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Abstract
Combinations of X-ray Computed Tomography (XCT) scan times, from 30 s to 60 min, and voxel sizes, from 6 to 50 µm,
were investigated for their effect on the porosity measurements of a unidirectional carbon fibre epoxy composite volume.
The sample had a total void volume of around 2%, which is typical of the tolerance expected in the aerospace industry. The
volume contained localised voids that create sub-volumes with representative high (5%) and low (1%) porosity regions. The
ability to detect small-size voids in the lower porosity regions decreased as the voxel size increased. Scan resolutions above
25 µm resulted in a coarser segmentation and overestimation of the porosity due to the presence of partial volume effects.
Scan times shorter than 2 min resulted in noisy images, requiring aggressive filtering that affected the segmentation of voids.
Porosity segmentation was performed by thresholding and Deep Learning methods. Deep Learning segmentation was
found to recognise noise better, providing more consistent and cleaner segmented data than thresholding. To capture
micro-voids that contribute to porosity levels at the typical aerospace tolerance of 2%, scan parameters with a voxel size
equal to or smaller than 25 µm, scan times of 2 to 8 min, and deep learning segmentation were found to be the most
promising. These shorter scan times can be used to increase the productivity of CT scanning for porosity or observing
time-resolved events. The data provided here contributes to the body of knowledge studying X-ray hardware settings and
optimising image segmentation.
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Introduction

X-ray computed tomography (XCT) has emerged as a
critical imaging tool to characterise the microstructure of
composites.1,2 In this non-destructive testing technique, a
sample is placed between an X-ray source and a detector. As
the sample rotates during the scan, a set number of pro-
jections are generated at different angles. This collection of
projections serves as the input data for a given recon-
struction algorithm, such as Filtered Back Projection
(FBP),3 that will ultimately provide an approximate den-
siometric representation of the sample, which can then be
visualised as 2D and 3D images of the underlying micro-
structure. Each voxel (i.e. a 3D pixel) within the resulting
3D images has an intensity level related to the material
density via the linear attenuation coefficient (µ), which also
depends on the atomic number of each of the individual
elements as well as the energy of the incident photons.2,4 In
keeping with conventions of medical imaging, materials

with higher X-ray attenuation are commonly displayed as
brighter voxels, whereas darker voxels will represent ma-
terials with a lower density.4 The contrast between voids and
the composite constituents make XCTan excellent option to
characterise porosity.

The ability of laboratory-based XCT to provide infor-
mation from the 3D internal structure of composite samples
has allowed the investigation of different aspects of the
microstructure,5–7 manufacturing process8–10 and damage
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characterisation.11,12 Each aspect requires careful selection
of the XCT parameters for the particular CT system, such as
magnification, exposure time, number of projections, tube
accelerating voltage and power, in order to optimise the data
visualisation and subsequent analysis. The scan settings are
often prescribed by the operator based on their experience.

Time-resolved XCT is particularly sensitive to the pa-
rameter selection. Short scan times may be essential for
dynamic processes, and high resolution is required to op-
timise the number of states of the microstructure captured
throughout the cycle and enable visualisation of the smallest
feature of interest. A recent example of time-resolved in-situ
XCT of composites manufacturing was used to observe the
consolidation of lay-up gaps and porosity development
during the cure cycle using a resolution of 13.5 µm/voxel
and a scan time of 7 min.8 If the scan time constraint was
removed, a different selection of XCT parameters would
allow for longer and higher-quality scans through improved
spatial resolution and/or improved contrast to noise ratio,
providing a more detailed characterisation of the micro-
structure. For example, a scan time of 45 min and a reso-
lution of 6.56 µm/voxel was selected byMehdikhani et al. to
analyse the void distribution in cured composite laminates
with different stacking configurations.5

Given that porosity is one of the main manufacturing
features occurring within composite laminates, either in the
form of entrapped air or because of moisture or volatiles
release, it has been studied using a wide range of XCT
parameters. The resulting accuracy of the porosity assess-
ment will of course depend on factors ranging from the scan
settings (e.g. magnification or number of projections), to the
XCT reconstruction method (e.g. FBP or iterative methods,
including selection of artefact reduction strategies), and to the
final image processing and feature extraction techniques.13

Additionally, morphological features of the porosity, such as
the shape factor of voids14 and the scale of the dominant void
size (e.g., micro-voids, macro-voids a combination of
both),15,16 also play an important role in the segmentation
outcome. Whilst there are clearly many variables/variations
possible in this overall process of extracting porosity values,
the effect of the voxel size can be seen to be critical. For
example, Kiefel et al. report that using a 120 µm voxel
resolution doubled the porosity estimation provided by a
5.25 µm voxel size in cured composite samples.15 Decreasing
spatial resolution will hamper accurate visualisation and
segmentation of smaller voids, compromising the void dis-
tribution measurement.6,16 Reducing resolution also intro-
duces partial volumes effects that influence the segmentation
accuracy of the micro and macro-voids.17

Reducing the scan time is an additional challenge related
not only to the analysis of time-resolved processes but also
impacting the efficiency and throughput of any XCT ses-
sion. A comprehensive review of the use of high-speed lab-
based XCT in a range of applications has been reported by

Zwanenburg et al., who discuss different approaches and
best practices to reduce scan time, such as maximising the
power until the spot size reaches the voxel size or combining
radiographic information from multiple projection image
pixels (binning), and their effects on the image quality.18

While it is generally accepted that longer scan times lead to
better quality images, the effect of the scan time on the
porosity evaluation in cured composite samples remains an
open question.

In most contexts where XCT is used, there is a wide
choice of scanning and processing parameters that can
substantially affect the final microstructural analysis. In this
study, a systematic approach was taken to identify howXCT
scan parameters influence the measured porosity in high-
performance laminated composites. An advanced Deep
Learning approach to image segmentation was used to
delineate and quantify the influence of commonly en-
countered experimental choices in this key composite
measurement technique. The results can be used to shorten
scanning time using relatively common and widely avail-
able XCT hardware.

Methodology

Sample preparation

The material used in this study was Hexcel M56/35%/
UD268/IM7-12K, which is a carbon fibre epoxy prepreg,
representative of the advanced composite materials used by
the aerospace industry. Processing was carried out to obtain
a sample with a void size and distribution comparable to
those reported in the existing literature.5,7,15 Initially a 4-ply
0° laminate with dimensions of 100 mm × 100 mmwas laid-
up by hand and consolidated under vacuum for 10 min at
ambient temperature (20 ± 1°C). The lay-up procedure was
repeated until 28 layers were deposited and then the lam-
inate was consolidated under vacuum for 4 h at ambient
temperature (20 ± 1°C). The curing cycle consisted of a 1°C/
min ramp to 150°C, followed by a 4 h isothermal dwell at
150°C. No consolidation pressure was applied during the
curing cycle. A sample of 7.5 mm × 7.5 mm × 100 mm was
cut from the centre of the laminate, with the 0° fibres parallel
to the long edge.

X-ray computed tomography

The test sample was scanned at the µ-VIS Imaging Centre at
the University of Southampton. A lab-based Nikon 225/
450 kVp CT-Scan equipped with a 225 kVp X-ray source
and a Perkin Elmer 1621 X-ray detector of 2048 ×
2048 pixels with a pixel size of 200 µm was used. This
hardware is widely available and representative of lab-based
X-ray scanners. A picture of the XCT scanning set-up is
shown in Figure 1.
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All measurement systems require some sort of assess-
ment of their resolution and noise. Prior to starting the set of
scans for each resolution, the XCT machine geometry was
verified by scanning contacting ruby spheres (6 mm di-
ameter) placed in a custom holder that was mounted on top
of the sample. Voxel size verification was also performed.
Details of the system verification results are provided in
Appendix A of the supplementary information.

The proposed selection of the XCT parameters includes
scanning of the sample at four voxel resolutions (6, 15,
25 and 50 µm) and at six scan times (0.5, 1, 2, 4, 8 and
60 min) for each resolution. Additional scans were per-
formed at 6 µm for 120 min and 420 min to assess the
system baseline signal-to-noise ratio. In total, 26 scans were
performed and the full text matrix is shown in Table 1.

The choice of resolution and scan time was based on the
physical limitations of the XCT hardware, which can reach a
minimum scan time of 30 s and a maximum resolution of
6 µm for the chosen sample dimensions. With regards to
resolution, 15 µm was selected as it is comparable to the
voxel size previously used in the literature,6,8 50 µm was set
to match the size of the smallest feature of interest, and
25 µm was chosen as a midpoint with a bias towards the
resolutions used in literature. Regarding the scan times, 1, 2,
4 and 8 min were chosen as realistic scan times used to
capture time-resolved processes, and 60 min is the ap-
proximate duration of a scan aiming to characterise porosity
in composite samples.5,19

In keeping with XCT manufacturer supplied data, X-ray
power settings were linearly-scaled such that source spot
size and voxel size are approximately equal. In addition, for

each resolution the power was set so that the spot size
matches the voxel size, and the scan time was adjusted via
the variation of the frames per projection while the exposure
and the gain remained constant. At low power settings,
using slightly higher power than the pixel resolution is often
done to get an increased signal to noise ratio, which gives
more benefit to the end reconstruction. Trials with a Sie-
mens star linear target were done to confirm that 6 µm
resolution was achieved at 10 W with an increased signal to
noise ratio. Radiographs of the linear target scanned at 6 and
10 W are available in Appendix A of the supplementary
information.

Image processing

Each scan was reconstructed by FBP using Nikon CT Pro,
generating a 3D image of 2000 × 2000 × 2000 greyscale
voxels and then followed the image processing workflow
shown in Figure 2. A central sub-volume of 6 mm × 6 mm ×
6 mm was extracted from all the scans after rotating and
cropping the initial volume. The resulting sub-volumes
were converted to 8-bit to reduce computational costs.
Special attention was taken to always select the same sub-
volume in all the scans. It is worth noting that the number of
voxels contained in each of the scans differ due to the
difference in resolution. Therefore, the resulting volume of
6 mm × 6 mm × 6 mm is equivalent to a volume of 1000 ×
1000 × 1000, 400 × 400 × 400, 240 × 240 × 240 and 120 ×
120 × 120 voxels for the 6, 15, 25 and 50 µm scans,
respectively.

Figure 1. XCT experimental setup.
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Scan assessment. Since the raw scans were performed under
different hardware settings, a difference in their overall
quality was observed upon initial inspection. The effect of
image processing the raw scans is shown in Figure 3. A
three-step image processing routine was implemented in

Python 3.6 and Fiji (ImageJ) to facilitate the subsequent
feature segmentation and analysis.

The first step was to normalise the CT data so that the
intensities representing both the composite and voids (air)
phases are similar across all the scans.20 The grey values

Table 1. CT Parameters selection.

Resolution (µm) Scan time (min) Exposure (ms) Projections Frames per projection Power (W) Voltage (kV)

6 420 (baseline) 500 3143 16 10 160
0.5 354 85 1 6 160
1 170 1
2 340 1
4 680 1
8 1360 1
60 5000 2
120 5000 4

15 0.5 177 170 1 14 160
1 340 1
2 680 1
4 1360 1
8 2720 1
60 5000 4

25 0.5 177 170 1 26 160
1 340 1
2 680 1
4 1360 1
8 2720 1
60 5000 4

50 0.5 177 170 1 50 160
1 340 1
2 680 1
4 1360 1
8 2720 1
60 5000 4

Figure 2. Image segmentation workflow, comprising the data acquisition (blue), image pre-processing (red), segmentation (green) and
porosity evaluation (grey).
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Figure 3. Image pre-processing and segmentation steps for the scans at the different voxel sizes and a constant scan time of 2 min.

Figure 4. Baseline scan and ROI location in the greyscale (a) and segmented mask using DL (b). ROI 1 and ROI 2 are displayed in red and
yellow, respectively.
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corresponding to both phases in the baseline scan were
taken as a reference, by extracting the mean grey value in
two regions containing exclusively voids or composite. The
grey values for both phases were then extracted from the
other the scans in the same regions as in the reference scan.
The greyscale intensities were normalised with respect to
the reference grey values for each scan.

The second step was to denoise the scan.21 Denoising
was done using a Gaussian denoise filter of variable size,
depending on the quality of the input scan. This special case

of mean filter22 was successfully used for the denoising of
CT data of composite materials in previous studies6,23,24 and
was applied in this study throughout the plugin “3D
Gaussian Blur 3D” available in Fiji. However, the appli-
cation of a denoise filter generates a smoothing of the image,
which limits the detection of the smallest features. For this
reason, a visual verification was needed to complement the
selection of the filter for each scan. Details of the scan
denoise and the filter selection is described in Appendix B
of the Supplementary Information.

The third and final step was stretching the histogram
from the lowest and highest greyscale values to 0 and 255.
In this study, 0.3% of voxels were assigned as saturated
values. The aim of this step was to facilitate the visual
identification of the features of interest (voids) in the
subsequent stages of the image processing methodology.

Porosity segmentation. Deep Learning (DL) semantic seg-
mentation, where each pixel in the image is associated to a
pre-defined class label, was applied to segment the porosity
in each scan. In this study, the DL models are implemented
using Convolutional Neural Networks (CNN).25 A typical
CNN contains millions of trainable parameters (or weights)
and learns to identify the features of interest in a set of raw
images throughout an iterative process as it is exposed to the
associated reference images. The weights are automatically
adjusted to reduce the error between the model predictions
and the reference data values during training.26 Once the DL
model is trained it can segment the same features in new,
previously unseen data.

U-Net27 was the chosen CNN architecture and was
implemented in Python 3.6 and Tensorflow 2.5.28 The
U-Net architecture has been shown to outperform standard
thresholding approaches (e.g., ISO-50%,29 local minima
threshold,30 or manual threshold10) to segment porosity in
X-ray CT images19 and optical micrographs.31 To confirm
that DL was suitable to segment the XCT data collected
here, segmentation by thresholding was also considered,
and the results presented and discussed in Appendix C of the
Supplementary Information. From the analysis, the DL
segmentation approach was found to recognise noise better,
in line with the observations made in.32 Since DL provides
more consistent and cleaner segmented data than thresh-
olding, DL was chosen to assess porosity in this study.

A DLmodel was trained for each resolution by using two
2D slices from each of the scans performed at the given
resolution. In total, four DL models were trained and ap-
plied to the semantic segmentation of voids in their re-
spective set of scans. Training DL models with 2D images
despite being applied to the segmentation of 3D data is a
standard approach in image analysis of CT data of com-
posite material33,34 and allows a substantial reduction of the
computational effort while having a negligeable effect on
the segmentation performance.35,36 Further details of the

Figure 5. Porosity characterisation for each scan after DL
segmentation. The horizontal black line marks the porosity
characterisation for the baseline scan after DL segmentation.
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DL training procedure is described in Appendix D of the
Supplementary Information.

Porosity assessment. Following the segmentation of the
voids in the set of scans, the porosity was initially char-
acterised in the entire segmented volume (6 mm × 6 mm ×
6 mm) using the Fiji plugin BoneJ, which implements an
optimised “3D Connected Components Labelling” algo-
rithm.37 To reduce the impact of noise in the segmentation
results, only objects containing three or more voxels are
considered. Additionally, two 2D Regions of Interest (ROI)
with dimensions 3 mm × 0.67 mm were selected in the
central slice of the entire volume in the baseline scan, as

shown in Figure 4. The two ROIs contain different levels of
voids that are representative of high porosity (ROI 1) and
low porosity (ROI 2) that need to be detected in high-
performance composite laminates, such as those used in
aerospace applications. Additionally, ROI 1 is characterised
by visually larger and irregular meso-pores, while small and
needle-shape interlaminar voids are predominant in ROI 2.
The ROI dimensions were chosen so that each ROI contains
enough void instances of objects within a representative size
range to enable general observations. Furthermore, the same
dimensions were selected for both ROIs so that consistent
comparisons can be made. All values of porosity were
calculated in volume percentage (vol.-%).

Figure 6. Greyscale scans (top) and segmentation (bottom) of scans at different resolutions and scan times. Red arrows point to
examples of objects identified as noise.

Figure 7. 3D void distribution in the baseline scan. Front view (a) and perspective view (b). 3D renderings were generated with
Dragonfly® 2021.3.1.38
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Results

Entire scan porosity assessment

The quantitative characterisation by DL of the porosity in
the scans is summarised in Figure 5 and selected seg-
mentations are presented in Figure 6.

Of the scans performed at a resolution of 6 µm, the
porosity, void volume and void count seem to converge
towards a relatively constant value for scans lasting 8 min or
longer. The signal-to-noise of this XCT system cannot get

any better. Therefore, the scan at a resolution of 6 µm lasting
420 min is defined as the baseline for this study.

The baseline scan showed a porosity of 2.18%, with an
average void volume of 1.19 × 106 µm3 and a void count
of 3976. As resolution decreased from 6 µm to 50 µm, a
larger total void content is generally returned, although
the number of voids counted is dramatically reduced with
smaller voids no longer being detected as fewer voxels
cover the scan volume. The fastest scans performed at
6 µm were seen to underestimate the porosity, specifically
the 30 s (1.44%) and 1 min (1.92%) scan times. These
short scans only capture a few of the large voids and miss
most of the medium and small-sized voids, as can be seen
in Figure 6.

The scans carried out at 15 µm report a similar porosity
level, with an average value of 2.53 ± 0.23%. Increasing
the scan time increases the average void volume, from
9.23 × 105 µm3 (30 s scan) to 2.54 × 106 µm3 (60 min
scan), together with a decrease of the void counts, from
5124 to 2286. This result implies that as scan time in-
creases, the void segmentation also improves, and there-
fore a lower amount of noise is captured. Noise can be
observed through inspection of the segmented scans
shown in Figure 6, where small objects have been seg-
mented but do not match to any of the actual voids existing
in the XCT images.

As the voxel size continues to increase, fewer voxels are
included in the scan volume. At 25 µm, the equivalent
voxel volume is 240 × 240 × 240, which represents a
decrease of 72 times compared to the number of voxels in
the volume at 6 µm. As noted above, scans at this lower
spatial resolution yield a higher apparent porosity content
on average than at 15 µm. As the scan time increases, the
porosity overestimation also increases, with the lower
value provided by the scans done at 30 s (2.25%) and the
highest porosity (3.44%) reported at a scan time of 60 min.
This increase in the porosity values is accompanied by an
increase in the average void volume and a decrease of the
void count, due to the reduction of noise because of longer
exposure times (i.e., fewer noise-related features being
identified as voids).

A substantial overestimation of the porosity is observed
in the scans performed at 50 µm, regardless of the scan
time. Furthermore, at a resolution of 50 µm, small voids,
otherwise captured at other voxel sizes, are completely
missed. This effect can be observed in the segmentation of
the 4-min scan shown in Figure 6. At 50 µm resolution, a
volume of 120 × 120 × 120 voxels is used to represent the
scan volume, therefore a single voxel at 50 µm captures a
volume approximately six hundred times larger than a
voxel at 6 µm. The void count again decreases with the
scan time, whereas the average void volume steadily in-
creases and reaches a value of 3.13 × 107 µm3 for the
60 min scan.

Figure 8. Porosity characterization in ROI 1. The horizontal
black line marks the baseline scan.
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Finally, the 3D rendering of the baseline scan is presented
in Figure 7. Flat and elongated voids, as well as needle-
shaped voids, are predominant in the volume. It is worth
noting that although void segmentation was performed in

each of the 2D slices of the 3D volume, continuity in the
segmentation of voids spanning several slices is observed and
confirms the suitability of the strategy used for the training of
the DL model and subsequent scan segmentation.

Figure 9. Segmentation of the voids in the ROI 1. The red contour marks the segmented voids overlapped to the greyscale image.

Galvez-Hernandez et al. 4543



Regions of interest

The effect of XCT scan resolution and scan time on void
detection are analysed in the two ROIs, which contain
different void distributions.

ROI 1. ROI 1 returns a baseline porosity of 4.95%, con-
taining 16 small and medium-sized segmented voids, with
an average void surface of 6178.5 µm2. The porosity
characterisation provided by the set of scans is displayed in
Figure 8.

All scans were able to capture the larger voids located at
the mid-plane of the ROI, as shown in Figure 9. However,
the accuracy of the void segmentation, with respect to the
baseline scan, is highly influenced by the CT parameters
selection. Two trends can be recognised from a visual and
quantitative analysis standpoint: as the scan time increases
for a given resolution the number of voids as well as the
segmentation precision increases. For instance, the 30 s scan
at 6 µm resolution provides an estimated porosity of 5.41%,
just 9% higher than the baseline value. However, only six
voids are captured, as the smallest voids are missed whilst
the average void surface was reported to be 191% higher
(18,030 µm2 vs 6178.5 µm2). At 120 min, the porosity
(5.02%) and the average surface (6688.8 µm2) become
closer to the baseline value and a higher number of voids are
captured (15 counts), resulting in a more accurate seg-
mentation. This trend was also observed for the 15 µm,
25 µm and 50 µm resolutions.

The images in Figure 9 highlight the effect of increased
the voxel size. Lower voxel sizes, such as 6 µm or 15 µm
provides a finer segmentation of the voids compared to
25 µm and 50 µm. This effect is underscored by the red
contour showing the overlap between the segmented mask
and the surrounding material in Figure 9. At high resolu-
tions, or lower voxel sizes, the contour appears to closely
follow the void edges, providing a high level of detail.
However, as the voxel size increases, the level of detail
decreases, the red contour becomes coarser and the seg-
mentation accuracy decreases. Additionally, owing to the
loss of segmentation accuracy related to a resolution and/or
scan time reduction, two neighbouring and elongated voids
located at the left-hand side of the baseline ROI are seg-
mented as a single large void in certain scans. This effect
correlates to the quantitative overestimation of the maxi-
mum void width observed in Figure 8.

ROI 2. This ROI contains a baseline porosity of 0.96% and
includes 19 small-sized voids. The average void surface was
1011.8 µm2. The quantitative analysis of the porosity char-
acterisation estimated for each scan is presented in Figure 10.

The effect of reducing the scan time on the segmentation
of such small voids is that the shortest scan times of 30 s
completely miss the voids for resolutions of 6 µm and

15 µm microns. Void segmentation in the 25 µm and 50 µm
resolution scans is inadequate for high-performance com-
posites. Most of the scan times shorter than 2 min display a
high level of noise represented by a strong fluctuation of the
grey level intensity in the entire ROI. The presence of noise
and the subsequent use of denoise filters to smooth the
image affect the identification and segmentation of small
voids in these scans.

As the scan time increases, a higher portion of voids is
captured for each resolution. The closest value to the

Figure 10. Porosity characterization in ROI 2. The horizontal
black line marks the baseline scan.
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baseline porosity is provided by the 8 min scan at 6 µm
(1%), driven by an overestimation of the voids surface since
only 13 voids are captured. The 60 and 120 min scans at
6 µm achieve a relative porosity error of only 4.46% and
7.7%, while providing the closest number of void counts
and a void segmentation closer to the baseline.

The porosity estimation sharply decreases at 6 µm (30 s
and 1 min) and 15 µm (30 s), when compared to the baseline
results, as these scan setting are unable to capture any
porosity. At these short scan times, either the smaller voids
were not captured due to the quality of the 3D image, or their
presence has been partially removed by the filtering effect.

Figure 11. Segmentation of the voids in the ROI 2. The red contour marks the segmented voids overlapped to the greyscale image.
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As the scan time increases, the use of a denoise filter was not
deemed necessary due to the improvement of the quality of
the raw scans and therefore, the information regarding small
voids was preserved.

The largest overestimation of porosity was seen in the
60 min scan at 25 µm, as the estimated voidage level is
140% higher than the reference value. However, from visual
assessment of the qualitative results (Figure 11), a relative
high number of voids, with a reasonably high segmentation
accuracy, are captured. The reason between the mismatch
between the quantitative and qualitative results resides in
the overestimation of the void volume for each of the voids
caused by a coarser segmentation compared to a finer
segmentation provided by lower voxel sizes. As a result,
since a single voxel at 25 µm occupies a surface of 625 µm2,
any additional voxel segmented as a void has an impact
which is 17 times larger than it has at 6 µm for a ROI surface
of 2 mm2.

At 50 µm the surface covered by a single voxel is
2.5 times larger than the average void surface (2500 µm2 vs
1011.8 µm2) and therefore a large inaccuracy in the de-
tection of voids was observed, resulting in an underesti-
mation of the number of voids for all scans as well as a loss in
the precision of the segmentation. This effect is illustrated by
the average surface obtained by the scans performed at 1, 2,
4 and 8 min, where a single void was segmented and with a
surface of 7500 µm2, 2500 µm2, 10,000 µm2 and 5000 µm2,
respectively.

Discussion

The results confirm literature reports that the selection of
XCT scan conditions have a strong effect on the porosity
estimation relevant to composite laminates. The biggest
discrepancies in terms of porosity values were found in the
scans at 50 µm (Figure 5), where an overestimation of the
porosity by more than 80% was observed at the longest scan
time, in line with the results generated in previous studies.15

The scans carried out at 6 µm showed a degree of con-
sistency and convergence with increasing scan time, with
the shortest scan showing the biggest deviation with respect
to the baseline values. At 15 µm, most of the scans show a
constant overestimation of the porosity, whereas increasing

the scan time above the 4 min threshold at 25 µm, increases
the porosity as bigger voids are overestimated.

A closer inspection of the Regions of Interest containing
high (ROI 1), and low (ROI 2) porosity allows a detailed
analysis of the effect of the CT parameters in such areas and
the impact of the void morphology and size in the seg-
mentation performance.17 Short scan times (equal or less
than 2 min) were found to detect relatively large voids
(>300 µm width), whereas it hampered the segmentation of
the voids with a width smaller than 100 µm. The presence of
noise in shorter scan times made segmentation of smaller
voids difficult.

Larger voids (>300 µm width) are captured by all scan
times at any resolution. However, the segmented void
volume has shown a substantial sensitivity to the choice of
resolution. It was noted that at high voxel sizes, particularly
at 50 µm, the overestimation of porosity is mainly driven by
the partial volume effect,39,40 occurring when two or more
phases, with different densities, are captured by a single
voxel. Therefore, the resulting voxel intensity is related to
the weight average of the attenuations of each of the
constituent materials. The effect of this feature in the po-
rosity assessment is exaggerated by the coarse segmentation
of the voids at low resolutions, compared to the results
produced at smaller voxel sizes. A similar effect was
reported in.41

The presence of partial volume effects dominated the
segmentation of voids at the 50 µm scan resolution, as
observed in Figure 9. The comparison of a single raw and
segmented void in the baseline and in the 60-min scan at
50 µm is illustrated in Figure 12. This void occupies a
surface of 2.96 × 104 µm2 (824 voxels) and displays a finer
segmentation in the baseline scan, whereas a highly pixe-
lated void, covering a surface of 6.5 × 104 µm2 with only
26 voxels is obtained at 50 µm. The decrease in the res-
olution and the partial volume effects entails a coarser
segmentation and the void volume overestimation.

Conclusion

The influence of XCT scan parameters on the porosity
evaluation in composite laminates was analysed by scan-
ning a cured composite sample in 26 different combinations
of resolution and scan time. The data was collected using a

Figure 12. Effect of scan resolution on the void volume greyscale image and segmentation of the same void in the baseline scan at 6 µm
(a) and in the 60-min scan at a voxel size of 50 µm (b). Both segmentation masks are overlapped to the void in the baseline scan (c).
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conventional laboratory-based XCT measurement system
that was suitably cross-checked, as described in the sup-
plementary information Appendix A.

Higher resolution and longer scan times were observed to
provide better quality images for porosity segmentation due to
a reduction in noise. Shorter scan times at high resolution
require relatively aggressive filters to reduce the effects of
noise, and as a consequence, distort the image and remove
information associated with small-sized voids. The resolution
decrease involves a reduction in the severity of the noise as
more X-ray counts are captured in the same volume of ma-
terial, but the use of filters was still deemed necessary for
certain scans. It has been observed that an increase of the voxel
size entails a porosity overestimation mainly driven by the
presence of partial volume effects, which reduces the seg-
mentation accuracy because of the loss of detail.

Deep Learning and thresholding segmentation were used to
analyse the porosity level within reconstructed XCT data. Both
Deep Learning and thresholding work well for datasets having
a high signal to noise ratio. Deep Learning was found to
increase the probability of detecting true porosity data in lower
quality (i.e. noisier) scans (e.g. those performed in 1 to 8 min)
by capturing a wider range of void sizes and limiting the
porosity overestimation induced by the partial volume effects.
However, Deep Learning is limited by the quality of the data in
the training set, therefore the important influence of scan time
on the resulting signal to noise is better quantified in this study.
These results can be used to increase the capacity of XCT
systems, reduces single scan costs, and open opportunities to
observe time-resolved events.
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