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Abstract 31 

Background: Here, we introduce a novel set of triple-negative breast cancer 32 

(TNBC) cell lines consisting of MDA-MB-468, HCC38, and HCC1806 and their 33 

sublines adapted to cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, or 5-34 

fluorouracil. 35 

Methods: The cell lines were characterized by whole exome sequencing and the 36 

determination of drug-response profiles. Moreover, genes harbouring resistance-37 

associated mutations were investigated using TCGA data for potential clinical 38 

relevance. 39 

Results: Sequencing combined with TCGA-derived patient data resulted in the 40 

identification of 682 biomarker candidates in the pan-cancer analysis. Thirty-five 41 

genes were considered the most promising candidates because they harboured 42 

resistance-associated variants in at least two resistant sublines, and their expression 43 

correlated with TNBC patient survival. Exome sequencing and response profiles to 44 

cytotoxic drugs and DNA damage response inhibitors identified revealed remarkably 45 

little overlap between the resistant sublines, suggesting that each resistance 46 

formation process follows a unique route. All of the drug-resistant TNBC sublines 47 

remained sensitive or even displayed collateral sensitivity to a range of tested 48 

compounds. Cross-resistance levels were lowest for the CHK2 inhibitor CCT241533, 49 

the PLK1 inhibitor SBE13, and the RAD51 recombinase inhibitor B02, suggesting 50 

that CHK2, PLK1, and RAD51 are potential drug targets for therapy-refractory 51 

TNBC. 52 

Conclusions: We present novel preclinical models of acquired drug resistance in 53 

TNBC and many novel candidate biomarkers for further investigation. The finding 54 

that each cancer cell line adaptation process follows an unpredictable route reflects 55 
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recent findings on cancer cell evolution in patients, supporting the relevance of drug-56 

adapted cancer cell lines as preclinical models of acquired resistance. 57 

Key words 58 

Triple Negative Breast Cancer, acquired drug resistance, exome sequencing DNA 59 

repair, de novo variants, TCGA 60 

61 
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Introduction 62 

Triple-negative breast cancer (TNBC) is characterized by the absence of 63 

estrogen, progesterone, and HER2 receptors 1. TNBC is responsible for 64 

approximately 15% of breast cancer cases and is associated with a poorer prognosis 65 

than hormone receptor- or HER2-positive breast cancers 1,2. Current TNBC 66 

therapies are largely based on cytotoxic anticancer drugs, including platinum drugs, 67 

anthracyclins, eribulin, gemcitabine, paclitaxel, and 5-fluorouracil 1. TNBC often 68 

responds well initially to cytotoxic chemotherapy, but recurrence and resistance are 69 

common, eventually leading to therapy failure. This combination of an initial high 70 

response rate followed by rapid resistance is referred to as the 'TNBC paradox' 1,3. 71 

To improve TNBC therapy outcomes, new treatment approaches are needed, 72 

particularly those that are effective against treatment-refractory disease 73 

characterized by acquired resistance to cytotoxic chemotherapy. 74 

In contrast to intrinsic drug resistance (which occurs independently of therapy 75 

and is a consequence of pre-existing often stochastic events in cancer cells), 76 

acquired resistance is the direct consequence of selection and adaptation processes 77 

caused by cancer treatment (directed tumor evolution) 4–8. Understanding acquired 78 

resistance mechanisms is essential for optimizing cancer treatment for patients with 79 

therapy-refractory tumors. 80 

Drug-adapted cancer cell lines are preclinical models that have been shown 81 

to reflect clinically relevant acquired drug resistance mechanisms in numerous 82 

studies 4,9–17. Furthermore, drug-adapted cell lines enable detailed functional and 83 

systems-level studies that are not possible using clinical samples 4. 84 

Here, we introduce a novel set of three parental TNBC cell lines and their 15 85 

sublines adapted to cisplatin, doxorubicin, eribulin, gemcitabine, paclitaxel, or 5-86 
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fluorouracil. These cell lines were characterized by whole exome sequencing and the 87 

determination of response profiles to cytotoxic anti-cancer drugs and a panel of DNA 88 

damage repair inhibitors. The resulting data showed that each resistance formation 89 

process follows an individual and unpredictable route. The combined analysis of 90 

resistance-associated mutations in combination with patient data from The Cancer 91 

Genome Atlas (TCGA) 18 identified 35 novel candidate resistance biomarkers for 92 

further investigation. 93 

 94 

  95 
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Results 96 

Project cell line panel 97 

Here, we characterized a cell line panel consisting of the parental TNBC cell 98 

lines MDA-MB-468, HCC38, and HCC1806 and their sublines adapted to grow in the 99 

presence of cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, or 5-fluorouracil, 100 

which are all drugs used for the treatment of TNBC (Fig. 1A, Suppl. File 1) 19–25. The 101 

drug-resistant sublines were established by continuous exposure to stepwise 102 

increasing drug concentrations as previously described 16. All parental cell lines were 103 

initially sensitive to therapeutic concentrations of the respective drugs, as indicated 104 

by IC50 (concentration that reduces cell viability by 50%) values within the range of 105 

clinical drug plasma concentrations (Cmax) (Suppl. Fig. 1, Suppl. File 1) 26. The 106 

relative resistance factors (IC50 drug-adapted subline/ IC50 respective parental cell 107 

line) ranged from 5.5-fold (HCC38rPCL2.5) to 5916.7-fold (HCC1806rERI50) (Fig. 1B, 108 

Suppl. File 1). 109 

 110 

Characterization of the cell line panel by whole exome sequencing 111 

The cell line panel was investigated by whole exome sequencing. Among the 112 

identified variants, missense variants were most common, followed by synonymous 113 

variants (Suppl. Fig. 2A). Insertions/deletions (INDELs), frameshift mutations, stop-114 

gain, stop-loss, and splice variants were identified at lower frequencies (Suppl. Fig. 115 

2A). Between 217 (HCC38rDOX40) and 952 (HCC38rGEM20) variants differed in the 116 

drug-adapted sublines relative to the respective parental cell lines (Suppl. Fig. 2B). 117 

We grouped the resistance-associated variants into five categories (Fig. 2A, 118 

see methods): 1. Gained variants, variants only called in the drug-adapted subline 119 

but detectable at low confidence in the respective parental cell line; 2. De novo 120 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.01.20.576412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.20.576412
http://creativecommons.org/licenses/by-nc-nd/4.0/


variants, variants called in the drug-adapted subline but undetectable in the 121 

respective parental cell line; 3. Not-called variants, variants only called in the 122 

parental cell line but detectable with low confidence in the resistant subline; 4. Lost 123 

variants; variants called in the parental cell line but undetectable in the drug-adapted 124 

subline; and 5. Shared variants; variants called in both the parental and the 125 

respective drug-adapted sublines (Fig. 2A). 126 

The number of gained variants ranged from 44 (HCC38rDOX40) to 381 127 

(HCC38rGEM20), the number of de novo variants ranged from 31 (HCC38rDOX40) to 128 

225 (MDA-MB-468rPCL20), the number of not-called variants ranged from 88 129 

(HCC38rGEM20 and HCC1806rDOX12.5) to 345 (MDA-MB-468rPCL20), and the 130 

number of lost variants ranged from 129 (HCC38rGEM20) to 398 (MDA-MB-131 

468rPCL20) (Fig. 2B, Fig. 2C, Suppl. File.2 and 3). The number of shared variants 132 

that were both called in the parental cell lines and their sublines ranged from 128 133 

(MDA-MB-468rPCL20) to 368 (HCC38rGEM20) (Fig. 2D, Suppl. File 2 and 3). The 134 

number of shared variants that increased by at least two-fold in the resistant sub-135 

lines vs. the respective parental ranged from four (HCC1806r5-F1500) to 21 (MDA-136 

MB-468rCDDP1000), whilst the number of shared variants that decreased by at least 137 

two-fold ranged from two (MDA-MB-468rPCL20) to 24 (HCC38rGEM20) (Fig. 2E, 138 

Suppl. File 2). 139 

 140 

Analysis of the distribution of de novo variants 141 

To identify variants that may have a functional role in drug resistance, we 142 

initially considered the 81 genes that harbored de novo variants in at least two 143 

different sublines from more than one parental cell line (Fig. 3A, Suppl. File 4). This 144 

list included 46 genes that have already been reported to be involved in drug 145 
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resistance in cancer and 33 new candidate genes with a possible role in drug 146 

resistance (Fig. 3A, Suppl. File 4). Notably, 24 of the 33 new candidate genes are 147 

reported to be relevant in cancer (Fig. 3A, Suppl. File 4). 148 

Four of the five genes with the greatest number of de novo variants in the 149 

drug-adapted sublines were mucin (MUC) genes. MUC6 had de novo variants in 15 150 

sublines, MUC2 in 14 sublines, MUC4 in 13 sublines, and MUC16 in nine sublines 151 

(Fig. 3A, Suppl. File 4). The MUC genes are large genes that are known to be 152 

commonly mutated in cancer and have been reported to be involved in cancer cell 153 

drug resistance 27–31. De novo mutations in CDC27, which has also been linked to 154 

drug resistance in cancer, were also detected in nine drug-resistant sublines 32,33 155 

(Fig. 3A, Suppl. File 4). 156 

GXYLT1, KRTAP4-11, and RGPD4 were amongst those genes, which had 157 

not previously been associated with drug resistance in cancer that displayed de novo 158 

mutations in a high number (7) of drug-resistant sublines (Fig. 3A, Suppl. File 4). A 159 

GXYLT1 mutation promoted metastasis in colorectal cancer through MAPK 160 

signalling, a pathway known to confer resistance to a range of anti-cancer drugs 34–161 

37. RGPD4 mutations are correlated with vascular invasion in HBV-associated 162 

hepatocellular carcinoma, and it is known that there is an overlap between pro-163 

angiogenic, pro-metastatic, and resistance-associated signalling in cancer 35,38. 164 

There is no known link between KRTAP4-11 and cancer, but KRTAP4-11 expression 165 

levels have been reported to predict the methotrexate response in rheumatoid 166 

arthritis patients 38. Hence, it seems plausible that the products of these genes may 167 

be involved in cancer cell drug resistance. 168 

Taken together, our analysis identified 48 genes known to be involved in 169 

cancer cell drug resistance alongside 33 novel candidates potentially contributing to 170 
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therapy failure. Further research will be required to characterize the roles of these 171 

individual genes in detail. 172 

When we compared the overlaps between de novo variants shared between 173 

sublines adapted to the same drug, the numbers were too small to draw any 174 

meaningful conclusions (Fig. 3B, Suppl. Fig. 3A). 175 

Notably, de novo variants in drug-resistant sublines may not always represent 176 

actual novel variants that are selected because they contribute to cancer cell 177 

resistance. Many apparent de novo mutations may have already been present in a 178 

small fraction of the cells of the parental cell line but may not have been detected 179 

due to the sequencing depth. Hence, overlaps in de novo variants between sublines 180 

of the same parental cell line can also be used to indicate the levels of relatedness 181 

between the founding subpopulations of the different resistant sublines. 182 

Analysis of the de novo variants shared between the sublines from the same 183 

parental cell line indicated the largest overlap. On average, there was a 22.6% 184 

overlap among the HCC1806 sublines, followed by a 15.0% overlap among the 185 

HCC38 sublines and a 7.7% overlap among the MDA-MB-468 sublines (Fig. 3C). 186 

However, there were also noticeable differences in the overlaps between de novo 187 

variants identified in each of the sublines from the same parental cell line. For 188 

example, only three de novo variants were shared between HCC38rCDDP3000 (out of 189 

98 in total, 3.1%) and HCC38rPCL2.5 (out of 92 in total, 3.3%), while 53 variants were 190 

shared between HCC38rERI10 (out of 131 in total, 40.5%) and HCC38rGEM20 (out of 191 

203 in total, 26.1%) (Fig. 3C, Suppl. Fig. 3B). These numbers suggest that there are 192 

no pre-existing cell line subpopulations that are consistently selected in response to 193 

anti-cancer drug treatment. 194 

 195 
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Protein functions related to variants that changed in drug-resistant sublines 196 

Next, we used the Gene Ontology (GO) annotation to perform an analysis of 197 

the protein functions associated with genes present in the de novo, gained, not 198 

called, and lost variant sets as well as shared variants with a two-fold increase or 199 

decrease in allele frequency (Suppl. Fig 4A, B). 200 

There was limited overlap between the GO terms for the variants detected in 201 

the sublines adapted to the same drug (Suppl. Fig. 4C, E). The extracellular matrix-202 

related GO terms ‘extracellular matrix constituent lubricant activity’, ‘extracellular 203 

matrix’, and ‘maintenance of gastrointestinal epithelium’ were most common, which 204 

reflects the high number of variants observed in the mucin genes (Suppl. Fig. 4C, E). 205 

GO term analysis of the sublines from the same parental cell line revealed 206 

very similar results, again revealing an overrepresentation of extracellular matrix-207 

related GO terms (Suppl. Fig. 4D, F). Further research will be required to investigate 208 

the potential role of mucins and the extracellular matrix in acquired drug resistance in 209 

TNBC cells. 210 

 211 

Potential clinical relevance of selected variants 212 

The potential clinical relevance of genes harboring de novo, gained, and 213 

shared variants with a two-fold increase in allele frequency in the resistant subline as 214 

well as genes harboring truncating variants was analysed using patient data derived 215 

from The Cancer Genome Atlas (TCGA) 39. Notably, there were only data available 216 

from patients treated with cisplatin, doxorubicin, gemcitabine, paclitaxel, and/or 5-217 

fluorouracil, but no data on eribulin treatment were available. 218 

We performed two analyses, one pan-cancer analysis, in which we 219 

considered all patient survival data available for the drugs, and a second analysis, in 220 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.01.20.576412doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.20.576412
http://creativecommons.org/licenses/by-nc-nd/4.0/


which we considered TNBC patients and for which only doxorubicin and paclitaxel 221 

data were available (Fig. 4A). The pan-cancer analysis included data from 29 TCGA 222 

cancer types for which mutation status and gene expression data were available (Fig 223 

4B). 224 

Six cases with at least two mutations in a resistance-associated gene were 225 

associated with patient prognosis (Suppl. File 5). As the number of resistance-226 

associated genes with mutations in patients was low, we also considered gene 227 

expression status associations with prognosis. For 1,018 cases there was a 228 

significant association between gene expression and patient prognosis. This 229 

included genes, whose products were known to play a role in cancer cell drug 230 

resistance, such as CHEK2 40–42 and APC 43–45 (Fig. 4C, Suppl. File 5). Moreover, 231 

we also identified novel candidates, which had not previously been suggested to be 232 

involved in cancer cell drug resistance, including KIAA2018, EYS, NBPF10, and 233 

KIAA0586 (Fig. 4C, Suppl. File 5). 234 

We further determined the association of the expression of genes harboring 235 

de novo, gained, and shared variants with a two-fold increase as well as genes 236 

harboring truncating variants with patient survival in response to treatment with 237 

cisplatin, doxorubicin, gemcitabine, paclitaxel, and 5-fluorouracil (Fig. 4 D-E, Suppl. 238 

File 5). In total, the expression of 682 genes was significantly correlated with patient 239 

survival in response to at least one drug in the pan-cancer data. For 513 of these 240 

682 genes, gene expression was associated with tumor response to the drug of the 241 

respective resistant subline (Suppl. File 5). The expression of 91 genes was 242 

associated with patient response to two drugs, the expression of 51 genes 243 

associated with response to three drugs, the expression of 21 genes associated with 244 
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expression to four drugs, and the expression of 6 genes associated with response to 245 

all five drugs (Fig. 4D, Suppl. File 5). 246 

Considering the TNBC data alone, the expression of 165 genes was 247 

significantly correlated with patient survival in response to either doxorubicin, 248 

paclitaxel, or both drugs (Fig. 4E, Suppl. File 5). The expression of 141 of these 165 249 

genes was associated with tumor response to the drug of the respective drug-250 

adapted subline. The expression of 22 genes was associated with patient response 251 

to both doxorubicin and paclitaxel (Fig. 4E, Suppl. File 5). 252 

Comparison of the analysis of the 165 genes identified in the TCGA analysis 253 

with the 81 genes identified in the analysis of de novo variants (Suppl. File 4) 254 

revealed 35 overlapping genes present in both datasets. This included 23 genes that 255 

have already been associated with drug resistance and 12 genes (ABCD1, AGAP6, 256 

CUBN, DNAJC13, FLG, GXYLT1, KIAA0586, PABPC3, RGPD3, RGPD4, SETX and 257 

USP6) that are novel findings (Suppl. File 6). 258 

 259 

Complex sensitivity patterns of drug-resistant sublines to cytotoxic drugs 260 

Determining drug sensitivity profiles in the cell line panel against the drugs of 261 

adaptation, i.e., cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, and 5-262 

fluorouracil (Fig. 5A, Suppl. File 1), revealed complex resistance patterns that did not 263 

follow clear, predictable rules. For example, two of the three doxorubicin-adapted 264 

sublines (HCC38rDOX40 and HCC1806rDOX12.5) displayed increased (collateral) 265 

sensitivity to cisplatin compared to the parental cell line, while MDA-MB-468rDOX50 266 

displayed cross-resistance to cisplatin (Fig. 5A, Suppl. File 1). Moreover, all resistant 267 

sublines remained sensitive to or showed collateral sensitivity to at least one of the 268 

other chemotherapeutic agents (Fig. 5A, Suppl. File 1). The 5-fluorouracil-resistant 269 
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HCC1806r5-F1500 subline was the only resistant subline that remained sensitive to all 270 

other investigated cytotoxic drugs (Fig. 5A, Suppl. File 1). 271 

The ATP-binding cassette (ABC) transporter ABCB1 (also known as P-272 

glycoprotein and MDR1) is an efflux transporter that mediates resistance to many 273 

anti-cancer drugs, including doxorubicin, eribulin, and paclitaxel 46. Only five of the 274 

nine sublines adapted to the ABCB1 substrates doxorubicin, eribulin, and paclitaxel 275 

(including all three eribulin-resistant sublines) displayed cross-resistance to all other 276 

ABCB1 substrates. Among the ABCB1 substrate-adapted sublines, all the eribulin-277 

adapted sublines displayed cross-resistance to paclitaxel, and all the paclitaxel-278 

adapted sublines displayed cross-resistance to eribulin (Fig. 5A, Suppl. File 1). 279 

Notably, eribulin and paclitaxel are both tubulin-binding agents but differ in their 280 

mechanisms of interaction with tubulin. Eribulin is a destabilizing agent that binds to 281 

the vinca binding site of tubulin and inhibits microtubule formation, while paclitaxel is 282 

a stabilizing agent that binds to the taxane binding site that impairs microtubule 283 

degradation 47–51. Further research will be required to determine to what extent the 284 

tubulin-binding agent cross-resistance profile of the tubulin-binding agent-adapted 285 

sublines is the consequence of the expression of ABCB1 (and/or other transporters), 286 

tubulin-related resistance mechanisms, or both. 287 

Taken together, it is not possible to predict how resistance to a certain drug 288 

will affect the sensitivity patterns of the resulting sublines to other cytotoxic agents. 289 

However, all of the drug-resistant TNBC sublines remained sensitive and/or 290 

displayed collateral sensitivity to at least one of the tested anti-cancer drugs. Future 291 

research will be needed to elucidate the underlying mechanisms to identify 292 

biomarkers for personalized therapy approaches that can guide effective drugs to the 293 

right patients 4. 294 
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 295 

Complex sensitivity patterns of drug-resistant sublines to DNA damage 296 

response (DDR) inhibitors 297 

Triple-negative breast cancer cells have been shown to harbor defects in DNA 298 

damage repair signalling, which can result in a dependence on the remaining intact 299 

DNA damage repair (DDR) pathways and, in turn, in sensitivity to certain DDR 300 

inhibitors 52. Hence, we tested a panel of inhibitors targeting critical nodes of DDR 301 

signalling in our novel resistant TNBC cell line panel (Fig. 5B). 302 

All parental cell lines displayed sensitivity to the tested DDR inhibitors at 303 

therapeutic concentrations, i.e., within the Cmax values reported for these agents (for 304 

which this information was available) (Suppl. Fig. 7). Similar to the results obtained 305 

for the cytotoxic anti-cancer drugs, the DDR sensitivity profiles were complex and 306 

unpredictable in the resistant sublines (Fig. 5C, Suppl. File 1). Relative to the 307 

respective parental cell lines, the sensitivity remained unchanged for 128 DDR 308 

inhibitor/ resistant subline combinations. Increased resistance (cross-resistance) was 309 

detected in 96 DDR inhibitor/resistant subline combinations, and increased 310 

sensitivity (collateral vulnerability) was recorded in 16 DDR inhibitor/resistant subline 311 

combinations. Neither sublines of the same parental cell line nor sublines adapted to 312 

the same drugs displayed substantial overlap in their DDR inhibitor sensitivity 313 

profiles. Generally, cross-resistance levels were lowest for the CHK2 inhibitor 314 

CCT241533, the PLK1 inhibitor SBE13, and the RAD51 recombinase inhibitor B02 315 

among the investigated DDR inhibitors (Fig. 5C, Suppl. File 1). 316 

Cross-resistance patterns were even inconsistent between DDR inhibitors 317 

with the same targets. For example, different sensitivity patterns were observed 318 

between the ATR inhibitors ceralasertib and berzosertib as well as the CHK1 319 
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inhibitors rabusertib, MK-8776, SRA737, and prexasertib (Fig. 5C, Suppl. File 1). The 320 

reasons for these differences are unclear. Notably, the activity of the DDR inhibitors 321 

may be modified by interactions with additional targets, and off-target resistance 322 

mechanisms (e.g., processes associated with drug uptake or efflux) may contribute 323 

to these differences 53. 324 

In summary, and in line with the findings from the investigation of cytotoxic 325 

anti-cancer drugs, the drug-adapted TNBC sublines displayed complex, 326 

unpredictable sensitivity patterns against DDR inhibitors. This further demonstrates 327 

that improved future therapies will depend on an advanced understanding of the 328 

underlying molecular processes that enable the identification of biomarkers that can 329 

guide effective therapies for individual patients after treatment failure4. Notably, 330 

CHK2, PLK1, and RAD51 may have potential as new drug targets for the discovery 331 

and development of next-line therapies for TNBC patients whose tumors have 332 

stopped responding to chemotherapy. 333 

 334 

Investigation of patterns in cell line drug response profiles 335 

Finally, we used the delta (Δ) method to identify potential patterns in the 336 

response of the cell lines to all investigated cytotoxic anti-cancer drugs and DDR 337 

inhibitors 54. The IC50 values were transformed to ΔIC50 values for each compound 338 

(see methods) and correlated across the drug panel using linear regression analysis 339 

and testing for statistical significance (Suppl. Table 1). Positive correlations indicate 340 

that increased drug resistance is seen with both agents, whilst negative correlations 341 

indicate that whilst increasing drug resistance is observed for one agent, collateral 342 

sensitivity is observed for the other agent. In the MDA-MB-468, HCC38, and 343 
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HCC1806 sublines, we observed 19, 20, and 60 positive correlations and 2, 8, and 1 344 

negative correlation, respectively (Suppl. Table 1). 345 

We were most interested in the agents that demonstrated negative 346 

correlations, as they may identify potential next-line treatments. However, among the 347 

11 negative correlations, there were no consistent results across the cell line panel 348 

(Fig. 6). This further confirms that acquired resistance mechanisms are complex, 349 

individual, and unpredictable and that the identification of potential next-line 350 

therapies after treatment failure will depend on an improved understanding of cancer 351 

cell evolution enabling therapy monitoring and biomarker-guided treatment 352 

adaptation.   353 
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Discussion 354 

In this study, we introduced and characterized a novel set of 15 sublines 355 

derived from the TNBC cell lines HCC38, HCC1806, and MDA-MB-468 that had 356 

been adapted to cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, or 5-357 

fluorouracil. 358 

We applied whole exome sequencing to identify biomarker candidates to 359 

guide the use of anti-cancer therapies. In the first step, we focused on de novo 360 

mutations, i.e., mutations found in a resistant subline but undetectable in the 361 

respective parental cell line. Considering genes that displayed de novo mutations in 362 

at least two sublines of two different parental cell lines resulted in 81 resistance-363 

associated variants, 48 of which were already known to be involved in cancer cell 364 

drug resistance, while 33 variants were novel. 365 

In a second approach, we used TCGA data to investigate the potential clinical 366 

relevance of genes that harbored resistance-associated variants in the resistant 367 

sublines. In the pan-cancer dataset, the expression of 682 of these genes was 368 

correlated with patient survival in response to at least one of the investigated drugs. 369 

Considering only TNBC, the expression of 165 genes was significantly correlated 370 

with patient survival. 371 

Comparison of the de novo variant analysis with the TNBC TCGA analysis 372 

identified 35 overlapping genes. Twenty-three of these genes are known to be 373 

associated with drug resistance. Twelve genes (ABCD1, AGAP6, CUBN, DNAJC13, 374 

FLG, GXYLT1, KIAA0586, PABPC3, RGPD3, RGPD4, SETX and USP6) are novel 375 

findings that may represent novel resistance biomarkers that have not been 376 

previously associated with drug resistance in cancer. Further research will be 377 

needed to investigate and define in more detail the role of these gene variants in 378 
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cancer therapy response and the expression of these genes as biomarkers for the 379 

tailoring of personalized cancer therapies. Notably, numerous studies have shown 380 

that drug-adapted cancer cell lines exhibit clinically relevant resistance mechanisms 381 

4,9–17. 382 

Interestingly, the analysis of exome sequencing data revealed remarkably few 383 

overlapping mutations between the investigated resistant sublines, including sublines 384 

derived from the same parental cell line and sublines adapted to the same drug. This 385 

suggests that resistance formation is the consequence of a complex, individual, and 386 

unpredictable evolutionary process. 387 

This complexity was confirmed by the determination of drug sensitivity profiles 388 

to both cytotoxic anti-cancer drugs and DNA damage repair (DDR) inhibitors. Drug-389 

adapted sublines of the same parental cell line and sublines adapted to the same 390 

drug displayed substantially different drug response patterns. 391 

Notably, all the drug-adapted sublines remained sensitive and/or displayed 392 

increased sensitivity (collateral vulnerability) to a range of tested compounds. This 393 

suggests that it will be possible in the future to establish an improved understanding 394 

of the processes underlying acquired resistance formation that result in the 395 

identification of biomarkers that indicate effective next-line treatments for patients for 396 

whom currently no effective treatment is available. 397 

Among the investigated DDR inhibitors, the CHK2 inhibitor CCT241533, the 398 

PLK1 inhibitor SBE13, and the RAD51 recombinase inhibitor B02 had the lowest 399 

cross-resistance levels. Thus, CHK2, PLK1, and RAD51 are potential drug targets in 400 

TNBC patients after failure of established therapies, particularly if reliable biomarkers 401 

are found that identify cancer patients who are likely to benefit from such treatments. 402 
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Overall, the results from the characterization of the project cell line panel 403 

indicated that cancer cell resistance is a complex, individual, and unpredictable 404 

process. This finding is in agreement with data from studies in which cancer cell lines 405 

were repeatedly adapted to the same drug in independent experiments 8,16,55–57 and 406 

with recent findings from a comprehensive analysis of cancer cell evolution in lung 407 

cancer patients 58–62. 408 

In conclusion, we present a novel set of drug-adapted TNBC cell lines as 409 

preclinical models of acquired drug resistance. Overlapping genes detected through 410 

the characterization of de novo variants and patient-derived TCGA data identified 35 411 

biomarker candidates for the guidance of personalized TNBC therapies for further 412 

investigation, including 12 novel genes that have not been previously associated with 413 

drug resistance in cancer. Finally, our results show that each cancer cell line 414 

adaptation process follows an individual, unpredictable route, which reflects recent 415 

clinical findings from the monitoring of cancer cell evolution in patients 58–62. This 416 

further supports the relevance of drug-adapted cancer cell lines as preclinical models 417 

of acquired resistance that can be analysed and manipulated at a level of detail that 418 

is impossible in the clinical setting. 419 

  420 
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Materials and Methods 421 

Cell culture 422 

MDA-MB-468, HCC38, and HCC1806 cells were obtained from the American 423 

Type Culture Collection (ATCC). The drug-adapted sublines (Fig. 1A, Suppl. File.1) 424 

were established by continuous exposure to stepwise increasing drug concentrations 425 

as previously described and derived from the Resistant Cancer Cell Line (RCCL) 426 

collection (https://research.kent.ac.uk/industrial-biotechnology-centre/the-resistant-427 

cancer-cell-line-rccl-collection)4,63. All cell lines were cultured in Iscove’s Modified 428 

Dulbecco’s medium (IMDM) supplemented with 10% fetal bovine serum 429 

(Sigma�Aldrich, Germany), 2 mM L-glutamine, 25 mM HEPES (Fisher Scientific, 430 

UK), 100 IU/mL penicillin, and 100 µg/mL streptomycin (Life Technologies, UK) at 37 431 

°C in a humidified atmosphere with 5% CO2. Each drug-adapted subline was 432 

continuously cultured in the presence of the specific adaptation drug at a defined 433 

concentration, as indicated by the cell line name (ng/mL), e.g., MDA-MB-468rDOX50, 434 

where r = the resistant subline, Dox = doxorubicin and 50 = 50 ng/ml. 435 

Compounds 436 

The following compounds were purchased from the indicated suppliers: 437 

Adavosertib, Alisertib, Berzosertib, Ceralasertib, MK-8776, Olaparib, Prexasertib, 438 

Rabusertib, Rucaparib, SBE13, Tozasertib (Adooq Bioscience), AZD0156, BI2536, 439 

Doxorubicin, Gemcitabine (Selleckchem), B02, Cisplatin, 5-Fluorouracil 440 

(Sigma�Aldrich), CCT241533, SRA737 (a gift from the Institute of Cancer 441 

Research), Eribulin (Eisia), and Paclitaxel (Cayman Chemicals). All drug stocks were 442 

prepared in DMSO and stored at -20 °C, except for cisplatin, which was prepared in 443 

0.9% NaCl solution and stored in the dark at room temperature. 444 

 445 
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Cell growth and viability assays 446 

Cell viability was tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-447 

diphenyltetrazolium bromide (MTT) dye reduction assay after 120 hours of 448 

incubation with each compound, modified as previously described 64,65. 449 

Concentrations that reduced cell viability by 50% relative to an untreated control 450 

(IC50) were determined and used to calculate the resistance factor (RF; IC50 of drug-451 

adapted cell line/IC50 of respective parental cell line). 452 

 453 

Whole exome sequencing 454 

Whole exome sequencing (WES) libraries were prepared using the Nextera 455 

Rapid Capture Exome Kit (Illumina). Sequencing was performed on a HiSeq 1500 456 

platform in Rapid Run mode with 2 x 100 nucleotide paired-end reads. The two lanes 457 

of the Rapid Run flow cell provided two sets of FASTQ data per cell line. 458 

 459 

Variant calling 460 

FASTQC was used to control the quality of the raw sequence data 66 prior to 461 

the removal of sequencing adaptors. Trimmomatic (settings: NexteraPE-462 

PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDING WINDOW: 4:15 MILEN:36) 67. Raw 463 

FASTQ files were aligned to the human reference genome (GRCH37) using 464 

Burrows�Wheeler Alignment (v.0.7.17) with an output in sequence alignment map 465 

(SAM) format applying the default settings -M -R 68–70. Only paired reads were used, 466 

and Samtools flagstat was used to print statistics throughout each of the subsequent 467 

steps 68. SAM files were input into Picard tools SortSam (v.2.17.10), where the read 468 

alignments were sorted by coordinate and converted to a binary alignment map 469 

(BAM) format (Picard Toolkit.2019. Broad Institute, GitHub Repository. 470 
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http://broadinstitute.github.io/picard/; Broad Institute). Picard Tools MarkDuplicates 471 

(v2.17.10) was used for the removal of PCR duplicates (Picard Toolkit. 2019. Broad 472 

Institute, GitHub Repository. http://broadinstitute.github.io/picard/; Broad Institute). 473 

GenomeAnalysisTK-3.7.0 RealignerTargetCreator was used to perform base score 474 

recalibration, and GenomeAnalysisTK-3.7.0 IndelRealigner was used for INDEL 475 

realignment MAX_READS = 20000 71. SAMtools mpileup was used to generate 476 

binary variant call format (BCF) files from the BAM files, which were then input into 477 

BCFtools to call the SNVs and INDELS to generate a variant calling format (VCF) 72. 478 

Variants were annotated with VEP 73. 479 

 480 

Variant filtering 481 

Only variants in coding regions of the genome were considered. To identify 482 

high-confidence variants, variants with a Phred score < 30, variants with fewer than 483 

10 reads supporting the base call, or variants with < 3 reads supporting the variant 484 

were removed. Moreover, common variants with a frequency of ≥ 0.001% in the 485 

genome aggregation database (gnomAD) were removed 74; if not, ≥ 3 samples were 486 

annotated in The Cancer Genome Atlas (TCGA), or ≥ 10 samples were annotated in 487 

the Catalogue Of Somatic Mutations In Cancer (COSMIC) 39,75,76. 488 

 489 

Definition of variants 490 

Gained variants: variants that are called in the drug-resistant subline and are 491 

called with low confidence in the parental cell line. De novo variants: variants that are 492 

called in the drug-resistant subline but not called in the parental cell line. Not called 493 

variants: variants that are called in the parental cell line but not called in the drug-494 

resistant subline, even at low confidence. Lost variants: variants that are called in the 495 

parental cell line and are called in low confidence in the drug-resistant subline. 496 
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Shared variants: variants that are called in both the parental and drug-resistant 497 

sublines. 498 

 499 

Gene Ontology 500 

Gene Ontology (GO) functional enrichment analysis was conducted using 501 

G:profiler 77. Gene lists were submitted as queries to the g:GOSt functional profiling 502 

tool and run at a significance threshold of g:SCS and a user threshold of 0.05. 503 

 504 

The Cancer Genome Atlas (TCGA) analysis 505 

TCGA data retrieval 506 

The data were collected from the UCSC Xena functional genomics browser 507 

[https://xenabrowser.net]. Batch-corrected gene expression data (RNAseq, 508 

log2(normalized value + 1)) for 11,060 patients (version 2016-12-29), clinical data for 509 

12,591 patients (version 2018-09-13), and somatic mutation data (HG19) for 9,104 510 

patients (version 2016-12-29) were downloaded for the TCGA pancancer (PANCAN) 511 

cohort. Curated drug data were obtained from Moiso 2021 for 4,321 patients 78. 512 

Final datasets 513 

The 4 downloaded datasets were filtered to a final dataset for each drug for 514 

which every data type was available (gene expression, somatic mutation, clinical, 515 

and drug data). If a patient did not have at least 1 somatic mutation recorded, they 516 

were excluded from further somatic mutation analyses. This resulted in final datasets 517 

of 683 patients (23 cancer types) treated with cisplatin, 385 (17) with doxorubicin, 518 

367 (11) with fluorouracil, 349 (20) with gemcitabine, and 544 (16) with paclitaxel for 519 

which somatic mutation and clinical data were available (table – 520 

“mutations/treatment_by_cancer_type_mutation_patients.tsv”). The gene expression 521 
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and treatment data included 765 patients (24 cancer types) treated with cisplatin, 522 

571 (18) with doxorubicin, 452 (11) with fluorouracil, 438 (21) with gemcitabine, and 523 

828 (15) with paclitaxel (table – 524 

“expression/treatment_by_cancer_type_expression_patients.tsv). Datasets including 525 

only TNBC patients were also created for further analysis79. This was only completed 526 

for those patients treated with doxorubicin (96 patients) and paclitaxel (63), as the 527 

number of patients treated with cisplatin (2), gemcitabine (4), and fluorouracil (21) 528 

was too low for meaningful analysis. For doxorubicin and paclitaxel treatments, gene 529 

expression and clinical data were available for 93 and 62 TNBC patients, 530 

respectively, while somatic mutation and clinical data were available for 74 531 

doxorubicin- and 49 paclitaxel-treated patients. One TNBC patient (TCGA-AR-A256) 532 

whose disease-specific survival (DSS) data were incomplete was excluded. 533 

Survival analysis 534 

Analysis was performed in R version 4.3.0. Kaplan-Meier (KM) plots were 535 

generated for mutation status (mutated – MUT or wild type – WT) and for gene 536 

expression status (high or low) using the survival (v3.5-5) and survminer (0.4.9) 537 

packages. Somatic nonsynonymous mutations were considered in the genes of 538 

interest. The cut-off for high/low gene expression was calculated using the 539 

surv_cutpoint function in survminer, which makes use of the R package maxstat 540 

(v0.7-25). This gave a threshold for high/low expression based on the most 541 

significant relation with outcome, in this case, disease-specific survival. Any sample 542 

with gene expression > the calculated threshold was considered to have “high 543 

expression”, and any sample with gene expression < the threshold was considered 544 

to have “low expression”. The p value displayed on the KM plots was calculated 545 

using the log-rank test. 546 
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Statistical analysis and data manipulation 547 

GraphPad Prism 6 (GraphPad Software, Inc., USA) was used to generate 548 

dose�response curves and determine IC50 values via nonlinear regression (with 549 

variable slopes). Statistical significance was calculated using a two-tailed t-test, 550 

assuming unequal variance, in GraphPad Prism 6 (GraphPad Software, Inc., USA). 551 

The delta method was used as described by Bracht et al., 2006 54. IC50 values 552 

were transformed to ∆ IC50 values: ∆ IC50 = log (average IC50 in drug over all cell 553 

lines) – log (individual IC50 in drug for each cell line). Linear regression analysis of 554 

∆IC50X versus ∆IC50Y, where X and Y represent two different compounds from the 555 

panel, was performed. The Pearson correlation coefficient (r) was used to establish 556 

the level of significance in a two-tailed test with (n-2) degrees of freedom, where p ≤ 557 

0.05.  558 
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Figure Legends 900 

Figure 1. Confirmation of the resistance status of the project cell lines. A) 901 

Panel of drug-naïve (MDA-MB-468, HCC38, HCC1806) and drug-adapted Triple 902 

Negative Breast Cancer cell lines. B) Left: dose–response curve; bottom: IC50 903 

values; right: resistance factor (IC50, drug-adapted subline/IC50, respective parental 904 

cell line)); when drug-naïve and drug-adapted cell lines are treated with the 905 

respective agent: cisplatin, doxorubicin, eribulin, paclitaxel, gemcitabine, or 5-906 

fluorouracil. Circles indicate drug-naïve cell lines, and crosses indicate drug-adapted 907 

cell lines. Green, MDA-MB-468-derived; blue, HCC38-derived; orange, HCC1806-908 

derived. The data are from ≥ 3 independent experiments, and the statistics were 909 

calculated using Student’s t-test and are plotted as the means ± SDs. 910 

Figure 2. Genomic characterization of drug-adapted cell lines. A) Diagram 911 

illustrating the differences between gained, de novo, not called, lost and shared 912 

variants. B) Count of Gained (blue) and De novo (green) variants, C) count of Lost 913 

(orange) and Not-called (pink) variants, D) left panel; count of all Shared (purple) 914 

variants, right panel; two-fold increase or decrease of shared variants. 915 

Figure 3. Identification of novel candidates associated with therapy failure. A) 916 

Flow chart of genes with de novo variants observed in two or more sublines from 917 

more than one parental cell line. B) Venn diagrams of de novo variants shared 918 

between sublines adapted to the same drug. C) Summary of relatedness between 919 

sublines drug-adapted from the same parental cell line (%). 920 

 921 
Figure 4. Tumor patient data available for mutations in resistance-associated 922 

genes. (A) TCGA pan-cancer datasets for mutation status and gene expression. 923 

Only patients for which clinical, drug and mutation status/gene expression data was 924 

available for were considered in the TCGA pan-cancer analysis. (B) TCGA pan-925 

cancer mutation status and expression data available for chemotherapy drugs for 29 926 

TCGA cancer classifications. (C) Kaplan-Meier plots for gene expression with most 927 

significant association with prognosis in the pan-cancer dataset. Log-rank test was 928 

the statistical test used with multiple test correction performed using Benjamini-929 

Hochberg method. (D-E) Genes for which expression is significantly associated with 930 
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patient prognosis. Upset plot showing the number of genes that are associated with 931 

patient prognosis for (D) pan-cancer and (E) TNBC. 932 

 933 
Figure 5. Complex sensitivity patterns to cytotoxic and DDR-targeted agents. 934 

A) Heatmap of fold resistance and collateral sensitivity to cytotoxic agents. B) 935 

Summary of pathways targeted by DNA damage response and repair (DDRR) 936 

inhibitors used in screening. C) Heatmap of fold change resistance and collateral 937 

sensitivity to DDRR inhibitors. 938 

Figure 6. Lack of trends in drug or inhibitor sensitivity patterns. Graphs 939 

demonstrating a negative correlation; collateral sensitivity to one agent but 940 

resistance to the other (blue); positive correlation; resistance to both agents (red); 941 

and no statistical correlation (black) for each set of sublines adapted from the MDA-942 

MB-468, HCC38 or HCC1806 TNBC cell lines.943 

Supplementary Figure 1. Chemo-naïve cell lines are clinically sensitive to 944 

chemotherapy agents. IC50 values of drug-naïve parental cell lines treated with the 945 

respective chemotherapy agents: cisplatin, doxorubicin, eribulin, paclitaxel, 946 

gemcitabine or 5-fluorouracil. Green, MDA-MB-468 cells; blue, HCC38 cells; orange, 947 

HCC1806 cells. The black line indicates known Cmax values for each chemotherapy 948 

agent. Data from n ≥ 3, statistics were calculated using Student’s t-test and are 949 

plotted as the mean ± SD. 950 

 951 

Supplementary Figure 2: Variant counts. A) Total number of variants called for in 952 

the panel of drug-naïve and drug-resistant cell lines. B) Types of variants called for in 953 

the panel of drug-naïve and drug-resistant cell lines, including missense, 954 

synonymous, frameshift, inframe insertion, inframe deletion, stop loss, stop gain, 955 

splice acceptor and splice donor variants. 956 

 957 

Supplementary Figure 3. De novo variant overlaps. The number of de novo 958 

variants that overlap in A) drug-resistant cell lines adapted to the same 959 

chemotherapy drug and B) drug-resistant cell lines adapted from the same parental 960 

cell line but to different chemotherapy drugs. 961 

 962 
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Supplementary Figure 4. Gene ontology terms related to variants in drug-963 

resistant sublines. A) The number of variants increased in drug-resistant sublines 964 

(de novo variants, gained variants and shared variants that demonstrated a ≥2 965 

increase in variant allele frequency). B) The number of variants decreased in drug-966 

resistant sublines (not-called variants, lost variants and shared variants that 967 

demonstrated ≤2 decreases in variant allele frequency). The number and 968 

overlapping terms found in increased and decreased variants were compared 969 

between cell lines adapted to the same chemotherapy drug (C, E) and sublines 970 

derived from the same parental cell line but adapted to different chemotherapy drugs 971 

(D, F). Green bars indicate increased variants (A, C, D), and red bars indicate 972 

decreased variants (B, C, D). 973 

 974 

Supplementary Figure 5. Chemo-naïve cell lines are clinically sensitive to DNA 975 

damage response and repair (DDRR) inhibitors. IC50 values of drug-naïve cell lines 976 

treated with the indicated drug. Green, MDA-MB-468-derived; blue, HCC38-derived; 977 

orange, HCC1806-derived. The black line indicates known Cmax values for each 978 

DDRR agent. The data are from ≥ 3 independent experiments, and the statistics 979 

were calculated using Student’s t-test and are plotted as the means ± SDs. 980 

 981 

Supplementary Table 1. Drug correlation of delta (Δ) values. The IC50 values 982 

were transformed to ΔIC50 values for each drug (see methods) and correlated across 983 

the drug panel, with linear regression analysis and statistical significance. The values 984 

in the table indicate the r values of the correlations, where positive values indicate 985 

positive correlations and negative values indicate negative correlations. P values of 986 

the correlations are indicated in the blue color scheme, with light blue (p≤0.05) 987 

indicating the lowest statistical significance and dark blue (p≤0.00001) indicating the 988 

highest statistical significance. 989 

 990 

Supplementary File 1. Mean IC50 values, SDs and resistance factors for the project 991 

panel treated with chemotherapy drugs and DNA damage response inhibitors. 992 

 993 

Supplementary File 2. Basic variant characterization of the cell line panel. 994 

 995 
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Supplementary File 3. Variants found to be de novo, gained, not called, lost and 996 

shared in drug-resistant cell lines. 997 

 998 

Supplementary File 4. List of genes with de novo variants in ≥2 drug-resistant cell 999 

lines. The values in the table indicate the variant allele frequencies of the de novo 1000 

variants identified in the indicated genes. PMIDs for genes previously implicated in 1001 

cancer and drug resistance. 1002 

 1003 

Supplementary File 5. Step-by-step analysis of both TNBC and pan-cancer patient 1004 

data extracted from the TCGA. 1005 

Supplementary File 6. Comparison of genes identified through de novo variant 1006 

analysis and TCGA analysis.1007 
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