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Abstract
The International Passenger Survey (IPS) is undertaken by the Office for National Statistics to
measure tourism flows and tourist expenditure, and international migration. It is interviewer-
administered, and the questionnaire instrument was changed in 2017 to 2018 from a paper ques-
tionnaire (completed by the interviewer) to an electronic questionnaire administered with a
tablet. For operational reasons no parallel run was possible, but the new questionnaire was rolled
out progressively to sampling locations. This phased introduction supported the estimation of the
effects of the new questionnaire on the main outputs from the survey. We describe initial simula-
tions designed to estimate the power of the phased introduction approach to detect important
difference in the IPS outputs, and analyses of the survey estimates at different stages up to the
end of 2019 using state-space models, to estimate the discontinuities in the survey outputs. We
make an assessment of the effectiveness of the overall approach.

Keywords
discontinuity, state-space models, migration, tourist expenditure, border survey

1S3RI and Department of Social Statistics & Demography, University of Southampton, Southampton, UK
2Quantitative Economics, Maastricht University, Maastricht, The Netherlands
3Department of Research & Development, Statistics Netherlands (CBS), Heerlen, The Netherlands
4Office for National Statistics, Newport, UK

Corresponding author:

Paul A. Smith, Department of Social Statistics & Demography, University of Southampton, Highfield,

Southampton SO17 1BJ, UK.

Email: p.a.smith@soton.ac.uk

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons

Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial

use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE

and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/0282423X241275836
journals.sagepub.com/home/jen


1. Introduction

Border surveys are one strategy for gathering information on tourism and visits to
a country (see Rideng and Christensen 2004, and Frentx 2016 for summaries of bor-
der survey methodologies). The International Passenger Survey (IPS) is the United
Kingdom (UK)’s border survey, and interviews people as they enter or leave the
UK through ports, airports and the channel tunnel (the land border between
Northern Ireland and Ireland is not covered). The sample design has two stages. In
the first stage a stratified sample of time slots (from a population of morning and
afternoon/evening slots at different airports/ports, covering 362days of the year) is
selected. Teams of interviewers work at the selected times and places, and there is a
counting line, with interviews attempted with every kth traveler (for a suitable
choice of k which may vary by stratum) crossing the line.

The IPS has been running since 1961, but the sample has been adjusted several
times, most notably in 2009 when it was reallocated across a wider range of ports
(ONS 2009). A detailed description of the history and methodology of the IPS is
available in ONS (2014). The IPS has several purposes, including the measurement
of tourism, the measurement of expenditures by visitors to the UK and by UK res-
idents abroad, and the measurement of international migration. Migration filter
shifts, designed to increase the number of migrants in the IPS sample, were intro-
duced in 1980 to 1981. A very short questionnaire was used on these shifts, designed
to identify migrants, who then received additional questions. Migration filter shifts
were integrated with the main shifts in the 2009 redesign, but reintroduced in 2016 to
increase the precision of migration estimates (White 2018). The IPS was suspended
during the COVID-19 pandemic from March to December 2020, and has been
replaced as a source of migration statistics by an approach based on administrative
data and models (Rogers et al. 2021). A modified design was introduced in 2024. In
this paper we focus on the changes to the IPS in 2017 to 2018, when migration was
still a major topic of interest in the IPS.

The IPS interview is designed to be short and to be flexibly administered by
interviewers to maximize response. Until 2017 data were collected on paper ques-
tionnaires (completed by the interviewer, except for some foreign language self-
completion questionnaires (Pendry 2000)), and then mostly entered on-site using a
laptop and a bespoke data capture tool programmed in Blaise (Statistics
Netherlands 2002). The data could then be transmitted via a secure connection to
a central database for further processing.

The ONS developed an electronic questionnaire for the IPS, to be administered
using tablets. This was expected to have a range of benefits in the efficiency of the
interviewers, and in the quality of the responses to the questions in the interview.
We present these changes in more detail in Section 2 below.

Changing the data collection, and the associated changes in the questionnaire
and editing procedures, had the potential to induce a discontinuity in the key IPS
estimates for travel, tourism, and migration. Here a discontinuity is defined as a
change in an estimate that results from a change in the collection approach and is
not a change due to sampling variation or to a real evolution in the time series
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(Van den Brakel et al. 2008). Such a discontinuity needs to be measured, controlled,
and understood in order that the IPS time series before and after the change can be
compared accurately. For example, if collecting the data on tablets results in an
increase in expenditure by overseas visitors, perhaps because responders can view
the questions in their own language, the increase due to the change in the data col-
lection needs to be measured. It is not a real change in expenditure and when com-
paring the series before and after the change an adjustment is needed to produce
valid estimates of the real period-to-period changes of the variables of interest.

The recommended approach to dealing with possible discontinuities in time
series resulting from changes to field procedures involves an embedded experiment
in the survey, starting with a small experiment run with the new approach alongside
the standard survey procedure. This is often referred to as a parallel run. If there is
no evidence of a major change from this, then the sample with the new approach
can be extended, and finally the new method is rolled out with only a small part
retaining the original method (Van den Brakel et al. 2008, 2021). However, this
kind of experimental design within an existing survey can be operationally challen-
ging because of the need for interviewers to use different questionnaires and proce-
dures simultaneously. The ONS therefore decided to make the change by a gradual
roll-out to the various interviewing locations, which made the transition operation-
ally feasible, because different interviewer teams operate in each location. This pre-
sents less information than a situation with an embedded experiment, where the
treatments (different modes) can be randomized at some level, or a parallel run, but
still provides a way to estimate the parameters of the transition with a state-space
model. This kind of approach to analyzing transitions without a parallel run has
been considered by Van den Brakel et al. (2020).

The purpose of this paper is to describe how a new field work strategy can be
implemented in an ongoing survey in a situation where there is no capacity for parallel
data collection. The new design is gradually phased in. To estimate the discontinuities
in the key variables of the survey, a time series modeling approach is applied, where
the effect of the redesign on the outcomes is modeled with a generalized version of a
level intervention. This is achieved with an auxiliary variable that gradually changes
from zero, for the period before the start of the implementation, to one, after com-
plete implementation of the new design. During the transition period, the auxiliary
variable reflects the proportion of the variables covered by the new design. A major
drawback of this approach is that there is no control over the precision of the discon-
tinuity estimates and that the initial estimates directly after the change-over are
unstable. To manage this additional risk, a simulation prior to the start of the change-
over is conducted to assess with what precision discontinuities can be observed and
how many observations under the new survey design are required before stable esti-
mates for the discontinuities are obtained. Additional risks, like confounding of the
discontinuity estimates with unexpected events like Brexit, are discussed.

The paper is structured as follows. Section 2 summarizes the development of the
tablet-based data collection, and the additional procedures and functionality that
it offered. Section 3 describes the idealized measurement of discontinuities, and the
constraints operating in the IPS field work which led to the roll-out. It sets out a
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state-space model for the evolution of the IPS series, and then uses the model in a
simulation to assess the power of the rollout procedure to identify effects of given
size. Section 4 describes the results of the implementation of the new questionnaire,
and the estimated discontinuities as the time series developed. In Section 5 we dis-
cuss the findings and identify some lessons for the future.

2. Developing Tablet Data Collection for the IPS

The IPS has a number of different (but related) questionnaire instruments. There
are arrivals and departures versions, relating to travelers entering or leaving the
UK respectively, and trailers (additional survey instruments) for specific categories
of travelers, including migrants, students, and employees. There are minor differ-
ences in the questionnaires to accommodate the different modes of travel (air, fer-
ries, channel tunnel). For the purposes of the analyses in Sections 3 and 4 we
assume that the mode of travel does not have an important effect separate from
the direction of travel.

In order to move from paper to electronic capture, the questionnaire was rede-
signed to operate with the tablet screen (the early stages of this process are
described in Benedikt (2015)). As part of this process the question wording and
formatting was reviewed, to ensure it presented well on the screens. The routing
was also considered; although the questionnaire is short, the different trailers make
the routing quite complicated. One of the benefits of the change to an electronic
questionnaire is that errors in routing were eliminated. The final design had one
question per screen, and ‘‘there is evidence that respondents relate better to the
‘one-question-per-screen’ layout of the tablet, where they can see the questions in
writing more easily themselves’’ (ONS 2018).

The new questionnaire allowed lookup tables for codes (e.g., for purpose of
visit) to be automated; this was mainly a benefit for less experienced interviewers as
experienced interviewers knew most codes automatically. The tablet questionnaire
also implemented instant switching between languages in the display, based on the
flag of the country as an indicator, which was much faster than the paper-based
equivalent. This facilitated self-completion by travelers who did not speak English
sufficiently well to undertake an interview. Some features could also be used to
advantage, including the use of edit checks within the questionnaire (though many
of these were treated as soft edits which could be overridden, in order to allow the
interview to proceed quickly when necessary). The questionnaire could also be eas-
ily updated.

As a result of using the tablet questionnaire, a number of other changes to the
survey process were also expected. The main changes include:

� the exercise of entering the data collected at the site would no longer be
required. This process previously allowed for some quality assurance of the
data close to the point of data collection;

� the post data collection editing (off-site by an editing team) was adjusted,
because of the checks introduced in the questionnaire.
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The new questionnaire was implemented in a limited pilot study before being
included in the rollout. The pilot involved running several shifts at each of selected
key survey sites over a two to three week period. This was sufficient to show quali-
tatively that the tablets were viable. The data collected suggested that the tablet
questionnaire was better at capturing expenditure (largely because of the easier
availability of questions in alternative languages in the tablet questionnaire), which
would therefore be higher in the new mode.

There is a large body of literature on mode effects, see for example, Dillman
and Christian (2005), de Leeuw (2005, 2008), Couper (2011), Dillman et al. (2014),
and Schouten et al. (2022). Zhang et al. (2021) discuss and compare different onsite
electronic survey data collection methods. Hassler et al. (2018) compared cost,
completion times, and percent completion of electronic tablet to paper-based ques-
tionnaires administered onsite. Leisher (2014) compared tablet-based and paper-
based survey data collection in terms of response rates, data collection costs, and
completion time. Ravert et al. (2015) compared the equivalence of response
obtained with paper based versus table-based questionnaires and reported only
minor differences. Fanning and McAuley (2014) report non-significant effects
between both modes in an experiment in a Health Survey questionnaire.
Kusumoto et al. (2017) observed no difference in completion speed between paper
and pencil and tablet surveys. Tourangeau et al. (2017) analyzed difference in mea-
surement errors between surveys conducted on smartphones, tablets, and laptop
devices. Although the results from these experiments cannot be generalized to the
IPS we expect no large differences between the old and new approach, since both
data collection approaches are based on interviewer administered data collection
modes. Potential differences might be induced by the differences in the
questionnaire.

Particularly in the context of mixed-mode surveys there is an increasing amount
of literature on methods that attempt to correct and adjust for mode-effects. A
regression modeling approach is proposed by Suzer-Gurtekin (2013). Imputation
methods are proposed by Kolenikov and Kennedy (2014), while Vannieuwenhuyze
(2014) and Klausch et al. (2017) propose adjustment methods based on re-interview
designs. These methods focus on equalizing mode effects in mixed-mode designs
and are not directly applicable in a change-over from one uni-mode design to
another uni-mode design where the questionnaire changed simultaneously.

3. Planning for and Dealing with Changes in Survey
Procedures

3.1. Randomization or Deterministic Transition

The best conditions for the estimation of a discontinuity are to use an embedded
experiment with the new and old approaches as the treatments (Van den Brakel
et al. 2021). This effectively gives a parallel run of the new and old methods, and
allows the independent estimation of the discontinuity and the real evolution of the
time series. There are several levels at which randomization of treatments could be
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undertaken in the IPS. These levels and the expected sample sizes from a 10% treat-
ment group are:

(a) by interview, n’ 2,500
(b) by interviewer shifts, n’ 100
(c) by interviewers and flows (arrivals/departures), n’ 40
(d) by interviewers, n’ 20
(e) by site, n’ 5.

The effective sample size for (b) to (e) would however be reduced by the clustering
of observations within the experimental units, and therefore the power of these
designs to detect a difference would generally be low. ONS’s assessment of the
operational considerations in introducing the changes to the IPS was that the ran-
domization of cases, interviewers, or shifts would introduce too much disruption
to the fieldwork and therefore risk the quality of the outputs. There was also a
requirement to progressively roll-out training for interviewers that made a staged
transition team by team (where a team of interviewers may cover a single site or a
group of sites) the most practical implementation approach. The inflow and out-
flow questionnaires have some differences, so interview teams were trained first on
the new outflow questionnaire, which was implemented first, then later on the
inflow questionnaire. Therefore the rollout patterns are different on the two sets of
variables. This meant that a parallel collection on both methods would not be
available, and methods based on the availability of parallel run data (e.g., Van den
Brakel et al. 2021) were effectively ruled out.

Without a parallel run the estimate of the discontinuity is confounded with the
normal evolution of the time series, but by making assumptions about that evolu-
tion, the discontinuity can be estimated (Van den Brakel et al. 2008, 2020). The
staged transition across IPS sites gives an increasing coverage of the main IPS vari-
ables by the tablet questionnaire (the variable abbreviations used here and their
definitions are given in Table 1). The proportion of each variable which is moved
to tablet data collection at each stage of the process is shown in Table 2; these are
different for different variables because the characteristics of passengers vary by
airport.

Before the change to the tablet questionnaire was implemented, an indication of
the power of the analysis to detect a discontinuity in the different series was
required, as part of the communication with users about the expected effects of the
transition. The power can be assessed by simulation using a suitable model for the
evolution of the monthly IPS estimates (Van den Brakel et al. 2020). So we first
present a model for the IPS variables in Subsection 3.2, then return to the assess-
ment of power in Subsection 3.3.

3.2. The Model

The monthly estimates of the IPS output variables were used to develop a structural
time series model. The model used to represent the evolution of the IPS series yt is
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Table 1. IPS Variable Abbreviations and Their Definitions.

Inflow variable Definition Outflow
variable

Definition

svisukres Number of overseas visits by
UK residents

svisosres Number of visits to the UK
by overseas residents

sexpukres Expenditure abroad by UK
residents

sexposres Expenditure in the UK by
overseas residents

smigosar Overseas residents migrating
to the UK

smigukdep UK residents migrating
abroad

sflowarr Total arrival passenger flow sflowdep Total departure passenger
flow

sflowarrn Arrival passenger flow
excluding flow from Channel
Islands and Isle of Man

sflowdepn Departure passenger flow
excluding flow to Channel
Islands and Isle of Man

Table 2. Estimated Proportions of IPS Variables Covered by the Staged Transition to the Tablet
Questionnaire.

Inflow variables

Date svisukres sexpukres smigosar sflowarr sflowarrn narr ncases

1/11/2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1/12/2017 0.512 0.476 0.354 0.477 0.475 0.393 0.385
1/1/2018 0.512 0.476 0.354 0.477 0.475 0.393 0.385
1/2/2018 0.679 0.591 0.504 0.663 0.663 0.552 0.524
1/3/2018 0.853 0.773 0.633 0.795 0.792 0.677 0.670
1/4/2018 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Outflow variables

Date svisosres sexposres smigukdep sflowdep sflowdepn ndep ncases

1/8/2017 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1/9/2017 0.032 0.025 0.029 0.043 0.043 0.047 0.044

1/10/2017 0.151 0.112 0.092 0.131 0.132 0.113 0.113
1/11/2017 0.227 0.177 0.177 0.239 0.241 0.208 0.223
1/12/2017 0.409 0.362 0.332 0.478 0.474 0.378 0.385
1/1/2018 0.409 0.362 0.332 0.478 0.474 0.378 0.385
1/2/2018 0.688 0.522 0.476 0.668 0.666 0.502 0.524
1/3/2018 0.763 0.593 0.628 0.801 0.798 0.665 0.670
1/4/2018 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Note. The dates reflect the actual rollout pattern and the patterns are different for different variables

because the characteristics of passengers vary by airport. Each month is shown, although there were no

changes to the patterns between December and January. narr and ndep are proportions by the number of

arrivals and departures respectively, and ncases gives the proportions by the number of sample cases. Other

variable names are defined in Table 1.
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yt = Lt + St +bxt + et ð1Þ

where Lt is a trend component which depends on the previous level of the trend and
the previous difference Rt21, which in turn is modeled as a random walk, that is,

Lt = Lt�1 +Rt�1,

Rt =Rt�1 +ht,

E(ht)= 0, Cov(ht,ht0 )=
s2

h if t= t0

0 if t 6¼ t0 :

(

Note that the level of the trend can implicitly contain a deterministic level, that is,
Lt = Lt�1 +Rt�1 +m, with m an intercept. This trend model is a quadratic trend
that involves second order differencing, since ht = Lt + 1 � 2Lt +Lt�1.
Deterministic features, like an intercept or a linear trend, which might be present
in the data, cannot be identified due to the implicit second order differencing.
These features are, however, preserved by the Kalman filter and smoothing algo-
rithms. Furthermore, St is a trigonometric seasonal component:

St =
X6

l= 1

Sl, t;

with

Sl, t = Sl, t�1 cos (hl)+ S�l, t�1 sin (hl)+vl, t

S�l, t = S�l, t�1 cos (hl)� Sl, t�1 sin (hl)+v�l, t, l = 1 , :::, 6,

hl =
p l

6
, l= 1, :::, 6,

E(vl, t)=E(v�l, t)= 0,

Cov(vl, t,vl0, t0)=Cov(v�l, t,v�l0, t0)=
s2

v if l= l0 and t = t0

0 if l 6¼ l0 or t 6¼ t0,

�
Cov(vl, t,v�l, t)= 0 8 l and t,

and et is the measurement error, modeled as a white noise:

E(et)= 0, Cov(et, et0)=
s2

e if t = t0

0 if t 6¼ t0 :

�

Finally, xt represents an indicator explanatory variable which takes the value 0
before the discontinuity is introduced, then an increasing positive value (as in Table
2) as the rollout progresses, and then the value 1 once rollout is completed and for
all subsequent periods. It can be interpreted as a generalized version of a level inter-
vention variable. The fitted parameter b will therefore contain the estimate of the
discontinuity.
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For the trend, the so-called smooth trend model is chosen. This is a popular
trend model in econometric time series modeling (Durbin and Koopman 2012,
Ch.3). See Subsection 3.4 for a more extended motivation and a comparison with
the local level trend model. Also the trigonometric seasonal is a standard model in
econometric time series modeling (Durbin and Koopman 2012, Ch.3) and is an
appropriate specification to model a seasonal pattern as visible in Figure 1. The
level intervention approach to estimate the effect of an intervention was originally
proposed by Harvey and Durbin (1986) to estimate the effect of seatbelt legislation
on road causalities. Van den Brakel et al. (2008, 2020, 2022) and Van den Brakel &
Roels (2010) used this approach to estimate discontinuities in repeated sample sur-
veys induced by a redesign of the survey process. A recent similar application is for
example, Hungnes et al. (2024).

An alternative approach is to construct time series for each airport separately,
combine them in one multivariate model and model the effect of the transition in
each series with a level intervention. Let ŷ

(i)
t denote the population estimate for the

entire UK for the particular series based on observations from airport
i= 1, . . . , n. To obtain meaningful input series, a rescaling of the observations
from each airport to the same level, that is, national level, is required. Then a mul-
tivariate model for the discontinuity at the national level could be defined as

ŷ
(1)
t

..

.

ŷ
(n)
t

0
B@

1
CA=

1

..

.

1

0
@

1
A Lt + St + Itð Þ+

l
(1)
t

..

.

l
(n)
t

0
B@

1
CA+

d
(1)
t

..

.

d
(n)
t

0
B@

1
CAb+

e
(1)
t

..

.

e
(n)
t

0
B@

1
CA: ð2Þ

Here Lt, St, and It denote the trend, seasonal, and population white noise for the
variable of interest at the national level. Deviations of the series of each airport
from the national level are modeled with random walks l

(i)
t = l

(i)
t�1 + j

(i)
t , for

i= 1, . . . , n. To identify this component, the variables must obey the restriction

Figure 1. Original series of estimates of visits abroad by UK residents svisukres (black), the
Kalman smoother estimates of the signal from the state-space model (solid red), and the trend
from the model (dotted red).
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Xn

i= 1
l
(i)
t = 0: ð3Þ

The d
(i)
t are dummy indicators that switch from zero to one at the moment that air-

port i changes to the new tablets for data collection. Similar to Equation (1) b is
the regression coefficient that can be interpreted as an approximation of the dis-
continuity for the variable at the national level. Finally e

(i)
t are the sampling errors

of the input series which are normally and independently distributed, that is,
e
(i)
t ;N (0, var(ŷ

ið Þ
t )), where var(ŷ

ið Þ
t ) is estimated from the sample data. We were

unable to estimate this model because the series for the individual airports were
not available. Note that the model in Equation (2) is very similar to the multivari-
ate state space model proposed by Van den Brakel and Krieg (2015) and Hungnes
et al. (2024) for modeling discontinuities in a rotating panel design. The question is
whether this model reliably estimates the discontinuities because there are large dif-
ferences in passenger flows between the different airports. A large airport like
Heathrow has totally different flows from, say, a small airport like Bristol.

To avoid the rescaling of the input series to the national level, a Seemingly
Unrelated Time Series Equation (SUTSE) model can be considered. In this case
ŷ
(i)
t denote the observations from airport i= 1, . . . , n. Each series has its own
trend, seasonal, and population white noise component. The vector with random
walks l

(i)
t that models differences between airports is unnecessary. Furthermore

each series has its own level intervention d
(i)
t b(i) and its own sampling error. An

estimate for the discontinuity at the national level is obtained as the sum over the
discontinuities of the separate airports, that is, b=

Pn
i= 1 b(i). See Harvey (1989,

Ch. 8) for more details of SUTSE models.
The models are expressed in state-space form, and the Kalman filter is used to

estimate the state variables (Durbin and Koopman 2012). The state space represen-
tation distinguishes between state variables and hyperparameters. The state vari-
ables define the trend (Lt and Rt), seasonal (St, l and S�t, l) and regression coefficient
of the level intervention (b). The hyperparameters define the dynamics of the pro-
cesses for the state variables, which are the variance components of the state distur-
bance terms (s2

h and s2
v) and the variance of the measurement errors (s2

e ). The state
space representations of models in Equations (1) and (2) are defined in Appendix
A. The models were implemented in OxMetrics (Doornik 2009) in combination
with SsfPack (Koopman et al. 2008).

The Kalman filter is a recursive algorithm that starts at the beginning of the
series and provides for each period t optimal estimates and standard errors for the
state variables based on the time series observed until period t. These are referred
to as the Kalman filter estimates. The Kalman filter estimates for each period t, can
be updated with the information that became available after period t. This proce-
dure is called smoothing and is based on a recursive algorithm that starts with the
last observation of the observed series and updates the filtered estimates, including
their standard errors, for the state variables of all preceding periods. These are
referred to as the Kalman smoother estimates. Under the assumption that the dis-
turbance terms and the initial state vector are normally distributed, the Kalman fil-
ter provides optimal estimates in the sense that they minimize the mean squared
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error. If the normality assumption doesn’t hold, the Kalman filter is still an optimal
estimator in the sense that it minimizes the mean squared error within the class of
all linear estimators (Harvey 1989, Subsection 3.2). The stated normality assump-
tion implies that the one-step-ahead prediction errors are normally and indepen-
dently distributed. This is evaluated by testing the standardized one-step-ahead
prediction errors for (1) heteroscedasticity using an F-test, (2) normality using a
Bowman-Shenton test, and (3) autocorrelation using a Ljung-Box test (Durbin and
Koopman 2012, Subsection 2.12).

To start the Kalman filter, initial values for the state variables as well as values
for the hyperparameters are required. Equation (1) contains non-stationary state
variables, which are initialized with a diffuse initialization. This implies that the ini-
tial values of all state variables are equal to zero with a diagonal covariance matrix
with diagonal elements diverging to ‘. The exact initial solution for the Kalman fil-
ter with diffuse initial conditions, proposed by Koopman (1997), is used. With this
diffuse initialization of the Kalman filter the first d observations are required to
construct a proper prior for the Kalman filter, where d equals the number of non-
stationary state variables of the state space model. For this reason, the Kalman fil-
ter estimates for the first d time periods are ignored in the analysis and also in the
model evaluation of the one-step-ahead prediction errors.

The values of the hyperparameters are also unknown. They are estimated by
means of maximum likelihood. The likelihood function is obtained by the so-called
prediction-error decomposition (Harvey 1989, Subsection 3.4). The likelihood
function is optimized by repeatedly running the Kalman filter in a numerical opti-
mization procedure using MaxBFGS (Doornik 2009). Since the hyperparameters
are variances, which cannot take negative values, they are estimated on the log-
scale. The starting values for the hyperparameters in the optimization procedure
are equal to ln 0:1ð Þ+ 0:5ln(ŝ2), with ŝ2 = 1=(T � d)

PT
t = d + 1 v2

t =var(vt)
� �

and vt

the one-step-ahead prediction errors obtained by evaluating the likelihood function
with hyperparameters taken equal to ln 0:1ð Þ (Koopman et al. 2008, Ch.5). This
generally results in reasonably good starting values. To minimize the risk of finding
a local maximum, the optimization procedure is also started with different starting
values. Under the model in Equation (1) the MaxBFGS always converged to the
same maximum likelihood estimates for the hyperparameters. The unknown values
of the hyperparameters of the state-space model are replaced by their maximum
likelihood estimates in the Kalman filter. The standard errors of the Kalman filter
estimates for the state variables do not reflect the additional uncertainty of repla-
cing the true values of the hyperparameters by their maximum likelihood estimates,
which is the common approach in state-space time series analysis.

We expected that the IPS, which is not designed to produce estimates for single
months for most variables would be rather volatile, but the models were surpris-
ingly well-behaved. Figure 1 shows an example from the modeling of the number of
trips by UK residents, measured on the passenger inflow, svisukres. The black line
shows the original data, and the red solid line the Kalman smoother estimates for
the trend and seasonal of the model, Equation (1), with b[0 because there is no
discontinuity in the original series. The observed and fitted series are almost
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coincident over most of the plot (although there are of course small differences).
The fitted trend component is relatively smooth. This suggests that the model has a
good a chance to detect a discontinuity if one is present, but we still need to account
for the variability in the model in making an assessment.

3.3. Power Assessment

The basic strategy then is to take a period of the IPS equal in length to the proposed
rollout, to assume a level of discontinuity (consistently across sites within a flow),
and to introduce this discontinuity to the series according to the pattern of the roll-
out. This creates an adjusted series which is used as the input to a model which
includes the rollout pattern xt, and an estimate is made of the size of the discontinu-
ity and its variance. We expect early estimates to be far from the truth (as early in
rollout few ports will be using the tablet questionnaire and there is little informa-
tion on which to base an estimate of the discontinuity), but to converge to a more
stable estimate as further information on the size of estimates with the tablet collec-
tion accumulates. Even beyond the rollout period, additional information about
the size of the discontinuity is obtained as the parameters of the model are affected
by new observations. This allows us to assess the size of discontinuity which is likely
to be detectable (i.e., the power of such an analysis) and the time required to obtain
a stable estimate for the discontinuity.

We examine one variable, the number of visits by overseas residents, svisosres
(which is measured on the outflow), in detail to demonstrate the approach that has
been followed.

The first step is to introduce a discontinuity (as a percentage of the mean of the
series from January 2012 until December 2016) into the existing series. Figure 2
shows the original series and the discontinuity, which is phased in over eight
months in accordance with the rollout plan on the outflow. We show the actual
periods of the data on the x axis, though the real time periods are not important
for this simulation. The new (red) series from Figure 2 now contains the disconti-
nuity, but also the sampling error from the IPS in the periods used, which is
expected to obscure the discontinuity. Equation (1) is fitted to this new series, now
with b free and to be estimated. The resulting series of estimates of the discontinu-
ity is shown in Figure 3. The black line is the real value of the simulated disconti-
nuity during and after the phase in period, that is, bxt. The real value of the
discontinuity, that is, b, is the level of the horizontal black line after October 2015.
The red line shows the Kalman filter estimates for b. They are based on the infor-
mation observed at the different points in time and show how the filtered estimates
are updated if a new observation becomes available and how it finally converge to a
stable estimate.

The first thirty-six months of the series are not shown in Figure 3, as no discon-
tinuity is expected by the model so nothing happens—although this period does
allow the parameters of the other components of the Kalman filter to stabilize from
their starting values. The initial erratic behavior of the discontinuity estimate is
clearly seen, and some of the early estimates of the discontinuity do not contain the
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‘‘real’’ series within the confidence interval. By the time the rollout is completed in
October 2015 (the eighth month of the rollout) the estimate is much improved and
the confidence interval much narrower (although in this particular example the
‘‘real’’ change is only just in the interval at this stage). Around January 2016 the
estimate has essentially converged on the correct value, although the confidence
interval continues to get slightly smaller until September 2016.

Figure 2. Original (old) series of estimates of the number of visits to the UK by overseas
residents svisosres (black), and the new series (red) after a 10% discontinuity has been phased in
over eight months from March 2015.

Figure 3. In black the ‘‘real’’ discontinuity in the series during and after completion of the
phase-in period (i.e., bxt) for a 10% discontinuity introduced to the number of visits to the UK
by overseas residents svisosres beginning in March 2015. In red the Kalman filter estimate for b

during and after completion of the phase-in period. The dashed lines show the estimated 95%
confidence interval for the estimated discontinuity. The left plot shows the whole range of the
series and the right plot shows more detail as the estimated discontinuity converges.
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This example shows the situation with a discontinuity of a particular size in a
particular month. The same discontinuity appearing at a different point in the evo-
lution of the series may have a different impact on the results, so in another experi-
ment the same rollout pattern is applied starting from September 2014. This
produces qualitatively the same pattern, although there are some differences of
detail. In this case the estimated discontinuity does not stabilize until around July
2015 (the eleventh month after the rollout). We also used the same procedures with
a 25% discontinuity, again introduced at two separate time points. Table 3 sum-
marizes the effects of these procedures in these four example cases.

The evolution of the estimated standard errors are almost the same regardless
of the size of the discontinuity or the month in which it is introduced. So for this
variable we expect to have the power to detect a change of approx. 200,000 at the
end of the roll-out; 150,000 four months after the end of roll-out; and 130,000 ten
months after the end of roll-out, as follows from the standard errors reported in
Table 3. This is just enough in this case to detect a 5% change.

The example of svisosres works quite well, but this is not always the case. Figure
4 shows sflowarrn with a +5% discontinuity. Here the estimated discontinuity does
not converge toward the real (induced) one, but instead to a lower value which
eventually leaves the true discontinuity more or less outside the confidence interval.

Table 4 gives an overall summary of the approximate minimum detectable
effects at the end of roll-out, end of roll-out+ four months, and end of roll-out+
ten months for variables on both flows, based on the estimated standard errors
from the simulations.

It can be seen that only the largest discontinuities in the migrant flows are
expected to be detectable, and that expenditure differences less than 10% are not
expected to be detectable. But on other person-based flows discontinuities of
around 5% will generally be detectable.

3.4. Simulation with Different Trend Models

In this subsection the choice for a smooth trend model is motivated for Lt in
Equation (1). Alternative model choices are the local linear trend model, which has
a disturbance term for both the level (Lt) and the slope (Rt) and the local level trend
model that assumes a random walk for the level without a slope parameter
(Lt = Lt�1 + zt, with zt a normally and independently distributed disturbance
term). The smooth trend model is well known in the econometric literature for its
reasonable flexibility and parsimony (Durbin and Koopman 2012, Ch. 3). It results
in more smooth trend estimates compared to the other two trend models.

A statistical argument for a choice between the smooth trend model and the
local level model is the order of integration of the observed series. The smooth
trend model assumes a second order of integration, I(2), for the observed series
while the local level model assumes a first order of integration, that is, I(1). An
Augmented Dickey-Fuller (ADF) test rejected the null hypothesis for all series that
there is a second order unit root (all p-values smaller than 1%). This would moti-
vate the choice for a local level model instead of a smooth trend model.
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Applying a local level model to the IPS series results in more volatile trend esti-
mates compared to the smooth trend model. This affects the estimates for the dis-
continuities. The smoother the trend the greater the influence of observations that
are further away from the time of transition on the discontinuity estimates. With
the local level trend model, more weight is given to the observations directly before
and after the transition. With the smooth trend model observations further away
from the transition also contribute to the discontinuity estimates.

Since the results for the discontinuity estimate depend on the choice for the trend
model, a simulation was conducted. The setup is similar to the simulation discussed
in Subsection 3.3. For the series observed between January 2012 and December
2016, a discontinuity of 10% of the level of the series in 2016 is added to the series,
proportional to the roll-out in Table 2, assuming that the roll-out starts in January
2014. In a next step, the discontinuities are estimated with the model in Equation
(1), once with a smooth trend model for Lt and once with a local level model for Lt.
Results are presented in Table 5. Comparing the actual discontinuities with the esti-
mated discontinuities shows that the estimates under the smooth trend model are
much closer to the true values than the estimates under the local level model. Also
the standard errors of the discontinuity estimates under the smooth trend model
are much smaller compared to the local level model.

Finally the model assumptions of both state space models are tested by evaluating
to what extent the one-step-ahead prediction errors meet the assumption that they are
normally and independently distributed. To this end the following tests (see Durbin
and Koopman 2012, Subsection 2.12 for an overview) are applied to the standardized
innovations: (1) F-test for heteroscedasticity, (2) Bowman-Shenton test for normality
(Bowman and Shenton 1975), and (3) Ljung-Box test (Ljung and Box 1978) for serial
auto correlation up to lag 12. Results are included in Appendix B and indicate some
deviation from the normality assumption for about half of the series. Based on these
model diagnostics, however, there is no preference for one of the two trend models.

Figure 4. In black the ‘‘real’’ discontinuity in the series during and after completion of the
phase-in period (i.e., bxt) for a 5% discontinuity introduced to the arrival passenger flow
excluding flows from the Channel Islands and Isle of Man sflowarrn beginning in June 2015. In red
the Kalman filter estimate for b during and after completion of the phase-in period. The dashed
lines show the estimated 95% confidence interval for the estimated discontinuity.
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Based on these considerations the smooth trend model is used in Equation (1).
Even though the ADF test clearly rejects the null hypothesis that the series contain a
second order unit root, the simulation clearly indicates that the smooth trend model is
more appropriate for estimating discontinuities. In addition the Ljung-Box test statis-
tics in Tables B1 to B3, provide comprehensive evidence that the chosen smooth trend
model is adequate. If the data were I(1) and the smooth trend model was misspecified,
the one-step-ahead prediction errors should be over-differenced and thus autocorre-
lated. This is, however, ruled out by the test results of the Ljung-Box test for almost
all series. An interesting interpretation, proposed by a constructive reviewer, is that
the structural break overshadows the persistent characteristics of the series. If for
example, the break has a strong signal whereas the I(2) trend is comparably smooth,
then the ADF test may reject even in the presence of an I(2) trend. This could be
tested with an ADF test that is robust to structural breaks, for example, with a slightly
modified version of the GLS-type ADF test by Elliott et al. (1996). Since the simula-
tion results and diagnostic tests are already convincing, this is left for further research.

The maximum likelihood estimates for the hyperparameters, with their standard
errors for the finally selected model are included in Appendix C.

4. Evaluation of Discontinuities

There was a natural desire to make an assessment of the discontinuity as quickly
as possible after the tablet questionnaire was in use, in order to inform users about

Table 4. Approximate Minimum Detectable Effects (Rounded to the Nearest ½% Below 10, or
Nearest 1% Above It) for Analyzed Variables, at the End of the Roll-Out Period, and Four and
Ten Months After It.

Inflow variables Minimum detectable effect (%)

Months after end of rollout 0 4 10

Number of overseas visits by UK residents svisukres 9 8 8
Expenditure abroad by UK residents in £ sexpukres 13 12 11
Overseas residents migrating to the UK smigosar 37 29 28
Total arrival passenger flow sflowarr 4½ 4 3
Arrival passenger flow excl. Channel Islands &
Isle of Man

sflowarrn 4½ 4 3½

Outflow variables Minimum detectable effect (%)

Months after end of rollout 0 4 10

Number of visits to the UK by overseas
residents

svisosres 7 5 4½

Expenditure in the UK by overseas residents in £ sexposres 15 12 11
UK residents migrating abroad smigukdep 29 20 19
Total departure passenger flow sflowdep 5½ 4½ 4½
Departure passenger flow excl. Channel Islands
& Isle of Man

sflowdepn 5½ 4½ 4½
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the impacts of the change on the time series of estimates. The published estimates
were accompanied by warnings that the quality of estimates of change would be
reduced during and after the rollout of the new questionnaire, but there was pres-
sure from users of the statistical outputs for more certainty in how the estimates
could be used. The evidence from Table 4 is that the longer the elapsed period after
the rollout, the better the estimation of the discontinuity becomes (though with
reducing benefits of additional months).

This led to several assessments of the size and importance of the discontinuities
on the main IPS output variables during the period after the rollout. We give some
examples of each of these below, starting with an assessment after two months in
Subsection 4.1. The analysis periods were only chosen after the rollout, so did not
correspond exactly with those chosen in the power analysis.

Recall from Section 3 that without a parallel run, the estimation of the disconti-
nuity relies on some assumptions about the stable evolution of the underlying time
series of estimates. The period of rollout was however affected by changes to trave-
ler and migrant behavior driven by the period of uncertainty over Brexit. The
Brexit referendum was in June 2016, but the two-year transition period was coming
to an end just after the rollout, so there was an unusual amount of migration and
some changes to tourism in expectation. So a priori we might expect that the model
will not be as effective, since the actual changes are affected by Brexit, and these
might obscure the effect of the discontinuity. We return to this topic in Section 5.

Since some of the key IPS variables are monetary and many of the values being
estimated are large, we also considered that the variance could increase with the
estimate, which would suggest that a log transformation would be needed to stabi-
lize the variance. We therefore applied the same models to log-transformed data,
though in most of the variables analyzed this did not provide a substantial
improvement.

4.1. Early Estimation of Discontinuities

An initial analysis used data up to June 2018, which covered the roll-out period
(September 2017–April 2018) and (since the roll-out was essentially completed by
early April) three months afterward. The minimum detectable effects would be
expected to be between the zero- and four-month columns in Table 4 if the series
behaved as in the test data. Figure 5 (left) shows the estimated discontinuity for svi-
sosres. In this case the estimate seems to be close to stabilizing, although it is hard
to say what will happen when additional data points are added. The estimated dis-
continuity (in millions of people) in June 2018 is 20.2446 0.153—significantly dif-
ferent from zero, but not very accurately estimated. This discontinuity is around
7% (% discontinuity values are calculated relative to the estimate of the trend at
the given time throughout. They are therefore not affected by seasonal variations),
which is around the smallest detectable difference according to the earlier power
analysis. This was the only variable where the estimated discontinuity was signifi-
cantly different from zero at this stage.
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By contrast, Figure 6 shows the estimated discontinuity for sexpukres, and here
there is no sign that the estimate has stabilized yet. The latest month’s estimate is
still quite different from the previous month, and the estimated confidence intervals
are wide. The discontinuity is around 3%, considerably smaller than the minimum
detectable difference from the power analysis. The apparent lack of stabilization
may therefore result only from the inability of the model to detect a discontinuity
of this size with the current design.

In both of these examples, the behavior of the trend component of the models
has not changed as a result of the addition of the latest data. This suggests that
there has been no detectable effect of Brexit, or possibly that some of the Brexit
effect has been picked up in the estimate of the discontinuity.

Across all the variables considered, most of the estimates of discontinuities are
not significantly different from zero at this stage, and are smaller than the antici-
pated minimum detectable effects from Table 4. Nevertheless, some of the esti-
mated discontinuities are large, up to 20%, and the effects on (for example) the
estimated numbers of migrants would be relevant to users.

Almost all of the discontinuity estimate are negative, which means that the mea-
surement made with tablets is lower than the previous paper-based measurement.
This seems to contradict the initial indications from the pilot study, which were that
the tablets were better at capturing expenditure, which was therefore higher in the
new mode. The pilot used a small sample, however, and results from it may not be
a strong indicator of direction of the discontinuity. If the indications of direction of
the discontinuity from the pilot were correct, it is possible that the size of the

Figure 5. Estimated discontinuity (millions of visits) and its 95% confidence interval for the
number of visits to the UK by overseas residents svisosres; (left) based on data up to June 2018;
(center) based on data up to December 2018; (right) based on data up to December 2019.
Periods before the rollout begins have estimated discontinuity of zero and are not shown before
July 2017.
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discontinuity is at least in part confounded with changes in migration and expendi-
ture patterns influenced by changing exchange rates and uncertainty over Brexit.

4.2. Estimation as the Basis for Deciding on an Adjustment

The second assessment used data up to December 2018, covering the roll-out and
eight months afterward. This was the main ‘‘live’’ evaluation to make a judgment
about whether to make a formal adjustment to the IPS estimates, since it was felt
that users could not wait longer for an official assessment. The minimum detect-
able effects would be expected to be close to the 10-month columns in Table 4 if
the series behaved in the same way as in the test data.

In Figure 5 (left panel) we subjectively assessed that the estimated discontinuity
for svisosres was close to stabilizing. With the additional data to December 2018 we
can see the evolution of this series (Figure 5, center panel).

The estimated discontinuity (in millions of people) estimated with data up to
December 2018 is 20.2126 0.107, slightly smaller than the discontinuity estimated
using the earlier data only, and with the variance halved. The estimated discontinu-
ity for this variable is significantly different from zero, and the discontinuity is
around 6%, which is larger than the smallest detectable difference at this stage
according to the earlier power analysis (Table 2).

Most of the series had estimated discontinuities which had stabilized over the
period considered. Svisukres shows different behavior however (Figure 7, left
panel).

Figure 6. Estimated discontinuity (£m) and its 95% confidence interval for expenditure abroad
by UK residents sexpukres, based on data up to June 2018.

768 Journal of Official Statistics 40(4)



This clearly has not stabilized, and the estimated discontinuity has a wide confi-
dence interval. We tried the log transformation for this variable, and estimated the
discontinuity in the transformed variable. This gives us the filtered estimates in
Figure 7 (right panel), which have stabilized, an instance where the log transforma-
tion is clearly helpful. The log transformation implies a multiplicative model. The
fitted parameter can be interpreted as a proportional discontinuity in the series.
The power was not assessed on the log-transformed data, so we cannot see whether
the effects are in the range that was expected to be identifiable.

In all the series considered using data up to December 2018, the behavior of the
trend components of the models continues to be unchanged. This suggests that
either there has been no detectable effect of Brexit on the trend, or possibly that
some of the Brexit effect has been picked up in the estimate of the discontinuity. It
is not possible to disentangle these alternative explanations further with the col-
lected data.

Only two of the estimated discontinuities are significantly different from zero
(svisosres and sexposres), and only these two estimates are larger than the antici-
pated minimum detectable effects in Table 4. Where the estimated discontinuity is
not detectable (note that this is not the same as saying that no discontinuity is pres-
ent, just that we have not been able to detect it with the statistical power of the
fitted model), making an adjustment would involve an assumption about the stabi-
lity or evolution of the discontinuity estimate outside the period of the analysis.
Combined with the uncertainty in estimating the discontinuity, an adjustment
would therefore not improve the quality of the series of estimates.

Figure 7. Estimated discontinuity (millions of visits) and its 95% confidence interval for the
number of overseas visits by UK residents svisukres (left) and log(svisukres) (right), based on
data up to December 2018.
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The two series with estimated discontinuities significantly different from zero are
more problematic. First, we actually make assessments for ten variables (though
two pairs of variables are so similar (Table 1) that there are probably only eight
independent tests). A Bonferroni type correction to the significance level would
mean that neither discontinuity would continue to be significant. Second, we are
concerned that some of the actual evolution in the series due to behavior changes
induced by the approaching Brexit deadline have been incorporated in the esti-
mated discontinuity. For these two reasons it was decided that no adjustment was
warranted in these two series either.

4.3. Retrospective Evaluation

It was also possible to revisit the series up to December 2019, including the rollout
and a further twenty months. This is in fact almost the longest period that can be
available for evaluation, since the IPS series were strongly disrupted from late
March 2020 by the COVID-19 pandemic. Any adjustment to the state-space model
from Subsection 3.2 to make the trend sufficiently responsive to include this period
would automatically mean that the trend at the time of the discontinuity was not
affected by the new data, so nothing would be gained from adding anything
further.

The extra year of data makes almost no difference to the conclusions drawn at
the time a decision on adjustment was made. Two of the estimated discontinuities
are significantly different from zero, and svisukres continues to be the only series
where the log transformation leads to a substantial improvement in the
stability. The evolution of the discontinuity estimates is shown for svisosres and
log(svisukres) in Figures 5 (right panel) and 8 respectively.

Table 6 shows the estimated effect of the change to tablet data collection in the
IPS for all the considered variables and their standard errors. Only svisosres has a
discontinuity which is significantly different from zero, and this is also the only
variable where the estimated discontinuity is close to the minimum detectable effect
from Table 4.

We did not further extend the time series with the observations that became
available after December 2019. As a result of the COVID 19 crisis, international
passenger traffic virtually ground to a halt, resulting in a huge disruption of the
time series and a sudden misspecification of the model in Equation (1). There are
several ways to account for these shocks in the model, Equation (1). One approach
is to increase the flexibility of the trend component by making the variance of the
slope disturbance terms time varying, see Van den Brakel et al. (2022) for details. In
addition a major adjustment of the seasonal component would be necessary. The
consequence of such interventions is that data observed after the start of the corona
crisis do not add additional information to the estimate of the discontinuities. On
top of that it was already established that the series observed until December 2019
provided enough information to obtain stable estimates for the discontinuities.

In Subsection 4.2 we saw that log transformation of the data was potentially use-
ful for one variable. We therefore examined the performance of the models with log
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transformations for all the variables in the transition, and the results of these are
presented in Table 7. With the log transformation the models meet the normality
assumption of the state space model better (see Appendix B, Table B3); nevertheless
we prefer the models on the original scale as the interpretation of the discontinuity
is more straightforward.

5. Discussion

The changes to the IPS field procedures could only be managed with a phased tran-
sition from the old to the new tablet-based questionnaire, which did not allow for a
randomization of the two questionnaires as treatments in an embedded experiment.
A drawback of the time series modeling approach is that there is no control over
the precision and the size of the discontinuities that can be observed, which
increases the risk that substantial discontinuities cannot be assessed. To assess the
size of the discontinuities that can be detected with a time series modeling approach
before the start of the transition to a new survey design, a simulation is proposed.
If such a simulation indicates that the time series modeling approach is insufficient
to detect discontinuities that are of importance of the data users, then the precision
can be improved by combining the time series modeling approach with a (small)
parallel run. The direct estimates for the discontinuities and their standard errors
obtained with the parallel run can be used in the time series model through an exact
initialization of the Kalman filter. The data observed before and after the change
over to the new design will further improve the discontinuity estimates from the
parallel run and result in a final estimate that will be more precise and that con-
verges more quickly to a stable estimate than the time series model estimates based
on a diffuse initialization of the Kalman filter in absence of a parallel run. As

Figure 8. Estimated discontinuity and its 95% confidence interval for the log of the number of
overseas visits by UK residents, log(svisukres), using data up to December 2019.
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shown in Van den Brakel et al. (2020) it is possible to assess through simulations
what precision can be obtained with the time series modeling approach in combina-
tion with parallel runs of different lengths.

Van den Brakel et al. (2020, Figure 3) demonstrate the impacts of different
designs of a parallel run on the size of detectable effects, but it is not known
whether the pattern they observe is generalizable. In the IPS example, the transi-
tion is rather lumpy because of the disproportionate size of the flow of passengers
through Heathrow airport, and therefore the discontinuity is not well estimated,
and the power to detect changes with this rollout pattern is rather low.

In another simulation, the performance of the discontinuity estimates under a
model with a smooth trend model and a local level trend model were compared.
An Augmented Dickey Fuller test clearly rejects the null hypothesis that the
input series have a second order level of integration, which supports the choice
of a local level trend model. The simulation, nevertheless, shows that estimates
for the discontinuities under the smooth trend model are much closer to the true
values assumed in the simulation than under the local level trend model. We
anticipate that this is because of the more volatile behavior of the trend under
the local level trend model. This implies that, compared to the smooth trend
model, the discontinuity estimates are more based on observations close to the
period of the introduction of the tablets while observations further away from
this period have less influence.

Table 6. Final Estimates of the Discontinuity Parameters for the IPS Variables, and Their
Standard Errors, Twenty Months After the Completion of the Tablets Rollout. The Final Column,
Sim SE Gives the Standard Errors Expected from the Simulations Described in Section 3.3.

Inflow variables Estimate SE Sim SE

Number of overseas visits by UK residents
(000s)

svisukres 159.1 188.8 172.9

Expenditure abroad by UK residents (£m) sexpukres 210.4 163.2 144.1
Overseas residents migrating to the UK
(000s)

smigosar 8.9 5.3 5.5

Total arrival passenger flow (000s) sflowarr 232.5 161.9 118.2
Arrival passenger flow excl. Channel Islands
& Isle of Man (000s)

sflowarrn 255.6 163.5 128.9

Outflow variables Estimate SE Sim SE

Number of visits to the UK by overseas
residents (000s)

svisosres 2233.9 54.2 66.1

Expenditure in the UK by overseas residents
(£m)

sexposres 2231.1 143.2 70.6

UK residents migrating abroad (000s) smigukdep 23.1 2.6 2.4
Total departure passenger flow (000s) sflowdep 321.5 253.8 165.7
Departure passenger flow excl. Channel
Islands & Isle of Man (000s)

sflowdepn 335.1 253.2 164.8
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The estimation of the discontinuity in real time is a classical example of a trade-
off of timeliness and accuracy. When the roll-out was complete there was already
pressure from users for an estimate of the effect of the new questionnaire, but at
this stage it could only be estimated very imprecisely. It took some further build-
up of the time series after the transition before the effect was reasonably estimated.

When there is a transition without a randomization in a parallel run we must
always require the implicit assumption that the evolution of the underlying series
continues undisturbed. For the transition in the IPS this assumption was not met,
because of the effects of the transition following the Brexit referendum. It was not
really practical to foresee all of these effects at the time the questionnaire was being
introduced, but the effect was to include some of the real change in the estimate of
the discontinuity (i.e., the real change and the discontinuity were partially con-
founded), which made it more difficult to assess whether any change was real. Even
with this effect, however, most of the estimated discontinuities were smaller than
the minimum detectable effects. As a result, no adjustment was made to the series
on account of the discontinuities. Users were kept in touch with the expected effects
of the change of questionnaire, and warned about the additional uncertainty arising
around the transition period. But in the end no adjustment was made. Nevertheless
this is an interesting case study of how to plan and execute a survey transition in
the case where no parallel run is possible, a situation which arises quite frequently
because of the difficulty of expanding the field force to deal with parallel data col-
lection. The confounding of the discontinuity with some changes in the real evolu-
tion of the time series is a salutary lesson to avoid periods of predictable change in

Table 7. Final Estimates of the Log Discontinuity Parameters from the Models of the Log-
Transformed IPS Variables Twenty Months After the Completion of the Tablets Rollout.

Inflow variables Estimate of log
discontinuity

SE

Number of overseas visits by UK residents (000s) svisukres 0.037 0.034
Expenditure abroad by UK residents (£m) sexpukres 0.022 0.046
Overseas residents migrating to the UK (000s) smigosar 20.169 0.107
Total arrival passenger flow (000s) sflowarr 0.017 0.017
Arrival passenger flow excl. Channel Islands & Isle
of Man (000s)

sflowarrn 0.019 0.017

Outflow variables Estimate SE

Number of visits to the UK by overseas residents
(000s)

svisosres 20.083 0.018

Expenditure in the UK by overseas residents (£m) sexposres 20.128 0.073
UK residents migrating abroad (000s) smigukdep 20.094 0.094
Total departure passenger flow (000s) sflowdep 0.028 0.023
Departure passenger flow excl. Channel Islands &
Isle of Man (000s)

sflowdepn 0.029 0.023
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introducing a new method. Such periods, however, often cannot be predicted. If
estimation of a discontinuity is critical, it may be necessary to postpone a change.
But even that may not be practical because of the cost of waiting and the unpredict-
ability of a period of stability. The only way to retain some control in periods of
change is to do a parallel run.

Appendix A

State Space Representations

The state space representations of the models in Section 3 are defined by a measure-
ment equation and a transition equation. The measurement equation defines how
the observed series depends on the unobserved state variables, which are collected
in a vector at. The transition equation describes how the state variables evolve from
period t21 to t.
The state space representation for the model in Equation (1) with the smooth trend
is defined by the measurement equation:

ŷt = ztat + et;

zt = 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, xtð Þ;

at =(Lt,Rt, St, 1, S
�
t, 1, St, 2, S�t, 2, St, 3, S�t, 3, St, 4, S�t, 4, St, 5, S�t, 5, St, 6,b)

0
;

et;N (0, s2
e );

and transition equation:

at =Tat�1 +ht;

T=TL � TS � 1;

TL =
1 1

0 1

 !
;

TS =C1 � C2 � C3 � C4 � C5 � 1;

Cl =
cos hlð Þ sin hlð Þ

� sin hlð Þ cos hlð Þ

 !
, hl =

pl

6
, l = 1, . . . , 5,

ht;N 0½14�,S
� �

;

S= 0 � s2
h � s2

v � I½11� � 0:

ðA:1Þ

Here � denotes the direct sum that defines a (block) diagonal matrix, 0½p� a p

dimensional column vector with each element equal to zero, and I½p� the p dimen-
sional identity matrix. Note that zt and T are known design matrices, which follow
from the model specification of the state variables.
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The state space representation for the model in Equation (2) with the smooth trend
is defined by the measurement equation:

ŷt =Ztat,

ŷt = ŷ
(1)
t , . . . , ŷ

(n)
t

� �0
,

Zt = Zu Zl Zb
t Ze

t

� �
,

Zu = 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1ð Þ � 1½n�,

Zb
t = d

(1)
t , . . . , d

(n)
t

� �0
, Ze

t = I½n�:

at =(au
t al

t ab
t ae

t )
0
,

au
t = Lt,Rt, St, 1, S�t, 1, St, 2, S�t, 2, St, 3, S�t, 3, St, 4, S�t, 4, St, 5, S�t, 5, St, 6, It

� �
,

ab
t =b, ae

t =(e
1ð Þ

t , . . . , e
(n)
t ),

with � the Kronecker product. There is no measurement error in the measure-
ment equation, since all series share one population white noise term. This error
term is therefore included in the state vector. The transition equation for the model
in Equation (2) is defined as (A.1) with

T=Tu � Tl � 1� Te,

Tu =TL � TS � 0, Te =O½n 3 n�,

ht;N 0½15+ 2n�,S
� �

,

S= Su�Sl� 0� Se
,

Su
= 0� s2

h � s2
h I½11� � s2

e , Se
t = �n

i= 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(ŷ

ið Þ
t )

q
,

with O½n 3 n� an n 3 n matrix with each element equal to zero and 1½p� a p dimen-
sional column vector with each element equal to 1. Furthermore it is understood
that var(ŷ

ið Þ
t ) can be estimated from the survey data.

Finally al
t , Z

l, and Tl need to be specified such that al
t obeys the restriction in

Equation (3). This can be achieved in different ways. Hungnes et al. (2024) propose
to impose restriction in Equation (3) in the measurement equation by taking

Zl =
I½n�1�

�10½n�1�

 !
I½n�1�

�10½n�1�

 !0
I½n�1�

�10½n�1�

 !" #�1=2

,

al
t =(l

1ð Þ
t , . . . , l

(n�1)
t ), Tl = I½n�1� and Sl

=s2
lI½n�1�:

A constructive and supportive referee noted that the same restriction can be
imposed in the transition equation by taking al

t =Tlal
t�1 +Rlhl

t with
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Rl =
I½n�1�

�10½n�1�

 !
I½n�1�

�10½n�1�

 !0
I½n�1�

�10½n�1�

 !" #�1=2

,

Zl =Tl = I½n�, al
t =(l

1ð Þ
t , . . . , l

(n)
t ) and Sl

=s2
lI½n�1�:

This implies that the vector with state disturbance terms in Equation (A.1) is pre-
multiplied with a selection matrix R, that is, Rht, with R= I½14� � Rl � 1� I½n�.
Finally the method proposed by Doran (1992) to impose a restriction on the state
variables can be used. According to this method the measurement equation is
extended with the restriction as follows:

ŷt

0

� 	
=

Zt

r

� 	
at + 0½n+ 1�,

with Zl =Tl = I½n�, al
t =(l

1ð Þ
t , . . . , l

(n)
t ). In the transition equation we now have

Sl
=s2

lI½n�. The restriction entails that the sum over the elements of al
t equals

zero which implies that r=(ru rl rb re)
0
with ru = 0

0

½14�, r
l = 1

0

½n�, r
b = 0, and

re = 0
0

½n�.

Appendix B

Model Evaluation Tests

See Durbin and Koopman (2012, 38–9) for an overview of the test definitions.

Table B1. Diagnostics for the Model in Equation (1) with the Smooth Trend Model.

Variable F-test for
heteroscedasticity

Bowman-Shenton
test for normality

Ljung Box test for
autocorrelation (lag 12)

F24
24 p-Value x2

2ð Þ p-Value x2
12ð Þ p-Value

svisukres 1.169 .705 0.085 .959 29.861 .003
svisosres 2.673 .019 0.808 .668 14.575 .266
sexpukres 2.283 .048 0.231 .891 13.949 .304
sexposres 2.176 .063 0.761 .684 12.419 .413
smigosar 2.449 .033 12.902 .002 2.630 .998
smigukdep 1.735 .184 2.792 .248 3.886 .985
sflowarr 2.292 .047 12.040 .002 11.873 .456
sflowdep 2.068 .081 15.227 .001 8.096 .778
sflowarrn 1.814 .152 12.375 .002 12.625 .397
sflowdepn 1.971 .103 15.166 .001 8.802 .720
narr 1.445 .373 1.486 .476 13.173 .357
ndep 1.330 .490 1.783 .410 18.069 .114
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Appendix C

Hyperparameter Estimates

The hyperparameters of the model in Equation (1) are, as explained in Subsection
3.2, estimated on the log scale. Let ~s2

ML denote the Maximum Likelihood estimate
for hyperparameter s2. The variance of ~s2

ML is derived from the Fisher information

Table B2. Diagnostics for the Model in Equation (1) with the Local Level Trend Model.

Variable F-test for
heteroscedasticity

Bowman-Shenton
test for normality

Ljung Box test for
autocorrelation (lag 12)

F24
24 p-Value x2

2ð Þ p-Value x2
12ð Þ p-Value

svisukres 0.621 .250 0.838 .658 8.168 .772
svisosres 2.071 .081 0.628 .731 11.787 .463
sexpukres 2.681 .019 1.196 .550 10.829 .544
sexposres 2.272 .048 0.549 .760 14.413 .275
smigosar 2.605 .023 12.432 .002 2.250 .999
smigukdep 1.585 .266 5.038 .081 3.230 .994
sflowarr 1.655 .225 5.952 .051 11.951 .450
sflowdep 1.364 .453 14.391 .001 10.485 .574
sflowarrn 1.344 .474 8.116 .017 12.314 .421
sflowdepn 1.325 .496 14.261 .001 10.717 .553
narr 1.157 .724 1.728 .421 7.489 .824
ndep 1.314 .509 1.390 .499 18.870 .092

Table B3. Diagnostics for the Model in Equation (1) with the Smooth Trend Model and with
Log-Transformed Data.

Variable F-test for
heteroscedasticity

Bowman-Shenton
test for normality

Ljung Box test for
autocorrelation (lag 12)

F24
24 p-Value x2

2ð Þ p-Value x2
12ð Þ p-Value

svisukres 0.498 .094 2.050 .359 14.369 .278
svisosres 2.764 .016 1.904 .386 17.162 .144
sexpukres 1.315 .507 5.159 .076 4.419 .975
sexposres 1.784 .164 0.081 .961 16.961 .151
smigosar 2.236 .054 0.819 .664 7.646 .812
smigukdep 1.262 .573 1.053 .591 10.486 .573
sflowarr 1.472 .350 2.021 .364 11.742 .467
sflowdep 1.418 .399 10.270 .006 11.376 .497
sflowarrn 1.500 .327 1.959 .376 12.559 .402
sflowdepn 1.398 .418 10.724 .004 11.956 .449
narr 1.303 .522 0.664 .717 14.521 .269
ndep 1.769 .170 0.553 .758 24.869 .016
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matrix and is denoted as V(~s2
ML). The back-transformed point estimates for the

standard errors on the normal scale are given by

ŝ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp(~s2

ML)
q

:

A first order Taylor approximation for the back-transformed standard error of ŝ is
obtained by

se ŝð Þ= 0:5 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp(~s2

ML)
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V (~s2
ML)

q
:

The standard errors with their standard errors for Equation (1) with the smooth
trend model are summarized in Table C1.
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