.
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FIGURE 3.6: Depth Estimation Results with the Proposed Domain Adaptation Archi-
tecture. (Left: Original image, Middle: Ground-truth depth map, Right: Estimated

depth map)

The proposed method was also tested with our own dataset captured in various in-

door scenes: studio, corridors, and building reception areas. They were captured with

Spheron VR1 and Ricoh Theta S2 omnidirectional cameras. Figure 3.7 shows the com-

parison of depth estimation results of the proposed domain adaptation architecture

against the encoder-decoder architecture. Only subjective evaluation can be provided

as their ground-truth depth maps are not available. The test scenes are different from

the training set, and the proposed method predicted roughly accurate depth maps for

the test images. It can be observed that the output generated by domain adaptation

architecture has a smoother texture on the object with the same depth plane in the real

world. The estimated depth by the proposed model with domain adaptation is closer

to the real distance.

In conclusion, the results show that the performance of the proposed architecture out-

performs the traditional end-to-end models when the labelled omnidirectional images

are limited.

1https://www.spheron.com/home.html
2https://theta360.com/uk/about/theta/s.html
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FIGURE 3.7: Depth Estimation Results on Own Dataset. (Left: Original image, Middle:
Depth map by the encoder-decoder model, Right: Depth map by the proposed domain

adaptation model)

FIGURE 3.8: δ Maps of the Proposed Domain Adaptation based Architecture

3.4.3 Error Analysis and Discussion

To further analyse the performance of the model, the δ maps of several samples are

demonstrated, representing the difference of output depth maps against the ground-

truth depth map in the form of a heat map. The δ map in Figure 3.8 shows errors calcu-

lated by the first thresholding accuracy evaluating formula mentioned in Section 3.2. It

can be observed that the performance is generally good. Some areas have tremendous

δ values because ground-truth depth maps contain outliers. As mentioned in Section

3.3.1, these outlier values are marked as 1,000,000.

For the uncertainty of the results, Figure 3.9 demonstrates the encoder-decoder model

and domain adaptation architecture’s performance with different sizes of the source
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(A) Whole Data

(B) 40%

(C) 20%

FIGURE 3.9: Different Threshold Accuracies of Depth Estimation under Different
Dataset Sizes. Uncertainty in estimates displayed as boxplots. Each of A, B and C

shows results without (left) and with(right) domain adaptation.

domain, respectively. Each box contains five values, representing the accuracies on the

epoch 80, 85, 90, 95 and 100. It can be observed that although the stability of domain

adaptation is not as good as the traditional end-to-end model when the dataset is small,

the accuracy is significantly higher than the traditional model.

As previously mentioned, the ground-truth depth maps for training have incomplete

regions due to hardware limitations. These false labels may cause the wrong predic-

tion of the model. Figure 3.10 shows an example showing serious depth errors in the

regions with large glass walls. If we consider those glasses as a solid structure, the

depth map should show planar depth at the locations of the walls. Even if we ignore
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FIGURE 3.10: Example of False Ground Truth. (Left: Original image, Right: Given
depth labels)

glasses, considering the limitation of the sensors, the ground truth for the regions be-

yond the glasses is still wrong. Most depth sensors, including LiDAR, cannot properly

detect and measure transparent or reflective surfaces. This is another reason for the

low accuracy of the proposed model, as those wrong depths were also considered as

ground-truth for training and even for evaluation.

For practical applications which need to detect even glasses and mirrors, additional

modalities, such as acoustic sensors, can be considered to overcome these problems

(Kim et al., 2020). However, these issues were not considered in this work, and the

research focus was to verify the application and efficiency of domain adaptation in the

field of omnidirectional images. Enhancing the performance of the model itself was not

the primary focus of this work.

3.5 Conclusion

Traditional deep learning-based single-image indoor depth estimation relies on super-

vised learning and tends to overfit a specific dataset, resulting in a lack of generalisabil-

ity. To address the issue of poor model performance across different domains in depth

estimation, the architecture with domain adaptation is proposed to predict scene depth

for unlabelled omnidirectional image sets when the labelled training sets are limited.

The experiments show that the performance of domain adaptation architecture outper-

forms the traditional end-to-end model for omnidirectional depth estimation in the sit-

uation of a limited number and variety of data. Furthermore, this performance shows

that an end-to-end model with domain adaptation can predict the reasonably good

quality of depth maps for the omnidirectional images in a different scene without la-

bels. This result means that the work creates a potential direction for depth estimation

of unlabelled omnidirectional scenes with limited labelled data. This work has been

published at the ACM SIGGRAPH European Conference on Visual Media Production

(CVMP).

However, for the proposed architecture, a similar labelled dataset is still necessary for

training. In practice, it is usually difficult to find a suitable labelled dataset. Therefore,
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in the next chapter, a new architecture is proposed which can be trained with synthetic

datasets instead of real-world ground-truth sets, considering a situation in which no

real-world label is available.
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Chapter 4

From Simulation to Reality: Depth

Estimation with Synthetic Data

As mentioned in the previous chapter, it is often a challenge to find real-world anno-

tated datasets that are similar to a specific target dataset.

4.1 Motivation

Currently, existing omnidirectional depth datasets contain limited types of scenes. Even

the largest depth datasets, such as 3D60 (Zioulis et al., 2018) and Pano3D (Albanis et al.,

2021), contain similar depth distributions and limited real-world scene types. Com-

puter Graphics (CG) models can solve this problem as they can easily generate a huge

amount of rendered synthetic images with corresponding depth from 3D models at a

low cost, and users have full control of the synthetic datasets, such as adding objects

and changing the scene light (Ren and Lee, 2018). Moreover, synthetic datasets tend

to be more abundant and cover a wider range of scenarios compared to real-world

datasets. Therefore, it is possible to use synthetic scenes for training and domain adap-

tation can help map the two different domains to a similar feature space (Ganin and

Lempitsky, 2015). Inspired by previous works (Ren and Lee, 2018; Wu et al., 2021), we

hypothesised that learning only from synthetic images can help estimate depth maps

for unlabelled omnidirectional real-world scenes and proposed the architecture with

both better performance and stability.

Building on this hypothesis, leveraging the data from synthetic datasets to learn and

predict valuable information about depth maps in real-world scenes could provide sig-

nificant assistance for depth estimation tasks in real-world settings. Given these, an ar-

chitecture without using any real-world labels for predicting depth maps in real-world

scenes will be introduced.
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FIGURE 4.1: Overview of Proposed Architecture. It has a similar architecture but
includes different modules compared to the previous architecture in Chapter 3, in-
cluding an encoder-decoder model, a transformer encoder, and the proposed reverse

warming-up threshold discriminator.

4.2 Method

4.2.1 Overview

Figure 4.1 illustrates the overview of the proposed architecture. In general, the struc-

ture is similar to that in the last chapter. It belongs to an unsupervised domain adapta-

tion method that can predict the depth of unlabelled scenes, using the domain adapta-

tion method to estimate the depth of input scenes for both source domain images with

labels and unlabelled target domain images. However, the components of this archi-

tecture are different.

For this new model, the input images are omnidirectional RGB images with their do-

main labels (1 for the source domain and 0 for the target domain). These inputs will go

into the encoder-decoder model and output the embedding features. The transformer

encoder module will then take these features as input and estimate the corresponding

depth maps. The features will also enter the reverse warming-up threshold discrimi-

nator (RWTD) and then predict the domain labels.

4.2.2 Proposed Architecture

The architecture consists of updated components, such as an encoder-decoder model,

transformer encoder, and proposed RWTD.
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FIGURE 4.2: Process of Transformer Encoder.

4.2.2.1 Encoder-decoder Model

The encoder-decoder model is the U-Net model. For encoder, EfficientNet B5 (Tan and

Le, 2019) is used as backbone because of the better performance according to the exper-

imental results for comparing backbone of ResNet (He et al., 2016), EfficientNet, and

DenseNet (Huang et al., 2017). This is because the main idea of EfficientNet is to inte-

grate width, depth and resolution into a comprehensive task of the network (Tan and

Le, 2019). For the decoder, following Alhashim and Wonka (2018), the architecture uses

a shallow decoder that contains two convolution layers and four bilinear upsampling

layers. The encoder-decoder model takes omnidirectional RGB images as inputs and

outputs corresponding feature vectors.

4.2.2.2 Transformer Encoder

Ordinal regression is suggested to be used for monocular depth estimation task (Fu

et al., 2018; Bhat et al., 2021). Regression-based architectures do not do enough global

analysis of the output values because a limitation of the convolution layer is that they

process global information only when the tensor reaches low spatial resolution or near

the bottleneck. Therefore, Bhat et al. (2021) suggests dividing the predicted depth range

into bins, whose width changes with each image, and the final depth estimate is a linear

combination of these bins centres. Following this, the depth regression task is trans-

formed into a classified task. The main body (Figure. 4.2) of the transformer encoder

is a vision transformer (Dosovitskiy et al., 2020) based structural block that divides the

depth range into multiple bins, and the central value of each bin shows the depth adap-

tively.

The encoder-decoder output goes to two branches. One is to convolute with a 3× 3 ker-

nel to get the ‘output maps’. The other goes through an embedding convolution layer

and generates patch embeddings as input to the transformer encoder. The transformer
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encoder will then output two branches: Range attention maps and depth range with

bins.

Range attention maps. The outputs from the transformer encoder pixel-wise dot the

convolution result between ‘output maps’ and finally, produce range attention maps.

Depth range with bins. This depth range shows how the depth interval of the scene

is divided into bins. The output depth range is generated by a multi-layer perceptron

(MLP).

To get the combined information between local and global features, this depth range

with bins is then combined with the range attention map by element-wise multiplica-

tion and the sum of pixel values according to the channel direction. With this trans-

former encoder, a final depth map is predicted as a combination of range attention

maps and normalised bin centres, enabling the model to estimate accurate and smooth

depth maps.

4.2.2.3 Reverse Gradient Warming-up Threshold Discriminator

As the main contribution of our work, the RWTD makes the architecture able to pre-

dict the depth maps without training with real-world ground truths, but only with the

synthetic dataset.

The discriminator in the proposed architecture is to classify output feature vectors of

the encoder-decoder model from the source domain or target domain. Similarly, there

is a reverse-gradient layer (Ganin and Lempitsky, 2015). With its help, the RWTD learns

not to recognise where the feature vectors are from which domain. Therefore, there are

also two gradient descent directions during training. In addition, RWTD allows the

discriminator to increase the weight given to similar images while ignoring the differ-

entiated ones from the source and target domains with the increase of epoch number. In

this way, compared with the previous GAN-based domain adaptation methods (Ganin

and Lempitsky, 2015; Saito et al., 2019; Wu et al., 2021), it can make the predicted depth

distribution similar to the ground truth of the target domain and get better results.

Based on this, the information learned in the source domain can be applied to predict

depth maps of unlabelled scenes from the target domain. Moreover, the main rea-

son that previous architecture in Chapter 3 cannot train only with synthetic images

and predict depth maps for real-world scenes is that the domain label losses will keep

going up and dominate the loss function and then guide the whole architecture to a

wrong gradient direction. To solve that problem, RWTD has a warming-up threshold

to set constraints on the loss values during the training process, and this value will be

changed according to the training epoch to make the whole architecture perform well.
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4.2.3 Loss Function

The loss function combines the dense depth loss, the ChamferLoss, and Domain Label

Loss (DLL), which is defined as

L(G,O) = αLdense(G,O) + βLCham f er(G,O) + θ(Llabels(G,O) + Llabelt(G,O)). (4.1)

Shown in Equation (4.1), α and β represent the factor of dense depth and ChamferLoss,

respectively. θ represents domain label loss factor (DLLF), and it controls the influence

of DLL. These factors balance the weight of different losses and lead to the good per-

formance of the proposed architecture.

The dense loss function has changed with the updated architecture because scale-invariant

loss can better help model training. In addition, because the regression problem has

been changed to ordinal regression, using ChamferLoss can encourage bin centres to

be as close to the value of ground-truth depth maps as possible.

4.2.3.1 Dense Depth Loss

Scale-invariant (SI) Loss (Eigen et al., 2014) is used for the dense depth loss function. In

contrast to the square variance error, which usually measures the difference between

two images, SI Loss does not depend on the scale of the images. Following the SILoss

from Bhat et al. (2021), shown in Equation defined below:

LSI = 10

√

√

√

√

1

T

T

∑
p=1

(log(Op)− log(Gp))2 −
0.85

T 2

(

T

∑
p=1

(log(Op)− log(Gp))

)2

. (4.2)

T denotes the number of pixels.

4.2.3.2 Chamfer Loss

In order to shrink the gap between bin centres and ground truth depth values, the

chamfer loss function (Bhat et al., 2021) is used, which uses bi-directional chamfer

losses as a regularised item, defined as below:

Lbins = ∑
x∈G

min
y∈c(b)

∥x− y∥2 + ∑
y∈c(b)

min
x∈G
∥x− y∥2. (4.3)

In the training process, the distance between the predicted bin centres to each pixel

on the ground truth and the distance between the ground truth and each pixel on the

predicted bin centres were added and reduced to make the bin centres close to the

depth values of ground truths while making the rest to be far from these depth values.
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Shown in 4.3, c(b) denotes the bin centres, while GT represents all pixels on a ground

truth depth map.

4.2.3.3 Domain Label Losses

The source and target domain images are labelled with domain labels 1 and 0, respec-

tively. The Domain Label Loss (DLL) function calculates the loss values between the

original domain label and the output domain label from the discriminator. Inspired

by focal loss (Lin et al., 2017; Saito et al., 2019), RWTD can solve the low-performance

problem caused by imbalanced data in the image domain. For example, for a classifica-

tion task with two image datasets which include a mixture of easy and difficult images

to be classified, it can focus on difficult-to-classify data and ignore the easy-to-classify

images. The proposed discriminator can ignore the easily distinguished samples and

increase the weight of the samples that are difficult to distinguish. Equations are de-

fined as

RWTD (q) = − f (q) log (q) , f (q) = (1− q)γ , q = max(q, thres) (4.4)

and

q =







q if d=1

1− q if d=0
(4.5)

thres is the RWTD threshold factor. Its main idea is to reduce the loss contribution

of those samples that are correctly classified so that the model pays more attention to

those samples that are difficult to classify correctly during training.

As defined in

thres =







1× 10−4 × 10−epoch if q g 1× 10−24

1× 10−24 otherwise
, (4.6)

the threshold probability thres decreases according to the epoch number during the

training process. From preliminary experiments, it can be observed that the architec-

ture does not perform well if the DLL increases at the beginning, as the model does not

learn enough information from the source domain. In addition, with the unconstrained

increasing DLL, the domain loss will lead in the wrong direction, only focusing on mak-

ing the model unable to recognise the image coming from which domain. Therefore,

this loss will dominate the loss function and causes poor performance. RWTD will

solve this problem by constraining the loss values.
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(A) SunCG

(B) Stanford2D3D

FIGURE 4.3: Sample Images from the Datasets

4.3 Implementation and Evaluation Metrics

The proposed architecture is trained on an NVIDIA RTX 3090 GPU with 24GB CUDA

memory.

4.3.1 Data Exploration

The computer graphic (CG) images are from SunCG (Zioulis et al., 2018), and two dif-

ferent office-scene-based real-world 360 image datasets of two different buildings from

Stanford2D3D (Zioulis et al., 2018). These datasets contain 512 × 256 resolution RGB

images of indoor scenes with corresponding depth maps in metres. The real-world

ground truth depth maps contain outliers caused by missing depth pixels. In order

to improve the training efficiency, the scenes containing over 5% outliers are removed.

After the pre-processing, SunCG contains 2319 scenes. Stanford2D3D area5 contains 82

scenes, and area6 contains 132 scenes.

Figure 4.3a shows sampled scenes of the SunCG dataset. They illustrate RGB images

and corresponding depth maps of indoor scenes that are simulated and rendered by

computers. SunCG contains different scenes that cover a variety of objects that might

exist in the real world, such as beds, ladders, fans, etc. However, there are some differ-

ences between these synthetic and real-world scenes, including the textures and colours

of the scenes. Figure 4.3b shows the real-world scenes from the Stanford2D3D dataset,

which are taken in different buildings. It also includes many images, but they are from

very limited kinds of scenes.

4.3.2 Implementation Details

All of the experiments receive inputs with the resolution of 512× 256. Similar to pre-

vious tasks (Bhat et al., 2021; Alhashim and Wonka, 2018; Zioulis et al., 2018), in order
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to save the GPU memory, the output resolution is set as 256× 128. The batch size is 8,

with the learning rate of 3.57× 10−4 and 50 epochs. The Adam-optimizer (Kingma and

Ba, 2014) is adopted, with the parameters β1 = 0.9 and β2 = 0.999. Both the dense loss

factor α and Chamfer loss β are set as 0.1, and DLLF δ is set as 0.01 (Equation (4.1)),

while γ in Equation (4.5) is set as 2 in the experiments.

4.3.3 Evaluation Metrics

The evaluation method is to use six metrics that have been mentioned in Section 3.2.

4.4 Experiments

In this section, the proposed architecture will be trained and tested with synthetic

scenes as the source domain and real-world scenes as the target domain.

4.4.1 Performance

For a fair comparison, we considered different depth estimation models and compared

our architecture with the best of them. The default hyperparameters were tried, but

the model showed poor performance. This is because the model was becoming overfit-

ting (see Appendix) for the synthetic dataset and performed poorly on the real-world

dataset. Finally, by doing experiments with different learning rates from 1× 10−7 to

0.1, an appropriate learning rate of 1× 10−6 for RectNet was found to get better per-

formance. Learning rates of U-Net Model (Alhashim and Wonka, 2018), AdaBins (Bhat

et al., 2021) and SliceNet (Pintore et al., 2021) were set as 1× 10−5, 3× 10−4 and 1× 10−3

respectively after doing the similar experiments.

Table 4.1 shows that the proposed architecture outperformed the state-of-the-art (SOTA)

models (Alhashim and Wonka, 2018; Bhat et al., 2021; Zioulis et al., 2018; Pintore et al.,

2021) with different testing datasets, with 11% and 3% points improvement. They

were trained with the SunCG dataset and tested with the Stanford2D3D testing dataset

(area5) and the Stanford2D3D area6 dataset (Zioulis et al., 2018).

The proposed architecture outperforms other methods for two reasons: First, it esti-

mates the depth by information from both the source and target domains rather than

directly applying what is learned from the source domain to the target domain. Sec-

ond, the architecture assigns different weights to different scenes in the source domain

according to their similarity to that in the target domain during training. Thus, the pro-

posed architecture can focus on learning scenes similar to the target domain.
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TABLE 4.1: Performance Comparisons of Baseline and Proposed Architecture

Testing dataset Model a1 ↑ a2 ↑ a3 ↑ rel ³ rms ³ log10 ³

area5

Alhashim and Wonka
(Alhashim and Wonka, 2018)

50.35±1.55 81.8±1.49 95.24±0.62 0.255±0.007 0.973±0.019 0.118±0.004

RectNet
(Zioulis et al., 2018)

61.04±0.86 85.81±0.49 96.23±0.21 0.216±0.002 0.926±0.009 0.098±0.001

SliceNet
Pintore et al. (2021)

59.63±4.27 88.11±3.82 97.8±0.70 0.26±0.029 0.624±0.051 0.096±0.009

AdaBins
(Bhat et al., 2021)

63.03±4.27 90.32±1.83 97.7±0.53 0.25±0.025 0.699±0.058 0.091±0.008

Ours 74.08±2.37 95.81±0.63 99.21±0.2 0.18±0.009 0.543±0.042 0.069±0.003

area6

Alhashim and Wonka
(Alhashim and Wonka, 2018)

50.56±0.32 78.6±0.57 92.52±0.32 0.271±0.003 1.098±0.007 0.123±0.001

RectNet
(Zioulis et al., 2018)

55.34±1.16 82.14±1.33 93.49±0.52 0.263±0.003 1.096±0.008 0.113±0.003

SliceNet
(Pintore et al., 2021)

57.91±6.23 86.87±1.67 96.17±0.64 0.281±0.028 0.734±0.044 0.103±0.009

AdaBins
(Bhat et al., 2021)

69.42±5.68 90.71±1.67 97.29±0.43 0.227±0.03 0.641±0.034 0.083±0.01

Ours 72.33±1.77 93.38±0.35 98.22±0.14 0.197±0.009 0.595±0.013 0.075±0.003

(A) AdaBins (B) Proposed Architecture

FIGURE 4.4: Accuracies with Different Thresholds. Each graph contains three accuracy
curves that are used to evaluate the performance of the model with different thresh-
olds, and these curves show the accuracies with thresholds, thresholds2 and thresholds3,

respectively.

Figure. 4.4 shows the performance of two trained models with different threshold ac-

curacies on Stanford2D3D area5. The threshold ranges from 1.0 to 1.5. For evaluation

methods in this paper, 1.25 is used as the threshold according to (Eigen et al., 2014; Al-

hashim and Wonka, 2018; Zioulis et al., 2018; Bhat et al., 2021). This figure shows that

the proposed architecture has more obvious advantages when the threshold is low, and

it can show a significant competitive advantage in a more stringent evaluation condi-

tion.

4.4.2 Stability

The proposed model not only outperforms the SOTA models, such as AdaBins but also

performs more stable than them. Figure. 4.5 shows the comparison of the stability of

models.
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(A) Stanford2D3D Area5

(B) Stanford2D3D Area6

FIGURE 4.5: Stability Comparison of First-threshold Accuracy (Left: AdaBins; Right:
Proposed method)

The performance of models is evaluated with testing data every 100 batches. It can be

observed that the test results of the AdaBins model fluctuated significantly during the

training process, while the proposed structure is more stable than it. This is because the

training dataset contains different types of scenes. When a batch of training data con-

taining scenes is significantly different from the testing dataset, the model performance

suddenly deteriorates. In the proposed structure, RWTD assigns different weights to

different scenes in the training data set during the training process. It assigns high

weights to scenes with high similarity while ignoring scenes from source and target

domains with low similarity as much as possible, which leads to a stable performance.

Stability is essential in practical applications. After fifty epochs of training, AdaBins

model converges to a smaller accuracy because it is overfitted. If we train only 20

or 30 Epochs, AdaBins method can occasionally achieve high accuracy, such as 80%,

but it also fluctuates wildly. This means that the model cannot be used in practical

applications because the results are uncertain, and its performance may be very good

or very bad. In practice, it is difficult to know how many epochs a model should train

when there are no labels. In contrast, the proposed architecture can maintain a high

and stable performance.
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TABLE 4.2: Investigation on the Effect of Each Component in the Proposed Architec-
ture

Model a1 ↑ a2 ↑ a3 ↑ rel ³ rms ³ log10 ³

without RD 65.15±4.05 91.13±1.59 97.71±0.53 0.24±0.025 0.683±0.055 0.087±0.008
with RD 69.68±5.43 94.57±1.95 99.03±0.4 0.199±0.025 0.565±0.068 0.075±0.008

with RWTD (Ours) 74.08±2.37 95.81±0.63 99.21±0.2 0.18±0.009 0.543±0.042 0.069±0.003

TABLE 4.3: Effect of Discriminator

Model a1 ↑ a2 ↑ a3 ↑ rel ³ rms ³ log10 ³

Unsupervised Domain Adaptation
(Ganin and Lempitsky, 2015) 26.2 50.7 68.1 0.855 1.720 0.235

Omnidirectional Domain Adaptation (Wu et al., 2021) 60.22±4.85 85.72±3.84 96.25±1.48 0.213±0.016 0.961±0.05 0.097±0.01
RWTD (Ours) 74.08±2.37 95.81±0.63 99.21±0.2 0.18±0.009 0.543±0.042 0.069±0.003

4.4.3 Ablation Study

4.4.3.1 Comparison of Different Components

For individual component analysis of the proposed architecture, the ablation studies

are conducted on the SunCG and Stanford2D3D datasets.

Table 4.2 shows to what extent different components contributed to the proposed ar-

chitecture. The architecture is evaluated with and without a discriminator. The fixed

threshold discriminator was also compared, which had the same threshold as RWTD’s

final threshold (1× 10−24), called Reverse-gradient Discriminator (RD). As can be seen

from the results of this table, with the help of RWTD, the accuracy of the proposed

model is improved by about 9% points of a1 accuracy compared with the structure con-

taining encoder-decoder only, and about 4% points accuracy improvement than that

with RD. The results of error metrics also show this trend.

4.4.3.2 Comparison with other Domain Adaptation Methods

Table 4.3 shows the results with different discriminators. The model from Ganin and

Lempitsky (2015) cannot work well with the task from synthetic scenes to real-world

scenes because of the dominant DLL. The training loss is the combination of Chamfer-

Loss, SI loss and DLL. If the DLL increases dramatically at the beginning, these losses

will dominate the training loss and guide the model learning in the wrong direction.

This will make the discriminator unable to learn enough information from the source

domain and cannot recognise the images that come from which domains.

In contrast, the proposed model makes the loss of domain labels able to increase but not

dominate the loss values. For example, when the epoch is 0, DLL is 0, which provides

the model with an opportunity to learn enough information from the source domain. It

also keeps the direction of gradient descent from being far away from the direction of
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FIGURE 4.6: Performance on a New Real-world Dataset (left: RGB images of scenes,
middle: AdaBins, right: proposed architecture)

learning information of predicting depth maps only from the source domain. In each

subsequent epoch, the architecture gradually increases the threshold of DLL so that

the model can continuously learn information from the source domain and predict the

depth map of the target domain.

4.4.4 Performance on New Dataset

Figure. 4.6 shows real-world images captured in a building with an off-the-shelf omni-

directional camera. Though there is no ground-truth depth data, it can be observed that

the estimated depth maps show the correct depth of the scenes with smooth changes

within objects. Compared with the results from AdaBins, the proposed method shows

better depth estimation for the planar ceiling regions in all test images. As AdaBins are

affected by textures and lighting conditions, the saturated areas by the lighting in the

ceiling show the wrong depth, while the proposed model produced smooth and planar

ceiling regions learned from scenes in the source domain. For the same reason, we can

see that the result of AdaBins shows discontinuous depth fields around shadow regions

(e.g., the red box in Figure. 4.6). The proposed model recognised the wall and predicted

a continuous and smooth depth map. In addition, AdaBins failed to predict the depth

of the door (e.g., blue box in Figure. 4.6). The middle part of the door should be smooth,
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but the depth map of AdaBins indicates that it is closer to the camera. Compared with

it, the proposed architecture could infer a relatively smooth and planar depth for the

door.

4.5 Conclusion

Existing encoder-decoder models are often incapable of reliably predicting depth maps

for unlabeled real-world situations due to the lack of labelled dataset types and the

difficulties of getting real-world depth maps. In this paper, we proposed to use a syn-

thetic dataset to estimate real-world depth maps since they span a variety of scene types

and are easy to acquire. A domain adaptation-based architecture with RWTD is pro-

posed in order to address the gap between synthetic images and real-world images. It

shows significantly better stability and 11% points higher accuracy than SOTA encoder-

decoder models. This research makes it feasible to predict omnidirectional depth maps

for real-world scenarios using a labelled dataset of synthetic images. This work has

been published at the IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP).

Thus far, we have addressed a challenge in a depth estimation application, enabling

the model to learn from synthetic data and apply it to real-world depth estimation.

However, this approach still simply uses deep learning models to take RGB images

and their corresponding depth maps as learning samples without further considering

what factors affect the performance of depth estimation. Based on these considerations,

we aim to delve deeper into depth estimation. In the following chapter, we seek to

consider physical constraint and explore its role in depth estimation, as well as propose

a corresponding model.
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Chapter 5

SliceFormer: Depth Estimation

considering Gravity

In this research, we tackle the task of estimating depth from a single indoor omnidi-

rectional image. Our experimental evaluation substantiates the significant impact of

gravity on artificially constructed indoor environments. Building on this foundation,

we process the input from the equirectangular projection by dividing it into vertical

slices. These slices are then utilised as patch embeddings for the transformer encoder,

a strategy designed to predict an equirectangular depth map. Our architecture is eval-

uated against state-of-the-art models using real-world datasets, namely Stanford2D3D

and Matterport3D, demonstrating its superior performance. These results underscore

the significance of our gravity-aligned approach for depth estimation in omnidirec-

tional images, especially in man-made settings.

Since gravity has been described as an important factor in previous studies (Sun et al.,

2021; Pintore et al., 2021), in this study, we sought to analyse the contribution of gravity

to depth estimation. With the results and analysis in Sec. 5.3.4, we propose employ-

ing a slice-based representation for depth estimation in single indoor omnidirectional

images, based on the assumption that omnidirectional images are taken by a camera

placed on a horizontal-ground plane (Pintore et al., 2021; Sun et al., 2021) since most

off-the-shelf cameras provide automatic alignment as their internal function. 360° cam-

eras come with several lenses and tools like gyroscopes to automatically fix their po-

sition, or with automatic adjustment methods (Jung et al., 2017), making sure photos

stay straight up and down. General cameras might also have a level or gyroscope but

mainly depend on the user taking the picture to change the angle and frame based on

the purpose of a certain look or creation. On the other hand, 360° cameras aim to cap-

ture everything around, auto-straightening to prevent viewers from feeling dizzy or

lost.
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FIGURE 5.1: The Example Scene Showing How the Depth of an Object Changes along
the Direction of Gravity.

5.1 Motivation

The force of gravity plays a pivotal role in shaping various vertical and horizontal com-

ponents (Sun et al., 2021; Pintore et al., 2021). In the direction of gravity, due to the

effect of gravity, the depth distribution of objects will show certain rules. For example,

as shown in Fig.5.1, for an object placed on the ground directly in front, the depth from

bottom to top is usually from near to far. The reason is that nearby objects will block

distant objects. This means that depth changes in the vertical direction may be regular.

In contrast, the depth in the horizontal direction does not have such a rule but shows

different depths. Consequently, it is hypothesised that aligning omnidirectional image

acquisition with the gravitational vector enables easier learning for models from these

images, utilising features precisely oriented with gravity.

Fig.5.2 confirms this hypothesis, presenting the depth distribution in relation to gravity

and the horizontal direction, based on the 360° KITTI dataset. In the right image, the

protrusion is due to the fact that in the 360° KITTI dataset, the directions of left, cen-

tre, and right are roads without obstacles, as shown in Fig.5.3. However, compared to

outdoor scenes, indoor omnidirectional scenes exhibit a different impact on depth dis-

tribution due to room structure, such as floors and ceilings typically being closer to the

camera. Given this difference, is this depth distribution pattern also observed indoors?

This question will be explored through further experimental research and analysis.

Based on these, we assume that the continuity of the information in the picture along

the direction of gravity is more important for depth estimation compared with hori-

zontal information.
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(A) Vertical depth distribution (B) Horizontal depth distribution

FIGURE 5.2: Depth Distribution with 360° KITTI Dataset (de La Garanderie et al.,
2018). The left image shows the depth distribution from top to bottom (vertical), while
the right image displays the depth distribution from left to right (horizontal). The
x-axis represents pixels from top to bottom, and from left to right of input images,

respectively. The y-axis represents the average depth in metres.

FIGURE 5.3: Sample from 360° KITTI

5.2 Method

5.2.1 Gravity

For general images, determining the direction of gravity can be challenging due to

unknown extrinsic camera parameters. However, as outlined in Introduction, the di-

rection of gravity is readily identifiable in omnidirectional images, where the vertical

axis corresponds to this direction.

To investigate the continuous impact of images on depth estimation along different di-

rections (specifically, the gravity direction and the horizontal direction), we have opted

to employ the bidirectional long short-term memory network (BiLSTM) model instead

of the CNN for depth estimation purposes.

Specifically, shown in Fig.5.4, the vertical BiLSTM (vLSTM) segments the image into

vertical slices, aligning with the gravitational direction, and these slices are then con-

catenated into a linear sequence, which serves as the model’s input. These inputs are

fed into a bidirectional BiLSTM (Siami-Namini et al., 2019) with a hidden layer size of

128 units. The bidirectional structure of the BiLSTM enables the network to simultane-

ously process both forward and reverse information in the sequence. Subsequently, the

tensor output by the BiLSTM is reshaped and then passed through subsequent fully
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FIGURE 5.4: Pipeline for Analysing Gravity. Two types of inputs are utilised: se-
quences created from slices along the direction of gravity (vertical) and slices along
the direction perpendicular to gravity (horizontal) are concatenated and each is used
as inputs for a BiLSTM, which then predicts the corresponding depth maps, respec-

tively.

FIGURE 5.5: Slices along the Direction of Gravity.

connected layers to obtain the predicted depth map. This process is analogous to the

model learning continuous vertical features from the image. Similarly, a horizontal

BiLSTM (hLSTM) extends an image along the horizontal axis.

5.2.2 SliceFormer

In indoor spaces, gravity serves as a crucial factor influencing both vertical and hori-

zontal elements to different extents, which typically have distinct characteristics (Pin-

tore et al., 2021). Consequently, aligning the omnidirectional image acquisition with the

gravitational vector allows for the direct manipulation of these gravitational-aligned

spatial features. This approach results in producing flattened and compact sequences

of slices from the omnidirectional image, where each slice encapsulates a portion of the

scene information, as illustrated in Fig.5.5.
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FIGURE 5.6: Overview of Proposed Architecture

5.2.2.1 Overview

Fig.5.6 illustrates the pipeline of our proposed architecture, which consists of two pri-

mary components: a U-Net shape encoder-decoder network and a slice-based trans-

former. The encoder-decoder captures and processes image features, while the trans-

former, with the proposed novel slice-based approach, facilitates effective depth map

generation.

Encoder-decoder In our research, we employed a U-Net shape encoder-decoder ar-

chitecture. The choice of the U-Net architecture was motivated by its remarkable per-

formance across various image-processing tasks. This architectural design facilitates

the comprehensive information of image features at varying scales, enabling the model

to incorporate contextual information inherent in the images effectively. Specifically,

the encoder component is tasked with capturing global image characteristics, while the

decoder component is dedicated to the reconstruction of detailed information pertain-

ing to depth maps. To bolster the performance of the encoder, the EfficientNet B5 (Tan

and Le, 2019; Bhat et al., 2021) is adopted as encoder backbone architecture because it

systematically expands the width, depth, and resolution of the network.

Slice-based Transformer Our significant contribution involves introducing the con-

cept of slice-based patch embedding, a novel approach compared to the square patches

used in traditional vision transformers (Wang et al., 2021). Our model segments the

decoded features into slices as the transformer’s input. With the encoder-decoder pro-

ducing an image feature of dimensions [bs, 1, H, W], we create slices each having a

height of H and a width of 1 along the vertical axis, which are suitable for patch em-

bedding.

The initial one-dimensional features generated by the transformer undergo ReLU ac-

tivation through a multilayer perceptron (MLP) head (Bhat et al., 2021), resulting in a

100-dimensional vector of depth bins, which is subsequently normalised. The remain-

ing portion is processed by 1×1 convolution kernels, which are convolved with the
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FIGURE 5.7: Representation of Different Rotation Orientation.

decoded features to produce an attention map. This attention map, in conjunction with

the depth bins, is utilised to derive the final depth map.

5.2.2.2 Loss Function

Mean squared error (MSE) loss is employed to compute the loss between predicted

depth maps and ground truth depth maps. This loss function adeptly accommodates

data of varying scales, thereby enhancing the model’s robustness and generalisation

capabilities. Simultaneously, we utilise the chamfer loss (Bhat et al., 2021) to promote

centres in depth bins, aligning their distribution with that of the ground truth depth

maps. The loss function is defined as

L(G,O) = αLMSE(G,O) + βLChamfer(G,O). (5.1)

As illustrated in Equation (5.1), the parameters α and β are assigned values of 1 and

0.1, respectively, to ensure they are on a similar contribution scale.

5.3 Experiments

5.3.1 Datasets

The 3D60 dataset (Zioulis et al., 2018) was employed for training purposes. This dataset

includes real-world data from Standford2D3D (Armeni et al., 2017) and Matterport3D

(Chang et al., 2017), consisting of equirectangular RGB images along with correspond-

ing depth maps, aligned to the gravity direction. To ensure data quality, scenes with

more than 5% outliers were removed. Consequently, the Standford2D3D training set

was reduced to 645 images, while the test set remained at 82 images. In the case of the

Matterport3D dataset, the training set consisted of 2075 images, and the testing dataset

comprised 1144 images.
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Instead of utilising conventional perspective datasets directly, we opted to employ the

tangent projection derived from the 360 dataset for a more robust comparative analysis.

This decision was made to ensure a more stringent evaluation and fair comparison of

our approach. For example, the NYU dataset (Silberman et al., 2012) employs relative

depth measurements instead of absolute depth, and due to its hand-held nature when

the data was collected, not all images within the NYU dataset exhibit perfect alignment

with gravity. This particular dataset introduces additional variables and uncertainties

to our experimentation.

Based on this, three types of general perspective projection datasets are generated from

Stanford2D3D by using bilinear interpolation to check whether FoVs will change the

contribution of gravity. The input equirectangular projections were transformed into

perspective images with a 90-degree, 60-degree, and 45-degree field of view angle, re-

spectively, resulting in output images of 256×256 pixels through perspective projection.

For general perspective images with different angles, shown in Fig.5.7, we set the X-

axis as the roll axis, the Y-axis as the pitch axis, and the Z-axis as the yaw axis. The

datasets with random pitch angles of -30° to 30°, and -90° to 90°, marking them as ‘v30’

and ‘v90’ are generated, respectively. The dataset with the random roll rotation angles

between 0° to 90° was marked as ‘roll90’.

5.3.2 Implementation

The proposed architecture and models are trained on NVIDIA RTX3090, with 24GB of

CUDA memory.

5.3.3 Evaluation Metrics

Six commonly utilised metrics in prior depth estimation studies are a1, a2, a3, log10,

rel, and rmse. Three accuracy metrics are assessed using the accuracy thresholds 1.25,

1.252, and 1.253 to evaluate performance across various sensitivity levels. Larger values

of these accuracy metrics indicate better model performance. Three different loss func-

tions are employed to assess the model’s robustness: absolute relative error, linear rmse

and log10 rmse. For experiment results in the following tables, these are denoted as rel,

rmse and log10, respectively. The rel is a typical approach for quantifying regression

errors, measuring the relative difference between the predicted depth value and the

true depth value. The rmse metric helps highlight the impact of significant distance er-

rors by squaring the differences between the output of the model and the ground truth

depth map, whereas log10 mitigates the effect of a small number of outliers by present-

ing the error in relative form through logarithmic transformations. Smaller values of

these loss metrics indicate better model performance.
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5.3.4 Gravity

In this section, to investigate the contribution of gravity alignment to the depth es-

timation of a single indoor image, we analyse the depth distribution in vertical and

horizontal directions. In order to further analyse the difference between the two di-

rections, we trained the data of different perspectives, different FoVs, and different

rotation angles according to horizontal and vertical modes respectively and analysed

their performance. Each training is conducted five times, and the means and standard

deviations are calculated.

5.3.4.1 Experiment Results and Analysis

For these experiments, since the dataset is aligned, the vertical direction is the direction

of gravity. Table 5.1, 5.2, 5.3, 5.4, and 5.5 show the performance of different datasets

and different modes for the same dataset. Compared to these results, the experimental

results indicate that when there is a discrepancy between the vertical and horizontal

depth distributions (shown in Fig.5.8), similar discrepancies emerge in performance, as

shown in the above tables.

Depth Distribution The depth distribution was visually evaluated to compare the

difference between vertical and horizontal directions. Fig.5.8a and Fig.5.8b illustrate

distinct variations in depth distribution between the vertical and horizontal directions,

respectively. Vertically, there is a discernible pattern of transitioning from near to far

and then from far to near, whereas horizontally, the distribution appears to exhibit a

greater degree of randomness, except for showing higher depth in the four corners of

the room.

TABLE 5.1: Performance of Different Datasets with Equirectangular Projections.

Dataset Mode a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

Matterport3D
vertical 84.99± 0.07 96.45± 0.02 98.89± 0.01 0.0538± 0.0001 0.1322± 0.0004 0.4672± 0.0009

horizontal 73.14± 0.72 92.34± 0.55 97.33± 0.33 0.0775± 0.0019 0.1985± 0.0068 0.622± 0.0192

Stanford2D3D
horizontal 90.38± 0.52 97.94± 0.09 99.41± 0.04 0.0434± 0.0012 0.1056± 0.0034 0.3483± 0.0087

vertical 79.5± 0.55 95.38± 0.17 98.61± 0.03 0.0615± 0.0008 0.1475± 0.0018 0.525± 0.0062

Original Equirectangular Projections With equirectangular projections of Matterport3D,

Table 5.1 shows that the performance of hLSTM is worse compared with them. For ex-

ample, It shows about a 13% points drop in a1 metric compared with the performance

of vLSTM and hLSTM.

In the case of Stanford2D3D in Table 5.1, the outcomes for continuous data in the grav-

itational direction closely align with those achieved by the vLSTM model, exhibiting a

roughly 10% increase in a1 when compared to the hLSTM model.
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(A) Vertical Depth Distribution (B) Horizontal Depth Distribution

FIGURE 5.8: Depth Distributions along Different Directions. The figures show the
depth distribution of the Stanford2D3D dataset in the vertical and horizontal direc-
tions. The y-axis represents the average depth (unit in meters). The left figure repre-
sents the vertical direction, and the x-axis represents pixels from top to bottom of input
images. The right figure represents the horizontal direction, and the x-axis represents

from left to right of input images.

TABLE 5.2: Performance of Half-equirectangular Projections with the Matterport3D
Dataset.

Dataset Mode a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

Half
vertical 84.08± 0.4 96.09± 0.13 98.77± 0.02 0.0558± 0.0009 0.1371± 0.0025 0.4626± 0.0033

horizontal 69.98± 0.89 90.75± 0.49 96.58± 0.27 0.0838± 0.0019 0.2176± 0.0061 0.6698± 0.0181

Half Rotate
vertical 70.12± 0.54 90.78± 0.31 96.52± 0.17 0.0839± 0.0012 0.2192± 0.0039 0.6763± 0.0128

horizontal 84.33± 0.09 96.08± 0.03 98.73± 0.02 0.0554± 0.0001 0.1358± 0.0004 0.4661± 0.0015

TABLE 5.3: Performance of Half-equirectangular Projections with the Stanford2D3D
Dataset.

Dataset Mode a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

Half
vertical 90.83± 0.43 98.11± 0.1 99.51± 0.06 0.0427± 0.002 0.1033± 0.0049 0.334± 0.0091

horizontal 77.77± 0.5 95.13± 0.08 98.58± 0.06 0.0644± 0.0006 0.1528± 0.0014 0.5316± 0.0061

Half Rotate
vertical 77.81± 0.3 95.25± 0.13 98.71± 0.05 0.0639± 0.0003 0.1496± 0.0013 0.5123± 0.002

horizontal 90.67± 0.57 98.24± 0.16 99.54± 0.06 0.0426± 0.0007 0.1025± 0.0024 0.3167± 0.0104

Half Original Equirectangular Projections In order to maintain uniformity in the

number of consecutive pixels during expansion in both directions, the original image

was bisected, with only the left half utilised for training and testing. Since an equirect-

angular projection represents a 360° view, it is of no significance which part we choose

after the crop. We therefore choose the left half of each equirectangular projection.

Given the original image’s height-to-width ratio of 1:2, the cropping process results in

a new ratio of 1:1. Consequently, this approach ensures consistency in the number of

consecutive pixels during BiLSTM training and testing in both directions.

It can be observed in Table 5.2 that the performance of vLSTM exhibits approximately

a 14% a1 accuracy improvement compared to the hLSTM with Matterport3D dataset.

Similarly, Table 5.3 shows that the performance of vLSTM exhibits approximately a 14%

a1 accuracy improvement compared to the hLSTM with Stanford2D3D dataset. Errors
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metrics also show the trend, with about 0.03 improvement for log10, 0.08 for rel, and

about 0.2 for rmse.

Rotate Half Original Equirectangular Projections After 90° rotation, the performance

between vertical and horizontal inputs has been switched. As shown in Table 5.2, the

results indicated that the hLSTM achieved approximately 14% higher a1 accuracy than

the vLSTM on the Matterport3D dataset. In contrast to the performance with images

before rotation, the vertical and horizontal BiLSTMs exhibit reversed priorities, and the

error metrics also show a reversed trend. Table 5.3 demonstrates the same trend with

Stanford2D3D dataset.

These observations demonstrate that the information conveyed by consecutive pixels

in the two directions is genuinely distinct.

General Perspective These images are generated from the Stanford2D3D dataset and

inherently align with the direction of gravity unless the roll angles are adjusted.

TABLE 5.4: Performance of Different FoVs with General Perspective Stanford2D3D.

Dataset Mode a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

FoV 90°
vertical 87.79± 0.1 97.28± 0.05 99.2± 0.02 0.0497± 0.0001 0.1217± 0.0004 0.4028± 0.0009

horizontal 76.01± 0.41 94.22± 0.06 98.15± 0.05 0.0708± 0.0006 0.1677± 0.0016 0.6128± 0.0031

FoV 60°
vertical 84.97± 0.3 96.87± 0.06 99.05± 0.02 0.0559± 0.0005 0.1345± 0.0011 0.4436± 0.0038

horizontal 76.88± 0.29 93.92± 0.09 98.1± 0.05 0.0696± 0.0003 0.164± 0.0007 0.6326± 0.0033

FoV 45°
vertical 84.78± 0.57 97.22± 0.08 99.1± 0.01 0.0561± 0.001 0.1336± 0.0019 0.4224± 0.0049

horizontal 78.87± 0.24 94.37± 0.11 98.15± 0.04 0.0665± 0.0003 0.1591± 0.0009 0.6062± 0.004

FoV Even when general perspective projections serve as input data, it is observed that

the vLSTMs show better performance compared to the hLSTM, although the difference

decreases from about 10% to 7% for 45°, 60° and 90° FoVs (shown in Table 5.4). Different

FoVs still show the same trend in both accuracy metrics and error metrics that the

performance of vertical mode is better than horizontal mode. Therefore, FoV is not the

main factor influencing vertical and horizontal differences in depth estimation.

Pitch Angle We project the projections obtained after randomly rotating the camera

from -30 degrees to 30 degrees and -90 to 90 degrees in the pitch direction as input to the

model with a 60-degree field-of-view. As can be seen from Table 5.5, the performance

of vLSTM is still better than that of hLSTM with about 7% and 6% points difference of

a1 accuracy, respectively.

Random Roll Rotation We set the FoV to 60 degrees, randomly rotate the camera’s

posture in the vertical direction (from -90 to 90 degrees), and consider the roll rotation
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TABLE 5.5: Performance of Different Angles with General Perspective Stanford2D3D
with FoV 60°. As stated in Sec. 5.3.1, the first variable v corresponds to random pitch
angles, and rot refers to roll angles, with their respective angle values following each

notation.

Dataset Mode a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

v30°
vertical 83.47± 0.26 96.49± 0.07 98.99± 0.02 0.0578± 0.0005 0.1403± 0.0013 0.4506± 0.0039

horizontal 76.01± 0.2 93.72± 0.04 97.97± 0.02 0.0714± 0.0003 0.1705± 0.0005 0.5987± 0.0019

v90°
vertical 79.22± 0.45 96.66± 0.14 99.33± 0.02 0.0621± 0.0005 0.1422± 0.001 0.3876± 0.0027

horizontal 73.6± 0.13 93.42± 0.07 98.01± 0.02 0.0722± 0.0003 0.1646± 0.001 0.4877± 0.0014

v90° roll90°
vertical 77.6± 0.15 95.03± 0.12 98.64± 0.02 0.0664± 0.0003 0.1573± 0.0008 0.428± 0.0024

horizontal 77.48± 0.27 95.31± 0.09 98.72± 0.04 0.0662± 0.0004 0.1565± 0.001 0.4274± 0.0031

from 0-90 degrees to simulate the random pictures with a normal camera. Table 5.5

shows that the performance of vLSTM and hLSTM become similar. This is because the

random rotation prevents the scene from strictly aligning with the direction of gravity.

5.3.4.2 Summary and Discussion

In general, without the change in the direction of gravity involved, we can see that the

performance shows the same trend, that is, the performance with input in the vertical

direction is better than that in the horizontal direction. These results clearly show the

importance of gravity alignment in depth estimation.

Previous research has utilised gravity alignment but has not explicitly analysed the role

of gravity, thereby presenting a gap in the literature (Sun et al., 2019, 2021; Pintore et al.,

2021). Our study furnishes substantial supportive evidence and a foundational under-

standing of the role of gravity alignment in depth estimation. For future endeavours,

researchers could potentially enrich the model’s informational yield by focusing on the

insights provided by vertical orientation, thereby enhancing the model’s performance

and generalisation.

5.3.5 SliceFormer

From the above experiments, it can be seen that gravity plays an important role in

depth estimation. The information of the direction aligned with gravity provides more

depth cues and shows better performance when used as input to the BiLSTM model.

5.3.5.1 Results and Analysis

We compared the proposed architecture with UResNet in OmniDepth (Zioulis et al.,

2018), HQM (Alhashim and Wonka, 2018), SliceNet (Pintore et al., 2021) and AdaBins

(Bhat et al., 2021) models. Table 5.6 and Table 5.7 show the performance of different
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TABLE 5.6: Depth Estimation Performance with Matterport3D

Model a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

OmniDepth (Zioulis et al., 2018) 87.37 97.24 99.14 0.0493 0.1211 0.4279
HQM (Alhashim and Wonka, 2018) 89.00 97.91 99.41 0.0460 0.1117 0.3915

SliceNet (Pintore et al., 2021) 86.25 97.73 99.31 0.0576 0.1285 0.4285
AdaBins (Bhat et al., 2021) 90.66 98.44 99.55 0.0425 0.1021 0.3659

Ours 90.76 98.61 99.64 0.0421 0.1002 0.3607

TABLE 5.7: Depth Estimation Performance with Stanford2D3D

Model a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

OmniDepth (Zioulis et al., 2018) 92.42 98.63 99.54 0.0360 0.0838 0.3392

HQM (Alhashim and Wonka, 2018) 90.17 98.32 99.57 0.0440 0.1042 0.3485
SliceNet (Pintore et al., 2021) 88.61 98.40 99.56 0.0562 0.1220 0.3757

AdaBins (Bhat et al., 2021) 93.15 98.43 99.36 0.0334 0.0780 0.3853
Ours 93.43 98.55 99.38 0.0333 0.0770 0.3772

models on the Matterport3D and Stanford2D3D datasets, respectively. The proposed

model suppresses other state-of-the-art models in performance on the Matterport3D

dataset, although without demonstrating an absolute advantage on the Stanford2D3D

dataset. This is because the Stanford2D3D dataset is small and easy to learn so the

performance of different models is similar. In addition, although other models such as

OmniDepth and HQM, slightly outperformed on a2,3 and rmse on the Stanford2D3D

dataset, respectively, it is crucial to highlight that our approach demonstrates supe-

rior performance under the rigorous a1 accuracy metric. The relative strengths of Om-

niDepth and HQM in a2,3 and rmse potentially stem from their insensitivity to a limited

set of outliers. This highlights the superior and stringent accuracy of our model, under-

scoring its precision-centric advantages in performance. Therefore, for comprehensive

scene depth estimation tasks, our model offers distinct advantages.

In addition, Fig.5.9 presents the qualitative outcomes of SliceFormer on the Matter-

port3D and Stanford2D3D datasets. As evident from the figure, the model offers highly

accurate depth estimations. Moreover, in regions of the ground truth depth map con-

taining outliers, the model provides precise estimations that align with the actual scene

conditions. Heatmaps in Fig.5.10 are obtained by subtracting the ground truth depth

map and the predicted depth map, respectively. It is observed that except for the parts

with outliers, the error is low for the remaining sections, as indicated by the black

colour. They substantiate the analysis for Table 5.6 and 5.7, demonstrating that the pro-

posed architecture yields accurate depth estimations overall.

In order to further understand the contribution of the slice module, we compared the

slice module with the traditional square patch (16× 16) method for comparison. It can

be seen from the experiments in Table 5.8 that the model based on slice has better per-

formance than that with traditional square patches. Our model performs better than the

traditional square patch under more rigorous and sensitive metrics. For example, there



5.4. Conclusion 69

(A) Matterport3D Dataset (B) Stanford2D3D Dataset

FIGURE 5.9: Qualitative Results. The top row illustrates the original RGB images, the
middle row displays the ground truth depth maps, and the bottom row showcases the

depth maps predicted by SliceFormer.

(A) Heatmap of Matterport3D (B) Heatmap of Stanford2D3D

FIGURE 5.10: Heatmaps for Different Datasets. The output depth and ground truth
depth of Matterport3D and Stanford2D3D in Fig.5.9 are respectively subtracted.

are 0.7% and 1% points a1 accuracy improvement in Matterport3D and Stanford2D3D,

respectively.

5.4 Conclusion

In this study, we have analysed the importance of gravity in depth estimation. The ex-

perimental results show that gravity direction alignment plays a positive role in depth



70 Chapter 5. SliceFormer: Depth Estimation considering Gravity

TABLE 5.8: Comparison of performance between traditional square patches as trans-
former inputs and gravity-aligned slices as inputs.

Dataset Model a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

Matterport3D
Traditional Patches 90.01 98.452 99.57 0.0433 0.1034 0.3677
Gravity Alignment 90.79 98.459 99.55 0.0419 0.1004 0.3636

Stanford2D3D
Traditional Patches 92.73 98.48 99.46 0.0344 0.0808 0.3707

Gravity Alignment 93.75 98.51 99.39 0.0324 0.0752 0.3765

estimation, regardless of the input pictures with different FoVs or pitch rotations. Con-

sidering the alignment of gravity, we introduced an innovative architecture for deep

dense depth estimation from a single indoor omnidirectional image, utilising a slice-

based transformer approach. This method begins with feature extraction from the

input image using a U-Net-shaped encoder-decoder model, followed by partitioning

these features into gravity-aligned slices for patch embedding. The transformer then

generates a 100-dimensional vector representing depth bins, which, when combined

with the attention map, produces the final depth map. This architecture has been rig-

orously tested on real-world indoor omnidirectional datasets, demonstrating superior

performance compared to current state-of-the-art methods. The notable aspect of our

approach is its utilisation of gravitational direction for depth estimation, which aims to

contribute to the broader discourse in single-image depth estimation, potentially offer-

ing new insights for depth estimation in indoor environments.

Future work could explore the contribution of gravity and its challenges in different

application scenarios, such as depth estimation for outdoor scenes. In addition, it will

be a valuable research direction to study the internal mechanism of how the model

uses the information of gravity alignment for depth estimation. This may not only

improve the internal mechanisms, transparency, and credibility of depth estimation

models, but also open up new perspectives and methodologies for the development of

depth estimation techniques.



71

Chapter 6

How does the Machine Perceive

Depth for Indoor Single Images

with CNN?

As mentioned before, depth estimation from a single image is a challenging problem in

computer vision because binocular disparity or motion information is absent. Whereas

impressive performances have been reported in this area recently using end-to-end

trained deep neural architectures, as to what cues in the images that are being exploited

by these black box systems is hard to know. To this end, in this work, we quantify the

relative contributions of the known cues of depth in a single-image depth estimation

setting using an indoor scene dataset. Our work uses feature extraction techniques to

relate the single features of shape, texture, colour and saturation, taken in isolation, to

predict depth. We find that the shape of objects extracted by edge detection substan-

tially contributes more than others in the indoor setting considered, while the other

features also have contributions in varying degrees. These insights will help optimise

depth estimation models, boosting their accuracy and robustness. They promise to

broaden the practical applications of vision-based depth estimation.

Our investigation reveals that, even for general images, there is a lack of detailed work

analysing the impact of various independent features in deep learning-based single-

image depth estimation for indoor settings. Furthermore, it is obvious that factors such

as colour and texture have a general influence on visual perception, and this situation

remains consistent across both general and omnidirectional images. Additionally, the

dataset for general images is significantly larger than that for omnidirectional images,

offering a more universally applicable set of conclusions. Considering these factors, we

have chosen to conduct our experiments using the NYU (Silberman et al., 2012) dataset

in this chapter.
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6.1 Motivation

Depth estimation, predicting the distance from an object’s surface to the camera, is

a key task in the field of computer vision. It plays a crucial role in many applications,

such as 3D reconstruction (Alawadh et al., 2022), autonomous driving (Janai et al., 2020;

Wang et al., 2019), virtual reality (VR) (Dickson et al., 2021), augmented reality (AR)

(Lee et al., 2011), etc. The goal of single-image depth estimation based on deep learning

is to infer the depth value of each pixel by analysing the scene information in a single

image.

Due to the ill-posed problem of single-image depth estimation, there is a fundamental

need to move towards a scene understanding of objects in images so that various char-

acteristics of objects can cue depth information. Recent work on single-image depth

estimation using end-to-end trained deep neural network models shows that such cues

are collectively learnable and satisfactory depth estimation can be achieved (Eigen

et al., 2014; Alhashim and Wonka, 2018; Bhat et al., 2021; Wu et al., 2023). However,

the black-box nature of such models prohibits the understanding of what cues are ex-

ploited in single-image depth estimation. The mechanism behind single-image depth

estimation based on 2D images in neural networks is still not clearly explained, and

the extent to which these models can approximate the human capability of monocular

depth perception remains uncertain.

Building on this gap in understanding, and inspired by causality analysis (Liu et al.,

2022), we aimed to investigate the factors that influence depth estimation. This work

will pave the way for the development of versatile models applicable to a broader

spectrum of depth estimation tasks, moving beyond reliance solely on data-driven

approaches. Research has shown that single-image depth cues in 2D images include

phenomena such as blurring, shading and brightness (Swain, 1997). This paper in-

vestigated and analysed the factors that influence machine-based single-image depth

estimation. To provide a comprehensive understanding, we investigated the roles of

the factors relevant to object recognition (Ge et al., 2022), such as colour and texture, in

the context of single-image depth estimation. However, many factors are interrelated

and cannot be independently segregated. In the context of scenarios where it is possi-

ble to directly and independently extract features from 2D images, we have considered

colour, saturation, texture and shape, and each of them holds significant relevance in

image processing, exerting varying degrees of impact on the overall outcome.

Colour. Colour is recognised by the perception and interpretation of different wave-

lengths of light by the eye (Grzybowski and Kupidura-Majewski, 2019). The visual

information humans gather heavily relies on the presence of colour (Neitz and Neitz,

2000). Colour helps humans recognise and remember objects faster (Gegenfurtner and

Rieger, 2000). Nevertheless, when defining colour, it is critical to recognise that RGB

images do not only represent a singular colour but also include various elements in
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(A) Nature Scene Image (B) Saturation Distribution

FIGURE 6.1: Saturation Analysis for a Nature Scene

addition to colour, such as shape and texture. To isolate the pure colour information,

we utilised a phase scrambling approach (Ge et al., 2022), which effectively separates

the colour from these additional attributes.

Saturation. The second feature of interest is saturation. Saturation refers to the purity

or intensity of a colour. For instance, high saturation indicates a more vivid and pure

colour, while low saturation suggests a lighter or more desaturated colour with a hint

of grey. Aerial perspective, within the domain of remote viewing, refers to the impact

of the atmosphere on the visual depiction of an object. For instance, in Figure 6.1a, a

nature photograph is displayed. We evenly split images into ten rows, and the average

saturation values have been calculated for each row, as depicted in Figure 6.1b. As the

object moves away from the camera, it can be observed that the saturation decreases.

Building on this observation, saturation serves as a depth cue for outdoor single-image

depth estimation. We aimed to investigate the utility of saturation as a depth cue in

indoor scenes.

Texture. In computer vision, texture is defined by repetitive patterns with varying in-

tensities present in an image(Tuceryan and Jain, 1993). Prior research has found that

textures are important when influencing a human’s perception of distance (Rowland,

1999), with specific regions in the brain having been found to be activated when ex-

posed to varying textures (Puce et al., 1996). Therefore, we also sought to indepen-

dently extract the features pertaining to texture and assess their impact on depth esti-

mation.

Shape. A shape is generally considered to be a graphical representation of an object

or its external borders, contours or external surfaces. Acquiring precise boundaries of

objects in the 3D world based solely on 2D images is challenging. To simplify this pro-

cess, we defined the shape feature as the edge graph, which corresponds to a greyscale

map generated using an edge detection algorithm designed to preserve the object’s

boundaries. Edges are regarded as one of the primary cues essential for the human
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visual system (Farid et al., 2013). Edge graphs usually represent geometric structures

or boundaries between objects. For depth estimation tasks, the geometric features of an

object are crucial to inferring its depth. The geometric structure aids depth estimation

algorithms in capturing the shapes and relationships between objects (Jin et al., 2020),

with edge maps providing supplementary geometric information. Edge detectors can

analyse pixel gradients in different areas of the image, thereby assisting in the estima-

tion of the relative distances between objects.

6.2 Background

Interpretability within deep learning is attracting significant and growing interest. In-

terest in Convolutional Neural Networks (CNNs) and Visual Transformers has been

rapidly increasing lately, particularly concerning their interpretability. A study re-

vealed that CNN models trained on ImageNet exhibit a heightened sensitivity to tex-

ture information (Geirhos et al., 2018). In addition, recent research has undertaken a

comparison of the attributes between CNNs and Transformers across various layers

(Raghu et al., 2021) by using Centred Kernel Alignment (CKA) (Cortes et al., 2012;

Kornblith et al., 2019). According to their claims, the transformer allows the early gath-

ering of global information in contrast to CNNs. This results in a robust propagation of

features from lower to higher layers in the network. Nevertheless, the primary focus of

these enquiries remains centred on model analysis.

In the realm of human depth perception, substantial work has been conducted to in-

vestigate cues such as position in the image, texture density and focus blur (Gibson,

1950; Cutting and Vishton, 1995). Existing works have demonstrated various meth-

ods for indoor single-image depth estimation that exhibit good performance (Eigen

et al., 2014; Bhat et al., 2021). Despite this, an analysis of their operations is still lack-

ing. To the best of our knowledge, there has been no analysis of the contributions of

different types of depth cues specifically for deep learning-based depth estimation in

indoor single-image scenarios. In the two most relevant prior studies to our work, (Hu

et al., 2019) conducts attribution analysis to identify pixels that contribute most signif-

icantly to the final depth map. However, these methods can only offer insights into

the low-level workings of CNNs. The analysis in Dijk and Croon (2019) was primarily

confined to specific objects situated in outdoor environments, such as animals and ve-

hicles on roadways. In contrast, in our study, we focused on colour, saturation, texture

and shape, taking into account that our target application pertains to indoor scenes and

requires the extraction of these cues from a single image.

Approaches for emulating the human capacity for gauging depth from an indoor scene

still encounter gaps in knowledge. The objective of this paper is to unveil how neural

networks extract depth-related information from a single indoor image to attain a more
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(A) Original RGB (B) Corresponding GT Depth

FIGURE 6.2: A Sample from the NYU Dataset

profound comprehension of the disparities between monocular visual depth estimation

and the depth perception exhibited by humans.

Simultaneously, our work offers a foundational framework to facilitate subsequent in-

vestigations into assessing the interdependence among pertinent variables in the realm

of depth estimation. A prior exploration delved into the causal interplay within 3D re-

construction, deconstructing elements like perspective and depth while also attempting

to substantiate the interlinkages amid diverse variables (Liu et al., 2022). Nonetheless,

the model expounded upon in this enquiry operates on the assumption that the ob-

ject is symmetric (Wu et al., 2020). Through an autoencoder mechanism, it internally

dissects the input image into manifold components, as opposed to explicitly extracting

a corresponding viewpoint, depth and related insights from the RGB image. In our

study, we exclusively extracted various factors from RGB images while carefully inves-

tigating the significance of these factors within the context of depth estimation. Our

work is set to further enable causal analyses in the field of depth estimation, paving the

way for future advancements in comprehending the causality of depth estimation.

6.3 Method

In this section, we consider four cues for single-image depth estimation. In order to

compare the appearance of these four different features, we use the same sample in

this section. Figure 6.2 shows the original RGB image and its corresponding ground

truth (GT) depth from the NYU dataset (Silberman et al., 2012).

6.3.1 Colour

Figure 6.3 illustrates the relationship between the distribution of original RGB three-

channel values and the depth maps. The pixels on original RGB images are primar-

ily concentrated between 0 and 100 in the corresponding grey-scale depth maps. The
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FIGURE 6.3: Heat Map of the Relationship between the Distribution of Original RGB
Three-channel Values and the Depth Map. The horizontal axis represents the depth
range, while the vertical axis corresponds to the pixel count of the R, G and B chan-
nels within the respective depth ranges. The colour bar values represent the pixel
counts for three respective channels from 500 images randomly selected from the NYU

dataset.

FIGURE 6.4: Phase Scrambled H Map and Corresponding Depth Map of Figure 6.2

heat map reveals that the values of R, G and B pixels are similarly distributed across a

specific depth range. This shows that the factors affecting depth are not significantly

related to the distribution of pixels on the RGB channel. More details are shown in the

Appendix.

Hue from the hue, saturation and luminance value (HSV) colour space can be an ex-

pression of colour. However, hue values represent the projection of the RGB colour

space onto a non-linear chroma angle (Szeliski, 2010). If an output pixel value falls

outside the valid range, it necessitates remapping to bring it within the specified range.

The chroma angle represents a non-linear trajectory within a continuous, uninterrupted

space. Here, starting at 0 degrees is the same as coming full circle to 360 degrees. How-

ever, when we apply this idea to an image, like with H maps, the smooth flow is inter-

rupted, creating a series of separated points instead. Figure 6.4 illustrates the images

and corresponding depth maps resulting from the phase scrambling and remapping

process applied to the H map from Figure 6.2, which are mapped back to specific inter-

vals. Some discontinuous blocks can be observed in this figure. Therefore, we did not

consider utilising the hue maps as the colour feature.
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(A) RGB Image Phase
Scrambling

(B) Gray-scale Image
Phase Scrambling

(C) Depth Phase
Scrambling

FIGURE 6.5: Phase Scrambling Results of Figure 6.2

FIGURE 6.6: Average Saturation at Different Depth Intervals for Indoor Scenes (NYU
dataset)

To examine the contribution of colour to depth, we performed phase scrambling (Ge

et al., 2022) on original RGB images (details shown in Appendix B) and their corre-

sponding depth maps to remove influences from shapes, textures and other geometric

features. The resulting dataset was labelled “RGB Phase Scrambled”. Nevertheless,

even after the phase scrambling, the outcome still retains the brightness information,

making it not purely a colour feature. Subsequently, these outputs were converted to

greyscale, effectively removing the colour information, and the resulting dataset was

labelled as “Greyscale Phase Scrambled”. To illustrate the role of colour, a comparison

of these two phase-scrambled features is conducted.

6.3.2 Saturation

We investigated whether saturation varies at different depths in indoor scenes. We

partitioned this depth range 0-255 in the NYU dataset into eight segments and then

calculated the average saturation for each by converting RGB to HSV colour space and

extracting the saturation values. Figure 6.6 shows the average saturation of the NYU

dataset in different depth ranges. Based on the observations, it appears that saturation

may have less influence on the results for indoor scenes, different from the result for

outdoor scenes shown in Figure 6.1.

Nevertheless, we intend to further investigate the extent to which this subtle difference

can affect depth estimation. In addition, as mentioned above, human depth perception
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(A) Saturation Feature (B) Saturation Depth

FIGURE 6.7: Saturation with Phase Scrambling of Figure 6.2

can be influenced by saturation. To assess the specific contribution of saturation, we

extracted the saturation feature for experimentation independently.

To extract the features pertaining to saturation, we started by converting the RGB

colour space to the HSV colour space and then extracting the saturation maps. Subse-

quently, these saturation maps are subjected to phase scrambling to eliminate features

such as shape, texture and other visual characteristics.

As shown in

V← max(R, G, B), (6.1)

for each pixel, the V maps are obtained by taking the maximum value among the RGB

channels. Subsequently, the saturation feature is obtained based on phase scrambling

from S maps, as shown in

S←







V−min(R,G,B)
V if V ̸=0

0 otherwise
. (6.2)

As depicted in Figure 6.7, Figure 6.7a illustrates the saturation feature, with Figure 6.7b

displaying its corresponding depth map.

6.3.3 Local Texture

The preference for local textures over global textures stems from the fact that the ex-

traction of global textures includes the consideration of additional factors, including

shape and other features. To mitigate the influence of other factors and preserve the

texture, the images were segmented into patches and shuffled, thus eliminating global

information such as shapes, since this information introduces more features than just

textures.
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(A) Shape with Sobel (B) Shape with Canny (C) Depth

FIGURE 6.8: Shape Maps from Figure 6.2 and Corresponding Ground Truth Depth

6.3.4 Shape

The boundaries of an object define its precise outline, marking the separation between

the object and its immediate environment. Edge maps are generated through the anal-

ysis of gradient variations in image pixel values and identify changes in these val-

ues. Although edge maps do not always faithfully represent real object boundaries,

when dealing with a single 2D image, they offer an efficient means of simulating object

shapes. This feature has been defined as ‘shape’ for the subsequent experiment.

As shown in Figure 6.8, we utilised the Canny operator instead of the Sobel operator

because the latter will find the gradient in the x and y directions, reflecting the differen-

tial changes of pixels (Szeliski, 2010). Therefore, not only the shape feature is included

when using the Sobel operator, but some texture information may also be introduced.

6.4 Experiments

As mentioned above, we considered four factors that may contribute to depth estima-

tion: colour, saturation, local texture and shape. All of these features were trained using

the baseline model, and the obtained results were analysed.

6.4.1 Data

We used the NYU dataset (Silberman et al., 2012), which serves as a widely employed

dataset in computer vision, particularly for depth estimation research. Comprising

images from diverse indoor scenes, it encompasses a variety of objects and furniture.

The size of the NYU dataset enhances the representativeness of model training and

evaluation. It is derived from 464 scenes in three cities. The resolution of the images is

640× 480. 10% of the data is split as the testing set.
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TABLE 6.1: Depth Estimation Performance with Different Inputs

Features a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

Original RGB Images 98.13± 0.0013 99.64± 0.0003 99.9± 0.0001 0.0176± 0.0001 0.0413± 0.0008 0.0174± 0.0002
RGB Phase Scrambled 43.5± 0.0067 72.64± 0.0068 87.47± 0.0042 0.1498± 0.0021 0.4754± 0.017 0.113± 0.0019

Grayscale Phase Scrambled 36.13± 0.0316 64.09± 0.041 81.65± 0.033 0.1769± 0.0143 0.5627± 0.0585 0.1364± 0.0149
Saturation 36.9± 0.0094 65.35± 0.0113 82.86± 0.0065 0.1718± 0.0026 0.5321± 0.0208 0.1296± 0.0015

Local Texture 49.95± 0.0286 77.88± 0.0228 90.83± 0.0114 0.1276± 0.0068 0.3187± 0.0215 0.1065± 0.0047
Shape 96.46± 0.0003 99.12± 0.0002 99.71± 0.0002 0.0235± 0.0001 0.0556± 0.0004 0.0224± 0.0001

6.4.2 Model

The UNet architecture is preferred for deep learning-based depth estimation due to

its comprehensive design, adept at gathering context and integrating features across

different scales (Bhat et al., 2021; Wu et al., 2023; Alhashim and Wonka, 2018; Eigen

et al., 2014). This preference is rooted in UNet’s feature pyramid structure and efficient

reuse of features, enhancing depth estimation by capturing diverse scale information

while preserving detail. Our experiments demonstrate that employing ResNet50 as the

backbone is sufficient for model convergence on our dataset. Subsequently, we utilised

the U-Net network with ResNet50 as the backbone in the following experiment.

Note that we did not compare SOTA models because the focus of our work was not

on the performance of the models, but rather on the contribution of various features to

indoor single-image depth estimation based on a stable baseline model.

6.4.3 Evaluation Metrics

The same as that in Sec. 3.2, we utilised six metrics commonly used in the field of depth

estimation, which include three accuracy metrics and three error metrics. The accuracy

metrics are distinguished by thresholds at 1.25, 1.252 and 1.253, each reflecting different

levels of tolerance for deviation from the true values. Higher values of these accuracy

metrics indicate better model performance. For error metrics, the absolute relative error

(rel) quantifies the average deviation of predicted values from the actual values. The

root mean squared error (rmse) can amplify the effect of outliers by taking the square

root of the average of the squared deviations from the ground truth, and the logarith-

mic error (log10) metric mitigates the impact of outliers by applying a logarithmic scale

to the error values. Lower values of these error metrics signify superior model perfor-

mance.

6.4.4 Experiments and Analysis

Quantitative results are shown in Table 6.1, presenting the performance of depth esti-

mation using different input features, evaluated by several metrics (details shown in

Sec.6.4.3). Original RGB images performed the best with high accuracy (a1, a2, a3) and
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(A) RGB Image (B) GT Depth (C) Estimated Depth

FIGURE 6.9: Depth Estimation with a Colour Feature Input. The left and middle im-
ages are the original RGB image and the corresponding ground truth depth map, re-
spectively. The image on the right depicts the estimated depth map, which is the result
of the model’s output after inverse phase scrambling, employing the colour feature as

the input.

low error (log10, rel, rmse). Phase-scrambled RGB and greyscale images, along with sat-

uration inputs, showed significantly worse performance, with greyscale being the least

accurate. Inputs of local texture had moderate accuracy and error rates, while shape

features performed close to the original RGB images.

6.4.4.1 Colour

To evaluate the contribution of the colour feature, we trained the model with phase-

scrambled RGB images. Figure 6.9 displays the original RGB image, ground truth

depth map and the estimated depth map, the latter of which has been reconstructed

from the scrambled image using a pre-stored random matrix. As aligned to the low

accuracy indicated in Table 6.1, it is hard to recognise the original scene structure from

the estimated depth.

To simulate scenarios where the model output differs from the ground truth, we added

Gaussian noise (mean = 0, std = 25) to the phase scrambled image. Figure 11 shows

examples of our phase scrambled image with added Gaussian noise and their corre-

sponding reconstructions. Figure 6.10 shows the outcomes of introducing Gaussian

noise to the phase-scrambled image, followed by its restoration using the pre-stored

random matrix. As we can see, despite the introduction of noise through phase scram-

bling, this noise does not affect the shape and position of objects in the recovered im-

ages. The performance in Figure 6.9c can be attributed to the poor performance of the

model when provided with colour phase-scrambled input.

Furthermore, by comparing the respective performances of “RGB Phase Scrambled”

and “Grayscale Phase Scrambled” inputs as shown in Table 6.1, it can be observed that,

after excluding the contribution of brightness, colour has a limited impact on depth

estimation.
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(A) Noise for Whole Image (B) Noise in Central Region

FIGURE 6.10: Noised with Phase Scrambled Images. Figure 6.10a illustrates the out-
come of applying Gaussian noise to the entire image and subsequently restoring it,
while Figure 6.10b depicts the results of adding noise and restoring only the central

area, where both the length and width are half of the original image’s dimensions.

(A) Saturation Map (B) GT Depth (C) Estimated Depth

FIGURE 6.11: Depth Estimation with a Saturation Feature Input. The left and middle
images are the original RGB image and the corresponding ground truth depth map,
respectively. The image on the right depicts the estimated depth map, which is the
result of the model’s output after inverse phase scrambling, employing a saturation

map as the input.

6.4.4.2 Saturation

We trained the baseline model with saturation maps as the input and evaluated the

contribution of the saturation feature. Figure 6.11 illustrates the saturation map, corre-

sponding ground truth depth and the output from the restoration process. Similarly,

due to the poor performance, the restored output lacks discernible features such as ob-

ject contours.
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(A) Original Image (B) Patch Size 128 (C) Patch Size 64

(D) Patch Size 32 (E) Patch Size 16 (F) Patch Size 4

FIGURE 6.12: Local Texture with Different Patch Sizes of a Random Sample

Table 6.1 shows that the a1 is about 37%. Although saturation contributed to estimat-

ing the depth of the indoor scene, its contribution was minor. Saturation exhibits lower

accuracies compared to other features except for greyscale phase scrambled input. Fur-

thermore, error metrics substantiate this observation. The rel stands at 0.5321, while

the root mean square error (rmse) is shown as 0.1296. Therefore, using saturation as

a measure for depth estimation clearly introduces a significant error compared to the

true depth values. Despite its poor performance, saturation still plays a role in assess-

ing depth in indoor scenes. This highlights that saturation can provide some depth

cues in certain contexts, although it comes with a higher error margin.

6.4.4.3 Local Texture

Variations in the field of view and resolution will impact the size of the patch used to

extract local textures. The optimal patch size should align with the specific dataset and

scene scale employed. Figure 6.12 illustrates the paths with varying patch dimensions.

As shown in Figure 6.12b, when we use a large patch size of 128, the texture itself is

not isolated because the shape and context information still present in the patches. As

the patch size is decreased, the shape of the objects in the image becomes less appar-

ent and, therefore, the textures present in the image are increasingly segregated. As

demonstrated in Figure 6.12e, for the dataset we used, the 16× 16 patch size is particu-

larly well-suited for texture extraction while minimising the influence of other features

(e.g. shape). This size is large enough to restrict shape details but not so small as to be

impractical, unlike the 4× 4 patch depicted in Figure 6.12f.
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TABLE 6.2: Performance with Different Patch Sizes

Size a1 ↑ a2 ↑ a3 ↑ log10 ³ rel ³ rmse ³

4 40.97± 0.0037 69.6± 0.003 85.99± 0.0018 0.1523± 0.0008 0.3812± 0.0026 0.1239± 0.0007
16 49.95± 0.0286 77.88± 0.0228 90.83± 0.0114 0.1276± 0.0068 0.3187± 0.0215 0.1065± 0.0047
32 53.27± 0.042 80.64± 0.0253 92.46± 0.0104 0.1185± 0.0087 0.3012± 0.0266 0.1009± 0.0094
64 74.22± 0.0166 92.48± 0.0122 97.51± 0.0057 0.0747± 0.0039 0.1885± 0.0199 0.0629± 0.002
128 93.12± 0.0066 98.47± 0.0019 99.5± 0.0007 0.0358± 0.0016 0.0863± 0.0039 0.0338± 0.0015

(A) Gray-scale Image (B) GT Depth (C) Estimated Depth

FIGURE 6.13: Depth Estimation with a Local Texture Input with Patch Size 16× 16.
The left and middle images are the original RGB image and the corresponding ground
truth depth map, respectively. The image on the right depicts the estimated depth
map, which is the result of the model’s output after inverse shuffle by using a pre-

stored random matrix, employing a local texture feature as input.

Table 6.2 shows the performance of texture inputs (shuffle patches) in different patch

sizes. As can be seen in the figure, the accuracy rate gradually increases with the in-

crease of patch sizes in height. This is because a larger patch contains more information

besides the texture, such as the shape of the object.

A sample of the original greyscale image, along with the corresponding depth map and

the estimated depth map, is displayed in Figure 6.13, demonstrating the results of the

model trained with local texture inputs. To focus on local textures during training, Fig-

ure 6.13a and Figure 6.13b are split into 16× 16 patches and these patches are shuffled

using the same random matrix to eliminate global scene information, such as object

shapes. As shown in Figure 6.13c, the estimated depth map only provides a coarse ap-

proximation of the scene’s depth, distinguishing between nearer and farther areas but

failing to capture the precise depth details.

The local texture appears as a minor factor in depth estimation, yielding an a1 accu-

racy of a mere 50% in Table 6.1. Error metrics also show this trend although they are

slightly better than the colour and saturation features. This issue happens because the

position changes to the patches weaken their connections, thereby making it harder for

the model to understand objects and context. This proposition finds corroboration in

the robust performance observed upon deploying the shape feature as the input data

source in Sec 6.4.4.4.
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(A) Shape Map (B) GT Depth (C) Estimated Depth

FIGURE 6.14: Depth Estimation with a Shape Feature Input. The left and middle
images are the original RGB image and corresponding ground truth depth map. The

right is the estimated depth map from the model trained with shape maps.

6.4.4.4 Shape

As we noted in Table 6.1, the shape comes across as the most dominant feature in these

experiments, significantly outperforming other cues taken in isolation. We suggest this

is because the dataset contains indoor scenes of objects such as furniture with accu-

rately extractable edges whose relative orientations and geometric forms can serve as

powerful cues as seen in Figure 6.14 (b and c).

The outcome aligns with the finding presented in (Hu et al., 2019), suggesting that

CNNs are capable of deducing the depth map using merely a limited subset of pixels

from the input image. This hypothesis aligns with human perceptual abilities, which

allow for the extraction of approximate distance assessments from images that depict

geometric shapes.

6.4.4.5 Generalisation

In light of the fact that models using shape maps as input exhibit performance ap-

proximating that of models employing original RGB images as the input, we have as-

sessed the generalisation capacity of shape models trained with shape maps on the

NYU dataset. We applied it to a diverse set of indoor environments from a different

dataset (Quattoni and Torralba, 2009) that includes kitchens, bedrooms, bathrooms and

various other scenes. The performance of the shape model is depicted in Figure 6.15, il-

lustrating its ability to predict depth maps even for scenes from a different domain, and

the performance is similar to that of the original RGB model. However, shape maps, as

input for depth estimation, still have their limitations. For instance, in the fourth-row

images in Figure 6.15, the sink only has partial edges, leading to poor depth prediction.

Additional results are presented in the Appendix.

Shape maps require significantly less memory storage compared to original RGB im-

ages, while still providing comparable performance. In a similar vein, event cameras
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FIGURE 6.15: Performance of Shape ONLY Model with New Indoor Scenes from other
Domains. The left column displays original RGB scene images, the second column
presents corresponding edge maps and the third column showcases the results gener-
ated by the pre-trained shape-input model. The right column exhibits the outcomes

produced by the pre-trained original-RGB-image-input model.

are designed to only detect rapid changes in pixel intensity (Rebecq et al., 2018; Scheer-

linck et al., 2020) which often occur at the edges of objects or where there is texture

variation, which is similar to a shape map. Moreover, event cameras have previously

been applied in the field of depth estimation (Gallego et al., 2020). Given these con-

siderations, our research may offer supporting evidence for the application of event

cameras in single-image depth estimation.

In addition to this, our work will also contribute to 3D sketch reconstruction. A sketch

input is a hand-drawn image that is primarily used to capture the basic shape and key

features of an object (Lun et al., 2017; Wang et al., 2020a). It shows the overall outline

and main features of the object, and this contour information is linked to the concept

of ‘shape’ discussed in our work. For example, Lun et al. (2017) convert sketches into

multi-view 2D images that capture the surface depth and normals, then fuse these into

a 3D point cloud and eventually convert them into a polygonal mesh, and finally gen-

erate detailed 3D models from simple line sketches.

Therefore, our study may also provide supporting evidence for 3D sketch reconstruc-

tion.
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6.4.4.6 Discussion

Different types of input data have varying effects on the performance of depth estima-

tion. Comparative analysis of diverse evaluation metrics clearly highlights the superior

role of shape information in the depth estimation task. Colour, saturation and local tex-

ture collectively enhance the indoor scene depth estimation, although the influence of

colour and saturation appears relatively circumscribed.

For phase-scrambled and local texture inputs, human vision finds it difficult to inter-

pret images when their phase information is scrambled or only shuffled patches are

present. In contrast, machines are adept at using these inputs to predict depth maps.

Given that the models can output corresponding depth maps when employing these

as inputs, their performance, albeit not optimal, is still noteworthy compared to the

ability of humans.

6.5 Limitations

Throughout our study, we sought to isolate each feature we were evaluating. However,

it is difficult to entirely isolate individual features. For instance, during the extraction

of shape features, the edge detector might inadvertently capture some texture informa-

tion.

6.6 Conclusion

In this work, we have sought to decouple and quantify the relative contributions of

various depth cues in single-image depth estimation. Whereas good results have been

demonstrated in the literature by the end-to-end training of deep neural network mod-

els to achieve this task, ours is the first attempt to understand the degree to which some

known cues of depth contribute when taken in isolation. Our results show that, in a

dataset of indoor scenes, shape extracted by edge detection is relatively the most sig-

nificant contributor, while other cues (colour, saturation and texture) also play a role.

In achieving these conclusions, this work sought to carefully design feature extraction

techniques that aimed to isolate a single feature from the other known ones, which is

non-trivial. We speculate (and this is the subject of our current research) that, on differ-

ent depth inference problems (e.g. outdoor scenes), the relative contributions of texture

and saturation are likely to play a greater role. This kind of decomposition which we

have extracted can serve to shift research more in the direction of understanding and

explaining how powerful models, such as deep neural networks, work in scene under-

standing as opposed to simply offering estimation performance as black-box function

approximators.
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Chapter 7

Conclusions and Future Work

This section presents the conclusions of my PhD research (sections 7.1 to 7.4) and sug-

gests possible avenues for further research.

In this study, four contributions to this field are introduced. It mainly focuses on depth

estimation for deep-learning-based indoor single omnidirectional images. By address-

ing the challenges of limited real-world labelling and the utilisation of the synthetic

dataset, the model can be applied to real-world scenes without labels. In the in-depth

study of contributing factors to depth estimation, the physical limitation of gravity is

considered and analysed, and based on this, a model based on gravity alignment is

proposed. Further, isolated depth clues are studied and analysed to gain a deeper un-

derstanding of their contributions to explore the insight of depth estimates.

7.1 Contribution A: Depth Estimation with Limited Real-world

Labels

Due to the insufficient types of labelled datasets and the difficulty of obtaining real-

world depth maps, existing encoder-decoder models trained with another dataset are

usually unable to accurately predict depth maps for real-world scenes in the target

domain. To solve the problem of limited omnidirectional depth maps for real-world

scenes, the depth estimation architecture with domain adaptation is proposed to pre-

dict scene depth for unlabelled omnidirectional images with only limited real-world

ground truth depth maps. The experiments show that the performance of domain

adaptation architecture outperforms the traditional end-to-end model for omnidirec-

tional depth estimation in the situation of a limited number and variety of data.
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7.2 Contribution B: Real-world Depth Estimation from a Syn-

thetic Dataset

CG datasets can be used for real-world depth map estimation as they cover various

types of scenes and are easier to obtain compared with real-world scenes. A method

that uses CG scenes and does not use any real-world depth maps was considered for

training. Because of the gap between CG images and real-world images, the previous

contribution method does not perform well, as it only considers making the discrimi-

nator not recognise the features come from which domain and finally crashes the train-

ing process. To solve this problem, a discriminator named RWTD is proposed with

an updated architecture containing different components compared with the previous

method. It shows significantly better stability and about 11% points higher accuracy

than state-of-the-art encoder-decoder models. This result means that the work pro-

vides an effective solution for depth estimation learning from CG scenes and can be

applied to real-world scenes.

7.3 Contribution C: Depth Estimation considering Gravity

In this research, the role of gravity in predicting depth maps has been examined. The

results show that, under the influence of gravity, the depth distribution of the object

will show a certain rule in the gravity direction, and the input image information along

the gravity direction shows better performance in depth estimation than the horizon-

tal information. By accounting for the orientation of gravity, we introduced a novel

framework for accurately estimating depth from a single omnidirectional indoor im-

age, through an approach that leverages slice-based transformers. The proposed frame-

work has undergone thorough validation on two real-world, indoor omnidirectional

datasets, where it has proven to outperform existing leading-edge methods. A key fea-

ture of this methodology is its reliance on the direction of gravity to infer depth, aiming

to enrich the ongoing conversation around depth estimation from single images and

potentially introduce novel perspectives for assessing depth in indoor settings.

7.4 Contribution D: Depth Insight

In this study, the objective was to separate and measure the individual effects of various

depth cues on the estimation of depth from a single-view perspective. While previous

research has successfully utilised deep learning models trained end-to-end to accom-

plish this task, our research represents the initial effort to dissect the extent to which

certain recognised depth indicators contribute independently. Our findings indicate
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that, within a dataset composed of indoor environments, the shape information ob-

tained through edge detection stands out as the most impactful factor, although other

elements (such as colour, saturation, and texture) also have their importance. To arrive

at these insights, we developed methods for feature extraction that were designed to

isolate one particular feature from the others. This work could pave the way for future

research to focus more on elucidating and interpreting the mechanisms behind sophis-

ticated models like deep neural networks in the context of scene comprehension rather

than solely evaluating their performance as black-box function approximations.

7.5 Future Works

In this section, four potential paths for future investigation are suggested, offering

prospective researchers valuable guidance. These encompass:

• Depth Range: Although the proposed methods can solve the real-world depth

estimation problem on the basis of synthetic images, the varying range of depths

for different scenarios remains a challenging problem. Future work can focus on

solving problems of different depth ranges in different scenes.

• Extend to Scene Understanding: The importance of gravity in artificial scenes

has been highlighted in Chapter 5. Future research directions can be further in-

vestigated on this basis: How exactly does gravity affect depth estimation? This

can be combined with scene understanding for further study.

• Extend to Comparison with Outdoor Scenes: Although my PhD research is

about indoor scenes, comparing the depth cues of indoor scenes to their perfor-

mance in outdoor scenes could be an interesting and valuable direction.

• Explore Causality: The contribution of isolated features to indoor single image

depth estimation is analysed in Chapter 6. Whether there is a causal relationship

between these features is a worthy research direction.

7.5.1 Depth Range

Random object scaling (ROS) (Yang et al., 2021), as a 3D object enhancement technique,

can improve the generalisation ability of the 3D detection model in the target domain

by randomly scaling 3D objects to reduce the bias of the source domain. Motivated by

it, one possible solution is to randomly shrink or enlarge the size of the room layout so

that the model can generalize scenes of different depths (Shown in Figure 7.1).

However, direct scaling solves the problem of the room, but the objects in the room

may have the wrong sizes. For example, the chair in the first scene in Figure 7.2 should
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FIGURE 7.1: Depth Range for Considering Different Layout Sizes

FIGURE 7.2: Depth Range: Consider Object Sizes

remain the same size as the chair in the second scene after being shrunk instead of being

enlarged with the scene. Based on this problem, a possible solution is to add datasets of

different scene sizes to the existing synthetic dataset and use the 3D engine to generate

scenes with different layouts to improve the generalization of the model.

7.5.2 Extend to Scene Understanding

The supporting relation under the action of gravity can be used as effective prior knowl-

edge, which can assist the depth estimation model to analyse the scene structure better.

Figure 7.3 shows an example of the supporting relationship between the teacup, laptop

and desk. When training a depth estimation model, using the concept of object support

as a constraint or regularization can guide the model to learn depth information that is

more consistent with the physical world. Moreover, it can infer the relative depth of an

object by learning to recognise different support planes. This prior knowledge can im-

prove the prediction accuracy of the relative position and depth relationship between

objects. A feasible approach is to combine semantically segmented datasets with the

same scenes.

7.5.3 Extend to Comparison with Outdoor Scenes

As mentioned in Chapter 6, saturation plays an obvious role in outdoor natural scenery

scenes, while its role in indoor scenes is limited. Do other features like colour and

texture make a different contribution to outdoor scenes?
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FIGURE 7.3: Supported Object Example
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FIGURE 7.4: Causality

For this outdoor scenario, further research could consider using kITTI (Geiger et al.,

2013), Waymo (Sun et al., 2020), and nuScenes (Caesar et al., 2020) for experimentation

and validation. Although these datasets are mainly about autonomous driving, they

also include a lot of outdoor scenes like grass, trees, and houses.

7.5.4 Explore Causality

Chapter 6 analyses the contribution of isolated features to depth estimation in differ-

ent degrees. Exploring the dependencies and causality (shown in Figure 7.4) among

different features can make the model better adapt to new scenarios and data, instead

of just fitting the training data in a data-driven mode. Considering causality may help

optimise the performance of a model, especially in cases involving complex data dis-

tribution and multimodal problems.
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Appendix A

Experiment with Data

Augmentation

The data augmentation was checked by separating the equirectangular images into

several chunks and shifting the chunks (shown in Figure A.1) and the performance

was checked by training the model 5 times and calculating the mean values. Table

A.1 shows a small improvement after doing data augmentation with Stanford2D3D

Area1 and random 20% Standford2D3D Area1 training dataset and tested on Matter-

port Area2 dataset, which is less than 1% point.

In order to check how many separated chunks led to the best performance, the model

was trained with different chunks (from 2 to 10) by randomly shifting the chunks. They

were trained five times for each specific number of chunks, and each row on Table A.2

shows the average values of 5 times training results. Figure A.2 shows the boxplots

for six evaluation metrics. The results show that splitting the images into four chunks

performs the best.

Shift
4   1   2   3

3   4   1   2

1   2   3   4

2   3   4   1

C1 C2 C3 C4

FIGURE A.1: The Process of Data Augmentation
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TABLE A.1: Performance comparisons with and without Data Augmentation

Testing dataset Model a1 ↑ a2 ↑ a3 ↑ rel ↓ rms ↓ log10 ↓

Stanford2D3D Area1 without Data Augmentation 76.89 94.66 97.71 0.1575 1.5052 0.0717
20% Stanford2D3D Area1 69.25 90.22 95.91 0.2011 1.8052 0.0883

Stanford2D3D Area1 with Data Augmentation 77.55 94.64 97.68 0.1554 1.4914 0.0708
20% Stanford2D3D Area1 70.55 90.94 96.04 0.1925 1.7453 0.0856

TABLE A.2: Performance with different chunks (trained on 20% Stanford2D3D area1
and tested on Matterport Area2)

Chunks a1 ↑ a2 ↑ a3 ↑ rel ↓ rms ↓ log10 ↓

2 66.62 90.16 95.80 0.2034 1.7039 0.0914
3 67.94 90.01 95.60 0.2003 1.6749 0.0899
4 71.72 90.52 95.98 0.1974 1.6722 0.0849

5 69.77 90.11 95.62 0.2012 1.6795 0.0882
6 67.88 89.99 95.40 0.2009 1.6615 0.0902
7 67.51 89.63 95.49 0.1986 1.6607 0.091
8 67.33 89.52 95.62 0.2111 1.7374 0.0912
9 68.97 90.19 95.80 0.2052 1.6900 0.0895

10 69.29 90.12 95.72 0.2095 1.7422 0.089

(A) Accuracy

(B) Loss

FIGURE A.2: Boxplots for Data Augmentation
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Appendix B

Supplement Materials for

DepthInsight

B.1 Phase Scrambling

imFourier = fft2(input)

Amp = abs(imFourier)

Phase = angle(imFourier)

Phase = Phase + RandomPhase

imScrambled = ifft2(Amp * exp(1j * Phase))

imScrambled = GetRealPart(imScrambled)

LISTING B.1: Pseudocode of Phase Scrambling (Ge et al., 2022)

List B.1 presents the pseudo-code for the phase scrambling process.

B.2 Colour

Figure B.1 represents the results of the accumulated values obtained from datasets of

50, 100, and 500 randomly sampled images. The depth range is depicted on the hor-

izontal axis, while the vertical axis indicates the number of pixels in the R, G, and B

channels corresponding to the specific depth ranges. These images show that the fac-

tors affecting depth are not significantly related to the distribution of pixels on the RGB

channel.
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(A) 10 Images

(B) 100 Images

(C) 500 Images

FIGURE B.1: Heatmap of the Relationship between the Distribution of RGB Three-
channel Values and the Depth Map. The horizontal axis represents the depth range,
while the vertical axis corresponds to the pixel count of the R, G, and B channels within
the respective depth ranges. The colour bar values represent the pixel counts for
three respective channels from different numbers of images randomly selected from

the NYU dataset.

B.3 Saturation

Figure B.2 illustrates saturation maps with different saturation values, while Figure B.3

displays various RGB images with different saturation values alongside their corre-

sponding model performance. It can be observed that the model’s performance does

not exhibit a strong sensitivity to different saturation values. As the saturation values
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FIGURE B.2: Saturation Maps with Different Saturation Values

increase, there is a slight decline in performance. We hypothesised that this decline is

due to the presence of more noise in images with high saturation values, as depicted in

Figure B.2, which negatively impacts the model’s performance (shown in Sec. B.6).

Note that during training, the channel order is BGR. However, for the sake of conve-

nience in checking, the images have been converted to RGB channel order.

B.4 Shape

Figure B.4 illustrates the RGB images alongside their respective shape maps, as well as

the output depth maps generated by the trained model using these inputs. Despite the

substantial disparity in information content between the RGB images and shape maps,

their contributions to depth estimation appear to be similar.

B.5 Contrast

Due to the inclusion of shape, shading, and other information, Contrast cannot be ex-

tracted independently. The adopted method involves utilising a trained model and
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FIGURE B.3: Different Saturation RGB Images and Model Performance

incrementally adjusting the contrast of the test set images during the reasoning pro-

cess. This enables observation of the performance of the model’s depth estimation and

facilitates analysis.

Figure B.5 shows images with different contrast values ranging from 0.2 to 5.

Figure B.6 illustrates that when the contrast remains relatively stable compared to the

original image, such as within the range of 0.6-1.6, we observed minimal changes in

performance. This observation leads us to suspect that the narrower depth range typ-

ically found in indoor scenes may contribute to this phenomenon, as the variations

within this small range might not be noticeable.

Considering the contrast formula, output = saturate (src ∗ alpha + beta), excessive or

insufficient contrast values can result in a loss of picture details, leading to a significant

decline in performance.

B.6 Discussion

However, Figure B.2 and Figure B.5, show that these approaches merely appeared to

mirror the acquired knowledge of the data-driven model. The model attained its opti-

mal performance when presented with input data characterised by the same levels of

original saturation and contrast as those found in the training dataset.
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FIGURE B.4: Performance of Shape ONLY model with New Indoor Scenes from other
Domains. The left column displays RGB scene images, the second column presents
corresponding edge maps, and the third column showcases the results generated by
the pre-trained shape-input model. The right column exhibits the outcomes produced

by the pre-trained RGB-input model.
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FIGURE B.5: Contrast Maps with Different Contrast Values

FIGURE B.6: Different Contrast RGB Images and Model Performance
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