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Introduction

Prostate cancer (PCa) is the second most common cancer in 
men (Sung et al. 2021). Advances in multiparametric MRI 
(mpMRI) improved patient management and biopsy tech-
niques (Mottet et al. 2019). Yet, tumor heterogeneity can 
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Abstract
Purpose While	epigenetic	profiling	discovered	biomarkers	in	several	tumor	entities,	its	application	in	prostate	cancer	is	still	
limited.	We	explored	DNA	methylation-based	deconvolution	of	benign	and	malignant	prostate	tissue	for	biomarker	discov-
ery and the potential of radiomics as a non-invasive surrogate.
Methods We retrospectively included 30 patients (63 [58–79] years) with prostate cancer (PCa) who had a multiparametric 
MRI of the prostate before radical prostatectomy between 2014 and 2019. The control group comprised four patients with 
benign prostate tissue adjacent to the PCa lesions and four patients with benign prostatic hyperplasia. Tissue punches of 
all lesions were obtained. DNA methylation analysis and reference-free in silico deconvolution were conducted to retrieve 
Latent Methylation Components (LCMs). LCM-based clustering was analyzed for cellular composition and correlated with 
clinical disease parameters. Additionally, PCa and adjacent benign lesions were analyzed using radiomics to predict the 
epigenetic signatures non-invasively.
Results LCMs	identified	two	clusters	with	potential	prognostic	impact.	Cluster	one	was	associated	with	malignant	prostate	
tissue (p < 0.001) and reduced immune-cell-related signatures (p = 0.004) of CD19 and CD4 cells. Cluster one comprised 
exclusively	malignant	prostate	tissue	enriched	for	significant	prostate	cancer	and	advanced	tumor	stages	(p < 0.03 for both). 
No radiomics model could non-invasively predict the epigenetic clusters.
Conclusion Epigenetic clusters were associated with prognostically and clinically relevant metrics in prostate cancer. Fur-
ther,	immune	cell-related	signatures	differed	significantly	between	prognostically	favorable	and	unfavorable	clusters.	Fur-
ther research is necessary to explore potential diagnostic and therapeutic implications.
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compromise	pathologic	confirmation	of	diagnosis	(Stewart	
et al. 2013; Guo et al. 2018). The comprehensive molecular 
characterization	of	PCa	is	the	basis	for	effective	biomarker	
development (Guo et al. 2018). However, biopsies not only 
sample tumor cells but also the adjacent tumor microenvi-
ronment, which impacts genomic analysis and interpreta-
tion of results (Aran et al. 2015). Here, epigenetic analyses 
can be a way forward. For example, leucocytes unmethyl-
ation for purity (LUMP) measures the immune counterparts 
in a tissue sample by averaging 44 non-methylated immune-
specific	CpG	sites	to	assign	an	immune	cell	estimate	(Aran	

et al. 2015).	 Such	 immune	 cell	 signatures	 might	 reflect	
clinically relevant tumor characteristics (Aran et al. 2015). 
Furthermore, radiomics describes the transformation of 
medical	 images	 into	 mineable	 data	 to	 leverage	 artificial	
intelligence to non-invasively characterize the whole tumor 
without sampling bias, and it has shown promising results 
in describing tumor phenotypes beyond visual perception 
with	prognostic	impact	(Bonekamp	et	al.	2018; Varghese et 
al. 2019).

We hypothesize that epigenetic signatures are associated 
with clinically relevant measures, such as malignancy and 
tumor stage. Further, we hypothesize that radiomics can 
serve as non-invasive surrogate for prognostically relevant 
epigenetic clusters.

Materials and methods

The institutional Review Board of the Ethical Committee 
approved this retrospective study (project number: 20–890, 
Goethe	University	Frankfurt	am	Main,	Germany).

Study design

Our study is an in-depth subgroup analysis of a previously 
reported patient cohort (Bernatz et al. 2020) with added 
novelty by epigenetic analysis, inclusion of a new control 
cohort with benign prostatic hyperplasia (BPH), and cor-
relation with radiomics analysis. In short, 418 consecutive 
patients	 with	 confirmed	 PCa	 who	 had	 a	 mpMRI	 before	
radical prostatectomy (RPX) between 2014 and 2019 were 
screened	for	study	inclusion	to	finally	include	a	total	of	30	
patients (in comparison to the prior study (Bernatz et al. 
2020)	we	had	to	exclude	three	patients	with	insufficient	tis-
sue quality for epigenetic analysis, therefore, resulting in 30 
PCa patients). The further inclusion and exclusion criteria 
for the PCa patients are depicted in Bernatz et al. (2020). 
See Fig. 1	for	the	flow-chart	of	PCa-patient	inclusion.	Con-
trol patients were treated with holmium laser enucleation 
of the prostate (HoLEP) for BPH in 2019 and four patients 
were consecutively enrolled. The inclusion criteria for the 
control patients were (I) BPH, (II) no malignancy in patho-
logic analysis. Control exclusion criteria were (I) incidental 
malignancy in postoperative tissue specimens, (II) insuf-
ficient	 tissue	 quality.	 From	 four	 PCa	 patients,	 additional	
adjacent morphologically benign tissue was sampled for 
epigenetic analysis.

Reference standard

All	 tissue	 samples	 were	 histologically	 confirmed	 in	 the	
institution’s pathology department by a uropathologist (JK). 

Fig. 1	 STARD	flowchart	of	prostate	cancer	patient	inclusion	into	the	
study.	The	flowchart	depicts	the	retrospective	inclusion	of	the	30	pros-
tate cancer patients as previously described (Bernatz et al. 2020). Four 
additional retrospective patients with BPH (median age 70 [61–76]) 
served as complete benign control patients which were consecutively 
enrolled in clinical routine
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All PCa and adjacent benign tissue samples were correlated 
with the matching localization in the mpMRI as previously 
described (Bernatz et al. 2020).

DNA methylation analysis and tumor deconvolution

The tissue samples were subjected to DNA methylation 
analysis using the Human Methylation EPIC array by Illu-
mina	 (Illumina,	 California,	 USA).	 Formalin-fixed,	 Paraf-
fin-embedded	 tissue	was	 cut	 in	 4	 μm	 thin	 section	with	 a	
microtome (Leica SM 2000R, Wetzlar, Germany), mounted 
on	 slides	 (Superfrost	 Plus,	 Thermo	 Scientific,	 Braunsch-
weig, Germany) and H&E stained. Representative sections 
of the lesions were selected, and punch biopsies (1.0 mm 
diameter,	 kai	 Europe	 GmbH,	 Solingen,	 Germany)	 were	
taken	 for	 DNA	 isolation	 by	 use	 of	 the	 Stratek	 Invisorb	
Genomic	DNA	Kit	II	(stratek	molecular,	Berlin,	Germany).	
After assessment of DNA concentration using the Qubit 
DNA BR Assay Kit and Qubit 3 Fluorometer device (Invit-
rogen, Life Technologies Corporation, Oregon, USA), DNA 
was further processed and hybridized to the Human Meth-
ylation EPIC array beadchips (Illumina, California, USA) 
following standard protocols provided by the manufacturer. 
EPIC array beadchips were scanned by an iScan (Illu-
mina, California, USA) and raw intensity data (idats) was 
obtained.	Idats	were	imported	into	the	R	software	package	
“RnBeads” (Müller et al. 2019) to perform quality control, 
exploratory	and	differential	methylation	analysis	as	well	as	
to obtain LUMP estimates. The LUMP algorithm uses mea-
surements	 of	 leucocyte	 unmethylation	 to	 infer	 leukocyte	
infiltration	in	bulk	tissue	samples	by	the	analysis	of	44	CpG	
sites	which	are	unmethylated	in	leukocytes	and	methylated	
in tumor cells (Aran et al. 2015). DNA methylation data was 
normalized	using	the	“dasen”	method	from	the	R	package	
“watermelon”.

Reference-free deconvolution of prostate tissue was per-
formed using MeDeCom, which uses non-negative matrix 
factorization to compute Latent Methylation Components 
(LMCs; Scherer et al. 2020). LMCs represent methylation 
patterns shared between the samples’ most variable CpG 
sites - i.e. the top 5000 most variable CpG sites across all 
samples of this study - with correction for methylation pat-
terns driven by patient age. LMCs are selected by evaluating 
cross-validation	errors	for	LMCs	numbers	(kappa)	and	the	
regularization parameter (lambda). For each sample, pro-
portions of LMCs were computed and subjected to hierar-
chical cluster analysis by use of Ward’s minimum variance 
method. LMCs-based clusters were further correlated with 
clinical tumor parameters and their cellular composition.

For reference-based deconvolution of prostate tissue we 
used	 MethylCIBERSORT	 as	 described	 in	 (Chakravarthy	
et al. 2018). In brief, idats are loaded into R, assessed for 

quality, Noob normalized and beta value calculated by use 
of	the	minfi	package.	An	in	silico	cellular	mixture	matrix	is	
generated by combining signature CpGs of immune cells 
(T regulatory cells, CD4 +	effector	 cells,	 CD8	+ T cells, 
CD20 + B cells, CD14 positive monocytes, eosinophils, 
neutrophils,	 NK	 cells),	 fibroblasts,	 endothelia	 and	 cancer	
cells with the samples’ CpGs to infer the estimates of cel-
lular fractions present in the prostate tissue. Deconvolution 
of	 the	 files	was	 realized	 on	 the	CIBERSORT	X	 platform	
provided by the Alizadeh and Newman labs (Newman et 
al. 2015).

MRI imaging and examination

All imaging was performed on a single 3-T scanner and 
read in clinical routine as previously described (Bernatz 
et al. 2020), following the European Society of Urogenital 
Radiology (ESUR) guidelines. For the radiomics analysis, 
the	 MR	 images	 (T2-weighted	 (T2w),	 apparent	 diffusion	
coefficient	(ADC),	dynamic	contrast-enhanced	(DCE)	were	
exported in “Digital Imaging and Communications in Medi-
cine” (DICOM) format. Representative images of mpMRI 
acquisition are depicted in (Bernatz et al. 2020) and acquisi-
tion parameters are depicted in Supplementary Table 1.

MRI segmentation

We	 depict	 the	 workflow	 of	 MRI	 segmentation	 in	 detail	
elsewhere (Bernatz et al. 2020). In short, we used the open-
source 3D slicer computing platform (http://slicer.org, ver-
sion 4.9.0) (Fedorov et al. 2012; Velazquez et al. 2013) to 
visualize and segment the whole 3-dimensional tumor vol-
ume of interest (VOI) of each tumor index lesion using ADC 
maps.	Manual	seeds	were	defined	in	each	PCa	index	lesion	
with semi-automatic 3D-VOI annotation by grow-from-
seeds algorithm (Velazquez et al. 2013; van Griethuysen et 
al. 2017).	The	benign	adjacent	tissue	was	manually	defined.	
We depict representative images of the whole habitat index 
PCa lesion segmentation in Supplementary Fig. 1.

Feature extraction

Within the 3D Slicer software platform, we used the open-
source extension PyRadiomics (Pedregosa et al. 2011; 
Velazquez et al. 2013) to extract 105 radiomics features of 
seven feature classes as previously described (Bernatz et al. 
2020).
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General statistical analysis

Statistical analyses were performed in JMP (JMP Statisti-
cal Software, SAS Institute, Cary, North Carolina, USA), 
R (R Core Team 2021), and Python, using SciPy (SciPy.
stats) (Virtanen et al. 2020)	and	scikit-learn	(Pedregosa	et	al.	
2011) for further statistical analyses. Graphical illustrations 
were	 performed	 in	Affinity	 Designer	 2.1	 (Serif	 (Europe)	
Ltd). The PCa sample size resulted from including all eligi-
ble patients according to the inclusion and exclusion criteria 
(Bernatz et al. 2020).

Results

Study population

Our study population comprised 34 tissue samples, includ-
ing PCa (n = 30), benign tissue adjacent to PCa (n = 4), and 
non-malignant BPH (n = 4) of a total of 34 male patients 
(age PCa, 63 [58–79]; age BPH, 70 [61–76]). The adjacent 
benign tissue was sampled from four patients of the PCa 
cohort. PCa patients were treated with RPX. BPH patients 
were treated with HoLEP. The patient cohort is a subgroup 
of a previously published analysis (Bernatz et al. 2020). We 
depict the patient characteristics in Table 1	 and	 the	flow-
chart of patient inclusion in Fig. 1.

Epigenetic signatures revealed two distinct LMC-
based clusters

Large-scale	 DNA	 methylation	 profiles	 of	 prostate	 tissue	
were subjected to the reference-free deconvolution pipe-
line MeDeCom to compute major methylation patterns 
(Scherer et al. 2020). PCa samples of patients with adja-
cent benign tissue were excluded to avoid patients being 
represented twice in the data set. MeDeCom analysis ren-
dered four LMCs, leading to two LMC-based clusters after 
unsupervised hierarchical cluster analysis (Fig. 2a). While 
LMC-based cluster 1 was composed of prostate cancer 
exclusively, LMC-based cluster 2 contained all benign and 
adjacent benign samples in addition to eight cancer sam-
ples (Fig. 2b). LMC 4 values predominantly discriminated 
between cluster allocation with higher LMC4 values indica-
tive of cluster 2 (Fig. 2c). Reference-based deconvolution 
of LMC-based clusters showed cluster 1 to be composed of 
higher numbers of cancer cells (p < 0.0001) and lower num-
bers	of	leukocytes	(LUMP,	p = 0.0044) (Fig. 2d, e).

Quantitative radiographic biomarkers to predict 
epigenetic signatures

The analysis included 30 PCa patients with matching 
pathologic and radiologic index lesions. The control (BPH) 
patients did not have a mpMRI and were excluded from 
the radiomics machine learning analysis. All analyses were 
performed in Python 3.9.16. We used Pearson correlation 
analysis to drop all highly correlated (r > 0.95) features 
(n =	70)	to	reduce	the	risk	of	overfitting	and	to	stratify	our	
final	radiomic	features	set.	We	split	our	dataset	into	an	inde-
pendent training (70%) and testing set (30%) with patient 
samples drawn at random. We scaled the features using 
StandardScaler (Bernatz et al. 2023) to have a mean value 
of 0 and a variance of ± 1. Next, we independently applied a 
pool of four variant machine learning models to predict the 
epigenetic	signature	clusters.	We	used	different	established	
machine learning models (I) logistic regression (LR), (II) 
random forest (RF), (III) ada boost (ADB) and (IV) stochas-
tic gradient boosting (SGB). The machine learning pipeline 
is described in detail elsewhere (Virtanen et al. 2020). For 
each model, we depict the receiver operating characteris-
tics (ROC) area under the curve (AUC) as implemented in 
scikit-learn	1.0.2	(Pedregosa	et	al.	2011).

Table 1 Clinical and epidemiological characteristics of included PCa 
patients
Variable Study cohort
RPX 30 (100)
Median	age	at	definite	diagnosis	(y)* 63 (58–79)
Median	time	(m)*,	MRI	to	tissue	(biopsy,	RPX) 0 (0–7)
Mean	PSA	(ng/mL)** 11.81 (14.89)
Localization (index lesion)
 PZ 27
 PZ/ AFS 3
PI-RADS,	index	lesion	***
 3 3 (10)
 4 7 (23)
 5 20 (67)
Gleason	score,	index	lesion	***
 3 + 3 1 (3)
 3 + 4 9 (30)
 4 + 3 10 (33)
 4 + 4 2 (7)
 4 + 5 7 (23)
 5 + 4 1 (3)
If not depicted otherwise, the numbers without parenthesis depict 
absolute	numbers.	*	Data	in	round	parenthesis	are	the	min/max	val-
ues;	 **	Data	 in	 round	 parenthesis	 is	 standard	 deviation;	 ***	Data	
in round parenthesis are relative values; note: due to mathematical 
rounding,	the	summed	relative	values	may	differ	slightly	from	100.	
AFS	anterior	fibromuscular	stroma;	m months; MRI magnetic reso-
nance imaging; PI-RADS Prostate Imaging Reporting and Data Sys-
tem; PSA	prostate-specific	antigen;	PZ peripheral zone; RPX radical 
prostatectomy; y years
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methylated between adjacent benign and PCa (Table 2). 
Two	differentially	methylated	sites	on	the	promoter	regional	
level were associated with the gene ARHGAP42P1 (Rho 
GTPase Activating Protein 42 Pseudogene 1) (Supple-
mentary Table 2). For the gene RPL35AP31 (Ribosomal 
Protein L35a Pseudogene 31), we found one CpG site 
each	on	a	promoter	and	gene	 level	 to	be	significantly	dif-
ferentially methylated between PCa and adjacent benign 
tissue (Supplementary Tables 2, 3). Two adjacent benign 
samples clustered together with complete benign controls, 

Prostate tissue adjacent to tumor resembles 
complete benign controls on the epigenetic level

Next, we analyzed large-scale DNA methylomes to charac-
terize the tissue samples adjacent to cancer lesions. Com-
pared to PCa samples on a global DNA methylation level, 
two adjacent benign samples clustered rather with and two 
separately from cancer tissue (Supplementary Fig. 2a). We 
found 92 CpG sites within CpG islands, 17 within genes 
overall,	and	10	within	promoter	regions	being	differentially	

Fig. 2 Latent Methylation 
Component-based unsupervised 
hierarchical clustering shows 
two clusters separating samples 
mainly according to malignancy 
status and MethylCIBERSORT-
derived cancer cell estimates. a 
Hierarchical Clustering, Ward 
Method, LMC standardized, 
kappa	= 4, lambda = 0.001; b 
Contingency table, p Chi2 test; 
c Distribution of LMC4 values 
within LMC-based clusters; d 
Cancer cell estimates, Methyl-
CIBERSORT; e LUMP estimates; 
p Chi2 test. PCa Prostate Cancer
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In	our	study,	we	 identified	four	main	LMCs	coalescing	
into two clusters. LMC-based cluster 1 exclusively con-
tained	PCa	samples,	was	composed	of	more	significant	PCa	
samples than cluster 2, harbored cases with higher Gleason 
scores, and had higher presurgical PSA levels.

No tissue from regions adjacent to tumor tissue (“adja-
cent benign”) or complete benign BPH tissue (“complete 
benign”) was allocated to LMC-based cluster 1. The adja-
cent benign regions, allocated with PCa or complete benign 
samples, i.e., adjacent benign tissue, did not form its own 
cluster. A potential reason could be contamination with 
scattered PCa, but this remains elusive as no CpG site 
was	 significantly	 differentially	 methylated	 between	 com-
plete	 benign	 and	 adjacent	 benign	 tissue.	Among	 differen-
tially methylated loci between adjacent benign tissue and 
PCa, a CpG site associated with the gene RPL35AP31 was 
found, which to date has not yet been described in the con-
text of prostate cancer. Mapping to the same genomic loca-
tion 13q21.33 is the gene dachshund homolog 1 isoform c, 
which methylation status has recently been shown to corre-
late with advanced and less radio-sensitive esophageal can-
cer (Huang et al. 2022). Another CpG site was associated 
with the gene ARHGAP42P1 and not further characterized 
until now, but listed as enhancer according to the Ensembl 
database (Martin et al. 2023). The potential relevance of 
those two genes in prostate cancer needs further investiga-
tion in bigger data sets. Currently, neither of the two CpG 
sites	was	represented	among	differentially	methylated	sites	
in	 the	 Infinium	HumanMethylation450	dataset	of	Geybels	
et al., which compared 20 PCa samples with matched adja-
cent benign samples (Geybels et al. 2015). The absence of 
significant	methylation	 differences	 between	 complete	 and	
adjacent	benign	tissue	might	be	interpreted	as	lacking	pre-
cancerous or perilesional epigenetic changes in histologi-
cally	benign-looking	prostate	tissue	or	might	be	biased	by	
our small sample size. However, Zhang et al., who compared 
genome-wide methylomes of prostate cancer, pre-cancerous 
lesions, and normal prostatic tissue, showed that average 
DNA methylation levels dropped in pre-cancerous prostate 
vs. normal tissue and were elevated in cancer (Zhang et al. 
2023).	The	latter	reached	statistical	significance	only	when	
compared with pre-cancerous, not normal tissue (Zhang 
et al. 2023).	We	 saw	 significantly	 higher	 global	methyla-
tion levels in PCa versus benign tissue in our data (data not 
shown).

In our cohort, some PCa samples clustered in LMC-based 
cluster 2. To explore a potential biological interpretation of 
LMC cluster formation, we deployed reference-based tumor 
deconvolution and found cluster 1 to have a higher proportion 
of	cancer	cells	while	showing	an	overall	decreased	leuko-
cyte fraction, as indicated by the independent LUMP algo-
rithm. In short, MethylCIBERSORT-inferred proportions 

two rather separated from controls in principal component 
analysis of global methylomes (Supplementary Fig. 2b). Of 
note,	no	CpG	site	was	significantly	differentially	methylated	
between adjacent and complete benign tissue after correc-
tion for multiple comparisons (Table 2).

Epigenetic clusters were associated with 
differential microenvironmental composition and 
prognostically relevant features

Next,	we	 aimed	 to	 delineate	 differences	 in	microenviron-
mental composition between the PCa clusters (benign 
cases were excluded for this analysis) by conducting the 
reference-based tumor deconvolution algorithm Methyl-
CIBERSORT. Cluster 2 held samples with higher propor-
tions of CD4 +	effector	 cells	 (p 0.026), CD56 + NK cells 
(p 0.0302), endothelial cells (p 0.0196),	and	fibroblasts	(p 
0.009; Fig. 3a-d). Furthermore, we analyzed the associa-
tions of the clusters with clinically relevant variables. Clus-
ter one exclusively comprised malignant prostate tissue and 
was	enriched	for	significant	prostate	cancer	(p <	0.002	like-
lihood ratio, Fig. 3e). Along that line, more advanced tumor 
stages,	as	defined	by	Gleason	scores,	were	found	in	cluster	
one (p 0.012	likelihood	ratio,	Fig.	3f). Cluster one patients 
had higher pre-surgical maximum PSA values (Fig. 3g), 
and cluster one was enriched for higher ISUP grades, i.e., 
more advanced tumor stages (p <	0.0004	 likelihood	 ratio)	
(Fig. 3h).	 We	 leveraged	 four	 different	 machine	 learning	
models to non-invasively predict the epigenetic clusters 
using radiomics analyses. No model could predict the epi-
genetic clusters non-invasively (ROC AUC ≤ 0.65 for all, 
Supplementary Fig. 3).

Discussion

Our data demonstrate that large-scale DNA methylation 
signatures were associated with relevant pathological and 
clinical characteristics of patients with prostate cancer. 
Clinically	 significant	 and	 advanced-stage	 prostate	 cancer	
clustered in a distinct subgroup.

Table 2	 Differentially	methylated	CpG	sites
Differentially	methylated	CpG	
sites, genomic region

Adjacent benign vs. 
PCa

Adjacent 
benign vs. 
Complete 
benign

Genes 17 0
Promoters 10 0
CpG islands 92 0
Differentially	methylated	CpG	sites	according	to	genomic	region	in	
adjacent benign samples (n = 4) vs. PCa (n = 26) and complete benign 
tissue (n = 4), respectively. FDR adj. p values < 0.05
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(Davidsson et al. 2013; Karpisheh et al. 2021). While we 
did	not	see	differences	in	proportions	of	T	reg	or	CD8	+ T 
cell	 infiltrates	 between	 LMC-based	 clusters	 we	 observed	
lower	estimates	for	NK	cell	infiltrates	in	the	cluster	1.	This	
might further corroborate the impact of LMC-based cluster 
1, as lower NK cell counts have been shown to be associ-
ated with more aggressive tumor stages (Pasero et al. 2015). 
Within the immune-cold microenvironment of PCa, cancer-
associated	fibroblasts	(CAFs)	were	shown	to	be	crucial	con-
stituents exerting pro-tumorigenic functions. To remodel 
the extracellular matrix CAFs stimulate mesenchymal cell 
invasion and angiogenesis, which eventually contributes to 
tumor	 invasion	 (Vickman	 et	 al.	2020). Recently, the ratio 

of CD4 +	effector	T-cell	 and	CD56	+ NK cells were lower 
in LMC-based cluster 1, pointing towards a change of the 
microenvironmental composition in the cluster enriched 
for malignant samples. Furthermore, the proportions of the 
main	constituents	of	the	tumor	stroma,	fibroblasts	and	endo-
thelial cells, were also diminished in LMC-based cluster 1. 
Despite their role in carcinogenesis and disease progres-
sion	 immune	cell	 infiltrates	 in	PCa	were	 rather	poor.	PCa	
is	known	to	rank	amongst	immune-cold	tumors,	which	is	in	
line with our results. Intratumoral CD8 + T cells have been 
shown to express PD-1, which hampers anti-tumorigenic 
activity (Sfanos et al. 2009). Also, advanced tumor stages 
may	be	associated	with	higher	T	regulatory	cell	 infiltrates	

Fig. 3 Cellular composition of 
prostate cancer samples with 
regard to allocation to LMC-
based clusters with benign 
samples excluded from cluster 2, 
and association of LMC-based 
clusters with clinical parameters. 
MethylCIBERSORT-based tumor 
deconvolution for a	CD4	effec-
tor cells; b CD56 + NK cells; c 
endothelial cells; d	fibroblasts.	P	
Chi square test. LMC-based clus-
ter association with e Entitiy; f 
Maximal Gleason Score; g Maxi-
mal PSA presurgery; h ISUP
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