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Introduction

Prostate cancer (PCa) is the second most common cancer in 
men (Sung et al. 2021). Advances in multiparametric MRI 
(mpMRI) improved patient management and biopsy tech-
niques (Mottet et al. 2019). Yet, tumor heterogeneity can 
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Abstract
Purpose  While epigenetic profiling discovered biomarkers in several tumor entities, its application in prostate cancer is still 
limited. We explored DNA methylation-based deconvolution of benign and malignant prostate tissue for biomarker discov-
ery and the potential of radiomics as a non-invasive surrogate.
Methods  We retrospectively included 30 patients (63 [58–79] years) with prostate cancer (PCa) who had a multiparametric 
MRI of the prostate before radical prostatectomy between 2014 and 2019. The control group comprised four patients with 
benign prostate tissue adjacent to the PCa lesions and four patients with benign prostatic hyperplasia. Tissue punches of 
all lesions were obtained. DNA methylation analysis and reference-free in silico deconvolution were conducted to retrieve 
Latent Methylation Components (LCMs). LCM-based clustering was analyzed for cellular composition and correlated with 
clinical disease parameters. Additionally, PCa and adjacent benign lesions were analyzed using radiomics to predict the 
epigenetic signatures non-invasively.
Results  LCMs identified two clusters with potential prognostic impact. Cluster one was associated with malignant prostate 
tissue (p < 0.001) and reduced immune-cell-related signatures (p = 0.004) of CD19 and CD4 cells. Cluster one comprised 
exclusively malignant prostate tissue enriched for significant prostate cancer and advanced tumor stages (p < 0.03 for both). 
No radiomics model could non-invasively predict the epigenetic clusters.
Conclusion  Epigenetic clusters were associated with prognostically and clinically relevant metrics in prostate cancer. Fur-
ther, immune cell-related signatures differed significantly between prognostically favorable and unfavorable clusters. Fur-
ther research is necessary to explore potential diagnostic and therapeutic implications.
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compromise pathologic confirmation of diagnosis (Stewart 
et al. 2013; Guo et al. 2018). The comprehensive molecular 
characterization of PCa is the basis for effective biomarker 
development (Guo et al. 2018). However, biopsies not only 
sample tumor cells but also the adjacent tumor microenvi-
ronment, which impacts genomic analysis and interpreta-
tion of results (Aran et al. 2015). Here, epigenetic analyses 
can be a way forward. For example, leucocytes unmethyl-
ation for purity (LUMP) measures the immune counterparts 
in a tissue sample by averaging 44 non-methylated immune-
specific CpG sites to assign an immune cell estimate (Aran 

et al. 2015). Such immune cell signatures might reflect 
clinically relevant tumor characteristics (Aran et al. 2015). 
Furthermore, radiomics describes the transformation of 
medical images into mineable data to leverage artificial 
intelligence to non-invasively characterize the whole tumor 
without sampling bias, and it has shown promising results 
in describing tumor phenotypes beyond visual perception 
with prognostic impact (Bonekamp et al. 2018; Varghese et 
al. 2019).

We hypothesize that epigenetic signatures are associated 
with clinically relevant measures, such as malignancy and 
tumor stage. Further, we hypothesize that radiomics can 
serve as non-invasive surrogate for prognostically relevant 
epigenetic clusters.

Materials and methods

The institutional Review Board of the Ethical Committee 
approved this retrospective study (project number: 20–890, 
Goethe University Frankfurt am Main, Germany).

Study design

Our study is an in-depth subgroup analysis of a previously 
reported patient cohort (Bernatz et al. 2020) with added 
novelty by epigenetic analysis, inclusion of a new control 
cohort with benign prostatic hyperplasia (BPH), and cor-
relation with radiomics analysis. In short, 418 consecutive 
patients with confirmed PCa who had a mpMRI before 
radical prostatectomy (RPX) between 2014 and 2019 were 
screened for study inclusion to finally include a total of 30 
patients (in comparison to the prior study (Bernatz et al. 
2020) we had to exclude three patients with insufficient tis-
sue quality for epigenetic analysis, therefore, resulting in 30 
PCa patients). The further inclusion and exclusion criteria 
for the PCa patients are depicted in Bernatz et al. (2020). 
See Fig. 1 for the flow-chart of PCa-patient inclusion. Con-
trol patients were treated with holmium laser enucleation 
of the prostate (HoLEP) for BPH in 2019 and four patients 
were consecutively enrolled. The inclusion criteria for the 
control patients were (I) BPH, (II) no malignancy in patho-
logic analysis. Control exclusion criteria were (I) incidental 
malignancy in postoperative tissue specimens, (II) insuf-
ficient tissue quality. From four PCa patients, additional 
adjacent morphologically benign tissue was sampled for 
epigenetic analysis.

Reference standard

All tissue samples were histologically confirmed in the 
institution’s pathology department by a uropathologist (JK). 

Fig. 1  STARD flowchart of prostate cancer patient inclusion into the 
study. The flowchart depicts the retrospective inclusion of the 30 pros-
tate cancer patients as previously described (Bernatz et al. 2020). Four 
additional retrospective patients with BPH (median age 70 [61–76]) 
served as complete benign control patients which were consecutively 
enrolled in clinical routine
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All PCa and adjacent benign tissue samples were correlated 
with the matching localization in the mpMRI as previously 
described (Bernatz et al. 2020).

DNA methylation analysis and tumor deconvolution

The tissue samples were subjected to DNA methylation 
analysis using the Human Methylation EPIC array by Illu-
mina (Illumina, California, USA). Formalin-fixed, Paraf-
fin-embedded tissue was cut in 4  μm thin section with a 
microtome (Leica SM 2000R, Wetzlar, Germany), mounted 
on slides (Superfrost Plus, Thermo Scientific, Braunsch-
weig, Germany) and H&E stained. Representative sections 
of the lesions were selected, and punch biopsies (1.0 mm 
diameter, kai Europe GmbH, Solingen, Germany) were 
taken for DNA isolation by use of the Stratek Invisorb 
Genomic DNA Kit II (stratek molecular, Berlin, Germany). 
After assessment of DNA concentration using the Qubit 
DNA BR Assay Kit and Qubit 3 Fluorometer device (Invit-
rogen, Life Technologies Corporation, Oregon, USA), DNA 
was further processed and hybridized to the Human Meth-
ylation EPIC array beadchips (Illumina, California, USA) 
following standard protocols provided by the manufacturer. 
EPIC array beadchips were scanned by an iScan (Illu-
mina, California, USA) and raw intensity data (idats) was 
obtained. Idats were imported into the R software package 
“RnBeads” (Müller et al. 2019) to perform quality control, 
exploratory and differential methylation analysis as well as 
to obtain LUMP estimates. The LUMP algorithm uses mea-
surements of leucocyte unmethylation to infer leukocyte 
infiltration in bulk tissue samples by the analysis of 44 CpG 
sites which are unmethylated in leukocytes and methylated 
in tumor cells (Aran et al. 2015). DNA methylation data was 
normalized using the “dasen” method from the R package 
“watermelon”.

Reference-free deconvolution of prostate tissue was per-
formed using MeDeCom, which uses non-negative matrix 
factorization to compute Latent Methylation Components 
(LMCs; Scherer et al. 2020). LMCs represent methylation 
patterns shared between the samples’ most variable CpG 
sites - i.e. the top 5000 most variable CpG sites across all 
samples of this study - with correction for methylation pat-
terns driven by patient age. LMCs are selected by evaluating 
cross-validation errors for LMCs numbers (kappa) and the 
regularization parameter (lambda). For each sample, pro-
portions of LMCs were computed and subjected to hierar-
chical cluster analysis by use of Ward’s minimum variance 
method. LMCs-based clusters were further correlated with 
clinical tumor parameters and their cellular composition.

For reference-based deconvolution of prostate tissue we 
used MethylCIBERSORT as described in (Chakravarthy 
et al. 2018). In brief, idats are loaded into R, assessed for 

quality, Noob normalized and beta value calculated by use 
of the minfi package. An in silico cellular mixture matrix is 
generated by combining signature CpGs of immune cells 
(T regulatory cells, CD4 + effector cells, CD8 + T cells, 
CD20 + B cells, CD14 positive monocytes, eosinophils, 
neutrophils, NK cells), fibroblasts, endothelia and cancer 
cells with the samples’ CpGs to infer the estimates of cel-
lular fractions present in the prostate tissue. Deconvolution 
of the files was realized on the CIBERSORT X platform 
provided by the Alizadeh and Newman labs (Newman et 
al. 2015).

MRI imaging and examination

All imaging was performed on a single 3-T scanner and 
read in clinical routine as previously described (Bernatz 
et al. 2020), following the European Society of Urogenital 
Radiology (ESUR) guidelines. For the radiomics analysis, 
the MR images (T2-weighted (T2w), apparent diffusion 
coefficient (ADC), dynamic contrast-enhanced (DCE) were 
exported in “Digital Imaging and Communications in Medi-
cine” (DICOM) format. Representative images of mpMRI 
acquisition are depicted in (Bernatz et al. 2020) and acquisi-
tion parameters are depicted in Supplementary Table 1.

MRI segmentation

We depict the workflow of MRI segmentation in detail 
elsewhere (Bernatz et al. 2020). In short, we used the open-
source 3D slicer computing platform (http://slicer.org, ver-
sion 4.9.0) (Fedorov et al. 2012; Velazquez et al. 2013) to 
visualize and segment the whole 3-dimensional tumor vol-
ume of interest (VOI) of each tumor index lesion using ADC 
maps. Manual seeds were defined in each PCa index lesion 
with semi-automatic 3D-VOI annotation by grow-from-
seeds algorithm (Velazquez et al. 2013; van Griethuysen et 
al. 2017). The benign adjacent tissue was manually defined. 
We depict representative images of the whole habitat index 
PCa lesion segmentation in Supplementary Fig. 1.

Feature extraction

Within the 3D Slicer software platform, we used the open-
source extension PyRadiomics (Pedregosa et al. 2011; 
Velazquez et al. 2013) to extract 105 radiomics features of 
seven feature classes as previously described (Bernatz et al. 
2020).
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General statistical analysis

Statistical analyses were performed in JMP (JMP Statisti-
cal Software, SAS Institute, Cary, North Carolina, USA), 
R (R Core Team 2021), and Python, using SciPy (SciPy.
stats) (Virtanen et al. 2020) and scikit-learn (Pedregosa et al. 
2011) for further statistical analyses. Graphical illustrations 
were performed in Affinity Designer 2.1 (Serif (Europe) 
Ltd). The PCa sample size resulted from including all eligi-
ble patients according to the inclusion and exclusion criteria 
(Bernatz et al. 2020).

Results

Study population

Our study population comprised 34 tissue samples, includ-
ing PCa (n = 30), benign tissue adjacent to PCa (n = 4), and 
non-malignant BPH (n = 4) of a total of 34 male patients 
(age PCa, 63 [58–79]; age BPH, 70 [61–76]). The adjacent 
benign tissue was sampled from four patients of the PCa 
cohort. PCa patients were treated with RPX. BPH patients 
were treated with HoLEP. The patient cohort is a subgroup 
of a previously published analysis (Bernatz et al. 2020). We 
depict the patient characteristics in Table  1 and the flow-
chart of patient inclusion in Fig. 1.

Epigenetic signatures revealed two distinct LMC-
based clusters

Large-scale DNA methylation profiles of prostate tissue 
were subjected to the reference-free deconvolution pipe-
line MeDeCom to compute major methylation patterns 
(Scherer et al. 2020). PCa samples of patients with adja-
cent benign tissue were excluded to avoid patients being 
represented twice in the data set. MeDeCom analysis ren-
dered four LMCs, leading to two LMC-based clusters after 
unsupervised hierarchical cluster analysis (Fig. 2a). While 
LMC-based cluster 1 was composed of prostate cancer 
exclusively, LMC-based cluster 2 contained all benign and 
adjacent benign samples in addition to eight cancer sam-
ples (Fig. 2b). LMC 4 values predominantly discriminated 
between cluster allocation with higher LMC4 values indica-
tive of cluster 2 (Fig. 2c). Reference-based deconvolution 
of LMC-based clusters showed cluster 1 to be composed of 
higher numbers of cancer cells (p < 0.0001) and lower num-
bers of leukocytes (LUMP, p = 0.0044) (Fig. 2d, e).

Quantitative radiographic biomarkers to predict 
epigenetic signatures

The analysis included 30 PCa patients with matching 
pathologic and radiologic index lesions. The control (BPH) 
patients did not have a mpMRI and were excluded from 
the radiomics machine learning analysis. All analyses were 
performed in Python 3.9.16. We used Pearson correlation 
analysis to drop all highly correlated (r > 0.95) features 
(n = 70) to reduce the risk of overfitting and to stratify our 
final radiomic features set. We split our dataset into an inde-
pendent training (70%) and testing set (30%) with patient 
samples drawn at random. We scaled the features using 
StandardScaler (Bernatz et al. 2023) to have a mean value 
of 0 and a variance of ± 1. Next, we independently applied a 
pool of four variant machine learning models to predict the 
epigenetic signature clusters. We used different established 
machine learning models (I) logistic regression (LR), (II) 
random forest (RF), (III) ada boost (ADB) and (IV) stochas-
tic gradient boosting (SGB). The machine learning pipeline 
is described in detail elsewhere (Virtanen et al. 2020). For 
each model, we depict the receiver operating characteris-
tics (ROC) area under the curve (AUC) as implemented in 
scikit-learn 1.0.2 (Pedregosa et al. 2011).

Table 1  Clinical and epidemiological characteristics of included PCa 
patients
Variable Study cohort
RPX 30 (100)
Median age at definite diagnosis (y)* 63 (58–79)
Median time (m)*, MRI to tissue (biopsy, RPX) 0 (0–7)
Mean PSA (ng/mL)** 11.81 (14.89)
Localization (index lesion)
  PZ 27
  PZ/ AFS 3
PI-RADS, index lesion ***
  3 3 (10)
  4 7 (23)
  5 20 (67)
Gleason score, index lesion ***
  3 + 3 1 (3)
  3 + 4 9 (30)
  4 + 3 10 (33)
  4 + 4 2 (7)
  4 + 5 7 (23)
  5 + 4 1 (3)
If not depicted otherwise, the numbers without parenthesis depict 
absolute numbers. * Data in round parenthesis are the min/max val-
ues; ** Data in round parenthesis is standard deviation; *** Data 
in round parenthesis are relative values; note: due to mathematical 
rounding, the summed relative values may differ slightly from 100. 
AFS anterior fibromuscular stroma; m months; MRI magnetic reso-
nance imaging; PI-RADS Prostate Imaging Reporting and Data Sys-
tem; PSA prostate-specific antigen; PZ peripheral zone; RPX radical 
prostatectomy; y years
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methylated between adjacent benign and PCa (Table  2). 
Two differentially methylated sites on the promoter regional 
level were associated with the gene ARHGAP42P1 (Rho 
GTPase Activating Protein 42 Pseudogene 1) (Supple-
mentary Table 2). For the gene RPL35AP31 (Ribosomal 
Protein L35a Pseudogene 31), we found one CpG site 
each on a promoter and gene level to be significantly dif-
ferentially methylated between PCa and adjacent benign 
tissue (Supplementary Tables 2, 3). Two adjacent benign 
samples clustered together with complete benign controls, 

Prostate tissue adjacent to tumor resembles 
complete benign controls on the epigenetic level

Next, we analyzed large-scale DNA methylomes to charac-
terize the tissue samples adjacent to cancer lesions. Com-
pared to PCa samples on a global DNA methylation level, 
two adjacent benign samples clustered rather with and two 
separately from cancer tissue (Supplementary Fig. 2a). We 
found 92 CpG sites within CpG islands, 17 within genes 
overall, and 10 within promoter regions being differentially 

Fig. 2  Latent Methylation 
Component-based unsupervised 
hierarchical clustering shows 
two clusters separating samples 
mainly according to malignancy 
status and MethylCIBERSORT-
derived cancer cell estimates. a 
Hierarchical Clustering, Ward 
Method, LMC standardized, 
kappa = 4, lambda = 0.001; b 
Contingency table, p Chi2 test; 
c Distribution of LMC4 values 
within LMC-based clusters; d 
Cancer cell estimates, Methyl-
CIBERSORT; e LUMP estimates; 
p Chi2 test. PCa Prostate Cancer
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In our study, we identified four main LMCs coalescing 
into two clusters. LMC-based cluster 1 exclusively con-
tained PCa samples, was composed of more significant PCa 
samples than cluster 2, harbored cases with higher Gleason 
scores, and had higher presurgical PSA levels.

No tissue from regions adjacent to tumor tissue (“adja-
cent benign”) or complete benign BPH tissue (“complete 
benign”) was allocated to LMC-based cluster 1. The adja-
cent benign regions, allocated with PCa or complete benign 
samples, i.e., adjacent benign tissue, did not form its own 
cluster. A potential reason could be contamination with 
scattered PCa, but this remains elusive as no CpG site 
was significantly differentially methylated between com-
plete benign and adjacent benign tissue. Among differen-
tially methylated loci between adjacent benign tissue and 
PCa, a CpG site associated with the gene RPL35AP31 was 
found, which to date has not yet been described in the con-
text of prostate cancer. Mapping to the same genomic loca-
tion 13q21.33 is the gene dachshund homolog 1 isoform c, 
which methylation status has recently been shown to corre-
late with advanced and less radio-sensitive esophageal can-
cer (Huang et al. 2022). Another CpG site was associated 
with the gene ARHGAP42P1 and not further characterized 
until now, but listed as enhancer according to the Ensembl 
database (Martin et al. 2023). The potential relevance of 
those two genes in prostate cancer needs further investiga-
tion in bigger data sets. Currently, neither of the two CpG 
sites was represented among differentially methylated sites 
in the Infinium HumanMethylation450 dataset of Geybels 
et al., which compared 20 PCa samples with matched adja-
cent benign samples (Geybels et al. 2015). The absence of 
significant methylation differences between complete and 
adjacent benign tissue might be interpreted as lacking pre-
cancerous or perilesional epigenetic changes in histologi-
cally benign-looking prostate tissue or might be biased by 
our small sample size. However, Zhang et al., who compared 
genome-wide methylomes of prostate cancer, pre-cancerous 
lesions, and normal prostatic tissue, showed that average 
DNA methylation levels dropped in pre-cancerous prostate 
vs. normal tissue and were elevated in cancer (Zhang et al. 
2023). The latter reached statistical significance only when 
compared with pre-cancerous, not normal tissue (Zhang 
et al. 2023). We saw significantly higher global methyla-
tion levels in PCa versus benign tissue in our data (data not 
shown).

In our cohort, some PCa samples clustered in LMC-based 
cluster 2. To explore a potential biological interpretation of 
LMC cluster formation, we deployed reference-based tumor 
deconvolution and found cluster 1 to have a higher proportion 
of cancer cells while showing an overall decreased leuko-
cyte fraction, as indicated by the independent LUMP algo-
rithm. In short, MethylCIBERSORT-inferred proportions 

two rather separated from controls in principal component 
analysis of global methylomes (Supplementary Fig. 2b). Of 
note, no CpG site was significantly differentially methylated 
between adjacent and complete benign tissue after correc-
tion for multiple comparisons (Table 2).

Epigenetic clusters were associated with 
differential microenvironmental composition and 
prognostically relevant features

Next, we aimed to delineate differences in microenviron-
mental composition between the PCa clusters (benign 
cases were excluded for this analysis) by conducting the 
reference-based tumor deconvolution algorithm Methyl-
CIBERSORT. Cluster 2 held samples with higher propor-
tions of CD4 + effector cells (p 0.026), CD56 + NK cells 
(p 0.0302), endothelial cells (p 0.0196), and fibroblasts (p 
0.009; Fig.  3a-d). Furthermore, we analyzed the associa-
tions of the clusters with clinically relevant variables. Clus-
ter one exclusively comprised malignant prostate tissue and 
was enriched for significant prostate cancer (p < 0.002 like-
lihood ratio, Fig. 3e). Along that line, more advanced tumor 
stages, as defined by Gleason scores, were found in cluster 
one (p 0.012 likelihood ratio, Fig. 3f). Cluster one patients 
had higher pre-surgical maximum PSA values (Fig.  3g), 
and cluster one was enriched for higher ISUP grades, i.e., 
more advanced tumor stages (p < 0.0004 likelihood ratio) 
(Fig.  3h). We leveraged four different machine learning 
models to non-invasively predict the epigenetic clusters 
using radiomics analyses. No model could predict the epi-
genetic clusters non-invasively (ROC AUC ≤ 0.65 for all, 
Supplementary Fig. 3).

Discussion

Our data demonstrate that large-scale DNA methylation 
signatures were associated with relevant pathological and 
clinical characteristics of patients with prostate cancer. 
Clinically significant and advanced-stage prostate cancer 
clustered in a distinct subgroup.

Table 2  Differentially methylated CpG sites
Differentially methylated CpG 
sites, genomic region

Adjacent benign vs. 
PCa

Adjacent 
benign vs. 
Complete 
benign

Genes 17 0
Promoters 10 0
CpG islands 92 0
Differentially methylated CpG sites according to genomic region in 
adjacent benign samples (n = 4) vs. PCa (n = 26) and complete benign 
tissue (n = 4), respectively. FDR adj. p values < 0.05
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(Davidsson et al. 2013; Karpisheh et al. 2021). While we 
did not see differences in proportions of T reg or CD8 + T 
cell infiltrates between LMC-based clusters we observed 
lower estimates for NK cell infiltrates in the cluster 1. This 
might further corroborate the impact of LMC-based cluster 
1, as lower NK cell counts have been shown to be associ-
ated with more aggressive tumor stages (Pasero et al. 2015). 
Within the immune-cold microenvironment of PCa, cancer-
associated fibroblasts (CAFs) were shown to be crucial con-
stituents exerting pro-tumorigenic functions. To remodel 
the extracellular matrix CAFs stimulate mesenchymal cell 
invasion and angiogenesis, which eventually contributes to 
tumor invasion (Vickman et al. 2020). Recently, the ratio 

of CD4 + effector T-cell and CD56 + NK cells were lower 
in LMC-based cluster 1, pointing towards a change of the 
microenvironmental composition in the cluster enriched 
for malignant samples. Furthermore, the proportions of the 
main constituents of the tumor stroma, fibroblasts and endo-
thelial cells, were also diminished in LMC-based cluster 1. 
Despite their role in carcinogenesis and disease progres-
sion immune cell infiltrates in PCa were rather poor. PCa 
is known to rank amongst immune-cold tumors, which is in 
line with our results. Intratumoral CD8 + T cells have been 
shown to express PD-1, which hampers anti-tumorigenic 
activity (Sfanos et al. 2009). Also, advanced tumor stages 
may be associated with higher T regulatory cell infiltrates 

Fig. 3  Cellular composition of 
prostate cancer samples with 
regard to allocation to LMC-
based clusters with benign 
samples excluded from cluster 2, 
and association of LMC-based 
clusters with clinical parameters. 
MethylCIBERSORT-based tumor 
deconvolution for a CD4 effec-
tor cells; b CD56 + NK cells; c 
endothelial cells; d fibroblasts. P 
Chi square test. LMC-based clus-
ter association with e Entitiy; f 
Maximal Gleason Score; g Maxi-
mal PSA presurgery; h ISUP

 

1 3

Page 7 of 10    396 



Journal of Cancer Research and Clinical Oncology         (2024) 150:396 

Funding  This work was supported in part by the LOEWE Center 
Frankfurt Cancer Institute (FCI) funded by the Hessen State Ministry 
for Higher Education, Research and the Arts (III L 5–519/03/03.001 - 
(0015)). KJW was funded by the Mildred Scheel Career Center Frank-
furt (Deutsche Krebshilfe).
Open Access funding enabled and organized by Projekt DEAL.

Data availability  The datasets used and/or analyzed during the cur-
rent study are available from the corresponding author on reasonable 
request.

Declarations

Ethical approval  The study was approved by the Board of the Ethical 
Committee of Goethe University Frankfurt, University hospital, Ger-
many (project number: 20–890).

Consent to participate  Informed consent was obtained from all indi-
vidual participants included in the study.

Competing interests  The authors declare no competing interests.

Open Access   This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Aran D, Sirota M, Butte AJ (2015) Systematic pan-cancer analysis 
of tumour purity. Nat Commun 6:8971. https://doi.org/10.1038/
ncomms9971

Ayala G, Tuxhorn JA, Wheeler TM et al (2003) Reactive stroma as a 
predictor of biochemical-free recurrence in prostate cancer. Clin 
Cancer Res 9:4792–4801

Bernatz S, Ackermann J, Mandel P et al (2020) Comparison of machine 
learning algorithms to predict clinically significant prostate 
cancer of the peripheral zone with multiparametric MRI using 
clinical assessment categories and radiomic features. Eur Radiol 
30:6757–6769. https://doi.org/10.1007/s00330-020-07064-5

Bernatz S, Koch V, Dos Santos DP et al (2023) Comparison of 
radiomics models and dual-energy material decomposition 
to decipher abdominal lymphoma in contrast-enhanced CT. 
Int J Comput Assist Radiol Surg 18:1829–1839. https://doi.
org/10.1007/s11548-023-02854-w

Bonekamp D, Kohl S, Wiesenfarth M et al (2018) Radiomic Machine 
Learning for Characterization of Prostate Lesions with MRI: 
comparison to ADC values. Radiology 289:128–137. https://doi.
org/10.1148/radiol.2018173064

Chakravarthy A, Furness A, Joshi K et al (2018) Pan-cancer deconvo-
lution of tumour composition using DNA methylation. Nat Com-
mun 9. https://doi.org/10.1038/s41467-018-05570-1

between tumor and stroma cells was investigated to serve 
as a biomarker for disease recurrence. Highlighting the dif-
ficulties imposed by tumor heterogeneity either a small or 
extensive stroma amount was found to be associated with 
earlier tumor recurrence (Ayala et al. 2003) potentially 
marking the beginning and final events of significant tumor 
microenvironmental changes. In line with the recently pub-
lished studies, in our cohort, we found the LMC-based clus-
ter 1, which exclusively contained malignant samples, to 
have lower numbers of endothelial cells and fibroblasts than 
the more benign cluster 2. Our results might be interpreted 
as aggressive early-stage cases in line with the potential 
temporal heterogeneity hypothesis of Ayala et al. or it might 
be caused by sample bias in our small feasibility cohort 
(Ayala et al. 2003). Further, our methylation reference data 
was not directly fitted to CAFs. As CAFs differ from both 
normal fibroblasts as well as among each other with regard 
to receptor expression and secretion products this could bias 
the analysis and needs to be regarded as a limitation of our 
study (Franco et al. 2011). Though the MethylCIBERSORT 
and the LUMP algorithm independently pointed towards 
lower immune cell amounts in LMC-based cluster 1.

While radiomics revealed prognostic potential in numer-
ous PCa studies, in our cohort, non-invasive radiographic 
biomarkers could not stratify epigenetic clusters. Potential 
reasons could be the small sample size of our feasibility 
study or the limited sensitivity of radiomics compared to 
epigenetic analyses of immune signatures in a tumor con-
sidered immune-cold.

In conclusion, in this feasibility study, we showed that 
prognostically relevant metrics in prostate cancer were 
associated with distinct epigenetic clusters. The malignant 
and more aggressive cluster 1 showed reduced immune 
cell-related signatures with reduced signatures of CD19 
and CD4 cells. Some prostate cancer samples clustered in 
the more favorable and immunogenic appearing cluster 2. 
While this study suggests that epigenetic analysis might be 
able to stratify prostate cancer cases that have the poten-
tial to benefit from immunotherapy more than others, the 
potential therapeutic relevance of this finding needs to be 
explored in further research.
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