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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

EXPERIMENTAL EVALUATION OF ITERATIVE LEARNING

CONTROL PERFORMANCE FOR NON-MINIMUM PHASE PLANTS

by Christopher T. Freeman

This thesis describes the design and construction of a Single Input Single Output (SISO)
non-minimum phase experimental test facility and the subsequent testing of a number
of Iterative Learning Control (ILC) strategies. The system can be configured in three
different ways in order to test the effect of increased plant complexity and non-linearity.
The implementation of a number of both existing and new ILC strategies is detailed and
results and analysis of their performance are presented. A principal objective has been
to find the ILC controller that is most effective in forcing the output of the test-bed to
follow a repetitive trajectory. The design and construction of the test-bed is explained in
full and both linear and non-linear models of the system are produced. P-type, D-type
and Delay-type ILC algorithms have been tested on the simplest form of the system. The
phase-lead algorithm has been implemented and a method of establishing the optimum
lead found, as well as a procedure to estimate unstable frequencies. Both causal and non-
causal filters have been assessed for use with the algorithm. Phase-lead ILC has been
implemented on the more complex plant and comparisons made with previous results.
The use of a forgetting factor has been found to overcome the problem of instability,
but at the expense of increased final error. The phase-lead algorithm has been vastly
improved using additional phase-leads and this technique has been generalised to produce
an novel optimisation routine which uses a large number of phase-leads. Its success has
been confirmed with experimental results. A learning law utilising the plant adjoint
fits naturally into this framework and practical results are presented. This method has
been both reformulated into one which needs little plant knowledge, and also combined
with deadbeat control to avoid truncation in the course of its implementation. Results
are presented using these techniques and practical guidelines produced and tested. A
simple method of increasing the learning at higher frequencies has been proposed and
verified experimentally. An optimality based Repetitive Control algorithm has also been
rigorously tested and the use of a relaxation parameter found to increase its robustness.
Finally, a graphical method that represents both the robustness and the stability of an
ILC algorithm applied to a known plant has been developed. This tool may find wide
application when designing and developing future ILC strategies.
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Chapter 1

Introduction

Iterative Learning Control (ILC) is a control method that is applicable to systems which
perform the same action repeatedly. Operating in this way it is able to use past control
information such as input signals and tracking errors in the construction of the present
control action. This sets ILC apart from most other control techniques and has allowed
it to provide good performance with little knowledge of the process. Indeed, it may
not even be possible to meet the control specifications involved using other control
approaches. Because of this, ILC has been a popular branch of control theory since its
formal conception over 20 years ago, applicable to most manufacturing and chemical
processes, many robotic applications, and a wide range of other areas. Since ILC has
brought about the creation of many new algorithms as well as being integrated with
other control techniques, there is a large quantity of published work on the subject.

The object of this research is to address the lack of research carried out using ILC on
experimental systems, and the almost complete absence of practical research performed
on non-minimum phase systems. The specific aim is to select and implement as large
a number of ILC algorithms as is feasible on a specially designed experimental appara-
tus. This necessitates the construction of a non-minimum phase test facility capable of
providing a sufficient but manageable control challenge to the algorithms seen, together
with a PC interface and programming environment. Because the experimental use of
non-minimum phase systems is unprecedented, the natural starting place in terms of
algorithms are the original P-type and D-type laws, and there exists a sufficient pro-
gression of additions and adaptations leading from them to produce an in-depth study
that does not depart far from that starting point. However, to broaden the type of ILC
studied, certain more complex strategies need to be examined. Each algorithm can be
implemented on the experimental apparatus and its effectiveness examined using the
data recorded. In order to conduct the objectives described, this thesis starts with a
review of the ILC, presented in Chapter 2.
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Chapter 3 describes the process of designing and building the non-minimum phase ex-
perimental test facility with special reference to ensuring that it is appropriate for use
with the intended ILC algorithms. The design relates not only to the mechanical test-
bed, but to the interface between it and a PC, and to the software used to implement the
control methods. Chapter 4 is concerned with producing models of the test facility for
use with the design and simulation of more advanced controllers. Two separate models
of each system configuration are produced. The first is a linear model which allows
design of controllers using standard control techniques, but may sacrifice precision in
the form of unmodelled dynamics and non-linearities. The second, a largely theoretical
model consisting of each element of the system in turn, is therefore produced which will
be used in order to verify the algorithms before they are tested on the actual experimen-
tal apparatus. The common three term controller is used in some implementations and
details concerning its tuning are described. Due to the difficulties found in traditional
tuning approaches, the controller’s parameters are specially selected for the trajectories
that will be used with the ILC algorithms. This involves ensuring that the output fol-
lows a time delayed copy, capturing its shape rather than its position. Chapter 5 details
the implementation of some basic ILC algorithms. These are the P-type, D-type and
Delay-type laws, the former two being well established in the control literature, the latter
less well established. Their performance is assessed by analysis of a large amount of ex-
perimental data, and conclusions are made concerning their effectiveness and operation.
The phase-lead algorithm is applied and assessed in Chapter 6 and a variety of both
causal and non-causal filters are applied in order to increases the overall performance.
This algorithm is then implemented on the more complex plant and comparisons are
made with the previous results. The use of a forgetting factor is found to overcome the
problem of instability, but at the expense of increased final error.

In Chapter 7 multiple phase-leads are used in an attempt to address the stability de-
ficiencies of phase-lead ILC. An optimisation routine is derived which generalises the
process. Its success is confirmed with experimental results. In Chapter 8 a learning law
which uses the plant adjoint is found to relate closely with this method and practical
results are found to offer increased stability but lack convergence speed. This algorithm
is then reformulated into one which needs no plant knowledge. Results are presented
using this technique and practical guidelines are produced and tested to improve its per-
formance. A simple method of increasing the learning at higher frequencies is proposed
and practical limitations are addressed and verified experimentally. Chapter 9 exam-
ines a recent optimality based Repetitive Control (RC) algorithm, proposed in (Hatonen
et al., 2003c), and it is rigorously tested. Its performance is compared with the previous
algorithms. The robustness of all the algorithms used is examined in Chapter 10 using a
novel graphical analysis method. Conclusions and Further work are laid out in Chapter
11 where the relative merits of all the algorithms implemented are discussed.
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Chapter 2

A Review of Iterative Learning

Control

This section establishes the general setting of Iterative Learning Control. It will be seen
that research conducted in the field of ILC has mainly concentrated on either developing
and analysing new algorithms or with integrating an ILC approach with established
control techniques in order to improve system performance. Practical applications of
ILC have not yet been widely published. Papers that deal with the integration of
Adaptive, Robust, Optimal and Neural techniques and ILC are summarised in later
sections of this chapter, and it should be noted that several exist for Direct Learning
Control but are not included as this approach does not use repeated learning.

2.1 Core ILC Algorithms

The concept of Iterative Learning Control was arguably first formally proposed by Ari-
moto, Miyazaki and Kawamura (Arimoto et al., 1984a). In it position feedback is used to
update the present cycle to produce the so-called proportional (P-type) ILC algorithm,

uk+1(t) = uk(t) + Γek(t) (2.1)

in which
ek(t) = yd(t)− yk(t) (2.2)

and uk(t) is the control input on kth trial, ek(t) is the error, yd(t) is the desired plant
output, and yk(t) is the actual plant output. Convergence is proved for a class of both
Linear Time-Invariant (LTI) and non-linear systems. A key observation is that the
assumption that the output tracking task is realisable implies the plant is minimum
phase. This presents problems in choosing the gain and perhaps precipitates the use
of other design methods. The proof has been further extended to encompass a class of
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Linear Time-Varying systems (Arimoto et al., 1984b) and manipulators (Arimoto et al.,
1985c). A coefficient test has been used to provide linear systems with limits on the
gain necessary for stability in (Judd et al., 1991). The derivative (D-type) algorithm
(Arimoto et al., 1985a) uses the velocity error and is given by

uk+1(t) = uk(t) + Γėk(t) (2.3)

in which ėk(t) is the derivative of the error on the kth trial with respect to t. This has
been examined both on its own and also when combined with the P-type law in the same
algorithm. Acceleration error is included along with velocity error in the update law
(Arimoto et al., 1985b), which is proven for a class of Linear Time-Varying systems and
manipulators. The problem that occurs when null 1st Markov parameters (‘irregular
plants’) make the P-type controller unusable since the positional error is not available
at the first sampling instant has been addressed (Porter and Mohammed, 1990a,b). A
continuous velocity and acceleration error algorithm with respective ‘initial state shifting’
and ‘initial impulsive action’ is able to compensate for the lack of information during the
first sample. These assume the 2nd Markov parameter is full rank (the plant has relative
degree 2). The same algorithms have been applied to multivariable plants (Porter and
Mohammed, 1991a,b) but extended to lthorder rank defective Markov parameters.

Discrete versions of the algorithms have been designed directly (Porter and Mohammed,
1992a,c,b) for linear multivariable systems. The first is a simple discrete time law,

uk+1(i) = uk(i) + Λ{ek(i+ 1)− ek(i)} (2.4)

where uk(i) is the control input on the kth trial at the ith sampling instant and ek(i)
is the error on the kth trial at ith sampling instant, and Λ is a l × p constant matrix,
where l and p are the number of plant inputs and outputs respectively. The algorithm
can be thought of as the discrete conversion of the D-type law.The discrete version of
the P-type law is

uk+1(i) = uk(i) + Γek(i) (2.5)

Consideration of a LTI plant shows that the optimum parameter can be obtained with
just knowledge of the step response. The learning rates are found to decrease rapidly
as the order of the irregularity of the plant increases. It is asserted that laws similar to
Equations 2.1 and 2.3 should be applied to irregular plants by generalising them with
compensators of the form (Im+Ds) used as pre-filters. Therefore the algorithm has been
modified with two extra recursive equations which involve error from the current and
previous cycles at all sampling instants. Only first order linear systems are considered
although the compensator can be modified for use with higher order systems. The
pre-filter compensator is found to improve convergence rates.

Examination of how it is appropriate to use position error for systems with a direct
transmission term (‘d’) has clarified the use of P-type and D-type ILC (Sugie and Ono,
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1987, 1991). The need for velocity error for systems with relative degree of 1, the
applicable classes, necessary conditions, and a class of nonlinear systems have been
considered and it has been shown that the derivative of the error used in the update
must equal the relative degree of the system in order to remove the delay. In the discrete
case, a β step delay is required, using

ek(i) = yd(i+ β)− yk(i+ β) (2.6)

in Equation 2.5, where β is equal to the relative degree of the plant. This proof has
been extended to single-input, single-output (SISO) non-linear systems of relative degree
greater than one (with linear systems as a special case), and also multi-input, multi-
output (MIMO) non-linear continuous time systems (Ahn and Choi, 1990; Ahn et al.,
1993) with earlier results as a special case (Porter and Mohammed, 1991a). Expansion of
this leads to its discrete-time implementation (Jang et al., 1994) in which a very general
use of the relative degree is given for non-linear systems. The algorithm is made to be
high order and a feedback controller is added, no assistance is provided for choosing
the gains. (Note that the term ‘high order’ refers to the use of more than one previous
trial, not to the order of error derivatives). A feedback controller has been added to
significantly reduce transient initial errors (Jang et al., 1995), the analysis concentrates
on non-linear systems with linear systems forming a subset. No restriction is made on
the structure of the feedback controller.

The usefulness of current cycle information is encorporated in a discrete-time algorithm
using D-type information and the present output at the present time in (Ma et al.,
1993). An important note is that conversion from continuous-time to discrete-time, via
the sampling theorem (to find a suitable sampling time), makes it difficult to still ensure
the law’s effectiveness. Current cycle information can again be used by the addition of a
linear feedback term explicitly to the feedforward signal (Kuc et al., 1992). This scheme
actually uses a cost function term added to the feedforward algorithm but produces
an update consisting of a gain multiplied by the last plant input. Analysis is applied
to non-linear continuous time systems with the possibility of varying parameters, and
emphasis has been put on the need for a stable closed-loop system. The concept of
high-gain feedback also uses current cycle information but with no errors from previous
cycles (Owens, 1992). The algorithm is given by

uk+1(t) = uk(t) + (Kek+1)(t) (2.7)

This has been used with linear MIMO, relative degree one, minimum-phase systems, and
the case where (Kek+1)(t) = Kek+1(t) has been investigated. A parameter estimator is
used in the iterative sequence domain (Oh et al., 1988) for linear periodic systems. In this
case a Recursive Least Means Squares (RLMS) method is applied, and the parameters
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are used to produce an inverse model of the plant that is realised using the algorithm

uk+1(t) = uk(t) + B̃+
k (t)[ėk(t)− Ãk(t)ek(t)] (2.8)

where Ã is the estimated A matrix and B̃+ is the generalised inverse of the estimated B

matrix. Here uk and ek are vectors of length equal to the number of states. This system
was found to be sensitive to perturbations in the plant model. The idea, however,
is extended to discrete-time linear and non-linear systems (Oh et al., 1991) and the
assumptions relaxed. The method again uses time-varying gains in what is essentially
a combined P-type and D-type law. The controller gain term is determined adaptively
at each iteration, and can deal with unknown system parameters. Emphasis has been
placed on the need for the error instead of the error derivative for non-linear uncertain
systems with a direct transmission term (Xu, 1997).

A high order equation has been proposed in the form of the P-type algorithm that can
use data from all the preceding cycles (Bien and Huh, 1989). The second order case is
given by

uk+1(t) = P1uk(t) + P2uk−1 +Q1ek(t) +Q2ek−1(t) (2.9)

where P1, P2, Q1, Q2 are l× p constant matrices, where l and p are the number of plant
inputs and outputs respectivey. This has been used on continuous LTI and non-linear
systems and it is found to be faster than usual and certainly less prone to disturbances.
The method has been extended to use N previous cycle values of both P-type and D-
type update terms, encorporating a parameter to stabilise it at the beginning of each
cycle (Chen et al., 1998a). Non-linear systems have been considered and it is found that
a state delay affects convergence only slightly, and if initial state error and disturbances
are bounded, then so too is the final error. The λ-norm is used in the proof of this
method, a tool that has been proven to be unreliable with reference to continuous-time
time-varying non-linear systems (Tayebi and Zaremba, 1999). A combined D-type and
P-type law is addressed which has time-varying gains, and the infinity norm is used to
produce a reliable convergence condition.

Use of data from more than one previous trial has been investigated, this time using
all the previous inputs and P-type errors but with time-varying gains (Chien, 1998).
A stabilising controller is used on discrete non-linear time-varying plants with distur-
bances, and its input is added to the feedforward (ILC) input in order to improve the
convergence time. The stabiliser is found to make the overall controller more robust
to plant uncertainty. This is an extension of another discrete P-type controller which
uses all previous inputs and derivatives (Chien, 1996). In its derivation the same class
of systems is considered, although MIMO systems are included and the same stabilising
controller is used.

A second order updating formula has been produced (using data from the past two
trials) that is capable of offering advantages over its first order equivalent (Norrlof and
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Gunnarsson, 1999). The algorithm is given by

uk+1(t) = Q(q)(uk(t) + L1(q)ek(t) + L2(q)ek−1(t)) (2.10)

Since ‘q’ is a delay operator such that q−1u(t) = u(t− ts), where ts is the sample time,
the parameters Q, L1 and L2 are transfer functions operating on the error. Therefore
this law is more general than the ones in which only static or time-varying gains were
used in conjunction with the error at small number of points, but includes the static gain
case as a subset. A very general representation of an iterative system is considered, and
analysis is conducted in the frequency-domain. This uses the notion of iterative systems
bounds, and stability bounds are given for the filters. An example shows how a second
order ILC can stabilize an unstable first order ILC algorithm (in which L2 = 0). This is
applied to higher order systems and is expanded to address the transient behaviour and
the selection of the second order filters (Norrlof, 2000). For linear iterative systems the
first and second order algorithms are compared in terms of stability and convergence,
and a simple design proposal is given. It is not possible to conclude that the higher order
ILC is more successful than the first order. The disturbance aspects of the first order
law have been considered using a linear framework in the frequency domain (Norrlof and
Gunnarsson, 2001). The general linear system description is used, but including load
and measurement disturbance. The choices of filters in the algorithm are analysed from
this viewpoint.

The concept of Current Iteration Tracking Error (CITE) uses the algorithm

uk+1(i) = uk(i) +Q0(i)ek+1(i+ 1) +Q1(i)ek(i+ 1) (2.11)

and has been formulated for discrete-time systems (Chen et al., 1996b). It is an extension
of previous results which also use current cycle information (Kuc et al., 1992; Owens,
1992), and is analysed using non-linear uncertain systems with disturbances. In this law
Q0(i), Q1(i) are time-varying gains for the ith sampling instant. The term ei+1(i + 1)
is approximated using the error derivative, and it is found that Q0(i) influences the
final error bound. The use of CITE can be extended to a class of uncertain non-linear
systems (Chen et al., 1997). The existence of uncertainties, initialisation error, and
disturbances have been considered. In this case the algorithm uses P-type errors from
N previous trials and the present one. It is asserted that it is not sufficient to ensure only
the boundedness of the final error. The current error has also been used for non-linear
time-varying systems but with no previous errors, and for the current sampling instant
(Chien and Liu, 1996). This produces a P-type law which includes the current error and
uses a forgetting factor, 1 > β > 0

uk+1(t) = (1− β)uk(t) +K(ek(t)) (2.12)

where K is a l × p constant matrix, where l and p are the number of plant inputs and
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outputs respectivey. A forgetting factor has also been used in a practical application and
an inherent compromise between tracking ability and stability is confirmed in practice
(Lewin, 1999). A novel way of increasing its stability is formulated and applied.

Convergence and robustness of discrete-time non-linear systems has been analysed in
a framework which incorporates disturbances and uncertainties (Wang, 1998). A P-
type discrete algorithm with time-varying gain is taken and it is found that with no
disturbances the error tends to zero, and with bounded disturbances there are bounded
error limits. Anticipatory ILC (Wang, 1999) is a formulation in which the error-prone
D-type method is exchanged for a direct time-delay, that is

uk+1(i) = uk(i) + L(.)(yd(t+∆)− yk(t+∆)) (2.13)

with ∆ > 0 being a small increment of time. The example given has L(.) is equal to a
constant. In the analysis continuous non-linear systems are taken and the algorithm is
implemented in discrete-time. A similar method has been used which does not limit ∆
to small values, finding the system’s delay from shifting the system input until the best
match with the output is reached (Barton et al., 2000) which also uses a constant gain.
This is an important change to the previous formulations. A reproposal of Anticipatory
ILC includes saturation of the control device (Wang, 2000). Here continuous-time non-
linear systems are looked at, and the laws robustness is proven for bounded disturbances
and measurement error. It is then shown how a zero-order hold can be used to discretise
this for application in discrete-time (Wang and Sun, 2001b). The previous result can be
expanded to an arbitrary relative degree by selection of the delay time, but it appears
that this must be limited for satisfactory characteristics (Wang and Sun, 2001a).

An N -order PID-type algorithm has been taken and robustified against initial state error
(Chen et al., 1992) for use with delayed non-linear time-varying MIMO systems. It is
stated that disturbances can either be controlled or filtered, that the effect of the delay
is very small, but that the initial state error is important. This method ‘sweeps’ each
trial forwards and backwards at the end of each trial until the state error is found. he
gain is chosen in order to satisfy an inequality.

The bound of non-zero initial error has been found to influence the final error bound
(Lee and Bien, 1996). The combined P-type and D-type law is taken and it is found
that the gain on the P-type term can asymptotically reduce it, and an optimal value
is predicted. The results have been generalised to the PID-type ILC algorithm and
showed that the performance can be increased by adding an integral term (Park and
Bien, 1999). Examination of the same algorithm (Park and Bien, 2000) takes both
constant and random initial error for both linear and non-linear systems. The algorithm

uk+1(t) = uk(t) + Γ(L[ėk(t) + P (ek(·))(t))] (2.14)
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where P is an operator of the error function ek(t), is proposed for linear, finite-time
convergence. A similar problem is detailed (Chen et al., 1996a,c) which combines ‘Initial
State Learning’ (ISL) with CITE. ISL updates the initial state with a measure of the
previous cycle’s, the P-type error multiplied by a time-varying gain, and the desired
output at that point. This algorithm is very similar the original CITE algorithm (Chen
et al., 1996b). Using these laws on a non-linear time-varying system with uncertainty and
disturbance, relationships for the gain matrices can be given and the desired response
achieved. The system must be relative degree of one, but unknown state time-delays do
not affect the results. This theme has been continued (Chen et al., 1999b), again dealing
with both linear and non-linear time-varying uncertain systems. Slight changes are made
to the previous CITE and ISL algorithms and gains chosen accordingly. Mention is made
of initial state shifting and initial impulsive action (Porter and Mohammed, 1991a,b).
It is noted that this method only results in the initial state reaching a desired region,
not a state (Jiang and Unbehauen, 1999). In an attempt to correct this, a controller
based on a modified equivalent error with dead zone can be introduced. The dead zone’s
width is then adjusted on-line, its initial width including the initial state and it is then
decreased every cycle. This method basically removes the problem of having an initial
error which tends to undermine the learning process.

A discrete-time controller for SISO plants is presented (Hillenbrand and Pandit, 2000)
in which the sampling rate is first reduced to produce a relative degree of one system.
A discrete version of the D-type algorithm with a constant gain is proposed, and the
controller must find the gain and sampling rate necessary to fulfil a condition on the
norm of the system matrix L, where y = Lu and u and y are vectors consisting of the
signals at all the time instants. To deal with initial state error it is found that increasing
the sample rate and the gain for just the first sample improves matters.

It has been shown (Sogo and Adachi, 1996) that the general update algorithm

uk+1 = uk + T (ek) (2.15)

where T is an operator and uk and ek are input and error functions, cannot provide the
exponentially decreasing property necessary for robustness when applied to a certain
class of linear systems. The algorithm is taken in its digital form, as a regularisation
method and this is shown to work in exchange for the residual caused necessarily by the
digital controller. The residual approaches zero as the sampling interval tends to zero.

2.1.1 Time Delay

State delays for continuous uncertain non-linear systems have been examined (Chen
et al., 1998a) using the PID-type ILC algorithm. For bounded initial state error this law
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is shown to converge to a residual ball centred on the origin. This paper is separated
from other work on the subject by the explicit presence of a delay in its states.

ILC for linear systems with a time delay has been investigated (Park et al., 1998) since
an erratic estimation of delay time may cause the control system to diverge. A holding
mechanism is adopted in order to keep the control input at a constant value for the
duration of the time delay uncertainty. Consequently the system output tracks a given
desired trajectory at the discrete points, which are spaced by the size of the uncertainty.
This technique is examined for the algorithm

uk+1(i) = uk(i) + Λek(i+ ξ) (2.16)

but can be used on many others, with satisfactory results. An application that calculates
the system delay online and uses it in place of ξ has been used on an industrial conveyor
(Barton et al., 2000). It is concluded that resulting instability may possibly be due to
inaccuracies in the delay time.

An application for batch processes has been formulated (Xu et al., 2001), using a Smith
Predictor to remove the time delay for uncertain SISO processes. The plant must be
represented by a transfer function and a deadtime and an ILC algorithm is used which
includes terms for the actual and estimated process and deadtime. Three alternatives
are investigated; the case where the transfer function is known, where it is unknown,
and where the upper bound is known. Conditions are given for each.

2.1.2 Two Dimensional Modelling

A class of iterative learning controllers for discrete linear systems has been analysed
and a 2-D model established in the form of ‘Roessor’s Model’ (Geng et al., 1990). ILC
is one of the few applications of 2-D system theory. The combined P-type and D-type
controller is examined in the discrete-time domain, using ‘i’to denote the sample number
and ‘j’ the iteration number

u(i, j + 1) = u(i, j) +K1e(i + 1, j) +K0e(i, j) (2.17)

An estimator is used at the end of each cycle and a model of the plant produced in order
to calculate at the two gains. This is different to adaptive control which usually works
simultaneously with the algorithm. The intricacies of this are given separately, but the
main focus really lies in the analysis afforded by the 2-D technique. 2-D analysis has been
extended to cover nth order linear discrete time systems, which can be multivariable as
before (Kurek and Zaremba, 1993). The P-type law is examined and then an extension
using both P-type and D-type updates, as well as estimated state information from the
previous cycle. The system must have a relative degree of one, and the gains are given
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assuming the explicit plant matrices are known. A delay can be included, and step-by-
step application illustrates the way in which it is implementated. The original combined
P-type and D-type law has also been extended with the addition of a present error term
(Lee and Lee, 1993). This makes it less sensitive to disturbances, and its conditions
are more easily satisfied. Like the original, an estimator is used, and the method is
put into practice on a VCR servo system. 2-D system theory has again been used to
derive a non-causal (in the time-domain) learning controller (Liang and Looze, 1993).
A frequency domain approach is taken, but it is more analytic than practical.

The 2-D system has been extended to overcome the difficulty seen in (Kurek and
Zaremba, 1993) of unknown convergence (Chow and Fang, 1998). Extension to discrete-
time is achieved using 2-D continuous-discrete Roesser’s linear model. The P-type al-
gorithm, the P-type with present and past-cycle state information, and an algorithm
similar to that of (Kurek and Zaremba, 1993) with a state feedback term are examined.
Focus is dedicated specifically to this last algorithm (Fang and Chow, 1998), using the
procedure,

uk+1(t) = uk(t) +K1e(t+ 1) +K2(x(t) − x̃(t)) (2.18)

where K1 and K2 are constant matrices of appropiate dimensions, x̃(t) is the estimated
plant state at time t. Note that x̃ is not obtained by using the next input, as it was
previously (Kurek and Zaremba, 1993), but by using an estimator. Gains are found
using given equations and the algorithm converges in 1 iteration. It is used here on
linear discrete-time multivariable systems. A counterexample (Kurek, 2000) has been
necessary to defend the original method against criticisms made against it.

2.1.3 Robotic Applications

A simple P-type algorithm using a filter has been applied to a robotic arm (Mita and
Kato, 1985) and the conditions for convergence discussed. The effectiveness of the P-type
law for the same application has been proved (Arimoto et al., 1988), but reaffirming that
the inclusion of position error alone does not guarantee convergence. A non-linear anal-
ysis of ILC for robots has been presented, emphasising the need for high-gain feedback
(Bondi et al., 1988).

A method specific to robotic manipulators, although not dissimilar to some other schemes,
is proposed in (Kuc et al., 1991). A linear fixed-gain PD controller is used to provide
stability via a feedback loop outside that of the ILC controller. The possibly unknown,
time-varying, non-linear robotic equation is linearised along the desired joint trajectory,
and the controller constructed using combined P-type and D-type error terms. An ad-
ditional term is included which consists of previous-cycle error derivatives. This method
has been found (Jiang et al., 1995b) to belong to a subset that could benefit from a
scheme to linearise uncertain non-linear plants to which linearisation normally cannot
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be applied. Lypunov’s direct method is used to develop a sliding-mode which satisfies
a linearisable control equivalent system. An optimal iterative law is then applied. An
adaptive scheme has been formulated for use with the algorithm inorder to estimate the
upper bound of the uncertainties when it is itself uncertain (Jiang et al., 1995a).

A set-point regulation problem has been introduced for manipulators with flexible links
moving under gravity (Luca and Panzier, 1994). It acts by updating the torque input
setpoint with a P-type term. Flexible joints have again been considered in another
application which uses a combined P-type, D-type and acceleration error term controller
with a forgetting factor to shift the weighting between the previous cycle input and a
function of an initial guess (Wang, 1995). This theme has been expanded to cover the
impedance control of robotic manipulators (Wang and Cheah, 1998). In this case only a
target model is available, with no target trajectory defined. This results in force control
being applied by the manipulator.

2.1.4 Auxiliary Methods

It has been noted that satisfying the commonly used λ-norm (Arimoto et al., 1984b),
may leave room for the trajectory error to overshoot drastically, thereby making it an
unreliable measure of convergence (Lee and Bien, 1997). This occurs because ILC is
essentially open loop and it is possible to have a large error at the end of the cycle which
then comprises a large portion of the updating input, which helps propogate the process.
Although the error becomes larger at the end of the cycle, its λ-norm still decreases.
This can be solved by making the gain exponentially decrease by defining the gain as

Γ(t) = e−γtΓ (2.19)

A method of incorporating past experience has been presented which is applicable to
most ILC algorithms (Arif et al., 2001). Here experience is used in the process of the
selection of the initial control input for a new desired trajectory, the convergence can
thus be improved without modifying the controller. Data about the system states, the
output, and the corresponding control input for all iterations is stored in memory. The
prediction of the control input for a new trajectory is achieved by dividing it into many
query points, a linear model is fitted to each one to find a corresponding control input.
A dense population of data will produce a good prediction. A detailed search procedure
is included to help make this method effective.

2.1.5 Practical Applications

The control methods applied to systems in practice are generally applications of existing
algorithms but include insight into the practical issues involved. A discrete PID-type
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algorithm (in the iterative domain) has been applied with CNC machine tools (Kim and
Kim, 1996) and is given by;

uk+1(i) = uk(i) +KP ek(i+ 1) +KI

i+1∑
n=1

ek(n) +KD[ek(i+ 1)− ek(i)] (2.20)

It is found that this works reasonably well despite uncertainty and disturbances. The
summation includes all previous cycles as well as the present. Gains are chosen inorder
to satisfy a given inequality. A far simpler scheme has been used with robotic systems
(Poo et al., 1996). The hazardous conversion to discrete-time via the sampling theorem
is brought to attention along with the fact that the determination of a gain matrix
is difficult to achieve in practice. The method therefore uses a D-type term, a term
comprising of the change in output from cycle to cycle, and a time-varying gain in its
update law. The gains use approximations to the inertia matrix, and the system is tuned
by reducing the sampling instant until the performance is satisfactory. Feedback-assisted
learning control has been used for the heat-up phase of a reactor (Lee et al., 1996). This
uses a standard PID controller command plus the error multiplied by the approximate
plant inverse, that is H(q−1)e(t), modelled as a first order lag. The presence of the ‘q’
operator means that the multiplication can be thought of as equivalent to convolution
of the two signals. A filter is attached to remove high-frequency output noise. An
interesting feature is that the reference trajectory is recalculated for each trial.

Ethanol concentration has been controlled in a batch process (Choi et al., 1996), using
feedback-assisted learning control. The ILC part of the control is the general vector
formulation

uk+1 = uk +
1
Gp

ek (2.21)

with Gp the gain being an approximation of the objective system inverse. To model
the non-linear time-delayed process all but the largest time constants are neglected in
order to produce a first or second order system that also requires an extra deadtime. The
First Order Plus Dead-Time (FOPDT) system parameters are found using Least Squares
Estimation. (It is put in a certain form, the disturbances removed by linearisation and
subtraction of successive sets, then converted into discrete form and the parameters
selected to minimise the error). A standard feedback controller has been used in another
application (Moon et al., 1996), again with its output fed to the ILC controller, the
feedback controller getting no reference trajectory directly. The update is written in
terms of the Laplace operator as

Uk+1(s) = Uk(s) + Γ(s)Ek(s) (2.22)

which affords great flexibility in the form of the transfer function Γ(s). One of the gain
filters is chosen to equal zero above a certain frequency. The filters can be designed with
only knowledge of the estimated plant upper and lower uncertainty bounds.
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An application to coil-to-coil metal rolling machines is presented in (Garimella and Srini-
vasan, 1998), which uses a low-pass filter and approximate plant inverse. It is maintained
that reduction of the plant’s transfer function bandwidth improves robustness. A MIMO
transfer function matrix is decoupled, each loop having its own PI controller. The ILC’s
gains are then selected with care. Control of human limbs has been achieved with use
of a high order discrete D-type algorithm with time-varying gain whose control com-
mand is summed with a feedback controller’s in order to produce the new plant input
(Dou et al., 1999). Saturation is included for a realistic effect, although no help in gain
selection is provided.

Control of a high-precision linear motor has been undertaken (Tan et al., 2001), again
using a feedback controller whose output is the input to the ILC, a layout which has
been used previously (Moon et al., 1996). This is the natural procedure when the ILC
is located within the feedback mechanism. Alternatives layouts include both controllers
being in parallel (each receiving the error signal) and their inputs summed, or the ILC
located around both the plant and a feedback controller (indeed many papers assume
that the ‘plant’ includes its own feedback controller). The ILC update used in this
instance has the form

uk+1(i) = uk(i) + γh′
M ∗ uk(i) (2.23)

where ∗ denotes the discrete convolution. The notion of Z-transform Y (z) = H(z) ·X(z)
where the upper case letters are the Z-transforms of their lower case equivalents is used.
It is shown that, if the filter is chosen to be zero-phase, then h′

M is simply a symmetric
moving averager, and this is designed to produces an approximate plant inverse. The
auto-tuning of the PID controller is also examined in the description of this application.

An overview of the practical issues involved with ILC implementation is given which
goes some way to formulate a universal ILC controller (Longman, 2000). Linear, relative
degree one systems, are examined and it is argued that all systems can be represented
in this way with suitable choice of sampling time and linearisation applied if necessary.
Only frequency response data is used and a selection of gain matrices, L, are considered
for the vector update law

uk+1 = uk + Lek (2.24)

An explanation is included of how to design cut-off filters for whichever structure of
gain matrix is chosen. Each choice encountered in ILC design is examined to produce a
thorough overview of the difficulties involved. The use of a simple algorithm is, however,
a limiting factor so performance of a specific case is unavoidably compromised by the in-
clusion of a vast breadth of applicable classes. The close relationship between Repetitive
Control (RC) and ILC is made clear.
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2.2 Repetitive Control Approaches

Whilst in the framework of ILC a trial is defined to be of a set length, RC allows it to
vary, its end occurring when a certain system state has been reached. This changes much
of the analysis used with RC and seeks to divide the philosophies. It is also assumed
that RC has no breaks betweens trials, while ILC can settle and perform calculations if
necessary. RC was formulated using the Internal Model Principal (IMP) (Hara et al.,
1985), which is a means of generating any repetitive signal, and is more often used in
robust control to remove structured (periodic) uncertainties. An IMP model is located in
the closed loop system and conditions presented for successful convergence of the linear
and non-linear systems. Although there are too many papers on just ILC to contemplate
a survey of repetitive control, there are many connections between the two approaches,
and several methods exist which attempt to bridge the gap between the disciplines.

‘No-reset ILC’ is a mechanism allowing the implementation of RC methods for ILC by
not ensuring the initial conditions are the same at the beginning of each cycle (Sison and
Chong, 1996). The remaining ILC architecture is unchanged. A SISO LTI system has
been examined (although MIMO systems are applicable), and a state equation produced
in which the state includes both the state of the plant and the controller. The system
‘A’ matrix is found and decomposed in order to assume the same structure as an existing
repetitive scheme that allows the placement of system eigenvalues. The gain matrix is
set arbitrarily, a computationally extensive process since it has no structure.

It can be shown that for both ILC and RC process learnability is equivalent to output-
dissipativity which is equivalent to strict positive realness, these definitions being defined
in (Arimoto and Naniwa, 2000). The motivation behind this is to explain how a simple
ILC scheme can work so effcetively with complicated non-linear systems.

ILC has been used to solve an repetitive problem in (Moore, 2000; Moore and Xu, 2000).
RC ‘trials’ vary in length and there is a continuous horizon. Each trial is allowed to
always return to its initial state by extending or reducing the reference, only allowing
learning to occur where there are results in the trial before. The analysis concentrates
on the high-order derivative algorithm and reformats it, and a simple and natural way
to link the two techniques is established.

The two schemes are found not to be equivalent but are related in duality, a consequence
of the difference in location of the Internal Model inside the compensator (Roover et al.,
2000). A repetitive controller is realised by implementation of a robust servomechanism
with appropriate internal model. ILC is implemented in the format of a disturbance
observer/compensator - the dual of the repetitive controller. Therefore the design is
generalised into a powerful analysis and design procedure of the internal model frame-
work.

15



2.3 Robust Control Approaches

The extension of existing analysis techniques (i.e. (Liang and Looze, 1993)) for ILC
in the H∞ mathematical framework into the actual synthesis of an ILC controller is
given in (Roover, 1996). It is shown how this process can be generalised to the synthesis
of an H∞ (sub)optimal controller. A feedback configuration with a general updating
law (the P-type law) is used to generalise the process. To conduct the synthesis one of
the filters is interpreted as a weighting function for learning performance, which can be
simply a low pass filter, and the other is obtained by minimising a norm. This produces
the highest L2 convergence rate. To produce a workable solution it is reformulated into
Standard Plant (SP) format, and the solution is obtained using two coupled Riccati
equations. An important result is that uncertain system knowledge can be explicitly
incorporated into the design procedure via weighting functions, turning it into a robust
performance synthesis problem. These can be solved using the µ-synthesis (Structured
Singular Value) approach, by performing D-K iteration. A practical design method for
this past-error feedforward scheme has been given for the open-loop case (Roover and
Bosgra, 2000).

A frequency-domain method for uncertain feedback control systems is proposed in (Moon
et al., 1998). An LTI plant with multiplicative perturbations and an existing feedback
controller is examined. It is shown that the design can be reformulated as a general
Robust Control set-up. Here ‘Linear Fractional Transformation’ (LFT) is used to rewrite
the plant transfer function. A simple ILC law is used to update the input,

Uk+1(s) = Uk(s)P (s) +Q(s)Ek(s) (2.25)

the gain P (s) is chosen as a low-pass filter, Q(s) is found by solving a general robust
control problem. This implies that the ILC law can be systematically designed by robust
control techniques such as µ-synthesis. The lack of proper techniques to design an ILC
for systems with model uncertainty is addressed in (Doh et al., 1999b,a). Many schemes
assume the presence of an existing feedback controller, and this becomes more important
if the model has uncertainty. A simple ILC algorithm with current feedback is given
to illustrate this and the objective is not only to stabilise an uncertain system but also
to guarantee the convergence of the ILC for model uncertainty. A sufficient condition
for robust convergence and stability is found using µ-synthesis, and LFTs. A synthe-
sis method is presented using D-K iteration (which reformulates it as an optimisation
problem).

The combination of ILC and Internal Model Control (IMC) has been investigated for
uncertain LTI systems (Tayebi and Zaremba, 2000) using the update given in Equation
2.25. The convergence is reformulated as a general robust problem. For a certain choice
of IMC and ILC filters, the condition of convergence to zero is the robust performance
condition of the IMC structure. A design procedure is proposed using the µ-synthesis
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approach. For a simple ILC law applied to a feedback system with the internal model in-
cluded, a design is proposed for the filters using the above method. Robust ILC (RILC)
is presented in (Xu and Qu, 1998), and provides a general framework targeted at synthe-
sizing learning and robust control methods using Lypunov’s direct method, extending
their use to more general classes of non-linear uncertain systems. It is used on systems
with terms for known and unknown system parameters and structured and unstructured
uncertainties. Robust control deals with the structured uncertainties and learning con-
trol handles the state-independent uncertainties, optimally eliminating them. Analysis
focuses on a high-order MIMO non-linear system. Variable Structure Control (VSC) is
again used as a robust control strategy in (Xu et al., 2000) which develops a scheme to
address both periodic and non-periodic system uncertainties. Only the upper bounds
of uncertainties are needed and the inverse model dynamics are used to separate the
required efforts for the RC and ILC parts, partitioning the system uncertainties.

Adaptive Robust ILC (ARILC) has been formulated for non-linear uncertain systems
(Xu and Viswanathan, 2000) and includes the presence of a dead-zone. The method
ceases both learning and adaption when the error enters a specified bound. ARILC
is the synthesis of both ILC and Adaptive Robust Control. ILC is applied to deal
with the structured system uncertainties, and the adaptive robust strategy handles the
non-periodic uncertainties associated with partially known bounding functions. The
unknown upper parameters in these functions are estimated with adaption. Partitioning
of the inverse system separates the type of uncertainty, and an update equation is given.
The robust part is found by minimising the difference of a Lypunov function, the ILC
part uses a high order P-type algorithm.

2.4 Optimal Approaches

System optimisation schemes have been applied to learning control (Togai and Yamano,
1985), and it is noticed that the P-type and D-type algorithms do not guarantee posi-
tional convergence. It is also noted that learning algorithms are in a sense asymptotically
optimal since optimal values characterising the control actions are not obtained at once
but after some time. A state observer and a reference model is used to obtain the error
in the state variables, and this is used as the error in a D-type update. The gain term
is chosen to minimise a cost function, and the Steepest Descent, Newton-Raphson and
Gauss-Newton methods are all used to provide a solution.

A discrete ILC has been formulated directly (Ishihara et al., 1992), involving the Im-
pulse Response (IR) of the system. A performance index is formulated where the gain
minimises a quadratic performance index. To obtain a robust controller, a probablistic
error model is icluded in the plant IR and an average quadratic performance criteria
is minimised instead. It is suggested that this method requires a high order algorithm
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in order to satisfy a commonly used convergence condition in (Hillenbrand and Pandit,
1999). Therefore it is shown that reducing the sampling rate can guarantee exponential
convergence and robustness to uncertainties and initial state error for the same algo-
rithm. It is reduced to give a relative degree of one, and for high convergence the system
output must be sampled at a high frequency and system identification performed to
ascertain the minimum sample time and the optimal gain.

A discrete-time algorithm has been proposed (Amann et al., 1995, 1996a) that is based
on an optimisation principle for linear plants. For the continuous case, the minimisation
of the linear quadratic performance criterion

Jk+1 =
1
2

T∫
0

eTk+1(t)Qek+1(t) + [uTk+1(t)− uTk (t)]R[uk+1(t)− uk(t)]dt+
1
2
eTk+1(T )Fek+1(T )

(2.26)
with gain matrices Q, R and F . It has the non-causal solution

uk+1 = uk +G∗ek+1 (2.27)

This is transformed into a co-state system and this non-causal representation is in turn
transformed into a causal algorithm, using a state-feedback system representation. The
problem of finding an input to produce the desired output is a singular optimal control
problem, which requies an iterative solution. The reduction of the error norm at each
step, the automatic choice of step size, and use of current data are all desirable prop-
erties that are fulfilled. The solution to the Riccati equation is required and the use
of current trial full state feedback along with feedforward of the previous trial tracking
error. For a time-invariant system the Riccati equation needs only to be solved once.
The rate of decrease in the error can be influenced in an intuitive way by several design
parameters. This method has been reformulated in continuous time to include control
and state relaxation parameters which of course change the update algorithm (Amann
et al., 1996b). The update algorithms are presented in a slightly different form, and sim-
ulations are given for a linear time-varying plant and a non-linear pendulum to illustrate
its performance and robustness. An extension of this method has been derived in order
to address the problem of the performance depending on algorithmic parameters such as
plant dynamic structure (Amann et al., 1998). For example, plant characteristics such as
being non-minimum phase cause a slow rate of convergence. A predictive horizon is used
in the computation of the control input (similar to Model/General Predictive Control)
and a set of finite-time Linear Quadratic Regulator (LQR) problems is solved inbetween
trials. The input increment at each trial must minimise a performance criterion consist-
ing of the sum of future errors and control increments. It converges faster than previous
algorithms with less foresight. It is shown that the convergent rate is independent of
the plant dynamics. This predictive algorithm can achieve geometric convergence, the

18



infinite-dimensional limit operator being approximated by a finite-dimensional controller
for practical purposes.

It has been shown that the method by (Amann et al., 1995, 1996a) could be implemented
as an output feedback algorithm (Lee et al., 2000), thus improving the robustness. A
framework (termed Quadratic-ILC (Q-ILC)) is developed to deal with constraints, non-
linear dynamics, and disturbances. New algorithms are presented which consider these
effects. An observer-based algorithm is given as an alternative the direct-error based
algorithm to deal with disturbance. A cost function for constrained systems is given,
apparently a standard quadratic programming problem, and also one that includes model
uncertainty information which is a convex programming problem. The convergence is
proved for these algorithms. The lack of guidelines for the tuning factors has been
addressed (Kim et al., 2000), and the robustness is examined further. It is shown how
Singular Value Decomposition (SVD) can be used to tune the gains, and a reduced-
order algorithm is given which enhances the robustness and lessens the computational
load. The robustness of norm optimal based ILC schemes in practical applications has
been examined (Al-Towaim et al., 2001), concentating on the proposal of (Amann et al.,
1996b) whilst describing a test facility used for experimental evaluation (as (Barton
et al., 2000)).

Generalised Predictive Control (GPC) with learning is presented in (Bone, 1995). The
method learns the repeatable portion of the disturbances, improving the accuracy of
the predicted future response. It is based on Controlled Auto-Regressive and Integrated
Moving Average (CARIMA) and the plant must be linear, or linearisable about a set
point, as it uses a linear plant model. This method is found to significantly improve the
performance of GPC.

An optimisation technique has been derived in the frequency domain (Gunnarsson and
Norrlof, 1999) which is applicable to linear, SISO, discrete-time systems. It is given by

uk+1(t) = Q(q)(uk(t) + L(q)ek(t)) (2.28)

the filters Q(q) and L(q) are chosen by establishing and minimising a quadratic cost
criterion.

Another technique (Gorinevsky, 1999) has been motivated by development of control
methods for sampled, spatially invariant, distributed systems, to which an LTI plant
can be said to belong. Development of a unified view of ILC that encompasses opera-
tor, linear-quadratic, model-predictive, regularisation, and frequency domain design is
desired. A simple update is given, and a quadratic performance index is constructed.
Bounds on the cost parameters are set out depending on whether robust convergence,
quantified actuator magnitude, or nominal performance is deemed most important.
Analysis is performed on a SISO linear system and the point is made that frequency
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analysis performs design and analysis in a decoupled way since ILC control does not
have to depend on the measurement in a causal way.

Linear time-varying systems have been examined in (Phan and Frueh, 1996), using
basis functions to define an operating input-output space by utilising data gathered over
repeated trials. Inverse control is employed to give the correct solution. By increasing
the number of basis functions used, the strategy can take care of the gross motion first,
and then the details at increasing levels of accuracy. The scheme can learn rapidly
provided that the underlying input-output relationship is captured. Basis functions
have again been used (Phan and Frueh, 1999), along with a reference model, to guide
the learning process. The basis functions reduce the dimension of the system model. A
discrete, linear time-varying system is examined, and input and output data is put in the
reference model as it is found. An algorithm governs the update of the model, inputting
data in the form of basis functions. Another algorithm minimises the output prediction
error using this information. This is an ILC application of ‘Model Reference Adaptive
Control’, and could also be classed as an adaptive design, but forms a link with previous
research (Frueh and Phan, 2000), in which a solution to minimising a quadratic cost to
achieve optimisation without requiring detailed knowledge of the system (assuming the
plant is linear time-varying or LTI) is given. The optimal input is found for the cost
function in terms of the plant, and then basis functions are used to reduce the number
of experiments required. The optimal coefficients for the basis functions are found, and
each newly added basis function does not alter the previously optimised ones. They are
then used to modify the control action for the current trial. Implementation steps are
laid out and a simulation is presented where the error cost matrix is altered so that only
certain portions of the tracking error are weighted, illustrating its utility.

The use of basis functions is also examined in (Hamamoto and Sugie, 2001) and it is
found that, since few systems have bi-properness and only a few have input passivity,
most ILC methods adopt compensators for the system in the form of error derivatives,
dual mapping (i.e. (Roover, 1996; Amann et al., 1995)), and low pass filters. Error
derivatives are known to be error-prone, and the others require a large amount of system
information. Linear continuous systems are examined, and the input space (usually
infinite space L2) is restricted and spanned with basis functions. A general update law
is applied in this restricted space, using the difference between the optimal and previous
parameter vectors as the error. The two filters are considered taking into account the
uncertainty of the restricted plant. The input space is constructed to include the optimal
input.

2.4.1 Applications

The application of ILC to an Optimal Tracking Problem has been conducted (Chen
et al., 1998b,c) which requires the extraction of Aerobomb drag. A cost function is
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derived, but the problem is not the usual one, as an unknown non-linear function must
be extracted iteratively from the output data, which is taken as the desired trajectory.
The system is non-linear and time-varying, and the D-type law with a time-varying gain
is used to update the drag coefficient, the error found by integration. This method is
extended through the use of a higher order ILC algorithm.

Iterative optimal control has been applied to the well-established problem of slosh in an
industrial packaging machine (Grundelius, 2000; Grundelius and Bernhardsson, 2000).
The problem is to find an open loop acceleration reference. A quadratic optimisation
expression is given and the resulting procedure uses quadratic programming to find the
update term, δU , only once. This is then used in the equation

Uk+1 = Uk + δUk (2.29)

to update the acceleration reference. An extension of this again includes an optimisation
problem, but it is discretised and the solution procedure uses quadratic programming
continually. The previous cycle data updates terms in the minimisation problem.

An application of optimisation to the control of extruders has been detailed (Pandit
and Buchheit, 1999) in which a performance index is presented which is required to be
minimised every cycle. Calculus of variations is applied to this task, and either steepest
descent, the Newton method, or another iterative algorithm is used to obtain the new
control input. The procedure is complicated by the need for the plant operator to be
calculated every cycle for use in the optimisation procedure.

2.5 Adaptive Techniques

Results have been presented on adaptive ILC for both linear and non-linear plants in
(French et al., 1999). Universal Adaptive Stabilisation (UAS) is examined on a linear
plant consisting of a proportional controller with adaptation on the gain. This is capable
of stabilising a system from any state initial condition with very limited knowledge
of the plant. It is converted to an ILC algorithm with several alternative laws, the
linear system examined is restricted to minimum phase and not proved for a relative
degree greater than one. These restrictions are dropped by considering a standard
adaptive controller (tuning functions with K-filters), however the system must be LTI
with known relative degree. The resulting ILC scheme learns along each pass length
instead of relying on iterative updates at the end. The parameter estimates that the
adaptive scheme produces are initialised at the start of each pass to the final value of the
previous pass. The results form a theoretical base from which to develop implementable
adaptive schemes.
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An ILC algorithm for plants with measurement noise, based on an interpretation of the
signal flow is presented in (Moore, 1999). This method for discrete-time LTI systems uses
a deterministic, adaptive (in trial number) gain adjustment technique and is an extension
of previous results (Moore, 1998), but with the inclusion of noise which makes the on-
line estimation of Markov parameters necessary. A discrete D-type law is applied and
the multi-loop perspective results from writing out the first few terms of the resulting
control system. It is clear that the controller gain should be the inverse of the first
Markov parameter, hence its estimation using a standard LMS procedure. Additional
estimates can also be included in a feedforward mechanism.

Two previous formulations are brought together in (Avrachenkov et al., 1999). The first
concerns learning using an approximation to the system performing multiple periods of
a periodic task, and the second concerns a learning control scheme using definitions in
Hilbert Space. This paper derives an ILC scheme for continuous systems using Broyden
Space and the system is described by an operator in Hilbert Space. The update algorithm
is given by

uk+1 = uk − P−1
k ek (2.30)

where P−1
k is an approximation of the linear part of the system near the trajectory

induced by the current control input as its gain. Broyden’s update produces the next
approximation operator if the system is not linear, if it is linear, a much simpler update
can be used.

A stable-inversion method of learning controller is extended (Ghosh and Paden, 1999)
to accommodate a class of non-linear, non-minimum phase plants with disturbance and
initialisation errors. This extension requires the computation of the approximate inverse
of the linearised plant rather than the exact inverse, thereby not requiring the output
differential. The system is first linearised using a linear operator. An ‘approximate
inverse’ learning operator is defined which is the pseudo inverse of the last operator, and
is obtained using the stable-noncausal-solution approach. An update law is given using
these two operators. With bounded disturbances and initiation error the error converges
to a neighbourhood of zero, and the method can be extended to deal with uncertainties.
Stable-inversion has been used (Ghosh and Paden, 2001) for the same type of plants but
designed for relative degrees greater than one at the cost of differentiating the system
output. Linear plants are first examined and the inverse is found easily if the system
is minimum phase and ‘stable inversion’ is applied if it is not by decoupling it into a
stable and a non-stable sub-system. This is then robustified by multiplying the pseudo-
inverse by e(1 + d

dt)
r instead of by e( d

dt )
r in the update algorithm. This latter equation

is also used for the non-linear plant having applied linearisation to the minimum phase
case in the traditional way and to the non-minimum phase case by a given technique.
It is noticed that no simple and direct iterative method exists for applying this stable
inversion to non-minimum phase systems (Sogo et al., 2000). To this end the problem
is formulised as a minimisation problem. The Hamiltonian function is given and also
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the gradient function which has a gradient which satisfies a given adjoint system. An
iterative method is proposed which involves integrating the system in the forward-time
direction, integrating the adjoint system in the backward-time direction by using the
output error and the state trajectory, and having an updating law of the state-space ‘C’
matrix multiplied by the gradient, multiplied by a gain. Convergence is established in
the presence of uncertainties for linear systems.

An adaptive scheme is extended to encorporate an ILC update for non-linear systems in
(Seo et al., 1999). The controller consists of three parts: (1) A feedback controller to sta-
bilise the overall closed-loop system. (2) Uncertain non-linear compensation terms are
approximated as linearly parameterised forms, and compensated for by using intelligent
systems. It uses basis functions represented by either fuzzy logic or neural networks.
The result is to keep the feedback gains small. (3) A Learning controller achieves pre-
cise tracking by updating the control input. The intelligent control parameters are also
iteratively updated. The resulting controllers are unfortunately rather complex. An-
other scheme has been proposed (Choi and Lee, 2000) in which the parameter estimates
are updated in the time domain instead of the iterative, and repetitive disturbances
are identified and compensated for in the iterative domain. The controller consists of
a feedback term to stabilise the system, a feedforward term which uses the estimated
system parameters to compensate for the non-linear part of the system, and a simple
learning law in the iterative domain. The parameter adaptation law is in the time do-
main. Existing adaptive algorithms can be used, and the learning gain can be adjusted
independently of the parameter adaptation gain. The adaptive schemes proposed in
(French and Rogers, 2000) also update the parameter estimates in the time-domain for
uncertain non-linear systems (including non-minimum phase). It is shown how adap-
tive schemes can be modified to give a solution to either the feedback of feedforward
ILC problem. Although concentration is primarily directed on theoretical issues, it is
expected, with robust modifications, that the designs will work well in any iterative
setting within domains where adaptive control has traditional success.

A ‘universal’ adaptive scheme (UAS), which involves an adaptive learning gain and a
high gain feedback gain feedback result is proposed in (Owens and Munde, 2000). UAS
is again used to produce a non-linear control algorithm consisting of a proportional
controller with time-varying adaptation on the gain, capable of stabilising any system.
It works from any initial choice of controller parameter and plant state. Algorithms for
transferring it into the Adaptive ILC context are given; a simple CITE law for updating
the control input and an iterative algorithm for updating the adaptive gain. This method
is applied to a linear SISO plant with a relative degree of one, and the potential for
achieving convergence under conditions of extreme uncertainty is demonstrated. The
assumption of minimum phase systems is required to guarantee the feedback gain is
able to be ultimately stabilising, and the error convergence to be monotonic.

23



Iterative adaptive learning has been used for injection moulding machines in (Havlicsek
and Alleyne, 1999). A simple model is developed of the plant and a feedback controller
is designed using standard linear techniques to stabilise the plant. A simple iterative
learning law of the CITE type is used, the feedforward gain being a symmetric moving
average filter operating every cycle.

2.6 Specialist System Types

Constrained non-linear systems are explicitly dealt with in (Chen et al., 1999a), which
include manipulators as a subset. The learning law is a high updating scheme in the
continuous-time domain, obtained by parametrising the control profile with a piecewise
continuous functional basis. A sufficient condition for the convergence is given and the
bound on the asymptotic error is due to the constraint condition and its Lie derivative.

Non-holonomic constraints for robotic systems have been examined (Oriolo et al., 2000),
and a robust steering scheme proposed for systems that can be put in chained form, a
canonical structure for non-holonomic systems. By over-parametrising the control law
other goals can also be met. The system is put in chained form and a control law is given
to steer the system between two points to produce ‘natural’ robot trajectories. To achieve
robustness, however, its control parameters are computed through a learning scheme,
improving at the same time a given performance criterion. The overparametrization
provides space for the optimisation process.

Another special type of ILC problem has been examined (Xu et al., 1999) with particular
reference to Rapid Thermal Processing. The problem is due to only the terminal tracking
error, instead of the whole output trajectory tracking error, being available. A revised
ILC method is proposed to address this; the control profile is parameterised with a
piecewise continuous functional basis and the parameters are updated by the simple
updating scheme which involves just the terminal error

Ξk+1 = Ξk + L1ek(N) (2.31)

where L1 is a learning matrix and Ξ is a vector of control parameters. the input is
given by uk(t) = Φ(t)Ξk A convergence condition is obtained for a class of uncertain
discrete-time time-varying linear systems. The scheme involves linearisation about an
equilibrium point.

Large scale linear systems are tackled in (Hwang et al., 1993) which take the form
of connected subsystems. The system is decentralised by applying controllers on each
one independently. The update is the same as that in Equation 2.8 and used with an
estimator providing the states.
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2.7 Neural-based ILC

Neural Networks have been used with ILC to produce a method for unknown non-
linear systems (Chapter 12 (Bien et al., 1998)). It is noted that the human brain
possesses long and short-term memory, and this provides a basis for a gain estimator
and three controller scheme. (1) A feedback controller (FBC) stabilises the system at
the initial stage before learning begins. (2) A short term memory-based ILC makes the
system output converge exactly to the desired trajectory. (3) After iterative learning, the
control information is accumulated by a trained Feedforward Neuro Controller (FNC) for
generalisation to any trajectory tracking. The Learning Gain Estimator (LGE) estimates
the learning gain of the ILC from input/output data and relative degree of the system.
Both the FNC and the LGE use a piecewise linearly trained neuro network, referred to
as SOLP (self-organising local perceptions). The procedure is as follows. (A) Design
a feedback controller to stabilise the system. (B) Identify the system using a neural
network by presenting persistently exciting inputs. Estimate the learning gain for the
ILC. (C) Choose the desired trajectory. (D) Apply the summed FNC, FBC, and ILC
outputs. (E) Transfer the ILC output to the FNC using a given training procedure. (F)
Repeat steps (D) - (F). The ILC algorithm used is a high-derivative D-type law, and
the scheme works for unknown (apart from relative degree) non-linear systems. It also
exhibits rapid convergence and guarantees convergence to the desired trajectory unlike
the pure ‘neuro’ control.

2.8 Summary

From early developments in the field of ILC, the technique has been extended to cover
a great number of system classes and utilise a large number of control techniques. It
can be seen that there exists a lack of experimentally-based research concerned with
the testing and verification of algorithm performance. Not a single report detailing the
comparison of different algorithms using the same experimental test-bed has been found.
The lack of results for non-minimum phase plants, either theoretical or practical, is also
evident in the literature.
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Chapter 3

Experimental Apparatus

3.1 Introduction

Due to the lack of published work concerning ILC and non-minimum plants, the ex-
perimental test facility will be designed to belong to that class of system. Practical
examples of this type of plant include the sway (sideways motion) control of ships using
the rudder, and the heave (vertical motion) control of submarines by using the stern
hydroplanes. Aircraft have equivalent types of motion to both of these examples. The
experimental test-bed that is required does not actually need to perform a set task or
represent an actual machine in any way. This therefore gives the design process a great
deal of freedom and flexibility in meeting its goals. It has been decided that a sufficient
control challenge exists in the form of a non-minimum phase plant without the extra
difficulties associated with multivariable control. For this reason the plant will be SISO,
a specification which also helps curtail production costs. The steps taken in the design
of the apparatus are set out in this chapter, and reasons for the decisions made are
expounded.

3.2 Mechanical System

In addition to being non-minimum phase, the only other criteria imposed on the experi-
mental apparatus is that it be open-loop stable, possess sufficient relative degree and be
of high enough order to test ILC schemes to their full potential. Electronic analogues
have been consulted in the search for a non-minimum phase characteristic, themselves
being a rich source of unusual input-output relationships. Although the Bridge Tee
and Twin Tee circuits are good candidates for the purpose of design, their ungrounded
capacitors are difficult to be physically realised by electrical-mechanical analogues. An
‘inerter’ (Smith, 2002) is capable of synthesising this element but it is an untested ap-
proach which may not offer reliability. Figure 3.1 shows an equivalent circuit which
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does fulfil the non-minimum phase criteria whilst being implementable with reliable
components. Its transfer function is given by,

L

VoVo

R

ViVi

C

ViVi

Figure 3.1: Electrical non-minimum phase circuit
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and its right half plane zero can be immediately seen.

J = C B =
1
R

K =
1
L

(3.2)

The substitutions given in Equation 3.2 convert the electrical circuit to the mechanical
realisation shown in Figure 3.2, where J represents an inertia, B a damper, K a torsional
spring, G a gear ratio, and θ rotational position. The system is purely rotational with
θi connected to the motor shaft, possibly by means of another gear, and θo constituting
the output. The fact that the non-minimum phase characteristic can be achieved so
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Figure 3.2: Mechanical realisation of stage 1

simply has led to the decision that the complete design be built up in three stages,
each adding a section to the last. This results in three experimental test-beds on which
ILC techniques can be applied, allowing complex algorithms to be implemented on the
simpler configurations before they are tried on the complete system. This progression
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also permits comparison of the results collected on each configuration, and modelling of
the system to be built up additively, in the time-domain at least.

3.2.1 Stage 1

The simplest configuration of the system, ‘stage 1’, consists of just the mechanical sec-
tion shown in Figure 3.2. Its state-space matrices, which neglect friction, are given in
Appendix A. They show that it has a relative degree of one and 2 (of 4) unobservable
states. This is unavoidable but may limit some of the algorithms that will later be ap-
plied. Simulation results of the system have been conducted for different values of G in
order to utilise the full operational range of the damper but not damage it. From these
it was decided to set the gear ratio to unity. This leads to the configuration shown in
Figure 3.3 with a drive belt replacing the left-hand gears, and also connecting them to
the drive shaft. The damper and spring are also split between the two drive trains in
order to save space. Note that the motor and its timing pulley are located beneath the
rest of the components, and that Jg includes the contribution of the left-hand timing
pulley’s mass, and J includes the right-hand gears’ masses. The required values of the

�o�o

�i�i

JB

K
JgJg

Motor

Figure 3.3: Stage 1 testbed schematic

parameters have been selected by conducting a number of simulations in order to obtain
a response that meets the required needs in terms of stability, error, oscillation, and
the non-minimum phase characteristic. This has involved linearising damper data-sheet
information, calculating torsional spring equations, extrapolating from torsional spring
data-sheets, and the summation of individual inertia values in order to calculate the
values needed in the models. Chapter 4 discusses the modelling of all the system stages.
The very approximate estimation of the stage 1 system’s transfer function is given by,

θ̇0

θ̇1
=

−5.526s + 22.063
s2 + 5.5162s + 22.063

(3.3)

and this allows a negative feedback gain K, such that 0 ≤ K ≤ 1.0, to be used on the
system before instability occurs. This indicates that a feedback controller can be used
effectively with the system. Even with the addition of the motor and inverter together
with the simplifications made, this model should serve as a good approximation of the
stage 1 plant dynamics.
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3.2.2 Stage 2

The stage 2 plant consists of the non-minimum phase stage plus an additional spring-
mass-damper system. To provide the extra complexity required, the sections shown in
Figures 3.4 and 3.5 have been examined and simulated as possible additions between
the motor and the non-minimum phase section. They differ in whether the damper is
directly in the drive train, or connected ‘to earth’. The gearing is intended to allow
greater utilisation of the damper’s full range of velocity.

�o�o

J1J1

B

K

J2J2

�i�i

G

�1

Figure 3.4: Drive train with an ‘in line’ damper
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Figure 3.5: Drive train with a damper ‘to earth’

The state-space matrices corresponding to Figures 3.4 and 3.5 are given in Appendix A,
as well as those of the systems produces when the system shown in Figure 3.4 preceeds
the non-minimum phase section and that of Figure 3.5 preceeds the non-minimum phase
section. The results show that using the configuration shown in Figure 3.4 produces 1
(of 5) uncontrollable states, and 3 (of 5) unobservable states when combined with the
non-minimum phase section. When Figure 3.5 is examined it is found that it only has 2
(of 4) unobservable states, and no uncontrollable states. This is the primary reason that
the layout of Figure 3.5 has been chosen, but it has also been observed that locating
the damper directly in the drive train is a much larger potential source of errors in
the modelling stage, its characteristic being largely nonlinear. Since both alternatives
have a relative degree of 3, there appears to be little compromise in the selection made.
Figure 3.6 shows the overall schematic of the stage 2 test-bed. When data sheets on
commercially available dampers are consulted, it can be seen that the gearing present in
Figure 3.5 is unnecessary, especially since the non-minimum phase damper is required
to operate at approximately twice the velocity of the other. The state-space matrices
of the second stage system are given in Appendix A. Component values are chosen, as
before, by examining simulated responses of the system and by observing component
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Figure 3.6: Stage two testbed schematic

limitations (velocity for dampers, maximum displacement for springs). The approximate
estimation of the stage 2 system’s transfer function is given by,

θ̇0

θ̇1
=

−0.647s + 2.588
0.001s4 + 0.014s3 + 0.17s2 + 1.229s + 2.588

(3.4)

and this predicts that a negative feedback gain K, such that 0 ≤ K ≤ 1.02, can be
applied before the onset of instability occurs.

3.2.3 Stage 3

The stage 3 plant consists of the stage 2 system plus an additional spring-mass-damper
system. To further augment the stage 2 plant, a natural choice is to add another
section of the form shown in Figure 3.5. This is preferable to the form of Figure 3.4
for the reasons given previously. The component values of the two sections are selected
differently to add variety to the system’s dynamics and separate possible oscillation
modes. The complete system is shown in Figure 3.7. Note that ‘X’ and ‘Y’ specify the
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Figure 3.7: Stage three testbed schematic

same shaft and should follow on from one-another. The state space matrices of this
system are contained in Appendix A. The stage 3 system has a relative degree of 5, 2
(of 8) unobservable states, and is fully controllable. The remaining component values
(J1, K1, part of J2) have been selected according to the guidelines already elucidated.
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The resulting transfer function is given by,

θ̇0

θ̇1
=

−5.05s + 20.199
0.0001s6 + 0.0015s5 + 0.034s4 + 0.36s3 + 2.185s2 + 14.392s + 20.199

(3.5)

and it should be again emphasised that this does not include friction, uses linearised
damper information, unreliable spring equations, and approximate values of inertia. It is,
however, accurate enough for the selection of parameters, and to show that the system
is now of sufficient complexity to dispense with any further additions. The transfer
function plant will become unstable with a feedback gain K, such that 0 ≤ K ≤ 0.89,
can be applied which should allow an acceptable region of stability for ILC methods to
operate in.

3.2.4 Physical Implementation

Figure 3.8 shows a schematic diagram of the test-bed with the structural elements omit-
ted to leave just the component placement. The encoders are drawn in green, the
dampers in dark blue, the timing belt in light blue, the motor in magenta, and the tor-
sional springs in red. Note that the dampers all lie in the same horizontal plane as other
elements in the system, and therefore overlap them. The non-minimum phase section is
located directly above the rest of the drive train in order to conserve space. Whilst the
two other spring-mass-damper sections can be removed and replaced with sections of
shaft in order to make up stages 1 and 2, the non-minimum phase section is not altered.
A top-view of the non-minimum phase section is shown in Figure 3.9 with the principal

Figure 3.8: Stage three technical drawing

parts labelled. The torsional spring is situated around an aluminium mandrel which
has a plate on either end. The spring is actually comprised of two springs connected
together by means of the spring clamp, with their other ends secured to each end plate.
The springs are wound in opposite directions to one another to make the torque/speed
characteristic symmetrical. A roller bearing can rotate around the mandrel to reduce
friction between the two, and whirling of the spring as velocity increases. The mandrel
rotates about a shaft that reaches most of the way through, secured by two ball races,
and terminated with a thrust bearing. The end plate nearest to this has another shaft
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Figure 3.9: Non-minimum phase technical drawing

secured to it by means of a hub clamp. In this way one of the torsional springs is com-
pressed and the other is expanded as one of the shafts is rotated axially with respect
to the other. Inertia has been changed by means of the diameter of the endplates, the
left hand endplate of section 2, for example, is constructed from stainless steel and has
a larger diameter to add additional inertia at that juncture.

The structural parts of the apparatus can be seen in Figure 3.10 and consist of aluminium
plates mounted on a test-bed by means of long aluminium sections running its full length.
These long sections have grooves cut into them to accommodate the plates and ensure
rigidity. Steel dowels are also used to add accuracy when reassembling the structure. A
system comprising bearings, shafts and threaded bolts is used to tension the timing belt.
The inverter and terminal box are mounted on either end of the apparatus to negate the
need for further housing. Computer aided design (CAD) images of some of the principle
parts of the system are shown in Appendix C.

Figure 3.10: Complete system in stage 3 form
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3.3 Electrical System

Figure 3.11 shows the electrical connections in the system. A commercial ISA expansion
card constitutes the interface between hardware and software. It can output two ±10V,
14-bit analogue signals, of which only one is necessary for this application, an opto-
isolated digital output to enable the inverter, and two 32-bit counters for encoder input.
Edge triggering is used by the encoder counters which produces a fourfold increase in
their resolution. Information pertaining to the I/O card is given in Appendix B. All
signal lines are screened and earthed to the PC case in order to minimise electromagnetic
interference (EMI). The inverter provides three phase pulse width modulated (PWM)

Figure 3.11: Experimental apparatus schematic

voltage to the motor, with a constant voltage to frequency ratio. Since the flux produced
by the stator of the motor is proportional to this ratio, it means that torque can be
kept constant throughout the speed range of the motor. As the inverter only accepts
a unipolar speed demand, a direction signal is required from the computer. This is
achieved by using a relay and a line from the PC’s parallel port.

3.4 Software

A 1GHz Pentium 3 PC running Windows 98 is used to implement the control software.
Since it is doubtful whether computer code running in a Dynamic Link Library (dll)
under windows can deliver faster interrupts than 1 to 2 ms, DOS has been chosen as
the operating system (OS) in which to implement the controllers. This also ensures
the system resources are fully available to the task of inter-sample calculations. The
DOS applications offer the operator menu-based run-time configuration of the system
parameters. The library (lib) files that are provided with the I/O card allow functions
in the C++ programming environment to communicate with it. The software has been
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organised so that the implementation of all the controllers predominantly requires alter-
ation of a single file. Controllers have been implemented as interrupt service routines
(ISR), the interrupt being generated from a programmable interrupt controller on the
I/O card.

3.5 Summary

A system has been designed that allows the implementation of a wide range of ILC
algorithms on a SISO non-minimum phase plant. Particular attention has been paid
to ensuring that it is appropriate for use with a wide range of those algorithms seen
in Chapter 2, and for that reason it can be configured in three levels of mechanical
complexity. This also allows the examination of how the system order and relative
degree affect ILC control techniques.
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Chapter 4

System Modelling and Validation

4.1 Introduction

Two separate approaches have been used to model the system. The first breaks the
system down into separate components, or in as small groups as possible. Theoretical
expressions for each one are produced and verified against experimental data. These
simple components are then linked together to form a time-based model of the complete
system. The second approach is conducted in the frequency domain and consists of a
linear model that is fitted to experimentally obtained frequency response data. This
approach is essential as a linear model is necessary for most model-based controllers
and for many control analysis techniques. The time-based model is used to validate
controllers that have been designed using the linear model. Both models have been
created using a commercial, mathematical simulation software package.

4.2 Time Based Model

4.2.1 Overview

The components in the system are the I/O card, inverter, induction motor, encoder, and
mechanical components consisting of inertias, springs, dampers, and a timing belt. Each
of these components forms a self contained model, which interacts with the elements that
come before and after it. Figure 4.1 shows this interaction.

4.2.2 I/O Card

The I/O card responds to a digital value representing the desired analogue output in
volts. Measurements throughout the range of output voltage have shown an additional
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Figure 4.1: Time based model overview

attenuation of 0.9781, meaning that its overall gain is 0.97810−3 . The storage and
outputting of 14-bit numbers results in a quantisation interval of 1

214 .

4.2.3 Induction Motor

A three phase induction motor can be represented directly by means of a phase variable
model (Colak et al., 1995; Robertson and Hebbar, 1969). It is more convenient, however,
to represent a.c motors using a two axis, d.q. approach (Jordan, 1965; Krause, 1965;
Jones, 1967; Krause, 1968; DeSarkar and Berg, 1970; Hancock, 1974; Bose, 1987; Vas,
1990). Using this method requires less computational effort than the others (MacDonald
and Sen, 1979), but has some inherent assumptions about the system that may not
always produce acceptable results. If this is the case then it is possible to compensate
for them, though this increases the complexity (Slemon, 1989). The equations for a two
axis, d.q representation of an induction motor with N poles are given by




vds

vqs

vdr

vqr


 =




Rs + Lsp 0 Msrp 0
0 Rs + Lsp 0 Msrp

Msrp NωrMsr Rr + Lrp NωrMsr

−NωrMsr Msrp −NωrMsr Rr + Lrp







ids

iqs

idr

iqr


 (4.1)

Tr = Jmotpωr +Bmotωr −NMsr(idsidr − idsiqr) (4.2)

where Rs and Rr are the stator and rotor resistance, Ls and Lr are the stator and rotor
inductance, Msr is the mutual inductance, wr is the rotor mechanical angular velocity,
and p is the differential operator. Parameter values have been obtained by no-load and
locked rotor tests. Figure 4.2 shows experimental results which confirm the accuracy of
this approach.
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Figure 4.2: Induction motor on fixed supply

4.2.4 Inverter Model

The inverter utilises Sinusoidal Pulse Width Modulation (SPWM) which means that all
harmonics below 2h− 1 are eliminated (Rashid, 1993), where h is the number of pulses
per half cycle such that

h =
fc
2f0

(4.3)

Here fc is the carrier frequency and f0 is the output frequency. The PWM switching
frequency is 2.9KHz for the inverter used which means that all harmonics less than
1.45kHz are eliminated. The electrical circuit of the induction motor can be thought
of as a low pass filter with a bandwidth of a few tens of hertz (Stefanovic and Barton,
1977), which implies that the inverter can be represented as an ideal variable frequency,
variable amplitude sinusoid

v0(t) =
√
2Vrmsα sin(βt) (4.4)

where β is the demanded output frequency in rads−1 and α is an amplitude scalar to
give the correct V/f ratio. As Figure 4.3 shows, the inverter model comprises a control

Figure 4.3: Overview of the inverter model

section to calculate the required voltage and frequency, and a power section to generate
the Variable Voltage, Variable Frequency (VVVF) waveform based on Equation 4.4. A
low pass filter on the voltage demand signal is used to approximate the resistance and
capacitance of the d.c link. Load current determines inverter losses via a resistance term,
this is then subtracted from the phase voltages. Information provided by the inverter
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Figure 4.4: Inverter control block

manufacturer can be incorporated in the inverter control block that is shown in Figure
4.4. Expressions for the demand voltage to frequency and frequency to RMS line voltage
have been found from the experimental results shown in Figure 4.5. Results confirming
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Figure 4.5: Frequency and voltage characteristics of the inverter

the accuracy of the overall motor and inverter simulation are shown in Figures 4.6 and
Figure 4.7. The simulations do not match the experimental data exactly due to the
simplifications and simplifications made in the modelling process and the presence of
unmodelled high order dynamics.
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Figure 4.6: Induction motor speed test on inverter supply

4.2.5 Belt Model

In order to start extending the linear models of the three stages of the system seen
in Sections 3.2.1, 3.2.2, and 3.2.3, the timing belt can be represented by the spring-
mass-damper system shown in Figure 4.8. TA represents the torque input to the belt
and TB and TC are the load torques from the two other branches. Damping could be
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Figure 4.7: Step response of the induction motor on inverter supply

Figure 4.8: Timing belt model

included in parallel with each spring element kb (Abrate, 1992), but this is negligible
when compared to the other sources of damping in the system. The inertia, damping,
and friction of those elements that are rigidly connected to each pulley should be added
to the parameters Jb, bb, fb, or referred back as part of the load torque TB or TC . The
resulting linear model of the belt uses small angle approximations and is given by




θ̈A

θ̈B

θ̈C


 =




−2r2bkb

Jb

−bb
Jb

r2bkb

Jb
0 r2bkb

Jb
0

r2bkb

Jb
0 −2r2bkb

Jb

−bb
Jb

r2b
Jb

0
r2bkb

Jb
0 r2bkb

Jb
0 −2r2bkb

Jb

−bb
Jb


 x
¯
(t) +




1
Jb

1 1

0 −1
Jb

0

0 0 −1
Jb


 u
¯
(t) (4.5)

where
u
¯
(t) =

[
TA TB TC

]T
y
¯
(t) =

[
θ̈A θ̈B θ̈C

]T
x
¯
(t) =

[
θA θ̇A θB θ̇B θC θ̇C

]T (4.6)
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The coulomb friction parameters can only be incorporated into the system by the addi-
tion of an extra term on the right hand side of Equation 4.5:

−
[

aA aB aC

]T
(4.7)

where

sign(ai) =

{
+ive if θ̇i > 0
−ive if θ̇i < 0

|ai| =
{

fb
Jb

if θ̇i 
= 0

−
∑

i Fi

Jb
otherwise

iε{A,B,C}
(4.8)

∑
i Fi is the sum of the forces acting on Ji and equals Jiθ̈i provided that θ̈i has been

calculated at the same instant, ignoring friction. It is then superseded by the new value
obtained using this term. If θ̇i = 0 in the right hand side of Equation 4.7, the direction
of

∑
i Fi must be considered. The presence of coulomb friction means that the system

is non-linear.

4.2.6 Stage 1 Mechanical System

The belt model must have the sections shown in Figure 4.9 added to it in order to
represent the stage 1 system. The section shown in Figure 4.9 (a) models the interaction

Figure 4.9: Stage 1 additions

between the torque supplied by the motor, Ti, and that driving the belt model, TA. In
fact the parameters b1, f1, J1 can simply be added to the corresponding bb, fb, Jb and
the position terms equated:

θA = θ1 (4.9)

Figure 4.9 (b) describes the interaction between TB and TC . The terms b2, f2, and J2

could be added to the relevant Jb, bb, and fb of the belt model, and the equivalent done
for b3, f3, and J3. Before being combined with this model, the velocities of the belt
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model must be equated to these new parameters by setting

θB = θ2 and θC = θ3 (4.10)

The equations of this section are given by

[
θ̈4

]
=

[
K
J4

0 0 B
J4

−K
J4

−(b4+B)
J4

]
x
¯
(t) +

[
0 0

]
u
¯
(t) (4.11)

y
¯
(T ) =




K b2 0 0 −K 0
0 0 0 b3 +B 0 −B
K
J4

0 0 B
J4

−K
J4

−(b4+B)
J4


 x
¯
(t) +




J2 0
0 J3

0 0


u
¯
(t) (4.12)

where
u
¯
(t) =

[
θ̈2 θ̈3

]
y
¯
(t) =

[
TB TC θ̈4

]
x
¯
(t) =

[
θ2 θ̇2 θ3 θ̇3 θ4 θ̇4

]T (4.13)

The right hand side of both the matrix state equation and Equation 4.12 requires an
extra term to account for coulomb friction. These terms are respectively

[
0 0 0 0 0 a4

]T
and −

[
−J2a2 −J3a3 a4

]T
(4.14)

with

sign(ai) =

{
+ive if θ̇i ≥ 0
−ive if θ̇i < 0

|ai| =
{

fb
Jb

if θ̇i > 0

−
∑

i Fi

Jb
otherwise

iε{2, 3, 4} (4.15)

The conditions used to calculate the friction in Equation 4.14 are the same as for the
belt model. The overall, nonlinear, state-space representation of the system is obtained
by combining the two models, this results in
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¯
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(4.16)

[
Ti

θ̈4

]
=

[
2kbr2b b1 + bb −kbr

2
b 0 −kbr

2
b 0 0 0

0 0 K
J4

0 0 B
J4

−K
J4

B−b4
J4

]
x
¯
(t) +

[
J1 + Jb

0

]
u
¯
(t)

(4.17)
where

u
¯
(t) =

[
θ̈1

]
y
¯
(t) =

[
Ti θ̈4

]
x
¯
(t) =

[
θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4

]T (4.18)
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The friction terms to be added to the right hand side of Equations 4.21 and 4.22 are
respectively

−
[

a2
J2+Jb

a3
J3+Jb

a4
J4

]T
and −

[
−a1

a4
J4

]T
(4.19)

with

sign(ai) =

{
+ive if θ̇i ≥ 0
−ive if θ̇i ≤ 0

|ai| =




fi, i = 4
fi + fb if θ̇i 
= 0, i = 1, 2, 3 iε{1, 2, 3, 4}∑

Fi otherwise
(4.20)

Again, the sum of all forces acting on Ji,
∑

Fi, must be calculated neglecting the friction
term, and if θ̇i = 0, the direction of

∑
Fi must be used in its place.

4.2.7 Stage 2 Mechanical System

The belt model must have the sections shown in Figure 4.10 added to it in order to
represent the stage 2 system. This produces the following relationships

Figure 4.10: Stage 2 additions
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[
Ti

θ̈5

]
=

[
K + 1 b1 −K1 0 0 0 0 0 0 0

0 0 0 0 K2
J5

0 0 B2
J5

−K2
J5
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]
x
¯
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J1

0
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(4.22)

where
u
¯
(t) =

[
θ̈1

]
y
¯
(t) =

[
Ti θ̈5

]T
x
¯
(t) =

[
θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4 θ5 θ̇5

]T (4.23)
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The friction terms to be added to Equations 4.21 and 4.22 are respectively

−
[

a2
J2+Jb

a3
J3+Jb

a4
J4+Jb

a5
J5

]T
and −

[
−a1

a5
J5

]T
(4.24)

with

sign(ai) =

{
+ive if θ̇i > 0
−ive if θ̇i < 0

|ai| =




fi if θ̇i 
= 0, i = 1, 5
fi + fb, i = 2, 3, 4 ε{1, 2, 3, 4, 5}∑

i Fi otherwise
(4.25)

4.2.8 Stage 3 Mechanical System

The belt model must have the sections shown in Figure 4.11 added to it in order to
represent the stage 3 system.

Figure 4.11: Stage 3 additions
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[
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(4.27)

where
u
¯
(t) =

[
θ̈1

]
y
¯
(t) =

[
Ti θ̈6

]T
x
¯
(t) =

[
θ1 θ̇1 θ2 θ̇2 θ3 θ̇3 θ4 θ̇4 θ5 θ̇5 θ6 θ̇6

]T (4.28)

43



The friction terms to be added to the right hand side of Equations 4.26 and 4.27 are
respectively

−
[

a2
J2

a3
J3+Jb

a4
J4+Jb

a5
J5+Jb

a6
J6

]T
and −

[
−a1

a6
J6

]
(4.29)

with

sign(ai) =

{
+ive if θ̇i > 0
−ive if θ̇i < 0

|ai| =




fi if θ̇i 
= 0, i = 1, 2, 6
fi + fb, i = 3, 4, 5 iε{1, 2, 3, 4, 5, 6}∑

i Fi otherwise
(4.30)

Although derived from first principles, the stage 3 system was not employed because the
first two stages were found to be more than adequate for experimentation.

4.2.9 Component Tests

The springs and dampers were individually tested to determine their characteristics.
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Figure 4.12: Results for springs 1 and 2
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Figure 4.13: Results for spring 3

The two larger springs shown in Figure 4.12 have almost identical linear displacement
to torque characteristics, and further experimentation revealeds negligible hysteresis. A
polynomial expression has been fitted to each result. The less stiff non-minimum phase
spring, shown in Figure 4.13, also has a characteristic that can be accurately modelled
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as linear, and has a hysteresis which amounts to less than 0.03 Nrad at zero displace-
ment. This hysteresis will only be considered if the model is unsatisfactory without
it. Figure 4.14 shows that the damper selected to have a damping coefficient of 0.01
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Figure 4.14: Results for non-minimum phase damper

Nsrad−1 actually has a non-linear characteristic modelled by the equation shown. The
damper exhibits slight changes in characteristic due to thermal effects, but these have
not been investigated to any great extent. Figure 4.15 shows the experimental results
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Figure 4.15: Results for small dampers

of tests conducted on the dampers used in the sections preceding the non-minimum
phase section. They were selected to have coefficients of 0.0025 and 0.004 Nsrad−1 re-
spectively, the results however show the true non-linear characteristic. In each case the
fitted function is used in the simulation.

4.2.10 Stage 1 Model Validation

The simulations produced for the three stages of mechanical test-bed have been validated
by comparing experimental and simulated responses to a variety of demands. Step
response results are given in Figure 4.16, and Figure 4.17 shows responses to a repeating
sequence input. The results show that the model is reasonably accurate but still fails
to capture the high-order dynamics that can be seen in the experimental step response
results.
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Figure 4.16: Stage 1 experimental and simulated step responses
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Figure 4.17: 10 UPM repeating sequence demands, 1, 2 and 3V amplitudes

Additional results for repeating sequence and sinewave inputs of varying amplitude and
frequency are presented in Appendix E.

4.2.11 Stage 2 Model Validation

Step response results are given in Figure 4.18, and Figure 4.19 shows responses to a
repeating sequence input. The results are less accurate than the corresponing test results
for the stage 1 system since the addition of components directly into the drive-train
has caused modelling errors to be magnified. Since the time-based models will be solely
used to verify the performance of controllers derived using the frequency domain models,
its accuracy appears to be satisfactory. Additional results for repeating sequence and
sinewave inputs of varying amplitude and frequency are presented in E.

4.3 Frequency Based Model

Frequency response analysis is crucial in providing linear models suitable for use in model
based controllers and general analysis. Frequency analysis also provides information not
necessarily apparent from time response methods, such as the determination of pure
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Figure 4.18: Stage 2 experimental and simulated step responses
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Figure 4.19: 10 UPM repeating sequence demands, 1 and 2V amplitudes

time delays. The system excitation is a sinusoidal voltage, and the position of the
output shaft is the output.

4.3.1 Induction Motor and Drive Frequency Response

The drive system’s response to sinusoidal demand signals of amplitude 1V and 3V, with
a constant DC offset of 3V is shown in Figure 4.20. Frequency quenching can account for
the presence of some of the low frequencies that gradually become more dominant than
the high ones as the input frequency is increased. This is especially true when using the
higher amplitude input signal. Examination of each frequency spectrum reveals no in-
creasing low frequency component present that would be consistent with the ‘sidebands’
caused by an inverter sampling frequency within the 0-100Hz range used. Therefore
it is unnecessary to include one in the model. Figure 4.21 a) shows the frequencies
that a sinusoidal demand of 30Hz with an offset of 3V requires the inverter to provide.
The 3V offset produces frequencies at 15Hz since the maximum output frequency of the
inverter of 50Hz corresponds to a 10V demand. The case shown is a simple one as the
difference in amplitudes (15Hz) also constitutes an output component which repeats at
30Hz intervals and exactly corresponds with the main frequency spectrum and no new
frequencies are added. Figure 4.21 b) shows the usual complexity when the frequencies
do not correspond. The 5V offset produces frequencies of 25Hz, and these repeat at
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Figure 4.20: Drive input frequency to fundamental output frequency characteristic

Figure 4.21: Simulated VVVF output spectrums of idealised inverter

30Hz intervals by virtue of the sinusoid superimposed on the demand. The difference
in frequencies is 5Hz and so additional frequencies exist at 5Hz and at 30Hz intervals
thereafter.

4.3.2 Stage 1 Linear Model

Linear models of the entire system in all three configurations have been calculated by
means of experimentally produced bode plots. The frequency response of the system
up to 30Hz was determined in each case. A fifth order approximation is sufficient to
describe the bode plot data of the stage 1 system (Equation 4.31) its units are in radV−1.

Gstage1(s) =
123.853 × 104(3.5 − s)

s(s2 + 6.5s + 42.25)(s + 45)(s + 190)
(4.31)

The bode plot of this model together with the experimental data used to obtain it is
given in Figure 4.22.
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Figure 4.22: Experimental and modelled stage 1 frequency response

4.3.2.1 Model Validation

The simulations produced for the three stages of mechanical test-bed have been validated
by comparing the actual response to a range of step responses with the simulations. Step
response results for the stage 1 model are given in Figure 4.23, and Figure 4.24 shows re-
sponses to a repeating sequence input. Slight adjustments have been made to the model
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Figure 4.23: Step responses of the stage 1 model against experimental data

that best fits the bode plots in order to best fit the experimental data. These slightly dif-
fering models are given in Appendix F. As expected, when compared to the time-based
simulation results (Figures 4.16 and 4.17), the results show that the frequency-based
model is less well able to model the non-linear plant dynamics. Additional results of re-
peating sequence and sinewave inputs of varying amplitude and frequency are presented
in Appendix E.
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Figure 4.24: 10 UPM repeating sequence demands, 1, 2 and 3V amplitudes

4.3.3 Stage 2 Linear Model

A forth order approximation is sufficient to describe the bode plot data of the stage 2
system given in Equation 4.31, its units are in radV−1.

Gstage2(s) = e−0.06s 1202(4 − s)
s(s+ 9)(s2 + 12s+ 56.25)

(4.32)

The bode plot of this system together with the corresponding experimental results is
given in Figure 4.25.
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Figure 4.25: Experimental and modelled stage 2 frequency response

4.3.3.1 Model Validation

Step response results for the stage 2 model are given in Figure 4.26 and Figure 4.27 shows
responses to a repeating sequence input. Again slight adjustments have been made to
the model that best fits the bode plots in order to best fit the experimental data. These
slightly differing models are given in Appendix F. The results again show that the linear
model produces less accurate results than those of its time-based counterpart (Figures
4.18 and 4.19). When also compared to results obtained using frequency model of the
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Figure 4.26: Step responses of the stage 2 model against experimental data

stage 1 system (Figures 4.23 and 4.24), it is clear that less accuracy has been achieved.
This is due to the addition of non-linear components in the drive-train which causes
modelling errors and non-linear characteristics to be both augmented and magnified.
Additional results of repeating sequence and sinewave inputs of varying amplitude and
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Figure 4.27: 10 UPM repeating sequence demands, 1 and 2V amplitudes

frequency are presented in Appendix E.

4.4 PID Control

The majority of ILC schemes are based on the assumption that the plant is stable and
some explicitly propose the use of a feedback controller. This is most easily achieved
with the use of a proportional, integral and differential (PID) controller, the control
method most favoured in industry. This method is very simple to implement discretely,
and selection of parameters can be achieved by using the plant models. The tuning of
the controller gains using the plant models can therefore be seen as a form of model
validation since the resulting gains can be verified against those found to be sucessful in
practice.

Research into producing an auto-tuner to find optimal gains has been a very active area
over the last few years, and this provides an inevitable link with the area of Iterative
Identification and Control (II&C) where the problem of identifying the system model
and choosing parameters for the control of the system are combined (i.e (Veres, 1999)).
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Due to time constraints and the complexity of the II&C schemes, these methods have
not been applied to the present system.

4.4.1 Classical PID Control

The traditional three term controller is given in the continuous domain by:

u(t) = Kpe(t) +
Ki

Ti

∫
e(t)dt +KdT

d

dt
e(t)

= u(t) + ui(t) + ud(t) (4.33)

The digital equivalent of this, given in its positional form is:

up(i) = Kpe(i)

ui(i) = u(i− 1) +
KiTs
2Ti

[e(i) + e(i − 1)]

ud(i) =
KdTd
Ts

[e(i) − e(i− 1)] (4.34)

where Kp, Ki and Kd are the proportional, integral and derivative gains and Ts, Ti and
Td are the sampling, integral and derivative periods.

The sampling frequency of 2.5kHz has been selected for the proportional and integral
sections of the controller, making Ts = 1/2500 and Ti = 1. The frequency of the
differential action has been reduced to 500Hz (Td = 5) for several reasons. Due to
the limited resolution of the encoders, the differential resolution is extremely limited.
Increasing Td allows more encoder pulses to be recorded between each sample time but
of course reduces the time resolution. This compromise can be seen via analysis of
the linear model in the frequency domain. Smaller differential frequencies increase the
mid-to-low closed-loop gain at the cost of reduced phase and gain margins and system
bandwidth. This is reinforced in the time-domain by the increasingly underdamped
step responses seen at low differential frequencies. The full model was simulated with a
variety of demands and the effect of increasing the differential frequency from 500 Hz to
2.5kHz saw less than 1% degradation in MSE performance. This indicates that the effect
is quite small, especially using the small Kd values that the system requires of a three
term controller. Perhaps the greatest motivation for the use of the smaller frequency is
its consequence of reducing the effect of the noise present in the differential error signal.

4.4.2 Stage 1 PID Control

The Zeiger-Nichols method of PID tuning (Zeigler and Nichols, 1942) was found to
produce unsatisfactory results. The values of Ki and Kd were excessively large and
produced a wildly unstable system. Manual tuning of the parameters was therefore
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undertaken, using root-locus design as a starting point. Once a range of suitable values
was found, they were simulated using the time based model before being used on the
actual stage 1 system. In both cases a cost comprising the total output error for the
demand was calculated by the controller once the system had settled. This cost is given
by

Jk =
N∑
n=1

|yd(n)− yk(n)| (4.35)

where N is the number of samples in each trial, yd the demand and yk the output on the
kth trial. The PID values were chosen in order to minimise this cost. Unfortunately the
natural time-delay of the output, caused by the system’s lag at low frequencies, meant
that the cost was only reduced by using such large controller values that the response
was unstable. Figure 4.28 a) illustrates this effect and was produced using the time-
based model. Figure 4.28 b) shows the advantage of tuning the PID gains in order to
minimise the cost term given in Equation 4.36 where yd(i) = yd(i+N). This means that
the demand can be shifted back in time until a minimum error is reached. The output
follows the shape of the demand closely, albeit a displaced copy. The error is 4.5 times
less than that of the unshifted version, and the velocity no longer reaches unacceptable
magnitudes

Figure 4.28: Simulations illustrating tuning of PID with and without a shift in de-
mand

Jk =
∑N

i=1 |yd(i+ γ)− yk(i)| γ = 1, 2, ...N − i (4.36)

The final PID values for a for a subset of 18 demands are given in Appendix G. These
encompass sinewaves and repeating sequences of 3 different unit rates, and 3 different
amplitudes. The 20 UPM versions are shown in Figure 4.29. Each of these position
demands has a maximum velocity of 10 rads−1. Although 20 and 30 rads−1 versions
have been tuned, it has been found that they are too large to be safely used with ILC.
The demands shown will be refered to as the sinewave, R1 and R2 demands hereafter for
conciseness. Figure 4.30 confirms the effectiveness of the tuning approach used, showing
that the output resembles a shifted copy of the demand as closely as can be reasonably
expected.
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Figure 4.29: 10 rad/s amplitude 20 UPM demands
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Figure 4.30: PID experimental data from sinewave demand at 10 UPM and 10 rads−1

4.4.3 Stage 2 PID Control

PID controllers were tuned for the stage 2 plant in exactly the same manner as the stage
1 plant. The tuning parameters are shown in Appendix G.

4.5 Summary

A time-based model of both the stage 1 and stage 2 plant has been produced by de-
composing the system into individual elements and producing mathematical expressions
to capture the characteristics of each. The interaction between these components has
been established and the resulting models have been and verified against experimental
step response and demand response data. Linear models have been produced for the
stage 1 and stage 2 plants using frequency response experimental data. The accuracy
of these models has also been verified using experimental step response and demand
response data. The derivation of the time-based model for the stage 3 system has also
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been given. PID controllers have been tuned for the two plants that will be used to test
ILC strategies. A cost function has been used which allows the shape of the demand
to be followed at an arbitrary time-delay, thereby avoiding excessive gain values. The
success of the PID gains found by simulation using the plant models has provided an
alternative form of model verification.
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Chapter 5

Basic ILC Algorithms

5.1 Introduction

Before considering more recent developments it is imporant to examine the performance
of the basic algorithms that were first proposed by Arimoto, Miyazaki, Kawamura and
Tamaki on the system. P-type, D-type and Delay-type algorithms are a natural starting
point, and these can readily be extended to include higher orders, and also combined with
several error cut-off techniques to aid convergence and stability. This section presents
experimental results and investigates the effect of parameter variation. The algorithms
have been implemented on the stage 1 system. The performance of the algorithms will
establish a benchmark against which other learning stategies may be compared.

It is generally assumed that ILC trials are performed with intervals inbetween which
allow the system states to return to some constant value. The main consequence of
this action is to either necessitate a sudden control action at the beginning of each trial
in order to arrive at the correct states, or to force the trajectory to coincide with the
initial states. Since this has little impact on the ILC mechanism, in steady state at least,
the resetting of the states has been omitted from all the experiments conducted unless
expressly stated otherwise. This effectively means RC rather than ILC is being applied
but the close relationship that exists between the two disciplines means results from
one are relavant to the other and that the same convergence conditions can be applied
(Longman, 2000). This also saves a large amount of time in performing a complete set
of tests but forsakes the luxury of between-cycle calculation.
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5.2 P-type ILC

P-type ILC, being perhaps the seminal ILC algorithm (Arimoto et al., 1984a), was
examined first, the discrete law used is given by

uk+1(i) = uk(i) + φek(i)

ek(i) = yd(i) − yk(i) (5.1)

where uk(i) is the control input on kth trial at the ith sample, ek(i) is the error, yd(i) is
the desired plant output, yk(i) is the actual plant output and φ is a scalar gain. ek(i+1)
has been used instead of ek(i + 1) since a sample delay is required to counter the one
time step delay through a differential equation when fed by a zero order hold. Since uk

is initially equal to the demand yd, the P-type law can be interpreted as the demand for
trial k+1 being made from the original demand plus the integral of all the errors up to
and including trial k.

5.2.1 Results

The control algorithm was applied ‘trial to trial’ until instability made it impossible to
continue without harming the test-bed. Figures 5.1, 5.2 and 5.3 show how the error
evolves as the trial number increases using the 10, 15 and 20 UPM sinewave demands
and a variety of gains. The error has been normalised to take into account the relative
difficulty of each demand profile to produce the normalised error (NE), calculated using

∑N
i=1 |yd(i)− yk(i)|∑N

n=1 |yd(i)|
(5.2)

A NE of 1, for instance, would occur if the output was continually zero whatever the
demand used. Although this expression helps counter the misleadingly large error of
a long profile, it can do nothing to obviate the large error associated with a quickly
changing demand, nor should it.
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Figure 5.1: P-type error results for 10 UPM sinewave demand
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Figure 5.2: P-type error results for 15 UPM sinewave demand
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Figure 5.3: P-type error results for 20 UPM sinewave demand

The initial cycle (cycle 0) is not influenced by the ILC update but its effect appears
during the next cycle. The gain values (φ) used are colour-coded and set out in the
key shown in Figure 5.3. Changing the demand profile yields similar results and those
obtained using the R1 demand are shown in Appendix H.1.

The increasing NE of the first cycle shows that the PID controller becomes less effective
as the unit rate increases. Negative gains are investigated in accordance with the the-
ory that the gain should have the same sign as the system matrix multiplication CB.
Although they appear to produce superior results at higher unit rates, this is achieved
only by the output assuming a fixed position and barely moving at all. The demand
profile and corresponding output for a case using the negative gain is given in Figure 5.4
to show the general effect. Three important influences on performance can be observed
from the results obtained;

• As the unit rate increases the number of trials until instability (Tins) decreases
and the minimum error increases.

• For repeating sequences and high unit rates Tins decreases and the minimum error
increases.
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Figure 5.4: Data recorded during cycle 15 of 20 UPM sinewave demand with φ =
−0.0625

• After a certain value is reached, the effect of further decreasing the gain does not
result in any further decrease in the minimum error.

Figure 5.5 shows results from the trial with the minimum cycle error. The output before
learning, ‘PID output’, is included for comparison and is shown to significantly lag the
demand. Use of P-type ILC removes the lag of the output but the original demand is
not followed well. The updated demand is very oscillatory. In both cases the output
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Figure 5.5: Data recorded during cycle 50 of 10 UPM sinewave demand with φ =
0.0625

using just a PID controller is given for comparison. Figure 5.6 shows the change in the
output as the trial number increases. The interval between trials shown is 10 cycles, and
the development of instability is clearly observed.

5.3 D-type ILC

D-type ILC has close links with P-type ILC and was formulated very soon afterwards
(Arimoto et al., 1985a). It is given in its discrete form by,

uk+1(i) = uk(i) + φ(ek(i+ 1)− ek(i))/T (5.3)
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Figure 5.6: Output evolution of 10 UPM sinewave demand with φ = 0.0625

where T is the sampling period, and it was the next algorithm to be tested. A single
sample delay has again been used with both error terms for causality.

5.3.1 Results

Figures 5.7, 5.8 and 5.9 show results using 10, 15 and 20 UPM sinewave demands. Four
gains are examined in this case, and results for the R1 demand are given in Appendix
H.2. The results are an improvement over P-type, especially at higher unit rates. The

Figure 5.7: D-type error results for 10 UPM sinewave demand

drawback is seen in the form of more unstable behaviour and higher velocities which
cause the tests to be terminated while still at a fairly low NE. The oscillatory nature
caused by the D-type controller is shown in Figure 5.10. The same observations as
noted for the P-type law, concerning changing the gain, unit rate and demand, are
again relevant. Comparing D-type to P-type ILC also reveals some important features:

• Tins is significantly reduced for all demands, especially those at high unit rates.

• The value of the minimum error is slightly reduced for all demands, more so for
repeating sequences and higher unit rates.
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Figure 5.8: D-type error results for 15 UPM sinewave demand
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Figure 5.9: D-type error results for 20 UPM sinewave demand

Therefore D-type ILC is found to improve the error at the expense of the stability. Figure
5.10 shows the signals from the trial with the optimum performance, again with the
PID output (equal to the output at trial 0) shown as a reference. The output oscillates

Figure 5.10: Data recorded during cycle 30 of 10 UPM sinewave demand with φ = 0.05

around the demand, but at the expense of a highly oscillatory updated demand. The
demand also suffers from a large amount of noise due to the differentiation of the error.
Figure 5.11 shows how the output becomes unstable as the trial number increases due
to increasingly high amplitude oscillations.
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Figure 5.11: Output evolution for 10 UPM sinewave demand with φ = 0.05

5.4 Delay-Type ILC

The use of error data from sampling instants ahead in time has gradually evolved,
starting with 1 sample instant ahead in the case of D-type. It has been conjectured that
the error differential that corresponded to the relative degree of the plant is needed in
order to produce convergence. This makes sense when one remembers that the ideal
update is the plant inverse multiplied by the error. In the discrete domain this leads
to requiring samples n steps ahead, where n is the relative degree of the system. The
notion of looking further ahead was only considered when examining systems with time-
delays. The idea of finding the ‘delay’ of the plant by shifting an input signal until it
most closely matched the output is relatively new and has little theoretical backup but
has been found to produce good results (Barton et al., 2000). The technique will be
used here. It is formally given as

uk+1(i) = uk(i) + φek(i+ τ) (5.4)

where τ denotes the delay of the system in sampling instants. It has been refered to
as ‘Delay-type’ due to its similarity is structure with the previous algorithms. In the
following tests there is a preliminary cycle (cycle 0), input and output data is recorded
during the next cycle, the optimum shift is then calculated during the third cycle and
the ILC strategy then begins during the cycle after that. The results of the controller
are first seen in cycle 4.

5.4.1 Results

Figures 5.12, 5.13 and 5.14 show results for the Sine demand and results for the R1
demand are given in Appendix H.3, the results are again plotted for a range of ILC gains.
The results are a great improvement over the other strategies, drastically reducing the
error to very low levels. Surprisingly the error of the higher unit rates is reduced to the
level of, or even below that of the lower unit rates. Table 5.1 summarises the number of
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Figure 5.12: Delay-type error results for 10 UPM sinewave demand
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Figure 5.13: Delay-type error results for 15 UPM sinewave demand

0

0.5

1

1.5

0 20 40 60 80 100 120 140

Cycle No.

N
E

0.1 0.3 0.5 0.7 0.9 -0.1

Figure 5.14: Delay-type error results for 20 UPM sinewave demand
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sample instants delay that was calculated for each demand. The corresponding time in
seconds is given in brackets. Figure 5.15 shows data from the best performing 10 UPM

Time delay /samples
Demand 10 UPM 20 UPM 30 UPM
1V Sine demand 3100 (1.24) 2700 (1.08) 2225 (0.89)
1V R1 demand 3625 (1.45) 2425 (0.97) 2575 (1.03)

Table 5.1: Delays between demand and system output as used in Delay-type ILC

trial, Figure 5.16 shows data from the best performing 20 UPM trial. Figures 5.17

Figure 5.15: Data recorded during cycle 40 of a 10 UPM sinewave with φ = 0.1
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Figure 5.16: Data recorded during cycle 50 of a 20 UPM sinewave with φ = 0.1

and 5.18 show the error evolution in each case, the former continues until the error is
minimised, while the latter continues to show the process of instability.
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Figure 5.17: Output evolution for 10 UPM sinewave demand with φ = 0.1
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Figure 5.18: Output evolution for 20 UPM sinewave demand with φ = 0.1

5.5 Summary

Simple ILC laws have been implemented on the stage 1 system. Whilst the P-type and
D-type laws have proved largely ineffective, much greater success has been seen using
the Delay-type algorithm. In this case the error has been reduced to much lower levels
than the P-type and D-type for all the demands used and the number of trials until
instability halts the test has been greatly increased, more than quadrupling when using
higher unit rates. Certain trends with respect to the effect of unit rate and gain variation
have been identified and discussed. Chapters 7 and 10 apply analytic methods in order
to explain the performance of the algorithms that has been observed.
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Chapter 6

Phase-lead Algorithm

6.1 Introduction

From initial experiments conducted on the stage 1 system, described in Chapter 5, it
is apparent that the Delay-type algorithm outperformed the P-type and D-type laws.
If the Delay-type algorithm given by Equation 5.4 is generalised to include all possible
sample instances, it becomes

uk+1(i) = uk(i) + φek(i+ λ) λ = 0, 1, ...N − 1 (6.1)

where λ is the number of samples ahead, φ is the learning gain, uk(i) the control signal
at the kth iteration and N is the number of samples in the demand. This is sometimes
referred to as phase-lead ILC and was introduced in (Wang and Longman, 1996). Equa-
tion 6.1 can be made continuous through the addition of the sample time T to give

uk+1(T i) = uk(T i) + φek(T (i+ λ)) (6.2)

As has been explained, λ cannot be regarded as being the total phase-lead since a single
sample is required to make the update causal. In order to simplify further expressions
it will be assumed that λ equals the phase-lead minus one. The phase-lead law was
implemented on both the stage 1 and stage 2 systems in order to compare their relative
performance. This is of interest since the stage 2 system is of higher order and has
increased non-linearity, as demonstated in Chapter 4. It is also important to establish
that the algorithm is not specific to a single plant and can be generally applied.

6.2 Stage 1 System

Figures 6.1, 6.2 and 6.3 show error results for 4 choices of the gain, φ, using a 10 UPM
sinewave demand and the stage 1 system. Figure 6.1 corresponds to φ = 0.1, Figure
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6.2 to φ = 0.3, Figure 6.3 to φ = 0.5 and Figure 6.4 to φ = 0.7. Error results for the
R1 and R2 demands are given in Appendix I.1. Each experiment is stopped when the
trial number reaches 400 or by the onset of instability, whichever occurs sooner. Since
instability is associated with derivatives of the output signal, it can still occur at fairly
low NE levels. Several points can be concluded from the collective results of these
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Figure 6.1: Error results for 10 UPM sinewave demand with variable λ and φ = 0.1
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Figure 6.2: Phase-lead error results for 10 UPM sinewave demand with variable λ
and φ = 0.3
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Figure 6.3: Phase-lead error results for 10 UPM sinewave demand with variable λ
and φ = 0.5

experiments. The first do not depend on the demand or unit rate:

• It is quickly seen that the λ values used by the Delay-type algorithm (and given
in Section 5.4.1) are not the optimum values. This is surprising as these were seen
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Figure 6.4: Phase-lead error results for 10 UPM sinewave demand with variable λ
and φ = 0.7

as the most intuitive values to take. The actual optimum phase-lead observed in
each case (λopt) reduces from approximately 1250 to 1500 samples as φ increases.
This appears to be independent of unit rate and demand profile. As the sample
frequency is 2500, these correspond to 0.5 and 0.6 seconds.

• Tins appears to be inversely proportional to the gain φ.

• As the unit rate increases the value of Tins is reduced. There is a much greater
difference between 10 and 15 UPM and 15 and 20 UPM in this respect.

• The repeating sequence has a slightly lower value of Tins for a given φ, λ and unit
rate. Also the values of λopt are all slightly lower than for the sinewave demand
for given values of φ and unit rate.

• All the previous P-type and Delay-type results are of course included in the variable
phase lead results, and they are also able to explain a peculiarity of the Delay-
type results. It was observed that the minimum error actually reduces and Tins

increases as the unit rate increases under Delay-type control. This is explained
since the Delay-type delay reduced as the unit rate increased, and approached the
optimum number of samples that has been established. This effect overcomes the
loss of performance at faster unit rates.

In an attempt to explain this lead, the impulse responses shown in Figure 6.5 have been
examined. The first shows a generic first order response, the second a higher order
response, and the third is the response of the stage 1 system. If the response were to
be so simplified as to be itself a single impulse, they would occur at 0, m and n seconds
for a), b) and c) respectively. Therefore the most accurate single impulse model of
the inverse of these systems occurs at the times 0, m and n seconds before the output.
Although this is an imprecise inversion, it approximates the method by which the simple
structure algorithms function. P-type ILC works well on first order systems because they
have the property that the error at sample i is most directly due to the input at the
same instant. The success of phase-lead ILC is therefore evident; if the time taken for
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Figure 6.5: Impulse Responses of various systems

the maximum impulse response peak can be found and used as λ in the phase-lead law,
then it should be as successful as P-type is for first order systems. Unfortunately this
is not the case. The value n for the non-minimum phase system is found to be 1950
samples using the system model, well above the experimentally achieved optimum of
1500. When modeling phase-lead ILC on higher order systems, the optimum in terms
of both convergence speed and minimum error has also consistently been found to be
slightly below the value of m. The minimum error is also never zero, and divergence
always occurs.

Choosing the phase lead in accordance with the maximum impulse response value is
a simplification of a more general update: the case in which corrections are made at
all sampling instants before the error, and the amount of correction dictated by the
magnitude, at the error, of a system impulse response originating at the correction
point. This means that corrections are made at every point that could possibly have
been responsible for the error, and the amount of the correction is related to its ‘measure
of responsibility’. It will be seen that this actually equates to the GT update, applied
in Chapter 8.

Figure 6.6 shows data recorded during the best performing cycle of phase-lead ILC. The
demand is followed closely, although the updated demand is quite oscillatory. Figure
6.7 shows how the output signal changes as the number of trials increases up until the
lowest error of the test. Data from other experiments shows that oscillations go onto
grow in the updated demand and in the output until their velocity becomes too great
for the testbed. The failure of phase-lead ILC to converge to zero and remain there can,
however, be explained. Figure 6.8 illustrates the failure mechanism that occurs when
using phase-lead ILC; oscillations of a certain frequency grow gradually until they force
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Figure 6.7: Output evolution of 10 UPM sinewave demand with φ = 0.1 and λ = 1250
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Figure 6.8: Output evolution of 10 UPM sinewave demand with φ = 0.5 and λ = 1250
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the output position, and hence velocity, to become unmanageable. Analysis of results
using different gains and phase-leads yields the following conjecture:

• The frequency of the destabilizing oscillations (f) is only dependent on the phase-
lead used, and can be estimated using Equation 6.3

1
f
(∠f − 180) =

λ

fs
(6.3)

where ∠f is the phase lag at f , and fs the sampling frequency. This states that f is the
lowest frequency that can be propagated by the phase-lead λ, and Figure 6.9 illustrates
how this occurs. If q represents an instant of an oscillatory new demand input, it will
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Figure 6.9: Propagation of an oscillation

directly affect the value r of the output (with some gain change). If r is larger than the
originally specified demand then, by the nature of phase-lead ILC (with lead λ), q will
be made increasingly negative. This only succeeds in increasing r in the next trial. The
growth of the oscillations in the updated demand is a function of the gain φ and the
magnitude of the gain at f . Figure 6.10 shows how the phase-lead oscillations can be
predicted from the Bode plot of the system. Equation 6.3 is plotted for a range of phase-
leads and their intersections with the phase plot show the frequencies of instability that
would arise. Since, for the system considered here, instability is caused by the output
velocity, as opposed to the actual positional output, the gain plot of sG(s) should be
examined instead of G(s). This shows that as the phase-lead reduces from 2500 to 1250
samples, the gain of the velocity decreases from 1.5 to 0.63. This explains why the
optimum lead is reduced from 1950 to 1500 samples; there is a compromise between
the rate of learning and the rate of increase in the magnitude of oscillations caused by
phase-lead ILC.

Figure 6.11 shows the inability of phase-lead ILC in coping with rapidly changing de-
mands, a shortcoming which motivates the use of the filters in the following sections.
Even with the optimum phase-lead, the R2 demand cannot be followed accurately for
very many trials. Whilst instability can occur rapidly, Figure 6.12 shows how closely
the output matches the 20 UPM R2 demand before the previously described oscillations
cause instability.
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Figure 6.10: Bode plot showing intersections of phase-lead lines
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6.2.1 Causal Filters

A filter can either be applied to the error, ek, or to the input of the plant, uk+1. The
only difference is whether the demand itself is filtered, the effect of which will later be
investigated. The open-loop system will therefore be considered to be the plant G(s)
in series with the filter, F (s). The simplest way to reduce the destabilizing oscillations
that have been observed is to use a causal low-pass filter to reduce the magnitude of
the Bode plot of F (s)G(s) at the frequency of oscillation. The act of adding a causal
filter to the plant, however, changes the phase plot of the system and therefore the
frequency at which a given phase-lead intersects with it. Furthermore, it is likely that
the impulse response of the system will change also. It is therefore an iterative process
to design a causal filter for use with phase lead ILC. Firstly a cut-off is selected below
the frequency of unstable oscillations, and a class of filter to implement it. The usual
criteria of a sharp cut-off and minimal phase-lag are favourable, although, as yet it is
not clear as to their relative importance. Little emphasis has been placed on ripple
in the stop-band. The impulse response of F (s)G(s) is then obtained and the number
of samples to its maximum determined. A Bode plot of F (s)G(s) is drawn together
with a line representing those frequencies that can be propagated by a phase lead of the
number of samples calculated, in the same manner as that shown in Figure 6.10. The
frequency of unstable oscillations is found by the intersection of this line with the phase
plot. This frequency should correspond to the local minima seen on the magnitude plot
caused by the filter. This ensures that no undue magnitude (and hence bandwidth) has
been sacrificed below the unstable frequency. For a given filter it also ensures that no
additional low frequency lag has been added other than what is necessary according to
the filter chosen. If no such correspondence occurs, the cut-off must either be moved
slightly, or the filter order changed in order to produce more lag and the design process
repeated.

Three causal filters have been designed and tested on the system. The first is a 5th

order Chebychev lowpass filter with a cut-off of 2.5Hz, and 270◦ phase lag and 60dB
attenuation at the unstable frequency. This filter is a compromise between sharpness
of cut-off and lag. The second filter is more aggressive with an extra 90◦ lag but an
additional 22dB attenuation centered on the unstable frequency. The third filter is a 4th

order Butterworth band-stop filter which has been selected for its high attenuation over
a very small range of frequencies. The attenuation of 60dB is centered on the unstable
frequency at a cost of just 90◦ lag beforehand. This filter was designed in order to
maximize the system bandwidth whilst still reducing the effect of the unstable frequency.
Experimental results using the causal filters are shown in Appendix I.2. Figure 6.13
shows an unexpected and illuminating effect observed when using the bandstop filter;
there appears to be at least two higher frequencies than the unstable frequency which also
progressively increase in magnitude as the cycle number increases. This suggests, and
frequency analysis confirms it, that along with the unstable frequency identified using
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Figure 6.13: Output evolution of 20 UPM R1 demand using the bandstop filter with
φ = 0.3 and λ = 1500

Equation 6.3 and a Bode plot of F (s)G(s), there are two other unstable frequencies.
The unstable frequencies are 2.3, 2.65, and 5.2Hz. These can readily be explained if the
cause of the original unstable oscillation (the largest frequency that can be propagated
for a given phase-lead) is extended to include all frequencies that can be propagated.
Equation 6.3 can then be updated as:

1
f
(∠f − 180(1 + 2i)) =

λ

fs
i = 0, 1, 2, . . . (6.4)

where again fi is the ith frequency of oscillation, ∠fi is the phase lag at fi, and fs the
sampling frequency. The first three instability frequencies, f1, f2 and f3, will be referred
to as the pimary, secondary, and tertiary frequencies. Figure 6.14 shows the Bode plot
of F (s)G(s) using the bandstop filter with the first three phase-lead lines, generated
using Equation 6.4. The gains at the frequencies of intersection are highlighted on the
magnitude plot for clarity. The primary, secondary and tertiary frequencies are found to
be 2.3, 2.68, and 4.8Hz respectively, closely matching those experimental values observed.
The reason for the prominence of these first three unstable frequencies can be seen from
the gain plot; the magnitudes that correspond to these frequencies are all similar and
close to -40dB. It is because the bandstop filter reduces the primary frequency alone
to such a degree that the secondary and tertiary are so visible. Frequencies higher
than the tertiary have been rarely observed due to their high attenuation. Further
tests have shown that altering the demand profile used does not alter the findings by
any great degree. If the demand contains a sizable component of one or more of the
unstable frequencies then instability progresses sooner, the updated demand containing
components that would have otherwise taken many cycles to build up. Looking at
the frequency components present in those demand used, shown in Figure 6.14, it is
clear that there are only very small quantities of these frequencies are present in the
demands. Although only the 20 UPM demands are shown, the 15 and 10 UPM cases
are obtained by multiplying the frequency scale by 0.75 and 0.5 respectively. Because
these frequencies are close to the primary frequency, the filter is best located at the
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Figure 6.15: Power spectrums of the 20 UPM a) sinewave, b) R1 and c) R2 demands

input to the plant. Results have confirmed that performance is worse if the demand is
left unfiltered. The exceptions to this rule occur when using non-causal FIR filtering
and are discussed in Section 6.2.2.1.

The theoretically best lead using the bandstop filter (found from the impulse response)
is 2250 samples. As with the unfiltered case, this is reduced when carried out in practice
due to the higher attenuation of the unstable frequencies (the phase lead lines in Figure
6.14 move to the right), and becomes 1750. Two extra objectives can now be put forward
in order to improve the design of future causal filters:
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• To ensure that the best possible phase lead, derived from the impulse response, is
as close as possible to that experimentally determined.

• To seek to move the intersection of the F (s)G(s) phase plot and the optimum
phase lead line further towards the right and thus at a higher frequency.

The former task involves reducing the magnitude at the fundamental frequency (and
beyond) sufficiently to allow the convergence and stability advantages of using the most
favorable phase lead to become more important than the extra attenuation gained by
increasing it. Until this is true instability will always govern the process. The second task
depends on the first; extra lag produced by a high-order causal filter causes a given phase
lead to give rise to unstable frequencies which are slightly higher, and therefore more
attenuated, than otherwise. Unfortunately a system with more low frequency lag will
usually have an impulse response with a larger number of samples to its maximum value.
The bandstop filter raised the fundamental frequency at optimum lead from 1.66Hz to
1.8Hz, and the two low pass filters both raise it to 2.3Hz, which helps to account for
their success. It should also not be forgotten, however, that a surfeit of lag before the
cut-off point will destabilize the system. The two lowpass filters were designed with
these points in mind. The first has a magnitude plot very similar to the bandpass filter,
enabling performance comparisons to be made in terms of lag and attenuation above
the cut-off alone. The second low-pass filter is similar to the first but with more lag and
more attenuation, enabling comparisons with the first to be made on that basis only.
Figure 6.16 illustrates the shortcomings of the bandstop filter. Its lower attenuation
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Figure 6.16: Phase-lead error results for 20 UPM R1 using a variety of causal filters,
each with λopt and φ = 0.5

of the instability frequencies, especially the secondary and tertiary, causes instability.
As discussed, it also has lower instability frequencies than the other two filters. The
superior performance of the second lowpass filter shows that frequency attenuation is
more important than low frequency lag. Instability frequencies only account for a certain
amount in explaining the lack of convergence, and it is has been found that the removal
of frequencies below the primary improves convergence. This is due to two factors
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• The influence of the primary frequency extends a certain amount below that fre-
quency where it grows at a lesser rate or merely disrupts learning.

• High frequencies naturally destabilize the process of learning, more so if they are
present in the demand. This makes intuitive sense since all the ILC algorithms are
effectively built on the notion of a heavily simplified plant. Attenuating increas-
ingly low frequencies in the plant is a method of simplifying it. The simplified
plant then more closely matches that required by the ILC algorithm, and learning
is improved.

Without being able to substantially change the unstable frequencies it is impossible to
separate these two factors. The emphasis for the need of a precise cut-off is also dimin-
ished, the only certain requirement being a large amount of attenuation at the unstable
frequencies. Figure 6.17 shows the output of the plant during a very unsatisfactory
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Figure 6.17: Output evolution of 20 UPM sinewave demand using the bandstop filter
with λopt and φ = 0.1

period of learning. No unstable frequencies are seen and the phase lead is the exper-
imental optimum, although this has only been found to a resolution of 125 samples.
From this and other similar cases it is clear that higher frequencies than those present
in the demand disrupt the learning process, and it may be beneficial to select a cut-off
frequency only marginally above the highest frequency present in the demand. Since the
approximation to the actual plant that exists at the heart of these simple ILC schemes
is most accurate at low frequencies, it is likely that these techniques are only capable of
learning low frequencies. As the trial number grows, either the integration of the error
at each sample caused by this ILC inaccuracy causes instability, or the instability fre-
quencies overcome the attenuation which has been imposed on them to cause instability
themselves. Having focused on the inadequacies of phase-lead ILC, Figure 6.18 shows
the success of the causal filters that have been implemented. For the second lowpass
filter, the learning process is nearly always stable over the 400 cycles that are undertaken
with no divergence seen, and convergence is faster than in the non-filtered case. This is
true for all the demands used.
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Figure 6.18: Phase-lead error results for 10 UPM R2 demand using a variety of causal
filters, each with λopt and φ = 0.1

6.2.2 Non-causal Filters

In order to assess whether additional lag in the system worsens the process of learning
and subsequent stability, it is necessary to examine non-causal filters in place of the
causal ones already tested. The filter design process is simplified as the oscillation
frequencies are unchanged by the addition of the filter. The maximum impulse response
is unlikely to be altered and so the design of the filter simply involves reducing the gain
at these frequencies. Two classes of non-causal filter have been selected for use; one filter
that can be implemented in batch mode, and one that has no such restriction. Although
there are several techniques available for batch-mode filtering, the zero-phase IIR filter
has been chosen for its simplicity and effectiveness.

6.2.2.1 Linear phase FIR filter with offset

A linear phase FIR filter is produced by creating a non-causal filter of order n, symmet-
rical about its mid-point(s), and then shifting it n

2 (or (n+1)
2 ) samples in order to make

it causal. If this last stage is omitted then a zero-phase FIR filter is obtained which
has no limitation on having to be performed in batches. This price of the non-recursive
operation is a very large order compared with its IIR equivalent. Four filters of this type
have been implemented, two lowpass filters and two bandstop. The first lowpass filter
is of order n = 2101 and has a gain of -36dB at the primary frequency, its magnitude
before the cut-off is extremely aggressive, taking a value of -18dB at 0.8Hz. The second
lowpass filter has the same magnitude at the fundamental frequency but only -13dB at
0.8Hz, it also has greater attenuation at higher frequencies. The first bandstop filter is
of order n = 2325 and has extremely high attenuation at low frequencies. At 1.6Hz this
is -60dB which reduces slightly to -48dB at the primary frequency. The second bandstop
filter has a higher cut-off point making it less aggressive at low frequencies. At 1.6Hz
the attenuation is -13dB, increasing to -38dB at the primary frequency. Both bandstop
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filters have similar characteristics above this frequency, the upper cut-off being 8Hz.
The order of these filters approaches the maximum achievable with the hardware and
sampling frequency used, therefore, although the attenuation is satisfactory, the cut-offs
are not sharp. It is also advantageous that the filter should not be applied on data
that is in the process of being updated, that is n > 2λ. Figure 6.19 shows how large
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Figure 6.19: Phase-lead error results for 20 UPM R2 demand using a variety of
non-causal filters, each with λopt and φ = 0.5

attenuation causes slow convergence, the first bandstop filter taking double the number
of cycles to converge in every test performed. Its low frequency attenuation effectively
gives it a lower learning gain, φ, and increases Tins at the cost of convergence. The effect
of aggressive low frequency filtering extends beyond this, however; the large peaks that
occur in the plots of NE against trial number are much reduced, even below the values
seen in the less aggressive filters with much lower learning gains, φ. This means that
greater low frequency attenuation produces less deviation in the cycle error. The first
bandstop filter is more successful than the first lowpass filter, as, with a limited order,
it is able to supply greater attenuation at low frequencies. The more aggressive filters
are the only ones to allow the test to last 400 cycles in Figure 6.19. The performance of
lowpass and bandstop filters on other demands is shown in Appendix I.3.

Without differences in the phase characteristic confusing the issue, lowpass and band-
stop filters can also be compared. All the results obtained show that performance is
determined by the amount of the low frequency attenuation. This suggests two points:

• Frequencies above 8Hz play an insignificant role in influencing the performance in
the tests conducted

• Short term performance is mainly dictated by the magnitude plot of the system
below the primary frequency

Short term performance is taken to include convergence rate and changes in the cycle
error between trials. It differentiates between long term effects such as unstable fre-
quencies and the effect of integrating high frequency error inherent in the simple ILC
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laws. Long term performance is therefore mostly influenced by the attenuation at the
primary frequency and above. Figure 6.20 illustrates these points, showing the most
successful non-causal and causal filters of those tried. The non-causal bandstop 1 filter
has less cycle error deviation due to its high frequency attenuation and lack of destabi-
lizing phase-lag. This overcomes the advantage of the increased instability frequencies
that occur when using causal filters. The less aggressive filters are seen to suffer from
divergence during the test.
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Figure 6.20: Phase-lead error results for 20 UPMR2 demand using the most successful
filters, each with λopt and φ = 0.5

6.2.2.2 Zero-phase IIR filter

A filter is designed in the normal way, but is run back and forth along a section of either
the error or the ILC input to the plant. Unless the signal is divided into sections of less
than N−λ

2 samples in length (where N is the samples per trial) and each one filtered
separately, there will be insufficient time between the signal being recorded and the
need for its use in the input to the plant. This length can be increased by using sections
that overlap, and filtering them in parallel. This, however, only increases the allowable
batch size to N − λ samples. Because the ends of each batch are subject to error in the
filtering process, which causes them to recombine imperfectly, a longer batch length is
desirous. However, longer sized batches have the effect that there is at least a cycle’s
duration between the error being recorded and its use. It will be seen that this causes
problems as well as very slow convergence. In order to increase convergence speed, it is
tempting to allow learning to recommence whilst a section of the error is being filtered.
This means that the error will then form the update that follows on from a different
input to the one which caused it. Experiments have shown that this always leads to
large oscillation of the cycle error and no further convergence. Therefore two methods
have been used which keep the same input to the plant during the filtering process.
The first filters a single cycle-length of error as it arrives, then repeats the input while
it is filtered in reverse. The error is extended in both directions to avoid transients.
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Convergence is twice as slow due to the cessation of learning. Learning must be halted
during the reverse filtering stage as it would then form half of the next update and thus,
in part, create the cycle error oscillations described. The second method takes lengths
equal to three cycle-lengths and forward and reverse filters them in the same manner.
The input is held for six cycles and only the middle cycle-length of error is used in the
learning process. This helps reduce the filtering transients. The filter that has been
used with these methods has a cut-off of 1.5Hz, following recommendations made in the
last section. The small cut-off frequency/Nyquist frequency ratio has limited the filter
order available for the class of filter chosen, and the cut-off is not ideal. The attenuation,
however, will be double due to the dual filtering. Figure 6.21 shows results obtained
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Figure 6.21: Error results for a 20 UPM R1 demand using non-causal filters, each
with λopt and φ = 0.5

using the two methods of non-causal filtering with a zero-phase IIR filter that have been
described. The best result obtained with an FIR filter has been included for comparison.
Figure 6.22 shows results obtained with the same filters, but using a different demand.
The results show that batch mode filtering processes are ill-suited to ILC implemented
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Figure 6.22: Phase-lead error results for 20 UPM R2 demand using non-causal filters,
each with λopt and φ = 0.5

in repetitive form (with no resetting of initial conditions). Despite large attenuation,
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their performance leads to transitory cycle error, especially with high unit-rates and
challenging demands. This is made more obvious when it is remembered that the triple
segment IIR filter used only updates every 6 cycles, and the single segment, every two.
Discrepancies that arise at the extremities of the system output for a fixed demand
are the cause of these irregularities. The updates fit together imperfectly and cause
oscillations. The value of the minimum error, however, is in some cases the lowest seen
due to the choice of the cut-off frequency. It was found that the IIR filter’s performance
was improved in terms of less transient cycle error when the demand was not filtered.
This differs from all the other tests performed in this respect, and is a consequence of
both its increased attenuation, and ability to make corrections only every 6 cycles.

6.3 Stage 2 System

The phase-lead algorithm has been implemented on the stage 2 plant in order to compare
its performance with the stage 1 case. The following figures show error results for 2
choices of the gain φ using a 10 UPM Sine demand. Figure 6.23 corresponds to
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Figure 6.23: Phase-lead error results for 10 UPM sinewave demand with φ = 0.1
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Figure 6.24: Phase-lead error results for 10 UPM sinewave demand with φ = 0.5

φ = 0.1 and Figure 6.24 to φ = 0.5. Error results for the other demands are given
in Appendix I.4. The stage 2 system’s impulse response is shown in Figure 6.25, its
maximum occuring at 0.98 seconds which corresponds to a phase-lead of 2450 samples.
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The earlier discussion makes it unsurprising that the experimental optimum is somewhat
lower, between 1750 and 2000. Comparing these results with those of the stage 1 system
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Figure 6.25: Impulse response of stage 2 plant

yields the following conclusions;

• Tins is reduced and the stage 2 system’s tests are shorter in duration.

• The minimum error is slightly larger in each case.

• A smaller range of phase-leads is able to produce good results.

These observations simply point to stage 2 being a higher order system with increased
non-linearities, and phase-lead ILC being less capable of dealing with it. This also means
that the plant model is likely to be less reliable which will effect those algorithms that
directly use it.

6.3.1 Causal filters

Since causal filters helped produce the best results for the stage 1 system, they were
also used on the stage 2 system. Six Chebychev filters, the parameters of which are
given in Table 11.3, have therefore been designed for use with the phase-lead update
according to the methods set out in Section 6.2.1. Figure 6.26 illustrates the general

Cut-off Impulse Max Attenuation (dB)
Filter Name Order /Hz /samples Primary Secondary Tertiary
TYPE-4-1.2 4th 1.2 3600 50 68 77
TYPE-4-1.8 4th 1.8 2975 68 66 86
TYPE-4-2.3 4th 2.3 2700 56 65 109
TYPE-4-2.6 4th 2.6 2650 63 64 90
TYPE-5-1.85 5th 1.85 3750 87 86 93
TYPE-5-2.3 5th 2.3 3150 77 89 101

Table 6.1: Stage 2 Phase-lead filter characteristics

effect of altering the filter cut-off point. As the cut-off frequency is reduced, the effect
due to unmodelled dynamics is decreased. This produces less transients in the cycle
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Figure 6.26: Factors effecting the NE

error and phase-lead ILC is more effective and the error reduced. Simultaneously, as
the cut-off frequency is lowered, frequencies present in the demand that are required for
learning are attenuated at the system input. This will reduce tracking of the demand
at these frequencies and the error will consequently high. It is therefore important to
choose a cut-off that is a compromise between these effects. Since causal filters are used,
reducing the cut-off adds low frequency lag and therefore instability to the learning. All

Figure 6.27: Phase-lead error results for 20 UPM sinewave demand using causal filters
with λopt and φ = 0.5

the filters described in Table 11.3 were used with the stage 2 system, and Figure 6.27
shows results using a selection for the 20 UPM sinewave demand. It can be concluded
that the TYPE-4-1.8 filter maintains the best compromise between the effects discussed
for this demand. Additional results are shown in Appendix I.4. The values of λopt are
given in brackets. Figure 6.28, however, shows that stronger filtering leads to the best

Figure 6.28: Phase-lead error results for 20 UPM R1 demand using causal filters with
λopt and φ = 0.5
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results with the R1 demand. Although it has higher frequency demand components,
the increased instability of the learning benefits more from stronger filtering than the
detriment this causes to the tracking.

6.3.2 Forgetting Factor

The use of a ‘forgetting factor’, γ, in the phase-lead algorithm has been proposed by
several authors (Lewin, 1999; Xu and Yan, 2003) as a means of removing the instability
of the algorithm. The update of the phase-lead law is changed to;

uk+1(i) = γuk(i) + φek(i+ λ) (6.5)

Figure 6.28 shows experimental results using the forgetting factor, additional results are
shown in Appendix I.5. Stability is gained for the price of a greater residual error. Figure
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Figure 6.29: Phase-lead error results for 20 UPM R1 demand using forgetting factors
with φ = 0.5

6.29 shows forgetting factor results using the sinewave demand, this time applying the
most sucessful filter from the previous section. The filter is able to provide the same
long term stability but without the cost of increased residual error. The great advantage
of the forgetting factor is its simplicity. The reason for increased stability but increased

Figure 6.30: Phase-lead error for 20 UPM sinewave demand using forgetting factors
and filtering with φ = 0.5
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minimum error is discussed in Chapter 7, where methods for improving phase-lead ILC’s
peformance are detailed.

6.4 Summary

Phase-lead ILC has been found to out-perform P-type, D-type and Delay-type ILC when
applied to both the stage 1 and stage 2 systems. The technique has been examined and
reasons for its success, and indeed failure, have been put forward. A method of arriving at
the phase-lead that produces the best performance has been proposed, using knowledge
of the plant model. The existence and effect of unstable frequencies caused by phase-
lead ILC has been discussed and a method of predicting their value and harmfulness
given. A number of both causal and non-causal filters have been tested and design
procedures described in order to maximize performance. The role of attenuation of
various frequencies has been discussed and results presented to illustrate the conclusions
drawn. Results have indicated that demands can only be learnt up to a certain frequency.
It has also been seen that, due to unstable frequencies, stability of phase-lead ILC cannot
be assured as the cycle number progresses. A forgetting factor has been used with the
stage 2 plant to reduce the instability, but has the disadvantage of increased minimum
NE compared to filter-based approaches.
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Chapter 7

Multiple Phase-lead Algorithms

7.1 Introduction

There are a number of methods that are related to the phase-lead ILC algorithm and
are likely to offer improved performance. Those that also involve updates at specific
phase-leads include the use of limit cycles to change the lead between trials of a single
phase-lead update (Wirkander and Longman, 1999) and the decomposition of the error
signal into its frequency components inbetween trials in order to use phase-leads to cancel
out instabilities that would arise (Elci et al., 1994). However, it is possible to improve
the properties of the phase-lead law more directly. Algorithms were implemented on the
stage 2 plant. Conversion of the phase-lead law, given by Equation 6.2, to the discrete
domain yields

Uk+1(z) = Uk(z) + Φ(z)Ek(z) (7.1)

where the phase-lead, λ, has been absorbed into a filter Φ(z), to give Φ(z) = φzλ.
Substituting Ek(z) = Yd(z) − Yk(z) and introducing Yk(z) = G(z)Uk(z), where G(z) is
the discrete plant model gives;

Uk+1(z) = Uk(z)(1 − Φ(z)G(z)) + Φ(z)Yd(z) (7.2)

The corresponding error evolution is then;

Ek+1(z) = Ek(z)(1 − Φ(z)G(z)) (7.3)

It would appear that the magnitude of the error at a frequecy w, is multiplied by
|1 − Φ(ejwT )G(ejwT )| in sucessive trials. However, it can be shown (Longman, 2000),
that this is only true for steady-state learning, when the effect of the initial conditions is
zero. This only accurately models the situation if the system impulse response is much
shorter than the trial length, a situation that is not applicable in the case of the stage
2 plant. The thinking behind this is related to how the ‘wave’ of learning that occurs
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along a trial during learning operates. It can be further shown that the condition given
by

|1−Φ(ejwT )G(ejwT )| < 1 (7.4)

does guarantee monotonic convergence and is essentially the same as the true stability
boundary in RC. Conversely, the true stability boundary in ILC is given by 0 < CB < 2
and does not encompass the plant dynamics. It can again be shown that Equation 7.4
does still satisfy this and also that it should be considered a necessary condition for
obtaining practical results (Longman, 2000). The true monotonic decay condition in
ILC is given by

‖e
¯j
‖ ≤ max

i
(σi)‖e¯j−1‖ (7.5)

and can be approximated by Equation 7.4. Learning transients are caused by the initial
conditions at the beginning of each trial, the effect of which lasts for approximately 4
times the largest time constant of the system. Satisfying the monotonic convergence
condition implies the presence of good learning transients.

Equation 7.4 restrains the frequency plot of Φ(jw)G(jw) to lie in an open unit disc
centered at 1. Inspecting Equation 6.4 of Chapter 6, and using the substitutions f = w,
∠f = −∠G(jw) and ∠Φ(jw) = Tλw for the unstable frequency, w, produces

∠G(jw) + ∠Φ(jw) = 180(1 + 2i) i = 0, 1, 2... (7.6)

Figure 7.1 shows a Nyquist plot of Φ(jw)G(jw) for the stage 2 plant and the unfiltered
phase-lead algorithm with λ = 2500. Equation 7.6 locates the points of intersection

0 1

0

Figure 7.1: Nyquist plot of Φ(jw)G(jw) with unit circle centred on +1

with the imaginary axis to the left of the origin which are unstable frequencies and local
magnitude maxima. It was their −180◦ multiples of phase-lag that allowed them to be
located easily by inspection of experimental data. A condition for stability (Wang and
Longman, 1996) which is a direct consequence of Equation 7.4 is given by

cos(∠Φ(jw) +∠G(jw)) >
1
2
|Φ(jw)G(jw)| (7.7)
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and, for phase-lead ILC is equal to

cos(λTw +∠G(jw)) >
φ

2
|G(jw)| (7.8)

Since |G(jw)| is usually greatest at lower frequencies, Equation 7.4 locates the frequen-
cies where the left hand side is maximum (= 1) and therefore most likely to be unstable.
This suggests that the design techniques of Chapter 6 have widespread application. In
this chapter the stage 2 plant will be used and the use of additional phase-leads will be
investigated in order to stabilise the phase-lead algorithm.

7.2 Verification of Phase-lead Conclusions

The system sample rate has been changed to 1000Hz in order to allow increased com-
putation time between samples, making T = 0.001. According to the results of Chapter
6 the best phase-lead is now at 1000

2500 × 1750 = 700 samples and this has been consis-
tant with experiments. It has also been experimentally verified that no combination of
strictly positive λ and φ satisfy the convergence criterion for all frequencies. The opti-
mum lead was therefore a compromise between the amount of learning over the range of
frequencies of the demand, and the magnitude of those unstable frequencies, w, which
form a subset of those satisfying |1−Φ(ejwTG(ejwT | � 1. The best solution is that which
provides the greatest amount of learning per unit instability. The frequencies necessary
for learning are of course dependent on the demand, whilst the instability frequencies
are less so and will certainly be present in the system’s transient response. A theoretical
optimal value to the problem of selecting a single phase-lead, λ, is therefore given by
Equation 7.9. The first term picks out the frequencies which should be reduced, that
is |1−Φ(ejwT )G(ejwT )| > 1, and the second incorporates those frequencies that will be
learnt.

min
λ,φ

∫ ∞

w=0
Kmax{0, |1−φejwTλG(ejwT )|−1}−|R(w)|max{0, 1−|1−φejwTλG(ejwT )|}dw

(7.9)
R(w) denotes the magnitude of the reference signal, emphasising those frequencies re-
quired to be learnt. K is a positive scalar which represents the relative importance
between learning and instability. If K = 0 only learning of the demand is deemed
important, as K → ∞ only the lack of unstable frequencies (and the solution has
Φ(jw) = 0). A mathematical software package has been used to generate a vector for
each case of |1 − φejwTλG(ejwT )| corresponding to as great a range of frequencies as
necessary. A function is then applied to calculate the integral term in Equation 7.9 and
this is repeated for a large range of amplitudes and phase-leads. A minimum is found
by simply selecting the lowest of all those integrations performed. Figure 7.2 shows
the graph of |1 − ΦejwTG(ejwT )| with solutions corresponding to K = 0, and K = 34
and that found to work best in practice. This latter takes into account the interaction
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between learning and instability. Since K = 34 matches the best in practice, that is the
compromise found between instability and learning. The result that provides maximum
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Figure 7.2: Phase-leads of λ = 1000, φ = 0.98 (K = 0), λ = 720, φ = 0.6 (K = 34)
and the best in practice

learning (K = 0) does not prove most successful in practice. It does, however, closely
correspond to the phase-lead of the maximum impulse response (980 samples at this
sampling frequency), as noted in (Wang and Longman, 1996). Simulation with a variety
of different plants confirms that the maximum impulse response usually approximates
but does not correspond exactly to the maximum amount of learning.

7.3 Forgetting Factor Revisited

Because no single phase-lead can provide stability, the theoretical effect of the forgetting
factor, seen in Section 6.3.2, has been investigated. This was the simplest method that
suceeded in stabilsing the learning. The expression for the error propagation given in
Equation 7.1 is therefore modified to

Ek+1(z) = Ek(z)(γ − Φ(z)G(z)) + Yd(1− γ) (7.10)

The criteria for learning a zero demand when using a forgetting factor is adjusted to

|γ − Φ(ejwT )G(ejwT )| < 1 (7.11)

Expanding Equation 7.10 gives the nth error as

En(z) = E0(z)(γ − Φ(z)G(z))n + (γ − Φ(z)G(z))n−1Yd(1− γ)
+(γ − Φ(z)G(z))n−2Yd(1− γ) + . . .+ Yd(1− γ)

(7.12)

Therefore, even as n → ∞, there will be a residue error of Yd(1 − γ). It follows that
values of 0.9 < γ < 1 make it relatively simple to avoid the instability frequencies whilst
still achieving a large degree of learning.

Figure 7.3 shows how the single phase-lead that provided most learning was made stable
by use of a forgetting factor. Given a forgetting factor and a cost function, such as
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Figure 7.3: Forgetting factor = 0.9. Phase-lead of 1000, amplitude 0.98

Equation 7.9, to minimize, it is likely that a lower value can be obtained using a forgetting
factor. Figure 7.4 shows the results obtained using γ = 0.95 and Equation 7.9 withK = 0
and K → ∞. R(w) is made equal to 1 to see what general results can be expected. If
the forgetting factor is not set low enough to stabilize the system on its own, a high
price is incurred on the learning by altering Φ(z) to satisfy it instead. It can be seen
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γ = 0.95, λ = 780, φ = 0.92
γ = 0.95 , λ = 1000, φ = 0.92
λ = 1000, φ = 0.98

Figure 7.4: The single phase-lead with most learning (λ = 1000, φ = 0.98). Forgetting
factor 0.95 and 1)K = 0 (λ = 1000, φ = 0.92), 2)K → ∞ (λ = 780, φ = 0.92)

that learning has been heavily compromised for stability. However, although the error
converges, it does not converge to as low a value as previously due to the residue error.

7.4 Additional Phase-leads

Since a phase-lead naturally provides points of learning and points of instability, it
is a natural progression to add another phase-lead in order to stabilize the learning.
Figure 7.5 shows two instances of the single phase-lead that provided the most learning
combined with another lead, λ1, and its associated gain, φ1, in the same algorithm,
that is Φ(ejwT ) = 0.98ejw + φ1e

jwλ1T . The first addition seeks to reduce the amount
of instability using Equation 7.9 with K → ∞ , the second to decrease the criterion
with K = 34. It has been found that no additional lead can further increase the total
learning. The dual of Equation 7.6 predicts the frequencies which are local magnitude
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Figure 7.5: Phase-lead of 1000, amplitude 0.98, and with additions b)K → ∞ (λ = 0,
φ = 0.55), c)K = 34 (λ = 0, φ = 0.3)

minimisers of the the polar plot of Φ(jw)G(jw) and is given by

∠G(jw) + Φ(jw) = 360i i = 0, 1, 2... (7.13)

and can be used as a simpler method to approximate the phase-leads that are likely
to help stabilize the single phase-lead case. It is clear, however, that only marginal
improvement has been achieved. Performing the optimization again, but with both
phase-leads and corresponding amplitudes allowed to vary, yields improved results. The
solution in each case was obtained by setting Φ(ejwT ) = φ1e

jwλ1T+φ2e
jwλ2T in Equation

7.9, and finding the cost for all combinations of amplitudes φ1, φ2 and leads λ1, λ2 within
a certain bound and resolution. The minimum again was found by comparison of the
costs. Figure 7.6 shows further improvements, in terms of solving Equation 7.9 with a)
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Figure 7.6: Plot of |1−(φ1e
jwTλ1 +φ2e

jwTλ2)P (ejwT )| for variables given in the table

K = 0 and b) K = 34. It is clear that more learning has been achieved than previously.
If R(w) is set to 1 in order not to constrain the frequencies of learning, still better
results are seen, Figure 7.6 shows this case with c) K = 200 and d) K = 1000. Figures
7.7 and 7.8 show experimental results using these optimizers. It is clear that great
improvements over the single phase-lead case have been achieved in terms of stability
with similar results in terms of minimum error and convergence. The success of an
additional lead, and the intuitive idea of extra leads canceling the instability of present
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Figure 7.7: Phase-lead pairs for 20 UPM sinewave demand with single phase-lead
comparison and phase-lead pairs as in Figure 7.6
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Figure 7.8: Phase-lead pairs for 20 UPM R1 demand with single phase-lead compar-
ison and phase- lead pairs as in Figure 7.6

ones with no loss of learning, motivates its extension to the use of multiple leads. When
the number of phase-leads and their respective amplitudes is increased, the approach
of testing all possibilities, even with a modest resolution, becomes unfeasible and so
alternative methods must be sought. The most successful iterative methods that have
been tried attempt to approach a local optimum by continually adding small leads in
positions where they reduce the cost most. Considerable care is required to try and
avoid too premature a solution to this non-convex optimization problem. A technique
that has been developed examines only the addition of small amplitudes, δ, at each
operation and finds at each step

mini,ε
∫ ∞
w=0 Kmax{0, |1 − [εejwTλi +Φ(ejwT )]G(ejwT )| − 1}

−max{0, 1 − |1− [εejwTλi +Φ(ejwT )]G(ejwT )|}dw
(7.14)

where ε ∈ {+δ,−δ}. The compensator is then updated by taking

Φ(ejwT ) = Φ(ejwT ) + εejwTλi (7.15)

If the cost has not decreased between cycles then a local minimum has been located.
If K is initially set too high then a local minimum will already have been found since
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any addition adds instability. It is therefore a problem of increasing the learning before
it is allowed to become too large and future iterations effectively concentrate only on
reducing instability. This is increasingly pertinent since it has been observed that any
Φ(ejwT ) can be ‘stabilised’, to an arbitrary value ρ > 0 exchanged for the right-hand
side of Equation 7.4, by the addition of phase-leads, but this will usually produce a
very unsatisfactory solution in terms of the total learning. Conversely, concentrating
on learning and not instability brings about solutions which fall short of meeting the
converence condition. It has been found that increasing K linearly as the iterations
progress leads to a solution that incorporates a great deal of learning whilst satisfying
the necessary stability requirements. Figure 7.9 shows both the phase-leads and the
corresponding criteria |1−Φ(ejwT )G(ejwT )|, 41 phase-leads are shown and indicated by
asterisks, and although values of λT > 2 were feasible, no values φ > 0 appeared in the
solution. The algorithm uses K = 100 + I, where I is the cycle number. 1200 cycles
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Figure 7.9: Multiple phase-lead update and comparison of its and the single phase-
lead update’s stability criterion

are required with δ = 0.005, and a phase-lead resolution of 0.05. The optimization
is intrinsically short-sighted in that it would rather add leads than remove them and
approach the nearest local minimum possible. This is inevitable unless some other
criterion is incorporated into the cost function which adds more structure. Without
more knowledge of the global solution this is impractical. The solution achieved will
not have sudden changes in amplitude characteristic of satisfying the criterion at high
frequencies, but this should impart robustness for the same reason.

Figure 7.10 shows the minimiser calculated when the optimisation is repeated with an
increased phase-lead resolution of 0.1. Instead of 41 phase-leads there are 19, and the
calculation time has been reduced from 27 hours to 21

4 using a 1GHz pentium PC.
1100 cycles are rquired using the same update procedure. As before, the corresponding
criteria |1−Φ(ejwT )G(ejwT )| is shown below the phase-lead locations.
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Figure 7.10: Reduced multiple phase-lead update and corresponding stability crite-
rion

If phase-lags as well as phase-leads are allowed to be considered, the optimum is found to
offer considerably less performance than when just using phase-leads, this is explained
by the observations made regarding Equation 7.9. Figure 7.9 shows the best result found
for both leads and lags. This optimization uses δ = 0.005, K = 100+ I and a phase-lead
resolution of 0.05. Since lags have a greater impact on the cost criterion, several were
added during early iterations to give large amounts of learning and relatively lightly
penalized instability. In later iterations learning is sacrificed in order to cancel out the
instability of these leads.
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Figure 7.11: Multiple phase-lead and lag update and comparison of its and the single
phase-lead update’s stability criterion

Figure 7.12 shows the minimiser calculated when the optimisation is repeated with an
increased phase-lead resolution of 0.1. 270 cycles are required in this case.
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Figure 7.12: Reduced multiple phase-lead and lag update and corresponding stability
criterion

Figure 7.13 shows the results of an optimisation involving just phase-lags where δ =
0.002, and a phase-lead (= phase-lag) resolution of 0.1 have been used. The update
procedure has been changed to K = 1 since increasing K as the cycle number increases
terminates the optimisation prematurely and a large initial value causes the initial value
of Φ(jw) to be the local minimiser. 2150 cycles are required but the results are poor.
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Figure 7.13: Reduced Phase-lag

The updates shown, each with p phase-lags and q phase-leads with associated amplitudes
can be specified by

Φ(ejwT ) = φ−pe−jwTp∆ + φp−1e
jwT (1−p)∆ + · · ·+ φ−1e

−jwT∆ + φ0 + φ1e
jwT∆

+ · · ·+ φq−1e
jwT (q−1)∆ + φqe

jwTq∆
(7.16)

96



where the phase resolution is ∆. They can therefore be represented by the FIR transfer
function

Φ(z) = φpz
−p+φp−1z

−(p−1) · · ·+φ−1z
−1+φ0+φ1z+φ2z

2+· · ·+φq−1z
q−1+φqz

q (7.17)

in which the sampling time is ∆ seconds.

Promising general solutions have been found and it can be shown that it is their general-
ity that makes them robust. The implementation of the phase-leads and their respective
amplitudes shown in Figures 7.9 - 7.13 leads to large transients during the initial itera-
tions. Large transients which do not lead to divergence of the cycle error are either due
to very slow convergence of relatively low frequencies, or some practical limitation that
means that the filter Φ(z) is implemented imperfectly. An instance of the latter in the
present case arises because the phase-lead resolution of 0.05 corresponds to an update
of the input only at every 50 samples at the sampling rate used. Spline interpolation
has been used to provide a smooth update at every sample, but the algorithm is also
unstable at high frequencies resulting in a gradual divergence.

Figures 7.14, 7.15 and 7.16 show experimental results obtained using the multiple phase-
lead optimizer shown in Figure 7.9. The performance of the best performing single
phase-lead case is also shown, its value given in brackets. The results show a great
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Figure 7.14: Single and multiple phase-lead error results for 20 UPM sinewave demand
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Figure 7.15: Single and multiple phase-lead error results for 20 UPM R1 demand
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Figure 7.16: Single and multiple phase-lead error results for 20 UPM R2 demand

improvement in convergence and stability. Unless explicitly stated, every experiment
has been performed with the updates scaled to have a total amplitude summation,∑

i φi, and hence steady-state gain, of 0.5. Figure 7.17 shows the effect of varying this
value in the case of the optimal phase-lead update. Learning transients become very
large when φ > 0.7 and the system is unstable at low frequencies. Scaling the updates
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Figure 7.17: Multiple phase-lead error results for 20 UPM R2 demand with various
φ

reduces the instability and reduces the learning transients. Any unstable frequencies
diverge more slowly, but the rate of convergence is sacrificed. In order to compare
different compensators, it is necessary to set the same scaling value. Since this also
sets the steady-state value which is invariantly close to the frequency of the demand, it
also ensures similar initial convergence rates. Each compensator’s performance can be
varied in relation to the other by changing φ, and increased convergence can be traded
for reduced divergence and transients. It is therefore a sensible approach to compare
controllers with the same scalar multiplier, whilst remembering the effect of varying
each of these gains. The success of the multiple phase-lead update has been shown, but
also its susceptibility to learning transients and high frequency instability. Because the
update of Figure 7.9 has been the most successful, it will be referred to as the ‘multiple
phase-lead’ update in the comparisons contained in the following chapters. The update
was designed to satisfy the monotonic convergence criteria for the nominal plant model
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over the system bandwidth, its failure to do so for all gains 0 ≤ φ ≤ 1 therefore indicates
a lack of robustness in the algorithm.

7.5 Summary

In order to improve on the convergence and instability problems of the phase-lead law,
the convergence conditions for RC and ILC have been investigated. This has allowed
some of the results of the previous section to be explained and justified. The monotonic
convergence condition has been used directly to formulate an optimisation routine that
aims to satisfy by repeated changing amplitudes or adding terms to the controller. This
leads to multiple phase-lead and phase-lag solutions which can be implemented as FIR
filters. The results show little sign of instability and very fast convergence.
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Chapter 8

Contraction Mapping Algorithms

8.1 Introduction

This algorithm has been briefly described in Chapter 6, and the plant adjoint, G∗(z),
has been used in ILC for some time (Fututa and Yamakita, 1987; Jang and Longman,
1994). The basic discrete formulation is

uk+1(z) = uk(z) + φG∗(z)ek(z) (8.1)

where G∗(z) = G(−z). The implementation can be achieved using the vector equation
yk = Guk and an equivalent matrix representation (Hatonen et al., 2003b), where

G =




CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B . . . CB




(8.2)

giving

GT =




CB CAB CA2B . . . CAN−1B

0 CB CAB . . . CAN−2B

0 0 CB . . . CAN−3B
...

...
...

. . .
...

0 0 0 . . . CB




(8.3)

where N is the number of sampling instants in the reference trajectory. The update is
then given by

uk+1 = uk + φGT ek (8.4)
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It can be shown (Furuta and Yamakita, 1986) that the error propagation is given by

ek+1 = (I − φGGT )ek (8.5)

and so
‖ek+1‖2 − ‖ek‖2 = −2φ‖GT ek‖2 + φ2‖GGT ek‖2 (8.6)

which means that with a small enough choice of φ, the right hand side can be made
negative and monotonic convergence is assured. An equivalent condition (Hatonen et al.,
2004) is given by

sup
ω∈[0,2π]

|1− φ|G(ejω)|2| < 1 (8.7)

In the case of repetitive control the Markov parameters can be looped from the trial end
to the trial beginning so that Equation 8.3 with each Markov parameter appearing once
in each column, becomes




CB CAB CA2B . . . CAN−1B

CAN−1B CB CAB . . . CAN−2B

CAN−2B CAN−1B CB . . . CAN−3B
...

...
...

. . .
...

CAB CA2B CA3B . . . CB




(8.8)

where the equivalent matrix representation used in (Hatonen et al., 2003c) is applied.
The number of looped entries depends on the number of non-zero Markov parameters,
and this corresponds to more than one looped entry if this value is greater or equal to
N . Since the Markov parameters equal the magnitudes of the system impulse response,
it is possible to implement Equation 8.1 simply by applying the impulse response as a
phase-lead update function, setting

Φ(z) = CBz + CABz2 + CA2Bz3 · · ·+ CAM−1BzM + CAMBzM+1 (8.9)

If the number of non-zero Markov parameters exceeds the trial length then they must
either be removed (truncated) or looped so that all the entries in some diagonals of GT

have two terms. The looped entries really require data that hasn’t yet been produced
but are given data from the previous trial which causes transients in the learning. A
discussion of the dangers of truncating the impulse response by too much and methods
to address this, is given in (Chen and Longman, 2002).

8.2 Use of Pole-placement to avoid Truncation

One possible way to address the instability caused by truncating the plant’s impulse
response is to reduce its length by using a dead-beat controller which effectively places
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all the poles at the origin of the z-plane. This results in the impulse response going
to zero in n steps, where n is the number of states of the original system. Truncation
would then be avoided provided the trial length exceeds n. The GT algorithm is then
applied to this dead-beat closed-loop system. The controller has been implemented us-
ing pole-placement by Ackermann’s method to produce the state gain K. This is shown
schematically in Figure 8.1 in which an estimator is required to implement the state
feedback. It has been found to result in a very unstable system. Alternatively, if only a

Figure 8.1: Flow diagram with closed-loop pole-placement plant

moderate adjustment is considered, the impulse response can be shortened significantly
without noticeable loss of stability. Three systems have been simulated in order to il-
lustrate the technique. The first is the stage 2, PID controlled system, G(z), which has
dominant poles at 0.9894± 0.0203j and 0.9061± 0.0505i. The second uses SVF to move
these poles and create double poles at 0.7 and 0.94 to produce G1(z). The third again
uses SVF to create double poles at 0.85 and 0.9, producing G2(z). The systems have
been multipled by a scalar in order to have a steady-state step response (and hence
impulse response integral) of unity. This makes their low frequency convergence rates of
a similar magnitude and allows fairer comparisons to be made between them. Figure 8.2
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Figure 8.2: Impulse responses for pole-placed system simulations

shows the impulse responses of these systems and confirms that the impulse response
has been shortened by use of pole-placement. Figure 8.3 shows plots of the stability cri-
terion |1 − Φ(ejwT )G(ejwT )| for the resulting ILC schemes. Closer inspection of Figure
8.3 shows that the original system, G(z), whose impulse response has been concatenated
to 6 seconds, reaches 1.0001 therefore failing to satisfy the criteria. However, the cor-
responding plots for the systems G1(z) and G2(z) do satisfy it over the range shown.
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Figure 8.3: |1− Φ(ejwT )G(ejwT )| for pole-placed system simulations

Figure 8.4 shows tracking and error simulation results for a 20 UPM R2 demand with
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Figure 8.4: Output and error signals for pole-placed system simulations

φ = 1. It is clear that, not only is the truncation instability removed by G1(z) and
G2(z), but their convergence is far more rapid. There is possiblity of reduced robustness
and increased transients using the method described, and for this reason it has not been
implemented on the real stage 2 system.

8.3 Implementation of GT

The impulse response is sampled and applied as a multiple phase-lead update in the
manner of Chapter 7, using Equation 8.9. This seems an entirely natural proposition
since the single phase-lead with greatest learning was found to closely correspond to
the phase-lead update of just its maximum value, so here the remainder are inserted.
Another intuitive reason for using GT is that Equation 7.4 is simplified if Φ(z)G(z) has
a zero phase-lead. In this case the plot of Φ(z)G(z) is constrained to lie in the unit circle
centered at +1. This is much easier to satisfy than the original, and, for a closed-loop
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system whose magnitude ≈ 1 over the system bandwidth, should be close to +1. If this
is not the case then an additional scalar multiplier can be applied to satisfy the equation.
Figure 8.5 shows the GT update and plots of the stability criterion |1 − Φ(z)G(z)| in
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Figure 8.5: GT formulation of phase-lead ILC with φ = 1.15 (compared with multiple
phase-lead)

comparison with that of the multiple phase-lead update.

It follows from Equation 8.7 that a sufficient condition for convergence is that, for
ω ∈ [0, 2π]

−1 < 1− φ|G(ejωTs)|2 < 1 (8.10)

and since |G(ejwTs)| ≥ 0

0 < φ <
2

supω∈[0,2π] |G(ejωTs)|2 (8.11)

A magnitude plot of the PID controlled stage 2 plant is shown in Figure 8.6. Since
the maximum value of the magnitude is 1.326 (2.451 dB), in this case 0 < φ < 1.137
guarantees convergence for the nominal plant model. Provided Equation 8.7 is satisfied,
the convergence at a frequency, w, is dictated by

|1− β|G(jw)|2| = 1− β|G(jw)|2 (8.12)

(Longman, 2000), the smaller it is, the faster the convergence. It is desirable that |G(jw)|
equals unity at low frequencies and this is the reason the PID controller will again be
used with the stage 2 system in all the tests conducted in this chapter, and the resulting
system termed G(jω).
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Figure 8.6: Bode plot of PID controlled stage 2 system

The success of GT ILC is confirmed by the experimental results shown in Figures 8.7,
8.8 and 8.9.
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Figure 8.7: Error results for 20 UPM sinewave demand using single phase-lead and
GT algorithms with φ = 0.1
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Figure 8.8: Error results for 20 UPM R1 demand using single phase-lead and GT

algorithms with φ = 0.1

Because the length of the GT update exceeds the length of the reference demand, updat-
ing every sample requires all the samples in the new input to be updated at every sample
instant. In this case some updates will consist of amalgamates of more than one phase-
lead. Since this is computationally intensive, the experiments have been implemented
with updates made only every 16, 47 and 470 samples and their success indicates its
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Figure 8.9: Error results for 20 UPM R2 demand using single phase-lead and GT

algorithms with φ = 0.1

robustness to transients. It can be seen that GT converges almost as fast as the single
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Figure 8.10: Error results for 20 UPM R1 demand using single phase-lead and GT

algorithms

phase-lead algorithm on a very demanding reference. It shows no sign, however, of insta-
bility. Appendix J shows results for other references. Because the 20 UPM R2 demand
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Figure 8.11: Comparison of GT and the multiple phase-lead algorithms’ best tracking
for 20 UPM R2 demand

has higher frequency components, the superior learning of the multiple phase-lead ILC
at these frequencies is evident in the rate of convergence and final error. Figure 8.11
shows its superior tracking. Figure 8.12 shows the effect of the variation of the gain
multiplier, φ, and it is clear from comparison with Figure 7.17 of Section 7.4 that the
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convergence and final error of GT is always inferior to the multiple phase-lead update
for a given φ. As expected, GT produces less harmful learning transients. Alteration of
φ can only supply certain freedoms since the learning at every frequency is affected, so
the following statements are true

• The multiple-phase lead update always has more learning at high frequencies than
GT . If it was scaled to make the high frequency learning comparable then the low
frequency learning would be too poor to be useful.

• Unfavourable learning transients and, to a degree, high frequency instability, are
an inherent feature of the multiple phase-lead update. The extent of their effect
depends on the demand, and if tolerable, the multiple phase-lead update should
be used in preference to GT and a low-pass filter applied at the highest frequency
present in the demand.

• Since it was shown that the nominal plant model satisfies the monotonic conver-
gence criteria for 0 < φ < 1.137, the instability seen in practice at lower values
indicates a lack of robustness to plant uncertainty.
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Figure 8.12: GT algorithm error results for 20 UPM R2 demand with various φ

8.4 GT with Reduced Plant Knowledge

Filtering has previously been applied to the error signal of a trial prior to its use in the
next. If an IIR filter is used the filtering process is more restrictive in repetitive control
mode as the entire error must be filtered in reverse in order to produce zero phase-lead,
and this must be completed in a single sample instant. The solution that has been found
to work well is to apply each input three times, recording the error, and then apply it
once more during which time the error is filtered backwards in time. Three cycles of the
input are used in order to minimize transients at the beginning and end, and the middle
error is used as the next update. Using the impulse response of G(s) has meant that
GT could always be implemented in FIR form and so the IIR implementation could be
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avoided. In this section this will no longer be the case. If Equation 8.3 is written out in
full as




uk(0)
uk(1)
uk(2)
uk(3)
uk(4)




=




CB CAB CA2B . . . CAN−1B

0 CB CAB . . . CAN−2B

0 0 CB . . . CAN−3B
...

...
...

. . .
...

0 0 0 . . . CB







yk(0)
yk(1)
yk(2)
yk(3)
yk(4)




(8.13)

the rows can be interchanged in order to produce an expression involving G, as shown
in Equation 8.14




uk(4)
uk(3)
uk(2)
uk(1)
uk(0)




=




CB 0 0 . . . 0
CAB CB 0 . . . 0
CA2B CAB CB . . . 0

...
...

...
. . .

...
CAN−1B CAN−2B CAN−3B . . . CB







yk(4)
yk(3)
yk(2)
yk(1)
yk(0)




(8.14)

If a reversal is henceforth considered to be with respect to time, then, if the reverse of
an input u(i) is applied to the system and the output recorded then a reversed copy of
this signal is related to u(i) by way of the plant transpose. This means that the update
GT ek can be generated by inputting a reversed copy of the error into the system and
then reversing the corresponding output. It can only be implemented in IIR form. It
is instructive to first verify the success of this technique in the ILC framework before
extending it to the RC framework. As the plant provides its own transpose, this method
has been termed ‘automatic GT ’.

In the ILC problem we perform a trial of the input and store the error. Then the
error is recorded and a reversed copy is fed into the system and the output reversed
to become the new update addition, GT e. Problems with this method are caused by
non-linearities in the system, largely due to friction. To illustrate this, Figure 8.12
shows an idealised positional input that changes velocity direction once. The disparity
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Figure 8.13: Slackness non-linearity

between input and output position, ζ, changes direction depending on the direction of
the velocity. Assuming this positional slack has been ‘taken up’ at the start and that
every change in velocity direction is continued until the positional slack has again been
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taken up, then the value of y(N)−u(N) will be +ζ for an odd number of velocity changes,
and −ζ for an even number. However the output magnitude will be < |ζ| if the velocity
change occurs close to the trial end. The error is shown in Figure 8.14 together with the
reversed version. The velocity of both starts in one direction and then switches once.
The response to this error depends on which direction the slack has been transferred
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Figure 8.14: Error and reversed error

to. Since Figure 8.13 ended with negative velocity, if the reversed error followed directly
on, then it would start with no slackness. It is an important point then, not only to
ensure that reversed error follows on from the previous input, but also to seek to align
the direction of slackness. These are necessary conditions in order to prevent transients
which would certainly grow as there is a very sensitive learning feedback relationship
centered at this point. The reversed error must therefore be offset to follow on or a
ramp inserted in between. A possible output is shown in Figure 8.15. The final offset
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Figure 8.15: Response to offset reversed error

due to friction has clearly been increased since the direction of slackness of the reversed
error was in the opposite direction to e(−t). This is due to the error and the reversed
error having an equal number of velocity changes and that the ramp, or offset required
for continuity, does nothing to reset the slackness. Provided there is no instability, due
to increasing transients which are caused by lack of continuity at the beginning of the
reversed error or updated input, this slackness does not lead to instability. Instead it
leads to a residual error in the tracking of the demand. There are, however, certain
methods to reduce the impact of such non-linear characteristics:

• Insert a ramp from the end of one input to the beginning of the next to prevent
transients in the output.
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• To reduce the effect of the deadband, amplify the error and then scale down the
resulting output by the same amount. The amplification is increased as the cycle
number increases.

• To prevent a bias towards one side of the deadband, the error is flipped every
alternate trial. It is flipped back to normal before being used in the update.

It is possible that the velocity crossing points could be found and the non-linearity
compensated for. However the slackness of the system during input would have to be
known also in order to update appropriately and the simplicity of ILC would be lost.
Figure 8.16 illustrates the advantages of using these techniques, the results having been
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Figure 8.16: GT algorithm error results for 10 UPM sinewave demand using different
filtering techniques

produced within the ILC framework on the stage 2 plant. The demand was applied but
with a cycle inserted either side. In the 4th cycle a ramp was applied to link with the
reverse error input comprising the next 3 cycles. Another ramp provided a link with the
next cycle, making 8 cycles necessary for a single update.

The performance of the technique in ILC formulation suggests it to be suitable for
Repetitive Control. In this case further copies of the demand were superimposed on
every cycle, and superposition was used to remove the effects of the added inputs. As
the cycles converge, the superpositions become smaller and the output of every trial
converges to the reference. Updates are again only every 8 cycles but more frequent
updates are found to come at the expense of large transients. Figure 8.17 shows that
the performance of automatic GT compares favourably with that of unfiltered single
phase-lead ILC, but without its instability. Because of the slow update frequency, 1600
trials of automatic GT have been performed which produces 200 updates. Since the
phase-lead algorithm produces an update every cycle, the 200 updates shown in the
graph correspond to 200 trials. Figure 8.18 shows similar results for a different demand,
in this case 2000 trials of automatic GT have been performed, and there are 250 updates.
Additional results for both the RC and ILC formulations of the adjoint algorithm are
presented in Appendix J.
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Figure 8.17: Error results for 10 UPM R2 demand using automatic GT and the best
single phase-lead

Figure 8.18: Error results for 20 UPM R1 demand using automatic GT and the best
single phase-lead

8.5 Extensions to GT

Although additional compensators can always be added in series with any Φ(z), this
is simplified in the GT case because of the zero phase-lead of GGT . If an additional
compensator F (z) is added then the monotonic convergence criterion is changed to;

|1− FGGT | =
√
1− 2|F ||G|2 cos(∠F ) + 4|F |2|G|4 (8.15)

Further simplicity arises if the phase-lead of F (z) is zero. In this case the criterion
becomes

|1− FGGT | = 1− |F ||G|2 < 1 (8.16)

Therefore the gain of F could be used to directly manipulate the convergence criterion.
As has been discussed, a zero-phase filter can be implemented by applying an IIR filter
forwards and backwards, and the way in which automatic GT is carried out means there
is time for an IIR filter to process the update in this way before the extra trial is con-
cluded. However, in this section the original GT algorithm is the only one considered for
improvement, so a zero-phase FIR filter must be used instead. In this case a single filter
F (z) is again designed and implemented as a phase-lead update and then implemented
directly afterwards as a phase-lag update. To obtain a single update, termed F = QQT ,
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it is simply concatenated with itself and scaled, a process described below. FF T must
then be concatenated with GT in order to produce the final update, Φ.

Comparisons have been made between controllers with the same steady-state gain and
it has been observed that the gain can then be used to affect a compromise between
the initial convergence and divergence due to instabilities. Figure 8.19 shows a simple
compensator designed to add amplification to the GT law over certain regions. When
this compensator is combined with GGT a gain of 0.1 is used in order to ensure that the
instabilty and therefore learning transients is not too great. The plots of the resulting |1−
0.1QQTGGT |are also shown. Figure 8.20 shows the experimental results achieved when
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Figure 8.19: Design of QQT for additional learning to the impulse response

these compensators were tested using Equation 8.17 and a gain of 0.1. The transients
were reduced by making the update resolution equal to 1. It can be seen that an
improvement in convergence and final error is possible, but that too much high frequency
amplification causes instability.
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Figure 8.20: Success of compensators using 10 rads−1 20 UPM R2 demand
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It has been observed that QQT can be achieved by concatenating the sampled impulse
responses. Care must be taken that the sample rate is sufficiently high, if Q has a low
frequency cut-off then this can be achieved quite easily. The impulse response of G can
then be concatenated with this to produce a single update. If Qi, (i = 1, 2, . . . N) is the
impulse response for Q, and Gj , (j = 1, 2, . . . M) is the impulse response for G then the
resulting update is given by

QQT
N+i−m =

N−1∑
i=0

N−1∑
m=0

QN+mQN+m−i

GTQQT
N+i−m+j =

M−1∑
j=0

2N−1∑
N+i−m=1

QTQN+m−iGj (8.17)

Figure 8.21 shows a different set of compensators, Q, using a gain of 0.5. The larger
gain shows the effect of instability more clearly. Only tests 1 and 5 show divergence
and the initial convergence and almost immediate divergence is caused by the learning
transients. Only test 1 injects amplification which exceeds that of the multiple phase-
lead update which suggests that that update was less prone to learning transients than
the method implemented here. A partial cause of these transients can be found by
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Figure 8.21: Design of QQT for additional learning to the impulse response

examining the update which causes them, such as that shown in Figure 8.22. Because
the implementation of QQT necessarily incorporates phase-lag, the output u(i) continues
to be updated by errors occurring immediately after instant i. This means that, not only
is the filtering process of the most recent learning update only half complete, but that
the integral of all the future errors which contribute to u(i) may make the outputted
value of u(i) quite erroneous. Because the response to this input determines the next
error, the learning is very unstable. Neither GT nor multi-phase-lead updates have
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phase-lag which reduces their susceptibility to these learning transients. Figure 8.23
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Figure 8.23: Success of compensators using 10 rads−1 20 UPM R2 demand

shows the large sensitivity to transients. The oscillations are partly due to reasons given,
and partly due to mid-range frequencies on the edge of stability whose phase-lead causes
them to drift in and out of phase with their correct position, thereby causing oscillations
in cycle error. The experiments have suggested that compensators of the type described
produce far more transients than an equivalent multiple phase-lead update.

8.6 Summary

The learning law utilising the plant transpose has found to fit naturally into the frame-
work introduced in Chapter 7. Practical results have been presented to assess its per-
formance. This algorithm, which requires a model of the plant, is reformulated into one
which needs little plant knowledge. Results have been presented using this technique
and practical guidelines have been produced and tested to improve its performance. A
simple method of increasing the learning at higher frequencies has been proposed and
practical limitations have been addressed and verified experimentally.

The performance of the adjoint algorithm has been compared with that of the multiple
phase-lead and best performing single phase-lead. It has been found to offer far greater
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performance than the single phase-lead law and be less sensitive to high frequency insta-
bility than the multiple phase-laed algorithm. The adjoint algorithm, however, does have
the disadvantage of slower convergence when compared to the multiple-lead law. Since
both these laws have been shown to satisfy the monotonic convergence criteria for fre-
quencies upto and exceeding the system bandwidth, it can be surmised that the adjoint
algorithm has a greater robustness to plant uncertainty than the multiple phase-lead
law.
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Chapter 9

Optimality Based Algorithm

9.1 Introduction

All previously implemented algorithms have followed on from one another in an intu-
itive way and share a common framework. In order to broaden the type of methods
considered, a law with a different structure will be considered in this chapter. Recently,
a novel optimality based Repetitive Control algorithm was proposed in (Hatonen et al.,
2003c). According to the convergence analysis, the algorithm will result in asymptotic
convergence for an arbitrary discrete-time LTI plant and a T -periodic reference. How-
ever, the performance of the algorithm was tested only using simulation studies. In order
to rigorously test how the algorithm performs with real systems has been implemented
on the stage 2 system.

9.2 Algorithm Derivation

The derivation uses a combination of the polynomial systems approach presented in
(Blomberg and Ylinen, 1983) and optimal control. The first creates a regulator system
that ensures the output is tracked, and the second provides a feedback controller that
drives the output e(t) of this modified system to zero. Consider a process model defined
for t ∈ Z

A(z−1)y(t) = B(z−1)u(t) (9.1)

where A(z−1), B(z−1) ∈ C[z−1]. It is assumed that this model is both controllable
and observable and that a feedback controller is used to make the output track the
reference. As a starting point note that because the reference signal is T -periodic (i.e.
yd(t + T ) = yd(t)), the polynomial D(z−1) = 1 − z−T is a annihilator (or an internal
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model) for yd(t), i.e.

D(z−1)yd(t) = yd(t)− z−T yd(t) = yd(t)− yd(t− T ) = 0. (9.2)

Next, both sides of Equation 9.1 are multiplied with D(z−1) to give

D(z−1)A(z−1)y(t) = D(z−1)B(z−1)u(t)
= B(z−1)D(z−1)u(t)
B(z−1)ũ(t)

(9.3)

where ũ(t) := u(t)− u(t− T ). The left-hand side of Equation 9.3 can be written as

D(z−1)A(z−1)y(t) = A(z−1)D(z−1)y(t)
= A(z−1) (y(t)− y(t− T ))
= A(z−1) (y(t)− yd(t) + yd(t− T )− y(t− T ))
= A(z−1) (−e(t) + e(t− T ))
= −D(z−1)A(z−1)e(t) = Ã(z−1)e(t).

(9.4)

where Ã(z−1) := −D(z−1)A(z−1). Combining the last two equations produces

Ã(z−1)e(t) = B(z−1)ũ(t) (9.5)

which is a controllable and observable dynamical regulation system, if D(z−1) and
B(z−1) are coprime. Let this modified system have the state-space representation

xm(t+ 1) = Amxm(t) +Bmũ(t)
e(t) = Cmxm(t)

(9.6)

where the dimension of xm(·) is n+ T , and n is the order of the original process model.
Consider the standard optimisation problem

min
ũ∈l2

J(ũ, xm(0)) (9.7)

where
J(ũ, xm(0)) =

∑∞
i=1 e(i)

TQe(i) + ũT (i)Rũ(i)
=

∑∞
i=1 xm(i)

TCT
mQCmxm(i) + ũT (i)Rũ(i)

(9.8)

and Q and R are symmetric positive-definite weighting matrices. The well-known solu-
tion of the optimisation problem is given by the control law ũ(t) = −Kxm(t) or

u(t) = u(t− T )−Kxm(t) (9.9)

where K is given by the equation

K = (BT
mSBm +R)−1BT

mSAm (9.10)
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and S is obtained from the algebraic Riccati equation

S = AT
m[S − SBm(BT

mSBm +R)−1BT
mS]Am +Q (9.11)

Since in practice it is not possible to measure the state xm(·) directly, an observer will
be used to estimate them using

x̂m(t+ 1) = Amx̂m(t) +Bmũ(t) + L(e(t) − Cmxm(t)) (9.12)

where L is the observer gain and the control law becomes

u(t) = u(t− T )−Kx̂m(t) (9.13)

If the modified system also has noise terms, it becomes,

xm(t+ 1) = Amxm(t) +Bmũ(t) +Gw(t)
e(t) = Cmxm(t) + v(n)

(9.14)

where w(t) and v(t) are zero mean Gaussian noise, w(t) describing uncertainty in the
state-space model and v(t) describing uncertainty in the measurement process. If the
covariance matrix Qn of v(t) and the covariance matrix Rn of w(t) are known, it is
possible to find an optimal observer gain L that minimises the variance of the estimation
error. It is also a standard result in optimal control (Lewis and Syrmos, 1995) that by
combining the optimal feedback controller and optimal observer the resulting closed-loop
system is stable, and hence the expected value of e(t) will go to zero as t → ∞. The
flow-diagram of the proposed algorithm is shown in Fig 9.1. It was also shown (Hatonen

Process
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z
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�	 z
-T

u(t)

y (t)

e(t)



m

y(t)

x (t)

u(t)

d

Figure 9.1: The flow diagram of the Repetitive Controller

et al., 2003c) that this approach also works for more complex reference signals, a typical
example being multi-periodic reference signals of the form yd(t) = yd1(t)+yd2+· · ·+ydn(t)
where ydi(t) = ydi(t + Ti). In this case the annihilator is the multiplication of all the
separate annihilators.
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9.3 Experimental Results

A PID loop around the plant is used in order to pre-stabilise it and provide greater
stability. This approach has been found to afford greater success than when just using
the open-loop plant. The values of the optimal weighting matrices, Q and R, were set
at 10 × CTC and 1 and the Kalman covariance matrices, Qn and Rn, were set at 10
and 1. A mathematical software package was used to calculate K and L, taking several
hours and a large amount of memory, and thereby restricting the sampling frequency to
250Hz. Due to the sparseness of the resulting modified system given by Equation 9.5,
the algorithm can be programmed very efficiently by partitioning the large Ã matrix
into a small non-sparse matrix and an off-diagonal matrix of ones. This results in
two interacting state-space systems but only the one using the small matrix has to be
calculated at each sampling instant. Instead of recalculating the larger system, its states
can simply be renumbered at each sampling instant. The computational workload is
therefore concentrated on the equations involving the K and L multiplications. Figures
9.2 and 9.3 show the initial cycles using the 20 UPM sinewave demand and the 20 UPM
R1 demand respectively. In both cases the demand is followed well by the 3rd trial,

Figure 9.2: Optimal algorithm 20 UPM sinewave demand convergence

Figure 9.3: Optimal algorithm 20 UPM R1 demand convergence
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and tracking is almost perfected by the 6th. The corresponding input to the plant is also
shown.

In order to increase robustness, a relaxation parameter, γ, was inserted in Equation 9.13
just as a forgetting factor was applied to the phase-lead algorithm in Chapter 6. This
produces the control law

u(t) = γu(t− T )−Kx̂m(t) (9.15)

where K is a function of γ since the system structure of Equation 9.5 has been altered.
It is therefore necessary to recalculate it and the observer and kalman filter gains for
different γ. Figures 9.4 and 9.5 compare results obtained using different values of γ. It
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Figure 9.4: Optimal algorithm error results for 20 UPM sinewave demand with re-
laxation
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Figure 9.5: Optimal algorithm error results for 20 UPM R1 demand with relaxation

can be seen that for the 20 UPM R1 demand divergence occurs during later trials when
using γ = 1. Divergence is prevented by instead using smaller values of γ, incurring
a penalty to the final error bound reached depending on how close it is to 1. The
relaxation parameter can be seen to sacrifice final error for stability which coincides
with observations made concerning the use of the forgetting factor with the phase-lead
algorithm. Figures 9.6 and 9.7 compare the best results produced with this scheme
with the best of other algorithms. Gains of φ = 0.5 have been used in each case. It
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Figure 9.6: Error results for 20 UPM sinewave demand using different ILC schemes
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Figure 9.7: Error results for 20 UPM R1 demand using different ILC schemes

is clear that the optimality based algorithm has hugely improved convergence to these
schemes, a similar final error bound and little sign of greater instability. To match its
convergence rate, the gain of these other schemes can be increased but this always leads
to the rapid onset of instability. The relationship between sucessive cycle errors for the
update law given in Equation 9.13 is given by

ek+1 =
γ

HG+ 1
ek(t) +

1− γ

HG+ 1
yd(t) (9.16)

where
H =

−KL

Iz − (Am − LCm −BmK)
(9.17)

A plot of the left hand side of the sufficient convergence condition (Owens, 1992)

∣∣∣∣ γ

HG+ 1

∣∣∣∣ < 1 (9.18)

is shown in Figure 9.8 for several values of γ. The second term on the right hand side
of Equation 9.16 dictates the level of final error and is very small for γ close to 1. It is
clear that a reduced γ helps satisfy the condition and suggests the replacement of γ with
a filter. This could then be designed not only to satisfy the condition but also to add
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learning at those frequencies present in the demand. The use of a filter would allow much
greater control over the stability and convergence properties of the scheme. That fact
that the convergence condition is clearly not satisfied for all frequencies upto the system
bandwidth suggests that not satisfying the condition carries a lighter instability penalty
than it did for the previous algorithms that have been implemented. The differences in
the respective algorithm structures is investigated in the next chapter.
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Figure 9.8: Convergence condition for different γ values

9.4 Summary

An optimality based RC scheme that has previously produced encouraging simulation
studies has been implemented on the stage 2 plant. Experimental results using the tech-
nique on this facility have been presented and excellent performance has been observed
in terms of convergence rate, stability and the final error bound. The results have been
compared to those of other ILC schemes and its performance appears superior in terms
of convergence rate and it is seen to provide a similar level of final error.
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Chapter 10

Algorithm Robustness

10.1 Introduction

The P-type and phase-lead algorithms have been shown to have almost certain instability
since they do not satisfy the sufficient monotonic convergence criterion, given by

|1−Φ(ejwT )G(ejwT )| < 1 (10.1)

which was discussed in Chapter 7. The same criterion was found to ensure stability for
the adjoint and multiple phase-lead algorithms for the stage 2 plant model over a large
range of frequencies. Since the PID controller has been used as a pre-stabiliser for the
plant in all the algorithms tested, G(ejwT ) represents this closed-loop system. Unfortu-
nately this model does not represent the actual system perfectly, and the convergence
properties observed using the model may only apply to systems that do. This section
examines the changes in the convergence condition that occur when the actual plant
equals the model with an multipicative uncertainty, ∆Gm(ejwT ). In this case

Gp(ejwT ) = G(ejwT )(1 + ∆Gm(ejwT )) (10.2)

where Gp(ejwT ) is the actual plant. Here the robustness properties of the algorithms
are not examined in a general setting, but specifically with the stage 2 system, on which
all but the D-type law have been used. The findings can be applied to an additive
uncertainty, ∆Ga(ejwT ) with the substitution

∆Gm(ejwT ) =
∆Ga(ejwT )
G(ejwT )

(10.3)

The notation G(ejwT ) = G, ∆Gm(ejwT ) = ∆Gm has been adopted for conciseness in
the remainder of this section.
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10.2 Stability Criterion for the Uncertain System

The uncertainty changes the location of the open-loop learning system, ΦG, in the
complex plane, ΦG becomes ΦG(1 + ∆Gm). This is shown in Figure 10.1. It is clear
that, by the application of either ∠(1 + ∆Gm) or |1 + ∆Gm|, the point ΦG(1 + ∆Gm)
can be made to move out of the stability region, that is the unit circle, centred on +1,
for every w. For a given value of ∠(1+∆Gm), the value of |1+∆Gm| can be calculated
which causes ΦG(1 + ∆Gm) to touch the unit circle. This creates a mapping of the
stability boundary in terms of ∠(1 + ∆Gm) and |1 + ∆Gm|. Alternatively |1 + ∆Gm|
can be increased and the value of ∠(1 + ∆Gm) found, this produces the same result
but is more difficult to ensure every value has been considered. The discussion will

Figure 10.1: Graphical representation of convergence criterion

be restricted to consider only the principle argument of ∠ΦG + ∠(1 + ∆Gm), that is
∠ΦG + ∠(1 + ∆Gm) ∈ [−π π]. In the diagram, ‘a’ is the point at which the stability
boundary is met. Its magnitude is given by

|a| = 2cos(∠ΦG+ ∠(1 + ∆Gm)) (10.4)

with the condition

cos(∠ΦG+ ∠(1 + ∆Gm)) = 0 ∀ w :
π

2
< ∠ΦG+∠(1 + ∆Gm) + 2πn < −π

2
(10.5)

where n is an integer. Substituting for ‘a’, the stability criterion (Equation 10.1) for the

uncertain system is now,

|1 + ∆Gm| < 2 cos(∠ΦG+ ∠(1 + ∆Gm))

|ΦG| (10.6)

In terms of |∆Gm| and ∠Gm the necessary substitutions are

∠(1 + ∆Gm) = tan

( |∆Gm| sin(∠∆Gm)

1 + |∆Gm| cos(∠∆Gm)

)
(10.7)
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and

|1 + ∆Gm| =
√

1 + |∆Gm|2 + 2|∆Gm| cos(∠∆Gm) (10.8)

Substitution of these into Equation 10.6 yields

√
1 + |∆Gm|2 + 2|∆Gm| cos(∠∆Gm) <

2 cos
(
∠ΦG + tan

(
|∆Gm| sin(∠∆Gm)

1+|∆Gm| cos(∠∆Gm)

))
|ΦG|

(10.9)

This is an equation linking the uncertainty terms, solely as a function of the known

system model. If the inequality is replaced with an equality then a mapping from

the uncertainty terms to the stability boundary is described. However, solving

this for |∆Gm| analytically is a difficult task and so the uncertainty will be kept

in the form of 1 + ∆Gm. This can be treated as a plant uncertainty in its own

right. This uncertainty, which is in series with the plant, will be termed ∆G, and

is given by

∆G = 1 +∆Gm (10.10)

This uncertainty has a greater effect on the plant per unit variation than the

additive and multiplicative uncertainties since |∆G| scales the magnitude of the

plant, and ∠∆G adds directly to its phase. Replacing this in Equation 10.6 and

setting it to an equality produces

|∆G| = 2 cos(∠ΦG+ ∠∆G)

|ΦG| (10.11)

For each frequency, w, this expression can be used to locate the stability boundary

in terms of the uncertainty ∆G. Since Equation 10.11 is a function of w, |∆G|
and ∠G, it can be plotted in 3 dimensions to show the location of the stability

boundary for an uncertain system. This has been done for the stage 2 system in

conjunction with a variety of algorithms.

Assuming ΦG has no unstable poles, an application of the Nyquist Stability Crite-

rion to the geometry of Figure 10.1 shows that if the point +1 is not encircled, the

system 1− ΦG has no unstable zeros. Note that the traditional point of interest,

-1, has been reflected in the imaginary axis since ΦG has been plotted instead of

−ΦG.

10.3 Robustness Plots

In the following plots, for every frequency (plotted on the x-axis), the range of

∠∆G is given on the y-axis for values between ±π. For values ∠∆G+nπ, where n

is an integer, the values are the same as for the principle argument. The value of
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|∆G| (plotted on the z-axis) can then be examined to see if the system is stable. If

0 ≤ |∆G| < 1 then the actual system magnitude must be smaller than the model

for stability by this magnitude and so the nominal system is unstable.

If |∆G| ≤ 1 then Equation 10.1 is not satisfied and it is unlikely that the learning

system is stable. For values |∆G| > 1, the magnitude shows by what factor |G|
can be multiplied and stability still ensured. The plots do not show values of the

z-axis greater than 5 in order to focus on the areas close to the stability border. In

every algorithm a gain of φ = 1 has been used but reduction of φ simply elongates

the plot in the z-axis direction. Another general point is that, for every plot, more

than half the range of ∠∆G must correspond to |∆G| = 0 for every frequency as

ΦG∆G rotates into the left half plane. The plane |∆G| = 1, corresponding to

zero phase uncertainty, has a displaced copy of the x-axis/y-axis grid overlaid on

it. Therefore, for a given frequency and phase uncertainty, if this grid is broken

by the plot then the system has a degree of robustness at those points.

Figure 10.2 shows the plot when using the P-type algorithm, that is Φ = 1. With

no phase uncertainty (∠∆G = 0), the system is almost certainly unstable for fre-

quencies in the range 1-7 rads−1 since the corresponding gain uncertainty, |∆G|, is
approximately zero. Because the demands used have significant frequency content

upto 10 rads−1, it is these frequencies which consistitute the most important range

where learning and robustness are most necessary. The P-type controller does not

satisfy the criterion for the majority of this region and also for for a large section

at higher frequencies. Figure 10.3 shows an ‘overhead’ view of the plot. The areas

Figure 10.2: Robustness plot for the P-type algorithm
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where the grid is broken are robustly stable, and the degree of this robustness is

indicated by the warmth of their colour.

Figure 10.3: X-Y plane view of Figure 10.2

The phase-lead algorithm, shown in Figure 10.4, is given by Φ = ejwTλopt (where

λopt is the best performing phase-lead in practice) and has a far more robust plot

than the P-type law since |∆G| attains greater values for zero phase uncertainty.

It should be expected that |∆G| ≈ 2 at low frequencies and low values of phase

uncertainty since this is consistant with it being an inverse of the model. (This

is only the case when |G| ≈ 1 at low frequencies which is true for the closed-

loop stage 2 plant). This is the case for the phase-lead algorithm, but at high

frequencies there is a period where |∆G| < 1 in the region of 2.5 rads−1. The

‘tunnel’ of convergence around ∠∆G = 0 is constricted at this point showing

not only a decrease in robustness, but instability for the nominal plant model

at certain frequencies. The most prominent feature of the phase-lead algorithm is

the diagonal regions of almost certain instability. Figure 10.5 shows the ‘overhead’

Figure 10.4: Robustness plot for the phase-lead algorithm with λopt
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view of Figure 10.4.

Figure 10.5: X-Y plane view of Figure 10.4

Figure 10.6 shows the robustness plot of the multiple phase-lead algorithm. The

tunnel of convergence is free from constriction. Its magnitude is approximately

2 with no phase uncertainty up until about 5 rads−1 showing that the algorithm

approximates the plant model inverse at these frequencies. The robustness prop-

erties of the algorithm slightly favour negative phase uncertainty in the region

of 10 rads−1 but are hugely displaced towards positive phase uncertainty at high

frequencies. This shows almost certain high frequency instability but would take

a huge number of cycles to accumulate as |G| is small. Figure 10.7 shows the

Figure 10.6: Robustness plot for the multiple phase-lead algorithm

‘overhead’ view of Figure 10.6.
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Figure 10.7: X-Y plane view of Figure 10.6

The robustness plot for the adjoint algorithm is shown in Figure 10.8. Almost

definate instability is obvious at around 3 rads−1 since |∆G| < 1. This has been

avoided in practice by selecting 0 ≤ φ < 1. The failure of the algorithm as

an approximate inverse at low frequencies is shown by the magnitude of |∆G|
which cannot be close to 2 for any great frequency range whatever value of φ is

taken. This illustrates the compromise that is been experienced in the design of Φ:

Robustness demands it to be large as soon as possible, but for rapid convergence

it should also approximately equal 2. As well as being robust at low frequencies,

the adjoint algorithm reaches very large values of |∆G| and maintains them for

−π
2
< ∠∆G < π

2
(which is as much as can be possibly expected). Figure 10.9

Figure 10.8: Robustness plot for the adjoint algorithm

shows the ‘overhead’ view of Figure 10.8.
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Figure 10.9: X-Y plane view of Figure 10.8

If the system inverse is plotted (i.e. setting Φ = G−1), its lack of robustness can

be clearly seen. Even low frequencies suffer from a lack of robustness since a gain

uncertainty greater than 1 is not present with any great degree of phase uncertainty

present. It has been observed that the build-up of unstable high frequencies will

be very slow, so the lack of robustness over the upper frequencies present in the

demand is the principle concern. This is because a filter can always be used to

simply remove the high frequencies. For |∆G| = 1, stability is only ensured with
π
3
< ∠∆G < π

3
at all frequencies, so the algorithm is not robust. Figure 10.11

Figure 10.10: Robustness plot for Φ = G−1

shows the ‘overhead’ view of Figure 10.10.
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Figure 10.11: X-Y plane view of Figure 10.10

10.4 Alternative Algorithm Structure

The optimal algorithm cannot be represented in the previous form since its algo-

rithm is a function of ek+1 instead of ek, and its sufficient monotonic convergence

criterion is consequently changed to∣∣∣∣ 1

H(ejwT )G(ejwT ) + 1

∣∣∣∣ < 1 (10.12)

where H(ejwT ) is defined in Chapter 9 and, once designed, does not depend on

G(ejwT ). Adopting the notation of the last section, this dictates

|HG+ 1| > 1 (10.13)

so that HG + 1 must lie outside the unit circle centered on the origin. This is

shown in Figure 10.12 with the same plant uncertainty description as previously.

The value of |∆G| that causes intersection with the stability boundary can again

be calculated for each ∠∆G over a range of frequencies.

Figure 10.12: Graphical representation of convergence criterion
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This produces

|∆G| = −2 cos(∠HG+ ∠∆G)

|HG| (10.14)

which is the negative of Equation 10.11. The interpretation of the resulting plot

is however extremely different to the previous case.

• If |∆G| > 2
|HG| the algorithm is always stable, and with further magnitude

increase approaches an inverse and is stable for any plant uncertainty. In

the previous section the inverse implied |∆G| = 2 for the case of zero phase

uncertainty.

• Stability is assured for a range of ∠∆G > 180◦ for all |∆G|, in the previous

section the inequality was reversed.

• Values of |∆G| < 1 are now associated with stability, and |∆G| > 1 instabil-

ity, a complete reversal of the previous case.

In order to reconcile the two plots, 1
|∆G| can be plotted instead of |∆G|. This

means values of gain uncertainty below unity can still be interpreted as unstable

and those above as stable. Figure 10.13 shows this plot of the optimal algorithm in

this case. It clear that those almost certainly unstable regions where |∆G| ≈ 0 are

not present over the system bandwidth. The differences in the plot interpretation

make robustness conclusions made on the basis of direct comparisons with earlier

algorithms unreliable. Figure 10.14 shows the ‘overhead’ view of Figure 10.13.

Figure 10.13: Robustness plot for the optimal algorithm
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Figure 10.14: X-Y plane view of Figure 10.13

Assuming HG has no unstable poles, an application of the Nyquist Stability Cri-

terion to the geometry of Figure 10.12 shows that if the point -1 is not encircled,

then 1 +HG has no unstable zeros and so the system

ek+1

ek
=

1

HG+ 1
(10.15)

is stable. This is automatically guaranteed if Equation 10.12 is satisfied.

10.5 Extended Algorithm Structure

The presence of a forgetting factor in either algorithm structure scales the circular

stability boundary seen in Figures 10.1 and 10.12. In the former case it is enlarged

by 1
γ
, and in the latter it is reduced by γ. The former case poses no problem as

Equation 10.11 can simply be altered to

|∆G| =
cos(∠ΦG+ ∠∆G)±

√
cos2(∠ΦG+ ∠∆G) +

(
1−γ
γ

)
|ΦG| (10.16)

and for every value of ∠∆G there is a single |∆G| which intersects the stability

boundary. If a forgetting factor is used with the optimal algorithm, however, the

criteria is changed to ∣∣∣∣ 1

HG+ 1

∣∣∣∣ < 1

γ
(10.17)

which has the graphical representation shown in Figure 10.15.

Therefore for arcsin(γ) < ∠HG+ ∠∆G < arcsin(γ) the circle is intersected twice

and there are two values, a1 and a2, corresponding to the stability boundary. For

values of HG within the circle, |∆G| can be increased and reduced for stability.

Therefore |∆G| < 1 can no longer be associated with instability in these cases.
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Figure 10.15: Graphical representation for forgetting factor

Extending this idea, the deadbeat scheme of Chapter 8 can be represented by the

update

uk+1(z) = uk(z) + φR∗(z)ek(z) (10.18)

being applied as a feed-forward controller around the pole pole-placed plant, R.

Adopting the notation of the previous section,

R =
P

G−1 +Q
(10.19)

and P and Q are transfer fuctions that are independent ofG. Since this is the same

form of ILC update as those seen in Section 10.2, the stability criteria is again

given by ΦR being in the unit circle centered on +1, where Φ = R∗). However, in
this case there is no simple relationship between the uncertainty of the plant G and

the corresponding change in the pole-placed system R. In the previous cases the

uncertainty could directly multiply |ΦG| and add to ∠ΦG which also allowed the

number of intersections of the stability boundary, for a given uncertainty angle

to be known. As the algorithm strucure increases in complication the analytic

computation of the stability boundary mapping increases in difficulty.

10.6 Summary

A graphical method of examining the stability and robustness of ILC algorithms

implemented on a known plant has been developed. Three dimensional plots have

been drawn for each algorithm and the stability implications expounded. The

adjoint algorithm has been seen to be the most robust but with the unavoidable

compromise of lower convergence speed. The multiple lead law is less robust

but learns higher frequencies more rapidly. The robustness plots of the optimal

approach has a different interpretation due to its dissimilar structure compared
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to other implemented algorithms. It is this structure that allows an increased

robustness to uncertainty.
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Chapter 11

Conclusions and Further Work

11.1 Discussion

This work has shown the failure of P-type and D-type ILC laws to control the

output tracking of a non-minimum phase test facilty. In contrast, the simple

phase-lead law has been shown to offer improved results. It has been demonstated

how the best performing phase-lead in practice can be found theoretically and

how the performance can be improved through the design and implementation of

a variety of different filters and a forgetting factor.

A new multiple phase-lead algorithm has been developed and tested in order to

expoit and extend the success of the phase-lead law. Its theoretical derivation has

provided a framework in which algorithms can be produced which places emphasis

on learning specific frequencies.

The adjoint method has been shown to share close links with both the phase-lead

and multiple phase-lead laws. Practical design methods have been proposed and

used for its implementation. Novel additions to this law include the use of a zero-

phase filter to improve learning over certain frequency ranges and the combination

of the adjoint algorithm with deadbeat control to avoid its possible truncation and

increase its convergence. The formulation of automatic GT was also developed in

order to reduce the information that was necessary to apply the algorithm.

An optimal law has been implemented for the first time and found to offer excellent

tracking and convergence properties.

Having implemented a variety of algoirithms, it is naturally desirous to rank them

in order of performance and reach a definate conclusion as to which is best. The

cycle error results of each algorithm have been compared throughout in order

to guage the relative levels of convergence, final error and stability. It is difficult,
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however, to compare several ILC laws over a number of criteria and give definative

measures of their relative merits. The minimum level of error achieved using a

given demand is, however, a solid means for comparison. Table 11.1 shows values

for the stage 1 system of the final error, in terms of NE, the demands used are

the 20 UPM versions and the tests have all been conducted over 400 cycles. Table

11.2 shows results for the stage 2 system. In these results, the PID controller has

been tuned solely to reduce the NE and its parameters are not the same as those

used in conjunction with applying ILC algorithms. A cost comprising of the

Filter Name Sinewave demand R1 demand R2 demand Cost
P-type 0.853457 1.190893 untested 1.7043
PID 0.537036 0.662516 0.930667 1.0000
D-type 0.333168 0.474994 untested 0.6737
Delay type 0.041439 0.104832 untested 0.1219
Phase-lead (unfiltered) 0.010063 0.025652 0.033925 0.0357
Phase-lead (filtered) 0.006722 0.014400 0.033495 0.0176

Table 11.1: Overview of minimum error values for the stage 1 plant

Filter Name Sinewave demand R1 demand R2 demand Cost
PID 0.476000 0.551000 1.014000 1.0000
Automatic GT 0.010371 0.041431 0.094736 0.0718
Phase-lead (unfiltered) 0.009800 0.016500 0.057300 0.0410
Phase-lead (filtered) 0.006850 0.011361 0.034700 0.0259
GT 0.005399 0.008410 0.026042 0.0195
Multi-lead 0.001585 0.003059 0.014896 0.0096
Optimal 0.000956 0.002854 0.009014 0.0064

Table 11.2: Overview of minimum error values a stage 2 plant

sum of the minimum errors for all the demands has been has been calculated to

facuilitate a direct comparison. The resulting costs have been scaled so that the

PID cost equals unity. Since the R2 demand was not used for all the stage 1 tests,

it is not included in the cost function for the stage 1 plant.

It can be seen that for the stage 2 plant the minimum error achievable through

use of a PID controller has been reduced by 498 times for the 20 UPM sinewave

and by 193 and 122 times for the 20 UPM R1 and R2 demands respectively. Table

11.3 summarises the relative merits and drawbacks of each algorithm observed in

practice.

This work has shown the simpleness with which ILC can be applied. For both the

systems on which it was implemented, the phase-lead law, for example, was able

to converge quickly and to a small error for most of the demands used. This was

achieved with only 3 parameters to select (φ, λ, filter cut-off). Although it should

be noted that filters have not been used with methods other than phase-lead ILC.
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Filter Name Advantages Disadvantages
P-type No model required Minimum error large

1 parameter to tune
D-type No model required Minimum error large

1 parameter to tune
Delay type No model required Minimum error quite large

2 parameters to tune
Phase-lead Can do without model Poor transients

2 parameters to tune
Simple filter design process
effectively only adds 1 extra parameter
Good convergence, minimum error

GT Good transients Plant model required
Fairly good convergence rate
Fairly good minimum error

Automatic GT No model required Poor transients
Very Few parameters to tune Low update frequency
Fairly good minimum error Slow convergence

Multi-lead Good convergence, minimum error Plant model required
Quite good transients Calculation time large

Optimal Excellent convergence Plant model required
Good minimum error Calculation time large
Tuning difficult and there are Relaxation parameter
several parameters may be required

Table 11.3: Comparison of algorithm attributes

The optimal algorithm also did not have the luxury of gain changing to reduce the

convergence and increase the final error.

For the nominal plant case, it has been seen that all the algorithms except the

GT fail to satisfy the sufficint monotonic convergence criteria, whatever value of

positive definate gain is used. The design process therefore consists of the selection

of an algorithm which is stable over the system bandwidth, and the design of a

filter which removes all frequencies above the bandwidth. A representation of

robustness that has been formulated makes the design process a simple task as

the stability and robustness of the algorithm can be ascertained from a single plot.

11.2 Conclusions

Being a practical assessment in an area lacking experimental results, this thesis

has done much to reinforce ILC as a technique that can reliably produce superb

peformance from demanding real systems repeating a set task. In addition, this can

be achieved with the same small number of tunable parameters as the conventional

PID controller.
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The long-term stability of ILC laws can be assured by application of a filter and

knowledge of bounds on the plant uncertainty. The filter is simply designed to

remove those frequencies which would not satisfy the sufficient monotonic conver-

gence criteria for all possible uncertainty. This can be done with reference to a

suitable robustness plot.

The successful experimental control of a non-minimum phase plant offers encour-

aging signs that similar results can be achieved on a wide variety of plant types.

The comparison of a number of algorithms has enabled an algorithm to be chosen

depending on practical considerations such as how well-modelled the plant is or

the acceptable level of transients. Figure 11.1 shows a flow chart that may be

used to select an ILC scheme for a general plant. It has been completed using

observations made during the algorithms’ implementation.

Figure 11.1: Design process flow chart

The close relationship between RC and ILC has been verified in practice and the

same algorithms have been shown to work well in both frameworks. This sug-

gests that switching between the two frameworks can produce similarly impressive

results for each.

11.3 Further Work

The most obvious research directions are towards the continuation or direct addi-

tion to the work already completed.

It has been shown in Chapter 10 that all the algorithms considered in this thesis

will eventually go unstable due to high frequency modelling error, even when using
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traditional filters. FFT and inverse FFT filtering should therefore be applied to

completely remove frequencies where the plant phase uncertainty is greater than

90◦. This is especially important if these schemes were required to run indefinitely

within an industrial environment.

The dead-beat controller and contraction mapping scheme of Chapter 8 has sup-

plied some very encouraging results. Simulations have predicted a slighty faster

convergence rate than the optimal algorithm tried, together with the good tran-

sients associated with the adjoint law. It will therefore be an ideal choice to be

implemented on the system.

Schemes closely related to the contraction mapping scheme should be investigated.

For example, the use of a scalar that is calculated before every cycle in order to

increase its convergence (Hatonen et al., 2003a).

The effect of a disturbance on the plant which may permanently effect the plant

dynamics should be considered. This would model the change of load in an indus-

trial process for example.

Use the stage 3 plant to gain insight into the effect of further system complexity

and non-linearity on the robustness of the updates seen.

Work that would naturally follow on:

The most accurate update method is of course to use the plant inverse, but this

has been seen to be extremely ill-conditioned with respect to plant uncertainty. If

this could be stabilised at low frequencies and then FFT filtered when the phase

uncertainy > 90◦ or at the value of the greatest frequency present in the demand

(whichever is lower) then perhaps the best results possible could be achieved.

The good performance gained through use of the Kalman filter and optimal con-

trol naturally brings other optimal schemes to the forefront of those scemes to be

implemented next. In particular the ‘Norm Optimal’ and ‘Norm Predictive’ meth-

ods (Amann et al., 1995, 1996a,b, 1998) will theoretically work on a non-minimum

phase system and produce geometric convergence.

Perhaps the ultimate future goal would be to see a greater use made of ILC

algorithms in industry as a simple way to drastically improve performance and

efficiency.
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Appendix A

Frictionless State Space Matrices

The following state-space systems descibe the mechanical systems shown in Chap-

ter 3. It is to that chapter that the figure numbers refer.

A.1 Mechanical realisation of stage 1 (Figure 3.2)

A =




0 1 0 0

0 0 0 0

0 0 0 1
K
J

−BG
J

−K
J

−B
J


 b =




0

1

0

0




C =

[
K
J

−BG
J

−K
J

−B
J

−K −BG2 K −BG

]
d =

[
−Jg

0

]
(A.1)

where

u
¯
(t) =

[
θ̈i

]
y
¯
(t) =

[
Tinθ̈i

]T
x
¯
(t) =

[
θiθ̇iθoθ̇o

]T
(A.2)

Approximate theoretical values: J = 0.001813, Jg = 0.001272, K = 0.04, B =

0.01
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A.2 Drive train with an ‘in line’ damper (Figure 3.4)

A =




0 1 0 0 0

0 0 −K
J2G

K
J2G

0

0 1
G

−K
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0

0 0 0 0 1

0 0 0 0 0


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
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0 0
1
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0 0

0 0

0 1




C =

[
0 0 K −K 0

0 0 −K
J2G

K
J2G

0
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d =

[
0 −J1

1
J2

0

]
(A.3)

where

u
¯
(t) =

[
Tinθ̈i

]
y
¯
(t) =

[
Toutθ̈o

]T
x
¯
(t) =

[
θoθ̇oθ1θiθ̇i

]T
(A.4)

A.3 Drive train with a damper ‘to earth’ (Figure 3.5)

A =




0 1 0 0

0 0 0 0

0 0 0 1
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0 −K
J2

−BG2

J2
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(A.5)

where

u
¯
(t) =

[
Tinθ̈i

]
y
¯
(t) =

[
Toutθ̈o

]T
x
¯
(t) =

[
θiθ̇iθ1θoθ̇o

]T
(A.6)

142



A.4 Drive train with an ‘in line’ damper preceding non-

minimum phase section

A =



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(A.7)

where

u
¯
(t) =

[
Tinθ̈i

]
y
¯
(t) =

[
Tinθoθ̇oθ̈o

]T
x
¯
(t) =

[
θ1θ2θ̇2θoθ̇o

]T
(A.8)

A.5 Stage two testbed schematic (Figure 3.6)
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(A.9)

where

u
¯
(t) =

[
θiθ̇iθ̈i

]
y
¯
(t) =

[
Tinθoθ̇oθ̈o

]T
x
¯
(t) =

[
θ1θ̇1θoθ̇o

]T
(A.10)

Approximate theoretical values: G1 = G2 = 1, J1 = 0.000837, Jg+J2 = 0.001851,

J3 = 0.00167, K1 = 0.2, K2 = 0.04, B1 = 0.01, B2 = 0.01
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A.6 Stage three testbed schematic (Figure 3.7)

A =
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where

u
¯
(t) =

[
θ̈i

]
y
¯
(t) =

[
Tinθ̈o

]T
x
¯
(t) =

[
θiθ̇iθ1θ̇1θ2θ̇2θoθ̇o

]T
(A.12)

Approximate theoretical values: G1 = G2 = 1, J1 = 0.000837, J2 = 0.002575,

Jg + J3 = 0.001842, J4 = 0.00167, K1 = 0.2, K2 = 0.2, K3 = 0.04, B1 = 0.0025,

B2 = 0.005, B3 = 0.01.
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Appendix B

Motion Control Card

Specifications

The motion control card is a two axis interface card that resides in a single ISA slot

within the PC. The hardware consists of a programmable interrupt controller that

is capable of interrupting the host PC at periods of 0.1ms increments. Two 32-

bit counters provide an interface to the encoder feedback signal. Software allows

configuration of the counters so that receipt of a marker pulse will generate an

interrupt to latch the value currently in the counter. Two 12-bit DACs provide a

±10V analogue demand signal. Digital I/O on the card allows the implementation

of enabling signals. The pin designations are provided in the following table.

Encoder Output
Pin No. Signal Function Signal Function

1 Ai A phase input +15V +15V supply
2 Bi B phase input 0V 0V common
3 Reserved -15V -15V supply
4 Mi Marker input enC1 Motor enable 1(coll)
5 Prb Probe input enE1 Motor enable 1(emit)
6 nAi Inverse A input An1 Analogue output 1
7 nBi Inverse B input An2 Analogue output 2
8 Reserved enC2 Motor enable 2 (coll)
9 nMi Inverse marker i/p enE2 Motor enable 2 (emit)
10 nPrb Inverse probe i/p
11 +12V +12V supply
12 +5V +5V supply
13 0V 0V common
14 -5V -5V supply
15 -12V -12V supply

Table B.1: Interface card connections
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The software consists of a TSR function that is loaded at boot up. A C function,

open motion, opens the card and provides access from within a C program. The

card is closed by use of function close motion.

Communication with the card at run time is through two functions:

long read motion (long command, long channel)

and

void write motion (long command, long channel)

Channel is an integer that selects the channel upon which the command is to

be performed. Write motion adjusts the card as required, whereas read motion

returns a long representing the desired parameter. Command is one of a number

of defined strings that allow access to the various parts of the card such as the

interrupt controller, the encoder counters and the DACs. Using this structure the

command to read the 32-bit value on the encoder counter of axis 0 is:

count = read motion(AXIS 32,0L)

and to write 2000mV to the DAC for axis 1 is:

write motion(DAC MV,1L,2000L)
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Appendix C

CAD Designs

The following drawings were required in order to realise the experimental test

facility designs shown in Chapter 3.

Figure C.1: CAD design of principle test-bed elements
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Figure C.2: CAD designs showing top and side views of the experimental test-bed
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Appendix D

Model Parameters

The following parameters have been used within the time-based plant models.
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D.1 General Parameters

INDUCTION MOTOR

Supply Voltage Vs = 415 V

Supply frequency f = 50 Hz

Stator resistance Rs = 30.6 Ω no-load (28.5 cold)

Rotor resistance Rr = 27.756 Ω

Stator self inductance Lsl = 0.135 H

Rotor self inductance Lrl = 0.135 H

Mutual inductance Lm = 0.745 H

Ls = Lsl + Lm

Lr = Lrl + Lm

Msr = Lm

Number of Poles P = 2

Inertia Jm = 0.0007 kgm2

Viscous friction Bm = 0.0012 Nsrad−1

Coloumb friction Cm = 0.07 N

INVERTER

Deadzone = 0.028 s

Resistance = 2.1 Ω

Slewrate = 0.0504 Vs−1

Speed Integral = 59

Filter pole = 130

I/O CARD PARAMETERS

Maximum DAC Voltage = 10 V

DAC Resolution = 14-bit
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STAGE 1

J1 = 0.00018 Kgm2

J2 = 0.0007 Kgm2

J3 = 0.0007 Kgm2

J4 = 0.0026 Kgm2

b1 = 0.00015 Nsrad−1

b2 = 0.00015 Nsrad−1

b3 = 0.00015 Nsrad−1

b4 = 0.00015 Nsrad−1

f1 = 0.025 N

f2 = 0.013 N

f3 = 0.013 N

f4 = 0.04 N

Jb = 0.000069 Kgm2

kb = 80000 Nrad−1
rb = 0.0004 m

bb = 0.04 Nsrad−1

fb = 0.002 N

K = 0.1157 Nrad−1
B(x) = −5.775× 10−7x3 − 1.4× 10−6x2 + 0.0275x Nsrad−1

STAGE 2

J1 = 0.00018 Kgm2

J2 = 0.0014 Kgm2

J3 = 0.0007 Kgm2

J4 = 0.0007 Kgm2

J5 = 0.0026 Kgm2

b1 = 0.0015 Nsrad−1

b2 = 0.004 Nsrad−1

b3 = 0.0015 Nsrad−1

b4 = 0.0015 Nsrad−1

b5 = 0.0057 Nsrad−1

Jb = 0.000069 Kgm2

kb = 80000 Nrad−1
rb = 0.029 m

bb = 0.0004 Nsrad−1

fb = 0.05 N

f1 = 0.025 N

f2 = 0.02 N

f3 = 0.013 N

f4 = 0.013 N

f5 = 0.04 N

K1 = 0.6 Nrad−1
B1(x) = −2.4× 10−7x3 + 1.2× 10−5x2 + 8.7× 10−3x− 0.081 Nsrad−1

K2 = 0.1157 Nrad−1
B2(x) = −5.61× 10−7x3 − 1.36× 10−6x2 + 0.02499x Nsrad−1
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Appendix E

Simulation Results

The results shown were used to verify the accuracy of the system models.

E.1 Stage 1, Time Based model, Output shaft
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Figure E.1: 10 UPM sinewave demands, 1, 2 and 3V amplitudes
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Figure E.2: 15 UPM sinewave demands, 1, 2 and 3V amplitudes
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Figure E.3: 20 UPM sinewave demands, 1, 2 and 3V amplitudes
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Figure E.4: Repeating sequence demands of 10, 15 and 20 UPM for the 1V case
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Figure E.5: 15 UPM repeating sequence demands, 1, 2 and 3V amplitudes
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Figure E.6: 20 UPM repeating sequence demands, 1, 2 and 3V amplitudes

E.2 Stage 1, Frequency model, Output shaft

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 1 2 3 4 5 6

Time (s)

V
e
lo

c
ity

(r
a
d
/s

)

-30

-20

-10

0

10

20

30

0 1 2 3 4 5 6

Time (s)

V
e
lo

c
ity

(r
a
d
/s

)

-40

-30

-20

-10

0

10

20

30

40

0 1 2 3 4 5 6

Time (s)

V
e
lo

c
ity

(r
a
d
/s

)

Figure E.7: 10 UPM sinewave demands, 1, 2 and 3V amplitudes
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Figure E.8: 15 UPM sinewave demands, 1, 2 and 3V amplitudes
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Figure E.9: 20 UPM sinewave demands, 1, 2 and 3V amplitudes
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Figure E.10: 15 UPM repeating sequence demands, 1, 2 and 3V amplitudes
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Figure E.11: 20 UPM repeating sequence demands, 1, 2 and 3V amplitudes
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E.3 Stage 2, Time based model, Output shaft
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Figure E.12: 10 UPM sinewave demands, 1 and 2V amplitudes
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Figure E.13: 15 UPM sinewave demands, 1 and 2V amplitudes
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Figure E.14: 20 UPM sinewave demands, 1 and 2V amplitudes
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Figure E.15: 15 UPM repeating sequence demands, 1 and 2V amplitudes
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Figure E.16: 20 UPM repeating sequence demands, 1 and 2V amplitudes

E.4 Stage 2, Frequency model, Output shaft
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Figure E.17: 10 UPM sinewave demands, 1 and 2V amplitudes
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Figure E.18: 15 UPM sinewave demands, 1 and 2V amplitudes
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Figure E.19: 20 UPM sinewave demands, 1 and 2V amplitudes
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Figure E.20: 15 UPM repeating sequence demands, 1 and 2V amplitudes
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Figure E.21: 20 UPM repeating sequence demands, 1 and 2V amplitudes
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Appendix F

Frequency Models

The following linear plant models were reached by Bode plot fitting and the fitting

of experimental results.

F.1 Stage 1

1V Step and Sinewave: Gstage1(s) = 50.791×104(4−s)
s(s2+5.78s+29.7)(s+45)(s+190)

2V Step and Sinewave: Gstage1(s) = 69.838×104(4−s)
s(s2+5.78s+29.7)(s+45)(s+190)

3V Step and Sinewave: Gstage1(s) = 74.917×104(4−s)
s(s2+5.78s+29.7)(s+45)(s+190)

4V Step and Sinewave: Gstage1(s) = 79.043×104(4−s)
s(s2+5.78s+29.7)(s+45)(s+190)

1V Repeating Sequence: Gstage1(s) = 88.142×104(2.5−s)
s(s2+5.2s+42.25)(s+45)(s+190)

2V Repeating Sequence: Gstage1(s) = 122.821×104(2.5−s)
s(s2+5.2s+42.25)(s+45)(s+190)

3V Repeating Sequence: Gstage1(s) = 137.270×104(2.5−s)
s(s2+5.2s+42.25)(s+45)(s+190)
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F.2 Stage 2

Step and Reference: Gstage2(s) = e−0.06s 1202(4−s)
s(s+9)(s2+12s+56.25)

1V Reference: Gstage2(s) = e−0.06s 781.3(4−s)
s(s+9)(s2+12s+56.25)

2V Reference: Gstage2(s) = e−0.06s 991.65(4−s)
s(s+9)(s2+12s+56.25)

3V Reference: Gstage2(s) = e−0.06s 1141.9(4−s)
s(s+9)(s2+12s+56.25)

Fitted Bode Plot: Gstage2(s) = e−0.01s 756.16(2.9−s)(s2+1.184s+0.64)
s(s+5.2)(s2+9.3+86.49)(s2+0.474s+0.6241)

Gstage2(s) = e−0.055s 146×104(4.5−s)
s(s+5)(s2+7s+100)(s2+27s+2025)

Gstage2(s) = e−0.09s 933.33(6−s)
s(s+7)(s2+10s+100)

Gstage2(s) = e−0.06s 137×104(6.5−s)
s(s+4.5)(s2+7.6s+90.25)(s2+30s+2500)
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Appendix G

Controller Gains

The following PID parameters were reached as a result of the tuning method

described in Chapter 4.

G.1 Stage 1

10 UPM 20 UPM 30 UPM
Demand Kp Ki Kd Kp Ki Kd Kp Ki Kd

1V Sinewave 97 18 0
125
97

15
50

0
0

148 15 3.5

2V Sinewave 92 11 0
110
97

0
18

0
0

115 1.5 4

3V Sinewave 97 7.5 0
110
97

0
16

0
0

113 4 0

1V Repeating Sequence 97 37 1
146
97

2.5
72

0
0

145 17 2.5

2V Repeating Sequence 97 27 7.5
120
97

2.5
28

0
0

125 5 0

3V Repeating Sequence 97 15 2.5
110
97

1
18

0
0

115 5 0

Table G.1: PID Gains

G.2 Stage 2

values in mV/count
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10 UPM 20 UPM 30 UPM
Demand Kp Ki Kd Kp Ki Kd Kp Ki Kd

1V Sinewave 125 0 0 123 0 2.5 138 0 0
1V Repeating Sequence 1 128 3 0 137 5 0 153 2 2
1V Repeating Sequence 2 137 5 3 145 4 5 147 10 0

Table G.2: PID Gains
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Appendix H

Basic ILC Algorithm Results

The following experimental results use the P-type, D-type and Delay-type ILC algorithms which have been

discussed in Chapter 5.

H.1 P-type Results

H.1.1 Stage 1
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Figure H.1: Error results for 10 UPM R1 demand
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Figure H.2: Error results for 15 UPM R1 demand
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Figure H.3: Error results for 20 UPM R1 demand

H.2 D-type Results
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Figure H.4: D-type error results for 10 UPM R1 demand
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Figure H.5: D-type error results for 15 UPM R1 demand
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Figure H.6: D-type error results for 20 UPM R1 demand

H.3 Delay-type Results
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Figure H.7: Delay-type error results for 10 UPM R1 demand
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Figure H.8: Delay-type error results for 15 UPM R1 demand
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Figure H.9: Delay-type error results for 20 UPM R1 demand
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Appendix I

Phase-lead Results

Experimental results obtained using the phase-lead algorithm are contained in this section. The results refer to

both the stage 1 and stage 2 plants in conjunction with stabilising methods described in Chapter 6. The results

are laid out as follows:

Stage 1 system, unfiltered . . . page 166
Stage 1 system, using causal filtering . . . page 175
Stage 1 system, using non-causal linear phase FIR filtering . . . page 179
Stage 2 system, both filtered and unfiltered . . . page 183
Stage 2 system, using a forgetting factor . . . page 193

I.1 Stage 1 Unfiltered Phase-lead Results

I.1.1 15 UPM Sinewave Demand
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Figure I.1: Phase-lead error results with variable λ and φ = 0.1

166



0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160 180 200

Cycle No.

N
E

0

1000

1250

1500

1750

2000

2500

Figure I.2: Phase-lead error results with variable λ and φ = 0.3
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Figure I.3: Phase-lead error results with variable λ and φ = 0.5
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Figure I.4: Phase-lead error results with variable λ and φ = 0.7
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I.1.2 20 UPM Sinewave Demand
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Figure I.5: Phase-lead error results with variable λ and φ = 0.1
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Figure I.6: Phase-lead error results with variable λ and φ = 0.3
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Figure I.7: Phase-lead error results with variable λ and φ = 0.5
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Figure I.8: Phase-lead error results with variable λ and φ = 0.7

I.1.3 10 UPM R1 Demand
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Figure I.9: Phase-lead error results with variable λ and φ = 0.1
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Figure I.10: Phase-lead error results with variable λ and φ = 0.3
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Figure I.11: Phase-lead error results with variable λ and φ = 0.5
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Figure I.12: Phase-lead error results with variable λ and φ = 0.7

I.1.4 15 UPM R1 Demand
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Figure I.13: Phase-lead error results with variable λ and φ = 0.1
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Figure I.14: Phase-lead error results with variable λ and φ = 0.3
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Figure I.15: Phase-lead error results with variable λ and φ = 0.5
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Figure I.16: Phase-lead error results with variable λ and φ = 0.7
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I.1.5 20 UPM R1 Demand
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Figure I.17: Phase-lead error results with variable λ and φ = 0.1
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Figure I.18: Phase-lead error results with variable λ and φ = 0.3
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Figure I.19: Phase-lead error results with variable λ and φ = 0.5
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Figure I.20: Phase-lead error results with variable λ and φ = 0.7

I.1.6 10 UPM R2 Demand
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Figure I.21: Phase-lead error results with variable λ and φ = 0.1
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Figure I.22: Phase-lead error results with variable λ and φ = 0.5

173



I.1.7 20 UPM R2 Demand
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Figure I.23: Phase-lead error results with variable λ and φ = 0.1
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Figure I.24: Phase-lead error results with variable λ and φ = 0.5
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I.2 Stage 1 Phase-lead Results using Causal Filters

I.2.1 Sinewave Demand
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Figure I.25: Phase-lead error results for 10 UPM demand using a variety of causal
filters, each with λopt and φ = 0.1
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Figure I.26: Phase-lead error results for 10 UPM demand using a variety of causal
filters, each with λopt and φ = 0.5
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Figure I.27: Phase-lead error results for 20 UPM demand using a variety of causal
filters, each with λopt and φ = 0.1
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Figure I.28: Phase-lead error results for 20 UPM demand using a variety of causal
filters, each with λopt and φ = 0.5
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Figure I.29: Phase-lead error results for 10 UPM demand using a variety of causal
filters, each with λopt and φ = 0.1
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Figure I.30: Phase-lead error results for 10 UPM demand using a variety of causal
filters, each with λopt and φ = 0.5
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Figure I.31: Phase-lead error results for 20 UPM demand using a variety of causal
filters, each with λopt and φ = 0.1

I.2.3 R2 Demand
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Figure I.32: Phase-lead error results for 10 UPM demand using a variety of causal
filters, each with λopt and φ = 0.5
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Figure I.33: Phase-lead error results for 20 UPM demand using a variety of causal
filters, each with λopt and φ = 0.1
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Figure I.34: Phase-lead error results for 20 UPM demand using a variety of causal
filters, each with λopt and φ = 0.5
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I.3 Stage 1 Phase-lead Results with Non-causal Linear Phase

FIR Filters

I.3.1 Sinewave Demand
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Figure I.35: Phase-lead error results for 10 UPM demand using two non-causal filters,
both with λopt and φ = 0.1
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Figure I.36: Phase-lead error results for 10 UPM demand using two non-causal filters,
both with λopt and φ = 0.5
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Figure I.37: Phase-lead error results for 20 UPM demand using two non-causal filters,
both with λopt and φ = 0.1
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Figure I.38: Phase-lead error results for 20 UPM demand using two non-causal filters,
both with λopt and φ = 0.5
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Figure I.39: Phase-lead error results for 10 UPM demand using two non-causal filters,
both with λopt and φ = 0.1
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Figure I.40: Phase-lead error results for 10 UPM demand using two non-causal filters,
both with λopt and φ = 0.5
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Figure I.41: Phase-lead error results for 20 UPM demand using two non-causal filters,
both with λopt and φ = 0.1
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Figure I.42: Phase-lead error results for 20 UPM demand using two non-causal filters,
both with λopt and φ = 0.5
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I.3.3 R2 Demand
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Figure I.43: Phase-lead error results for 10 UPM demand using a variety of non-causal
filters, each with λopt and φ = 0.1
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Figure I.44: Phase-lead error results for 10 UPM demand using a variety of non-causal
filters, each with λopt and φ = 0.5
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Figure I.45: Phase-lead error results for 20 UPM demand using a variety of non-causal
filters, each with λopt and φ = 0.1
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I.4 Stage 2 Phase-lead Results

I.4.1 Unfiltered

I.4.1.1 Sinewave Demand
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Figure I.46: Phase-lead error results for 20 UPM demand with φ = 0.1
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Figure I.47: Phase-lead error results for 20 UPM demand with φ = 0.5
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Figure I.48: Phase-lead error results for 10 UPM demand with φ = 0.1
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Figure I.49: Phase-lead error results for 10 UPM demand with φ = 0.5
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Figure I.50: Phase-lead error results for 20 UPM demand with φ = 0.1
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Figure I.51: Phase-lead error results for 20 UPM demand with φ = 0.5
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I.4.1.3 R2 Demand
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Figure I.52: Phase-lead error results for 10 UPM demand with φ = 0.1
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Figure I.53: Phase-lead error results for 10 UPM demand with φ = 0.5
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Figure I.54: Phase-lead error results for 20 UPM demand with φ = 0.1
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Figure I.55: Phase-lead error results for 20 UPM demand with φ = 0.5
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Figure I.56: Phase-lead error results for 20 UPM sinewave demand with various λ
and φ = 0.5
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Figure I.57: Phase-lead error results for 20 UPM R1 demand with various λ and
φ = 0.5
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Figure I.58: Phase-lead error results for 20 UPM R2 demand with various λ and
φ = 0.5
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Figure I.59: Phase-lead error results for 20 UPM sinewave demand with various λ
and φ = 0.5
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Figure I.60: Phase-lead error results for 20 UPM R1 demand with various λ and
φ = 0.5
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Figure I.61: Phase-lead error results for 20 UPM R2 demand with various λ and
φ = 0.5
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Figure I.62: Phase-lead error results for 20 UPM sinewave with various λ and φ = 0.5
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Figure I.63: Phase-lead error results for 20 UPM R1 demand with various λ and
φ = 0.5
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Figure I.64: Phase-lead error results for 20 UPM R2 demand with various λ and
φ = 0.5
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Figure I.65: Phase-lead error results for 20 UPM sinewave demand with various λ
and φ = 0.5
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Figure I.66: Phase-lead error results for 20 UPM R1 demand with various λ and
φ = 0.5
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Figure I.67: Phase-lead error results for 20 UPM R2 demand with various λ and
φ = 0.5
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Figure I.68: Phase-lead error results for 20 UPM sinewave demand with various λ
and φ = 0.5
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Figure I.69: Phase-lead error results for 20 UPM R1 demand with various λ and
φ = 0.5
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Figure I.70: Phase-lead error results for 20 UPM R2 demand with various λ and
φ = 0.5
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Figure I.71: Phase-lead error results for 20 UPM sinewave demand with various λ
and φ = 0.5
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Figure I.72: Phase-lead error results for 20 UPM R1 demand with various λ and
φ = 0.5
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Figure I.73: Phase-lead error results for 20 UPM R2 demand with various λ and
φ = 0.5
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I.5 Stage 2 Forgetting Factor

I.5.1 Unfiltered
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Figure I.74: Error results for 20 UPM sinewave demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.75: Error results for 20 UPM sinewave demand with various λ, φ = 0.5 and
γ = 0.99
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Figure I.76: Error results for 20 UPM R1 demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.77: Error results for 20 UPM R1 demand with various λ, φ = 0.5 and
γ = 0.99

0

0.5

1

1.5

2

0 50 100 150 200 250 300 350 400

Cycle No.

N
E

1250

1500

1750

2000

Figure I.78: Error results for 20 UPM R2 demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.79: Error results for 20 UPM R2 demand with various λ, φ = 0.5 and
γ = 0.99
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I.5.2 Filtered
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Figure I.80: Error results for 20 UPM sinewave demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.81: Error results for 20 UPM sinewave demand with various λ, φ = 0.5 and
γ = 0.99
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Figure I.82: Error results for 20 UPM R1 demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.83: Error results for 20 UPM R1 demand with various λ, φ = 0.5 and
γ = 0.99
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Figure I.84: Error results for 20 UPM R2 demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.85: Error results for 20 UPM R2 demand with various λ, φ = 0.5 and
γ = 0.99
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Figure I.86: Phase-lead error results for 20 UPM sinewave demand with various λ,
φ = 0.5 and γ = 0.95
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Figure I.87: Error results for 20 UPM sinewave demand with various λ, φ = 0.5 and
γ = 0.99
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Figure I.88: Error results for 20 UPM R1 demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.89: Error results for 20 UPM R1 demand with various λ, φ = 0.5 and
γ = 0.99
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Figure I.90: Error results for 20 UPM R2 demand with various λ, φ = 0.5 and
γ = 0.95
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Figure I.91: Error results for 20 UPM R2 demand with various λ, φ = 0.5 and
γ = 0.99
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Appendix J

Contraction Mapping Results

The results presented in here relate to various formulations of the adjoint algorithm which are described in

Chapter 8.

J.1 Stage 2
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Figure J.1: Error results for 10 UPM sinewave demand using single phase-lead and
GT algorithms
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Figure J.2: Error results for 10 UPM R1 demand, using single phase-lead and GT

algorithms
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Figure J.3: Error results for 10 UPM R2 demand, using single phase-lead and GT

algorithms
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Figure J.4: Error results for 20 UPM sinewave demand, using of single phase-lead
and GT algorithms
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J.3 Stage 2 Automatic GT ILC Formulation
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Figure J.6: Error results for 10 UPM sinewave demand using Automatic GT
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Figure J.7: Error results for 10 UPM R2 demand using Automatic GT

J.4 Stage 2 Automatic GT RC Formulation
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