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The Topological and Geometric Analysis of Organic Crystal Systems

by Jack Robert Doyle

The aim of this study was to use topological descriptors to gain insight into the crystal
packing of organic compounds and generate crystal structure landscapes that are
representative of the packing motif that might be identified by a crystallographer.
These descriptors are applied to both sets of experimental compounds, as might be
found in the Cambridge Structural Database, for example, or to the large sets of
compounds that might be generated as the output of crystal structure prediction
calculations.

The crystal structures of fluorinated benzylideneanilines, polyaromatic hydrocarbons,
azapentacenes and the nictotinamide:benzoic acid co-crystal were studied through the
lens of a novel topological descriptor. This descriptor is constructed from the
persistent homology of a set of molecular centroids and orientation vectors extracted
from the crystal structure, the homology being computed on a six dimensional space.
We were able to generate crystal structure landscapes that completely separated all
known packing classes of fluorinated benzylideneaniline as identified by a subject
matter expert. We were also able to completely separate the structures of two classes
of nictotinamide:benzoic acid co-crystals that were identified to belong to two funnels
on the potential energy landscape corresponding to its known polymorphs. While the
azapentacens and polyaromatic hydrocarbons proved more resistant to a full
description with persistent homology, we were able to produce landscapes that
preserve some trends which are consistent with their canonical packing motifs. We
also showcase how crystal structure landscapes can be constructed using supervised
dimensionality reduction in the context of some existing high fidelity data with
known packing motifs in order to obtain landscape that extenuate these chemically
relevant features.

http://www.southampton.ac.uk
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Chapter 1

Introduction

The ubiquity of easily accessible data has secured the place of data science and
machine learning at the forefront of science such that data science is rapidly becoming
”the fourth paradigm” of modern science Hey et al. (2009). The applications of these
data intensive techniques in chemistry are extensive in both depth and breadth Bartók
et al. (2024); Jung et al. (2020); Tetko and Engkvist (2020). These applications extend
into the world of materials and crystallography Damewood et al. (2023); Li et al.
(2023a); Isayev et al. (2015) not least because of the massive amount crystallographic
data available to us via the Cambridge Structural Database Taylor and Wood (2019)
and the output of crystal structure prediction algorithms Day (2011); Bowskill et al.
(2021).

In order to make use of and understand the vast amounts of data pertaining to the
solid state that is available to us, it is imperative that we have stable representations of
these systems. These representations are called descriptors Damewood et al. (2023);
Jablonka et al. (2020); Musil et al. (2021). In order for these descriptors to be useful in
real world applications these descriptors must be invariant to translation and rotation
of the whole system, permutation of the atoms within the system and expansion of the
system to its supercell if defined on a smaller unit Jablonka et al. (2020). There are
other useful criteria that these descriptors should meet such as uniqueness, continuity
and ease of calculation, see the three reviews Damewood et al. (2023); Jablonka et al.
(2020); Musil et al. (2021) for more details. These descriptors can also in general be
subdivided into two categories: there are local descriptors that pertain to the local
environment of a given atom - these are useful for building models of potential energy
surfaces for example Behler (2011); Anstine and Isayev (2023); Brezina et al. (2023); Lee
et al. (2021); then there are global descriptors which describe the entire structure at
once - these are useful for directly comparing different systems and making
predictions Musil et al. (2018); Jiang et al. (2021); Li et al. (2023a); Bartók et al. (2013).
In this work we mostly focus on the latter class of descriptors.
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These descriptors have two key applications in chemical informatics. Firstly they can
be used to predict properties such as energy or electronic conductivity or mechanical
properties Cao et al. (2019); Jiang et al. (2021); Lee et al. (2021). Secondly they can be
used qualitatively in order to aid our understanding of larger regions of chemical
space. This is the application that we are focused on in this work.

There are two main types of chemical data that we focus on for which a descriptor can
help qualitatively understand the wider dataset. There are smaller sets of experimental
crystal structures and there are larger sets of predicted crystal structures.

Describing the packing motif of a crystal structure is a qualitative process and is often
done heuristically by subject matter experts, often by eye Dodd (2020); Desiraju and
Gavezzotti (1989b); Dance (2003); Taylor and Macrae (2001); Florence et al. (2006).
There already exist computational techniques such as COMPACK Chisholm and
Motherwell (2005) and XPac Grossel et al. (2005) which, while they provide valuable
information about crystal similarity and common motifs between different structures,
they do not attempt to predict what the packing of a given crystal structure is and they
are not necessarily amenable to generating plots that visualise the set of crystal
structures in a way that naturally respects the packing motif that might be assigned by
a human and are amenable for subsequent analysis with the traditional tool kit of
statistical learning. Crystal descriptors provide a means of producing more effective
visualisations of the dataset that can aid in the understanding of the physical and
chemical properties of sets of related compounds. They also offer the attractive
proposition of automatically labelling large sets of unknown crystal structures
without human input.

The process of crystal structure prediction often generates a large (on the order of
1000s) set of potential crystal structures for a given chemical compound Bowskill et al.
(2021); Day (2011). These are often visualised as a crystal structure landscape Ceriotti
et al. (2011); Desiraju (2017). The most common form of crystal structure landscape
takes the form of a plot of energy vs. density. This is convenient computationally but
does not provide much useful chemical information and nor does it provide
information about the packing motifs of the different predicted compounds. Chemical
descriptors can be used to generate a plot (often by reducing the dimension of the
resultant descriptor space) such that crystal structures with similar properties are close
together and crystal structures which are very different are far away. This can help
gain rapid insight into the nature of the crystal structure landscape and possibly aid
future property prediction. Crystal structure landscapes also have significant
applications in crystal engineering Aakeröy (1997) and the prediction and
categorisation of polymorphic structures Price (2008, 2009); Ismail et al. (2013). This
process is outlined in figure 1.1 which we have reproduced from the work of Musil et
al. Musil et al. (2018).
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FIGURE 1.1: Graphic demonstrating how a crystal structure descriptor can be used
to generate crystal structure landscapes which provide more insight to the packing
geometry (and hence chemical and physical properties) of the predicted crystal struc-
tures. This figure was reproduced from Musil et al. Musil et al. (2018). It shows the
crystal structure landscape of a set of azapentacenes before and after a crystal struc-

ture descriptor was used to generate a more physically informative landscape.

In this work we generate crystal structure descriptors using the techniques of
topological data analysis (specifically persistent homology) - a technique that has
found multiple applications in chemistry already Steinberg (2019); Xia et al. (2015);
Minamitani et al. (2023) and easily satisfies the invariance properties of a descriptor as
we shall see. We apply this to both the kinds of datasets which have been described
above - that is, both small and large - in order, primarily, to build physically
meaningful crystal structure landscapes that extenuate the differences between crystal
structures which have different identifiable packing motifs.
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Chapter 2

Topological Data Analysis

The motivation of topological data analysis is to use ideas from topology in order to
study the ”shape” of data in a way that is robust to noise and the chosen metric, that is
how we measure the ”distance” between the constituent points of our data set.
Topological data analysis has found a great many applications in fields as diverse as
financial networks Gidea (2017); political voting patterns Dlotko et al. (2019); Feng and
Porter (2021); cosmology Christian et al. (2022); Heydenreich et al. (2021); the analysis
of mobile phone networks Bajardi et al. (2015) and cancer diagnosis Vipond et al.
(2021); Lawson et al. (2019). Applications in chemistry include solubility prediction
Steinberg et al. (2019); Pirashvili et al. (2018); the study of amorphous materials
Nakamura et al. (2015); Hiraoka et al. (2016); zeolites and metal-organic frameworks
Lee et al. (2018) and developing molecular descriptors for both organic Li et al. (2022)
and biochemistry Xia et al. (2015).

Most of our discussion will centre around persistent homology Edelsbrunner et al.
(2002); Zomorodian and Carlsson (2005), a technique for computing the ”holes” in a
dataset at different spatial resolutions. The precise meaning of a ”hole” in this context
will be explained later but the upshot is that these holes capture the general
connectivity of the set of data points in such a way that if we suppose that these points
are sampling a topological space, then these ”holes” can uniquely define this space.

The other main technique used in topological data analysis is the mapper algorithm
Singh et al. (2007) which generates a graph which summaries the topological features
of a dataset - this technique mostly finds applications in exploratory data analysis, is
very sensitive to the model parameters and is better suited to very large datasets. As
such there are no applications of this technique in our work.

In order to give an adequate background of persistent homology a basic overview of
the subject of homology in algebraic topology is required. These ideas will be built on
to give an the overview of the mathematical tools that have been used in this work.
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FIGURE 2.1: Some examples of some spaces with their first three Betti numbers Bo-
browski and Skraba (2020)

2.1 Homology

The idea of homology is to find a set of Abelian (commutative) groups, corresponding
to features in different dimensions, which encode the topological properties of the
underlying space. In algebraic topology, spaces are classified according to the
behaviour of closed loops that can be defined in the space - if the loops can be
continuously (i.e. without cutting or gluing) deformed into one another then they are
considered the same object, topologically speaking. In the case of a simply connected
space (such as n-dimensional space Rn, the surface of a sphere S2, or a disk in 2D B2),
any loop that can be defined on the space (think of drawing any closed loop on the
plane, for example) are topologically equivalent as they can all be deformed into a
single point. A space in which this is not the case is the (space defining a) circle, S1, as
any loop covers the circle any number of times but cannot be deformed to single point.
In general we find that any space in which the loops pass over some ”hole” cannot be
contracted to a single point; in homology we count holes by systematical counting
those cycles which cannot be contracted into themselves.

The homology groups are basically equivalence classes of such cycles in each
dimension, considering higher order ”loops” for dimensions greater than one - the
zero dimensional ”loops” are essentially points and count the number of connected
components of the space while the two dimensional ”loops” encode trapped volumes
or ”voids”. The holes in each dimension can be counted by considering the ranks of
the homology groups or the Betti numbers, βi. Some examples of different spaces and
their Betti numbers are shown in figure 2.1.

In order to find these cycles in practice we need a way of representing the skeleton of
the underlying space in different dimensions. This skeleton is called a (abstract)
simplicial complex which is in turn composed of simplices. An N-simplex is a
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FIGURE 2.2: Some example simplices Topaz et al. (2014)

generalisation of a triangle in N dimensions, so, for example, a 0-simplex is a point, a
1-simplex a line segment, a 2 simplex a triangle and a 3 simplex is a tetrahedron.
Obviously the simplices for which n > 3 do not have an intuitive geometric
interpretation. Some example simplices are shown in figure 2.2.

A simplicial complex,K, is then defined as a set of simplices that obey the following
two conditions:

• Every face of a simplex in K is also in K

• Any non-empty intersection of two simplices in K is a face of both simplices

The faces of a simplex are those simplices obtained by building a simplex from any
subset of the N + 1 points that define the simplex. So that, for example, the faces of a
tetrahedron contain all the triangles of its geometric faces as well as its edges and
vertices.

For the purposes of finding homology we also define each simplex as having a given
orientation. For any N-simplex with vertices labelled (v0, v1, ..., vN): if the vertices of
two simplices are an even permutation of one another they have the same orientation;
if the vertices of the simplices are an odd permutation of one another they have
opposite orientations thus if the order of two vertices of a given simplex is swapped
the orientation changes. Formally we say (for example) that (v0, v1) = −(v1, v0).

If we take the vector space 1 of all N-simplices as CN over the field Z2 = {0, 1}, such
that each element of CN is a linear combination of N-simplices - called a N-chain -

1In general, homology theory is defined using groups as opposed to vector spaces. We elect to define
everything in terms of vector spaces as it makes the ensuing analysis simpler. The resulting theory is
entirely rigorous enough for our purpose.
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with coefficient either 0 or 1 (i.e. it is either in the sum or is not), we can define the
boundary of a given simplex, σ = (v0, v1, ..., vN),as follows.

∂N(σ) =
N

∑
i=0

(−1)i(v0, v1, ..., v̂i, ..., vN) (2.1)

Where the simplex, (v0, v1, ..., v̂i, ..., vN), refers to the original simplex with the vertex
vi removed. The boundary is a map from CN to CN−1 and coincides with our intuition
of what a boundary should be: the boundary of an edge comprises the points at the
beginning and end of the edge while the boundary of a triangle comprises its edges.
We can then define a cycle as any N-chain which has zero boundary or as a member of
the kernel of ∂N . The space of cycles is ZN = ker(∂N) = {c ∈ CN : ∂N(C) = 0}. We can
also define the space of boundaries, BN , as the image of ∂N+1:
BN = im(∂N+1) = {c ∈ CN : ∃c′ ∈ CN+1, ∂N+1(c′) = c}. That is, all elements of BN , are
the boundary of some higher dimensional object. As discussed earlier the homology
groups (in our case vector spaces) contain all those cycles which are non-contractible -
in practice this means that the cycle is not the boundary of some higher dimensional
object (i.e. it is not filled in: a disk is simply connected while the circle is not). We can
then define the homology space as the quotient space:

HN = ZN/BN (2.2)

This is equivalent to ”factoring out” all cycles that are the boundary of some higher
dimensional chain so that the vector space HN has as its basis elements all of the
”holes” present in the simplicial complex. Specifically we find that:

• zero dimensional holes correspond to connected components

• one dimensional holes correspond to loops

• two dimensional holes correspond to voids or ”trapped volumes”

The dimension of the vector space - the number of basis elements - then counts the
number of holes we also see that

βN = dim(HN) = dim(ZN)− dim(BN) (2.3)

So that the Betti number is equal to the number of N-cycles that can be constructed in
our vector space minus the number of cycles that are already the boundary of a set
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N + 1 simplices. For a more in depth explanation of the theory of homology and its
place in algebraic topology see the book by Allen Hatcher Hatcher (2001).

Obviously in order to find the set of homology groups Hi we must first construct a
simplicial complex that approximates the space - there are many examples of
complexes that can do this so the complex we form typically depends on some kind of
scale parameter, δ, so that we have some control on how many higher order simplices
are included in the complex. This will become more clear with the following examples
of simplicial complex. The idea of persistent homology is to use a whole range of
values of scale parameter and analyse how the homology changes and as such we will
typically be using a range of increasing scale parameters. From a theoretical point of
view it can be shown Chung et al. (2021); Edelsbrunner and Harer (2010) that a
construction called the Čech complex is a simplicial complex that ensures that the
homology groups obtained are closest to the homology of the original space from
which the data has been sampled. In this work the two simplicial complexes used are
mainly the alpha complex and the Vietoris-Rips complex which can be shown to give
a similar result to that which would be obtained using the Čech complex which as we
will see is not a practical way of computing persistent homology. We will also discuss
the similar concept of sublevel set persistent homology for which computations are
carried out using the cubical complex.

2.1.1 Čech Complex

The Čech complex is defined in terms of a set of closed balls with radius ϵ (i.e. all
points with a distance less than or equal to ϵ from some central point, for example a
sphere in 3D) localised on each point in the dataset. A simplex is included if all the
balls associated with each vertex of the simplex have a mutual intersection.

The Čech complex is impractical from a computational standpoint as the computation
of the multiple intersections is difficult and often affords a very large number of
simplices which can make the persistent homology calculation difficult in terms of
both time and memory. To make matters worse this construction often results in
simplices with a dimension higher than that of the underlying space which is not only
impractical from a combinatorial point of view, but is also of limited geometric
relevance.

2.1.2 Vietoris-Rips Complex

The Vietoris-Rips complex (VR complex) is the set of simplices for which a simplex is
included if d(vi, vj) ≥ ϵ for all i and j where ϵ is the scale parameter and d(vi, vj) is the
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Euclidean distance between vertices vi and vj. This is the same as the set of all
simplices with diameter at least ϵ. We also note that if a simplex is in the VR complex
all of its faces are also included. We typically specify both a maximum dimension of
simplex and a maximum scale parameter to avoid an excessively large number of
simplices which would make the computation of persistent homology intractable. It
can be shown that the Čech complex is a subset VR-complex which in turn is a subset
of the Čech complex with double the radius; we also know that the two complexes
will have the same points and edges so as such we should expect the resulting
homology to be quite similar.

Even when the maximum dimension of simplex is limited the number of simplices
can grow very large so in practise we can employ a technique called sparsification to
reduce the number of simplices while giving a similar result. The details of the
technique are quite complex (see Sheehy (2013)) but the idea is that for large values of
δ many points do not affect the homology of the complex so may be removed. The
extent of sparsification is controlled by a parameter a: when a is close to zero the
homology takes longer to compute but is a closer approximation to the that of the true
complex, when a is increased the computation is much faster (and memory efficient)
but is less likely to be accurate.

We can also consider the case for which the points are weighted, where some points
are considered as ”larger” than others. This is useful for cases where atomic positions
are used in the point cloud so that we can account for different atomic radii when
constructing the simplicial complex. The idea here is that an edge will exist in the
simplicial complex at a lower scale parameter when two points have low weight than
if the two points had larger weights. This effect can be easily achieved in practice by
dividing the distance between points by the sum of their respective weights - this has
been shown the be a mathematically robust operation Bell et al. (2017).

2.1.3 Alpha Complex

The alpha complex is defined in the same way as the Čech complex above except
instead of using balls centred on each point to find simplices we use the intersection of
a ball centred on each point with its Voronoi cell.

We define the Voronoi cell associated with a particular element in a set of points,
u ∈ S, as the region in space for which any point in this region is closer to point u than
any other point in the set (S). More concretely if we have a set S ⊆ Rn then for a
Voronoi cell centred at some u ∈ S we have

Vu = {x ∈ Rn| d(x, u) ≤ d(x, v), v ∈ S} (2.4)
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given some distance function d(x, y).

This gives the advantage of not generating any simplices of a dimension greater than
the that of the space itself. Note that in the limit of infinite scale parameter we
construct the complex using the Voronoi cells only and end up with a construction
called the Delaunay complex which is the triangulation of the set of points for which
no point in the set lies inside the circumcircle of any of the triangles Edelsbrunner and
Harer (2010). This construction has many applications in computer science Dinas and
Banon (2014); Liebeherr and Nahas (2001); Li et al. (2003); Weatherill (1992); Grise and
Meyer-Hermann (2011). As such an alpha complex is always a subcomplex of the
associated Delaunay complex so in practice the upper limit of the number of simplices
that are included is not large (relatively speaking).

It is possible to consider the case of weighted points by using intersections of weighted
Voronoi cells and weighted balls. The weighted Voronoi cell is defined as above expect
we replace the metric in equation 2.1 with the power distance between x and weighted
point u: πu(x) = d(u, x)− wu where wu is the weight of the point u. Similarly we give
each weighted ball a radius

√
w + r2. Note that for persistent homology calculations

we increase the scale parameter such that the weighted ball with the smallest weight
has zero radius at the start of the calculation. As such for weighted alpha filtration
some of the complexes may then correspond to a negative scale parameter.

2.1.4 Cubical Complex

The application of this kind of simplicial complex will become more clear when we
introduce sublevel set persistent homology but suffice it to say that when we compute
the persistent homology of a function rather than of a set of points, it becomes more
practical to work with cubes rather than triangles as the fundamental unit in our
calculations. The resulting complex is not strictly a simplicial complex but has
analogous properties Wagner et al. (2012).

We define an elementary cube with dimension N , Qn as the product of N elementary
intervals, Ii ⊂ R, as follows

QN = I1 × I2 × ... × IN−1 × IN ⊂ RN (2.5)

Here any elementary interval is of the form of either [n, n] or [n, n + 1] for integer n.
This gives us constructions that correspond to edges, squares and cubes with
increasing dimension as might be expected. We can then define the boundary of a
cube in terms of the boundary of the constituent intervals as follows
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∂QN =

(
∂I1 × I2 × ...× IN

)
+

(
I1 × ∂I2 × ...× IN

)
+ ...+

(
I1 × I2 × ...× ∂IN

)
(2.6)

Where we define the boundary of each interval Ii as

∂Ii =

0, if Ii = [n, n]

[n + 1, n + 1]− [n, n], if Ii = [n, n + 1]
(2.7)

The cubical complex can then be defined as the set of elementary cubes such that the
boundary of any cube already in the set is also in the set. Note for this particular case
we must assign filtration values or ”scale” to the individual cubes ourselves - in
practice this is based on the value of the function for which we want to find the
persistent homology at or around the points which define the elementary cubes.

2.2 Persistent Homology

The key construction for any persistent homology calculation is a sequence of nested
simplicial complexes, Ki such that K1 ⊂ K2 ⊂ K3 ⊂ ... ⊂ Ki ⊂ ... ⊂ Kn = K called a
filtration. A filtration can be constructed from any of the above examples of simplicial
complex by increasing the scale parameter for each complex in sequence. Another
option is to compute the persistent homology of a function f : M → R by using its
sublevel sets Mr = f−1((−∞, r]) - this is the same as taking all values in the domain of
a function with argument up to and including r; clearly this domain will get bigger as
r is increased Chung et al. (2021); Mirth et al. (2020). The homology of the sets Mr can
be computed either by constructing any of the simplicial complexes described above
or, more often, by constructing the associated cubical complex which is more
convenient to calculate on a function defined using a set of grid points.

We then find the homology of each complex in the filtration so that rather than
obtaining a sense of the topological features of the space at a given scale parameter,
we instead get a sense of how these features change as the scale is increased. Because
each complex in the filtration is a subset of the next complex in the chain the number
of simplices in the complex will increase as the scale is increased. While the rigorous
definition Edelsbrunner et al. (2002); Zomorodian and Carlsson (2005) of persistent
homology relies on the set of homology groups of dimension, i, at a given filtration
step, j, Hi(Kj) and the maps between these groups, fkj : Hi(Kk) → Hi(Kj), in practice
we interpret the output of a persistent homology calculation (and this can be shown to
be a unique representation Zomorodian and Carlsson (2005)) by a set of intervals
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(bk, dk) in different dimensions with associated multiplicities - these correspond to the
birth and death of given homology features. An added simplex may give rise to new
homology features (e.g. an added edge could form a ring) or could lead to the removal
of a feature (e.g. an added 2-simplex could fill in an existing ring). We hence speak of
a persistent homology feature, k, being born at scale bk and dying at scale dk. The
lifetime of the feature is then dk − bk. If a feature is still alive at the maximum scale
parameter then the feature ”lives forever” and is considered to have dk = ∞. For our
work we carry out the calculations using the gudhi package Maria et al. (2014). A more
in depth review of persistent homology can be found in references Edelsbrunner and
Harer (2010) and Otter et al. (2017).

The two most common ways of visualising the output persistence intervals are
persistence barcodes and persistence diagrams. A persistence barcode shows the
intervals as a series of line segments with the beginning of line indicating the birth of a
feature and the end of line indicating its death. Lines that reach the rightmost limit are
understood to correspond to features that live forever. The intervals that correspond
to features in different dimensions are often distinguished by different colours.
Multiplicity is indicated by having multiple copies of the same line segment.

Another visualisation is the persistence diagram. In the persistence diagram the
persistence intervals are plotted in the plane with birth (x) against death (y).
Obviously as the lifetime of all persistent homology features must be greater than zero
all points are above the line y = x. Again the maximum of the y axis is understood to
denote y = ∞. The dimensions are likewise denoted with different colours. In this
case the size of the data points is used to display the multiplicity of a given persistence
interval. This construction is easier to visualise when we have very may persistent
homology features.

The meaning of the two possible outputs is illustrated in figure 2.3 where the results of
a persistent homology calculation on the vertices of a dodecahedron with edge length
ϕ (where ϕ is the golden ratio) using the Vietoris-Rips filtration are shown in both
formats (e : persistence diagram, f : persistence barcode). The 0D features are
indicated by the red dots on the persistence diagram and the red bars on the barcode.
We see that there are initially 20 connected components of which only one lives
forever while the other 19 die at ϵ = ϕ - this corresponds to when the scale parameter
is equal to the edge length of the dodecahedron and the associated edges are included
in the VR-complex. This transition is shown in a and b. The 1D features are
represented by the blue dot on the persistence diagram and the blue bars on the
barcode. We observe that there are eleven loops that are born at ϵ = ϕ and die when
ϵ = 2. The loops are born once the edges of the dodecahedron are filled in (b) - they
correspond to the twelve faces of the dodecahedron (we only count eleven loops as we
can express one loop in terms of the others). The loops die at ϵ = 2 (c) when they are
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FIGURE 2.3: Example persistent homology calculation using the vertices of a dodeca-
hedron as the input point cloud and using the Vietoris-Rips filtration.(a-d) show some
examples simplicial complexes obtained during the course of the filtration: at ϵ = 0
the simplicial complex only contains points; at ϵ = ϕ (where ϕ is the golden ratio) the
edges are joined; at ϵ = 2 the distance between the faces is covered, as such the faces
are ”filled-in” with 1-simplices and finally at ϵ = s

√
2 the trapped volumes within

the dodecahedron are filled with 2-simplices. The associated persistence diagram is
shown in (e) while the barcode is shown in (f).

filled in with 1-simplices. There is only one 2D feature which is represented by the
green dot on the persistence diagram and the corresponding bar on the barcode. The
feature is born at ϵ = 2 (c) and dies at ϵ = 2

√
2 (d). At ϵ = 2 the twenty faces already

described act as the boundary of a trapped volume which is filled by tetrahedra once
the internal edges are added at ϵ = 2

√
2. We conclude by observing that while the

persistence barcode represents the number of features more clearly it can quickly
become cluttered; we see in figure 2.3 that the persistence diagram (e) is a much
sparser representation of the associated persistence intervals.
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2.3 The Representation of Persistence Diagrams

One of the central challenges of the application of persistent homology to practical
problems in machine learning and data analysis is the difficulty in computing the
statistical properties of persistence diagrams. The most rigorous way of comparing
different persistence diagrams is by computing the p-Wasserstein distance between
two diagrams D1 and D2 defined as follows:

Wp(D1, D2) = infγ:D1→D2

(
∑

u∈D1

∥u − γ(u)∥p
∞

) 1
p

(2.8)

where inf denotes the infimum - the greatest lower bound - and γ denotes a bijection
between the two diagrams D1 and D2. Since this map must, by definition be
one-to-one we define persistence diagrams as also including every point along the
diagonal (y = x) with infinite multiplicity - this does not affect the practical
computation of persistent homology or the storage of the output persistence diagram -
it is merely a technicality which ensures that the preceding equation makes sense
mathematically. We also note that for the case in which p = ∞ we calculate the
supremum (smallest upper bound) for each bijection - this construction is also called
the bottleneck distance. Finally it is also worth noting that the stability results of
persistent homology are proved with respect to the Wassestein metric: that is, two
point clouds (or functions) which are very similar (for example, relative to the
perturbations caused by the random vibrations of atoms and molecules) will give two
persistence diagrams which are very close to each other with respect to the
Wasserstein metric Cohen-Steiner et al. (2007).

While it is certainly possible to apply statistics and do machine learning on a general
metric space (for example we can calculate the Fréchet mean of a set of persistence
diagrams Turner et al. (2014) or convert the Wasserstein distance into a kernel for
machine learning Carrière et al. (2017); Kusano et al. (2016)) this is seldom practical.
The Wassersein distance is difficult to compute because it requires finding the perfect
matching of a bipartite graph so finding the distance matrix for a large set of
persistence diagrams each with very many points is impractical. Moreover many
algorithms require the feature vectors to live in Banach space, that is, a space in which
it is possible to compute both the length of a vector and the difference between two
vectors. These are not defined for persistence diagrams in their current form. Thus in
order to apply persistent homology to a wider variety of problems alternative methods
for representing the output of a persistent homology calculation are highly desirable.

The most obvious way of converting the persistence diagram into a form more
amenable to machine learning is to use histograms: in the case of 0D features (which
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all have the same birth ordinate) we need only find a 1D histogram, while for higher
dimensional features we may use a 2D histogram.

The main problem with this approach is one of stability: a small change in the position
of a birth-death pair may result in a large change in the underlying persistence
representation if the point moves to a new bin. Another cause of instability can be
when a new point emerges from the diagonal of the original persistence diagram
Adams et al. (2017). The method of persistence images addresses this by first
converting the diagram into a persistence surface by colvolving each point with a
spherical Gaussian function to get a real valued function. To get a more efficient
representation we first transform all pairs (b, d) in the diagram to (b, d − b) = (b, l)
(where l denotes the lifetime) which is equivalent to plotting all points by its distance
from the diagonal. Then we define for each pair u = (b, l) a function gu(x, y) as
follows:

gu(x, y) =
1

2πσ2 e−
[(x−b)2+(y−l)2 ]

2σ2 (2.9)

The persistence function for a diagram D is then

ρD(x, y) = ∑
u∈D

f (u)gu(x, y) (2.10)

Here f (u) is a weighting function which could be used in cases where we want to
favour certain features when using statistical inference. In our work we set this to
unity. Once we have defined the persistence diagram continuously we then construct
a descriptor by discretising (up to a given resolution) the function into a set of pixels
or boxes by integrating the persistence surface over the bounds of each pixel:

Ip(ρD) =
∫ ∫

p
ρD(x, y)dxdy (2.11)

The grid is then then be flattened into a 1D representation. In order to account for the
persistent homology features in different dimensions one need simply concatenate the
persistence images calculated using the points from each dimension.

There are, of course, other methods of representing persistence diagrams such as
persistence landscapes Bubenik (2015), Betti curves Umeda (2017) and complex
polynomials Di Fabio and Ferri (2015) but these were found to be less effective at
machine learning tasks on our data than the method of persistence images.
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2.4 The Application of Persistent Homology on Crystal
Structures

In order to apply persistent homology to crystal structures we must first deal with the
periodicity of the crystal structure as persistent homology is typically applied to a
point cloud with a finite number of points or over a function defined over given
bounds. There are two possible ways to approach this. Firstly we could try to encode
the periodicity into the simplicial complex - both periodic versions of the alpha
complex (as an extension to the existence of the periodic Delaunay triangulation)
Caroli and Teillaud (2009) and the cubical complex
gudhi periodic cubical complex manual page (accessed 2023) have been defined.
Unfortunately the periodic Delaunay complex provably does not always exist for all
point clouds Caroli and Teillaud (2009) although it always exists for a 27-sheeted
covering of the space. Presumably a periodic alpha complex that uses a covering (and
hence has duplicate points) is not amenable to persistent homology calculation.
Similarly the periodic cubic complex, while it can always be defined, does not work
when the periodic boundary conditions are not defined over a cube so will not work
for the majority of crystal structures where the primitive cell is not cubic.

We hence adopt a second approach which is to use a finite cluster of points from the
infinite crystal lattice. This approach may not be particularly limiting to the utility of
the output persistence diagram: as a larger and larger fragment of the crystal structure
is used the persistence diagram does not tend to change much. This is because as the
periodic structure repeats, so too do the same homology features, so that if the point
cloud is big enough virtually all of the important homology features will have been
described albeit with different multiplicities. Another reason that the persistence
diagram does not change much with increasing crystal fragment size is that cycles that
occur over very large regions of a crystal fragment may be expressible in terms of
those cycles that exist over smaller regions of the same fragment. These larger cycles
would not be computed and so would not be included in the output persistence
diagram. This is demonstrated in figure 2.4. A similar idea can be applied to the
boundaries. That said we were not able to find any theoretical minimum size of
crystal which captures all of the persistent homology features or indeed whether such
a threshold even exists so being constrained to finite simplicial complexes is a definite
but necessary limitation.

We demonstrate this size ”invariance” further in figure 2.5: here we use a 2d example
as it is easier to visualise. The primitive cells whose centroid lies within the circle of
increasing radius are shown on the left panels. The points included in these cells are
used to find the persistent homology; the associated persistence diagrams are shown
on the corresponding right panels. We see the diagrams are remarkably similar with
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FIGURE 2.4: Example of decomposition of large cycle into smaller cycles. The large
cycle a + e + f + h + i + k + d + l can be written as the sum of the smaller cycles :

a − b − c + d, e + f − g + b, g + h + i + j and c − j + k + l.

increasing radius: the main difference being the commensurate increase in the
multiplicity of each homology feature as the radius is increased.

In practice there are a number of ways to select a cluster of points for the persistent
homology calculation: the most obvious is to construct a supercell - i.e. have some
integer number of copies of each cell along each axis; another option is to include all
molecules whose centroid lies within a specified sphere of given radius as in figure
2.5. We favour the latter approach as the primitive cell cannot be defined in a
consistent manner.

We initially tried two different approaches - the first approach emphasised choosing a
constant inclusion radius for the bounding sphere while the second approach ensured
a constant number of molecules in the crystal fragment. Over time we found better
results with the second approach. This corroborates earlier work Steinberg et al. (2019)
that indicates that the number of points in each pointcloud has a significant effect on
models which use persistent homology and hence that keeping the number of points
constant in the input pointcloud across persistent homology calculations is highly
desirable

The algorithm we use is shown in 2.6 and uses the Cambridge Structural Database’s
(CSD) API. The idea is that we make an arbitrarily large crystal fragment, define some
centre of that fragment and then take exactly N molecules whose centroid lies closest
to the centre of this arbitrarily large fragment. From there we can use every atom in
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FIGURE 2.5: Persistence diagrams of periodic point sets using all primitive cells that
lie the specified radius.
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FIGURE 2.6: Algorithm 1: For constructing a suitable crystal fragment with exactly N
molecules from a cif file for the computation of persistent homology

the molecule list or the centroids only in order to compute the persistence diagram for
each crystal structure. Sometimes the CSD python API incorrectly identifies some
stray atoms as belonging to separate molecules, we avoid including these in our
calculations as these adversely affect the results of the persistent homology
calculations in the case in which we only use molecular centroids as our input
pointcloud. We typically avoid this by ensuring that all molecules in the list have the
same number of atoms as the molecule in the list with the largest number of atoms.
Alternatively the size of the molecules can be specified beforehand by inspection of
the molecular structure. This approach is clearly not applicable to crystal structures
which correspond to co-crystals - in practise we found no problems with stray atoms
in these examples.

Upon obtaining a set of persistence diagrams from crystal structures which warrant
comparison, we typically find a distance matrix using the Wasserstein metric as
described above or, more commonly, find a set of vector images associated with each
crystal structure. Upon flattening the vector images we have a N × p matrix which
describes the p dimensional space of crystal structures upon which further analysis
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FIGURE 2.7: Flowchart for the processing of a cif file into a meaningful topological
descriptor. Step 1: cif file is converted into a crystal fragment, which contains infor-
mation about exactly N (typically around 50) molecules, typically this contains molec-
ular centroids only but it can also contain atoms or other molecular invariants such as
orientation vectors. This may be stored in an xyz file (if 3 co-ordinates are used). Step
2: the persistent homology is calculated using the coordinates provided in the crystal
fragment by using one of persistent homology methods i.e. Vietoris-Rips or alpha fil-
tration. We get a barcode or persistence diagram from this process. Step 4: Conversion
of barcode into a vector image. As stated in the main body this is the technique most
commonly used by us to convert the barcode to something useful. Other techniques
are used by us as well such as the Wasserstein distance or the (1D) histogram of con-
nected components. Step 4: the conversion of the vector image to a set of independent
variables. This just involves flattening the N × N vector image into a set of N2 values

to be fed into our models.

may be carried out. In the case of the Wasserstein metric we are left with an N × N
distance matrix for analysis.

The overall workflow used to generate a set of homology-based independent variables
from a crystal structure (a cif file) is outlined in figure 2.7.
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Chapter 3

Data Analysis Methods and Crystal
Structure Prediction

The techniques we use to analyse the resulting data fall into three categories:
dimensionality reduction, classification and regression.

Dimensionality reduction allows us to convert either the 400 dimensional space (or
Wasserstein distance matrix) into a lower dimensional space - typically a two or three
dimensional space- either to visualise the set of crystal structures to extenuate any
trends in the data or to combine with classification or regression to improve the
accuracy of these methods.

In classification we attempt to partition the set of data into discrete classes we can
either do this in an unsupervised manner (this is called clustering) or in a supervised
manner, that is, based on the fact that some or all of the data is already partitioned by
other means. In this work most of the datasets which we work with have predefined
labels predicted based on the intuitive packing scheme of the crystal structure and is
largely based off analysing the crystal structures by eye.

Finally in regression we attempt to predict a continuous variable from the data. In our
case this continuous variable is the calculated energy of each crystal structure. We will
now describe each of the techniques which are used in this study according to the
characteristics described above.



24 Chapter 3. Data Analysis Methods and Crystal Structure Prediction

3.1 Dimensionality Reduction

3.1.1 Principal Component Analysis

The most common dimensionality reduction technique which we use is principal
component analysis (PCA). The aim of PCA is to find a (smaller) set of new variables
which are a linear projection of the original variables which capture most of the
variance of the dataset and are also uncorrelated with each other.

More concretely let X be a N × p matrix, where N is the number of datapoints,
describing the dataset and p is the number of variables that describe the data.
Supposing that the mean of each set of datapoints in each dimension is zero (and if
this is not the case we can accordingly recentre our data) then the sample covariance
matrix is

S =
1

N − 1
XXT (3.1)

which is a p × p symmetric matrix so may be written as

S =
1

N − 1
UTΛU (3.2)

by diagonalising the matrix. The matrix Λij =

0 if i ̸= j

λi if i = j
is a (diagonal) matrix

of eigenvalues, λi, which is basically the covariance matrix in the basis of (orthogonal)
eigenvectors ui which are the columns of U. These eigenvectors can be obtained from
a linear combination of the vectors describing the data in our original basis as
ui = ∑

p
j=0 wijxj. Therefore we see that in this basis all of our vectors which describe the

dataset are uncorrelated and hence we can choose the q < p eigenvectors which
correspond to the q largest eigenvalues as our principal components. For a number of
different ways of reaching the same result and more information about PCA see
Jolliffe and Cadima (2016); Greenacre et al. (2022); Bro and Smilde (2014). Note that for
computational and stability reasons the matrix factorisation is carried out using
singular value decomposition as opposed to standard diagonalisation Tipping and
Bishop (1999).
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3.1.2 Multidimensional Scaling

For the case in which the output of the persistent homology calculations is a distance
matrix of Wasserstein distances as opposed to an p dimensional (Cartesian) space of
vector images, PCA is not a valid method of dimensionality reduction. In these cases
we use MultiDimensional Scaling (MDS) which is more suitable for data defined on
distance matrices.

Given a (dis)similarity matrix between N data points the objective of MDS is to find a
mapping (embedding) into a Cartesian space, Rm, which preserves the distances
between any two points as closely as possible. Here m can in principle be any positive
nonzero integer although in practice values of 2 or 3 are chosen so that the resultant
space can be visualised easily.

Specifically for an N × N similarity matrix Sij = sij whose elements denote the
similarity between data points (in some fashion), an embedding into Rm is found with
values {z1, z2, .., zN} ∈ Rm which minimises the following stress function:

stressS(z1, z2, .., zN) = ∑
i<j

[
sij −

∥∥zi − zj
∥∥] (3.3)

Where ∥...∥ indicates the Euclidean distance between two embedded points in Rm. In
other cases this stress function may be normalised or modified to only preserve the
ordering of the distances Hastie et al. (2009); Borg and Groenen (2005) but there are no
applications of this in this work.

MDS may also be applied to a Cartesian space as in PCA by finding (as an example)
the Euclidean distance matrix. This may yield more interesting results as the
transformation of co-ordinates is inherently non-linear and such non-linear features
may be revealed by an MDS-based approach (but at a higher computational cost).

3.1.3 Linear Discriminant Analysis

Sometimes it is desirable in our analysis to carry out supervised dimensionality
reduction, that is, to find a projection of our high dimensional space which separates
the set of points in the low dimensional space as much as possible according to some
predefined partition or labelling. We mostly use such techniques to assess how very
similar datasets behave under the same transformation. The most basic of supervised
dimensionality reduction technique is perhaps Linear Discriminant Analysis (LDA).
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There are a number of ways of formulating the ideas behind LDA (see Hastie et al.
(2009); Sharma and Paliwal (2015) for example), but the method we use is that of the
Fischer criterion Fischer (1936).

Suppose our dataset X = (x1, x2, ..., xN)
T (an N × p matrix) has assigned to it a set of

class variables y = (y1, y2, .., yN)
T, yi ∈ {1, 2, .., c} which can take values of 1 to c

denoting c different classes each data point could belong to. The aim of LDA in this
case is to find a projection of the dataset that maximises the variance between classes
and minimises the variances within classes. The variance between classes is

Sb =
c

∑
i=1

Ni(µi − µ)(µi − µ)T (3.4)

where there are Ni elements in class i and the mean of class i is µi while the mean of
the the whole dataset is µ.

Meanwhile the variance within classes is

Sw =
c

∑
i=1

(Ni − 1)Σi (3.5)

that is, we simply take the average of the group variances {Σi}.

The problem of Linear Discriminant Analysis is then to find a projection ULDA such
that

ULDA = argmaxU

[
det(UTSbU)
det(UTSwU)

]
(3.6)

the determinant of the matrices here give a quantification of total variance arising
from each projection of the variance matrix. It can be shown that the solution to this
equation satisfies

S−1
w SbU = UΛ (3.7)

that is ULDA is composed of the eigenvectors of S−1
w Sb so note that we get at most c − 1

eigenvectors and therefore we can only project X to a dimension of at least c − 1 so in
practice this technique is often combined with PCA to project to lower dimensions.
Note also that Sw must be invertible in order for this to work. Since Sw has rank of at
most N − c so when N is less than p + c there are serious stability issues with this
algorithm. For this reason when dealing with datasets with a small number of
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datapoints relative to its dimension we either first reduce the dimension of the space
with PCA or apply a technique called shrinkage where we approximate the
covariance matrix as

Sw = (1 − δ)Sw = δI (3.8)

with shrinkage parameter δ. In this work the optimal shrinkage parameter is
determined according to the method of Ledoit and Wolf Ledoit Wolf, Michael (2004).

3.1.4 Uniform Manifold Approximation

We also apply a more sophisticated non-linear dimensionality reduction technique to
contrast with some of the linear methods described above. There are a number of
non-linear options available to use such as MDS (which we have already discussed)
and t-distributed Stochastic Neighbour Embedding (t-SNE) van der Maaten and
Hinton (2008) but we found the best results both qualitatively and with respect to
computation time with a new technique called Uniform Manifold Approximation
(UMAP) McInnes et al. (2018) which has received a lot of attention in the literature
and has found applications in a diverse set of scientific disciplines Diaz-Papkovich
et al. (2021); Becht et al. (2018); Gensch et al. (2022); Rugard et al. (2021); Hozumi et al.
(2021); Trozzi et al. (2021); Milošević et al. (2022); Lovrić et al. (2021); Vermeulen et al.
(2021). This technique also has the advantage of being amenable to supervised
dimensionality reduction in contrast to the more standard non-linear dimensionality
reduction algorithms. The aim of UMAP is to provide a dimensionality reduction that
respects the topology of local neighbourhoods as opposed to the set of absolute
distances alone. UMAP has also been considered to provide a better description of the
global topology of the dataset (than t-SNE, for example) Diaz-Papkovich et al. (2021);
Becht et al. (2018) although this has been debated Wang et al. (2020); Kobak and
Linderman (2019).

Like other non-dimensionality reduction techniques the UMAP algorithm boils down
to finding an optimal matching between a weighted graph representing the points on
the original manifold and a weighted graph in the lower dimension (embedded)
Euclidean space. Unlike other non-linear dimensionality reduction algorithms the
interpretation of the weighted graphs is heavily inspired by ideas from algebraic
topology, fuzzy logic and category theory - the resulting structures are called fuzzy
topological representations. These structures can be thought of as simplicial
complexes built by the overlap of balls like the Čech complex described above - taking
the 0 and 1 simplices only in this case - with a two crucial differences. Firstly each
point has its local own metric so that all the balls have different sizes and, secondly,
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when building our complex the inclusion of an edge is not a binary outcome but a
continuous variable such that the edge weight is related to the probability of inclusion.
As the metrics are defined locally for each point, given two nodes labelled A and B,
the edge weight from node A to node B may not necessarily be the same as the weight
from node B to node A. As a result of this the bidirectional inclusion probabilities are
combined in a mathematically robust way which we will define below. The fuzzy
topological structure for the embedded space is somewhat simpler as the metric is the
same for all balls (as we can be more confident in the uniform distribution of the data
in the resulting Euclidean space) so as such we only need to compute the edge weight
in one direction. The precise nature of these mathematical objects is beyond the scope
of this work but for more information about these structures see McInnes et al. (2018);
Allaoui et al. (2020); Ghojogh et al. (2021).

The mathematical objects that we will define are the edge weights (inclusion
probabilities) that are actually computed for both the fuzzy representation of the high
dimensional manifold and that of the embedded space.

For each point (in the high dimensional manifold) the probability weights are only
found for the k nearest (Euclidean) neighbours of xi ∈ Rp such that pi|j = 0 if
xj /∈ Ni = {xi1, xi2, ..xik} where xik is kth nearest neighbour of xi. In our applications k
is set to 15 which is the default value. The probability of including the edge from node
i (which corresponds to point xi ∈ Rp) to node j (which corresponds to point xj ∈ Rp)
is then

pi|j =

exp
(
− ∥xi−xj∥−ρi

σi

)
: xj ∈ Ni

0 : else
(3.9)

Where the ∥...∥ indicates the Euclidean norm and ρi is the distance from xi to its first
nearest neighbour. The parameter σi is a scaling parameter which must be found to
satisfy

log2 k =
k

∑
j=1

exp
(
−
∥∥xij − xj

∥∥− ρi

σi

)
(3.10)

The weight of the edge from i to j , pi|j, and the weight of edge from j to i, pj|i are
combined to give an edge weight which is invariant to direction (this is just the
probability that each one of the edges exist) as so

pij = pi|j + pj|i − pi|j pj|i (3.11)
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For the embedded space the edge weights are already invariant to direction as
explained. For the edge connecting node i (which corresponds to point
yi ∈ Rq : q << p) to node j (which corresponds to point yj ∈ Rq : q << p) we then
have

qij =
(

1 + a
∥∥yi − yj

∥∥2b
)−1

(3.12)

where a and b are hyperparameters. The optimal hyperparameters have been found to
be a ≈ 1.929 and b ≈ 0.7915 McInnes et al. (2018) although there is some doubt about
how much difference these make in practice Böhm et al. (2020).

To find the optimal graph matching a quantity called the cross entropy between
distributions P = {pij} and Q = {qij} is minimised:

CE(P, Q) = ∑
i

∑
j

pij log
pij

qij
+ (1 − pij) log

1 − pij

1 − qij
(3.13)

In practice we start off with a best guess of the low dimensional representation of the
dataset and then iteratively perturb the graph in the low dimensional space so that the
cross entropy is minimised and the resultant graph is as similar as possible to the
graph represented by the fuzzy topological representation in the high dimensional
manifold. In the current algorithm this initial guess is provided with a technique
called spectral embedding von Luxburg (2007) but this could also be accomplished
with a similar technique such as isomap Tenenbaum et al. (2000) or MDS.

Lastly we note that in order to carry out the supervised version of this algorithm we
need simply condition the probabilities in the fuzzy topological representation of the
high dimensional manifold on the partition/labelling scheme
UMAP learn documentation (acessed 2024). This will effectively force those nodes
that correspond to the same label to be close together in our embedding.

3.2 Supervised Classification

3.2.1 Support Vector Classification

The only method for supervised classification that we describe here is Support Vector
Classification (SVC) Cortes and Vapnik (1995) which, of the algorithms we attempted,
provides the best combined classification for our data (and for all the problems to
which we applied supervised classification).
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Support Vector Classifiers are only strictly defined as a binary prediction algorithm,
i.e. we can only predict whether a datapoint, xi ∈ X (X is a n × p matrix as before),
belongs to one of two classes which we denote using a response variable yi ∈ {−1, 1}
(i.e. the data point is in class A if yi = −1 and in class B if yi = 1). As such when we
apply this technique to multi-class problems we apply several one-verses-one
instances of SVC to the data, one for each pair of classes, and then classify the points
according to a vote using the outcome of each and every binary classification Hsu and
Lin (2002); Duan and Keerthi (2005).

The goal of SVC is to find a p − 1 dimensional hyperplane that separates the p
dimensional data into two classes denoted as above with the indicator variable
yi ∈ {−1, 1} such that the the distance between the hyperplane and the points in each
class is maximised. As the distance between a point xi ∈ Rp and a p − 1 dimensional
hyperplane is 1

∥β∥ (xT
i β + β0) (and we also note that (xT

i β + β0) is negative when
yi = −1 and positive when yi = 1) we can cast this as an optimisation problem

minβ,β0

1
2
∥β∥2

subject to yi(xT
i β + β0) ≥ 1 ∀i

The solution can then be defined as Ĝ(X) = sgn(XT β̂ + β̂0). This approach works for
data that can be separated by a hyperplane however this is not always the case so in
support vector classification we also allow a ”slackness” by defining a set of slack
variable {ξi} which control how far each point may stray from the margin. The
problem in this case is defined as

minβ,β0,ξi

1
2
∥β∥2 + C

N

∑
i=1

ξi

subject to ξi ≥ 0, yi(xT
i β + β0) ≥ 1 − ξi ∀i

The parameter C acts as the reverse of regularisation, that is, the larger C is the less
points are allowed to deviate from the boundary. Thus a smaller C can also prevent or
alleviate overfitting problems at the expense of initial accuracy.

It can be shown using Lagrange multipliers {αi} that the solution of the above is
equivalent to solving the following maximisation problem (which is called the dual
problem) Smola and Schölkopf (2004); Hastie et al. (2009)



3.2. Supervised Classification 31

maxαi LD =
N

∑
i=1

αi −
1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjxT
i xj

subject to 0 ≤ αi ≤ C,
N

∑
i=1

αiyi = 0 ∀i

As the above expression is only in terms of the dot product between data points
xT

i xj = ⟨xi, xj⟩ it is possible to solve this same optimisation problem using
transformed variables ϕ(xi) by replacing ⟨xi, xj⟩ (which we call the kernel) with
K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩ and noting that we express the solution

Ĝ(X) = sgn(ϕ(X)T β̂ + β̂0) (3.14)

= sgn

(
N

∑
i=1

(
αiyi⟨ϕ(xi), ϕ(xj)⟩

)
+ β0

)
(3.15)

We call this technique the kernel trick Boser et al. (1992); Smola and Schölkopf (2004);
Hastie et al. (2009). Transforming the variables in this way gives a non-linear
boundary (by implicitly encoding a much higher dimensional space) that can vastly
improve classification accuracy while the computational cost is low as the matrix of
kernels is relatively easy to compute.

There are number of choices of kernel for this kind of problem Hastie et al. (2009);
Smola and Schölkopf (2004) such as the polynomial kernel, the sigmoid kernel and
even a kernel based off the Wasserstein distance between two persistence diagrams
Carriere et al. (2017) (which sadly we found not to be very effective) but the kernel we
found most effective (other than the linear kernel, ⟨xi, xj⟩, as above) was the radial
kernel which is defined as

K(xi, xj) = exp(−γ
∥∥xi − xj

∥∥2
) (3.16)

As such for any classification problem that we carry out in this manner we must fit the
hyperparameters C, kernel and γ (if we choose a radial kernel). As a result of this we
need to carry out a computationally intensive hyperparameter grid search when
optimal results for the classification are desired.

Note that as is standard best practise in data science and statistics if we wish to predict
the set of labels for one of our datasets, we hold out around 10-25 % of the data as a
test set. The model is then fitted on the remaining training set, typically with 5-10
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folds of cross validation Ojala and Garriga (2010) which involves further splitting into
test and train sets, before obtaining a final accuracy score by predicting labels on the
test set with the best model thus obtained and comparing these to the true values. We
can obtain either a combined accuracy score (i.e. the percentage correctly classified) or
a confusion matrix which shows the number of data points in each class of the test set
by its predicted category. Also note that any fitting of the hyperparameters is carried
out on the the training set and should not involve the test set in order to prevent
overfitting the hyperparameters.

3.3 Unsupervised Classification

3.3.1 K-means Clustering

Given N observations (x1, x2, ..., xN), the aim of K-means clustering is to partition this
set into a K sets (clusters) C = (C1, C2, ..., CK) where K <= N. For this algorithm the
number of clusters, K, is specified beforehand.

The clusters are chosen such that the variance within each cluster is minimised so that
we aim to solve

argminC

K

∑
i=1

∑
x∈Ci

∥x − µi∥2 (3.17)

where µi is the centroid of the cluster Ci. This is the same as minimising the sum of all
the pairwise distances within each cluster Hastie et al. (2009).

While it is theoretically possible to find the global optimum of such a calculation, this
is normally intractable. The most common algorithm for finding a local minimum is
Lloyd’s algorithm Lloyd (1982) and this is the method used in this work.

The method is described in figure 3.1. There are number of ways to choose the initial
set of cluster means which can have a drastic effect on the results. We use a method
called k-means++ Arthur and Vassilvitskii (2007). This method finds a set of initial
cluster centroids that are as far apart as possible by selecting points in a sequential
manner such that the probability of picking a point is proportional to its distance from
existing centroids.

It is often desirable to compare the output of such an unsupervised calculation with a
predefined set of labels (or ground truth) that are known already to partition the
dataset. The metric we use is called the adjusted mutual information (AMI) Vinh et al.
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FIGURE 3.1: Algorithm 2: Pseudo-code for k-means clustering by Lloyd’s algorithm.

(2010). Given two partitions of our dataset X = (x1x2, ..., xN), U = {U1, U2, ..., Up} and
V = {V1, V2, ..., Vq} the mutual information is defined as follows

MI(U ,V) =
p

∑
i=1

q

∑
j=1

PUV(i, j) log
PUV(i, j)

PU(i)PV(j)
(3.18)

This quantity has its roots in information theory Shannon (1948) and describes how
much information about distribution U is obtained by observing V . Here PU(i) =

|Ui |
N

is the probability of observing an object in class Ui (out of all objects) and similarly
PV(j) = |Vj|

N . PUV(i, j) = |Ui∩Vj|
N is the probability of observing the intersection between

two classes.

The adjusted mutual information is a modification of the above such that the
expression yields 0 for completely unrelated partitions and 1 when the partitions are
the same. Formally AMI is defined as

AMI(U ,V) = MI(U ,V)− E[MI(U ,V)]
max(H(U ), H(V))− E[MI(U ,V)] (3.19)

where E[...] denotes the expectation value and H(U ) = −∑
p
i=1 PU(i) log Pu(i) is the

entropy of partition U .

Finally we note that while the choice of the number of clusters,K, has a large impact
on the result of the clustering algorithm we typically set this to the number of labels in
the ground truth - i.e. we want to see if we can replicate the same partition as expected
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FIGURE 3.2: Example of core points, boarder points and noise Schubert et al. (2017).
Here MinPts is 4. The red points are core points, the yellow points are boarder points

and the blue point is noise.

by our domain knowledge. However as the goal here is compare the results of the
same clustering algorithm on different descriptors the choice of K shouldn’t matter too
much as long as we are consistent between different datasets.

3.3.2 DBSCAN

In some cases it is desirable to cluster the data in such a way that not all data is
assigned a label, that is, some of the data is labelled as either ”undefined” or ”outlier”.
We use a technique called density-based spatial clustering of applications with noise
(DBSCAN) Ester et al. (1996) which aims to partition the data into regions of low and
high density so that the high density regions correspond to clusters and points in the
low density regions are more likely to be outliers. The algorithm also has the
advantage that the number of clusters is not specified beforehand and also that the
clusters need to not have a convex shape.

The two free parameters of most relevance to the result are the radius, ϵ, which
determines the distance scale for cluster inclusion and the minimum number of
samples,MinPts, which determines how many points need to be ”close” to be
constituted a cluster.

More formally we define any point with more than MinPts within a distance of ϵ as a
core point. All points that are within ϵ of a core point are considered to belong to the
same cluster as the core point. The neighbours of any core point of a cluster which is
not itself a core point is designated a boarder point. These points intuitively correspond
to the edges of the cluster. Any point that is not within ϵ of any core point is
considered noise, that is, an outlier. The concept of core points, boarder points and
noise is illustrated in figure 3.2.
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The points are assigned into clusters by iterating through all the points in the dataset:
if the point is not a core point it is labelled as noise; if the point is a core point we start
building a cluster by iteratively finding its neighbours and the neighbours of any core
points thus found and so forth until no more core points are found - any core points
found in this manner are added to the cluster. Any object that has already been
assigned a cluster is skipped as we iterate through the rest of the data. More details
about the algorithm and pseudocode can be found in Ester et al. (1996) and Schubert
et al. (2017).

As the parameters ϵ and MinPts have a substantial effect on the results of this
algorithm, in this work we try a few sets of parameters and manually choose the
”best” set of parameters. Since we only apply this technique on low dimensional data
or data that is to be embedded in a low dimension checking this manually is quite
easy as the clustering can be readily visualised.

3.4 Regression

3.4.1 Support Vector Regression

The first technique we use for regression is Support Vector Regression (SVR) Drucker
et al. (1996) which is closely related to the technique of support vector classification
described above.

By employing kernels as before the form of the regression model is
f (x) = ϕ(x)T β + β0 where ϕ(x) is a function that describes the kernel as in the SVC
case. Note that when a linear kernel is used the solution is of the same form as the
standard linear regression model (see Hastie et al. (2009),for example, for more
information about standard linear regression).

By only allowing each prediction, f (x), to lie within a region , ϵ, of the training value
with the ”slackness” allowed for each point defined by two variables ζi and ζ∗i - these
respectively define the slackness allowed below and above the target - we then define
a very similar optimisation problem to SVC as

minβ,β0,ζi ,ζ∗i
1
2
∥β∥2 + C

N

∑
i=1

(ζi + ζ∗i )

subject to ζi, ζ∗i ≥ 0, yi − ϕ(x)T β + β0 ≤ ϵ + ζi

ϕ(x)T β + β0 − yi ≤ ϵ + ζ∗i ∀i



36 Chapter 3. Data Analysis Methods and Crystal Structure Prediction

As in the case of support vector classification we find the best kernels are the linear
kernel and the radial kernel and, as such, for this case the hyperparameters which
must be fit are γ, C, ϵ and kernel type (that is, radial or linear). Note that we carry out
the same train test split procedures as mentioned above, although the fit of the model
is typically assessed with the coefficient of determination, R2 = 1 − ∑N

i=1(yi− f (x))2

∑N
i=1(yi−ȳ)2 , as

befits a regression model.

3.4.2 Random Forest Regression

The technique of random forest regression works by combining the results of an
ensemble of decision trees, that is, the results of several individual decision tree
learning tasks are combined. As such we first describe how decision trees are used as
regression models.

A decision tree creates a partition of the dataset into m regions {R1, R1, ..., Rm} such
that similar datapoints belong to the same region. This is done by recursively splitting
the space according to decision rules such that we may think of the data being split
according to a tree-like structure so that each condition on the data splits the tree into
further branches. We only consider the case of binary trees such that each split results
in two smaller regions of the dataset. The nodes at the bottom of the tree will then
correspond to the regions {Ri}. The regression is then computed as

f (x) =
m

∑
i=1

ci I(x ∈ Ri) (3.20)

where I(condtion) is the indicator function and evaluates to one if the condition is false
and evaluates to zero otherwise.

For each binary split the splits into regions Rleft = {X : Xj ≤ s} and
Rright = {X : Xj > s} are chosen using the following minimisation

minj,s

[
minc1 ∑

xi∈Rright

(yi − c1)
2 + minc2 ∑

xi∈Rleft

(yi − c2)
2

]
(3.21)

so that we are minimising the sum of squares loss with the training data.

We find that the optimal ci are the averages of the training variables over the
corresponding region:
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ĉi =
1

|X : x ∈ Ri| ∑
xj∈Ri

yj (3.22)

while the optimal values of j and s must be found computationally.

These trees have a high propensity to overfit (i.e. the modal has low bias but high
variance) to the training data, especially if a large number of splits (or equivalently a
tree with a large depth) is used. There are a number of ways of mitigating this such as
reducing the size of the tree after fitting (pruning) Hastie et al. (2009); Breslow and Aha
(1997) or fitting successive trees with altered weights (boosting) Hastie et al. (2009);
Freund and Schapire (1995) but the method of random forest reduces the variance of
the model by combining the output of very many different trees (trained on different
subsets of the dataset) in a manner which also minimises the correlation between trees.

The decision trees are combined using a technique called bagging (bootstrap
aggregating) which involves fitting many instances of the same model on different
sets of altered training data which is obtained by sampling with replacement. Suppose
that we fit B models on different sets of training data (X1, y1), (X2, y2), ..., (XB, yB) to
obtain models f1(x), f2(x), ..., fB(x), the bagged predictor is the function

f̂bagged(x) =
1
B

B

∑
i=1

fi(x) (3.23)

It can be shown Hastie et al. (2009) that the variance of such a model is

Var( f̂ ) = ρσ2 +
1 − ρ

B
σ2 (3.24)

where σ is the variance of each tree and ρ is the correlation between trees. We thus see
that even with a large number of bootstrap samples, the correlation between trees
needs to be minimised.

This is achieved by modifying the splitting process of each tree in the bootstrap
process: before every split is carried out randomly select m < p out of the p variables -
only these m variables may be used in the split condition. This prevents each tree from
selecting similar variables in general and hence reduces the correlation between trees.
Random forests were first introduced by Breiman Breiman (2001) while decision trees
in general have been around much longer Belson (1959); Leo Breiman Jerome
Friedman (1984).

This regression technique involves a large number of hyperparameters which we
attempt to tune when using this model. We describe these below:
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• max depth - The maximum depth of any tree. The default setting is an
unlimited depth for each tree and in this case the tree is split until each node has
less than min samples split as described below.

• max features - The numner of features, m, to use when reducing the paramter
space before each splitting step (as discussed above), this often takes a function
e.g. passing sqrt sets m =

√
p

• max leaf nodes - sets the maximum number of leaf nodes (at the base of the
tree). The best nodes are selected as those that minimise square error as above.
The default is an unlimited number of leaf nodes.

• max samples - How many samples are used for each bootstrap dataset Xb

• min samples split - Minimum number of samples required to split an internal
node

• min samples leaf - The minimum number of samples allowed in each leaf node,
i.e. a split is not allowed (even if there are more than min samples split samples at
this node) if the split results in one of the leaves (or children) from this split
having less than min samples leaf.

• n estimators - The number of trees in the random forest, i.e. the number of
bootstrap samples, B

Note that due to the large number of hyperparameters in this case we sometimes opt
for a random parameter search when fitting models for the larger datasets as checking
every combination of hyperparameters is not feasible.

3.5 Crystal Structure Prediction

As well as dealing with real crystal structures, we also perform persistent homology
calculations on predicted crystal structures. Crystal Structure Prediction (CSP)
techniques typically generate a range of possible crystal structures for a given
compound with calculated energies and densities. This is called a crystal structure
landscape. Typically these structures are plotted as energy against density but
different dimensionality reduction techniques may be used to plot the output in such
a way that various properties of the crystal structure landscape are extenuated: for
example one might want compounds with very similar crystal packing types to be
close together in the reduced space. Using persistent homology to construct such plots
that tease apart the regions of the crystal structure landscape that correspond to
different crystal packing types is a key application of our work. As such we give a
brief description of how these CSP techniques work.
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Molecular organic crystal structure prediction algorithms typically consist of the
following steps Bowskill et al. (2021); Day (2011):

• Molecular Geometry Initialisation The geometry of the starting structure must
first be optimised such that the bond lengths and angles are representative of the
real geometry of the molecule. Generally in CSP the molecular geometry is fixed
(i.e. the molecules are assumed to be rigid) during the candidate generation and
structure refinement stages to reduce computational load so it is important to
have a sensible starting structure. Typically a simple calculation (for example
B3LYP/6-311G** Density Functional Theory) in the gas phase is sufficient.

• Candidate Generation The optimised molecules are placed into the asymmetric
cell with sets of differing positions and rotations either in a biased (such as a
Monte Carlo search Kendrick et al. (2011)) or unbiased (such as a naive random
search Karamertzanis and Pantelides (2005)) manner. The number of molecules
per asymmetric cell, Z′, is typically set to one in the first instance but this can be
increased to explore more structures at the expense of a higher computational
cost. Given a candidate asymmetric cell, the unit cell and hence an entire crystal
structure can be found given its space group. In practice only the unit cell is
needed for further calculations. While there are 230 space groups the vast
majority of crystal structures belong to a very small set of space groups so
typically only a small set of space groups (60 space groups account for 97.9% of
all organic crystal structures Groom et al. (2016)) is used in the CSP algorithm
which is specified beforehand. Sometimes computationally cheaper calculations
are used to find and remove high energy structures. Also it is common to remove
structures which have a high level of geometric similarity or in which molecules
overlap: there are a variety of common approaches to this Bowskill et al. (2021).

• Structure Refinement The candidate structures are further optimised using
varying levels of theory depending on the number of structures and the problem
at hand.

In this work we use the techniques developed by Day et al. Case et al. (2016). After an
appropriate geometry optimisation (the details vary but it typically involves a Density
Functional Theory calculation using the Gaussian program Frisch et al. (2016)), the
candidates are generated using the technique of quasirandom (quasirandom because
the random variables are not necessarily independent of each other) sampling Case
et al. (2016). This technique is unbiased but ensures that random rotations of each
molecule in the unit cell are appropriately sampled and that the unit cells are not
unphysical (e.g. that the unit cell does not have a tiny cell angle and thus is long and
thin). The positions of the molecule are determined using uniform random numbers
while the random rotations of each molecule are determined using the method of
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Shoemake Kirk (1992) which effectively gives uniform random rotations. The
parameters for the unit cell (subject to the predefined spacegroup) are also generated
at random. The angles (those not constrained by spacegroup symmetry) are sampled
such that the cosine of the angle is evenly distributed and that the angles are not too
acute or too obtuse (which gives rise to ”flat” unit cells which can present
computational difficulties later on). The cell lengths are then sampled in such a way
that the molecules which have already been defined always fit in the box provided.
Structures for which molecules overlap are removed at this stage as well.

The lattice energy minimisation is carried out using the DMACRYS Price et al. (2010);
Willock et al. (1995) program which applies the technique of distributed multipole
analysis to crystal systems. Here the intermolecular interaction energy between two
molecules, M and N, is modelled as

Eintermolecular
MN = ∑

i,k
Apqe−Bpqrik − Cpqr−6

ik + Eelec
ik (DMA)

where i and k are respectively atoms of type p and q. The repulsive and attractive
terms modelled by the first two terms are parameterised according to the revised
version Pyzer-Knapp et al. (2016) of the Wiliams99 (W99) Williams (2001) force field.
These correspond to the nonelectrostatic interaction (e.g. Van der Waals type
interactions). The electrostatic term,Eelec

ik (DMA), is modelled using distributed
multipole analysis Stone and Alderton (2002) of the B3LYP/6-311G** charge density.
Typically (and in this work) multipoles of up to rank 4 (hexadecapoles) are used in the
analysis.

Finally a clustering step is performed using a modified version of the COMPACK
algorithm Chisholm and Motherwell (2005) in order to remove any duplicate crystal
structures obtained at the end of the crystal structure prediction process.
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Experimental Data

We apply the topological data analysis methods described above to a range of datasets
which shall be described in turn.

4.1 Fluorinated Benzylideneanilines

An example structure of a fluorinated benzylideneanine, or fluoroalanine for short, is
shown in figure 4.1. The substitution pattern of fluorines varies across the dataset, if
we assume the molecule is conjugated throughout then there are 1024 possible
fluoroalanines else there are only 400 possible compounds. It is unclear whether the
molecule is fully conjugated as in some crystal structures the rings are twisted while
in others the molecule is planar. In either case we have crystal structures recorded for
118 fluoroalanine compounds with one set of polymorphs so we have 119 crystal
structures in total.

In the work of Dodd et al. Dodd (2020) these structures were classified into two
schemes of different packing motifs. The first of these was established by visual
inspection while the second was based off analysis of the crystal symmetry,

FIGURE 4.1: Representative fluoroalanine structure
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FIGURE 4.2: Example packing motifs of fluoroalanine crystal structures after Dodd et
al.

Dodd (2020). The labels are as follow: a) Head-to-Head, b) Head-to-Tail, c) Staggered
Overlap, d) Interwoven, e) Grid, f) Angled Overlap

intercentroid distances and dihedral angles. In the visual labelling scheme the
structures are partitioned into the following motifs: head-to-head; head-to-tail;
staggered overlap; angled overlap; interwoven; grid and ”other”. In the second
packing scheme the head-to-head and head-to-tail classes are further subdivided into
stacking groups 1,2,3 & 4. Some examples of these motifs are shown in Figure 4.2 .

We were not able to find any chemical applications for these sets of molecules in the
literature; rather these crystal structures have been systematically analysed by Dodd et
al. Dodd (2020) and others Kaur and Choudhury (2015); Kaur et al. (2012); Kaur and
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Choudhury (2014) in order to understand how the C-F bond directs crystal packing -
this is important as these kind of interactions play an important role in directing the
crystal packing of many important molecules in medicinal chemistry, materials
chemistry and elsewhere Berger et al. (2011).

Due to the quality of the labelling scheme this dataset is ideal for experimenting with
different crystal structure descriptors - we have a firm concept of ”ground truth” for
packing labels in this case. As such the bulk of our analysis is centred on this dataset.

4.2 Polyaromatic Hydrocarbons & Azapentacenes

The next class of compounds that are studied are polyaromatic hydrocarbons (PAHs)
and the closely related azapentacenes. Like the fluoroalanines the packing structures
of such compounds have been extensively studied in order to aid the field of crystal
engineering Desiraju and Gavezzotti (1989b); Loots and Barbour (2012); Desiraju and
Gavezzotti (1989a). Unlike fluoroalanines PAHs are well known to adopt one of four
packing motifs known as beta (also known as sheet), gamma, herringbone and
sandwich herringbone. Examples of these are shown in figure 4.3. The packing type
depends on the interplay between edge-to-face interactions between the C-H bond
and π systems and the face-to-face π-π stacking and holistic methods for identifying
the motifs have existed for a long time Desiraju and Gavezzotti (1989b). The packing
types adopted by different PAHs (or related compounds) influence the electronic
conductivity properties (specifically the charge mobility as determined by
intermolecular electronic coupling) Musil et al. (2018); Valeev et al. (2006) and these
are in turn relevant to the possible applications of PAHs such as molecular organic
semiconductors Sirringhaus et al. (1998).

There has been particular interest in the applications of pentacene Anthony (2008);
Wang et al. (2012); Kitamura and Arakawa (2008) in the area of molecular
semiconductors as well as its nitrogen substituted derivatives (azapentacenes)
Winkler and Houk (2007). In work by Campbell et al. Campbell et al. (2017) and Musil
et al. Musil et al. (2018) in which machine learning and dimensionality reduction
techniques were used to investigate the properties of the crystal structure landscape of
some of these compounds, a large set of crystal structures of these compounds were
generated using the crystal structure prediction techniques described in the previous
section. These calculations were performed using the 23 most commonly adopted
space groups for organic molecules with Z′ = 1 and the 12 most common space
groups for molecules with Z′ = 2. The crystal structure maps obtained were compared
with some algorithmically calculated packing labels using a heuristic technique
involving intermolecular angles. This algorithm was first designed by Campbell et al.
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FIGURE 4.3: The four fundamental packing types for polyaromatic hydrocarbons Salz-
mann (2020). The structures are labelled as follows: a) Herringbone; b) Gamma ; c)

Sandwich Herringbone and d) Beta

Campbell et al. (2017). This technique will be discussed in more detail later in the
context of a more contemporary technique which we use later Loveland et al. (2020).

In this work we use the data from the paper of Musil et al. Musil et al. (2018) using the
same labels as the authors. The compounds studied are shown in figure 4.4. Note that
we have been kindly provided with additional structures not included in the
supplementary information of the paper by the authors Musil et al. (2018). Note also
that the labelling of the compounds we were given and those of the paper are not
identical (5C is labelled as 5B in the paper).

We also study updated crystal structure landscapes (using more contemporary crystal
structure prediction code provided by the same authors) for a subset of the
compounds (pentacene, 5A, 5B and 5C) and also using updated labels which we
found using the technique of Loveland et al. Loveland et al. (2020). Again the specifics
and advantages of the new algorithm will be discussed in the results section.

Finally we also consider two small sets (with 28 and 172 compounds respectively) of
experimental PAH structures,respectively described in Desiraju and Gavezzotti
(1989b) and Loveland et al. (2020), the labels of which were found by inspection by a
subject matter expert and the structures for which were found by querying the names
or CSD codes provided in the papers on the Cambridge Structural Database (CSD)
Groom et al. (2016). As such the labels in these datasets are of higher fidelity although
the datasets are considerably smaller.



4.3. Nicotinamide:Benzoic Acid (GAZCES) Co-Crystals 45

FIGURE 4.4: The azapentacene compounds used in this work.

4.3 Nicotinamide:Benzoic Acid (GAZCES) Co-Crystals

This dataset is after the paper by Yang et al. Yang and Day (2022). The structure of the
molecules comprising the co-crystal labelled by the CSD as GAZCES (nictinomide and
benzoic acid) are shown in figure 4.5. The GAZCES system was studied by Yang et al.
due to its known polymorphism and rigid molecular structure. The aim of the study
was to investigate the nature of the energy barrier between different polymorphs in
the context of the global energy landscape, that is, the pathways from many different
starting structures using threshold Monte Carlo methods J C Schön et al. (1996); Schön
and Jansen (1996). The transition between two polymorphs of GAZCES was studied
in this manner. 1

In brief this process involves starting with a given structure (in the case of the work of
Yang et al. on GAZCES, both polymorphs were chosen as starting points in different
simulation tasks) and perturbing the molecules in the unit cell by a small amount to
give a slightly different crystal structure with a different calculated energy. If this new
energy is below a certain threshold, the lid energy, the move is allowed and this
becomes the new structure for further Monte Carlo moves. Else the move is not
allowed and we keep the existing structure. In this way only the local neighbourhood
of the energy minimum in which the starting structure lies may be explored. The

1There are actually known to be four polymorphs of this co-crystal but only two have been resolved
structurally Lukin et al. (2017).
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FIGURE 4.5: Structure of molecules in GAZCES co-crystal. Nicotinomide (left) and
benzoic acid (right)

simulation proceeds in this manner for a certain number of steps corresponding to the
resolution in which the landscape is to be explored, in the case of the work by Yang et
al. on the GAZCES co-crystal, 3000 steps were used at each value of the lid energy
Yang and Day (2022). The lid energy is then raised to allow further structures of the
landscape to be explored which may lie on the other side of higher energy barriers.
The process is repeated up to some maximum value of lid energy, in our case this is
150 kJmol−1 above the starting structures. In this way one can obtain a series of
different energy basins which may be described using a disconnectivity graph Becker
and Karplus (1997).

The upshot of this is that one obtains a potential energy landscape for GAZCES with
two very deep basins. Each of the points on this disconnectivity graph has an
associated crystal structure obtained at that Monte Carlo move. As such we have a
large set of crystal structures with labels denoting two basins (which we simply call
”0” and ”1”). In the work of Yang et al. conventional techniques (the SOAP REMatch
kernel Bartók et al. (2013)) were used in an attempt to predict which basin a crystal
structure might be associated with using only the crystal structure itself. This was
unsuccessful. As such this is an interesting dataset to explore whether persistent
homology can untangle these two datasets.
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Results

5.1 Fluorinated Benzylideneanilines

5.1.1 Pointclouds With Three Dimensions

We processed the 119 crystal structures according to the steps above in order to obtain,
in the first instance, a corresponding set of vector images. In our initial approach we
extracted all atoms in the crystal fragment (the fragment being obtained in a manner
similar to Algorithm 1, 50 molecules were used in this case). As we shall show much
better separation of crystal packing classes was achieved when only the molecular
centroids were used. In figure 5.1 the Adjusted Mutual Information from a K-means
clustering (K = 8, we are comparing the clusters obtained to the visually obtained
packing scheme in this case and excluding the compounds labelled ”other”) on the
space spanned by the set of vector images obtained using different crystal fragments:
we compare crystal fragments using all atoms (using weighted persistent homology);
carbon atoms only; ring centroids only and molecular centroids only. This was
completed for different persistent homology filtrations and for different sets of feature
dimensions for further comparisons such as the importance of crystal loops vs voids,
for example. It is abundantly clear that persistent homology calculations involving
sparser sampling from the underlying crystal structure yield a set of vector images
that better describe the different packing types of these crystals. This is perhaps to be
expected given that the persistence diagrams for the sparser crystal fragments are
more likely to correspond to the useful intermolecular persistent homology features
that describe the underlying packing type while the diagrams corresponding to
denser sampling of the crystals contain very many intramolecular features (i.e.
connected components, loops etc that live within the same molecule) which are
irrelevant to our analysis: it is the positions in which the molecules are located that is
most important. Furthermore these crucial intermolecular features may not occur at
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FIGURE 5.1: The comparison of different Adjusted Mutual Information scores for the
clustering of a set of vector images corresponding to the persistent homology of a set
of fluoroalanine crystals for different techniques for persistent homology calculation
and crystal fragment generation. A high AMI indicates that the partition obtained
by clustering the set of crystals is similar to that obtained by classifying the crystals

according to packing types found by eye.

all on the persistence diagrams for these denser structures as these intermolecular
cycles may be decomposed into smaller cycles involving nearby atoms in the manner
described in figure 2.4. We also observe that the lower dimensional persistent
homology features (i.e. connected components) are by far the most important in this
instance. This is convenient for our purposes as these are much easier to calculate but
we shall see later that this trend is not replicated in some of the other crystal systems
that we investigate so it can certainly not be relied upon. It is unclear why connected
components are much more important in this particular example although one reason
may be that there are simply more connected components than the other higher
dimensional features so there may simply be more data to work with. There does not
appear to be any significant difference between the alpha and the Rips filtrations. We
stick to the alpha filtration for these compounds as it is faster to compute.

To show the difference more concretely figures 5.2 and 5.3 show the set of vector
images in a 2 dimensional subspace obtained by Principal Component Analysis for,
respectively, the images obtained using crystal fragments using all atoms and those
obtained using molecular centroids only. For each of these figures the points are
labelled according to each of the two packing schemes found by Dodd et al. Dodd
(2020) (i.e. that using visual analysis and that found using geometric arguments). It
can be clearly seen here that the descriptor obtained using all atoms barely
distinguishes the classes at all while the descriptor using molecular centroids
separates the classes rather well. The only visually-defined classes which are not
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(A) Visual Packing Scheme

(B) Geometric Packing Scheme

FIGURE 5.2: Principal Components of the space of vector images (containing 0, 1 and
2 dimensional features) defined on the set of persistence diagrams of fluoroalanine
compounds. Here the (weighted) persistent homology is calculated using all atoms
from a crystal fragment containing 50 molecules. The structures are labelled according

to the crystal packing observed either by eye or by geometric argument.

separated well are the head-to-head and head-to-tail classes. Similarly only stacking
groups 1, 2, 3 & 4 are not distinguished in the case of the second packing scheme.
Predictably the compounds labelled ”other” are at random positions on plots as these
do not correspond to a single packing scheme; it is interesting to note that none of
these compounds are significant outliers (that is, explain a significant amount of the
variance of the data and cause the PCA plot to be heavily skewed) which could
indicate that all of these compounds have quite similar crystal structures to the rest of
the compounds insomuch that they do not ”discover” any new persistent homology
features.

The vector image based approach is by no means the only way of distinguishing the
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(A) Visual Packing Scheme

(B) Geometric Packing Scheme

FIGURE 5.3: Principal Components of the space of vector images (containing 0, 1 and 2
dimensional features) defined on the set of persistence diagrams of fluoroalanine com-
pounds. Here the persistent homology is calculated using a set of molecular centroids
from a crystal fragment containing 50 molecules. The structures are labelled according

to the crystal packing observed either by eye or by geometric argument.

different packing types. The Wasserstein distances between persistence diagrams may
be used to perform both clustering and dimensionality reduction (by
Multidimensional Scaling) and in these cases we find respectively a high AMI and a
good separation of the classes in the reduced space. This demonstrates that the
persistence diagrams themselves serve as good representation of the packing classes -
the vector images are simply a computationally convenient representation but are not
necessary to the process per se. As discussed in the previous sections the Wasserstein
distance is time consuming to compute so in practice it is not favoured by us. The
MDS plots and the breakdown of the predicted clusters using K-means clustering (this
time based on the Wasserstein metric) are shown in figures 5.5 and 5.4 respectively.
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(A) Visual Packing Scheme

(B) Geometric Packing Scheme

FIGURE 5.4: Breakdown of the clusters obtained using K-means clustering using the
Wasserstein distance between persistence diagrams of fluoroalanine crystal structures.
The clustering is broken down by the packing types of crystal structures as obtained
by both visual inspection and a geometric argument. The number of clusters to use in
the K-means clustering algorithm, K, was set to match the predicted number of classes
according to each packing scheme as such K is set to 8 for the visual packing scheme
and to 10 for the geometric packing scheme. The clusters are labelled C1, C2, ... and the

ordering is irrelevant

Note that we do not have any meaningfully better results here although the process is
technically more vigorous.

Lastly we briefly comment on the persistent homology ”invariance” phenomenon
which we described in the previous sections. In figure 5.6 the AMI for the clustering
based on vector images obtained using molecular centroids is plotted as function of
the number of these centroids in the crystal fragment. We note that the AMI barely
improves at all when more than around 50 molecules are used in the input crystal
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(A) Visual Packing Scheme

(B) Geometric Packing Scheme

FIGURE 5.5: MDS embedding of the matrix of Wasserstein distances (containing 0,
1 and 2 dimensional features) between persistence diagrams of fluoroalanine com-
pounds. Here the persistent homology is calculated using a set of molecular centroids
from a crystal fragment containing 50 molecules. The structures are labelled accord-
ing to the crystal packing observed either by eye or by geometric argument. The com-
pounds labelled ”other” have been removed for clarity as these are again randomly
distributed across the reduced space. The embedding axes are unlabelled as they have

no physical interpretation.

fragments. The presence of a cutoff past which the persistence diagrams do not
change much (apart from multiplicity) and past which no new ”useful” topological
information can be obtained is consistent with the arguments and examples presented
in the previous sections.
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FIGURE 5.6: The variation of AMI for the K-means clustering of a set of vector images
of fluoroalanine crystals with the number of molecular centroids in the input crystal
fragment. A high AMI indicates that the partition obtained by clustering the set of
crystals is similar to that obtained by classifying the crystals according to packing

types found by eye.

5.1.2 Pointclouds With Six Dimensions

The results can be further improved by calculating the persistent homology using 6
variables rather than 3, the extra 3 variables indicating the orientation of a given
molecule, that is, rather than computing the persistent homology on a set of
{(x, y, z)} ∈ R3 where x, y and z are the coordinates of the molecular centroids, we
instead compute on a set {(x, y, z, Ri, Rj, Rk)} ∈ R6 where Ri, Rj and Rk are
respectively the x, y and z components of some vector R⃗ which describes the
orientation of a given molecule. The crystal fragment hereby obtained will look
similar to the vector field shown in figure 5.7, where we use the CN vector (see figure
5.8 below) on the fluoroalanine structure designated 0-0 (that is the crystal structure of
the fluoroalanine with no fluorine substitutions). The idea here is that the topological
spaces describing each crystal structure will also contain information about the ways
in which each molecule is facing allowing us to more reliably distinguish the crystal
structures involving head-to-head verses head-to-tail crystal packing. For the
geometric packing scheme we are able to completely isolate the compounds
corresponding to stacking group 1.

In the first instance we achieved this by setting this as the vector between the central
carbon and nitrogen atoms of each fluoroalanine as shown in figure 5.8. Following a
vector image approach analogous to that above we obtain the crystal structure
landscape shown in figure 5.9 and get an AMI score of 0.836 (excluding the
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FIGURE 5.7: Example 6D crystal fragment obtained for the fluoroalanine molecule
0-0 encoding orientation using the central carbon-nitrogen vector. The x, y and z co-
ordinates denote the positions of the centroids in 3D space while the vectors indi-
cate the carbon-nitrogen vector (the length of which is just the length of the central
carbon-nitrogen bond of the fluoroalaine). All distances should be understood to be

in Ångstroms.

FIGURE 5.8: Example fluoroalanine molecule with CN vector illustrated

compounds labelled ”other” for this calculation) when using the optimal set of vector
images which is in this case the 0D, the 1D and the 5D set - as long as the 0D features
are included the AMI is consistently higher than for the case when only the positions
of the molecules are used, regardless of the combination of vector images used.

We see that the improvement is almost entirely due to the fact that the head-to-head
and the head-to-tail classes are separated in our descriptor space. To illustrate why the
descriptor based on the 6D pointcloud is able to separate these two packing classes
while the descriptor based on the 3D pointcloud is not, consider figure 5.10. Here we
only consider the 0D persistent homology features (which are all born at ϵ = 0 so can
be considered as a set of real numbers (deaths) rather than a set of birth-death pairs)
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(A) Visual Packing Scheme

(B) Geometric Packing Scheme

FIGURE 5.9: Principal Components of the space of vector images (containing 0, 1 and
5 dimensional features) defined on the set of persistence diagrams of fluoroalanine
compounds. Here the persistent homology is calculated using a set of molecular cen-
troids and carbon-nitrogen vectors from a crystal fragment containing 50 molecules.
The structures are labelled according to the crystal packing observed either by eye or

by geometric argument.

and as such we may plot the number of homology features that occur at a given
filtration value as a histogram to examine how the persistent homology changes
across different packing classes more directly. In parts 5.10a and 5.10b the histograms
of all persistent homology features (across all compounds with the packing type) for
both head-to-head and head-to-tail packing classes are considered respectively for the
case of the 3D and the 6D pointclouds. We observe that for the 3D case the prominent
features for the head-to-head and head-to-tail packing classes occur at the same
filtration value and hence it is difficult to readily distinguish the two classes. For the
6D case the two peaks of the head-to-head and head-to-tail histograms are well
separated: this is owing to the fact that the distance (in 6D) between any two
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molecules in the crystal fragment is composed of the Euclidean distance between the
two centroids and the difference between the components of the orientation vectors.
More concretely the distance between two points p and q in 6D space with coordinates
(x, y, z, u, v, w) ∈ R6 is simply

d6D(p, q)2 =(qx − px)
2 + (qy − py)

2 + (qz − pz)
2 + (qu − pu)

2 + (qv − pv)
2 + (qw − pw)

2

=d3D(p, q)2 + dvector(p, q)2

In the head-to-head case the vectors of nearby molecules are pointing in the same
direction so this orientation contribution to the difference, dvector(p, q), is zero so the
distances between neighbouring molecules (and therefore the persistent homology
features) are the same as in the 3D case. In the head-to-tail case this contribution is
nonzero so that the distance between pairs of neighbouring molecules is increased so
that, when we use a 6D pointcloud, we observe a clear difference between these two
packing classes.

While encoding the orientation of each molecule using the carbon-nitrogen vector
clearly works for the fluoroalanine compounds, this approach does not generalise to
different crystal systems composed of different molecules for which there may not
even be an easily defined vector between two sets of atoms which readily define the
way in which the molecule is ”facing”. In order to address this we developed an
alternative approach based on the eigenvectors of the inertia tensor. We bench-marked
this technique against the fluoroalinine dataset (for which we know how a good
6D-based descriptor performs) in order to ensure that this methodology does indeed
capture the desired set of molecular orientations and that we thus obtain the same
separation of packing classes as above.

The inertia tensor is a 3x3 matrix which describes the moments of inertia about any
axis of a rigid body composed of N point masses mk. The elements of which are
defined as follows:

Iij =
N

∑
k=1

mk

(
∥rk∥2δij − a(k)i a(k)j

)
(5.1)

where rk = (a(k)1 , a(k)2 , a(k)3 ) is the vector from the point about which the tensor is
calculated to each point mass, mk. In our case the tensor is always calculated about the
molecular centre of mass so this vector is always the same as the position vector of
each point mass.

By calculating the eigenvectors of this matrix we can find the principal axes of the
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(A) Descriptor Based on 3D Pointcloud

(B) Descriptor Based on 6D Pointcloud

FIGURE 5.10: Histograms of 0D persistent homology features for fluoroalanine crys-
tals with head-to-head and head-to-tail packing types. In a) the calculations were
completed using 3D pointclouds using a set of molecular centroids from the crystal
structures while in b) the calculations were completed with 6D pointclouds which
additionally made use of the orientation of each molecule as encoded by the central

carbon-nitrogen vector of each fluoroalanine molecule.
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FIGURE 5.11: Example fluoroalanine molecule with inertia axes illustrated. The points
denote the position of the constituent atoms in 3D space. All distances should be
understood to be in Ångstroms. Note that the vectors have units kgm2 and do not
correspond to anything meaningful (cf. the carbon-nitrogen vector). In practise we

often scale this vector to unity or some larger value as we shall see later.

body’s rotation. Hence we can get vectors which describe the orientation for a
molecule; one of these vectors may describe the long axis of a rod-shaped molecule for
example. For the fluoroalanine molecule these orientation axes are illustrated in figure
5.11.

There are two issues with practically applying this method: the first is the fact that the
inertia tensor is invariant to inversion (replace rk with −rk in equation 5.1) so we
cannot define a consistent direction for each eigenvector; the second is choosing a
vector from the set of three eigenvectors that best represents the molecular orientation.

For the first problem our strategy is to ensure that the inertia eigenvector points in the
direction of the molecular mass gradient. That is, we can split the molecule by the
plane perpendicular to the eigenvector in question at the molecule’s centre of mass
and count the fraction of the molecule’s total mass on each side of the plane. If the
mass fraction on the side in the direction of the unaltered vector is less than 0.5 then
the vector is facing against the mass gradient. We then flip the vector, v, by setting
v := −v. If the mass on each side of the boundary is equal we follow the same
approach but take the sum of the mass moments on each side of the splitting plane,
we seldom need to take this approach in practice however.

The second issue is due to the fact that not all molecules in the crystal packing have an
identical geometry and hence that the eigenvectors and eigenvalues for the inertia
tensor will all be different. This means that if we simply take the eigenvector with the
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largest eigenvalue in all cases we may not be selecting the same vector in all cases. In
order to avoid this we take the convention in which we take the sum of the scalar
products of each and every atomic position with a given eigenvector. We then choose
the eigenvector with the smallest sum. The aim here is to select the vector that lies
closest to the molecular plane. All the molecules considered in this work are planar,
for nonplanar molecules this approach may not work. At any rate for datasets which
contain only one kind of molecule (such as the large crystal structure landscapes we
consider later) this problem is effectively eliminated as all molecules have the same (or
very similar in the case of Z′ > 1) geometry and we can choose any of the three
eigenvectors without adversely affecting the results.

Using 6D pointclouds constructed in this manner gives very similar PCA plots to
those obtained from the persistent homology calculations using the carbon-nitrogen
vector. The results are shown in figure 5.12.

Lastly we note that the positions and the orientations are essential for successful
separation of the packing classes: the set of molecular orientations on their own do not
have much predictive power at all. In figure 5.13 we plot the average x, y and z
components for the (normalised) CN vectors for each of the different (visually
defined) packing classes. There is no clear trend in the average orientation of the
fluoroalanine molecules between packing classes. Moreover figure 5.14 shows the
PCA plots obtained when (Vietoris-Rips) persistent homology is applied to the matrix
of scalar products between molecular orientation vectors: there is barely any
separation of classes in this case.
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(A) Visual Packing Scheme

(B) Geometric Packing Scheme

FIGURE 5.12: Principal Components of the space of vector images (containing 0, 1 and
5 dimensional features) defined on the set of persistence diagrams of fluoroalanine
compounds. Here the persistent homology is calculated using a set of molecular cen-
troids and a suitably chosen inertia eigenvector from a crystal fragment containing 50
molecules. The structures are labelled according to the crystal packing observed either

by eye or by geometric argument.
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(A) (B)

(C)

FIGURE 5.13: The average x, y and z components of the central carbon-nitrogen vector
of fluoroalanine molecules in different crystal packing motifs.
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FIGURE 5.14: Principal Components of the space of vector images (containing 0, 1 and
2 dimensional features) defined on the set of persistence diagrams of fluoroalanine
compounds. Here the persistent homology is calculated using the matrix of scalar
products of the central carbon-nitrogen vectors between all pairs of molecules in a
crystal fragment of 50 molecules via the Viertoris-Rips filtration . The structures are

labelled according to the crystal packing observed by visual argument.
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5.1.3 Density Based Approaches

In the previous examples the best descriptors of crystal packing class were obtained
by minimising the contribution of individual atomic positions, the centroid being
taken as a proxy of the position of the whole molecule in space and some molecular
vector being used for a proxy of its orientation. Clearly the positions of the atoms are
important - it is, after all, the intermolecular interactions centred at various atoms that
determine the crystal packing. The atomic positions and bond lengths help constitute
the shape of the molecules which is an important matter which we have not yet
considered. It would hence be helpful to build a descriptor in which the atomic
positions contribute to the persistent homology without breaking up important cycles
or swamping out some of the more relevant features.

One possible way of achieving this is by using the technique of sublevel set persistent
homology discussed in the previous sections. Rather than using the atomic positions
directly we instead perform the calculation using information pertaining to the
likelihood of atoms existing in a given cubic interval - the density. By tuning how
small these intervals are, that is, how fine the grid that samples the density function,
we may achieve a description of the crystal topology that uses all the atomic positions
but does not necessarily contain too many persistent homology features and preserves
the all-important intermolecular cycles.

This concept of ”density” also has clear parallels to electron density, taking the
definition of the crystal structure to be one determined by the set of molecular orbitals
rather than one determined by the ball and stick model, we can arrive at a picture of
the crystal structure that, by definition, is not dependent on atomic positions but
rather the probability of finding electrons in a given region of space - exactly the
notion of ”density” we seek. Moreover the extraction of electron density surfaces is
integral to the process of crystallography: the electron density being determined
directly as the Fourier transform of the diffraction pattern itself Smyth and Martin
(2000). The atomic positions are calculated later. Unfortunately for us this data is
seldom provided in conventional crystal structure libraries and we struggled to obtain
a large meaningful library of such data, particularly for the crystal structures in this
work.

Instead, in order to get a feel for a how well a ”density” based approach for describing
the topology of crystal structures performs, we relied on the technique of kernel
density estimation which we shall describe below.

The aim of kernel density estimation (KDE) is to obtain a function which estimates the
probability density function of a random variable Hastie et al. (2009); Rosenblatt
(1956); Wȩglarczyk, Stanisław (2018); Chen (2017). In our case we are trying to find a
probability density from a three dimensional random variable namely the Cartesian
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coordinates in our crystal structure. This is achieved by constructing a function from a
set of kernel functions, K(x), centred at each value of our known variables (i.e. the
atomic positions). Given a set of N p dimensional (in our case p = 3) random
variables {xi ∈ Rp} we can write the density as

ρ̂(x) =
1

Nh

N

∑
i=1

K(
x − xi

h
)

where h is the bandwidth which controls the ”resolution” of the kernel: a smaller
bandwidth will result in a ”smoother” function. 1 Note that the choice of kernel
function and bandwidth in particular Hastie et al. (2009); Chen (2015) has a significant
effect on the resulting density function as we shall see. There are a number of common
choices for the kernel function: the functions we consider are the tophat kernel; the
Epanechnikov kernel; the cosine kernel; the exponential kernel; the linear kernel and
the Gaussian kernel. We define the form of these 2 in table 5.1.

Kernel Name Functional Form

tophat 1 : x < h

Epanechnikov 1 − x2

h2

cosine cos (πx
2h )

exponential e−
x
h

linear 1 − x
h : x < h

Gaussian e−
x2

2h2

TABLE 5.1: Mathematical Forms of Kernels used for Kernel Density Estimation

Using the technique of kernel density estimation and the sublevel set persistent
homology in conjunction with the cubical complex as discussed in the methods section
we obtained a set of vector images corresponding to the persistence diagrams of each
the fluoroalanine crystal structures. The three main variables that need to be tuned in
this case are: the kernel function; the kernel bandwidth and the number of gridpoints
used to define the KDE function when constructing the cubical complex. We started
by finding the optimal bandwidth for the Gaussian kernel, which is by far the most

1Strictly speaking in the case of multivariate kernel density estimation (that is for p > 1) the kernel need
not be spherical and we can describe the bandwidth as a matrix, H, rather than a single variable Hwang

et al. (1994). The kernel density is then given as ρ̂(x) = |H|−
1
2

N ∑N
i=1 K(H− 1

2 (x − xi)). This reduces to the
result above in the case that H = hI. We did not take this approach as this technique is not implemented
in the software we use and using a symmetrical kernel makes more intuitive sense in our case, considering
atoms to be approximately spherical.

2There is a proportionality constant also included in each of these but these are not provided in the
scikit-learn software which we use for the calculation. The precise form of these kernels can vary between
implementations.
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(A)

(B)

FIGURE 5.15: Plot of the Adjusted Mutual Information of a K-means clustering on a
set of vector images from persistence diagrams of fluoroalanine crystal structures as
compared to packing classes defined by visual inspection against the KDE bandwidth
used to construct the density function upon which the persistent homology is defined.
We defined the density function using a Gaussian kernel on a grid of 100 points using
the atoms of a crystal fragment of 50 molecules. Part a) shows a larger range of band-

width while part b) shows the peak in more detail.

common choice of kernel and a nice approximation to an atomistic potential and we
initially used 100 grid points. The AMI obtained for each KDE function with a given
bandwidth is shown in figure 5.15. It is important to note that, in contrast to the point
based homology, the 2 dimensional persistent homology features, the voids, are most
important here. Also note how the optimal bandwidth is not far off the van der Waals
radius of Carbon, 1.7 Å Pauling (1941), indicating that a density based approximation
informed by the properties of the constituent atoms tends to have more useful
topological features. This adds credence to the hypothesis that the electron density
could carry useful topological properties. At this point the AMI is still lower than that
obtained using the point-based approach (in both three and six dimensions).
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While we did not optimise bandwidth with every kernel applying the optimal
bandwidth of 2.0 to any other kernel yields poor results as shown in figure 5.16. The
AMI for any non-Gaussian kernel is consistently lower than that obtained for a
Gaussian kernel with a very sub-optimal bandwidth. We did not explore this issue
further.

FIGURE 5.16: Plot of the Adjusted Mutural Information of a K-means clustering on a
set of vector images from persistence diagrams of fluoroalanine crystal structures as
compared to packing classes defined by visual inspection against the KDE kernel used
to construct the density function upon which the persistent homology is defined. We
defined the density function (bandwidth = 2.0) on a grid of 100 points using the atoms

of a crystal fragment of 50 molecules.

When increasing the number of gridpoints we reach a similar plateau in the AMI as
found when increasing the number of molecules in the point-based approach (figure
5.6) as shown in figure 5.17. Since a fairly coarse description (80 gridpoints) gives an
optimal separation of packing classes it is questionable how much the finer atomic
details really effect the underlying crystal topology. Moreover we note that even our
best models using KDEs do not outperform the 3D centroid-based persistent
homology model. The PCA representations of the two best sets of vector images (2D
features only and 1+2D features only) for our best KDE model (100 gridpoints,
Gaussian kernel, bandwidth = 2.0) are shown in figure 5.18. Note that while the
packing classes are not as clearly well separated in space the head-to-head and
head-to-tail classes are quite well separated in spite of not including any notion of
molecular orientation in our model so the use of atomic positions is at least conferring
some advantages. The other big disadvantage of our model is that the KDE functions
themselves are quite laborious to compute (the KDE defined on 120 points took about
12 hours to compute, cf. a point-set persistent homology calculation that lasts the
order of minutes). Therefore trying to expand this idea into a higher number of
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dimensions using atomic/molecular properties as we did above is almost certainly
intractable. It would be desirable to compare these results with those obtained on real
electron densities for the 119 crystal structures, either using experimental data or those
calculated computationally, in further work.

FIGURE 5.17: Plot of the Adjusted Mutural Information of a K-means clustering on
a set of vector images from persistence diagrams of fluoroalanine crystal structures
as compared to packing classes defined by visual inspection against the number of
gridpoints used to apply persistent homology to a kernel density of a crystal fragment.

We used a Gaussian kernel of bandwidth 2.0.
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(A) 2D homology features only

(B) 1 and 2D homology features only

FIGURE 5.18: Plot of the principal components of a set of vector images constructed
from the persistent homology of a set of fluoroalanine crystal structures using a KDE/-
sublevel set based approach. The KDE estimator used a Gaussian kernel with a band-
width of 2.0. The sublevel set persistent homology was calculated on a grid of 100
points extracted from the KDE function. The compounds are labelled according to
the packing scheme assigned based on visual inspection of the crystal structures. In
part a) only the vector images corresponding to to 2D persistent homology features
are used. In part b) both the vector images from 1D features and 2D features are used.

5.1.4 The Crystal Structure Landscapes of Fluoroalanines

We have already established that the set of fluoroalanine compounds is very amenable
to the topological treatment showcased in the previous sections - mostly owing to the
generic structure of the compounds and the well defined set of packing classes. We
also augmented this dataset with some artificially generated crystal structures (see the
section on crystal structure prediction). This was done for two reasons. Firstly it was
interesting to view these labelled compounds within the context of a much larger set
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of compounds and establish whether the crystal structure predictions have similar
packing classes (i.e. do not possess any sets of topological features identified as
significantly different to those found in the existing structures). The second reason is
to be able to use our existing knowledge of the topological features of this class of
compounds (i.e. the set of vector images) to augment the crystal structure landscape
of the generated structures to extenuate the features of this landscape which
correspond to known packing classes. This can be done using both supervised and
unsupervised methods as we shall see. In this manner a crystal structure landscape
that corresponds to useful structural information may be obtained.

We used the crystal structure prediction software of Day et al. Case et al. (2016) using
the methods outlined in the previous chapter. For each crystal structure prediction
class we assumed one molecule per asymmetric unit and constrained cells to the 10
most common spacegroups Groom et al. (2016) - we were able to get around 1000
compounds in each instance. We were able to complete this calculation for 92 of the
118 experimental fluoroalanine compounds and as such 92 sets of crystal structure
landscapes were generated. Owing to the large number of plots that were generated
we will focus on four of the experimental compounds, the rest of the plots shall be
provided in supplementary information in due course. The compounds are
designated (according to the naming convention described earlier) ”0 0”, ”0 234”,
”234 23” and ”2356 0”. The compounds have respectively the packing types (visual
scheme) ”other”, ”staggered overlap”, ”head-to-head” and ”head-to-tail”. In all cases
the persistent homology was found using the 6D pointcloud approach with 50
molecules using a suitably chosen eigenvector of the inertia tensor. We use the
Vietoris-Rips filtration so that we may only find the 0D features (the alpha filtration
does not have this flexibility) in order to make this computationally tractable
considering the large number of compounds that need to be processed.

In figure 5.19 we show the the first set of plots. Here we use PCA to find a subspace of
the set of vector images as before. The PCA model was fit to the experimental data
and the vector images obtained from the artificial structures were transformed
accordingly. In this manner we can see all of the predicted structures for each
compound in the context of figure 5.12a. The energies of the predicted structures are
also shown to elucidate any relationship between the predicted energy of the crystal
structures and its position on the crystal structure landscape in relation to those
compounds with known packing types.

It is clear that both the predicted and the experimental compounds lie (almost) exactly
on the same manifold in the reduced two dimensional space. This indicates that the
features that explain most of the variance of the experimental structures are also
present in the persistence diagrams of the computationally generated structures and
that none of these structures are really different topologically when considering these
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(A)

(B)

(C)

(D)

FIGURE 5.19: The crystal structure landscapes of four fluoroalanines obtained using
the persistent homology of a set of experimental fluoroalanine structures with known
packing class. In this case this was accomplished by transforming the vector images
(obtained from the persistence diagrams) of the predicted structures according to the
principal components of the vector images of the experimental structures. The en-
ergies of the predicted compounds are also labelled. The experimental compound
which corresponds to the fluoroalanine which the landscape describes is indicated by

the black triangle.
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features at least. The plots seem to make sense intuitively as we might expect the CSP
procedure to produce a large set of crystal structures which cover all the packing
classes which we know about but also contains those structures that have sets of
features that might constitute ”in between”, that is, the structures which could be
created by a small perturbation of one of the existing packing classes. The plots have a
relatively similar overall structure across the different crystal structure landscapes, the
main difference (unsurprisingly) being that the ranges of energy are quite different.
Examination of the four plots might lead one to consider the head-to-head and
head-to-tail regions being the lowest in energy; this is in contrast to the position of the
actual observed structure for each of these compounds (indicated by the black
triangle). This is verified further in figure 5.20 where we show the same plots as figure
5.19 except with only the 100 lowest energy structures shown. It is possible that a
better prediction of the energy of each structure (i.e. a higher level of theory) might
yield better results. It is also possible that carrying out CSP calculations with Z′ > 1 or
with more space groups might yield more crystal structures which could have a lower
energy and be closer to the observed experimental structure. Finally we have assumed
that the fluoroalaine is completely rigid but there is actually considerable variation in
the angle between the two rings of the fluoroalanine across the experimental data.
This could indicate that the barrier to rotation across the central carbon nitrogen bond
is small and can be overcome at room temperature in spite of the molecule being
conjugated throughout. Allowing some flexibility within the constituent molecules
within the CSP process might yield further structures which we have not yet explored
albeit at a significant computational cost Day et al. (2007)

As suggested earlier crystal structure landscapes can be constructed that further
extenuate the topological features that influence crystal packing type by using
supervised dimensionality reduction techniques 3. Our starting point was to use
Linear Discriminant Analysis (LDA) as this is perhaps the most basic of these
techniques and it is computationally cheap and relatively easy to interpret. As
discussed previously this method performs poorly if the dimensionality of the data is
much larger than the number of data (the number of data that the model if fitted on).
This is the case for our data, there are 119 labelled fluoroalanine vector images each
with a dimension of 400, so we need to adopt alternative approaches in order for this
method to work. One easy option is to simply reduce the resolution of the vector
images such that each vector image is a flattened 10x10 array rather than a 20x20
array. Using a coarser representation of the persistence diagram of course has its
drawbacks with the potential loss of useful topological information when distinct
features are unnecessarily combined. We see in figure 5.21 (we use compound ”0 0” as
an example) that the LDA model provides meaningful results when this step is taken.

3When we carry out supervised dimensionality reduction techniques we take the data with the label
”other” to be unlabelled data and as such this data is not used to fit any of these models and is transformed
in the same manner as those structures found using CSP.
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(A)

(B)

(C)

(D)

FIGURE 5.20: The crystal structure landscapes of four fluoroalanines obtained using
the persistent homology of a set of experimental fluoroalanine structures with known
packing class. The large points correspond to known experimental fluoroalanine struc-
tures while the small points indicate those crystal structure generated using crystal
structure prediction algorithms. In this case this was accomplished by transforming
the vector images (obtained from the persistence diagrams) of the predicted structures
according to the principal components of the vector images of the experimental struc-
tures. The energies of the predicted compounds are also labelled. The experimental
compound which corresponds to the fluoroalanine which the landscape describes is
indicated by the black triangle. In these plots we only display the 100 predicted crystal

structures with the lowest energy of the overall set.
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(A) 20x20 vector images

(B) 10x10 vector images

FIGURE 5.21: The crystal structure landscapes for the fluoroalanine designated ”0 0”
obtained by transforming the vector images using a Linear Discriminant Model fit on a
set of experimental fluoroalanine structures. The large points correspond to known ex-
perimental fluoroalanine structures while the small points indicate those crystal struc-
ture generated using crystal structure prediction algorithms. In part a) we use our
usual vector image resolution of 20x20 while in part b) we reduce the resolution to
10x10 such that the LDA model is fit on a dataset for which the dimensionality is less

than the number of datapoints.

Figure 5.21b shows meaningful information but the experimental fluoroalanines are
not much better separated than in the PCA case. Moreover the manifold containing
the generated structures does not match up with the experimental structures as well in
this case although this could simply be due to the fact that the differences between the
topology of the experimental and computational data is clearer here and thus we can
establish which packing classes are not being adopted.

In order to establish that the resolution loss of the vector images is not too adversely
affecting the results for the LDA model, we also build LDA models fit on the
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experimental data using two further methods. In the first of these we simply reduce
the dimension (to five dimensions) of the 20x20 vector images using PCA before the
LDA model is fit. The idea here is to preserve any finer topological features which
explain the variance in the set of experimental vector images but which might have
been missed with the vector images with reduced resolution. For further comparison
in the second method we do not use vector images at all and instead fit the models
directly with the histograms of the 0D homology features with 30 bins. While we have
generally found these models inferior to those based on vector images (and the 1D
histograms cannot be applied to homology features with dimension greater than zero
which limits the range of applicability to other systems where higher order features
are more important), this makes an interesting point of contrast as the dimensionality
of this descriptor is inherently lower than that of the vector image.

The two plots are shown respectively in figures 5.22a and 5.22b. In both cases the
separation of the experimental fluoroalnines is not much different from the
unsupervised case with the head-to-head class being further distinguished,
particularly in the plot using the histogram descriptor. How the predicted crystal
structures behave according to the respective transformations is the biggest difference
however. Note that the manifold on which the generated structures lie matches the
experimental structures more closely for the high resolution vector images which were
reduced with PCA before fitting than for the lower resolution vector images. This
could be due to the loss of important homology features when the resolution is
lowered or it could be due to the fact that the 100 dimensional space used to fit the
LDA model for the low resolution vector images is still quite large relative to the
number of available data points so the model may simply be more successful for the
case when the dimensionality of the dataset is much lower. The crystal structure
landscape obtained using histograms seems to perform best especially when
comparing the crystal structure landscapes using supervised LDA model (figure
5.22b) vs unsupervised PCA model (figure 5.23). It appears that applying supervised
dimensionality reduction is providing a tangible advantage when histogram based
descriptors are used, while the advantage of LDA in the case of vector images is less
clear. The inconsistency of the results that are obtained using LDA, with the possible
need to radically change our descriptor in order to get a useful crystal structure
landscape means that this approach to supervised dimensionality reduction is perhaps
not appropriate for our use case - even in figure 5.22b the crystal packing classes are
not that well separated compared to the unsupervised approach and it is difficult to
assign any of the unknown crystal structures into one category or another based on
these results. We hence turn to nonlinear dimensionality reduction techniques in order
to tease out further structure in our data and establish a supervised dimensionality
reduction methodology that can be more easily applied to our data.

The nonlinear dimensionality reduction technique used by us is Uniform Manifold
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(A) Reduced Vector Image Method

(B) Histogram Method

FIGURE 5.22: The crystal structure landscapes for the fluoroalanine designated ”0 0”
obtained by transforming the persistent homology descriptor using a Linear Discrim-
inant Model fit on a set of experimental fluoroalanine structures. The large points
correspond to known experimental fluoroalanine structures while the small points in-
dicate those crystal structure generated using crystal structure prediction algorithms.
In part a) The homology descriptor is a 20x20 vector image reduced in dimension with
PCA to get a 5D descriptor. In part b) the descriptor is a histogram of 0D peristent

homology features with 30 bins.
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FIGURE 5.23: The crystal structure landscape for the fluoroalanine designated ”0 0”
obtained by transforming the histogram (30 bins) of connected components using a
Principal Component Analysis fit on a set of experimental fluoroalanine structures.
The large points correspond to known experimental fluoroalanine structures while
the small points indicate those crystal structure generated using crystal structure pre-

diction algorithms.

Approximation (UMAP). This algorithm has both supervised and unsupervised
implementations. We first examine the crystal structure landscapes obtained when the
unsupervised version of the algorithm is used. These are shown in figure 5.24 for the
same exemplar structures that were used in our previous discussion. In this case the
different class are more obviously separated in reduced space with the separation of
the head-to-head class being the most stark. The presence of the islands of generated
structures around each of the packing classes gives us a much clearer interpretation of
which of the generated compounds are considered to be topologically similar to the
fluorolanine compounds with a known packing type.

The partition of the classes are stronger still if the supervised dimensionality reduction
algorithm is used. As explained in the methods section this just amounts to
conditioning the probability weighted graph describing the data based on the known
packing classes. These plots are shown in figure 5.25. What is particularly satisfying
here is the fact that the compounds that lie between the two clusters occupy a single
straight line implying a continuum where compounds belonging to one packing class
may be slowly ”deformed” into those belonging to a second packing class. We also
note that the stark separation of the crystal packing classes is maintained even if only
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(A)

(B)

(C)

(D)

FIGURE 5.24: The crystal structure landscapes of four fluoroalanines obtained using
the persistent homology of a set of experimental fluoroalanine structures with known
packing class. In this case this was accomplished by transforming the vector images
(obtained from the persistence diagrams) of the predicted structures according to the
unsupervised UMAP algorithm. The energies of the predicted compounds are also
labelled. The experimental compound which corresponds to the fluoroalanine which
the landscape describes is indicated by the black triangle. The axes of the plots have

no physical interpretation.
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a relatively small portion of the labelled fluoroalanine structures are used to fit the
UMAP model as shown in figure 5.26. Note that even in cases where 40% of the
labelled data is hidden from the model, most of the known crystal structures not used
to fit the model are assigned to the sensible regions of the crystal structure landscape
which implies that there is at least some physicality in the landscapes produced with
the supervised UMAP algorithm.

Owing to the relative density of the clusters it can be quite hard to visualise the
relationship between the predicted energy of the crystal structures and the expected
packing class. As the lowest energy structures are of the most interest we display the
same plots as figure 5.25 with only the 100 compounds with the lowest energy
indicated (we removed the energy scale to make the CSP data contrast with the
experimental data more). This is shown in figure 5.27.

Inspection of these plots appears to suggest a tendency for the crystal structures of
lowest energy to be located at any one of the clusters - i.e. have a similar topology to a
packing type identified experimentally. There seem to be comparatively fewer
structures of low energy that exist in the space between the clusters which do not have
any apparent topological similarity with an existing packing class. Can we verify this
visual trend quantitatively? For each crystal structure landscape the CSP data is
transformed in exactly the same way, that is, according to the model trained on the
experimental fluoroanaline crystal structures. This means that the clusters in figure
5.25 and 5.27 will be located in the same position in the reduced space for each and
every crystal landscape. We can use the DBSCAN clustering algorithm 4 to partition
the data into either data belonging to a particular cluster or no cluster at all as shown
in figure 5.28. The centroids of each cluster and a characteristic radius were found for
each of these clusters such that we could classify the predicted structures without
having to fit a suitably parameterised clustering model in each case: if a crystal
structure lay within some characteristic radius (defined empirically for each cluster) of
that cluster’s centroid the structure would be assigned the label of that cluster. In this
way we can directly compare the energy of a predicted crystal structure and its
predicted packing class (or lack thereof) based on the UMAP landscape. In figure 5.29
the energies of the predicted crystal structures for each of our four examples are
plotted as a histogram partitioned by the predicted packing class. Unfortunately no
clear trend in the unclassified compounds towards higher energy is observed with
most of these compounds being of middling energy rather than high energy. This
trend is repeated across the histograms not shown here. For the compounds ”234 23”
and ”2356 0” it appears as though the lowest energy regions of the histogram are
dominated by compounds with the same packing class as the experimental
compound. To investigate this further we also split the data into ten tranches of

4This was parameterised by inspecting the plot and ensuring that the clusters the algorithm came up
with matched those expected. The parameters were eps = 0.4 and min samples = 7. We only labelled the
clusters which correspond to a packing class and manually labelled the other clusters as unclassified.
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(A)

(B)

(C)

(D)

FIGURE 5.25: The crystal structure landscapes of four fluoroalanines obtained using
the persistent homology of a set of experimental fluoroalanine structures with known
packing class. In this case this was accomplished by transforming the vector images
(obtained from the persistence diagrams) of the predicted structures according to the
supervised UMAP algorithm. The energies of the predicted compounds are also la-
belled. The experimental compound which corresponds to the fluoroalanine which
the landscape describes is indicated by the black triangle. The axes of the plots have

no physical interpretation.
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FIGURE 5.26: The crystal structure landscapes for the fluoroalanine designated ”0 0”
obtained by transforming a set of vector images using the supervised UMAP algo-
rithm on a set of experimental fluoroalanine structures with a varying portion of the
known experimental data being used to fit the model (the rest being transformed in
the manner of the unknown data). The large points correspond to known experi-
mental fluoroalanine structures while the small points indicate those crystal structure
generated using crystal structure prediction algorithms. The axes of the plots have no

physical interpretation.
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(A) (B)

(C) (D)

FIGURE 5.27: The crystal structure landscapes of four fluoroalanines obtained using
the persistent homology of a set of experimental fluoroalanine structures with known
packing class. In this case this was accomplished by transforming the vector images
(obtained from the persistence diagrams) of the predicted structures according to the
supervised UMAP algorithm. The energies of the predicted compounds are also la-
belled. The experimental compound which corresponds to the fluoroalanine which the
landscape describes is indicated by the black triangle. Of the generated crystal struc-
tures only the structures with the 100 lowest values of predicted energy are shown.

The axes of the plots have no physical interpretation.

increasing energy by calculating percentiles. In figure 5.30 we plot the ratio of
compounds of a given packing class in each tranche and compare this to the ratio of
packing types for all the data. In this way we can analyse whether structures of a
given packing type are over- or underrepresented at a given energy range. We now
see that only the compound ”234 23” over-represents the experimentally observed
packing class at lower energies. We also don’t tend to see any over-representation of
the ”unclassified” crystal types at higher energies as might have been expected in
figure 5.27. We do not, in general, observe any of these trends in the other 88 crystal
structure landscapes either.

It is possible that if these calculations were repeated with a more accurate CSP
calculation (that explored more space groups and asymmetric cell types) and the final
crystal energy were found at an higher level of theory the trends in packing class
might be more reflective of experimental data. It could also be that the crystal
structure landscapes generated with the UMAP algorithm do not appropriately
represent the topology of the packing types and that some of the clusters are artefacts
or at the very least contain more data points than correspond to the desired packing
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FIGURE 5.28: Classification of the crystal structure landscape (supervised UMAP
model) of the fluoroalanine labelled ”0 0” by DBSCAN (eps = 0.4 and
min samples = 7). The axes of the UMAP landscape do not have a physical interpre-

tation.

type. While the semi-supervised learning example of figure 5.26 certainly suggests
that packing classes are being assigned to the right places it is important to emphasise
the non-linearity of the UMAP plot, that is, the sense of ”closeness” varies
significantly across the landscape, the implication being that structures which are
quite different could be very close to each other in some parts of the landscape while
some structures which are quite similar could be relatively far apart. If some features
which do not correspond to a given packing class are ”pulled” into one of the clusters
or, indeed, if some features which should be unclassified are not assigned as such
because of this phenomenon, this could radically affect the conclusions one makes
about the relationship between energy and packing class which we described above.
We demonstrate this non-linearity in figure 5.31 where we plot the clusters obtained
using DBSCAN/UMAP for compound ”0 0” on the PCA plot. We contrast this with
the classification obtained from attempting to predict the packing class from the vector
images using a support vector classifier 5. The labels obtained using the SVC are
plotted on both the crystal landscape obtained using PCA and the crystal landscape
found using supervised UMAP. We see that when the UMAP crystal structure
landscape is calculated many very disparate sections of the manifold are in effect
cleaved apart. There is scope for error here because compounds could be pulled from
the wrong regions and clusters that look very far apart in the UMAP plot could in fact
be very similar and have strongly overlapping topological features. This also makes
the inherent non-linearity of the UMAP method abundantly clear which can make the

5Vector images were converted to standard scalars before classification. We used a linear kernel and C
was set to 100.
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(A) (B)

(C) (D)

FIGURE 5.29: Histogram of the predicted energies of a set of crystal structure pre-
dictions for fluoroalanine crystals stratified by predicted packing type according to a
supervised UMAP/DBSCAN method using a small set of classified experimental flu-

oroalanine crystals to fit the model.

figure challenging to interpret. To conclude all of the different sets of crystal structure
landscapes (that is, those based on PCA, LDA and UMAP) have potential advantages
and disadvantages when attempting to understand the data in the context of a smaller
high fidelity labelled dataset. It might be most wise to use these techniques in
conjunction with one another rather than relying on a single one of these pictures and
being subject to the inherent pitfalls of that viewpoint.

We finish this section by considering the problem of property prediction for these
compounds. Topological data analysis itself only provides information about the
connectivity of the data points, so at the very most we have encoded information
pertaining to molecular orientations and various factors relating to how the molecules
may pack together. There is nothing here related to the internal structure of these
compounds, indeed in none of these models do we even encode the type of atoms
involved let alone consider ways of thinking about the interaction of different atomic
or molecular orbitals or multipoles or intermolecular bonding patterns. Therefore an
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(A)

(B)

(C)

(D)

FIGURE 5.30: The distribution of predicted packing type according to a supervised
UMAP/DBSCAN method using a small set of classified experimental fluoroalanine
crystals to fit the model for a set of crystal structure predictions for fluoroalanine crys-
tals stratified by predicted energy. The structures are split into tranches based on per-
centiles. Here Px/Py refers to the set of compounds whose energies are less than
the bottom y percentile and greater than the bottom x percentile so that for example
P0/P10 contains the bottom 10% of energies and P10/P20 contains the next 10% etc.
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(A) PCA vs. DBSCAN (B) PCA vs. SVC

(C) UMAP vs SVC

FIGURE 5.31: A set of crystal structure landscapes for the predicted structure of the
fluoroalanine ”0 0”. In the parts a) and b) the crystal structure landscape was found
by transforming the vector images according to the principal components of the vec-
tor images of a set of experimental fluoroalanine compounds with known packing
type. In part c) the crystal structure landscape was obtained using the supervised
UMAP model, the model being fit on the same set of known fluoroalanines as above.
There are two labelling schemes the first was obtained by applying DBSCAN (eps = 4,
min samples = 7) on the UMAP based landscape. This labelling scheme is used in
part a). In parts b) and c) the labelling scheme comes from fitting a support vector
classifier (linear kernel, C = 100) to the (scaled) vector images of the known fluoroala-
nines and predicting the labels of the unknown fluoroalanines accordingly. Again the

axes of the UMAP plots have no physical interpretation.

accurate prediction of any properties of the crystal structure without further
information seems a little far fetched. There is however always some link between the
geometry of the sets of atoms and molecules and the chemical properties of the
aggregate so it is worth briefly investigating how well the persistent homology can act
as proxy for these features. It might be possible to combine this with other descriptors
to obtain more accurate results, for example.

Since we already have a large set of predicted crystal structures with a predicted
energy and a persistent homology descriptor which we know has strong predictive
power when it comes to crystal packing type, carrying out energy prediction on these
data using our persistent homology based descriptor seems an interesting problem.

We start by noting that there is at least some evidence of trends in the energy across the
crystal structure landscapes we have already considered although this might not be
clear from the previous figures. Figure 5.32 shows a set of crystal structure landscapes
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for which only the 100 lowest energy and 100 highest energy structures are plotted.
These three landscapes all show regions of the landscape for which there are high
energy structures but no low energy structures or vice versa. There is not a clear overall
trend insomuch that all regions of crystal landscapes have crystal structures with a
range of energies and that low and high energy structures may be found in any part of
the crystal structure landscape.

With the above in mind a good starting point might be to consider whether we can
predict which structures have either high or low energy, that is, to frame the problem
as a classification problem. The technique we chose to use for this is support vector
classification and we applied this to both vector images and histograms of connected
components. These were either scaled (converted to a standard scalar before fitting) or
unscaled and either in their full (i.e. high dimensional) form or with the dimension
reduced with PCA, LDA and supervised and unsupervised UMAP. In all cases the
models were fit using 75% of the vector images (or histograms) as training data - the
rest being withheld for validation. The optimal hyperparameters for each model were
found using 5-fold cross validation. The energy was split into either 2 classes or 5
classes using the energy percentile function (i.e. in the 2 class case, the classes were the
top 50% and bottom 50% of energies).

The best (highest accuracy) results were found using vector images and the only
dimensionality reduction technique that yielded decent results was PCA. In figure
5.33 we show the confusion matrices obtained using 2 energy classes and 3 different
methodologies. In the first example the unaltered vector image was used with a radial
kernel with C = 10000. In the second example this vector image was converted to a
standard scalar before the model was fit with a radial kernel with C = 100. In the third
case the model was reduced to 50 dimensions 6 with PCA before the model was fit. In
this case a radial kernel was also used and C was set to 1000. The three confusion
matrices are very similar so it is difficult to say definitively which approach to
choosing appropriate independent variables for the classification model is best. The
models also perform very poorly with a result only slightly better than a random
guess with the accuracy of these models being, respectively, 0.666, 0.660 and 0.668.

Unsurprisingly the models are not much better when 5 classes are used. We fit with
the same input variables as before. The confusion matrices are shown in figure 5.34. A
radial kernel was found to be the best in all cases. The optimal values of C also turn
out to be the same, that is respectively C = 10000, C = 100 and C = 1000. The
accuracies of the models are (respectively) 0.34, 0.34 and 0.35. Once again the model is
only sightly better than a random guess.

6It turns out the accuracy of the final model is pretty much invariant the actual number of dimensions
chosen provided that it is greater than 5.
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(A) LDA on Histogram Descriptor with 30 Bins

(B) PCA on Scaled Vector Images

(C) Unsupervised UMAP on Unscaled Vector Images

FIGURE 5.32: A set of crystal structure landscapes of the fluoroalanine labelled ”0 0”
with only the 100 lowest and 100 highest energy structures shown. Again the axes of

the UMAP plots have no physical interpretation.
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(A) Unscaled Vector Images (B) Scaled Vector Images

(C) Reduced Dimension Vector Images

FIGURE 5.33: Confusion matrices for a set support vector classifiers for the predic-
tion of the energy of predicted structures for the fluoroalanine ”0 0” into two classes
(split by 50th percentile). The confusion matrices pertain to the predictions on the 25%
holdout set. Part a) corresponds to a model fit on the unaltered vector image. Part b)
corresponds to a model fit on the vector images converted to standard scalars. Part c)
corresponds to the model fit on the first 50 principal components of the vector images.
In all cases we found that the radial kernel was the best choice of kernel. The regular-

isation parameter C was set respectively to 10000, 100 and 1000

We also attempted to fit an SVC model on a 3 class case with the top and bottom 20 %
of energies in two classes and the middle 40 % in the remaining class 7 with the view
of establishing if we can detect low and high energy examples. This model performed
badly in all cases. The confusion matrix of the model (radial kernel, C = 1000) fit on
the unaltered vector image in shown in figure 5.35.

For completeness we also attempted to fit a regression model for the energy. For each
of these models we used the unscaled vector images reduced in dimension with PCA
to 50 dimensions. The data was split into training and test sets with a 75:25 ratio as
before. Any hyperparamters were found using successive 5-fold cross validations

7We used the technique of stratified sampling to ensure that the training set (and the sets in cross
validation) had sufficient examples of each class during training.
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(A) Unscaled Vector Images (B) Scaled Vector Images

(C) Reduced Dimension Vector Images

FIGURE 5.34: Confusion matrices for a set support vector classifiers for the predic-
tion of the energy of predicted structures for the fluoroalanine ”0 0” into five classes
(split by 20th percentile). The confusion matrices pertain to the predictions on the 25%
holdout set. Part a) corresponds to a model fit on the unaltered vector image. Part b)
corresponds to a model fit on the vector images converted to standard scalars. Part c)
corresponds to the model fit on the first 50 principal components of the vector images.
In all cases we found that the radial kernel was the best choice of kernel. The regular-

isation parameter C was set respectively to 10000, 100 and 1000

with different parameters sets. In the case of the random forest regressor we sampled
a random subset of these parameters as trying every combination was not
computationally feasible. Figure 5.36 shows plots of predicted vs actual energy for
compounds in the test set for three models: a linear model, a support vector regression
model and a random forest model. The optimal parameters for the SVR model were
ϵ = 0.1, C = 10000, kernel = radial. The parameters chosen for the random forest
model were max depth’= 20, max features = ”auto”, max leaf nodes = ”None”,
max samples = None, min samples leaf = 2, min samples split = 6 and n estimators =
200. The R2 values found for the linear model, support vector regression and random
forest regression were respectively 0.16, 0.31 and 0.29. It can seen that while the fits are
very poor in all cases there is at least some correlation between the predicted and true
energies suggesting that these models have at least some predictive power and hence
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FIGURE 5.35: Confusion matrix of a support classifier model fit on the vector images
corresponding to the persistent homology of some predicted crystal structures of the
fluoroalanine ”0 0”. We attempted to predict if the energy of the crystal was in the top
or bottom twentieth percentile or otherwise. A radial kernel was used and C was set

to 1000.

that there is some connection between the persistent homology of the underlying
crystal structures and their energies. The topological information we extracted could
perhaps be useful when refining existing models which already take in to account the
underlying chemistry (by consideration of potential intermolecular interactions, for
example) by providing extra information pertaining to the topological connectivity of
the molecules in 3D space. At any rate the discussion above highlights the utility of
this descriptor in creating and interpreting useful crystal structure landscapes for sets
of related molecules but perhaps its lack thereof when directly predicting any physical
or chemical properties.
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(A) Linear Regression

(B) Support Vector Regression

(C) Random Forest Regression

FIGURE 5.36: The prediction of the energy of some predicted structures of the fluo-
roalanine labelled ”0 0” using a vector image descriptor derived from the persistent
homology of the crystal structures. The vector image dimension was reduced to 50
using PCA before each model was fit. The figures show the plot of predicted vs ac-
tual energy for the test set (25% of the data). The first model is a linear model. The
second is a support vector machine (ϵ = 0.1, C = 10000, kernel = radial). The third
model is a random forest model. The parameters chosen for the random forest model
were max depth’= 20, max features = ”auto”, max leaf nodes = ”None”, max samples

= None, min samples leaf = 2, min samples split = 6 and n estimators = 200.
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5.2 Nicotinamide:Benzioic Acid (GAZCES) Co-Crystals

We start by considering the persistent homology of the GAZCES co-crystal using
molecular centroids only. We found a similar size invariance as in the fluoroalanine
case: 50 centroids were sufficient for our calculations. We used the Vietrois-Rips
filtration for the calculation of persistent homology and as independent variables used
only the 0D persistent homology features which like in the fluoroalanine case turn out
to be by far the most important for understanding crystal packing. The reduced space
obtained using PCA is shown in figure 5.37. Unlike the fluoroalanines a descriptor
based on the homology of the set of molecular centroids does not separate the classes
definitively at all (at least not in the space defined by the principal components) with
the possible exception of the dense ”cluster” of compounds on the right of the plot of
figure 5.37, which outside of any additional context would simply be considered an
artefact of the data.

Owing to the work completed earlier on the generalised method for finding molecular
orientations it is trivial to augment the set of molecular centroids with a set of suitably
chosen inertia eigenvectors to obtain a 6D space for which to find the persistent
homology. The PCA plot obtained in this manner is found in figure 5.38. This is
almost exactly the same as the plot obtained from 3D persistent homology in figure
5.37 apart from the notable difference that the ”cluster” of points (belonging to basin

FIGURE 5.37: Plot of the first two principal components of the space spanned by a vec-
tor image descriptor based on the 0D persistent homology of the (3D) set of molecular
centroids belonging to GAZCES co-crystal structures. The data is partitioned accord-
ing to whether the crystal structures were found to lie in two deep basins (correspond-
ing to experimental polymorphs) of the crystal structure landscape. The basins are

simply labelled ”0” and ”1”.
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FIGURE 5.38: Plot of the first two principal components of the space spanned by a vec-
tor image descriptor based on the 0D persistent homology of the (6D) set of molecular
centroids and suitably chosen inertia vectors belonging to GAZCES co-crystal struc-
tures. The data is partitioned according to whether the crystal structures were found
to lie in two deep basins (corresponding to experimental polymorphs) of the crystal

structure landscape. The basins are simply labelled ”0” and ”1”.

1) is now much more prominent. This may give us tenuous insight that the
connectivity information encoded in the orientation vectors are important for
describing the packing of these crystal systems. The effect is even more stark when we
examine the histograms of the set of connected components (across all persistence
diagrams belonging to given basin) as shown in figure 5.39. We see that for the 3D
case the histograms can almost be superimposed while in the 6D case the histogram
corresponding to the homology features of the crystals in potential energy basin ”0”
have shifted to the right.

Can we augment this effect with modification of the orientation vector? It turns out
that all we need to do to achieve this is to scale the orientation vector so that it is large
relative to the intermolecular distances. Figure 5.40 shows the PCA plots that are
obtained when the 6D persistence homology is calculated on the space of centroids
and vectors for which the length of each vector is increased by a factor of 20. The effect
on the crystal structure plot is incredibly striking. Not only is the ”artefact” in figure
5.37 now a clearly defined cluster but almost all of the compounds that belong in
funnel ”1” are separated from those that belong in funnel ”0”.

This striking effect is also evident in the histogram of connected components as shown
in figure 5.41. We see that the histogram corresponding to homology feautrs of crystal
structures which belong to funnel ”0” has shifted to the right substantially so as to be
almost disjoint to the histogram corresponding to funnel ”1”.
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(A) 3D Persistent Homology

(B) 6D Persistent Homology

FIGURE 5.39: Histogram of the deaths of 0D persistent homology features for a set
of GAZCES co-crystals belonging to a given potential energy minimum of the wider
crystal structure landscape. In a) the persistent homology was found using molec-
ular centroids only. In b) the persistent homology was found using both molecular
centroids and a suitably chosen inertia eigenvector which describes the molecular ori-

entation.

The implication of the rescaled orientation vector is interesting: the distances between
molecules in the new 6D space are dominated by the differences in their orientations
and not by the differences in their xyz coordinates. The implication of this is that we
can imagine our space as having all molecules with the same orientation grouped
together so that when the resulting 6D points are connected together in the homology
filtration, the points with the same orientation are always connected first while the
simplices composed of sets of molecules with different orientations are joined at the
end. The structure of the 6D space of one of the GAZCES structures with unit
orientation vectors verses augmented orientation vectors is demonstrated in 2
dimensions with Multidimensional Scaling (MDS) in figure 5.42.
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FIGURE 5.40: Plot of the first two principal components of the space spanned by a vec-
tor image descriptor based on the 0D persistent homology of the (6D) set of molecu-
lar centroids and modified inertia vectors belonging to GAZCES co-crystal structures.
The data is partitioned according to whether the crystal structures were found to lie in
two deep basins (corresponding to experimental polymorphs) of the crystal structure
landscape. The basins are simply labelled ”0” and ”1”. The inertia vectors have been

modified by increasing their length by a factor of 20.

FIGURE 5.41: Histogram of the deaths of 0D persistent homology features for a set
of GAZCES co-crystals belonging to a given potential energy minimum of the wider
crystal structure landscape. The persistent homology was found using both molecular

centroids and a rescaled inertia eigenvector (increased by a factor of 20).
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FIGURE 5.42: 2D MDS embedding of an example 6D GAZCES input structure using
both unit orientation vectors and augmented orientation vectors. We see the space is
partitioned into clusters according to vector orientation in the augmented case. The

axes of the MDS embedding have no physical interpretation.

The length of the inertia vector has a pronounced effect on the AMI of the clustering of
the high dimensional space obtained from the underlying vector images. A plot of the
AMI against the orientation vector length is shown in figure 5.43a. A clear feature here
is the sharp increase in AMI when the length reaches 5 Å steadily increasing until 20 Å
where we reach the maximum. We then have a very sharp drop in the fit. This is
followed by another period of increased AMI from 30-50 Å before another drop. It is
not yet clear what causes this behaviour. Contrast this with the equivalent plot for the
fluorolanines in figure 5.43b. Increasing the length of the orientation vector actively
makes the fit worse with the optimal length of orientation vector being close to unity.
This is the only dataset we have encountered thus far for which the length of the
orientation vector has such a stark effect. One hypothesis is that because the GAZCES
structures are composed of two different kinds of molecule (nicotinamide and benzoic
acid) the augmented orientation vector 6D space effectively separates these molecules
in the resulting 6D space and then the relative configuration of nicotinamide and
benzoic acid molecules is what determines the polymorph type. However
examination of figure 4.5 suggests that the inertia vectors of the two components of
GAZCES should be rather similar which undermines this hypothesis. It remains to be
seen if there are more examples of sets of crystal structures (which are not entirely
composed of co-crystals) that exhibit this behaviour surrounding the magnitude of the



5.3. Polyaromatic Hydrocarbons & Azapentacenes 97

(A) GAZCES Co-Crystals

(B) Fluoroalanines

FIGURE 5.43: Variation of clustering AMI when predicting packing types of crystal
structures from persistent homology calculations with the length of the vector used to
describe molecular orientation for the 6D space for which the persistent homology is
found. Part a) corresponds to the set of fluoroalanines labelled by a packing scheme
found by eye while part b) corresponds to a set of GAZCES co-crystals labelled by
which (of two) potential energy basins on the crystal structure landscape they belong

to.

orientation vector.

5.3 Polyaromatic Hydrocarbons & Azapentacenes

5.3.1 Experimental Polyaromatic Hydrocarbons

Firstly we examine the set of PolyAromatic Hydrocarbons (PAHs) obtained from the
CSD and the paper by Loveland et al. Loveland et al. (2020). In the first instance we
found the persistent homology using both the 3D and the 6D pointcloud using the
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Rips filtration and using the vector images of the 0D features only (once again these
turn out to be the most important). The PCA plots thus obtained are shown in figure
5.44 for the first set of PAHs (28 structures from the CSD) and in figure 5.45 for the
second set (172 structures from Loveland et al.).

For the first set of PAHs the classes do not seem to be well separated in the reduced
space although it could be that with more data a trend would emerge. Note also that
incorporating the molecular orientations does not seem to make things better, and
possibly makes things slightly worse.

For the larger set of PAHs we also do not see any clear separation of classes. There are
a few loose trends: for example there is a small zone mostly occupied by structures
with the gamma packing type and most of the herringbone structures occur at the
edge of the set of points but these are the only trends observed. Also note that in this
case there is literally no improvement in the class separation with the incorporation of
orientation vectors (cf. the GAZCES co-crystal) into the homology calculation.

It is also worth remarking that when these datasets are combined the data points
occur at sensible locations relative to one another which highlights that these two
datasets do not have radically different crystal structures and thus persistent
homology as expected. This is shown in figure 5.46 (we only show the 6D case).

Are there any features of this dataset that might be complicating our analysis? One
immediate difference between this set and the proceeding two datasets is that the
constituent molecules have radically different shapes and sizes. The GAZCES dataset
is composed of different packing types of the same compound while in the case of the
fluoroalanines all the compounds are very closely related the only difference being the
fluorine substitution pattern. The reason this is very important in our context is that
we are using molecular centroids to record the position of the molecules in each
crystal structure and if the consistent molecules in a crystal structure happen to be
larger or have a very different shape (like a longer long axis for example) then the
intercentroid distances will be increased and the persistent homology features which
we observe will not all occur on the same scale. Observe figure 5.47. Here the
distances between molecules and their first nearest neighbour are plotted in a
histogram across all molecules in all crystals in a given dataset. One can see that in the
case of the fluoroalanines (labelled emd), while there is a large range of first nearest
neighbour distances, there is a very large peak indicating that the majority of distances
are occurring at the same scale. Contrast this with the PAHs. The distances occupy a
larger range and moreover the distances are scattered across this range suggesting that
we are seeing a lot of different geometric features occurring at different scales. We also
show the histogram for the distances to the second nearest neighbour which shows a
similar trend.
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(A) Persistent Homology with 3D Pointcloud

(B) Persistent Homology with 6D Pointcloud

FIGURE 5.44: Reduced Vector Images from the persistent homology of a set of clas-
sified polyaromatic hydrocarbons (into four packing types) from the CSD. The per-
sistent homology was found with the Vietoris-Rips filtration and only the 0D features
were used. The vector images were reduced in dimension with PCA. In part a) the per-
sistent homology was calculated on a set of 50 molecular centroids extracted from the
crystal structure and in part b) both the molecular centroids and suitably chosen iner-
tia eigenvectors were used to find the persistent homology of the resultant 6D space.
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(A) Persistent Homology with 3D Pointcloud

(B) Persistent Homology with 6D Pointcloud

FIGURE 5.45: Reduced Vector Images from the persistent homology of a set of classi-
fied polyaromatic hydrocarbons (into four packing types and N/A) from Loveland et
al. Loveland et al. (2020). The persistent homology was found with the Vietoris-Rips
filtration and only the 0D features were used. The vector images were reduced in di-
mension with PCA. In part a) the persistent homology was calculated on a set of 50
molecular centroids extracted from the crystal structure and in part b) both the molec-
ular centroids and suitably chosen inertia eigenvectors were used to find the persistent

homology of the resultant 6D space.
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FIGURE 5.46: Reduced Vector Images from the persistent homology of both sets of
classified polyaromatic hydrocarbons (into four packing types and N/A) from (re-
spectively) the CSD (set 1) and from Loveland et al. Loveland et al. (2020) (set 2).
The persistent homology was found with the Vietoris-Rips filtration and only the 0D
features were used. The vector images were reduced in dimension with PCA. Both
the molecular centroids and suitably chosen inertia eigenvectors were used to find the

persistent homology of the resultant 6D space.

One possible way of accounting for the different molecular sizes may be to normalise
the distances such that for each and every crystal structure the average distance to its
first nearest neighbour is one. The histograms which we get for the two sets of crystal
structures after applying this transformation are shown in figure 5.48. We observe that
the set of intercentroid distances now occupy a similar range and are both distributed
around a peak suggesting that features are now occurring at a similar length scale
across different compounds in the dataset.

Because we have elected to use the Vietoris-Rips filtration for computing the
persistent homology, the homology can be calculated using the distance matrix alone
as opposed to the set of 3D or 6D co-ordinates. Thus we can apply this normalisation
and calculate persistent homology such that all the distances between molecules occur
at the same scale.

The results we obtain are shown in figure 5.49. Here we only show those plots
obtained using 3D pointclouds (once again the figures look almost identical when
using 3D vs. 6D pointclouds). We observe that while the PCA plot for the first set of
PAHs now has the polyaromatic hydrocarbons quite well separated, the plot for the
second set of PAHs is only moderately improved (some of the herringbone
compounds are closer together, as are some of the sandwich herringbone structures
and some of the gamma structures appear to occupy their own region of the plot).
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(A) Distance to First Nearest Neighbour

(B) Distance to Second Nearest Neighbour

FIGURE 5.47: Histogram of intercentroid distances to first (part a) and second (part b)
nearest neighbours for all molecules of all crystal structures in the set of fluoroalanines

(labelled emd) and polyaromatic hydrocarbons (labelled pah).

Any improvement here is probably offset by the fact that it appears now that some
crystal structures have homology features that explain a large amount of variance of
the data and thus warp the PCA plot and make it more difficult to interpret. The two
datasets when plotted together seem once again to coincide in sensible places which
may indicate that the ”improved” class separation of the first set of polyaromatic
hydrocarbons is merely a result of the small sample size and the inclusion of a more
diverse set of polyaromatic hydrocarbons undermines any trend in this first dataset.

We attempt one further method to use persistent homology to describe the packing
type of these data (which we shall use again later on). In the work of Loveland et al.
Loveland et al. (2020) the importance of defining the correct plane upon which to
describe the neighbours of a given polyaromatic hydrocarbon (i.e. by viewing the
crystal structure from different angles one can ”see” different motifs in the crystal
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(A) Distance to First Nearest Neighbour

(B) Distance to Second Nearest Neighbour

FIGURE 5.48: Histogram of the normalised intercentroid distances to first (part a) and
second (part b) nearest neighbours for all molecules of all crystal structures in the
set of fluoroalanines (labelled emd) and polyaromatic hydrocarbons (labelled pah).
Here the normalisation is undertaken by dividing all intercentroid distances in each
crystal structure by the average distance to its first nearest neighbour before any of the

k-nearest neighbour distances for the histograms are calculated.

structure) is highlighted. Finding the correct such plane to describe the beta, gamma,
herringbone and sandwich herringbone motifs is the key idea behind the Autopack
algorithm which we shall describe later. One of the things that characterises
polyaromatic hydrocarbons is their flat often long and thin structure, clearly we
cannot capture this shape by using the molecular centroid alone (although the
orientation vector may help with this). The implication of this is when the filtration
which describes the persistent homology is constructed, the molecules which are
closer in terms of their intercentroid distance will be connected first, not those
molecules whose interactions best describe the packing motif: in effect some of the
persistent homology features most crucial for the description of the four polyaromatic
hydrocarbon packing classes will be ”lost” as they are filled in by some of the less
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(A) Set 1

(B) Set 2

(C) Sets 1 & 2

FIGURE 5.49: Reduced Vector Images from the persistent homology of both sets of
classified polyaromatic hydrocarbons (into four packing types and N/A) from (re-
spectively) the CSD (set 1) and from Loveland et al. Loveland et al. (2020) (set 2). The
persistent homology was found with the Vietoris-Rips filtration using the normalised
distance matrix between molecules and only the 0D features were used. All distances
between molecules in each crystal structure were normalised by dividing through by
the average distance of each molecule to its first nearest neighbour. The vector images

were reduced in dimension with PCA.
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important interactions which take precedence by virtue of their smaller intercentroid
distance.

In order to get a feel for the importance of this effect rather than defining the optimal
plane using the technique of Loveland et al., we take a much simpler brute force
approach and find persistent homology on all three planes defined by the cell axes.
The hope here is that by defining point clouds where the crystal unit cells are
expanded in one plane only, those intermolecular distances which are shorter and
disrupt other important homology cycles are not included as all interactions between
molecules across neighbouring unit cells above or below this plane are suppressed. Of
course this might not suppress problematic interactions within unit cells if Z′ > 1 but
this is not the case for the majority of these compounds.

In practice we achieve this by altering the algorithm which we use to generate the
crystal fragment (figure 2.6): rather than initially forming a large crystal fragment
(from which to select the N closes molecules) we generate a large R × R × 1 (or
R × 1 × R or 1 × R × R ) supercell and select the molecules from this structure. Here R
is chosen to be sufficiently large such that we can always choose exactly N molecules
from the desired crystal fragment. This gives us a ”planar” crystal fragment so that
when we compute the persistent homology some features will be suppressed but
other new homology features will appear. We obtain our altered descriptor by simply
concatenating the four vector images that we get from the persistent homology of the
fragment defined from each supercell in addition to our usual descriptor (which is
effectively constructed using a R × R × R supercell). Even if we do not know the
plane that best describes the crystal motif we can guarantee that it appears in at least
one of our crystal fragments.

When we use this expanded descriptor we get the PCA plots described in figure 5.50.
Here we focus on the second set of polyaromatic hydrocarbons by Loveland et al. as
these are the structures which seem difficult to describe by persistent homology. In
figure 5.50a we use the unnormed distances in the Vietrois-Rips filtration while in
figure 5.50b we use the normalised distances. The figures do not seem to show an
obvious separation of the different crystal packing types, we shall see that we have
more success with this technique in a later dataset.

While we were not able to find any meaningful trends in the persistent homology of a
large part of these data, we have outlined some of the pitfalls that may be involved
when applying distance-based molecular descriptors to molecules of different shapes
and sizes and possible ways to address this. The next two datasets are also PAHs, but
these particular structures were generated from crystal structure prediction
calculations so each dataset will contain crystal structures of the same molecule and
this issue will be eliminated. We will hence be able to establish whether the issues
involved in this dataset are specific to the nature of the dataset (all the molecules are
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(A) Persistent Homology with Unaltered Distances

(B) Persistent Homology with Normalised Distances

FIGURE 5.50: Reduced Vector Images from the persistent homology of a set of clas-
sified polyaromatic hydrocarbons (into four packing types and N/A) from Loveland
et al. Loveland et al. (2020). The persistent homology was found with the Vietoris-
Rips filtration and only the 0D features were used. The vector images were reduced
in dimension with PCA. Here the vector images of four different persistent homol-
ogy calculations are concatenated, each vector image corresponding to a persistence
diagram calculated using a crystal fragment after a given supercell. In part a) the dis-
tances between molecules is computed using the 6D Euclidean distance defined by the
centroids and orientation vectors while in part b) these distances are normalised such
that for each crystal structure in our dataset the average distance of a molecule to its

first nearest neighbour is exactly 1
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different) or specific to the nature of PAH crystal structures themselves which could be
to do with the difficulties in capturing the ”correct” intermolecular interactions when
computing the persistent homology according to the discussion above.

5.3.2 Azapentacene CSP Calculations: Part 1

The following discussion is centred around data pertaining to the work of Musil et al.
Musil et al. (2018) on the crystal structure landscapes of azapentacenes. The
compounds in question have already been described in the experimental section.

We now describe the technique used by Musil et al. Musil et al. (2018) to
algorithmically label the azapentacene compounds; this technique was developed by
Campbell et al. Campbell et al. (2017). The technique is described in figure 5.51 and is
loosely based off the seminal work of Gavezzotti et al. Desiraju and Gavezzotti (1989b)
who identified the importance of inter-planar angles between the neighbouring rings
of PAH molecules in determining their experimentally derived packing type
(herringbone, gamma, beta and sandwich herringbone). It can be seen that the
algorithm in figure 5.51 broadly relies on the principal of finding intermolecular
angles between ”nearest neighbours”. In the results of Musil et al. there are also
compounds labelled ”other” - it is unclear from either the paper by Musil et al. or the
one from Campbell et al. what this means so they shall be ignored in our analysis.

The 8 crystal structure landscapes for azapentacenes studied (5A. 5B, 5C, 7A, 7B, 7C,
TT and pentacene - see figure 4.4) have radically different ratios of assigned crystal
packing type. This is demonstrated in figure 5.52. It is interesting to note that only
pentacene seems to possess compounds with the herringbone, sandwich herringbone
and ”other” categories. Also note that the CSP landscapes 7A, 7B and 7C are
completely dominated by crystal structures with the beta (sheet) label. We do not
choose to discuss these compounds further as the structures in these landscapes with
the gamma packing class are so sparse that it is difficult to ascertain any trends in their
positions on any crystal structure landscape which we create.

Thus we shall discuss the properties of five sets of crystal structure landscapes which
we can interpret by means of the persistent homology descriptors which we have
developed.

The first structure we consider is the compound labelled 5A. At this point we are only
interested in the persistent homology that arises from the 3D pointcloud, that is, the
set of molecular centroids (once again we use 50). As usual we find the principal
components of the vector images obtained from the associated persistence diagram
(alpha filtration). For reasons that shall become clear we remove all diagrams that
contain any features with a maximum death past a certain cutoff value (i.e. involving
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FIGURE 5.51: The algorithm used by Campbell et al. Campbell et al. (2017) to classify
PAH crystals into one of four packing classes using interplanar angles. The Azapen-

tacene dataset which we are using has been classified in the same manner.

FIGURE 5.52: The ratio of compounds in the crystal structure landscapes of eight aza-
pentacenes assigned different packing labels by a heuristic algorithm which uses the
interplanar angles within the crystal structure to assign the crystal structure to one of
five packing classes - beta (sheet), gamma, herringbone,other, and sandwich herring-

bone.
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any simplex with edge length greater than this value). We consider the PCA plots
obtained when 0D, 1D, 2D, 1+2D and 0+1+2D features are used, each with a set of 5
different maximum deaths (or cutoffs): 30 Å,40 Å, 50 Å, 60 Å and an infinite
maximum death (this corresponds to just keeping all the crystal structures as normal).
As such we end up with the matrix of 25 PCA plots shown in figure 5.53.

Note how the PCA plots are very uninformative when the infinite maximum death is
used due to the presence of compounds whose persistent homology features
dominate the variance of the total set of vector images. Further analysis of these
outlier structures reveals that these correspond to the unphysical crystal structure
predictions, which have long and thin unit cell, alluded to in our previous discussion.
This is due to the fact that these data were generated using an older version of the CSP
code for which the pseudo-random sampling technique was not yet fully optimised
such that sensible random cell parameters were chosen. The upshot of this is that
these compounds end up having persistent homology features that occur over much
larger length scales than any other features in the set of crystal structures and which
thus end up dominating the variance on the set of vector images. An easy way of
dealing with this without having to resort to outlier detection methods (with which
we had more limited success) is to set the maximum value for the death of any given
persistent homology feature. If the persistence diagram contains a feature with a
maximum death above this threshold, the diagram is deemed unphysical and is
removed 8 It can be seen in figure 5.53 that even at a cutoff of 60 Å, most of the effects
of these unphysical data are removed. It is difficult to ascertain, however, how much
of the persistent homology information should be jettisoned in order to be sure of the
removal of all unphysical cycles. For example while it is clear in figure 5.53 that while
setting the cutoff to 60 Å clearly removes any significant ”outlier” points on our
crystal structure landscapes, perhaps the ”best” landscape - in terms of class
separation and lack of the clumping of points in a particular region (which may make
the landscape harder to interpret) - is obtained when the cutoff is much lower at 40 Å.
There seems to be a trade-off between losing topological information by excluding
useful homology features and the skewing the crystal structure landscape
unnecessarily by the inclusion of unphysical homology features into our landscapes.

This is examined in more detail in figure 5.54 . Here the AMI of the (K-means)
clustering of the persistence diagrams against the four packing classes is plotted
against the maximum allowable death value for each set of homology features. Also
plotted is the percentage of crystal structures that are included in our model at each
value of maximum death (so that when the maximum death is infinite 100 % of

8One might ask why the death values of the persistent homology features are used for the filtering
out of unphysical diagrams and not the birth values, all features clearly being described by both of these
numbers. We found empirically that when we analysed the homology features that skew the crystal
structure landscape, these were invariably those with a high death value and not those features born at a
high filtration value
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FIGURE 5.53: The set of plots obtained by dimensionality reduction of the vector
images corresponding to the persistence diagrams of a large set of predicted crystal
structures of the azapentacene named here as 5A. These structures are labelled accord-
ing to a heuristic algorithm involving the interplanar angles of sets of neighbouring
molecules. There are 25 plots corresponding to both the dimension of persistent ho-
mology features to be considered and the maximum death value allowed on any given
diagram (those diagrams which have a feature that dies past this value are removed).
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FIGURE 5.54: The Adjusted Mutual Information of a clustering of vector images (ob-
tained from persistence diagrams of azapentacene 5A) against four packing classes
(described by a heuristic geometric argument) plotted against the maximum death
value (any persistence diagram which contains a homology feature with a death value
past this maximum are not considered in our analysis) for each dimension of homology
feature (or combinations thereof). Also plotted is the percentage of crystal structures

that are included in our model at each value of maximum death

structures are used). First note how much lower the AMI is in general for this dataset
compared with the fluoroanalines - persistent homology seems to have a lot less
predictive power over packing type in this case (in spite of the fact that crystal
structures in this dataset correspond to the same compound in contrast with the other
datasets we have considered thus far). Also note that we get the best fit when the
cutoff is low and there are comparatively fewer crystal structures in the dataset. While
the removal of unphysical structures is clearly important note that the higher AMI
found when the maximum death is low may simply be due to the fact that when there
are numerically fewer structures in the dataset, any arbitrary labelling is likely to
match whatever ground truth you can define by pure chance - there are simply fewer
combinations for the packing labels at this point. It is also interesting to note that the
0D persistent homology features do not seem to carry the most predictive power in
this case.

Lastly we can also circumvent the problem of the unphysical structures by
constructing the crystal structure landscape by embedding the matrix of Wasserstein
distances 9 between persistence diagrams into 2D space using MultiDimensional

9The Wasserstein distance is only strictly defined for homology features of a given dimension, that is
one can only find the Wasserstein distance for 0D features only, or 1D features only etc. In practise we just
define a structure with the birth-death pairs for all dimensions and feed this into the algorithm. Another,
perhaps a more robust approach is to define the distance between persistence diagrams as the sum of the
Wasserstein distances in each dimension. In practise this gives us pretty much the same results.
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FIGURE 5.55: MDS embedding of the matrix of Wasserstein distances between sets of
persistence diagrams which correspond to predicted crystal structures for the azapen-
tacene labelled 5A. The compounds are labelled according to their packing type pre-
dicted by a heuristic algorithm using interplanar angles of neighbouring molecules.

The axes of the space into which the data are embedded have no physical meaning.

Scaling (MDS). Any of the homology features which arise in the unphysical structures
has a very limited impact on the Wasserstein metric (of order 2) presumably due to the
fact that the single homology features have a very small contribution to the sum of
mappings between points while one can imagine a single homology feature at an
extreme value having a large effect on the vector image. While this takes a very long
time to compute compared to the vector images the results are much more promising
as shown in figure 5.55. The packing classes are not separated per se as in the case of
the fluorolanines but there are certain regions of the embedding that have a clear
preference for structures of a given packing type which indicates that the persistent
homology is telling us something about the packing type even if it cannot necessarily
predict it.

We now repeat these plots for the remaining azapentacenes in the dataset.

The set of PCA plots obtained with vector images, the max death/number of
structures trade-off and the Wasserstein embedding for azapentacene 5B are shown
respectively in figures 5.56, 5.57 and 5.58. The set of plots are relatively similar but
note that first of all the PCA plots with a large cutoff show less concentration of points
in a given region than those of 5A making these plots easier to interpret. Figure 5.57
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reveals that the clustering on this data is more faithful to the heuristic packing labels
than in the case of 5A. Lastly note that the Wasserstein embedding shows a similar
structure to that of 5A, that is various ”lobes” which mostly correspond to one
packing class. It must again be noted that this was very time consuming to plot
(around 1 day on a MacBook Pro) so these embeddings may not be a practical method
for exploring the crystal structure landscapes of these compounds.

We repeat this process for azapentacene 5C.

The set of PCA plots obtained with vector images, the max death/number of
structures trade-off and the Wasserstein embedding for azapentacene 5C are shown
respectively in figures 5.59, 5.60 and 5.61. These data are generally harder to interpret
due to the smaller size of this dataset - we nevertheless see similar trends to 5B with
the distribution of packing classes across the PCA and MDS plots. We observe that the
AMI is general quite poor and note that the spike in AMI at low cutoff is almost
certainly due to the increased probability of a random labelling being correct when the
sample size is small.

We repeat this process for azapentacene TT.

The set of PCA plots obtained with vector images, the max death/number of
structures trade-off and the Wasserstein embedding for azapentacene TT are shown
respectively in figures 5.62, 5.63 and 5.64. Both the AMI and the PCA plots reveal that
this compound does not seem particularly amenable to a description of packing by
persistent homology - it is unclear why the results for this compound are poor with
respect to the others. Note especially that the Wasserstein embedding in figure 5.64 no
longer has the nice ”lobe” structures observed in the above examples.

Finally we examine the results we obtain for the predicted structures of the pentacene.

The set of PCA plots obtained with vector images, the max death/number of
structures trade-off and the Wasserstein embedding for pentacene are shown
respectively in figures 5.65, 5.66 and 5.67. Perhaps mostly due to the more diverse set
of predicted packing types for this compound, the results are also poor and it is hard
to ascertain any underlying trends in the data.

While these results show some interesting trends and there is some evidence that
persistent homology can indeed at least partially describe the (predicted) packing
types of some of these crystal structures (particularly compounds 5A and 5B), the
presence of the unphysical crystal structures is concerning and having to artificially
prune these out of the dataset is far from ideal. Are there other unphyscial structures
adversely effecting the results in other ways? It is hence desirable to consider the
persistent homology of the crystal structure predictions for the same set of
compounds but with more up to date code where some of these problems are avoided.



114 Chapter 5. Results

FIGURE 5.56: The set of plots obtained by dimensionality reduction of the vector
images corresponding to the persistence diagrams of a large set of predicted crystal
structures of the azapentacene named here as 5B. These structures are labelled accord-
ing to a heuristic algorithm involving the interplanar angles of sets of neighbouring
molecules. There are 25 plots corresponding to both the dimension of persistent ho-
mology features to be considered and the maximum death value allowed on any given
diagram (those diagrams which have a feature that dies past this value are removed).
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FIGURE 5.57: The Adjusted Mutual Information of a clustering of vector images (ob-
tained from persistence diagrams of azapentacene 5B) against four packing classes
(described by a heuristic geometric argument) plotted against the maximum death
value (any persistence diagram which contains a homology feature with a death value
past this maximum are not considered in our analysis) for each dimension of homology
feature (or combinations thereof). Also plotted is the percentage of crystal structures

that are included in our model at each value of maximum death

FIGURE 5.58: MDS embedding of the matrix of Wasserstein distances between sets of
persistence diagrams which correspond to predicted crystal structures for the azapen-
tacene labelled 5B. The compounds are labelled according to their packing type pre-
dicted by a heuristic algorithm using interplanar angles of neighbouring molecules.

The axes of the space into which the data are embedded have no physical meaning.
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FIGURE 5.59: The set of plots obtained by dimensionality reduction of the vector
images corresponding to the persistence diagrams of a large set of predicted crystal
structures of the azapentacene named here as 5C. These structures are labelled accord-
ing to a heuristic algorithm involving the interplanar angles of sets of neighbouring
molecules. There are 25 plots corresponding to both the dimension of persistent ho-
mology features to be considered and the maximum death value allowed on any given
diagram (those diagrams which have a feature that dies past this value are removed).
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FIGURE 5.60: The Adjusted Mutual Information of a clustering of vector images (ob-
tained from persistence diagrams of azapentacene 5C) against four packing classes
(described by a heuristic geometric argument) plotted against the maximum death
value (any persistence diagram which contains a homology feature with a death value
past this maximum are not considered in our analysis) for each dimension of homology
feature (or combinations thereof). Also plotted is the percentage of crystal structures

that are included in our model at each value of maximum death

FIGURE 5.61: MDS embedding of the matrix of Wasserstein distances between sets of
persistence diagrams which correspond to predicted crystal structures for the azapen-
tacene labelled 5C. The compounds are labelled according to their packing type pre-
dicted by a heuristic algorithm using interplanar angles of neighbouring molecules.

The axes of the space into which the data are embedded have no physical meaning.
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FIGURE 5.62: The set of plots obtained by dimensionality reduction of the vector
images corresponding to the persistence diagrams of a large set of predicted crystal
structures of the azapentacene named here as TT. These structures are labelled accord-
ing to a heuristic algorithm involving the interplanar angles of sets of neighbouring
molecules. There are 25 plots corresponding to both the dimension of persistent ho-
mology features to be considered and the maximum death value allowed on any given
diagram (those diagrams which have a feature that dies past this value are removed).
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FIGURE 5.63: The Adjusted Mutual Information of a clustering of vector images (ob-
tained from persistence diagrams of azapentacene TT) against four packing classes
(described by a heuristic geometric argument) plotted against the maximum death
value (any persistence diagram which contains a homology feature with a death value
past this maximum are not considered in our analysis) for each dimension of homology
feature (or combinations thereof). Also plotted is the percentage of crystal structures

that are included in our model at each value of maximum death

FIGURE 5.64: MDS embedding of the matrix of Wasserstein distances between sets of
persistence diagrams which correspond to predicted crystal structures for the azapen-
tacene labelled TT. The compounds are labelled according to their packing type pre-
dicted by a heuristic algorithm using interplanar angles of neighbouring molecules.

The axes of the space into which the data are embedded have no physical meaning.
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FIGURE 5.65: The set of plots obtained by dimensionality reduction of the vector im-
ages corresponding to the persistence diagrams of a large set of predicted crystal struc-
tures of pentacene. These structures are labelled according to a heuristic algorithm
involving the interplanar angles of sets of neighbouring molecules. There are 25 plots
corresponding to both the dimension of persistent homology features to be considered
and the maximum death value allowed on any given diagram (those diagrams which

have a feature that dies past this value are removed).
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FIGURE 5.66: The Adjusted Mutual Information of a clustering of vector images
(obtained from persistence diagrams of pentacene) against four packing classes (de-
scribed by a heuristic geometric argument) plotted against the maximum death value
(any persistence diagram which contains a homology feature with a death value past
this maximum are not considered in our analysis) for each dimension of homology
feature (or combinations thereof). Also plotted is the percentage of crystal structures

that are included in our model at each value of maximum death

FIGURE 5.67: MDS embedding of the matrix of Wasserstein distances between sets of
persistence diagrams which correspond to predicted crystal structures for pentacene.
The compounds are labelled according to their packing type predicted by a heuristic
algorithm using interplanar angles of neighbouring molecules. The axes of the space

into which the data are embedded have no physical meaning.
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Moreover there are reasons to doubt the fidelity of the labelling algorithm of Campbell
et al. Campbell et al. (2017). In the first instance it seems rather odd that there are
almost no examples in most of the data of compounds adopting the herringbone and
sandwich herringbone structures: since structures of this packing type are very
common it seems surprising that there were no higher energy structures on the crystal
structure landscape of 5A and 5B that adopt this packing type. At any rate more data
encompassing all four packing types would be desirable for us as we need to establish
the interplay of all four of the common packing classes of these compounds and their
persistent homology. It is hence very worthwhile to consider alternative (and more
contemporary) algorithms which can solve the same problem. A very good candidate
for this is the Autopack algorithm of Loveland et al. Loveland et al. (2020) which is built
on the same principles of the algorithm of Campbell et al. Campbell et al. (2017) but
which attempts to resolve some inherent limitations of this algorithm. We shall
discuss this method in detail in the next section.

5.3.3 Azapentacene CSP Calculations: Part 2

As mentioned earlier we only carried out further CSP calculations for four
compounds: 5A, 5B, 5C and pentacene. For compounds 5A, 5B and 5C we only
computed the crystal structres with Z′ = 1 while for pentacene we also computed
structures where Z′ = 2. In contrast to the Musil et al. Musil et al. (2018) we only
computed the CSP landscape for the 10 most common spacegroups - the default
option - as a starting point - it is possible that we missed out on some of the richness of
the resulting crystal landscapes by making this choice. Nevertheless this resulted in
9384 structures for 5A; 3971 structures for 5B; 14918 structures for 5C and 8289 & 5271
structures for pentacene with Z′ = 1 and Z′ = 2 respectively so hopefully we have
enough data to showcase a large variety of different packing types.

These structures were classified into the four canonical packing types using the
Autopack algorithm Loveland et al. (2020) which we describe below.

The central issue with the algorithm of Campbell et al. Campbell et al. (2017) identified
by the authors of Autopack Loveland et al. (2020) is that the nearest neighbours of the
reference molecule (see figure 5.51) are chosen on the basis of intercentroid distance
alone. This can lead to an erroneous assignment as these nearest neighbours may not
live in the plane that identifies the packing motif. We exemplify this in figure 5.68
(reproduced from Loveland et al. Loveland et al. (2020)). Observe that the compound
shown (4,5-diphenylbenzo[e]pyrene) would be incorrectly assigned the label gamma
by our current algorithm when this structure clearly takes the sandwich herringbone
motif. This is because the wrong neighbours are chosen which lie in a different plane
to that describing the crystal motif. Thus the wrong sets of angles would be used to
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FIGURE 5.68: Figure reproduced from Loveland et al. Loveland et al. (2020). This fig-
ure shows the crystal structure of 4,5-diphenylbenzo[e]pyrene which takes the sand-
wich herringbone packing motif. If the crystal is not properly optimised as in part a)
the nearest neighbours chosen relative to the reference molecule which are used for
packing assignment may not lie in the plane which describes the packing motif and
as such will result in an incorrect assignment of this structure to the gamma packing
class. In part b) this crystal is rotated such that the plane that describes the crystal
motif is parallel to the XY plane. If nearest neighbours are chosen relative to this plane
then the correct set of nearest neighbours are chosen and this structure is correctly la-

belled as sandwich herringbone.

assign the structure. This problem is avoided if the crystal structure is rotated so that
the motif plane is parallel to the XY plane (which the authors take to be the viewing
plane) and then only molecules in the same plane as the reference molecule are
eligible to be classed as neighbours. This is the method used by the Autopack
algorithm to resolve these potential mischaracterisation issues.

In practice this optimal rotation is found by choosing the rotation that minimises the
sum of the projected areas of each the molecules (these being modelled themselves as
planes) onto the viewing plane (the XY plane). A fragment based approach is used
here - typically about 50 molecules are used in this process Loveland et al. (2020).
Once the crystal structure is rotated all neighbours are chosen according to this motif
plane. These so-called characteristic neighbours do not actually have to lie on the
motif plane itself as for some crystal structures the molecules in a stack can be tilted so
that they deviate from the plane significantly. The upshot is that, in practice, the
characteristic neighbours are restricted to a 3D disk around the reference molecule of
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FIGURE 5.69: The Autopack Loveland et al. (2020) algorithm for the classification of
the crystal structures of polyaromatic hydrocarbons into one of four canonical packing
classes (beta, gamma, herringbone and sandwich herringbone). This algorithm mostly
differs from that of Campbell et al. in that the crystal is rotated to find an optimal
view of the crystal before any neighbours are computed and in that the four canonical
neighbours for the classification into the classes of gamma, herringbone and sandwich

herringbone are fixed into a disk centred on the motif plane.

radius 20 Å and with height 2ar where r is taken as the distance between the centroid
of a given molecule and its most distant atom, and a is a constant multiplier - with
optimal value empirically found to be 1.2. This information can be used to refine the
algorithm in figure 5.51 to give the Autopack algorithm shown in figure 5.69.

When the new azapentacene crystal structure landscapes were classified into packing
types, the different azapentacene landscapes have a very different ratio of packing
classes as compared to the previous dataset (figure 5.52). This is shown in figure 5.70.
Note the increased presence of the herringbone and sandwich herringbone classes for
the azapentacenes with respect to the previous distribution. Also note that the
pentacene crystal structure landscape appears to posses very different packing labels
depending on the Z′ used in the CSP algorithm. Assessing the interplay of Z′ and
crystal packing classes should be a topic for further study.
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FIGURE 5.70: The ratio of compounds in the crystal structure landscapes of three aza-
pentacenes and two sets of pentacene compounds (generated with different Z′) as-
signed different packing labels by the Autopack algorithm Loveland et al. (2020) which
uses the interplanar angles between neighbouring molecules on (or near) a specially
selected motif plane to assign the crystal structure to one of four packing classes - beta

(sheet), gamma, herringbone, and sandwich herringbone.

For each of the four compounds we use persistent homology to generate the following
descriptors:

• A set of vector images from the persistent homology that is found from the set of
3D molecular centroids in a crystal fragment

• A set of vector images from the persistent homology that is found from the set of
3D molecular centroids and a suitably chosen inertia vector - so is computed in
6D

• A 6D persistent homology descriptor as above except the inertia vector is scaled
by a factor of 25

• The persistence diagrams themselves (for the 6D unscaled case), that is we use
the the Wasserstein distance (of order 2) to make an embedding of the distance
matrix of persistence diagrams in a low dimensional space

For the compound 5A we also find the following two descriptors:

• The concatenation of four sets of vector images obtained from the persistence
diagrams (from 6D) using crystal fragments built (respectively) around a
(R × R × 1), (R × 1 × R), (1 × R × R) and (R × R × R) supercell (with
arbitrarily large R).

• A descriptor that uses both the scaled inertia vector and the restricted supercells
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In all cases we use only the 0,1 and 2 dimensional homology features. We use the
Vietoris-Rips filtration so that we only calculate features up to 2D to save computation
time.

We plot the two principal components of the first of these descriptors - the persistent
homology from a 3D pointcloud - for 5A, 5B and 5C in figure 5.71. Clearly there is
absolutely no discernible trend in the locations of the different packing types on each
crystal structure landscape. There do appear to be certain regions which have a very
large number of compounds with the same packing type but there are so many data
points in this region it is difficult to establish if these are the only packing types in this
region - some points are plotted very close together or on top of each other in the
dense regions.

We repeat this process for the pentacene crystal structures: we plot the crystal
structure landscape for Z′ = 1, the crystal structure landscape for for Z′ = 2 and the
crystal structure landscape for all the pentacene structures (that is both for Z′ = 1 and
for Z′ = 2). The results are shown in figure 5.72. The plots once again show pretty
much no trends in the packing label but note that for the Z′ = 1 case there are at least
some regions that appear to have a high concentration of structures of a given packing
type, while this is not the case at all for Z′ = 2. Furthermore any structure that exists
in the landscape for Z′ = 1 is lost when the additional structures for Z′ = 2 are added.
We do not know what causes the structures for Z′ = 1 to have a packing structure that
is more readily described with persistent homology.

Adding in the inertia vectors into our model does not necessarily improve things
much - in fact the plots look almost identical as those generated from 3D persistent
homology. Figure 5.73 shows the PCA plots obtained for each of the azapentacens
(5A, 5B and 5C) using this descriptor. We see a similar effect for the pentacene data -
figure 5.74. It could be that molecular orientations are simply unimportant for the
description of the packing type but this seems very unlikely - it is, after all, the
interplanar angles between sets of neighbouring PAH molecules that determines the
packing type. Hence our next step is to scale the vectors by a factor of 25 to increase
the importance of the set of molecular orientations vs. their positions in Cartesian
space. The crystal structure landscapes thus obtained are shown in figure 5.75 for the
azapentacens and figure 5.76 for the pentacene data. These results are more promising.
For each of the azapentacens there appear to be regions that favour certain packing
types. This trend is by no means universal, however. Also note that, as before, in some
of these regions there is a very large number of structures and hence data that do not
belong to a given packing class are masked by those that do giving us the illusion that
these regions of the crystal landscape favour one packing variety more strongly than
is the case in reality. Examination of the plots one packing class at a time revealed that
this masking behaviour is prominent, that is, most of the dense regions of these plots
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(A) 5A

(B) 5B

(C) 5C

FIGURE 5.71: Plots of the first two principal components for the vector images from
the persistent homology of the predicted crystal structures for the azapentacens (
a) 5A, b) 5B, c) 5C) using the molecular centroids only to compute the homology.
The structures are labelled according to the predicted canonical packing labels (beta,
gamma, herringbone and sandwich herringbone) using the Autopack algorithm Love-

land et al. (2020).
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(A) Z′ = 1

(B) Z′ = 2

(C) All Structures

FIGURE 5.72: Plots of the first two principal components for the vector images from
the persistent homology of the predicted crystal structures for pentacene ( a) structures
with Z′ = 1 , b) structures with Z′ = 2, c) all structures) using the molecular centroids
only to compute the homology. The structures are labelled according to the predicted
canonical packing labels (beta, gamma, herringbone and sandwich herringbone) using

the Autopack algorithm Loveland et al. (2020).
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contain compounds of each and every packing class, but also showed that there were
still trends in the data and that regions in figure 5.76 do indeed favour the packing
types as indicated albeit less than suggested in the figure. This behaviour is replicated
for pentacene but once again the compounds from crystal structure predictions with
Z′ = 2 do not follow the trends as starkly and undermine the data for Z′ = 1.

Finally we also consider the Wasserstein embedding that we get for each of these
compounds. For the azapentacenes we get the plots in figure 5.77 while the
embeddings for pentacene are shown in figure 5.78. The embeddings clearly do not
separate the packing classes anywhere near as well as in the previous dataset. There
are a set of structures in the beta class that seem to be localised at a particular region of
the embedding - by no means all compounds in this class. It could be that the
embeddings in the previous section do have a more clear structure as to what regions
of the landscape correspond to which packing class by virtue of there simply being
less packing classes so it is easier to infer structure into these embeddings even when
there is none. Or it could be the case that persistent homology has some predictive
power in understanding the difference between some of the packing classes but not all
of them at once - it seems that some of the beta and gamma structures are positioned
in the embedding in a manner reminiscent of the previous section but the herringbone
and the sandwich herringbone structures are much less predictable. In further work it
would be wise to consider how these landscapes change when the parameters of the
CSP calculation are altered. Note how the embedding for pentacene for Z′ = 2 has by
far the least structure across the packing classes. The influence of altering the CSP
methodology between the datasets should not be understated.

There are two further factors we have yet to consider: the effects of the persistent
homology features that might occur when the crystal fragment is only defined on a
restricted supercell and the interplay between the crystal structure landscape and the
energy. For the azapentacene, 5A, we construct three further plots. The PCA plot of
the descriptor obtained when the restricted supercell approach is used and the vector
on the orientation vector is not scaled and the plot obtained with the same calculation
when the orientation vector is scaled. These two plots are shown in figure 5.79. Both of
these figures show some structure in the relative positions of the packing classes but
neither of these plots necessarily provide any more insight than the equivalent plots
where the restricted supercells are not used (figures 5.73a and 5.75a respectively).

For compound 5A we also replot the reduced vector images for the 6D case with both
the scaled and unscaled orientation vector but display only those structures with the
1000 lowest energy values. This is simply to ascertain whether the persistent
homology is more closely related to the packing type for the more stable crystal
structures. It can be seen from figure 5.80 that this is not really completely the case as
the structures for the beta and gamma classes (by far the most common at this energy
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(A) 5A

(B) 5B

(C) 5C

FIGURE 5.73: Plots of the first two principal components for the vector images from
the persistent homology of the predicted crystal structures for the azapentacens ( a)
5A, b) 5B, c) 5C) using the molecular centroids and suitably chosen inertia vectors to
compute the homology (in 6D). The structures are labelled according to the predicted
canonical packing labels (beta, gamma, herringbone and sandwich herringbone) using

the Autopack algorithm Loveland et al. (2020).
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(A) Z′ = 1

(B) Z′ = 2

(C) All Structures

FIGURE 5.74: Plots of the first two principal components for the vector images from
the persistent homology of the predicted crystal structures for pentacene ( a) structures
with Z′ = 1 , b) structures with Z′ = 2, c) all structures) using the molecular centroids
and a suitably chosen inertia vector to compute the homology (in 6D). The structures
are labelled according to the predicted canonical packing labels (beta, gamma, herring-
bone and sandwich herringbone) using the Autopack algorithm Loveland et al. (2020).
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(A) 5A

(B) 5B

(C) 5C

FIGURE 5.75: Plots of the first two principal components for the vector images from
the persistent homology of the predicted crystal structures for the azapentacens ( a)
5A, b) 5B, c) 5C) using the molecular centroids and a suitably chosen inertia vector
(which is scaled in by a factor of 25) to compute the homology (in 6D). The structures
are labelled according to the predicted canonical packing labels (beta, gamma, herring-
bone and sandwich herringbone) using the Autopack algorithm Loveland et al. (2020).
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(A) Z′ = 1

(B) Z′ = 2

(C) All Structures

FIGURE 5.76: Plots of the first two principal components for the vector images from
the persistent homology of the predicted crystal structures for pentacene ( a) struc-
tures with Z′ = 1 , b) structures with Z′ = 2, c) all structures) using the molecular
centroids and a suitably chosen inertia vector (which has been scaled by a factor of
25) to compute the homology (in 6D). The structures are labelled according to the
predicted canonical packing labels (beta, gamma, herringbone and sandwich herring-

bone) using the Autopack algorithm Loveland et al. (2020).
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(A) 5A

(B) 5B

(C) 5C

FIGURE 5.77: MDS embedding of the set of persistence diagrams of the predicted crys-
tal structures for the azapentacens ( a) 5A, b) 5B, c) 5C). Th persistence diagrams were
found using the molecular centroids and suitably chosen inertia vectors. The struc-
tures are labelled according to the predicted canonical packing labels (beta, gamma,
herringbone and sandwich herringbone) using the Autopack algorithm Loveland et al.
(2020). As before the axes of the space into which the data are embedded have no

physical interpretation and are hence unlabelled.
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(A) Z′ = 1

(B) Z′ = 2

(C) All Structures

FIGURE 5.78: MDS embedding of the set of persistence diagrams of the predicted crys-
tal structures for pentacene ( a) structures with Z′ = 1 , b) structures with Z′ = 2, c) all
structures).The persistent homology was computed using the molecular centroids and
a suitably chosen inertia vector. The structures are labelled according to the predicted
canonical packing labels (beta, gamma, herringbone and sandwich herringbone) us-
ing the Autopack algorithm Loveland et al. (2020). As before the axes of the space into
which the data are embedded have no physical interpretation and are hence unla-

belled.
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threshold) do overlap significantly, although this overlap is remarkably reduced for
the case in which the orientation vector is scaled. It may not be the case that the lower
energy structures can be more accurately described by persistent homology per se, it is
equally likely that the beta packing class is more likely to possess different persistent
homology than the other packing classes, particularly for the case when the
orientation vector is scaled. One can imagine that the fact that pretty much all of the
molecules are parallel in these structures is something that is encoded into the
(exaggerated) vector differences, while for the other classes exactly which molecules
have very different orientations is important, which is harder to encode in the 6D
persistent homology.

In order to establish if one can separate all four packing classes at all, that is whether
there is any difference in the persistent homology between these structures, we also
carry out supervised dimensionality reduction, specifically LDA, to see if we can tease
these packing classes apart with a more direct approach. Note that due to the large
number of data to which the LDA models are being fit we do not need to worry about
our model being too high dimensional for LDA to be effective. For each compound we
produced an LDA based crystal structure landscape both for the 6D persistent
homology descriptor and for the 6D persistent homology descriptor with the rescaled
orientation vector. The resulting plots for each compound (5A, 5B, 5C and pentacene)
with the unscaled 6D persistent homology descriptor are shown in figure 5.81. Note
that for pentacene we combine the data for Z′ = 1 and Z′ = 2. The same plots
obtained using persistent homology with the scaled orientation vector are shown in
figure 5.82. As implied in the unsupervised case, we see that using the scaled
orientation vector when calculating the persistent homology significantly improves
results. Also consistent with our earlier discussion is the fact that - particularly when
the rescaled vector is used - the beta class is by far the class that is most
distinguishable using this method. This is consistent with the fact that this class may
be easier to clearly distinguish with the properties of the orientation vectors alone.
Even in the best cases we cannot completely separate the classes - the overlap of the
different packing classes is significant and there are many regions of the landscapes
where lots of structures are on top of each other. This may imply that some of the
structures have the same packing type and very different persistent homology and
that equally some structures have very different persistent homology but the same
predicted packing type. There are a few things that could cause this.

Firstly its possible that the labels that can be predicted by the Autopack algorithm do
not fully reflect the full diversity of structures these compounds can take and/or it is
possible that there are subclasses within the packing motifs not taken account of, for
example Campbell et al. Campbell et al. (2017) discuss a sub-variety of the gamma
packing class described there as ”slipped gamma”. Notice that in the LDA plots many
of the packing class occur in at least two different regions which might correspond to
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(A) Unscaled Orientation Vector

(B) Rescaled Orientation Vector

FIGURE 5.79: Plots of the first two principal components for the descriptor from the
persistent homology of the predicted crystal structures for the azapentacene labelled
5A, using the molecular centroids and a suitably chosen inertia vector (which is either
unscaled and has a length of 1 (part a) or is rescaled and has a length of 25 (part b))
to compute the homology (in 6D). The descriptor is composed of four vector images
constructed from four persistence diagrams which are respectively calculated using
crystal fragments after the (1 × R × R) , (R × 1 × R), (R × R × 1) and the (R × R × R)
supercells (with arbitrarily large R) . The structures are labelled according to the
predicted canonical packing labels (beta, gamma, herringbone and sandwich herring-

bone) using the Autopack algorithm Loveland et al. (2020)
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(A) Unscaled Orientation Vector

(B) Rescaled Orientation Vector

FIGURE 5.80: Plots of the first two principal components for the descriptor from the
persistent homology of the predicted crystal structures for the azapentacene labelled
5A, using the molecular centroids and a suitably chosen inertia vector (which is either
unscaled and has a length of 1 (part a) or is rescaled and has a length of 25 (part b))
to compute the homology (in 6D). In this case we only display the 1000 structures of
lowest energy. The structures are labelled according to the predicted canonical pack-
ing labels (beta, gamma, herringbone and sandwich herringbone) using the Autopack

algorithm Loveland et al. (2020)
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further subclasses of the same packing type. Perhaps many of the compounds located
in the very dense central regions of these plots which contain every packing class
might contain examples of crystal structures which have been assigned as beta,
gamma, herringbone and sandwich herringbone when these structures might best be
labelled ”other” or ”unclassified”. All descriptions of packing classes are somewhat
arbitrary even if they are the most physically and chemically relevant - it might be
quite presumptuous to assume that all structures can be assigned into these classes
and that any crystal structure landscape could be transformed to respect these
arbitrary definitions.

The second reason for the substantial class overlap could simply be deficiencies in our
model. One significant issue is that by taking the molecular centroid and a single
vector to represent a molecule, one loses a lot of geometric richness and might fail to
capture the rod-like nature of some of these molecules or the all important face-to-face
π-stacking interaction. Further work should investigate whether it is possible to
extract topological invariants (using persistent homology or otherwise) from the
graph that can be built up between the network of short contacts between the organic
molecules in the crystal (which can be found quite easily with software provided by
the CSD Groom et al. (2016)). Better still perhaps one might even construct a graph
that specifically focuses on π-stacking or the edge-to-face interactions between the
C-H bond and π systems (which are most relevant to the packing types of
polyaromatic hydrocarbons) and compute the resulting invariants.

We conclude this section by briefly visiting the subject of energy prediction. As we
have a large set of compounds and a descriptor that describes the topology of the
packing and a set of energies found during the CSP algorithm, it is interesting to build
models to assess the fidelity of our descriptor through the lens of property prediction.
Recall that we have already tried this with the set of fluorolanines to pretty abysmal
results, this might not necessarily mean that the descriptor will not work in this case.
Indeed the connection between the molecular packing geometry and the crystal
energy could be stronger for these compounds.

We adopted the same methodology as in the fluoroalanine energy prediction, that is
we used a 25% : 75% test:train split and we used support vector regression and
random forest regression.

The fits we obtained for each of the compounds with the support vector model are
shown in figure 5.83. In all cases a radial kernel was used with C = 1 and ϵ = 0.1.
The R2 values for the model fit on 5A, 5B, 5C and pentacene are respectively
0.394,−0.0496, 0.309 and 0.323.

For the random forest model we used the following sets of parameters in all cases:
”n estimators”=100, ”max depth”=None, min samples split=2, min samples leaf=1,
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(A) 5A

(B) 5B

(C) 5C

(D) Pentacene

FIGURE 5.81: Supervised dimensionality reduction (LDA) of the set of vector images
corresponding to the persistent homology (with 6D pointcloud and unscaled orienta-
tion vector) of the predicted structures of three azapentacenes (5A, 5B and 5C) and
pentacene. The labels used for the LDA model are the predicted canonical packing
labels (beta, gamma, herringbone and sandwich herringbone) using the Autopack al-

gorithm Loveland et al. (2020).
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(A) 5A

(B) 5B

(C) 5C

(D) Pentacene

FIGURE 5.82: Supervised dimensionality reduction (LDA) of the set of vector images
corresponding to the persistent homology (with 6D pointcloud and scaled (to length
25) orientation vector) of the predicted structures of three azapentacenes (5A, 5B and
5C) and pentacene. The labels used for the LDA model are the predicted canonical
packing labels (beta, gamma, herringbone and sandwich herringbone) using the Au-

topack algorithm Loveland et al. (2020).
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(A) 5A : R2 = 0.394

(B) 5B : R2 = −0.0496

(C) 5C: R2 = 0.309

(D) Pentacene : R2 = 0.323

FIGURE 5.83: Predicted vs. true energy for the (25 %) test set for a support vector
model trained on a descriptor based on the persistent homology of a set of predicted
azapentacene (and related) structures using the 6D pointcloud method (vector un-
scaled). The compounds studied are 5A (a), 5B (b), 5C (c) and pentacene (d). In all

cases a radial kernel was used with C = 1, ϵ = 0.1.
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”max features”=1.0, ”max leaf nodes”=None . The R2 values for the model fit on 5A,
5B, 5C and pentacene are respectively 0.714, 0.450, 0.637 and 0.592. The fits are
shown in figure 5.84.

The support vector models provide pretty poor results which are not much better than
the results of the support vector machine on the fluoroalanine crystal structure
landscape (R2 = 0.314). The results for the random forest model are in fact quite good
although the fit is clearly better for some azapentacene compounds than others (5A vs.
5B, for example) - these models vastly outperform the equivalent models trained on
the fluorolalanine crystal structure landscape (R2 = 0.298). It is interesting that while
in this case our descriptor does a worse job at describing the packing classes, it does a
better job at predicting the energy. It may be that for this class of compounds the
correspondence between packing type and energy is stronger (the energy
contributions being dominated by the face-to-face and edge-to-face interactions of the
aromatic rings) than for the fluoroalanine compounds (the energy being influenced by
a much more complex set of intermolecular interactions, see the work of Dodd et al.
for example Dodd (2020)). The fact that we can use the persistent homology to predict
the energy of these compounds on some level implies that the persistent homology is
capturing some important geometric features - perhaps not those that correspond to
the canonical packing classes. By refining the energy predictions of each of these
compounds with more sophisticated quantum mechanical calculations and by better
optimising the set of hyperparamters for each of our models, it will be possible to get a
much more accurate prediction of the energy of these compounds. This should be a
topic for further work.
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(A) 5A : R2 = 0.714

(B) 5B : R2 = 0.450

(C) 5C: R2 = 0.637

(D) Pentacene : R2 = 0.592

FIGURE 5.84: Predicted vs. true energy for the (25 %) test set for a random for-
est model trained on a descriptor based on the persistent homology of a set of pre-
dicted azapentacene (and related) structures using the 6D pointcloud method (vec-
tor unscaled). The compounds studied are 5A (a), 5B (b), 5C (c) and pentacene
(d). We used the following sets of parameters in all cases: ”n estimators”=100,
”max depth”=None, min samples split=2, min samples leaf=1, , ”max features”=1.0,

”max leaf nodes”=None
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5.4 Do We Really Need Persistent Homology?

Over the course of this work we have established geometric structures which can be
extracted from the periodic crystal structure and to which persistent homology may
be applied in order to obtain a descriptor that in turn conveys topological information
that relates to the packing structure of the crystal. It might be reasonable to ask
whether the relationship to the crystal packing stems from the topological information
extracted by the persistent homology or simply from the geometric structure which
was constructed in the first instance, that is, the set of molecular positions and
orientations. In this final section we explore whether more basic, conventional or
intuitive descriptors applied to the molecular positions and/or orientations can
generate similar results to persistent homology. In so doing we can also learn about
what features of the persistent homology makes it a powerful descriptor for these
crystal systems. We centre our discussion around the set of fluoroalanine structures
for which we know persistent homology provided a good description of the crystal
packing. In all the examples below we work with the set of 50 molecular centroids and
suitably chosen inertia vectors (if used) that are the starting point for our persistent
homology calculations.

Perhaps the simplest way of constructing a descriptor from the geometric entity
described above (that satisfies the invariance constraints for descriptors) is the
distance matrix which is actually a rather widely used descriptor in chemical and
materials informatics Li et al. (2023b); Randić and Pompe (2001); Takemura et al.
(2021); Musil et al. (2021) . An easy way to give this descriptor a reasonable dimension
(it is not normally advisable to have a larger dimension than the number of data
points if this can be avoided Hastie et al. (2009)) is to summarise the matrix as a
histogram. In figures 5.85a and 5.85b we condense the distance matrix of the
fluoroalanine crystal fragments used to compute persistent homology into a
histogram with 100 bins for both the 3D and the 6D fragment. The separation of the
packing classes is actually pretty good considering the simplicity of the descriptor,
although there are not clear clusters that correspond to packing classes as when we
apply persistent homology. Note that the inclusion of the vectors into the pointcloud
does not improve the model much.

The molecular orientations can be more usefully encoded in the descriptor by altering
our notion of ”distance” in the constructed distance matrix. That is, rather than
finding the distance between each six dimensional point, one can instead find a
suitable interaction term inspired by something physical. For example the interaction
potential between two dipoles µ1 and µ2 separated by vector R can be modelled as
Stone (2013):
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(A) 3D Pointcloud

(B) 6D Pointcloud

FIGURE 5.85: The principal components of a histogram of the distance matrix with 100
bins from pointclouds defined from a set fluoroalanine crystals with visually defined
packing schemes. The pointclouds in question contain either a) 50 molecular centroids
(3D case) or b) 50 molecular centroids with a suitably chosen inertia vector which
describes the molecular orientation (6D case). Although the distances themselves have
units - the histogram of these distances is a set of dimensionless quantities (counts) so

that the axes of this plot are also dimensionless.
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FIGURE 5.86: The principal components of a histogram of the dipole-dipole interac-
tion matrix with 100 bins from pointclouds defined from a set fluoroalanine crystals
with visually defined packing schemes. We model the orientation vectors in the 6D
pointcloud as dipoles and use the Cartesian positions of the molecular centroids to
work out the separation of the dipoles. Although the interaction terms themselves
have units - the histogram of these interactions is a set of dimensionless quantities

(counts) so that the axes of this plot are also dimensionless.

V = −µ1 · µ2 − 3(µ1 · R)(R · µ2)

4πϵ0∥R∥3 (5.2)

if we populate the interaction matrix with this term instead of the Euclidean distance,
we have a set of interactions which combine the differences in position and the
differences in orientation in a physically sensible way. Once again we convert the
interaction matrix into a histogram with 100 bins. The first two principal components
of this descriptor for the fluoroalanine dataset are shown in figure 5.86. This
descriptor does a great job at separating out the head-to-head and head-to-tail classes
but mixes up some of the other classes such as the grid class and the interwoven class.

Another method for extracting invariants from the crystal fragments is to generate
histograms of three body interactions rather than two body interactions as above. One
physical model for such interactions is the Axilrod-Teller potential which models the
van der Waals interaction between three atoms Axilrod and Teller (1943). The form of
the interaction is

Vijk ∼
1 + 3 cos γi cos γj cos γk

(rijrjkrik)3 (5.3)
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FIGURE 5.87: The principal components of a histogram of the log of 3-body Axilrod-
Teller interaction tensor with 100 bins, calculated from pointclouds defined from a set
fluoroalanine crystals with visually defined packing schemes. We use the molecular
centroids from the crystal fragment only. Although the interaction terms themselves
have units - the histogram of these interactions is a set of dimensionless quantities

(counts) so that the axes of this plot are also dimensionless.

where rij is the distance between atoms i and j and γi is the angle between vectors rij

and rik. The first two principal components of a descriptor based on this interaction
are shown in figure 5.87. Note that we condense the tensor of three body interactions
into a histogram with 100 bins. Owing to the wide range of values of the interactions
across the dataset, we take the log of the interaction before converting it into a
histogram. We see that we get a separation of classes almost comparable to the 3D
persistent homology descriptor. It is telling that the descriptor improves significantly
going from two-body interactions to three body interactions. Perhaps the strength of
the persistent homology descriptor vs. more conventional descriptors is that by
extracting cycles that can be obtained from different points in the dataset one is
encoding many body interactions which are geometrically richer than simple pairwise
terms. If the effectiveness of persistent homology really comes from the implicit
description of many body terms, we could cut out the middle man and build
descriptors that focus on these terms directly.

In order to get a more thorough understanding of the advantages of including higher
order interactions into materials descriptors we consider the Atom Centred Symmetry
Functions (ACSF) class of descriptors. These descriptors, introduced by Behler et al.
Behler (2011), are local descriptors, i.e. they describe the local environment around a
given atom in the system, as such these are mostly used in the creation of neural
networks for potential energy surfaces Behler (2011); Anstine and Isayev (2023);
Brezina et al. (2023); Wang et al. (2024) however these descriptors have numerous
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applications across chemistry from spectroscopy de Armas-Morejón et al. (2023) to
molecular dynamics Glielmo et al. (2021) to materials science Gou et al. (2024) and
catalysis Chowdhury et al. (2024). There is a lot of flexibility in how these functions
are used in practice. For our purposes the set of functions which are fit to each atom
can be summarised into a histogram (i.e. a histogram of coefficients) which, we shall
see can also predict the packing type of crystal systems. Note that while the points in
our crystal fragment correspond to molecular not atomic positions, we can still extract
geometric information in this manner, especially if we choose function
hyperparameters which cause the functions to decay to zero at a slower rate. What is
most attractive however is that these descriptors are composed of the coefficients of
very many symmetry functions, some of which focus on two body interactions and
some of which focus on three body interactions. By comparing the performance of
these descriptors with and without the three body terms we can get further insight
into how important these many body terms really are when it comes to understanding
the underlying crystal packing.

As previously indicated there are several forms of ACSFs which incorporate different
kinds of atomic interaction, in total there are five kinds of ACSF, Gj

i : j ∈ {1, 2, 3, 4, 5}.
We shall describe each in turn.

All of the functions have in common a cutoff function, fc(Rij) so that atoms which are
a past a given radius from the given centre are ignored and therefore that the local
interactions are considered only. It has the form

fc(Rij) =


1
2

[
cos π

Rij
Rc

+ 1

]
: if Rij ≤ Rc

0 : if Rij > Rc

(5.4)

We then define

G1
i = ∑

j
fc(Rij) (5.5)

and

G2
i = ∑

j
fc(Rij)e−η(Rij−Rs)2

(5.6)

and
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G3
i = ∑

j
fc(Rij) cos (κRij) (5.7)

These functions model the two body interactions. The first function simply counts
how many atoms live within the cutoff radius, the second and third multiply this by,
respectively, a Gaussian function and a cosine function in order to model the overlap
of radially symmetric orbitals. The parameters Rc, η, Rs and κ are the hyperparamters
of the model. We typically fit very many of these function to each atom so as such we
feed the model a large number of combinations of the hyperparameters.

There are yet more hyperparamters for the two three body terms.

G4
i = 21−ζ ∑

j,k ̸=i
(1 + λ cos θijk)

ζe−(R2
ij+R2

ik+R2
jk) fc(Rij) fc(Rik) fc(Rjk) (5.8)

and

G5
i = 21−ζ ∑

j,k ̸=i
(1 + λ cos θijk)

ζe−(R2
ij+R2

ik) fc(Rij) fc(Rik) (5.9)

where ζ and λ are hyperparameters and θijk is the angle between Rij and Rik.

In the first instance we generated descriptors using the functions {G1
i } and {G2

i } only.
Owing to the very large number of possible hyperparameter combinations we fit
models over a large range of these values and recorded the AMI of the clustering of
the resultant descriptor with the visual packing scheme of the fluoroalanines. Only
molecular centroids were used in this calculation. The cutoff values 5, 20, 50, 75 and
100 were used in combination with 1000 random sets of the pair η, Rs in which η could
take the value 1, 2, 3 & 4 and Rs could take the values
−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4. Each set contained a random
combinations of G2 functions which one can build from the above values. In all cases
50 bins were used in the histogram. As such we produced a set of 5000 AMI values for
5000 different clusterings of the ACSF descriptor using functions {G1

i } and {G2
i } only.

The results are plotted in the histogram in figure 5.88. The best model gives an AMI of
0.685 which is actually better than that of our best 3D persistent homology model
(0.612) although note that a slightly higher AMI might not necessarily mean a better
separation of classes and hence a better descriptor. The optimal parameters were
Rc = 20 and the set of pairs η, Rs : (1, -1), (1, 0), (1, 0.5), (1, 2), (1, 3), (1, 3.5), (1, 4), (2,
-2), (2, -1), (2, -0.5), (2, 1), (2, 3), (2, 3.5), (2, 4), (3, -2), (3, -1.5), (3, 0), (3, 0.5), (3, 1.5), (3,
3.5), (3, 4), (4, -0.5), (4, 0.5), (4, 1.5), (4, 2), (4, 2.5). The PCA plot we get with the optimal
{G1

i } and {G2
i } functions is shown in figure 5.89.
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FIGURE 5.88: Variation of Adjusted Mutual Information with respect to the packing
scheme of fluoroalanine compounds for an ACSF descriptor applied to a set of 50
molecular centroids extracted from the crystal structure using G1

i and G2
i functions

only.

FIGURE 5.89: Principal Components for the best ACSF descriptor using {G1
i } and

{G2
i } functions only for a set of fluoroalanine crystals. The compounds are labelled

by the packing scheme of these crystals identified by visual argument. The optimal
parameters were Rc = 20 and the set of pairs η, Rs : (1, -1), (1, 0), (1, 0.5), (1, 2), (1, 3),
(1, 3.5), (1, 4), (2, -2), (2, -1), (2, -0.5), (2, 1), (2, 3), (2, 3.5), (2, 4), (3, -2), (3, -1.5), (3, 0), (3,

0.5), (3, 1.5), (3, 3.5), (3, 4), (4, -0.5), (4, 0.5), (4, 1.5), (4, 2), (4, 2.5).
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FIGURE 5.90: Variation of Adjusted Mutual Information with respect to the packing
scheme of fluoroalanine compounds for an ACSF descriptor applied to a set of 50
molecular centroids extracted from the crystal structure using G1

i , G2
i and G3

i functions
only. This is superimposed with the histogram obtained using G1

i and G2
i only.

We produced a further set of models using G3
i functions as well. Here we used 1000

random sets of functions with random cutoff and G2
i parameters chosen as before and

G3
i parameters which could take 50 values of κ from 1 to 10. The histogram of AMIs is

plotted in figure 5.90 superimposed with that from figure 5.88 - we see that adding G3
i

functions does not tend to improve the model. We do not consider these functions
further.

We performed similar comparisons with ACSF functions using G4
i and G5

i functions.
The values ζ, λ and η were allowed respectively to take the values 1, 2, 3, 4 & 5; the
values 0.1 to 106 (sampled logarithmically) and all values between -0.99 and 0.99 with
increment 0.1. Note because these calculations are much more computationally
expensive we were only able to sample 700 and 768 combinations for G4

i and G5
i

respectively. The histograms of AMI thus obtained are shown in figure 5.91. We see a
very moderate improvement in AMI when the three body terms are included
indicating that it is, perhaps, in general better to include three body terms than not
although the difference is hardly night and day. The best descriptors using G4

i and G5
i

functions yield an AMI of (respectively) 0.717 and 0.706. Not a massive difference.
The PCA plots for the best models with G4

i and G5
i functions are shown in figure 5.92.

Considering the increased computation time it is debatable whether this slightly
improved descriptor is of practical value. Clearly we have only sampled a very small
portion of the space of possible descriptors with different ACSF functions so a larger
set of calculations with further combinations of hyperparameters might yield better
results. The salient point here, however, is that a descriptor that conveys many body
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interactions will not always significantly outperform a well optimised descriptor that
only considers pairwise interactions. We also note that one of the clear limitations of
the ACSF descriptor is the very large number of hyperparameters. For this reason a
more rigorous descriptor was developed by Bartók et al. Bartók et al. (2013) called the
Smooth Overlap of Atomic Potentials (SOAP). This is also a local descriptor which, in
summary, for each atom in a structure computes a density function ρ(r) (which is itself
a sum of Gaussian functions), so that a rotationally averaged set of overlaps can be
used to compare local atomic environments - this only computes pairwise overlaps. It
turns out that there is a rigorous method (using optimal transport theory see De et al.
(2017)) for combining these local atomic similarities into a single similarity kernel
which can compare two sets of atomic environments, that is, one can compare two
atomic or molecular structures. This is called the SOAP-reMATCH kernel. We can
compute this kernel for our set of crystal fragments (centroids only) and use MDS
embedding by invoking the kernel induced distance 10. We get the reduced space
shown in figure 5.93. Note that the plot bears striking resemblance to that obtained
using the Axilrod-Teller interaction in spite of this method involving no three body
interactions.

Lastly we consider an alternative formulation of the use of pairwise Euclidean
distances we discussed at the start of this section. Rather than considering all pairwise
distances, we can instead focus on the distances of any given point to its kth nearest
neighbour. We have already made use of such distances when we were attempting to
rescale the intercentroid distances during our discussion of the set of polyaromatic
hydrocarbons from the CSD - they are very easy to compute - the kD tree is one very
efficient method Bentley (1975). Widdowson et al. Widdowson et al. (2022) have
introduced two simple descriptors that focus on these distances. For the case of an
infinite lattice and using atomic positions they show that these descriptor are isometry
invariants which means that if two structures are the same the descriptors are the same
(and vice versa) and that the differences between the values of these descriptors are
such that they are continuous with respect to perturbation of the crystal structure.
They are also independent of choice of unit cell. We are less concerned with the
precise mathematical properties of these descriptors as the application of this
descriptor on to molecular positions is not the original use case. We nevertheless find
that one of these descriptors performs very well on our sets of molecular centroids.

The definition of these descriptors are actually quite simple. The first descriptor is
called PDDk or the kth pointwise distance distribution. This is a local descriptor and is
just the list of the k-nearest neighbours of a given atom. Like we did with the ACSF
descriptor earlier we can just convert this into a histogram for our use case. In figure

10Given a kernel K(A, B) between environments A and B. An expression that satisfies the mathemat-

ical conditions for a distance metric is D(A, B) =

√[
K(A, A) + K(B, B)− 2K(A, B)

]
. This is the kernel

induced distance.
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(A) ACSF fits with G4 functions

(B) ACSF fits with G5 functions

FIGURE 5.91: Variation of Adjusted Mutual Information with respect to the packing
scheme of fluoroalanine compounds for an ACSF descriptor applied to a set of 50
molecular centroids extracted from the crystal structure using G1

i , G2
i and G4

i func-
tions only for part a) and using G1

i , G2
i and G5

i functions only for part b) . These are
superimposed with the histograms obtained using G1

i and G2
i only.
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(A) Best ACSF fit with G4 functions

(B) Best ACSF fits with G5 functions

FIGURE 5.92: Principal Components for the best ACSF descriptor using G1
i , G2

i and G4
i

(part a) or G5
i (part b) functions only for a set of fluoroalanine crystals. The compounds

are labelled by the packing scheme of these crystals identified by visual argument. The
list of parameters for these models is too long to list here.

5.94 we show the first two principal components of the PDDk descriptor with
increasing value of k (we use 10 bins in the histograms) for our set of fluoroalanine
pointclouds.

The separation of classes is pretty good but we find that the second descriptor
proposed by Widdowson et al. is better. The descriptor AMDk or the kth average
minimum distance is related to the previous descriptor: it is simply the average of the
PDD for each atom. Put differently AMDk is a list of k numbers and the iith (i ≤ k)
element of which is the average distance of any given atom to its ith nearest neighbour.
This is a global descriptor so we do not need to mess around with histograms. In
figure 5.95 we show the first two principal components of the AMDk descriptor with
increasing value of k for our set of fluoroalanine pointclouds. We have seen once again
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FIGURE 5.93: MDS embedding of the set of kernel induced distances obtained from
the SOAP-reMATCH kernel between sets of crystal fragments containing 50 molecu-
lar centroids from fluoroalanine crystal structures. The structures are labelled by the
packing scheme of these crystals identified by visual argument. Once again the axes
of the space into which we are embedding have no physical meaning so remain unla-

belled.

that we can separate the fluoroalaine packing classes at least as well as the
Axilrod-Teller descriptor which gives us further evidence that many body terms,
while useful, are not necessarily key to a good descriptor for organic crystal
structures. Also note the similarity between the reduced spaces obtained for AMD50,
the SOAP-reMATCH kernel and the Axilrod-Teller tensor. This could be a coincidence
but it is also possible that certain features of this particular dataset are quite prominent
so we see certain features in the reduced descriptor space regardless of the descriptor.

We started this section by posing a question as to whether our successful description
of the packing classes of organic crystals was truly a result of our persistent homology
methods or simply just a result of a judicious choices of information to be extracted
from the crystal structures in the first instance. We have seen that we can describe the
packing classes rather well using the point cloud of molecular centroids with many
different descriptors. This does not mean that the answer to the question ”Do we
really need persistent homology?” is ”no”. For one thing the 3D persistent homology
descriptors we generated earlier are still among the best of the descriptors we
explored and further none of the models proposed here were able to get a better result
than the persistent homology using a 6D pointcloud. It might be better to pose the
question ”Should we only use persistent homology?”, the answer to which is definitely
”no”. We have seen that lots of different equivalent geometric features can help us
understand the properties of crystal packing. Descriptors which are simpler and that
can be readily interpreted in terms of various kinds of many-body terms or kth nearest
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(A) k = 3

(B) k = 15

(C) k = 30

(D) k = 50

FIGURE 5.94: The first two principal components of the histogram PDDk descriptor
with 10 bins and for increasing k for a set of 50 molecular centroids extracted from flu-
orolanine crystals. The structures are labelled by the packing scheme of these crystals

identified by visual argument.
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(A) k = 3

(B) k = 15

(C) k = 30

(D) k = 50

FIGURE 5.95: The first two principal components of the AMDk descriptor for increas-
ing k for a set of 50 molecular centroids extracted from fluorolanine crystals. The
structures are labelled by the packing scheme of these crystals identified by visual ar-

gument.
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distances are invaluable while one of the clear disadvantages of persistent homology
is the fact that it can come across as a black-box. It is very difficult indeed, for
example, to find an important feature from a persistence diagram and reverse
engineer the geometric structure to which it corresponds (see Obayashi (2018) for
example). We also note that we have not in this section found many convincing
methods for encoding the molecular orientation vectors in non-topological
descriptors. This would be a very desirable outcome of further work. Finding a
mathematically sensible way to model the interaction between three vector like objects
would be very desirable, for example. One attractive avenue might be using sets of
spherical harmonics, the multipoles which describe the charge distribution of a
molecule are modelled by these functions and the interactions thereof modelled by
their overlap. By representation the points in our pointcloud as a series of multipoles
(whether or not these multipoles correspond to the actual charge distribution of the
molecule which could be time consuming to calculate). This way we could not only
model the interaction between three point-wise terms and three vector terms, we
could also model the interaction between two or more mathematical objects with a
more complex directionality - perhaps we could model the molecular shape. This kind
of descriptor even if not better than persistent homology might be more interpretable
as one could look at the coefficients of the terms pertaining to given kinds of
interactions when evaluating a model. This is not unprecedented: Zhu et al. Zhu et al.
(2022) have recently published work on using spherical harmonic expansions within
crystal structures to understand the packing classes of hydrocarbons.
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Chapter 6

Conclusion and Further Work

We have used persistent homology to understand the packing structure of four
distinct crystal systems: fluoroalanines, nicotinamide:benzoic acid co-crystals,
azapentacenes and general polyaromatic hydrocarbons. In all of these systems we
were able to gain at least some insight into the packing system through the suitable
conversion of the persistent homology into a descriptor - insight which generally
matches the description of crystal packing which was already well established.

The fluoroalanine dataset proved to be an ideal sandbox to test new ideas for the
application of persistent homology to crystal structures owing to its small size and
high fidelity packing labels. The first key insight was the importance of using a
coarser description of the crystal structure as the input for the persistence calculation -
calculations involving molecular centroids vastly outperformed those using atomic
positions even when the differing atomic radii were taken into account. A further
advantage to this approach is that it means that an accurate description of the
persistent homology can be found from a pointcloud involving few points. This
makes the computation more tractable from both a time and memory perspective and
allowed us to calculate the persistent homology of progressively larger crystal
fragments so that we could verify that the persistent homology does not change much
past a certain threshold. This helped us allay concerns about the minimal structure
that should be used for persistent homology as larger structures are always
computationally tractable and are likely to contain exactly the same topological features
just with different multiplicity.

Another key insight that was gained during this investigation was the possibility of
encoding information about orientations into the crystal descriptor by the means of, in
the first instance, a suitably chosen interatomic vector in the molecule and then later a
suitably chosen inertia eigenvector. This approach proved to be very powerful and we
were able to generate a low dimensional representation of the set of fluorolainines that
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has all of the main packing classes (as identified by a subject matter expert) almost
entirely separated in this space. We established later that a similar level of class
separation was not achievable with a wider set of conventional and unconventional
descriptors. For the GAZCES co-crystal (after augmenting the relative contribution of
the orientational information vs. the positional) we were able to almost completely
separate the structures of co-crystals that were identifiable with one of two potential
energy wells in the wider energy landscape of this crystal structure. The original
researchers Yang and Day (2022) were not able to achieve this with conventional
descriptors. Finally although the azapentacene crystal structure landscapes were
generally less amenable to full description by persistent homology we were able to
use an augmented 6D persisting homology descriptor to generate crystal structure
landscapes that begin to isolate certain subsets of the canonical packing classes and
begin to show concrete trends in the data. An important topic of further work would
be to establish if the idea of encoding molecular orientation or other relevant chemical
properties into the geometric structure of a crystal system could be used to improve
existing descriptors or indeed design new ones.

During the course of this project we also demonstrated the value of supervised
dimensionality reduction techniques in gaining insight into larger crystal structure
landscapes in the context of smaller datasets of the same or similar compounds. The
supervised UMAP algorithm has not yet found much use in the literature but has
allowed us to generate crystal structure landscapes that, by construction, heavily
emphasise chemically relevant information. These techniques should always be used
in the context of other supervised dimensionality reduction techniques such as LDA
and in the context of predictions from conventional classification and clustering
algorithms as, due to the highly non-linear nature of the algorithm, the plots can be a
little misleading. Within a sensible context this technique could certainly have more
applications in this field. The power of these techniques illustrates the importance and
value of small highly curated datasets with high fidelity annotation by subject matter
experts. These data can be used to contextualise and understand much larger volumes
of data which lack such curation.

Another, slightly more unexpected result, was that the persistent homology
descriptors do have some predictive power for the energy of the azapentacene
molecules. This has implications on the further use cases of our methodology so this
should be studied further by retraining our models with more accurate energy
calculations and with a more extensive choice of models and hyperparameters.

A key area of further work should be the acquisition of a dataset of the electron
density surfaces of a curated library of crystal structures, either by experimental
means (hopefully incidentally while recording the structure) or computationally. The
predictive power of the topological characteristics of this function, extracted by
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sublevel set persistent homology, would be fascinating. As the quantum mechanical
structure of the molecules would be encoded in the electron density data, the
topological invariants might be more likely to have predictive power for chemical
properties than our current pointset approach. Moreover establishing a surface that
captures the shape of each molecule without needing to include every atom in the
persistent homology filtration (which tends to generate redundant intramolecular
homology features while suppressing useful intermolecular features) would be very
desirable and perhaps help us address the fact that the correct intermolecular
interactions are not always encoded in the homology filtration - this could be the
reason that our current persistent homology descriptors do not completely describe
the packing classes of polyaromatic hydrocarbons.

The most overwhelming need however in order to be able to find further applications
of persistent homology in organic crystal systems and to be able to generate new
descriptors (using homology or otherwise) is to have more access to higher quality
data. In particular, even small amounts of data which have been labelled by subject
matter experts are invaluable and can allow us to refine our models further, establish
different use cases and explore the limitations of our methods. In particular it would
be interesting to explore the application of persistent homology to more co-crystal
structures in order to establish if the near complete separation of the two classes of
GAZCES crystals by our augmented homology descriptor was simply a fluke or a
natural consequence of the co-crystal structure, the orientation vector acting as proxy
for the two different sub-units and thus allowing us to build a descriptor that
compares the positions of these sub-units relative to one another. If this is true then
our descriptors might have particular predictive power for these systems.

Finally we note that while we have shown in multiple cases that persistent homology
can be a very useful descriptor for organic crystal systems it is by no means a panacea
for describing them and we should be clear eyed about its limitations. There are three
key limitations that should be borne in mind during further study.

Firstly while ostensibly topological data analysis is something that extracts inherent
properties of the data and does not involve hyperparameters that need tuning like
other methods, the techniques we have developed have a lot flexibility and there is a
lot of nuance in how topological data analysis is applied in the first instance and then
how the resulting persistence diagram is processed. During our particular workflow
we must decide:

• What information should be extracted from the crystal structure, atoms,
centroids, vectors etc.

• How many of these features to extract
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• Do we want to also include crystal fragments with different shapes as in the
restricted supercell approach we employed for the polyaromatic hydrocarbons

• What persistent homology filtration will we use

• Will we fix the maximum dimension or edge length during the homology
filtration

• What technique will we use to convert the persistence diagram to a descriptor -
using the vector images was an arbitrary choice in some ways

• How to carry out the conversion of the persistence diagram into a descriptor
with the given method, for example with the vector images we need to decide
on a resolution, we also need to decide on any weighting function (we do not do
this in our work but we certainly did not experiment with this for every dataset).

• Do we want to normalise/rescale any of the features or prune
unwanted/unphysical features

• What homology features do we actually want to use

and all of this takes place before we even decide on which data analysis techniques
should be applied. The point here is simple. Persistent homology is not easy to use for
a non subject matter expert and there are very many things that can and should be
tweaked before, during and after the workflow.

Secondly persistent homology is not necessarily easily interpretable: even if one can
establish exactly what geometric structure a homology feature corresponds to, this
could be difficult to visualise and/or explain. While it is eminently true that often
these descriptors are not directly interpreted, the direct interpretablity of persistent
homology is often sold as one of its strengths Musil et al. (2021) which does not
necessarily reflect the reality of doing persistent homology in practice.

Finally oftentimes the application of persistent homology seems to involve the
scientific process in retrograde - one starts with a model and decides what problem to
apply it to! There is an adage that topological data analysis is a solution looking for a
problem. This need not be the case, but it is very important that the system to be
studied is carefully considered first. After all most of the successes, but by no means
all, of our technique came from identifying which key features of the structural
chemistry to encode into our topological data analysis approach. We saw in the last
section that other descriptors that are fed the same data do pretty well, even if
persistent homology was the best model. Therefore for any further work and for all
further datasets the most pertinent task is to identify which features of the crystal
geometry are most important to the chemistry and figure out how to encode that with
topological data analysis or otherwise. For example, further work on the
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azapentacenes and polyaromatic hydrocarbons should focus on methods for encoding
the rod-like shape of these molecules as well as the precise face-to-face and
edge-to-face interactions which are most important of determining the packing class.
This may or may not involve persistent homology. The methods that will arise out of
such analysis will not only have the advantage of being more likely to be correct but
also have the advantage of being more interpretable and useful from the perspective
of a chemist.
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Iniyan Natarajan. Topological Data Analysis of Black Hole Images. Physical Review
D, 106(2):23017, July 2022. URL
https://link.aps.org/doi/10.1103/PhysRevD.106.023017.

https://proceedings.mlr.press/v70/carriere17a.html
https://doi.org/10.1073/pnas.1108486108
https://doi.org/10.1155/2015/242683
https://doi.org/10.1080/24709360.2017.1396742
https://api.semanticscholar.org/CorpusID:94406296
https://link.aps.org/doi/10.1103/PhysRevD.106.023017


BIBLIOGRAPHY 171

Yu-Min Chung, Chuan-Shen Hu, Yu-Lun Lo, and Hau-Tieng Wu. A Persistent
Homology Approach to Heart Rate Variability Analysis With an Application to
Sleep-Wake Classification. Frontiers in Physiology, 12, 2021. ISSN 1664-042X. URL
https://www.frontiersin.org/articles/10.3389/fphys.2021.637684.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of Persistence
Diagrams. Discrete and Computational Geometry, 37(1):103–120, 2007. ISSN 1432-0444.
URL https://doi.org/10.1007/s00454-006-1276-5.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20
(3):273–297, 1995. ISSN 1573-0565. URL https://doi.org/10.1007/BF00994018.

James Damewood, Jessica Karaguesian, Jaclyn R. Lunger, Aik Rui Tan, Mingrou Xie,
Jiayu Peng, and Rafael Gómez-Bombarelli. Representations of Materials for
Machine Learning. Annual Review of Materials Research, 53:399–426, 2023. ISSN
1545-4118. URL https://www.annualreviews.org/content/journals/10.1146/

annurev-matsci-080921-085947.

Ian Dance. Distance Criteria for Crystal Packing Analysis of Supramolecular Motifs.
New Journal of Chemistry, 27(1):22–27, 2003.

G M Day, W D S. Motherwell, and W Jones. A Strategy for Predicting the Crystal
Structures of Flexible Molecules: the Polymorphism of Phenobarbital. Physical
Chemistry Chemical Physics, 9(14):1693–1704, 2007. URL
http://dx.doi.org/10.1039/B612190J.

Graeme M Day. Current Approaches to Predicting Molecular Organic Crystal
Structures. Crystallography Reviews, 17(1):3–52, 2011. URL
https://doi.org/10.1080/0889311X.2010.517526.

Sandip De, Felix Musil, Teresa Ingram, Carsten Baldauf, and Michele Ceriotti.
Mapping and Classifying Molecules from a High-Throughput Structural Database.
Journal of Cheminformatics, 9(1):6, 2017. ISSN 1758-2946. URL
https://doi.org/10.1186/s13321-017-0192-4.

Carlos Manuel de Armas-Morejón, Luis A Montero-Cabrera, Angel Rubio, and
Joaquim Jornet-Somoza. Electronic Descriptors for Supervised Spectroscopic
Predictions. Journal of Chemical Theory and Computation, 19(6):1818–1826, March
2023. ISSN 1549-9626 (Electronic).

G R Desiraju and A Gavezzotti. Crystal Structures of Polynuclear Aromatic
Hydrocarbons. Classification, Rationalization and Prediction from Molecular
Structure. Acta Crystallographica Section B, 45(5):473–482, October 1989a. ISSN
0108-7681. URL https://doi.org/10.1107/S0108768189003794.

https://www.frontiersin.org/articles/10.3389/fphys.2021.637684
https://doi.org/10.1007/s00454-006-1276-5
https://doi.org/10.1007/BF00994018
https://www.annualreviews.org/content/journals/10.1146/annurev-matsci-080921-085947
https://www.annualreviews.org/content/journals/10.1146/annurev-matsci-080921-085947
http://dx.doi.org/10.1039/B612190J
https://doi.org/10.1080/0889311X.2010.517526
https://doi.org/10.1186/s13321-017-0192-4
https://doi.org/10.1107/S0108768189003794


172 BIBLIOGRAPHY

Gautam R Desiraju. Approaches to Crystal Structure Landscape Exploration. Acta
Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 73(5):
775–778, 2017.

Gautam R Desiraju and A Gavezzotti. From Molecular to Crystal Structure;
Polynuclear Aromatic Hydrocarbons. Journal of the Chemical Society, Chemical
Communications, (10):621–623, 1989b. ISSN 0022-4936. URL
http://dx.doi.org/10.1039/C39890000621.

Barbara Di Fabio and Massimo Ferri. Comparing Persistence Diagrams Through
Complex Vectors. In Vittorio Murino and Enrico Puppo, editors, Image Analysis and
Processing - ICIAP 2015, pages 294–305, Genova, Italy, 2015. Springer International
Publishing. ISBN 978-3-319-23231-7.

Alex Diaz-Papkovich, Luke Anderson-Trocmé, and Simon Gravel. A Review of
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