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Abstract: Compact binaries with asymmetric mass ratios are key expected sources for

next-generation gravitational wave detectors. Gravitational self-force theory has been

successful in producing post-adiabatic waveforms that describe the quasi-circular inspi-

ral around a non-spinning black hole with sub-radian accuracy, in remarkable agreement

with numerical relativity simulations. Current inspiral models, however, break down at

the innermost stable circular orbit, missing part of the waveform as the secondary body

transitions to a plunge into the black hole. In this work we derive the transition-to-

plunge expansion within a multiscale framework and asymptotically match its early-time

behaviour with the late inspiral. Our multiscale formulation facilitates rapid generation

of waveforms: we build second post-leading transition-to-plunge waveforms, named 2PLT

waveforms. Although our numerical results are limited to low perturbative orders, our

framework contains the analytic tools for building higher-order waveforms consistent with

post-adiabatic inspirals, once all the necessary numerical self-force data becomes avail-

able. We validate our framework by comparing against numerical relativity simulations,

surrogate models and the effective one-body approach.
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1 Introduction

Future space-based gravitational wave (GW) detectors such as the Laser Interferometer

Space Antenna (LISA) [1] will facilitate new, high-precision tests of general relativity. Due

to launch in the mid-2030s, LISA will detect GWs in the mHz frequency band. A key

source of such GWs are extreme-mass-ratio inspirals (EMRIs), binary systems in which

a supermassive black hole (the primary) of mass M is orbited by a stellar-mass compact

object (the secondary) [2]. EMRIs naturally lend themselves to modelling by black hole

perturbation theory, where the secondary is treated as a point-like particle of mass mp with

no internal structure, which perturbs the background spacetime governed by the primary.

Quantities are then expanded around their background value as an expansion in powers of

the small mass ratio, defined by ε := mp/M , with typical ranges of 10−4 − 10−7 [2].

At the time of writing, the small-mass-ratio expansion, in conjunction with a multi-

scale (or two-timescale) framework [3, 4], has thus far been used to model EMRIs and their

emitted waveforms during inspiral for generic orbits in a Kerr background at leading order

in ε [5, 6]. The structure of the multiscale approach (in combination with hardware accel-

eration and other methods) has also enabled waveform generation that is sufficiently rapid

for GW data analysis [7]. In the special case of a Schwarzschild background and quasi-

circular orbits, these results have been extended through next-to-leading order in ε [8],

which corresponds to second order in gravitational self-force (GSF) theory. The multiscale

expansion for quasi-circular orbits [9] takes account of the fact that the orbital phase of the

secondary’s motion, ϕp, evolves on the fast timescale ∼ M , whereas the orbital parameters

such as the orbital radius rp and orbital frequency Ω, in addition to the mass and angular

momentum of the primary, evolve on the much slower radiation-reaction timescale ∼ M/ε.

Such an approach (and therefore the waveform model in [8]) is incomplete, however, be-

cause the inspiral dynamics break down at the innermost stable circular orbit (ISCO). As

the secondary transitions to a plunge into the primary, the orbital parameters evolve more
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rapidly, on a timescale ∼ M/ε1/5 [10, 11], whereas the primary mass and angular momen-

tum still evolve on the timescale ∼ M/ε. An evolution scheme that takes into account

these three disparate timescales is therefore required around the ISCO.

A treatment of the transition to plunge that asymptotically matches with the quasi-

circular inspiral for equatorial orbits (in Kerr spacetime) was studied by two of us in [12–

14]. That work, however, focused on the orbital motion, not expanding the Einstein field

equations, which prevented the construction of transition-to-plunge waveforms. In this

paper we present a framework that incorporates the inspiral and the transition-to-plunge

regimes both for the secondary’s motion and the metric perturbation, which will allow us to

build waveform models that extend beyond the ISCO. Our formulation of the transition-

to-plunge expansion also differs from past formulations in a way that should naturally

facilitate rapid waveform generation.

Accurately modelling the transition to plunge is expected to improve parameter es-

timation by matched filtering with detected signals. Crucially, this improvement will be

dramatically more significant for larger values of ε. Indeed, the duration of the inspiral

scales as ε−1, whereas the duration of the transition to plunge scales as ε−1/5. Ignoring the

ringdown, taking the ratio of these two timescales tells us that for binaries with mass ratios

of 1:10, the transition to plunge takes up ∼ 16% of the entire waveform. For mass ratios

of 1:1000, this reduces to ≲ 0.4%. While GWs are loudest around merger, EMRIs accu-

mulate the majority of their signal-to-noise ratio (SNR) during their long-lasting inspirals,

whereas detecting intermediate-mass-ratio coalescences (IMRACs)1 and comparable-mass

binary coalescences relies on the relatively high SNRs around the transition to plunge and

merger. Therefore, accurately modelling the transition to plunge becomes more important

as ε increases.

From [8, 17], there is evidence to suggest that, at least for a Schwarzschild background

and when carried to second perturbative order, the small-mass-ratio expansion accurately

describes GWs for mass ratios as large as ε ∼ 1/10. Hence, it is reasonable to assume that

a small-mass-ratio expansion during the transition to plunge will similarly be applicable for

IMRACs as well as EMRIs. The relevance of the transition to plunge for IMRACs and the

expected validity of the small-mass-ratio expansion are the main motivations for this work.

Our waveform modelling effort therefore also serves as preparatory modelling for third-

generation ground-based detectors such as the Einstein Telescope, with expected signals

from IMRACs [18]. Further motivation arises from the fact that IMRACs occupy part of

the parameter space of mass ratios that is particularly challenging to model. Numerical

relativity (NR) has achieved great success in simulating compact binary systems with mass

ratios of 1:1 to 1:10. It has also made progress towards the 1:100 regime [19] (and even

the 1:1000 regime, for head-on collisions [20]). However, systems with such small mass

ratios become prohibitively computationally expensive for NR to simulate. The approach

of post-Newtonian (PN) theory, effective for large orbital separations and weak fields, has

also had great success. However, systems with small mass ratios spend many orbits in the

strong field regime where PN theory loses accuracy. Other approaches to GW modelling,

1We use the terminology of [15, 16] instead of intermediate-mass-ratio inspirals (IMRIs).
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such as phenomenological models, surrogates, and effective one-body (EOB) approaches,

require input from first-principles methods. EOB, in particular, synthesizes results from

NR, PN and GSF theory to cover a broad parameter space [21]. In addition to providing

a first-principles framework, our model should provide qualitatively new information from

GSF methods for universal models such as EOB [10, 22–29].

The paper is outlined as follows. Section 2 introduces the equations governing the sec-

ondary’s motion and presents the Einstein field equations formulated using hyperboloidal

slicing and a tensor spherical harmonic decomposition. Section 3 contains the multiscale

expansions of the orbital motion, the Einstein field equations and the self-force for the

quasi-circular inspiral. We perform these expansions through second post-adiabatic (2PA)

order. Despite only needing to model the inspiral to first post-adiabatic (1PA) order [3],

we derive the subleading terms to better capture the structure of the asymptotic match

with the transition-to-plunge regime. We then compute the near-ISCO behaviour of all

quantities (orbital variables, metric perturbation and self-force), which we will match with

the corresponding early-time transition-to-plunge solutions. Analogously to the inspiral

expansion of section 3, in section 4 we perform the multiscale expansion of the transition-

to-plunge dynamics. The transition-to-plunge expansion parameter is λ := ε1/5, which

implies that each order of ε corresponds to five orders in λ. We consider the transition-to-

plunge expansion to the seventh post-leading transition-to-plunge (7PLT) order, that is,

up to corrections of order λ7 with respect to the leading-order term. We finally compute

the asymptotic early-time solutions of the orbital quantities, the metric perturbation and

the self-force with the aim of matching the near-ISCO inspiral. In section 5 we analyti-

cally verify the asymptotic match between the near-ISCO inspiral (to 2PA order) and the

early-time transition-to-plunge (to 7PLT order) solutions. This scheme of matched asymp-

totic expansions enables us to obtain quantities in the transition-to-plunge expansion in

terms of already known inspiral quantities, ultimately reducing the number of equations we

need to solve. In section 6 we present the waveform generating scheme and the numerical

implementation of 2PLT waveforms. We compare our results with NR simulations from

the SXS collaboration [30] and surrogate waveform models [31, 32]. In section 7 we also

compare our transition-to-plunge model with the one of Apte and Hughes [33] and to the

EOB approach [10, 21]. Finally, we present our conclusions in section 8. The appendices

contain relevant analytical expressions, which are also provided as supplementary material

in a GitHub repository.

2 Coupled Einstein’s equations and compact body motion

In this section we present the equations governing the orbital evolution of the secondary and

the structure of the perturbatively expanded Einstein field equations in a tensor spherical

harmonic basis. The full spacetime metric gµν , comprising the background gµν of the

primary and the perturbation hµν ∼ ε due to the small secondary, can be written as

gµν = gµν + hµν . (2.1)
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We consider the primary as a Schwarzschild black hole, described by the metric gµν =

diag(−f, f−1, r2, r2 sin2 θ) in Boyer-Lindquist coordinates (t, r, θ, ϕ), where f := 1− 2M/r.

This background metric is used to raise and lower indices. The tortoise coordinate x is

defined from dx = dr/f .

We formulate the Einstein field equations using hyperboloidal slicing. The hyper-

boloidal time s is defined as

s := t− κ(x), (2.2)

where κ is the height function. We consider the slicing such that s = t in a neighbourhood

of the worldline (κ(xp) = 0) and it becomes null as x → ±∞, where limx→±∞ κ(x) = ±x

(see figure 1 of [9]). We also define

H(r) :=
dκ

dx

∣∣∣∣
x=x(r)

. (2.3)

The primary’s mass and spin evolve due to the GW fluxes of energy and angular

momentum through its horizon. In order to build a consistent perturbative expansion, we

need to take into account this dynamical change. We write the black hole’s total mass

as M + ε δM and total spin as ε δJ , where M is the constant mass of the Schwarzschild

background gµν and δM(s) and δJ(s) are the evolving corrections (normalized by ε), which

appear in the metric perturbation hµν .

Within this general setting, we will adopt a multiscale expansion in each of the two

regimes we consider: the inspiral and the transition to plunge. Our multiscale expansions

follow the approach developed in references [4, 8, 9, 34]; see, for example, appendix A

of reference [9] (or the more self-contained section IIA of reference [17]), section IV of

reference [34], and section 7 of reference [4]. The key idea in this approach is that the

particle’s trajectory and the spacetime metric only depend on the time s through their

dependence on a set of dynamical mechanical variables that characterize the binary. This

allows us to recast the Einstein equations, coupled to the companion’s equation of motion,

as a problem on the binary’s mechanical phase space. Generating waveforms then divides

into an offline step (solving the problem on the phase space) followed by an online step

(evolving along a physical trajectory in the phase space). We will recall key advantages of

this approach over the course of our analysis. In this section, we will describe the coupled

field equations and orbital evolution in a form that applies to both the inspiral and the

transition to plunge; we then specialize to each of the two regimes in subsequent sections.

2.1 Orbital motion and binary phase space

We consider the motion of the secondary on quasi-circular orbits in the equatorial plane of

the primary. The worldline zµ(ε, t) can be parametrized as

zµ(ε, t) =
(
t, rp(ε, J

a(ε, t)),
π

2
, ϕp(ε, t)

)
, (2.4)

where, recall, we label spacetime coordinates with a subscript p when evaluated on the

worldline, and the hyperboloidal time s reduces to t on the worldline. The quantities
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Ja = (Ω, δM, δJ) are the set of mechanical parameters that characterize the slowly evolving

binary system: the orbital frequency Ω is related to the azimuthal phase ϕp by

dϕp

dt
= Ω, (2.5)

while δM and δJ are the corrections to the primary’s mass and spin described above.

Note that throughout this paper, we suppress functional dependence on the background

mass M .

In the inspiral regime, (Ja, ϕp) represent good coordinates on the binary phase space.

The multiscale expansion in the inspiral will consist of writing all quantities of interest as

functions of (ε, Ja, ϕp) and then performing expansions in powers of ε at fixed (Ja, ϕp).

This approach fails during the transition to plunge, which occurs in a narrow frequency

interval of width ∼ ε2/5 around the ISCO frequency. In the transition-to-plunge regime,

we will therefore adopt a new frequency coordinate:

∆Ω :=
Ω− Ω∗

ε2/5
, (2.6)

where Ω∗ := 1/(6
√
6M) denotes the geodesic ISCO frequency. By construction, ∆Ω ∼ ε0 in

the transition-to-plunge regime. Our multiscale expansion in this regime will then consist

of expansions in (non-integer) powers of ε at fixed (∆Ja, ϕp), where ∆Ja := (∆Ω, δM, δJ).

Any function of (ε, Ja, ϕp) can be re-expressed equivalently as a function of (ε,∆Ja, ϕp).

In this section we use the notation (∆)Ja to denote either Ja for the inspiral or ∆Ja for

the transition to plunge. We will also use the notation δM+ := δM and δM− := δJ , which

is motivated by the fact that δM is the correction to the leading even-parity multipole

moment, while δJ is the correction to the leading odd-parity multipole moment. We define

(∆)Ja as functions of hyperboloidal time s: on a given slice of constant s, (∆)Ω is equal

to its value at the point where the slice intersects the worldline, and δM± are equal to

their values where the slice intersects the horizon. In both the inspiral and the transition

to plunge, the state of the system can be computed at a given value of (∆)Ja, and the

system can then be evolved to new values using an evolution equation of the form

d(∆)Ja

ds
= F (∆)Ja

(ε, (∆)Jb). (2.7)

The forcing terms F (∆)Ω will be obtained in terms of the self-force using the equation of

motion (2.10) given below, while F δM and F δJ are determined from the horizon fluxes of

energy and angular momentum. We remark that the solutions to the ordinary differential

equations (2.5) and (2.7) explicitly depend on ε, which justifies the ε dependence of ϕp

introduced in eq. (2.4).

Since we use t as our time parameter along the particle’s worldline, we will write the

particle’s equation of motion directly in terms of it. Defining the redshift U := dt/dτ ,

where τ is the proper time as measured in the background spacetime, we can write the

four-velocity uµ := dzµ/dτ as

uµ(ε, (∆)Ja) = U(ε, (∆)Ja)

(
1, F (∆)Jb

(ε, (∆)Jc)
∂rp(ε, (∆)Jd)

∂(∆)Jb
, 0,Ω

)
, (2.8)
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with summation over the repeated b index. The normalization of the four-velocity for

massive particles, gµνu
µuν = −1, leads to an equation for the redshift,

U−2 = −gµν
dzµ

dt

dzν

dt
. (2.9)

The trajectory is governed by the equation of motion

d2zµ

dt2
+ U−1dU

dt

dzµ

dt
+ Γµ

νσ

dzν

dt

dzσ

dt
= U−2fµ, (2.10)

where Γµ
νσ are the background Schwarzschild Christoffel symbols, and fµ is the gravitational

self-force per unit mass mp. The self-force has only two independent components because

fθ = 0 on equatorial orbits and because the normalization gµνu
µuν = −1 implies uµfµ = 0.

Explicitly, the self-force per unit mass mp (the self-acceleration) acting on the secondary

is given by [35, 36]

fµ = −1

2
Pµν(δρν − hRρ

ν )(2hRβρ;α − hRαβ;ρ)u
αuβ +O(ε3), Pµν := gµν + uµuν . (2.11)

We have split the metric perturbation hµν as hµν = hPµν +hRµν , where h
P
µν is an analytically

known puncture and hRµν is the residual field as defined in [37]. A semicolon indicates a

covariant derivative with respect to the background metric gµν .

Our phase-space formalism here differs from the formulation of the inspiral in the

main text of [9] and the formulation of the transition to plunge in [14]. Those references,

rather than using three variables (∆)Ja to characterize the slowly evolving state of the

system, used a single “slow time” variable (εt during the inspiral and ε1/5(t − t∗) during

the transition to plunge, where t∗ is the time at which the particle reaches the ISCO). The

two formulations are formally equivalent, in the sense that the equations in the slow-time

formalism can be obtained from those in the phase-space formalism by expanding (∆)Ja

for small ε at fixed slow time. We use the phase-space approach due to its better accuracy

(see the comparison between the 1PAT1 and 1PAT2 models in [8]) and because it will

enable our approach to waveform generation. The phase-space formulation we use here

was first presented in appendix A of [9] for the inspiral regime. Reference [4] detailed it

for generic inspirals in Kerr spacetime. Here we apply it to the transition to plunge for the

first time.

2.2 Einstein’s field equations

We now introduce the formalism that we use to tackle Einstein’s field equations, extending

the phase-space approach from [9] to include the transition-to-plunge expansion. The

metric perturbation due to the small secondary can be written as

hµν(ε, s, x
i) =

∑
n≥1

εnhnµν((∆)Ja(s), ϕp(s), x
i), xi = (r, θ, ϕ), (2.12)

where s is the hyperboloidal time defined in eq. (2.2). The number n is a natural number

in the case of the inspiral expansion, and an integer multiple of 1/5 in the transition-to-

plunge expansion. The reason for these specific non-integer powers will become clear in
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later sections. In either regime, the integer part ⌊n⌋ denotes the level of non-linearity of

the perturbation: terms with ⌊n⌋ = 1 are linear (meaning hnµν for 1 ≤ n < 2 are generated

by sources that are at most linear in lower-order hnµν ’s); terms with ⌊n⌋ = 2 are quadratic

(meaning hnµν for 2 ≤ n < 3 are generated by sources that are at most quadratic in lower-

order hnµν ’s); and so on. The level of non-linearity ⌊n⌋ in the transition-to-plunge expansion

is incremented by 1 every 5 orders in the expansion. For the inspiral, we will denote hnµν

with parentheses as h
(n)
µν (Ja, ϕp, x

i), while for the transition to plunge we will denote hnαβ

with square brackets as h
[5n]
αβ (∆Ja, ϕp, x

i). Our convention allows us to label tensors at

each order in perturbation theory with an integer superscript. In this section we introduce

both cases simultaneously. All the time dependence of the metric perturbation is encoded

in (∆)Ja and ϕp.

It will be convenient to introduce the nth-order trace-reversed metric perturbation

h̄nµν := hnµν − 1
2gµνg

αβhnαβ along with the sum h̄µν :=
∑

n ε
nh̄nµν . We note that expansions

analogous to eq. (2.12) also hold for the puncture and residual fields, hPµν and hRµν , such that

hµν = hPµν+hRµν . In the puncture scheme, the secondary is replaced with a singular puncture

in the spacetime geometry. The puncture diverges on the worldline and approximates the

physical behaviour of the metric near the secondary. At linear order, the puncture scheme

is equivalent to considering the secondary as a point particle of mass mp moving on the

worldline zµ.

It will also be convenient to isolate the metric perturbations’ dependence on δM±.

The nth-order metric perturbation is a polynomial of order ⌊n⌋ in δM and δJ , that is, we

can decompose it as

⌊n⌋ = 1 : hnµν((∆)Ja, ϕp, x
i) = hn,aµν ((∆)Ω, ϕp, x

i)δMa, (2.13a)

⌊n⌋ = 2 : hnµν((∆)Ja, ϕp, x
i) = hn,abµν ((∆)Ω, ϕp, x

i)δMaδM b, (2.13b)

where δMa := (1, δM, δJ) and the repeated indices are summed over. The components that

are purely along δM± (i.e., hn,δM
±

µν , hn,δM
±δM±

µν , and hn,δM
±δM∓

µν ) represent perturbations

towards a slowly-evolving Kerr metric with mass M + ε δM and spin ε δJ . This means

that these components do not depend on the orbital phase ϕp, and after the harmonic

decomposition we perform below, they only receive ℓ = 0, 1, m = 0 contributions at the

linear level and ℓ = 0, 1, 2, m = 0 at the quadratic level [9].

We now turn to the field equations and their harmonic decomposition. We will perform

the multiscale expansion separately for the inspiral and transition-to-plunge regimes in

sections 3.2 and 4.2, respectively. We first substitute the metric (2.1) into the vacuum

Einstein equations (which apply at all points off the secondary’s worldline) and work in

Lorenz gauge, ∇ν h̄µν = 0. The expansion of the field equations in (potentially non-integer)

powers of ε, in terms of the coefficients hnµν , will depend on the regime. Hence, in this

section, we focus on the generic structure of the field equations, expressed in terms of

powers of the total metric perturbation hµν . Up to terms cubic in hµν (i.e., neglecting

terms of order ε4) and using Gµν [g] = 0, we obtain

Eµν [h̄] = 2δ2Gµν [h̄, h̄] + 2δ3Gµν [h̄, h̄, h̄] +O(ε4) (2.14)
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away from the worldline. Here Eµν [h̄] := ∇α∇αh̄µν + 2Rα β
µ ν h̄αβ is −2δGµν in the Lorenz

gauge, where δGµν is the linearized Einstein tensor. Following the notation of [9], tensors

inside square brackets, i.e. tensors that are being operated on, have their indices suppressed.

δ2Gµν and δ3Gµν are the quadratic and cubic couplings of linear perturbations, that is,

the pieces in the expansion of Gµν [g + h] that are quadratic and cubic in h̄µν . An explicit

expression for δ2Gµν can be found in [9]. Equation (2.14) can be extended to the worldline

using a puncture scheme, in which the puncture contribution to h̄µν is moved to the right-

hand side of the field equations and treated as a source [38]:

Eµν [h̄
R] = 2δ2Gµν [h̄, h̄] + 2δ3Gµν [h̄, h̄, h̄]− Eµν [h̄

P ] +O(ε4). (2.15)

At low orders, working in the puncture formulation is equivalent to using a point-

particle source,

Tµν = mp

∫
uµuν

δ4(xµ − zµ(τ))√
−detg

dτ +O(ε2). (2.16)

The form of this source allows us to more easily justify our multiscale ansatz in eq. (2.28)

below. The second-order terms in Tµν are made up of terms proportional to hRµν multiplying

delta functions supported on the worldline [39]. Although the third-order terms have not

been derived, the reasoning in [39] implies that they will be structurally similar. In terms

of this Tµν , we can rewrite eq. (2.15) as

Eµν [h̄] = −16πTµν + 2δ2Gµν [h̄, h̄] + 2δ3Gµν [h̄, h̄, h̄] +O(ε4). (2.17)

We refer to [39] for discussion of the strict interpretation of (and equivalence between)

eqs. (2.15) and (2.17). We will not explicitly require the O(ε2) and higher terms in the

stress-energy tensor, and in later sections we will freely move between the puncture formu-

lation and the point-particle stress-energy formulation.

We next decompose the fields into tensor spherical harmonic modes, using the Barack-

Lousto-Sago basis of harmonics [40]. We start by decomposing the trace-reversed metric

perturbations h̄nµν as

h̄nµν =
∑
iℓm

aiℓ
r
h̄niℓm((∆)Ja, ϕp, r)Y

iℓm
µν (r, θ, ϕ), (2.18)

and analogously h̄iℓm :=
∑

n ε
nh̄niℓm, where i = 1, . . . , 10, ℓ ≥ 0 and m = −ℓ, . . . , ℓ. A useful

property of this basis is that the corresponding expansion of hµν is identical to eq. (2.18)

but with the i = 3, 6 terms flipped. The tensor harmonics Y iℓm
µν and the normalization

factors aiℓ are defined in appendix A.1. The harmonic modes h̄niℓm (and similarly the

harmonic modes Φiℓm of any symmetric tensor Φµν) are computed as

h̄niℓm =
r

aiℓκi

∮
dS ηµαηνβh̄nµνY

iℓm∗
αβ , (2.19)

with
∮
dS =

∫ 2π
0 dϕ

∫ π
0 dθ sin θ, κi = f2 if i = 3 and 1 otherwise, and ηµν defined in eq. (A.4)

below.
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To motivate our ansatz for the tensor-harmonic modes of the metric perturbation, we

first decompose the source terms in the Einstein equation (2.17). Changing the integration

variable in eq. (2.16) to t, we can evaluate the integral and obtain

Tµν = mp
uµuν
Ur2p

δ(r − rp)δ(θ − π/2)δ(ϕ− ϕp) +O(ε2). (2.20)

Given that mp = M ε, the harmonic modes of the point-particle stress-energy tensor then

read

Tiℓm =− rf(r)

4aiℓκi

∮
dS ηµαηνβTµνY

iℓm∗
αβ (r, θ, ϕ) +O(ε2)

=− εf(rp)M

4aiℓκi
ηµαηνβ

uµuν
Urp

Y iℓm∗
αβ

(
r,
π

2
, 0
)
e−imϕpδ(r − rp) +O(ε)

:= ε tiℓme−imϕpδ(r − rp) +O(ε2).

(2.21)

Here we have used the analog of eq. (2.19) with an additional factor −f(r)/4 to simplify

later expressions. The mode amplitudes tiℓm are evaluated on the worldline (2.4). The

harmonic modes of the quadratic Einstein tensor, δ2Giℓm, can be computed from

δ2Giℓm

[
h̄, h̄

]
= − rf(r)

4aiℓκi

∮
dS ηµαηνβδ2Gµν

[
h̄, h̄

]
Y iℓm∗
αβ . (2.22)

The metric perturbations appearing in the integral can themselves be decomposed as pre-

scribed by eq. (2.18). Schematically, we can rewrite the harmonic modes of the quadratic

Einstein tensor in terms of the modes of the metric perturbations as

δ2Giℓm

[
h̄, h̄

]
=
∑

i1ℓ1m1

∑
i2ℓ2m2

δ2Gi1ℓ1m1,i2ℓ2m2

iℓm h̄i1ℓ1m1 h̄i2ℓ2m2 , (2.23)

where δ2Gi1ℓ1m1,i2ℓ2m2

iℓm is a bilinear differential operator acting on h̄i1ℓ1m1 and h̄i2ℓ2m2 sep-

arately [41]. It is important to notice that m = m1 + m2 since the integration over ϕ in

eq. (2.22) gives ∫
dϕ e−imϕeim1ϕeim2ϕ ∝ δm,m1+m2 . (2.24)

An equivalent reasoning holds for the cubic Einstein tensor.

After the harmonic decomposition, the field equations (2.17) are given by a set of

coupled partial differential equations for the harmonic modes h̄iℓm (i = 1, . . . , 10),

Eijℓmh̄jℓm = −16πTiℓm + 2δ2Giℓm[h̄, h̄] + 2δ3Giℓm[h̄, h̄, h̄] +O(ε4), (2.25)

with summation over the repeated index j only. The decomposed linear Einstein operator

Eijℓm is given by

Eijℓm =
δij
4

[
(∂t)

2
r − (∂x)

2
t + 4Vℓ(r)

]
+Mij

r (r) +Mij
t (r)(∂t)r. (2.26)

The potential is Vℓ(r) :=
f
4

[
2M
r3

+ ℓ(ℓ+1)
r2

]
. The operator matrix Mij := Mij

r + Mij
t (∂t)r,

with i, j = 1, . . . , 10, couples between modes h̄jℓm with different j but the same ℓ and m.
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The explicit components Mij are given in appendix A.2. Since Mij = 0 for i = 1, . . . , 7

with j = 8, 9, 10 and for i = 8, 9, 10 with j = 1, . . . , 7, the field equations at each order in

the multiscale expansion will split into seven coupled equations for the even modes (h̄iℓm,

i = 1, . . . , 7) and three coupled equations for the odd modes (h̄iℓm, i = 8, 9, 10).

When acting on a function of (∆)Ja(s), ϕp(s) and r, derivatives with respect to t and

r become operators on phase space. The t derivative at fixed radial coordinate r, (∂t)r,

becomes

(∂t)r = Ω
∂

∂ϕp
+ F (∆)Ja ∂

∂(∆)Ja
, (2.27a)

where we have used eq. (2.7) for d(∆)Ja/ds. Likewise, for the radial derivative at fixed t,

(∂r)t,

f(∂r)t = (∂x)t = (∂x)(∆)Ja,ϕp
−H

(
Ω

∂

∂ϕp
+ F (∆)Ja ∂

∂(∆)Ja

)
, (2.27b)

where H is defined in eq. (2.3). Consequently, the linear and nonlinear operators Eijℓm and

δnGiℓm become operators on phase space. We use this to promote the Einstein equation

(decomposed in tensor harmonics) to a partial differential equation in ((∆)Ja, ϕp, r) rather

than (s, r), treating ((∆)Ja, ϕp) as independent coordinates. The solution on phase space

becomes a solution on spacetime when evaluated on a physical trajectory ((∆)Ja(s), ϕp(s))

that satisfies eqs. (2.5) and (2.7).

Since the source (2.21) has a 2π/m periodicity in ϕp, we adopt the following ansatz

for the metric perturbations:

h̄niℓm((∆)Ja, ϕp, r) = Rn
iℓm((∆)Ja, r)e−imϕp . (2.28)

In summary, the trace-reversed metric perturbation is therefore decomposed as

h̄µν(ε, s, x
i) =

∑
n≥1

εn
∑
iℓm

aiℓ
r
Rn

iℓm((∆)Ja(ε, s), r)e−imϕp(ε,s)Y iℓm
µν (r, θ, ϕ), (2.29)

with analogous expansions for the puncture and residual fields. The metric perturbation is

likewise expanded as hµν =
∑

n ε
n
∑

iℓm
aiℓ
r Rn

iℓm((∆)Ja, r)e−imϕpY iℓm
µν (r, θ, ϕ), where 3 = 6,

6 = 3 and i = i otherwise. Note that aiℓ = aiℓ. Following the discussion above eq. (2.24),

we can write

δ2Giℓm

[
h̄i1ℓ1m1 , h̄i2ℓ2m2

]
= δ2Giℓm [Ri1ℓ1m1 , Ri2ℓ2m2 ] e

−imϕp , (2.30)

and similarly for δ3Giℓm. Hence, at all orders, the sources and solutions only depend on

ϕp through the exponential e−imϕp , which we can then factor out of the equations.

Finally, the harmonic decomposition of the field equations (2.14) reads

ÊijℓmRjℓm = 2δ̂2Giℓm[R,R] + 2δ̂3Giℓm[R,R,R] +O(ε4), (2.31)

where Riℓm :=
∑

n ε
nRn

iℓm. The operators Êijℓm and δ̂nGiℓm are given by Eijℓm and

δnGiℓm with the prescription (2.27) for t and r derivatives and the further replacement of

ϕp derivatives with ∂ϕp → −im. Equation (2.31) is complete once we include the Lorenz

gauge condition Zµ := ∇ν h̄µν = 0. Substituting eq. (2.29) and taking the derivatives

– 10 –



as prescribed by eq. (2.27), we obtain the harmonic decomposition of the Lorenz gauge

condition, [
Zraj(r) + Ztaj(r)

(
−imΩ+

d(∆)Jb

dt

∂

∂(∆)Jb

)]
Rjℓm = 0, (2.32)

with a = 1, 2, 3, 4 and where Zraj are operators that contain (∂x)(∆)Ja and Ztaj(r) is a

radial vector, which are given explicitly in appendix A.3.

3 Quasi-circular inspiral

As mentioned in section 1, two disparate timescales characterize the quasi-circular inspiral:

the phase ϕp evolves on the orbital timescale ∼ M , while the mechanical parameters

Ja = (Ω, δM, δJ) = (Ω, δM±) evolve on the radiation-reaction timescale ∼ M/ε. In order

to reflect this behaviour, we perform an inspiral expansion of all orbital quantities, in

integer powers of the mass ratio ε at fixed mechanical parameters Ja. The multiscale

nature of this expansion will become evident in section 3.2. Explicitly, we expand the

orbital radius and redshift as

rp(ε, J
a) = r(0)(Ω) +

∞∑
n=1

εn r(n)(J
a), (3.1)

U(ε, Ja) = U(0)(Ω) +

∞∑
n=1

εn U(n)(J
a). (3.2)

Terms labelled with a subscript (n) in parentheses appear at order εn with n = 0, 1, 2, . . . .

The leading-order term in the inspiral expansion is known as the adiabatic or the zeroth

post-adiabatic (0PA) order. As we will show below, the adiabatic order only depends on Ω

and not on δM and δJ . The nth subleading term is called the nth post-adiabatic or nPA

order and depends on the full set of mechanical parameters. Since we are expanding all

functions at fixed Ja, we also expand the rates of change dJa/dt as

1

ε

dJa

dt
(ε, Ja) = F Ja

(0)(Ω) +

∞∑
n=1

εn F Ja

(n)(J
b). (3.3)

The factor of ε−1 appearing on the left-hand side reflects the fact that the evolution of the

mechanical parameters takes place over the radiation-reaction timescale. The slow time

t̃ = ε t could be introduced to absorb this factor, but we opt to keep a lighter notation.

The inspiral expansion of the self-force reads

fµ(ε, Ja) = ε fµ
(1)(Ω) +

∞∑
n=2

εn fµ
(n)(J

a), µ = t, ϕ, (3.4a)

f r(ε, Ja) = ε f r
(1)(J

a) +

∞∑
n=2

εn f r
(n)(J

a). (3.4b)

Consistently with equatorial motion, we have fθ = 0. In the quasi-circular case, the split

of the self-force into dissipative and conservative pieces is straightforward: the dissipative
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self-force is antisymmetric under time reversal (t, ϕ) → (−t,−ϕ) and is therefore given by

fµ
diss =

(
f t, 0, 0, fϕ

)
. The conservative piece is then fµ

cons = (0, f r, 0, 0), which is symmetric

under time reversal. In section 3.3 we perform the inspiral expansion of eq. (2.11) and

obtain explicit expressions for the self-force in terms of the metric perturbations. This

allows us to show that, as anticipated in eq. (3.4a), the dissipative first-order self-force

only depends on Ω.

Adiabatic inspiral waveforms have been computed since the seminal work by Poisson

and collaborators in 1993 [42–44], while 1PA inspiral waveforms were only obtained in

2021 [8]. Higher-order nPA waveforms will not be required for detection or parameter

estimation for LISA EMRI sources [45]. Though they would be useful for mass ratios

closer to unity [17], higher-order nPA waveforms are unlikely to be obtained in the near

future, and key theoretical ingredients, such as the third-order puncture and third-order

self-force, have not yet been derived. However, since the matching procedure between two

asymptotically expanded series mixes the perturbative orders, we derive the behaviour

of the 2PA approximation for a better understanding of the asymptotic match between

the inspiral and the transition to plunge. For this purpose, it is sufficient to obtain the

structure of the third-order self-force without the need for its explicit expression.

3.1 Orbital motion at 0PA, 1PA and 2PA order

We perform the inspiral expansion of the worldline (2.4) and the four-velocity (2.8), and

substitute them into the normalization condition (2.9) and the equation of motion (2.10).

At each order εn, n ≥ 0, we obtain algebraic equations for U(n) and r(n) from the normal-

ization condition and the radial component of the equation of motion, respectively. We

obtain the forcing terms FΩ
(n) from the time component of the equation of motion at order

εn+1. The forcing terms F δM
(n) and F δJ

(n) can be determined from the GW fluxes of energy

and angular momentum through the horizon of the primary. For the purpose of this paper

we are only interested in their structure, which we derive in section 3.2.

The 0PA and 1PA quantities were given in [9] and are repeated here for completeness.

At adiabatic order we obtain

r(0) =
M

(MΩ)2/3
, U(0) =

1√
1− 3(MΩ)2/3

, FΩ
(0) = −

3Ωf(0)

(MΩ)2/3U4
(0)D

f t
(1), (3.5)

where we have defined

D := 1− 6(MΩ)2/3, f(0) := 1− 2M

r(0)
= 1− 2(MΩ)2/3. (3.6)

The adiabatic motion is driven by the dissipative first-order self-force only. Since f t
(1) does

not depend on δM and δJ (see eq. (3.30) below), the adiabatic motion is only determined

by the orbital frequency Ω. The 1PA quantities read

r(1) =−
f r
(1)

3Ω2U2
(0)f(0)

, U(1) = 0, (3.7a)
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FΩ
(1) =−

3Ωf(0)

(MΩ)2/3U4
(0)D

f t
(2) −

4(1− 6(MΩ)2/3 + 12(MΩ)4/3)

(MΩ)U6
(0)f(0)D

2
f t
(1)f

r
(1)

− 2

(MΩ)1/3U4
(0)f(0)D

F Ja

(0)∂Jaf r
(1).

(3.7b)

Corrections to the orbital radius depend on the first-order radial self-force. At 1PA order,

the slow evolution of the orbital frequency is driven by the full first-order and the dissipative

second-order self-force. Given the structure of the self-force presented in section 3.3 below,

both r(1) and FΩ
(1) are linear in δMa = (1, δM, δJ) and can be decomposed as r(1) = ra(1)δM

a

and FΩ
(1) = FΩ a

(1) δM
a. Finally, the 2PA quantities are given by

r(2) = − 1

3Ω2U2
(0)f(0)

f r
(2) +

2
(
4− 45(MΩ)2/3 + 114(MΩ)4/3 − 72(MΩ)2

)
3Ω3(MΩ)U6

(0)D
3

(
f t
(1)

)2
+

(
1− 4(MΩ)2/3

)
9Ω3(MΩ)1/3U4

(0)f
3
(0)

(
f r
(1)

)2
−

2f(0)

Ω2(MΩ)U8
(0)D

2
f t
(1)∂Ωf

t
(1),

(3.8a)

U(2) =
2f(0)

Ω2(MΩ)2/3U5
(0)D

2

(
f t
(1)

)2
+

1

6Ω2U(0)f
2
(0)

(
f r
(1)

)2
, (3.8b)

FΩ
(2) = −

3Ωf(0)

(MΩ)2/3U4
(0)D

f t
(3)

+
4
(
1− 6(MΩ)2/3 + 12(MΩ)4/3

)
3Ω(MΩ)1/3U2

(0)f
2
(0)D

(
FΩ
(0)f

r
(2) + FΩ

(1)f
r
(1)

)
+

8

Ω(MΩ)2U10
(0)D

6

(
22− 481(MΩ)2/3 + 3909(MΩ)4/3 − 14610(MΩ)2

+26784(MΩ)8/3 − 22680(MΩ)10/3 + 6480(MΩ)4
)(

f t
(1)

)3
−

12f(0)
(
16− 175(MΩ)2/3 − 252(MΩ)2 + 420(MΩ)4/3

)
(MΩ)2U12

(0)D
5

(
f t
(1)

)2
∂Ωf

t
(1)

+
36Ωf2

(0)

(MΩ)2U14
(0)D

4

[
f t
(1)

(
∂Ωf

t
(1)

)2
+
(
f t
(1)

)2
∂2
Ωf

t
(1)

]

+

(
3− 26(MΩ)2/3 − 120(MΩ)2 + 84(MΩ)4/3

)
Ω(MΩ)4/3U8

(0)f
3
(0)D

2
f t
(1)

(
f r
(1)

)2
− 2(

(MΩ)1/3 − 8(MΩ) + 12(MΩ)5/3
)
U4
(0)

(
F Ja

(0)∂Jaf
r
(2) + F Ja

(1)∂Jaf
r
(1)

)
+

(
1− 4(MΩ)2/3

)2
Ω(MΩ)2/3U4

(0)f
3
(0)D

f r
(1)F

Ja

(0)∂Jaf
r
(1).

(3.8c)

The third-order dissipative self-force begins to appear at 2PA order, alongside the full first-

and second-order self-forces. The 2PA quantities r(2), U(2) and FΩ
(2) are quadratic in δMa.

The quantity D defined in eq. (3.6) vanishes at the ISCO, and inverse powers of it in

the above expressions indicate how rapidly a term in the inspiral expansion diverges as the
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inspiral approaches the ISCO.

3.2 Einstein’s field equations at 0PA, 1PA and 2PA order

We now consider the field equations in the inspiral regime. The expansion (2.29) of the

trace-reversed metric perturbation is

h̄µν(ε, s, x
i) =

∞∑
n=1

εn
∑
iℓm

aiℓ
r
R

(n)
iℓm(Ja(ε, s), r)e−imϕp(ε,s)Y iℓm

µν (r, θ, ϕ), (3.9)

where n takes integer values. By factoring out the rapidly oscillating phases e−imϕp , we

factor out the orbital “fast-time” dynamics from the field equations. The Einstein equa-

tion (2.31) will consequently reduce to a sequence of radial ordinary differential equations

for the slowly evolving mode amplitudes R
(n)
iℓm (see eq. (3.20) below).

Recalling eq. (3.3), we start by performing the inspiral expansion of eq. (2.27). We

obtain

(̂∂t)r = −imΩ+ ε

∞∑
n=0

εn F Ja

(n)∂Ja , (3.10a)

(̂∂x)t = (∂x)Ja + imHΩ− εH
∞∑
n=0

εnF Ja

(n)∂Ja , (3.10b)

where we have again used a hat to denote operators on functions of Ja and r, for which

∂ϕp → −im. The linearized Einstein operator (2.26) is then expanded as

Êijℓm(ε, Ja, r) = E
(0)
ijℓm(Ω, r) + εE

(1)
ijℓm(Ω, r) + ε2E

(2)
ijℓm(Ja, r) +O(ε3), (3.11)

where

E
(0)
ijℓm = −δij

4

[
∂2
x + imΩ (∂xH + 2H∂x) +m2Ω2

(
1−H2

)
− 4Vℓ

]
+Mij

r − imΩMij
t ,

(3.12a)

E
(1)
ijℓm =

δij
4

[(
∂xH + 2imH2Ω− 2imΩ

)
F Ja

(0)∂Ja + 2HF Ja

(0)∂Ja∂x

−im
(
1−H2

)
FΩ
(0)

]
+Mij

t F
Ja

(0)∂Ja

:= E
(1)A
ijℓm + FΩ

(0)E
(1)B
ijℓm ,

(3.12b)

E
(2)
ijℓm =

δij
4

[(
∂xH + 2imH2Ω− 2imΩ

)
F Ja

(1)∂Ja + 2HF Ja

(1)∂Ja∂x−im
(
1−H2

)
FΩ
(1)

+(1−H2)FΩ
(0)∂ΩF

Ja

(0)∂Ja + (1−H2)F Ja

(0)F
Jb

(0)∂Ja∂Jb

]
+Mij

t F
Ja

(1)∂Ja

:= E
(2)A
ijℓm + FΩ

(0)E
(2)B
ijℓm + FΩ

(1)E
(2)C
ijℓm +

(
FΩ
(0)

)2
E

(2)D
ijℓm + FΩ

(0)∂ΩF
Ω
(0)E

(2)E
ijℓm.

(3.12c)

In the inspiral expansion we use capital Latin letters A,B, . . . to denote the components

of an expression according to the decomposition in polynomials of FΩ
(n), n ≥ 0, and their
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Ja derivatives, which are the only terms that diverge at the ISCO. Note that the forcing

terms F δM
(n) and F δJ

(n), n ≥ 0, have themselves been decomposed in an analogous way (see

eq. (3.23) below).

We similarly expand the source terms in the field equation (2.25). We can formally

expand the harmonic mode amplitudes tiℓm of the first-order point-particle stress-energy

tensor (2.21) as a functional of the orbital radius rp and its rate of change ṙp := drp/dt,

ε tiℓm [rp(ε, J
a), ṙp(ε, J

a)] = ε t
(1)
iℓm(Ω) + ε2t

(2)
iℓm(Ja) + ε3t

(3)
iℓm(Ja) +O(ε3), (3.13)

where

t
(1)
iℓm = tiℓm|(0) , (3.14a)

t
(2)
iℓm = r(1)

∂tiℓm
∂rp

∣∣∣∣
(0)

+ FΩ
(0)∂Ωr(0)

∂tiℓm
∂ṙp

∣∣∣∣
(0)

:= t
(2)A
iℓm + FΩ

(0)t
(2)B
iℓm , (3.14b)

t
(3)
iℓm = r(2)

∂tiℓm
∂rp

∣∣∣∣
(0)

+
r2(1)

2

∂2tiℓm
∂r2p

∣∣∣∣
(0)

+ FΩ
(1)∂Ωr(0)

∂tiℓm
∂ṙp

∣∣∣∣
(0)

+ F Ja

(0)∂Jar(1)
∂tiℓm
∂ṙp

∣∣∣∣
(0)

+
1

2

(
FΩ
(0)∂Ωr(0)

)2 ∂2tiℓm
∂ṙ2p

∣∣∣∣
(0)

+ r(1)F
Ω
(0)∂Ωr(0)

∂2tiℓm
∂rp∂ṙp

∣∣∣∣
(0)

:= t
(3)A
iℓm + FΩ

(0)t
(3)B
iℓm + FΩ

(1)t
(3)C
iℓm +

(
FΩ
(0)

)2
t
(3)D
iℓm + FΩ

(0)∂ΩF
Ω
(0) t

(3)E
iℓm .

(3.14c)

We use the notation tiℓm|(0) := tiℓm(r(0), 0). We can compute these terms explicitly by

substituting eqs. (2.8), (3.1), (3.2) and (3.3) into the definition (2.21). In the notation

of [9, 40, 46], the leading-order modes t
(1)
iℓm are given by

t
(1)
iℓm = −1

4
E(0)α

(1)
iℓm

{
Y ∗
ℓm(π2 , 0) i = 1, . . . , 7,

∂θY
∗
ℓm(π2 , 0) i = 8, 9, 10.

(3.15)

Here E(0) = Mf(0)U(0) and the coefficients α
(1)
iℓm are given by (dropping the ℓ and m indices)

α
(1)
1 =

f2
(0)

r(0)
, α

(1)
2,5,9 = 0, α

(1)
3 =

f(0)

r(0)
, α

(1)
4 = 2imf(0)Ω, α

(1)
6 = r(0)Ω

2,

α
(1)
7 =

[
ℓ(ℓ+ 1)− 2m2

]
r(0)Ω

2, α
(1)
8 = 2f(0)Ω, α

(1)
10 = 2imΩ2r(0).

(3.16)

We will use punctures rather than stress-energy terms when writing down the field equa-

tions for n > 1, meaning t
(2)
iℓm and t

(3)
iℓm will not be explicitly needed. However, for com-

pleteness, the 1PA modes t
(2)
iℓm are given in appendix B.1. We next perform the inspiral

expansion of harmonic modes of the quadratic and the cubic Einstein tensor using eq. (3.9).

Up to order ε3, we are interested in the structure of the following terms:

δ̂2Giℓm[R(1), R(1)] = δ2G
(0)
iℓm[R(1), R(1)] + ε

(
δ2G

(1)A
iℓm [R(1), R(1)]

+FΩ
(0)δ

2G
(1)B
iℓm [R(1), R(1)]

)
+O(ε2),

(3.17)
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δ̂2Giℓm[R(1), R(2)] = δ2G
(0)
iℓm[R(1), R(2)] +O(ε), (3.18)

δ̂3Giℓm[R(1), R(1), R(1)] = δ3G
(0)
iℓm[R(1), R(1), R(1)] +O(ε). (3.19)

The O(ε) terms originate from the O(ε) terms that appear when taking t and r deriva-

tives of the metric perturbations appearing in the quadratic and cubic Einstein tensors as

prescribed by eq. (3.10).

Finally, we substitute these expansions along with Riℓm =
∑

n ε
nR

(n)
iℓm into the field

equations (2.31). The result reads

E
(0)
ijℓmR

(1)
jℓm = − 16π t

(1)
iℓmδ(r − r(0)), (3.20a)

E
(0)
ijℓmR

(2)R
jℓm = 2δ2G

(0)
iℓm[R(1), R(1)]− E

(0)
ijℓmR

(2)P
jℓm − E

(1)
ijℓmR

(1)
jℓm, (3.20b)

E
(0)
ijℓmR

(3)R
jℓm = 2δ3G

(0)
iℓm[R(1), R(1), R(1)] + 4δ2G

(0)
iℓm[R(1), R(2)]

+ 2δ2G
(1)A
iℓm [R(1), R(1)] + 2FΩ

(0)δ
2G

(1)B
iℓm [R(1), R(1)]

− E
(0)
ijℓmR

(3)P
jℓm − E

(1)
ijℓmR

(2)
jℓm − E

(2)
ijℓmR

(1)
jℓm.

(3.20c)

As mentioned above, we have written the field equations for n > 1 in terms of the residual

field, using punctures R
(2)P
iℓm and R

(3)P
iℓm rather than t

(2)
iℓm and t

(3)
iℓm. Also as alluded to

previously, the field equations have been reduced to ordinary differential equations in r.

This is a consequence of the fact that derivatives with respect to Ja are accompanied by

forcing terms F Ja

(n), which are suppressed by powers of ε by virtue of eq. (3.10). Such

derivatives therefore become sources rather than appearing on the left-hand side of the

field equations.

Each of the equations (3.20) represents 10 coupled radial ordinary differential equa-

tions for each value of ℓ and m. Several properties that reduce the level of coupling are

summarized in section V.E of [9]. We do not report them here since they are not of major

interest to our analysis. Equation (3.20a) does not contain terms that are singular at the

ISCO frequency and is therefore solved by a function that is smooth in Ω, R
(1)
iℓm(Ja, r). At

second order, substituting eq. (3.12b) into eq. (3.20b), we can separate the terms propor-

tional to FΩ
(0) from those that are not. Accordingly, we write the second-order puncture

and residual fields as

R
(2)
iℓm(Ja, r) = R

(2)A
iℓm (Ja, r) + FΩ

(0)R
(2)B
iℓm (Ja, r), (3.21)

where R
(2)A
iℓm and R

(2)B
iℓm are smooth functions of the orbital frequency. This allows us to

split the field equations (3.20b) as follows:

E
(0)
ijℓmR

(2)RA
jℓm = 2δ2G

(0)
iℓm[R(1), R(1)]− E

(0)
ijℓmR

(2)PA
jℓm − E

(1)A
ijℓmR

(1)
jℓm, (3.22a)

E
(0)
ijℓmR

(2)RB
jℓm = −E

(0)
ijℓmR

(2)PB
jℓm − E

(1)B
ijℓmR

(1)
jℓm. (3.22b)

In addition to the puncture and the first-order field R
(1)R
iℓm , the second-order mode am-

plitudes R
(2)RB
iℓm are also sourced by ∂ΩR

(1)R
iℓm . Note that R

(2)RB
iℓm is not sourced by the
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quadratic term δ2G
(0)
iℓm even though it is a second-order perturbation. Therefore, recalling

the decomposition in eq. (2.13), we can deduce from eq. (3.22) that the fields R
(2)RA
iℓm and

R
(2)RB
iℓm are quadratic and linear in δMa = (1, δM, δJ), respectively.

The forcing terms F δM
(n) and F δJ

(n), n ≥ 0, which drive the evolution of the corrections to

the background mass and spin, are computed from the GW fluxes of energy and angular

momentum into the primary. Since the fluxes are proportional to the square of the time

derivative of the metric perturbation, the structure of the forcing terms directly follows from

the ones of R
(1)
iℓm and R

(2)
iℓm that we have just derived. While F δM

(0) and F δJ
(0) are functions of

Ω only and are smooth at the ISCO, F δM
(1) and F δJ

(1) display the following structure:

F δM±

(1) (Ja) = F δM±

(1)A (Ja) + FΩ
(0)F

δM±

(1)B (Ja). (3.23)

From the right-hand side of eq. (3.20c) and using eqs. (3.12b), (3.12c) and (3.21), we

can finally infer the structure of the third-order metric perturbation mode amplitudes:

R
(3)
iℓm(Ja, r) = R

(3)A
iℓm (Ja, r) + FΩ

(0)R
(3)B
iℓm (Ja, r) + FΩ

(1)R
(3)C
iℓm (Ja, r)

+
(
FΩ
(0)

)2
R

(3)D
iℓm (Ja, r) + FΩ

(0)∂ΩF
Ω
(0)R

(3)E
iℓm (Ja, r).

(3.24)

The cubic term δ3G
(0)
iℓm in eq. (3.20c) only sources R

(3)A
iℓm , while the quadratic terms δ2G

(n)
iℓm

only source R
(3)A
iℓm and R

(3)B
iℓm .

3.3 Self-force

We now obtain explicit expressions for the self-force in terms of the metric perturbations.

After using eqs. (3.1), (3.2) and (3.3) in eqs. (2.4) and (2.8), we arrive at inspiral expansions

of the worldline and the four-velocity to 1PA order:

zµ = zµ(0) + ε zµ(1) +O(ε2) =
(
t, r(0),

π

2
, ϕp

)
+ ε

(
0, r(1), 0, 0

)
+O(ε2), (3.25)

uµ = uµ(0) + ε uµ(1) +O(ε2) =
(
U(0), 0, 0, U(0)Ω

)
+ε
(
0, U(0)F

Ω
(0)∂Ωr(0), 0, 0

)
+O(ε2), (3.26)

where we have already used the fact that U(1) = 0. Substituting these expansions together

with the inspiral expansion of the residual piece of the metric perturbation,

hRµν =

∞∑
n=1

εn
∑
iℓm

aiℓ
r
R

(n)R
iℓm (Ja, r)e−imϕpY iℓm

µν (r, θ, ϕ), (3.27)

into eq. (2.11), we find that the first- and second-order self-forces have the following form:

fµ
(1) = fµ

(1)(Ω), µ = t, ϕ, f r
(1) = f r

(1)(J
a), (3.28a)

fµ
(2) = fµ

(2)A(J
a) + FΩ

(0)f
µ
(2)B(J

a). (3.28b)

The terms appearing in these expressions are explicitly given by

fµ
(1) =

1

2
gµνh(1)Ru(0)u(0),ν

, (3.29a)
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fµ
(2)A =

1

2
gµνh(2)RA

u(0)u(0),ν
+

1

2
r(1)

[
∂rg

µνh(1)Ru(0)u(0),ν
+ gµνh(1)Ru(0)u(0),νr

]
− Pµν

(0)

[
3U2

(0)Ω
2f(0)r(1)δ

σ
r h

(1)R
σν +

1

2
h(1)Rρ
ν h(1)Ru(0)u(0),ρ

]
− F δM±

(0)

[
Pµν
(0)U(0)u

β
(0)h

(1)R
βν,δM±−

1

2
uµ(0)U(0)h

(1)R
u(0)u(0),δM

±−
δµt
2
gtth

(1)R
u(0)u(0),δM

±

]
,

(3.29b)

fµ
(2)B =

1

2
gµνh(2)RB

u(0)u(0),ν
− Pµν

(0)U(0)u
β
(0)h

(1)R
βν,Ω +

1

2
uµ(0)U(0)h

(1)R
u(0)u(0),Ω

+
δµt
2
gtth

(1)R
u(0)u(0),Ω

+ U(0)∂Ωr(0)

[
gµνh(1)Rαr,ν u

α
(0) + 2Pµν

(0)Γ
σ(0)
αr h(1)Rσν uα(0)

− gµνh
(1)R
βν,r u

β
(0) −

1

2
uµ(0)h

(1)R
u(0)u(0),r

]
.

(3.29c)

We have made use of the notation introduced in [9], where h
(n)R
u(0)u(0),ν := h

(n)R
αβ,ν u

α
(0)u

β
(0). We

warn the reader that the ν derivative does not act on the four-velocities. Any t derivative

appearing in these final expanded expressions should be interpreted as ∂t 7→ Ω∂ϕp , as the

full expansion of the time derivative from eq. (3.10) has already been applied. All fields

are evaluated on the adiabatic worldline zµ(0). As a consequence, the self-force depends only

on the mode amplitudes R
(n)R
iℓm and not on the rapidly oscillating phases. Indeed, since on

the worldline ϕ = ϕp, we have that Y iℓm
µν e−imϕp ∝ eim(ϕ−ϕp) = 1. The t component of the

first-order self-force,

f t
(1) =

gtt

2
h
(1)R
u(0)u(0),ϕp

Ω =
iΩ

2f(0)r(0)

∑
iℓm

maiℓR
(1)R
iℓm (Ja, r(0))Y

iℓm
αβ (r(0), π/2, 0)u

α
(0)u

β
(0), (3.30)

only receives contributions from the m ̸= 0 modes. It is therefore fully determined in

terms of the orbital frequency Ω and does not depend on the parameters of the slowly-

evolving background δM and δJ , which only enter into the ℓ = 0 and ℓ = 1, m = 0

contributions [9]. Recalling eq. (2.13), we note that since only the m ̸= 0 modes of h
(2)R
µν

appear in the dissipative second-order self-force, it is linear in δMa = (1, δM, δJ). The

expressions for the radial self-force are such that f r
(1) is linear in δMa, while f r

(2) is quadratic

(given the discussion below eq. (3.22), the f r
(2)B component is however linear in δMa).

In obtaining the results above it is crucial to note the following: since uµ(0) has com-

ponents only along the t and ϕ directions and since ϕ and ϕp derivatives of the metric

perturbations only differ by an overall minus sign, we have the property h
(n)R
αβ,ν u

ν
(0) =(

h
(n)R
αβ,ϕp

+ h
(n)R
αβ,ϕ

)
ΩU(0) + O(ε) = O(ε) for all n ≥ 1. Further details on this derivation

(without the terms proportional to F δM
(0) and F δJ

(0) in eq. (3.29b)) can be found in [47].

In order to obtain eqs. (3.29b) and (3.29c), one only needs to replace the FΩ∂Ω terms

occurring in [47] with F Ja
∂Ja .

While the first-order self-force (3.29a) agrees with the one of [9] when re-written in the

slow-time formulation, our expression at second order corrects the analogous one obtained

in [9], where several terms were missed.
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The structure of the first- and second-order self-forces (3.28) follows the one of the re-

spective metric perturbations obtained in the previous subsection. At third order, given the

structure of the metric perturbations (3.24), the self-force admits the following structure:

fµ
(3) = fµ

(3)A(J
a) + FΩ

(0)f
µ
(3)B(J

a) + FΩ
(1)f

µ
(3)C(J

a) +
(
FΩ
(0)

)2
fµ
(3)D(J

a) + FΩ
(0)∂ΩF

Ω
(0)f

µ
(3)E(J

a).

(3.31)

3.4 Near-ISCO solution: orbital motion

Recall that the function D, which appears as a pole in eqs. (3.5), (3.7) and (3.8), vanishes

at the ISCO frequency Ω∗ = 1/(6
√
6M). The ISCO marks the breakdown of the inspiral

expansion as the motion enters into the transition-to-plunge regime. In order to asymptot-

ically match with the transition-to-plunge expansion in section 5 below, we are interested

in the near-ISCO limit of the inspiral motion. After substituting the self-force and the

forcing terms F δM
(1) and F δJ

(1) using eqs. (3.28), (3.31) and (3.23), we take the Ω → Ω∗
limit of eqs. (3.5), (3.7) and (3.8). For easier comparison with the transition-to-plunge

motion, we replace the difference Ω − Ω∗ using the near-ISCO scaling of the orbital fre-

quency, Ω = Ω∗ + λ2∆Ω where λ := ε1/5 (recall eq. (2.6)). Near the ISCO we then have

D = −4
√
6Mλ2∆Ω + O(λ4∆Ω2). At adiabatic order, we find that r(0) and FΩ

(0) have the

following near-ISCO solutions:

r(0)(Ω → Ω∗) = 6M +

∞∑
n=1

r
(2n,n)
(0) λ2n∆Ωn, (3.32a)

ε FΩ
(0)(Ω → Ω∗) = F

(3,−1)
(0)

λ3

∆Ω
+

∞∑
n=0

F
(5+2n,n)
(0) λ5+2n∆Ωn. (3.32b)

We have highlighted the terms that diverge at the ISCO, which contain negative powers

of ∆Ω, by taking them out of the summation. The expansion coefficients are constants

constructed from Ω∗. We use the following notation: each coefficient r
(i,j)
(n) and F

(i,j)
(n) with

n ∈ N and i, j ∈ Z is labelled according to the powers of, respectively, λ and ∆Ω with which

it appears in the expansion. Note that each couple (i, j) originates from a single term (n),

but we keep the notation (n) explicit for book-keeping purposes. Starting from 1PA order

the expansion coefficients in general depend on δM and δJ . Some of these coefficients are

defined explicitly in appendix B.2. Expanding the 1PA equations (3.7), we obtain

ε r(1)(Ω → Ω∗, δM
±) =

∞∑
n=0

r
(5+2n,n)
(1) λ5+2n∆Ωn, (3.33a)

ε2FΩ
(1)(Ω → Ω∗, δM

±) = F
(6,−2)
(1)

λ6

∆Ω2
+ F

(8,−1)
(1)

λ8

∆Ω
+

∞∑
n=0

F
(10+2n,n)
(1) λ10+2n∆Ωn. (3.33b)

The near-ISCO expansion of the 2PA equations (3.8) gives

ε2r(2)(Ω → Ω∗, δM
±) = r

(4,−3)
(2)

λ4

∆Ω3
+ r

(6,−2)
(2)

λ6

∆Ω2
+ r

(8,−1)
(2)

λ8

∆Ω
+

∞∑
n=0

r
(10+2n,n)
(2) λ10+2n∆Ωn,

(3.34a)
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ε3FΩ
(2)(Ω → Ω∗, δM

±) = F
(3,−6)
(2)

λ3

∆Ω6
+ F

(5,−5)
(2)

λ5

∆Ω5
+ · · ·+

∞∑
n=0

F
(15+2n,n)
(2) λ15+2n∆Ωn.

(3.34b)

We now determine the range of validity of the adiabatic and post-adiabatic approximations

based on the near-ISCO solutions computed in this subsection. The 0PA inspiral is valid

outside the ISCO as long as 1PA corrections remain subleading. The adiabatic breakdown

frequency Ω0PA
bd is therefore reached when the leading-order terms in the ε FΩ

(0) and ε2FΩ
(1)

near-ISCO solutions, respectively F
(3,−1)
(0) λ3∆Ω−1 and F

(6,−2)
(1) λ6∆Ω−2, become comparable.

This condition leads to (we recall that λ = ε1/5)

Ω0PA
bd = Ω∗ − ε

∣∣∣∣∣∣
F

(6,−2)
(1)

F
(3,−1)
(0)

∣∣∣∣∣∣ . (3.35)

Similarly, the 1PA motion breaks down when the term F
(3,−6)
(2) λ3∆Ω−6 in the 2PA near-

ISCO inspiral (3.34b) becomes of the same magnitude as the leading-order term in the 1PA

solution (3.33b). The 1PA breakdown frequency is therefore given by

Ω1PA
bd = Ω∗ − ε1/4

∣∣∣∣∣∣
F

(3,−6)
(2)

F
(6,−2)
(1)

∣∣∣∣∣∣
1/4

, (3.36)

which was already obtained in eq. (29) of [17]. We give the numerical values of the co-

efficients appearing in the expressions above in appendix D.2. As a consequence of the

alternating structure between even and odd post-adiabatic orders in the near-ISCO limit

of the inspiral motion [14, 17], the ratio of the degree of divergence at the ISCO of the

(2n+ 1)PA forcing term over the 2nPA forcing term is identical for all n. The qualitative

behaviour in terms of the mass ratio for such 2n will therefore be similar to the one in

eq. (3.35). Equivalently, the ratio of the degree of divergence at the ISCO of the (2n+2)PA

forcing term over the (2n + 1)PA forcing term is identical for all n and is again qualita-

tively similar to the one in eq. (3.36). We plot the 0PA and 1PA breakdown frequencies

as a function of the mass ratio in figure 1. The breakdown frequencies derived using the

near-ISCO solutions provide a rough estimate of the domain of validity of the inspiral

expansion truncated at some order in the mass ratio. This estimate is most accurate for

small mass ratios: for nearly comparable-mass systems, the separation between subsequent

post-adiabatic orders is less marked. In this scenario, the breakdown might already occur

at frequencies where the near-ISCO solutions are not yet valid, and the method we have

used here to derive the breakdown frequencies can therefore not be applied. The breakdown

frequencies represent the upper limit on the validity of a given nPA approximation. This

does not necessarily coincide with the range of frequencies where the inspiral accurately

describes the motion, and the transition-to-plunge expansion becomes more accurate before

the breakdown frequency is reached. We discuss this in more detail in section 5.

– 20 –



110-110-210-310-410-510-6
0

0.02

0.04

0.06

0.08

Figure 1. Breakdown frequencies in terms of the mass ratio for the 0PA motion (eq. (3.35))

in blue and the 1PA motion (eq. (3.36)) in orange. The horizontal dashed line marks the ISCO

frequency. The 0PA and 1PA approximations are valid in the regions below the blue and orange

curves, respectively.

3.5 Near-ISCO solution: metric perturbation and self-force

The first-order quantities R
(1)
iℓm and fµ

(1) are smooth functions of the orbital frequency and

can therefore be Taylor-expanded around the ISCO as

R
(1)
iℓm(Ω → Ω∗, δM

±, r) =R
(1)
iℓm

∣∣∣
∗
+λ2∆Ω ∂ΩR

(1)
iℓm

∣∣∣
∗
+
λ4∆Ω2

2
∂2
ΩR

(1)
iℓm

∣∣∣
∗
+O(λ6∆Ω3), (3.37)

fµ
(1)(Ω → Ω∗, δM

±) = fµ
(1)

∣∣∣
∗
+ λ2∆Ω ∂Ωf

µ
(1)

∣∣∣
∗
+

λ4∆Ω2

2
∂2
Ωf

µ
(1)

∣∣∣
∗
+O(λ6∆Ω3), (3.38)

where we have introduced the short notation |∗ to indicate functions evaluated at Ω = Ω∗.

The expansion coefficients are constants in Ω, but still depend on δM , δJ and, in the case

of the metric perturbations, on the field point r. At second order, the metric perturbation

mode amplitudes and the self-force have the structure given by eqs. (3.21) and (3.28b),

respectively. Taylor-expanding the smooth functions of Ω in these expressions and using

the near-ISCO solution (3.32b), we obtain

R
(2)
iℓm(Ω → Ω∗, δM

±, r) =
F

(3,−1)
(0)

λ2∆Ω
R

(2)B
iℓm

∣∣∣
∗
+ R

(2)A
iℓm

∣∣∣
∗
+ F

(3,−1)
(0) ∂ΩR

(2)B
iℓm

∣∣∣
∗

+ F
(5,0)
(0) R

(2)B
iℓm

∣∣∣
∗
+ λ2∆Ω

(
∂ΩR

(2)A
iℓm

∣∣∣
∗
+ F

(7,1)
(0) R

(2)B
iℓm

∣∣∣
∗

+ F
(5,0)
(0) ∂ΩR

(2)B
iℓm

∣∣∣
∗
+

1

2
F

(3,−1)
(0) ∂2

ΩR
(2)B
iℓm

∣∣∣
∗

)
+O(λ4∆Ω2),

(3.39)
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fµ
(2)(Ω → Ω∗, δM

±) =
F

(3,−1)
(0)

λ2∆Ω
fµ
(2)B

∣∣∣
∗
+ fµ

(2)A

∣∣∣
∗
+ F

(3,−1)
(0) ∂Ωf

µ
(2)B

∣∣∣
∗

+ F
(5,0)
(0) fµ

(2)B

∣∣∣
∗
+ λ2∆Ω

(
∂Ωf

µ
(2)A

∣∣∣
∗
+ F

(7,1)
(0) fµ

(2)B

∣∣∣
∗

+ F
(5,0)
(0) ∂Ωf

µ
(2)B

∣∣∣
∗
+

1

2
F

(3,−1)
(0) ∂2

Ωf
µ
(2)B

∣∣∣
∗

)
+O(λ4∆Ω2).

(3.40)

Finally, substituting eqs. (3.32b) and (3.33b) into eqs. (3.24) and (3.31) and Taylor-

expanding the smooth functions of Ω, we compute the near-ISCO behaviour of the third-

order metric perturbation mode amplitudes and self-force:

R
(3)
iℓm(Ω → Ω∗, δM

±, r) =−

(
F

(3,−1)
(0)

)2
λ6∆Ω3

R
(3)E
iℓm

∣∣∣
∗
+

1

λ4∆Ω2

[
F

(6,−2)
(1) R

(3)C
iℓm

∣∣∣
∗

+
(
F

(3,−1)
(0)

)2
R

(3)D
iℓm

∣∣∣
∗
− F

(3,−1)
(0) F

(5,0)
(0) R

(3)E
iℓm

∣∣∣
∗

−
(
F

(3,−1)
(0)

)2
∂ΩR

(3)E
iℓm

∣∣∣
∗

]
+O(λ−2∆Ω−1),

(3.41)

fµ
(3)(Ω → Ω∗, δM

±) =−

(
F

(3,−1)
(0)

)2
λ6∆Ω3

fµ
(3)E

∣∣∣
∗
+

1

λ4∆Ω2

[
F

(6,−2)
(1) fµ

(3)C

∣∣∣
∗

+
(
F

(3,−1)
(0)

)2
fµ
(3)D

∣∣∣
∗
− F

(3,−1)
(0) F

(5,0)
(0) fµ

(3)E

∣∣∣
∗

−
(
F

(3,−1)
(0)

)2
∂Ωf

µ
(3)E

∣∣∣
∗

]
+O(λ−2∆Ω−1).

(3.42)

4 Transition to plunge

There are three timescales during the transition to plunge: as during the inspiral, the

azimuthal phase ϕp changes on the orbital period ∼ M and the primary black hole’s

evolution takes place on a timescale ∼ M/ε. However, the orbital parameters now evolve

on the ISCO-crossing timescale ∼ M/ε1/5. Fortunately, the ISCO-crossing timescale and

background evolution timescale are commensurate, which allows us to expand all quantities

simultaneously in an ε1/5 expansion.

In the Ori-Thorne analysis [11], the orbital frequency is held fixed at its geodesic

ISCO value during the full transition-to-plunge regime, leading to inconsistencies in the

normalization of the four-velocity [48]. It was shown in [14] that in the transition-to-

plunge expansion that matches with the quasi-circular inspiral, the orbital frequency scales

with the small mass ratio to the power 2/5. As anticipated in section 2.1, the mechanical

parameters we consider for the transition to plunge are ∆Ja = (∆Ω, δM, δJ) = (∆Ω, δM±),

where ∆Ω is defined from the near-ISCO scaling of the orbital frequency,

Ω(t) = Ω∗ + λ2∆Ω(t), Ω∗ :=
1

6
√
6M

, λ := ε1/5. (4.1)
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As during the inspiral, δM and δJ are the variations of mass and spin of the primary

divided by ε, which we collectively denote as δM±.

We now introduce the transition-to-plunge expansion of the orbital quantities, that is,

an expansion in integer powers of λ at fixed mechanical parameters ∆Ja. For the orbital

radius and the redshift we have

rp(λ,∆Ja) = r∗ + λ2
2∑

n=0

λnr[n](∆Ω) + λ2
∞∑
n=3

λnr[n](∆Ja), r∗ := 6M, (4.2)

U(λ,∆Ja) = U∗ + λ2
6∑

n=0

λnU[n](∆Ω) + λ2
∞∑
n=7

λnU[n](∆Ja), U∗ :=
√
2, (4.3)

where r∗ and U∗ are the geodesic ISCO values. We indicate the leading transition-to-

plunge order or the zeroth post-leading transition-to-plunge (0PLT) order with a subscript

[0] in square brackets. Here this term appears at the leading order λ2, where the power

2 can be interpreted as a critical exponent under the scaling λ 7→ 0 in the transition-to-

plunge expansion [11, 14, 48–50]. We refer to the nth subleading term in the transition-

to-plunge expansion as nth post-leading transition-to-plunge or nPLT order and label it

with a subscript [n]. As we will see in the next section, for each orbital variable an

associated number of low PLT orders only depend on ∆Ω, while the higher-order terms

are in general functions of ∆Ja. During the transition to plunge, the evolution of the

mechanical parameters ∆Ja is given by

1

λ

d∆Ω

dt
=

1

λ3

dΩ

dt
=

2∑
n=0

λnF∆Ω
[n] (∆Ω) +

∞∑
n=3

λn F∆Ω
[n] (∆Ja), (4.4)

1

λ5

dδM±

dt
=

2∑
n=0

λn F δM±

[n] (∆Ω) +
∞∑
n=3

λn F δM±

[n] (∆Ja). (4.5)

The ISCO-crossing “slow-time” variable λ t could be introduced to absorb the inverse power

of λ on the left-hand side of eq. (4.4), while the background evolution time λ5t could be

introduced to absorb the λ−5 factor in eq. (4.5). As for the inspiral, we find it most natural

not to introduce any of these auxiliary times and simply consider the evolution in Boyer-

Lindquist time t, keeping the factors of λ explicit. The transition-to-plunge expansion of

the self-force reads

fµ(λ,∆Ja) =

∞∑
n=0

λ5+nfµ
[5+n](∆Ja). (4.6)

We refer to the term appearing at order λ5+n as the nPLT term because the leading-order

term in the self-force is proportional to λ5 (this is also the case for the metric perturbation,

see section 4.2). This is consistent with our convention to denote the first non-vanishing

term in the transition-to-plunge expansion as the 0PLT term (independently of the power

of λ multiplying this leading-order term). As we will see from the explicit expressions

we derive in section 4.3, the self-force at 1PLT order is identically zero, fµ
[6] = 0. The

dissipative self-force up to 2PLT order is independent of δM and δJ : f t
[5] and fϕ

[5] are

– 23 –



constants, while f t
[7] and fϕ

[7] are constants multiplied by ∆Ω. Up to 5PLT order, the

dissipative self-force is linear in δMa = (1, δM, δJ), with terms up to 10PLT order being

quadratic. The conservative self-force is linear in δMa up to 4PLT order and quadratic up

to 9PLT order.

4.1 Orbital motion from 0PLT to 7PLT order

Using eqs. (4.1), (4.2), (4.3), (4.4) and (4.5), we perform the transition-to-plunge expansion

of the worldline (2.4) and the four-velocity (2.8). We substitute these expansions together

with the one of the self-force (4.6) into the normalization condition (2.9) and the equation

of motion (2.10). At order λ2+n, n ≥ 0, we obtain algebraic equations for r[n] and U[n]

from the radial component of the equation of motion and the normalization of the four-

velocity, respectively. The forcing terms F∆Ω
[n] satisfy ordinary differential equations that

are obtained from the t component of the equation of motion at order λ5+n. The forcing

terms F δM
[n] and F δJ

[n] are determined from flux-balance laws at the horizon of the primary.

As we will demonstrate in section 5, it is necessary to solve the transition-to-plunge motion

up to 7PLT order to ensure a continuous (C0) composite solution for the rate of change

dΩ/dt that involves the 1PA inspiral (this implies a C1 composite solution for Ω and a C2

composite solution for ϕp after one and two time integrations, respectively).

At leading order we obtain

U[0] = 4
√
3M∆Ω, (4.7a)

r[0] = −24
√
6M2∆Ω. (4.7b)

The 1PLT corrections to the orbital radius and redshift vanish: r[1] = U[1] = 0. At 2PLT

order we obtain

U[2] = 24
√
2M2∆Ω2, (4.8a)

r[2] = 144M3

(
5∆Ω2 − 18

√
6MF∆Ω

[0]

dF∆Ω
[0]

d∆Ω

)
. (4.8b)

The expressions up to 7PLT order are presented in appendix C.1.

The leading-order forcing term F∆Ω
[0] (∆Ω) satisfies the following ordinary differential

equation: (
F∆Ω
[0]

)2 d2F∆Ω
[0]

d∆Ω2
+ F∆Ω

[0]

(
dF∆Ω

[0]

d∆Ω

)2

− 1

9
√
6M

∆ΩF∆Ω
[0] = −

f t
[5]

432
√
6M3

. (4.9)

This equation is in disguise the Painlevé transcendental equation of the first kind, iden-

tified in [49] following [10, 11]. This can be seen as follows. We define the time s[0] =∫
d∆Ω(F∆Ω

[0] )−1 with the integration constant chosen such that s[0] = 0 at the ISCO cross-

ing. This definition implies

d∆Ω

ds[0]
= F∆Ω

[0] ,
d2∆Ω

ds2[0]
=

dF∆Ω
[0]

d∆Ω
F∆Ω
[0] ,

d3∆Ω

ds3[0]
=
(
F∆Ω
[0]

)2 d2F∆Ω
[0]

d∆Ω2
+ F∆Ω

[0]

(
dF∆Ω

[0]

d∆Ω

)2

.

(4.10)
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After integrating eq. (4.9) once and using s[0] = 0 at the ISCO, it becomes indeed a Painlevé

transcendental equation of the first kind,

d2∆Ω

ds2[0]
− 1

18
√
6M

∆Ω2 = −
f t
[5]

432
√
6M3

s[0]. (4.11)

We select the unique monotonic solution of this differential equation as done in [11, 14].

The subleading forcing terms, F∆Ω
[n] (∆Ω) for 1 ≤ n ≤ 2 and F∆Ω

[n] (∆Ja) for n ≥ 3, obey

the sourced ordinary differential equations

(
F∆Ω
[0]

)2 d2F∆Ω
[n]

d∆Ω2
+ 2F∆Ω

[0] F∆Ω
[n]

d2F∆Ω
[0]

d∆Ω2
+ F∆Ω

[n]

(
dF∆Ω

[0]

d∆Ω

)2

+ 2F∆Ω
[0]

dF∆Ω
[0]

d∆Ω

dF∆Ω
[n]

d∆Ω
− 1

9
√
6M

∆ΩF∆Ω
[n] = S∆Ω

[n] . (4.12)

The source terms S∆Ω
[n] are listed in appendix C.1 from n = 2 to n = 5. For n = 1, the

source is zero, S∆Ω
[1] = 0. The homogeneous differential operator is the linearization of the

non-linear Painlevé operator on the left-hand side of eq. (4.9). The linearized Painlevé

solutions around the monotonic solution are all oscillatory, see [14]. We therefore set

all these homogeneous solutions to zero. In particular, we set F∆Ω
[1] = 0. The leading-

order transition-to-plunge motion is driven by the t component of the first-order self-force

evaluated at the ISCO, f t
[5]. At 2PLT order, the equations start to depend also on f t

[7](∆Ω).

The 3PLT order additionally requires the knowledge of f t
[8](∆Ja), f r

[5](∆Ja) and f r
[7](∆Ja).

Hence, starting from 3PLT order, the forcing terms depend on δM and δJ . In general,

nPLT corrections with n ≥ 4 require f t
[5+n](∆Ja) and f r

[4+n](∆Ja), in addition to self-force

terms already appearing at lower orders. Therefore, starting from 6PLT order, self-force

data quadratic in δMa = (1, δM, δJ) is required in order to solve for the motion. This

leads us to write the following decompositions in terms of δMa:

S∆Ω
[n] = S∆Ω

[n]aδM
a, F∆Ω

[n] = F∆Ω
[n]aδM

a, n = 3, 4, 5,

S∆Ω
[n] = S∆Ω

[n]abδM
aδM b, F∆Ω

[n] = F∆Ω
[n]abδM

aδM b, n = 6, 7.
(4.13)

Obtaining the transition-to-plunge motion to 7PLT order amounts to solving the non-linear

Painlevé equation for F∆Ω
[0] and in total 22 sourced linearized Painlevé equations for F∆Ω

[n] ,

n = 2, 3, 4, 5, 6, 7 (one for F∆Ω
[2] ; 9 for all F∆Ω

[n]a with n = 3, 4, 5 and a = 1, 2, 3; and 18 for all

F∆Ω
[n]ab with n = 6, 7 and ab = (ab) symmetrized with a, b = 1, 2, 3).

4.2 Einstein’s field equations from 0PLT to 7PLT order

We now turn to the expansion of the field equations (2.31) during the transition-to-plunge

regime. The transition-to-plunge expansion (2.29) of the trace-reversed metric perturbation

takes the form

h̄µν(λ, s, x
i) =

∞∑
n=0

λ5+n
∑
iℓm

aiℓ
r
R

[5+n]
iℓm (∆Ja(λ, s), r)e−imϕp(λ,s)Y iℓm

µν (r, θ, ϕ). (4.14)
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We call the term appearing at order λ5+n the nPLT term. The residual and puncture parts

of R
[n]
iℓm are denoted respectively as R

[n]R
iℓm and R

[n]P
iℓm .

In analogy with eq. (3.10), the transition-to-plunge expansion of eq. (2.27) gives

(̂∂t)r = −imΩ∗ − imλ2∆Ω+ λ

∞∑
n=0

λnF∆Ω
[n] ∂∆Ω + λ5

∞∑
n=0

λnF δM±

[n] ∂δM± , (4.15a)

(̂∂x)t = (∂x)∆Ja +H

[
imΩ∗ + imλ2∆Ω− λ

∞∑
n=0

λnF∆Ω
[n] ∂∆Ω − λ5

∞∑
n=0

λnF δM±

[n] ∂δM±

]
.

(4.15b)

Here we have used eqs. (4.4) and (4.5) and recalled the replacement ∂ϕp → −im in hatted

operators acting on functions of (∆Ja, r). The linearized Einstein operator (2.26) is then

expanded as

Êijℓm(λ,∆Ja, r) =

3∑
n=0

λnE
[n]
ijℓm(∆Ω, r) +

6∑
n=4

λnE
[n]a
ijℓm(∆Ω, r)δMa

+ λ7E
[7]ab
ijℓm(∆Ω, r)δMaδM b + . . . ,

(4.16)

where

E
[0]
ijℓm = −δij

4

[
∂2
x + imΩ∗ (∂xH + 2H∂x) +m2Ω2

∗
(
1−H2

)
− 4Vℓ

]
+Mij

r − imΩ∗Mij
t ,

(4.17a)

E
[1]
ijℓm =

δij
4

[(
∂xH − 2imΩ∗(1−H2)

)
F∆Ω
[0] ∂∆Ω + 2HF∆Ω

[0] ∂∆Ω∂x

]
+Mij

t F
∆Ω
[0] ∂∆Ω,

(4.17b)

E
[2]
ijℓm =

δij
4

[
− 2m2Ω∗∆Ω(1−H2)

+ (1−H2)

(
F∆Ω
[0]

(
∂∆ΩF

∆Ω
[0]

)
∂∆Ω +

(
F∆Ω
[0]

)2
∂2
∆Ω

)
− im∆Ω(∂xH + 2H∂x)

]
− im∆ΩMij

t .

(4.17c)

Note that the leading term, E
[0]
ijℓm, is identical to the leading term E

(0)
ijℓm in the inspiral

evaluated at the ISCO frequency. The linearized Einstein operators E
[n]a
ijℓm, n = 3, 4, 5, 6 and

E
[7]ab
ijℓm are provided in appendix C.2. Just as in the inspiral, this expansion of the linearized

Einstein operator will reduce the partial differential equations in (∆Ja, r) to ordinary

differential equations in r because derivatives with respect to ∆Ja are accompanied by

powers of λ.

Unlike in the inspiral, where nonlinear sources appear at the first subleading order,

in the transition to plunge there are several intermediate orders (2PLT through 4PLT)

in which no nonlinearities appear. At these orders, the sources are constructed entirely
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from subleading terms in the expansions of (i) Êijℓm and (ii) the point-particle stress-

energy mode amplitudes tiℓm. We obtain the transition-to-plunge expansion of tiℓm by

substituting eqs. (2.8), (4.2), (4.3), (4.4) and (4.5) together with the results of section 4.1

and appendix C.1 into the definition (2.21). In order to compactify the notation, we absorb

the radial δ-function appearing in eq. (2.21) into the definition of the mode amplitudes.

We obtain

ε tiℓm(λ,∆Ja)δ(r − rp) = λ5
4∑

n=0

λnt
[5+n]
iℓm (∆Ω) + λ5

∞∑
n=5

λnt
[5+n]
iℓm (∆Ja). (4.18)

The leading-order modes are given by

t
[5]
iℓm = −1

4
δ(r − 6M)E∗α[5]

iℓm

{
Y ∗
ℓm(π2 , 0) i = 1, . . . , 7,

∂θY
∗
ℓm(π2 , 0) i = 8, 9, 10,

(4.19)

where E∗ = Mf∗U∗ = 2
√
2M/3 (here f∗ := 1− 2M/r∗ = 2/3) and the coefficients α

[5]
iℓm are

given by (dropping ℓ and m indices)

α
[5]
1 =

f2
∗
r∗

=
2

27M
, α

[5]
2,5,9 = 0, α

[5]
3 =

f∗
r∗

=
1

9M
, α

[5]
4 = 2imf∗Ω∗ =

i
√
2m

9
√
3M

,

α
[5]
6 = r∗Ω

2
∗ =

1

36M
,α

[5]
7 = [ℓ(ℓ+ 1)− 2m2]r∗Ω

2
∗ =

ℓ(ℓ+ 1)− 2m2

36M
,

α
[5]
8 = 2f∗Ω∗ =

√
2

9
√
3M

, α
[5]
10 = 2imΩ2

∗r∗ =
im

18M
.

(4.20)

At 1PLT order we obtain t
[6]
iℓm = 0. The 2PLT modes are given by

t
[7]
iℓm = ∆Ω t

[7]A
iℓm = −∆Ω

4
E∗α[7]A

iℓm

{
Y ∗
ℓm(π2 , 0) i = 1, . . . , 7,

∂θY
∗
ℓm(π2 , 0) i = 8, 9, 10,

(4.21)

where (dropping again the ℓ and m indices and using the short notation δ := δ(r − 6M)

and δ′ := δ′(r − 6M))

α
[7]A
1 =

16

3

√
2

3
Mδ′, α

[7]A
2,5,9 = 0, α

[7]A
3 =

2

3

√
2

3

[
δ + 12Mδ′

]
,

α
[7]A
6 =

2

3

√
2

3

[
δ + 3Mδ′

]
, α

[7]A
7 =

2

3

√
2

3

(
ℓ(ℓ+ 1)− 2m2

) [
δ + 3Mδ′

]
,

α
[7]A
8 =

8

9

[
δ + 6Mδ′

]
, α

[7]A
10 =

4

3

√
2

3
im
[
δ + 3Mδ′

]
.

(4.22)

The modes at 3PLT and 4PLT order are given in appendix C.3. Higher subleading terms

can also be straightforwardly calculated.

Up to 2PLT order, the expanded field equations (2.31) then read

E
[0]
ijℓmR

[5]
jℓm = −16πt

[5]
iℓm, (4.23)
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E
[0]
ijℓmR

[6]
jℓm = −E

[1]
ijℓmR

[5]
jℓm, (4.24)

E
[0]
ijℓmR

[7]
jℓm = −16πt

[7]
iℓm − E

[1]
ijℓmR

[6]
jℓm − E

[2]
ijℓmR

[5]
jℓm. (4.25)

The first of these equations is equivalent to the field equation for R
(1)
iℓm in the inspi-

ral (3.20a) evaluated at the ISCO frequency. Therefore, R
[5]
iℓm(∆Ja, r) = R

[5]A
iℓm (δM±, r) =

R
[5]Aa
iℓm (r)δMa = R

(1)
iℓm(Ω∗, δM

±, r). As a consequence, the right-hand side of eq. (4.24)

vanishes, E
[1]
ijℓmR

[5]
jℓm = 0, leading to R

[6]
iℓm(∆Ja, r) = 0. Using t

[7]
iℓm = ∆Ω t

[7]A
iℓm , eq. (4.25)

reduces to

E
[0]
ijℓmR

[7]
jℓm = −16π∆Ω t

[7]A
iℓm

+∆Ω

[
δij
4

[
2m2Ω∗(1−H2) + im (∂xH + 2H∂x)

]
+imMij

t

]
R

[5]
jℓm.

(4.26)

We can therefore write R
[7]
iℓm(∆Ja, r) = ∆ΩR

[7]A
iℓm (δM±, r) = ∆ΩR

[7]Aa
iℓm (δM±, r)δMa. The

∆Ω dependence then factors out and the mode amplitudes R
[7]A
iℓm solve a system of 10

coupled ordinary differential equations in the radius r for each value of ℓ and m.

The field equations (2.31) up to 4PLT order (equivalently, up to O(λ9)) take the form

E
[0]
ijℓmR

[5+n]
jℓm = −16πt

[5+n]
iℓm −

n∑
k=1

E
[k]
ijℓmR

[5+n−k]
jℓm . (4.27)

Given the structure of the sources, the mode amplitudes R
[n]
iℓm for n = 8, 9 reduce (as for

n = 7) to sums of terms factored into ∆Ω-dependent and ∆Ω-independent pieces while

still being linear in δMa. Up to 4PLT order we summarize such decompositions as

R
[5]
iℓm(∆Ja, r) = R

[5]A
iℓm (δM±, r) = R

[5]Aa
iℓm (r)δMa, (4.28a)

R
[6]
iℓm(∆Ja, r) = 0, (4.28b)

R
[7]
iℓm(∆Ja, r) = ∆ΩR

[7]A
iℓm (δM±, r) = ∆ΩR

[7]Aa
iℓm (r)δMa, (4.28c)

R
[8]
iℓm(∆Ja, r) = F∆Ω

[0] R
[8]A
iℓm (δM±, r) = F∆Ω

[0] R
[8]Aa
iℓm (r)δMa, (4.28d)

R
[9]
iℓm(∆Ja, r) = ∆Ω2R

[9]A
iℓm (δM±, r) + F∆Ω

[0] ∂∆ΩF
∆Ω
[0] R

[9]B
iℓm (δM±, r)

=
(
∆Ω2R

[9]Aa
iℓm (r) + F∆Ω

[0] ∂∆ΩF
∆Ω
[0] R

[9]Ba
iℓm (r)

)
δMa.

(4.28e)

As we have done for the inspiral, we deduce the structure of the F δM±

[n] forcing terms from

the horizon fluxes, which are quadratic in ∂thµν . We obtain

F δM±

[0] (∆Ja) = F δM±

[0]ab δMaδM b, (4.29a)

F δM±

[1] (∆Ja) = 0, (4.29b)

F δM±

[2] (∆Ja) = ∆ΩF δM±

[2]AabδM
aδM b, (4.29c)
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where F δM±

[0]ab and F δM±

[2]Aab are given purely by numerical values.

Nonlinear sources appear in the field equations starting from order λ10 (5PLT order),

entering through the harmonic modes of the quadratic Einstein tensor defined in eq. (2.23).

Substituting eq. (4.14), we find that the structure of its transition-to-plunge expansion

reads

δ̂2Giℓm = δ2G
[0]
iℓm[R[5], R[5]] + λ2

(
δ2G

[2]
iℓm[R[5], R[5]] + 2δ2G

[0]
iℓm[R[5], R[7]]

)
+O(λ3). (4.30)

This expansion originates from taking t and r derivatives of the metric perturbation in

eq. (4.14) as prescribed by eq. (4.15). The term δ2G
[1]
iℓm[R[5], R[5]], which would appear at

order λ, vanishes since R
[5]
iℓm does not depend on ∆Ω.

Finally, up to 7PLT order, the expanded field equations (2.31) for the residual fields

read

E
[0]
ijℓmR

[10]R
jℓm = 2δ2G

[0]
iℓm[R[5], R[5]]− E

[0]
ijℓmR

[10]P
jℓm −

5∑
k=1

E
[k]
ijℓmR

[10−k]
jℓm , (4.31a)

E
[0]
ijℓmR

[11]R
jℓm = −E

[0]
ijℓmR

[11]P
jℓm −

6∑
k=1

E
[k]
ijℓmR

[11−k]
jℓm , (4.31b)

E
[0]
ijℓmR

[12]R
jℓm = 2δ2G

[2]
iℓm[R[5], R[5]] + 4δ2G

[0]
iℓm[R[5], R[7]]− E

[0]
ijℓmR

[12]P
jℓm −

7∑
k=1

E
[k]
ijℓmR

[12−k]
jℓm ,

(4.31c)

Each of these equations comprises of 10 coupled radial ordinary differential equations for

each value of ℓ and m.

As we have seen above, at each nPLT order (n ≥ 0) the mode amplitudes R
[5+n]
iℓm can

be written as a sum of terms factored into ∆Ω-dependent and ∆Ω-independent pieces.

Writing the field equations explicitly up to 7PLT order, we deduce the following structure:

R
[10]
iℓm(r,∆Ja) = R

[10]A
iℓm +

(
F∆Ω
[0]

)2 (
∂2
∆ΩF

∆Ω
[0]

)
R

[10]B
iℓm + F∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)2
R

[10]C
iℓm

+∆ΩF∆Ω
[0] R

[10]D
iℓm + F∆Ω

[2] R
[10]E
iℓm ,

(4.32a)

R
[11]
iℓm(r,∆Ja) = F∆Ω

[3] R
[11]A
iℓm +

(
∂∆ΩF

∆Ω
[0]

)
F∆Ω
[2] R

[11]B
iℓm + F∆Ω

[0]

(
∂∆ΩF

∆Ω
[2]

)
R

[11]C
iℓm

+
(
F∆Ω
[0]

)2
R

[11]D
iℓm +∆ΩF∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)
R

[11]E
iℓm +∆Ω3R

[11]F
iℓm ,

(4.32b)
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R
[12]
iℓm(r,∆Ja) = F∆Ω

[4] R
[12]A
iℓm +

(
∂∆ΩF

∆Ω
[0]

)
F∆Ω
[3] R

[12]B
iℓm + F∆Ω

[0]

(
∂∆ΩF

∆Ω
[3]

)
R

[12]C
iℓm

+
(
F∆Ω
[0]

)2 (
∂∆ΩF

∆Ω
[0]

)
R

[12]D
iℓm +

(
∂∆ΩF

∆Ω
[0]

)2
F∆Ω
[2] R

[12]E
iℓm

+ F∆Ω
[0]

(
∂2
∆ΩF

∆Ω
[0]

)
F∆Ω
[2] R

[12]F
iℓm +F∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)(
∂∆ΩF

∆Ω
[2]

)
R

[12]G
iℓm

+
(
F∆Ω
[0]

)2 (
∂2
∆ΩF

∆Ω
[2]

)
R

[12]H
iℓm +∆ΩR

[12]I
iℓm +∆Ω2F∆Ω

[0] R
[12]J
iℓm

+∆ΩF∆Ω
[2] R

[12]K
iℓm +∆ΩF∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)2
R

[12]L
iℓm

+∆Ω
(
F∆Ω
[0]

)2 (
∂2
∆ΩF

∆Ω
[0]

)
R

[12]M
iℓm .

(4.32c)

All the terms on the right-hand side labelled with capital Latin letters do not depend

on ∆Ω and are only functions of δM , δJ and the radial field point r. Note that at

5PLT order the dependency on F δM±

[0] is included in the term R
[10]A
iℓm (r), while at 7PLT

order the dependency on F δM±

[2] is included in the term ∆ΩR
[12]I
iℓm (r), as a consequence of

eq. (4.29). Recalling eq. (2.13), we have R
[n]
iℓm = R

[n]a
iℓm(∆Ω, r)δMa for 5 ≤ n ≤ 9, while

R
[n]
iℓm = R

[n]ab
iℓm (∆Ω, r)δMa δM b for 10 ≤ n ≤ 14. Note that the equations of motion (4.12)

can be used to simplify some of these expressions by substituting the ∂2
∆ΩF

∆Ω
[0] and ∂2

∆ΩF
∆Ω
[2]

terms. However, the current form turns out to be more convenient when asymptotically

matching with the inspiral fields in section 5.3 below.

4.3 Self-force

We now perform the transition-to-plunge expansion of the self-force (2.11). Using eqs. (4.1),

(4.2), (4.3), (4.4) and (4.5), we obtain the transition-to-plunge expansions of the world-

line (2.4) and the four-velocity (2.8) as

zµ = z∗ + λ2zµ[0] + λ3zµ[1] +O(λ4) =
(
t, r∗,

π

2
, ϕp

)
+ λ2

(
0, r[0], 0, 0

)
+O(λ4), (4.33)

uµ = u∗ + λ2uµ[0] + λ3uµ[1] +O(λ4) = (U∗, 0, 0, U∗Ω∗)

+ λ2
(
U[0], 0, 0, U[0]Ω∗ + U∗∆Ω

)
+ λ3

(
0, U∗F

∆Ω
[0] ∂∆Ωr[0], 0, 0

)
+O(λ4),

(4.34)

where we have already used the fact that r[1] = U[1] = 0. The residual piece of the metric

perturbation is expanded as

hRµν =
∞∑
n=5

λn
∑
iℓm

aiℓ
r
R

[n]R
iℓm (∆Ja, r)e−imϕpY iℓm

µν (r, θ, ϕ). (4.35)

Substituting the expansions above into eq. (2.11), we obtain up to 3PLT order

fµ
[5](∆Ja) =

1

2
gµνh[5]Ru∗u∗,ν , (4.36a)

fµ
[6](∆Ja) = 0, (4.36b)
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fµ
[7](∆Ja) = ∆Ω fµ

[7]A(δM
±), (4.36c)

fµ
[8](∆Ja) = F∆Ω

[0] fµ
[8]A(δM

±), (4.36d)

where, using the structure of the metric perturbations obtained in the previous subsection,

fµ
[7]A(δM

±) :=
1

2
gµνh[7]RA

u∗u∗,ν − 12
√
6M2

(
∂rg

µνh[5]Ru∗u∗,ν + gµνh[5]Ru∗u∗,νr

)
+ gµνuα∗

(
4
√
3Mh

[5]R
αt,ν + 4

√
3MΩ∗h

[5]R
αϕ,ν+ U∗h

[5]R
αϕ,ν

)
+
δµt
2
gtth

[5]R
u∗u∗,ϕp

,

(4.37a)

fµ
[8]A(δM

±) :=
1

2
gµνh[8]RA

u∗u∗,ν − PµνU∗u
β
∗h

[7]RA
βν +

1

2
uµ∗U∗h

[7]RA
u∗u∗ +

δµt
2
gtth[7]RA

u∗u∗

+ U∗∂∆Ωr[0]

(
gµνh[5]Rαr,νu

α
∗ + 2PµνΓσ

αrh
[5]R
σν uα∗

− gµνh
[5]R
βν,ru

β
∗ − 1

2
uµ∗h

[5]R
u∗u∗,r

)
.

(4.37b)

Any t derivative in these final expanded expressions needs to be computed with the rule

∂t 7→ Ω∗∂ϕp , as the full expansion of the time derivative has already been applied. All

fields are evaluated at the ISCO. Like for the inspiral, the forces only depend on the mode

amplitudes R
[n]R
iℓm and not on the oscillatory phase. The computational details are analogous

to the inspiral. Recalling eq. (2.13) and following the same reasoning as below eq. (3.30),

we deduce that the dissipative self-forces at 0PLT and 2PLT order do not depend on δM

and δJ , while the conservative pieces are linear in δMa = (1, δM, δJ). The 3PLT self-force

is linear in δMa as well.

By comparing eqs. (4.36) and (4.37) with the corresponding results for the inspi-

ral (3.29), we can anticipate some of the results that we will obtain from the asymptotic

match of section 5.3. It is easy to see that fµ
[5] is given by the first-order self-force in the

inspiral (3.29a) evaluated at the ISCO, after identifying h
[5]
µν = h

(1)
µν |∗. The 2PLT term

fµ
[7] matches the linear term in the Taylor expansion of fµ

(1) around the ISCO frequency,

fµ
[7] = ∆Ω ∂Ωf

µ
(1)|∗. This is true if we consider the matching condition h

[7]A
µν = ∂Ωh

(1)
µν |∗.

Finally, by comparing fµ
[8]A with fµ

(2)B and anticipating that h
[8]A
µν = h

(2)B
µν |∗, we recognize

that fµ
[8]A = fµ

(2)B|∗. The matching conditions for the metric perturbations that we have

assumed to hold in order to derive these results are obtained in section 5.3 below.

At each perturbative order, the structure of the self-forces (4.36) follows one of the

metric perturbations obtained in section 4.2. We therefore write the structure of the self-

force up to 7PLT order as

fµ
[9](∆Ja) = ∆Ω2fµ

[9]A + F∆Ω
[0]

(
∂∆ΩF

∆Ω
[0]

)
fµ
[9]B, (4.38a)

fµ
[10](∆Ja) = fµ

[10]A +
(
F∆Ω
[0]

)2 (
∂2
∆ΩF

∆Ω
[0]

)
fµ
[10]B + F∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)2
fµ
[10]C

+∆ΩF∆Ω
[0] fµ

[10]D + F∆Ω
[2] fµ

[10]E ,
(4.38b)
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fµ
[11](∆Ja) = F∆Ω

[3] fµ
[11]A +

(
∂∆ΩF

∆Ω
[0]

)
F∆Ω
[2] fµ

[11]B + F∆Ω
[0]

(
∂∆ΩF

∆Ω
[2]

)
fµ
[11]C

+
(
F∆Ω
[0]

)2
fµ
[11]D +∆ΩF∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)
fµ
[11]E +∆Ω3fµ

[11]F ,
(4.38c)

fµ
[12](∆Ja) = F∆Ω

[4] fµ
[12]A +

(
∂∆ΩF

∆Ω
[0]

)
F∆Ω
[3] fµ

[12]B + F∆Ω
[0]

(
∂∆ΩF

∆Ω
[3]

)
fµ
[12]C

+
(
F∆Ω
[0]

)2 (
∂∆ΩF

∆Ω
[0]

)
fµ
[12]D +

(
∂∆ΩF

∆Ω
[0]

)2
F∆Ω
[2] fµ

[12]E

+ F∆Ω
[0]

(
∂2
∆ΩF

∆Ω
[0]

)
F∆Ω
[2] fµ

[12]F + F∆Ω
[0]

(
∂∆ΩF

∆Ω
[0]

)(
∂∆ΩF

∆Ω
[2]

)
fµ
[12]G

+
(
F∆Ω
[0]

)2 (
∂2
∆ΩF

∆Ω
[2]

)
fµ
[12]H +∆Ω fµ

[12]I +∆Ω2F∆Ω
[0] fµ

[12]J

+∆ΩF∆Ω
[2] fµ

[12]K +∆ΩF∆Ω
[0]

(
∂∆ΩF

∆Ω
[0]

)2
fµ
[12]L

+∆Ω
(
F∆Ω
[0]

)2 (
∂2
∆ΩF

∆Ω
[0]

)
fµ
[12]M .

(4.38d)

All the terms on the right-hand side labelled with capital Latin letters do not depend

on ∆Ω and are only functions of δM and δJ . Concerning the decomposition in δMa =

(1, δM, δJ), the dissipative self-force is linear in δMa up to 5PLT order, and quadratic up

to 10PLT order. Similarly, the conservative self-force is linear in δMa up to 4PLT order,

and quadratic up to 9PLT order. This difference is due to the fact that the dissipative

self-force fµ
[n]diss depends on h

[n]
µν only through a ϕp derivative, which does not contain any

δM± dependence (see the discussion below eq. (3.30)), and the (non-)linearity structure is

given by the metric perturbations of order n− 1 and lower.

4.4 Early-time solution: orbital motion

At early times, the transition-to-plunge motion is expected to asymptotically match with

the inspiral’s near-ISCO solution. The early-time limit is reached as ∆Ω → −∞. We

substitute the structure of the self-force (4.36) and (4.38) and the F δM
[n] and F δJ

[n] forcing

terms (4.29) into eqs. (4.9) and (4.12) with the sources listed in appendix C.1. We find

that the early-time solutions for the F∆Ω
[n] forcing terms are consistent with the following

series expansions:

λ3+nF∆Ω
[n] (∆Ω → −∞, δM±) = λ3+n

∞∑
i=0

F
(3+n,c−

[n]
−5i)

[n] ∆Ω
c−
[n]

−5i ∀n ≥ 0, (4.39)

with c−[n] :=
n−2
2 for n ≥ 0 even, and c−[n] :=

n−7
2 for n ≥ 3 odd, recalling that F∆Ω

[1] = 0,

and hence there is no n = 1 term. We have verified eq. (4.39) up to n = 7 and assume this

structure holds to any nPLT order with n > 7. Explicitly,

λ3F∆Ω
[0] (∆Ω → −∞) = λ3

F (3,−1)
[0]

∆Ω
+

F
(3,−6)
[0]

∆Ω6
+O(∆Ω−11)

 , (4.40)

λ4F∆Ω
[1] (∆Ω → −∞, δM±) = λ4

[
0

∆Ω3
+

0

∆Ω8
+O(∆Ω−13)

]
, (4.41)
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λ5F∆Ω
[2] (∆Ω → −∞) = λ5

F (5,0)
[2] +

F
(5,−5)
[2]

∆Ω5
+O(∆Ω−10)

 , (4.42)

λ6F∆Ω
[3] (∆Ω → −∞, δM±) = λ6

F (6,−2)
[3]

∆Ω2
+

F
(6,−7)
[3]

∆Ω7
+O(∆Ω−12)

 , (4.43)

where we have included the vanishing term F∆Ω
[1] to clearly illustrate the alternating struc-

ture; cf. table I in [17]. This alternating pattern between even and odd orders in the

early-time transition-to-plunge solutions was also found in [14]. In a similar manner, tak-

ing the ∆Ω → −∞ limit of eqs. (4.7b), (4.8b) and (C.2), we obtain the early-time behaviour

of the nPLT corrections to the orbital radius,

λ2+nr[n](∆Ω → −∞, δM±) = λ2+n
∞∑
i=0

r
(2+n,d−

[n]
−5i)

[n] ∆Ω
d−
[n]

−5i ∀n ≥ 0, (4.44)

where d−[n] :=
n+2
2 for n ≥ 0 even, and d−[n] :=

n−3
2 for n ≥ 3 odd. We have verified this up

to n = 8. Again, since r[1] = 0, the solution at 1PLT order is trivial. The coefficients F
(i,j)
[n]

and r
(i,j)
[n] with n ∈ N and i, j ∈ Z appearing in the early-time transition-to-plunge solutions

are labelled with the powers i of λ and j of ∆Ω at which they appear in the expansions

and in general depend on δM and δJ . Some of these coefficients are given explicitly in

appendix C.4.

4.5 Early-time solution: metric perturbation and self-force

We now compute the early-time behaviour of the metric perturbation mode amplitudes

(eqs. (4.28) and (4.32)) and the self-force (eqs. (4.36) and (4.38)) by substituting the

corresponding solutions for the forcing terms (4.39). We present the early-time solutions

up to 5PLT order explicitly. It is straightforward to obtain the 6PLT and 7PLT solutions

in the same manner.

The 0PLT, 1PLT and 2PLT solutions are trivial. At 3PLT order we get

R
[8]
iℓm =

F (3,−1)
[0]

∆Ω
+

F
(3,−6)
[0]

∆Ω6
+O

(
∆Ω−11

)R
[8]A
iℓm (4.45)

for the metric perturbations and

fµ
[8] =

F (3,−1)
[0]

∆Ω
+

F
(3,−6)
[0]

∆Ω6
+O

(
∆Ω−11

) fµ
[8]A (4.46)

for the self-force. The 4PLT solutions read

R
[9]
iℓm = ∆Ω2R

[9]A
iℓm +

−
(
F

(3,−1)
[0]

)2
∆Ω3

− 7
F

(3,−1)
[0] F

(3,−6)
[0]

∆Ω8
+O

(
∆Ω−13

)R
[9]B
iℓm , (4.47)
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fµ
[9] = ∆Ω2fµ

[9]A +

−
(
F

(3,−1)
[0]

)2
∆Ω3

− 7
F

(3,−1)
[0] F

(3,−6)
[0]

∆Ω8
+O

(
∆Ω−13

) fµ
[9]B. (4.48)

Finally, at 5PLT order we obtain

R
[10]
iℓm =R

[10]A
iℓm +

2
(
F

(3,−1)
[0]

)3
∆Ω5

+O
(
∆Ω−10

)R
[10]B
iℓm +


(
F

(3,−1)
[0]

)3
∆Ω5

+O
(
∆Ω−10

)R
[10]C
iℓm

+
[
F

(3,−1)
[0] +O

(
∆Ω−5

)]
R

[10]D
iℓm +

[
F

(5,0)
[2] +O

(
∆Ω−5

)]
R

[10]E
iℓm

(4.49)

for the metric perturbations and

fµ
[10] = fµ

[10]A +

2
(
F

(3,−1)
[0]

)3
∆Ω5

+O
(
∆Ω−10

) fµ
[10]B +


(
F

(3,−1)
[0]

)3
∆Ω5

+O
(
∆Ω−10

) fµ
[10]C

+
[
F

(3,−1)
[0] +O

(
∆Ω−5

)]
fµ
[10]D +

[
F

(5,0)
[2] +O

(
∆Ω−5

)]
fµ
[10]E

(4.50)

for the self-force.

5 Asymptotic match between the inspiral and the transition to plunge

The inspiral and transition-to-plunge regimes overlap in a buffer region exterior to the

ISCO, where rp > r∗ and Ω < Ω∗. Since the two expansions are describing the same

motion, they must agree in this overlapping region. In order to compare them, we have

re-expanded the post-adiabatic expansion of the inspiral in the near-ISCO limit at fixed ε

in sections 3.4 and 3.5, and computed the early-time behaviour of the transition-to-plunge

expansion in sections 4.4 and 4.5. In this section we perform the match between these

asymptotic solutions in the buffer region. The asymptotic match of the orbital motion

was obtained in [12, 14] using the slow-time formulation. Here we revisit the asymptotic

match of the orbital motion and complete the asymptotic match by including the metric

perturbation and the self-force. We furthermore discuss composite solutions that join

the inspiral and transition-to-plunge regimes. The overlapping region where both the

inspiral and the transition-to-plunge solutions are valid is described in terms of proper

time as −λ−5 ≪ τ − τ∗ ≪ −λ−1 [14]. In terms of ∆Ω we can reformulate this region as

−λ−2 ≪ M∆Ω ≪ −λ0 or, equivalently,

−λ0

M
≪ Ω− Ω∗ ≪ −λ2

M
. (5.1)

5.1 Orbital motion

The near-ISCO solution of the inspiral motion obtained in section 3.4 is consistent with

the following expansions:

rp = 6M +
∞∑
i=0

λ5i
∞∑
j=0

r
(5i+2j−2p(i),j−p(i))

(i) λ2(j−p(i))∆Ωj−p(i) , (5.2)
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dΩ

dt
=

∞∑
i=0

λ5+5i
∞∑
j=0

F
(5+5i+2j−2q(i),j−q(i))

(i) λ2(j−q(i))∆Ωj−q(i) . (5.3)

The near-ISCO solution up to 2PA order takes exactly that form with p(0) = −1, p(1) = 0,

p(2) = 3 and q(0) = 1, q(1) = 2, q(2) = 6. We conjecture that this pattern holds to any nPA

order with appropriate numbers p(n) and q(n), n ≥ 3.

The early-time transition-to-plunge solutions can be obtained by summing all contri-

butions given in eqs. (4.44) and (4.39),

rp = 6M +

∞∑
n=0

λ2+n
∞∑

m=0

r
(2+n,d−

[n]
−5m)

[n] ∆Ω
d−
[n]

−5m
, (5.4)

dΩ

dt
=

∞∑
n=0

λ3+n
∞∑

m=0

F
3+n,c−

[n]
−5m

[n] ∆Ω
c−
[n]

−5m
. (5.5)

The inspiral and transition-to-plunge solutions listed above can be matched in the over-

lapping region (5.1) exterior to the ISCO. We obtain the matching conditions by equating

the coefficients of equal powers of λ and ∆Ω, identifying n = 5i + 2j − 2p(i) − 2 and

j − p(i) = d−[n] − 5m for the match of the orbital radius and n = 2 + 5i + 2j − 2q(i) and

j − q(i) = c−[n] − 5m for the match of dΩ/dt,

r
(5i+2j−2p(i),j−p(i))

(i) = r
(5i+2j−2p(i),j−p(i))

[5i+2j−2p(i)−2] , (5.6)

F
(5+5i+2j−2q(i),j−q(i))

(i) = F
(5+5i+2j−2q(i),j−q(i))

[2+5i+2j−2q(i)]
. (5.7)

In order to verify these matching conditions, the match of the self-force between the inspiral

and the transition to plunge is required. In practice, one proceeds order by order (both

in the λ and the ∆Ω expansion) for the orbital motion, the metric perturbation and the

self-force together at the same time to obtain the matching conditions. For the sake of

presentation, we will defer the matching of the metric perturbation and the self-force to

section 5.3 below. We have explicitly verified eqs. (5.6) and (5.7) for all terms involved

in the match between the inspiral up to 2PA order and the transition to plunge up to

7PLT order, using the coefficients listed in appendices B.2 and C.4. The structure of

the asymptotic match between the inspiral and transition-to-plunge orbital motions is

summarized in table 1: the coefficients in the 0PA near-ISCO solution are matched by the

leading-order coefficients in the early-time solutions of the even (2nPLT, n ≥ 0) transition-

to-plunge orders; the coefficients in the 1PA near-ISCO solution are matched by the leading-

order coefficients in the early-time solutions of the odd ((2n + 1)PLT, n ≥ 0) transition-

to-plunge orders; the coefficients in the 2PA near-ISCO solution are matched by the first-

subleading-order coefficients in the early-time solutions of the even transition-to-plunge

orders and so forth. In what follows, we label the asymptotic coefficients with the inspiral

and transition-to-plunge orders they originate from, that is, F
(i,j)
(m) , F

(i,j)
[n] → F

(i,j)
(m)/[n] for

i, j ∈ Z and m,n ∈ N.
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0PA 1PA 2PA · · ·

0PLT
r
(2,1)

(0) = r
(2,1)

[0]

F
(3,−1)

(0) = F
(3,−1)

[0]

−
−

F
(3,−6)

(2) = F
(3,−6)

[0]

· · ·

1PLT − − − · · ·

2PLT
r
(4,2)

(0) = r
(4,2)

[2]

F
(5,0)

(0) = F
(5,0)

[2]

−
r
(4,−3)

(2) = r
(4,−3)

[2]

F
(5,−5)

(2) = F
(5,−5)

[2]

· · ·

3PLT −
r
(5,0)

(1) = r
(5,0)

[3]

F
(6,−2)

(1) = F
(6,−2)

[3]

− · · ·

4PLT
r
(6,3)

(0) = r
(6,3)

[4]

F
(7,1)

(0) = F
(7,1)

[4]

−
r
(6,−2)

(2) = r
(6,−2)

[4]

F
(7,−4)

(2) = F
(7,−4)

[4]

· · ·

5PLT −
r
(7,1)

(1) = r
(7,1)

[5]

F
(8,−1)

(1) = F
(8,−1)

[5]

− · · ·

6PLT
r
(8,4)

(0) = r
(8,4)

[6]

F
(9,2)

(0) = F
(9,2)

[6]

−
r
(8,−1)

(2) = r
(8,−1)

[6]

F
(9,−3)

(2) = F
(9,−3)

[6]

· · ·

7PLT −
r
(9,2)

(1) = r
(9,2)

[7]

F
(10,0)

(1) = F
(10,0)

[7]

− · · ·

...
...

...
...

. . .

Table 1. Visualization of the matching conditions (5.6) and (5.7) between inspiral and transition

to plunge for the orbital radius rp and the rate of change dΩ/dt.

5.2 0PA-2PLT and 1PA-7PLT composite solutions

The asymptotic match allows us to write composite solutions, which are valid in the do-

main Ω ≤ Ω∗ (or, equivalently, rp ≥ r∗) and uniformly approximate the exact solution

dΩ/dt = FΩ in that region. They are constructed, following standard practice in matched

asymptotic expansions, by adding the inspiral and transition-to-plunge expansions trun-

cated at some specific perturbative order and subtracting the common matching values,

which would otherwise be counted twice. Similar composite solutions can also be written

for any other orbital quantity. We label the composite solution with the highest inspiral

and transition-to-plunge orders considered. Relevant composite solutions (because of their

smoothness properties as explained below) are

FΩ
0PA-2PLT(λ,Ω) = λ5FΩ

(0)(Ω) + λ3F∆Ω
[0]

(
Ω− Ω∗

λ2

)
+ λ5F∆Ω

[2]

(
Ω− Ω∗

λ2

)

− λ5

F (3,−1)
(0)/[0]

Ω− Ω∗
+ F

(5,0)
(0)/[2]

 ,

(5.8)
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and

FΩ
1PA-7PLT(λ, J

a) = λ5FΩ
(0)(Ω) + λ10FΩ

(1)(J
a) + λ3

7∑
n=0

λnF∆Ω
[n]

(
Ω− Ω∗

λ2
, δM±

)

− λ5

F (3,−1)
(0)/[0]

Ω− Ω∗
+ F

(5,0)
(0)/[2] + (Ω− Ω∗)F

(7,1)
(0)/[4] + (Ω− Ω∗)

2F
(9,2)
(0)/[6]


− λ10

 F
(6,−2)
(1)/[3]

(Ω− Ω∗)2
+

F
(8,−1)
(1)/[5]

(Ω− Ω∗)
+ F

(10,0)
(1)/[7]

 ,

(5.9)

which neglect terms of order λ6 (3PLT) and λ11 (8PLT), respectively. Sufficiently near

the ISCO, the subtracted terms cancel the inspiral terms, leaving the correct transition-

to-plunge approximation; sufficiently far from the ISCO, the subtracted terms cancel the

transition-to-plunge terms, leaving the correct inspiral approximation. In this way, the

composite solutions join the inspiral and transition-to-plunge regimes without the need to

switch from one approximation scheme to the other at some radius exterior to the ISCO. In

practice, we would only need to switch at the ISCO between one such inspiral/transition-

to-plunge composite solution and a (not defined in this paper) transition-to-plunge/plunge

composite solution.

The behaviour of the composite solution FΩ
1PA-7PLT can be summarized as follows:

close to the ISCO, the 0PA and 1PA forcing terms are approximated by their near-ISCO

solutions (3.32b) and (3.33b). The divergent and constant terms in those expansions are

exactly cancelled by the subtracted terms in eq. (5.9), while the terms proportional to

positive powers of ∆Ω go to zero. The composite solution FΩ
1PA-7PLT then reduces to the

transition-to-plunge solution in the near-ISCO limit. Considering the transition-to-plunge

motion up to 7PLT order is necessary and sufficient to obtain a solution that is regular at

the ISCO, cancelling all divergent and constant terms in the 1PA inspiral (3.33b). For the

purpose of extending a 0PA inspiral beyond the ISCO, only the 2PLT order is required;

that is, we need to build FΩ
0PA-2PLT. Considering now the early-time limit (∆Ω → −∞),

the terms proportional to negative powers of ∆Ω in the early-time transition-to-plunge

solution (5.5) become negligible, while constant and divergent terms are again cancelled

by the subtracted terms. At early times, the composite solution is then only given by

the inspiral terms. With this construction, both the FΩ
0PA-2PLT and FΩ

1PA-7PLT composite

solutions are C0 functions at the ISCO (and smooth elsewhere), ensuring that Ω is C1 and

ϕp is C2 there. Higher differentiability can be obtained by adding further PLT orders. We

display the behaviour of the 0PA-2PLT composite solution for two different mass ratios in

figure 2.

A caveat to this approach is that the early-time limit ∆Ω = (Ω − Ω∗)/λ
2 → −∞ is

formally a small-mass-ratio limit λ → 0 since Ω → 0 in the early inspiral while Ω∗ ≃
0.068/M is finite. For a mass ratio sufficiently close to 1, at early times the transition-to-

plunge part of the composite solution will become numerically comparable to the inspiral

part, spoiling the numerical accuracy of the composite solution. To see this, note that the
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Figure 2. Rate of change of the orbital frequency from Ω = 1/(40
√
5M), corresponding to an

orbital radius r(0) = 20M , to Ω = Ω∗. The considered mass ratios are ε = 1/10 (top panel) and

ε = 1/500 (bottom panel). The adiabatic rate of change, εFΩ
(0), given by the dashed blue curve,

diverges at the ISCO frequency, marked by the vertical dashed gray line. The rate of change in the

transition-to-plunge approximation to 2PLT order, λ3F∆Ω
[0] +λ5F∆Ω

[2] , is displayed as a dashed orange

curve. The composite solution (5.8) in black reduces to the inspiral solution at small frequencies

(this is only true in the lower panel, see the discussion around eq. (5.10)) and to the transition-to-

plunge motion close to the ISCO. The vertical dotted gray line marks the lower boundary of the

region in which the transition-to-plunge curve represents a better approximation than the inspiral

curve. As expected, this region becomes narrower as the mass ratio decreases.
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ε F
(3,−1)
(0)/[0] /(Ω−Ω∗) and ε F

(5,0)
(0)/[2] terms in the composite solution (5.8) will, by design, cancel

the early-time contribution from the transition-to-plunge solution, but this cancellation

is not exact: it leaves a residue of ε3F
(3,−6)
(2)/[0] /(Ω − Ω∗)

6, ε3F
(5,−5)
(2)/[2] /(Ω − Ω∗)

5, and further

subleading terms from the early-time transition-to-plunge solutions (4.40) and (4.42), which

for sufficiently large mass ratios become comparable with the inspiral term ε FΩ
(0). We can

obtain the value of ε where this occurs as follows. Let us take as a benchmark the early

inspiral at r(0) = rearly(0)
:= 20M (equivalent to Ω = Ωearly := 1/(40

√
5M)) and require that

the transition-to-plunge terms are smaller than the inspiral terms by 1%,∣∣∣∣∣∣
F

(3,−6)
(2)/[0]

ε3

(Ω−Ω∗)6
+ F

(5,−5)
(2)/[2]

ε3

(Ω−Ω∗)5

ε FΩ
(0)(Ω)

∣∣∣∣∣∣
Ω=Ωearly

< 0.01. (5.10)

Using the explicit numerical values listed in appendix D.2, we find that this holds as long

as ε ≲ 1/180, which makes the 0PA-2PLT composite solution numerically inaccurate in

the most interesting range of mass ratios for ground-based detectors. We have kept the

leading-order residues of both λ3F∆Ω
[0] and λ5F∆Ω

[2] in the numerator of eq. (5.10), and not

only the term ∝ 1/(Ω − Ω∗)
5, which could naively be considered the dominant term at

early times: since Ω monotonically increases from 0 to Ω∗ ≃ 0.068/M , it is actually always

true (at least outside the ISCO) that
∣∣1/(Ω− Ω∗)

6
∣∣ > ∣∣1/(Ω− Ω∗)

5
∣∣. We have excluded

the subleading residues of order ε5 and higher, which we could have considered without

affecting our evaluation. In conclusion, the composite solution should not be trusted for

sufficiently large mass ratios. When comparing against NR simulations in section 6, we will

limit our analysis to pure transition-to-plunge waveforms, leaving the methods of meshing

the inspiral and transition-to-plunge approximations for future work.

Previously, we estimated the frequencies at which the inspiral approximation breaks

down, in the sense that omitted terms become more important than included ones; those

breakdown frequencies were given in eqs. (3.35) and (3.36). We now consider a different

question. Rather than estimating how near to the ISCO we can trust the inspiral approxi-

mation, we consider how near to the ISCO we should be in order for the transition-to-plunge

approximation to be superior to the inspiral approximation. Concretely, we compute the

critical frequency beyond which the 7PLT transition-to-plunge motion approximates the

exact solution better than the 1PA inspiral motion: Ω1PA-7PLT
crit = Ω∗ + λc∆Ωc + O(λ2c)

such that ∆Ωc < 0 and 0 < c < 2 (which is an intermediate scaling between the inspiral,

c = 0, and the transition-to-plunge motion, c = 2). The behaviour of the inspiral and

transition-to-plunge solutions in terms of the critical frequency is summarized below:

Ω < Ω1PA-7PLT
crit :

∣∣∣λ5FΩ
(0) + λ10FΩ

(1) − FΩ
1PA-7PLT

∣∣∣ < ∣∣∣∣∣λ3
7∑

n=0

λnF∆Ω
[n] − FΩ

1PA-7PLT

∣∣∣∣∣ , (5.11a)

Ω > Ω1PA-7PLT
crit :

∣∣∣λ5FΩ
(0) + λ10FΩ

(1) − FΩ
1PA-7PLT

∣∣∣ > ∣∣∣∣∣λ3
7∑

n=0

λnF∆Ω
[n] − FΩ

1PA-7PLT

∣∣∣∣∣ , (5.11b)

Ω = Ω1PA-7PLT
crit :

∣∣∣λ5FΩ
(0) + λ10FΩ

(1) − FΩ
1PA-7PLT

∣∣∣ = ∣∣∣∣∣λ3
7∑

n=0

λnF∆Ω
[n] − FΩ

1PA-7PLT

∣∣∣∣∣ . (5.11c)
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We can obtain the critical exponent c and the correction ∆Ωc by imposing the condi-

tion (5.11c). Since both the inspiral and transition-to-plunge solutions need to be simulta-

neously valid, the critical frequency lies in the matching region. We can therefore approx-

imate the inspiral and transition-to-plunge solutions with their near-ISCO and early-time

behaviours, respectively. At leading order, eq. (5.11c) then gives

λ15−6c
∣∣∣∆Ω−6

c F
(3,−6)
(2)/[0]

∣∣∣ = λ5+3c
∣∣∣∆Ω3

c F
(11,3)
(0)/[8]

∣∣∣ . (5.12)

Solving this equation for c and ∆Ωc and recalling that λ = ε1/5, we find the critical

frequency

Ω1PA−7PLT
crit = Ω∗ − ε2/9

∣∣∣∣∣∣
F

(3,−6)
(2)/[0]

F
(11,3)
(0)/[8]

∣∣∣∣∣∣
1/9

+O(ε4/9). (5.13)

The critical exponent is c = 10/9, lying within the chosen range 0 < c < 2. If we instead

consider a 0PA-2PLT motion, the critical frequency becomes

Ω0PA−2PLT
crit = Ω∗ − ε2/7

∣∣∣∣∣∣
F

(3,−6)
(2)/[0]

F
(7,1)
(0)/[4]

∣∣∣∣∣∣
1/7

+O(ε4/7). (5.14)

We give the numerical values of the coefficients appearing in the expressions above in ap-

pendix D.2. Figure 3 shows the behaviour of the critical frequencies as functions of the

mass ratio in the range where the the composite solution is a good approximation of the

exact solution (see the discussion around eq. (5.10)) and can therefore be used in deriving

the critical frequencies from eq. (5.11c). For all mass ratios, Ω1PA−7PLT
crit < Ω0PA−2PLT

crit < Ω∗:

as more perturbative terms are added to the transition-to-plunge motion the description

becomes more accurate, extending its region of validity to smaller frequencies earlier in the

inspiral. As the mass ratio increases, the region where the transition-to-plunge approxima-

tion is more accurate than the inspiral one becomes larger. This points to the fact that the

transition-to-plunge approximation becomes crucial for modelling intermediate-mass-ratio

and nearly comparable-mass binaries within self-force theory, indicating the importance

of including transition-to-plunge effects over an increasingly large frequency interval for

larger ε. This behaviour is already expected from the scaling around the ISCO of the

orbital quantities such as the radius rp − r∗ ∼ ε2/5 and the frequency Ω− Ω∗ ∼ ε2/5.

5.3 Metric perturbation and self-force

We now obtain the asymptotic match for the metric perturbation and the self-force. We

can write the near-ISCO solution of the inspiral metric perturbation mode amplitudes by
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Figure 3. Critical frequencies as functions of the mass ratio for the 0PA-2PLT motion (eq. (5.14),

dashed blue curve) and the 1PA-7PLT motion (eq. (5.13), dashed orange curve). The horizontal

dashed line marks the ISCO frequency. The solid blue and orange curves show the 0PA and 1PA

breakdown frequencies (3.35) and (3.36), respectively. The inspiral (resp. transition-to-plunge)

approximation most accurately describes the motion below (resp. above) the dashed curves. We

have restricted the plot to the range of mass ratios where the composite solution faithfully represents

the exact solution, following the bound imposed by eq. (5.10). Importantly, the transition to plunge

takes over before the inspiral approximation breaks down.

adding up eqs. (3.37), (3.39) and (3.41) in the post-adiabatic expansion,

εRiℓm(Ω → Ω∗, δM
±, r) = λ5 R

(1)
iℓm

∣∣∣
∗
+ λ7∆Ω ∂ΩR

(1)
iℓm

∣∣∣
∗
+ λ8

F
(3,−1)
(0)

∆Ω
R

(2)B
iℓm

∣∣∣
∗

+ λ9

1
2
∆Ω2 ∂2

ΩR
(1)
iℓm

∣∣∣
∗
−

(
F

(3,−1)
(0)

)2
∆Ω3

R
(3)E
iℓm

∣∣∣
∗


+ λ10

[
R

(2)A
iℓm

∣∣∣
∗
+ F

(3,−1)
(0) ∂ΩR

(2)B
iℓm

∣∣∣
∗
+ F

(5,0)
(0) R

(2)B
iℓm

∣∣∣
∗

]
+O∆Ω(λ

11) +OΩ(ε
4).

(5.15)

Here OΩ(ε) and O∆Ω(ε) (or, equivalently, OΩ(λ) and O∆Ω(λ)) refer to the limit ε → 0 in the

inspiral expansion at fixed Ω and in the near-ISCO expansion at fixed ∆Ω, respectively.

Combining the structure of the metric perturbations in the transition-to-plunge regime

(eqs. (4.28) and (4.32)) with eqs. (4.45), (4.47) and (4.49), we find that the early-time
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transition-to-plunge solution is given by

εRiℓm(∆Ω→−∞, δM±, r) =λ5R
[5]
iℓm + λ7∆ΩR

[7]A
iℓm + λ8

F (3,−1)
[0]

∆Ω
+O

(
∆Ω−6

)R[8]A
iℓm

+ λ9

∆Ω2R
[9]A
iℓm −

(
F

(3,−1)
[0]

)2
∆Ω3

R
[9]B
iℓm +O

(
∆Ω−8

)
+ λ10

[
R

[10]A
iℓm + F

(3,−1)
[0] R

[10]D
iℓm + F

(5,0)
[2] R

[10]E
iℓm +O(∆Ω−5)

]
+O∆Ω(λ

11).

(5.16)

We recall that all the mode amplitudes on the right-hand side of these equations are

functions of δM , δJ and r, while the F
(i,j)
(m)/[n] coefficients in general depend on δM and

δJ . Comparing the coefficients of equal powers of λ and ∆Ω in eqs. (5.15) and (5.16) and

recalling the results of table 1, we obtain the following matching conditions for the metric

perturbation mode amplitudes:

R
[5]
iℓm = R

(1)
iℓm

∣∣∣
∗
, (5.17a)

R
[7]A
iℓm = ∂ΩR

(1)
iℓm

∣∣∣
∗
, (5.17b)

R
[8]A
iℓm = R

(2)B
iℓm

∣∣∣
∗
, (5.17c)

R
[9]A
iℓm =

1

2
∂2
ΩR

(1)
iℓm

∣∣∣
∗
, R

[9]B
iℓm (r) = R

(3)E
iℓm

∣∣∣
∗
, (5.17d)

R
[10]A
iℓm = R

(2)A
iℓm

∣∣∣
∗
, R

[10]D
iℓm = ∂ΩR

(2)B
iℓm

∣∣∣
∗
, R

[10]E
iℓm = R

(2)B
iℓm

∣∣∣
∗
. (5.17e)

We have also verified that the mode amplitudes involved in these matching conditions ac-

tually satisfy the same field equations. The subleading terms in the ∆Ω → −∞ expansions

at each order in λ in eq. (5.16) match with terms that originate from subleading post-

adiabatic orders in eq. (5.15). In analogy to what we have done for the orbital motion, we

can write a composite solution also for the mode amplitudes of the metric perturbation:

εR1PA−5PLT
iℓm = λ5R

(1)
iℓm + λ10R

(2)
iℓm + λ5

5∑
n=0

λnR
[5+n]
iℓm

− λ5

[
R

(1)
iℓm

∣∣∣
∗
+ (Ω− Ω∗) ∂ΩR

(1)
iℓm

∣∣∣
∗
+

(Ω− Ω∗)
2

2
∂2
ΩR

(1)
iℓm

∣∣∣
∗

]

− λ10

F (3,−1)
(0)/[0]

Ω− Ω∗
R

(2)B
iℓm

∣∣∣
∗
+ R

(2)A
iℓm

∣∣∣
∗
+ F

(3,−1)
(0)/[0] ∂ΩR

(2)B
iℓm

∣∣∣
∗
+ F

(5,0)
(0)/[2] R

(2)B
iℓm

∣∣∣
∗

 .

(5.18)
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This composite solution behaves analogously to the one in eq. (5.9), reducing to the inspiral

and transition-to-plunge approximations in the early-time and near-ISCO limits, respec-

tively. Considering the transition to plunge up to 5PLT order is necessary and sufficient to

obtain a composite solution that is regular at the ISCO. Fewer transition-to-plunge terms

are required compared to the composite solution (5.9) for the rate of change of the orbital

frequency, which is due to the milder divergence close to the ISCO of the inspiral quantities

here.

We now turn to the self-force. We obtain the near-ISCO solution of the inspiral self-

force by appropriately summing the contributions in eqs. (3.38), (3.40) and (3.42),

fµ(Ω → Ω∗, δM
±) = λ5 fµ

(1)

∣∣∣
∗
+ λ7∆Ω ∂Ωf

µ
(1)

∣∣∣
∗
+ λ8

F
(3,−1)
(0)

∆Ω
fµ
(2)B

∣∣∣
∗

+ λ9

1
2
∆Ω2 ∂2

Ωf
µ
(1)

∣∣∣
∗
−

(
F

(3,−1)
(0)

)2
∆Ω3

fµ
(3)E

∣∣∣
∗


+ λ10

[
fµ
(2)A

∣∣∣
∗
+ F

(3,−1)
(0) ∂Ωf

µ
(2)B

∣∣∣
∗
+ F

(5,0)
(0) fµ

(2)B

∣∣∣
∗

]
+O∆Ω(λ

11) +OΩ(ε
4).

(5.19)

Using the structure of the self-force in the transition-to-plunge regime (eqs. (4.36) and

(4.38)) together with eqs. (4.46), (4.48) and (4.50), we find that the early-time transition-

to-plunge solution reads

fµ(∆Ω → −∞, δM±) = λ5fµ
[5] + λ7∆Ωfµ

[7]A + λ8

F (3,−1)
[0]

∆Ω
+O

(
∆Ω−6

) fµ
[8]A

+ λ9

∆Ω2fµ
[9]A −

(
F

(3,−1)
[0]

)2
∆Ω3

fµ
[9]B +O

(
∆Ω−8

)
+ λ10

[
fµ
[10]A + F

(3,−1)
[0] fµ

[10]D + F
(5,0)
[2] fµ

[10]E +O(∆Ω−5)
]

+O∆Ω(λ
11).

(5.20)

Comparing the coefficients of equal powers of λ and ∆Ω in eqs. (5.19) and (5.20) and

recalling the results of table 1, we obtain the following matching conditions for the self-

force:

fµ
[5] = fµ

(1)

∣∣∣
∗
, (5.21a)

fµ
[7]A = ∂Ωf

µ
(1)

∣∣∣
∗
, (5.21b)

fµ
[8]A = fµ

(2)B

∣∣∣
∗
, (5.21c)
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fµ
[9]A =

1

2
∂2
Ωf

µ
(1)

∣∣∣
∗
, fµ

[9]B = fµ
(3)E

∣∣∣
∗
, (5.21d)

fµ
[10]A = fµ

(2)A

∣∣∣
∗
, fµ

[10]D = ∂Ωf
µ
(2)B

∣∣∣
∗
, fµ

[10]E = fµ
(2)B

∣∣∣
∗
. (5.21e)

Again, the subleading terms in the ∆Ω → −∞ expansions at each order in λ in eq. (5.20)

match with terms that originate from subleading post-adiabatic orders in eq. (5.19). Con-

sidering the third-order self-force in deriving eq. (5.19) is, however, enough to determine the

self-force matching conditions needed for the asymptotic match between the inspiral and

the transition-to-plunge approximations truncated at 2PA and 7PLT order, respectively

(see table 1). All relevant self-force matching conditions, including those for fµ
[11] and fµ

[12],

are summarized in appendix D.1.

The matching conditions (5.17) are particularly useful since they allow us to determine

some of the metric perturbations in the transition-to-plunge regime from inspiral quantities

without needing to solve any additional field equations. With the quasi-circular inspiral in

Schwarzschild spacetime computed to 1PA order [8, 51, 52] (meaning the functions R
(1)
iℓm,

R
(2)A
iℓm and R

(2)B
iℓm are known), we can determine all transition-to-plunge mode amplitudes

up to 5PLT order with the exception of R
[9]B
iℓm , R

[10]B
iℓm and R

[10]C
iℓm . In order to obtain

these missing terms one needs to solve the field equations directly in the transition-to-

plunge regime (or, equivalently, solve additional equations in the inspiral expansion and

obtain the terms of interest through the asymptotic match). By virtue of the matching

conditions (5.21), the same is true also for the self-force. As an example, let us consider

the self-force in the transition-to-plunge regime through 3PLT order,

fµ = λ5fµ
[5](δM

±) + λ7∆Ωfµ
[7]A(δM

±) + λ8F∆Ω
[0] fµ

[8]A(δM
±) +O(λ4). (5.22)

The ∆Ω-independent quantities can be obtained from the matching conditions (5.21) rather

than deriving them from the metric perturbations using the results in eqs. (4.36) and

(4.37). The ∆Ω-dependent factors, which are in general combinations of the forcing terms

F∆Ω
[n] (n ≥ 0) and their ∆Ja derivatives, can be obtained within the transition-to-plunge

expansion by solving eq. (4.12).

6 2PLT motion and waveforms

Post-adiabatic waveforms for the inspiral regime have already been generated using the

formalism reviewed herein [8]. We have now further developed the formalism to include the

transition to plunge. Given the matching conditions between the inspiral and the transition

to plunge, all numerical self-force data necessary to model waveforms up to second post-

leading transition-to-plunge (2PLT) order is already available and can be readily computed

using the Teukolsky package within the Black Hole Perturbation Toolkit (BHPToolkit) [53].

Further numerical work is required to extract the self-force data at 3PLT order and beyond.

In this section, we will limit the production of explicit waveforms to 2PLT order.
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Figure 4. Rate of change of the orbital frequency from Ω = 1/(10
√
10M) to the light-ring frequency

ΩLR := 1/(3
√
6M). The vertical dashed line marks the ISCO frequency. The considered mass ratio

is ε = 1/10. The rate of change to 2PLT order (6.3) is displayed in orange. For reference, we also

plot the 0PLT rate of change (6.4) in blue.

6.1 Overview of the model

The 2PLT dynamics is governed by the following two ordinary differential equations:

dΩ(t, λ)

dt
= FΩ

2PLT(λ,Ω(t, λ)), (6.1)

dϕp(t, λ)

dt
= Ω(t, λ), (6.2)

where the driving force is given by

FΩ
2PLT(λ,Ω) := λ3F∆Ω

[0]

(
Ω− Ω∗

λ2

)
+ λ5F∆Ω

[2]

(
Ω− Ω∗

λ2

)
, (6.3)

and is displayed in figure 4. We notice that FΩ
2PLT ≤ 0 in some frequency range outside

the ISCO. This breakdown at early times is specific to the 2PLT model and is possibly

overcome as further PLT orders are added. We will limit our 2PLT model to the range of

frequencies where FΩ
2PLT > 0 when producing waveforms. We also define the 0PLT driving

force as

FΩ
0PLT(λ,Ω) := λ3F∆Ω

[0]

(
Ω− Ω∗

λ2

)
. (6.4)

The transition-to-plunge driving forces F∆Ω
[0] and F∆Ω

[2] are expressed in terms of the self-

force in eqs. (4.9) and (4.12) (with the source (C.3)). By virtue of those equations, in order

to evolve the orbital frequency in eq. (6.1), the only required inputs are the self-force terms
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f t
[5] and f t

[7] = ∆Ωf t
[7]A. These can be obtained from the first-order inspiral self-force and

its derivative at the ISCO, f t
(1)(Ω∗) and ∂Ωf

t
(1)(Ω∗), using the matching conditions (5.21a)

and (5.21b). Standard balance laws [9, 54] allow us to compute the force f t
(1)(Ω), in turn,

from the 0PA energy flux to infinity (F∞
0PA) and down the black hole horizon (FH

0PA) as

f t
(1)(Ω) = −

U(0)(Ω)

f(r(0)(Ω))

[
F∞
0PA(Ω) + FH

0PA(Ω)
]
. (6.5)

The fluxes are readily obtained using the BHPToolkit’s Teukolsky package. We list the

numerical values of f t
[5] and f t

[7]A in appendix D.2.

Given a phase-space trajectory (Ω(t, λ), ϕp(t, λ)), the waveform is obtained from the

metric perturbation at future null infinity. Analogously to the motion, for the metric

perturbation we write

hµν(λ,Ω, ϕp, x
i) =

∑
iℓm

aiℓ
r
R2PLT

iℓm (λ,Ω, r)e−imϕpY iℓm
µν (xi), (6.6)

where the 2PLT mode amplitudes are given by

R2PLT
iℓm (λ,Ω, r) := λ5R

[5]
iℓm + λ7∆ΩR

[7]A
iℓm = λ5

[
R

(1)
iℓm

∣∣∣
∗
+ (Ω− Ω∗) ∂ΩR

(1)
iℓm

∣∣∣
∗

]
. (6.7)

In order to derive these expressions we have used the matching conditions (5.17a) and

(5.17b). Note that as a first approximation we have set δM = δJ = 0. Their contribution

is numerically subdominant during the inspiral [8, 17] and it is safe to assume this will also

be the case during the transition to plunge since the rate of change of δM and δJ remains

of order λ5. The strain is expressed in terms of the two GW polarizations as the limit

r → ∞ of the expression

r(h+ − ih×) = rhµνm̄
µm̄ν =

∑
ℓ≥2

ℓ∑
m=−ℓ

rhℓmm̄m̄ −2Yℓm(θ, ϕ), (6.8)

where m̄ = 1√
2
(0, 0, 1,−i csc θ) and −2Yℓm is a spin-weighted spherical harmonic. For

convenience, we define hℓm := limr→∞(r hℓmm̄m̄) and write the asymptotic ℓm mode of the

waveform as

hℓm(ε,Ω, ϕp) = Hℓm(ε,Ω)e−imϕp . (6.9)

In terms of the Barack-Lousto-Sago coefficients, the complex amplitude Hℓm is given by [4]

Hℓm =
1

2
√
(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)

[R7ℓm(ε,Ω,∞) + i R10ℓm(ε,Ω,∞)]. (6.10)

We can compute the numerical inputs for Hℓm from the outputs of the BHPToolkit’s

Teukolsky package, just as we did for the 2PLT driving forces. We consider here only the

oscillatory modes (m ̸= 0); quasistationary modes (m = 0) are related to the displacement

memory effect and require a separate treatment. Using the relationships between 0PA

Teukolsky amplitudes and 0PA metric perturbation amplitudes at infinity, as given in

eq. (420a) of [4], we write

Hℓm = H2PLT
ℓm (ε,Ω) = 2ε

{
−2C

up
ℓm(Ω)

(mΩ)2

∣∣∣∣
∗
+ (Ω− Ω∗) ∂Ω

(
−2C

up
ℓm(Ω)

(mΩ)2

)∣∣∣∣
∗

}
. (6.11)
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Here −2C
up
ℓm(Ω) are the mode amplitudes that are output by the Teukolsky package after

expressing Ω as a function of the radius r(0) using eq. (3.5). Note that to 2PLT order, the

amplitude H2PLT
ℓm coincides with the first two terms in a Taylor series expansion of H0PA

ℓm

around the ISCO frequency.

In summary, the 2PLT waveform is given by eq. (6.9) with (6.11), where ϕp and Ω are

solutions to eqs. (6.1) and (6.2). Recall that because of our choice of hyperboloidal slicing,

time t along the worldline is identified with retarded time u along future null infinity; we

can hence simply replace t with u in eqs. (6.1) and (6.2). Also recall that, as stressed

earlier in this paper, a key advantage of the multiscale formulation is that it enables rapid

waveform generation by dividing the problem into a (slow) offline step and a (fast) online

step. Here the offline step consists of computing all the necessary functions of Ω (driving

forces and waveform amplitudes).2 The online step consists of solving eqs. (6.1) and (6.2)

and substituting the result into eq. (6.9).3 Concretely, for our 2PLT waveforms, in the

offline stage we use the BHPToolkit’s Teukolsky package to first compute the amplitudes

−2C
up
ℓm and their associated GW fluxes F∞/H

0PA as functions of Ω. Since these are 0PA inspiral

quantities, they are identical to the amplitudes and fluxes from geodesic circular orbits of

frequency Ω, which are provided directly as outputs of the Teukolsky package’s function

TeukolskyPointParticleMode. We use TeukolskyPointParticleMode to compute the

amplitudes and fluxes on a densely sampled grid around the ISCO, for a set of spherical

harmonic modes ℓ = 2, . . . , ℓmax, m = −ℓ, . . . , ℓ. We include contributions up to ℓmax = 30

in the calculation of the 0PA fluxes. This data is then stored as interpolating functions

of Ω (or of orbital radius r(0)(Ω)). For the fluxes, only the total fluxes (summed over ℓ

and m) are interpolated. For the waveform amplitudes, we interpolate each mode up to

ℓ = 5,m = 5; the higher-ℓ modes contribute very little to the amplitude (even though,

through the flux, they have a significant cumulative impact on the waveform phase). As

explained above eq. (6.5), all the driving forces appearing in eq. (6.1) can be obtained

from the fluxes F∞/H
0PA . The 0PLT and 2PLT driving forces are obtained from the fluxes

by solving the differential equations (4.9) and (4.12) (with source (C.3)); we solve these

in advance and store the solutions as interpolating functions of ∆Ω. We stress that the

entirety of the offline stage is completed without involving ϕp and without specifying a

mass ratio or initial conditions. In the online step, we solve eq. (6.1) after specifying ε,

Ω(0), and ϕp(0). These choices are detailed in the following subsections.

6.2 Qualitative comparison with numerical relativity waveforms

In this subsection we construct waveform templates using the procedure we have just

described. We then compare our waveforms with those of NR simulations from the SXS

2In practice, the field equations are solved in units with M = 1, and outputs are stored in those units.

Equivalently, stored functions of Ω are actually functions of the dimensionless quantity MΩ or r(0)/M .

This is relevant when comparing to numerical relativity simulations, for example, which are in units with

mp +M = 1.
3For data analysis purposes, the online step would also involve summing over modes of the waveform.

For generic orbits, this is the slowest part of the online step [7], but it is not a major consideration for the

quasicircular orbits we consider here.

– 47 –



catalogue [30] with large mass ratio q := 1/ε = M/mp ranging from q = 1 to q = 10.

We have chosen simulations of binary black hole mergers with low eccentricity (≲ 10−3)

and small dimensionless spins of the individual black holes (≲ 10−7). In view of these

comparisons, we re-expand the relevant quantities for our waveform generation in powers

of the symmetric mass ratio ν := Mmp/(M + mp)
2 = ε/(1 + ε)2 at fixed total mass

Mtot := M +mp = M(1 + ε). Inverting the relation between ν and ε gives ε = (1− 2ν −√
1− 4ν)/(2ν), which, in the small-mass-ratio expansion, leads to ε = ν+2ν2+O(ν3). At

the orders we are interested in we can simply substitute ε → ν and M → Mtot. Functions

of Ω stored in units with M = 1 can then be used without change and interpreted as being

in units with Mtot = 1.

We consider two different scenarios for our self-force waveforms. We list them below,

together with the details on the metric perturbation and the evolution equations for the

orbital frequency and phase. In both cases, ϕp is obtained from dϕp/dt = Ω, and ∆Ω =

(Ω− Ω∗)/ν
2/5. We define H

[n]
ℓm from R

[n]
iℓm via eq. (6.10).

• Model: 0PLT. The leading-order transition-to-plunge approximation, but includ-

ing the 2PLT amplitude correction (the 0PLT amplitude would only be given by a

constant, νH
[5]
ℓm):

dΩ

dt
= ν3/5F∆Ω

[0] (∆Ω), hℓm = ν
[
H

[5]
ℓm + ν2/5H

[7]
ℓm(∆Ω)

]
e−imϕp . (6.12)

• Model: 2PLT. The transition to plunge through 2PLT order:

dΩ

dt
= ν3/5F∆Ω

[0] (∆Ω) + ν F∆Ω
[2] (∆Ω), hℓm = ν

[
H

[5]
ℓm + ν2/5H

[7]
ℓm(∆Ω)

]
e−imϕp .

(6.13)

We compute the evolution of the orbital frequency and phase in the two scenarios described

above. We start at the ISCO frequency Ω(t = 0) = 1/(6
√
6Mtot) (and choose ϕp(t = 0) = 0)

and integrate eqs. (6.12) and (6.13) backward and forward in time until, respectively, an

initial frequency Ωi ≈ 0.49/Mtot and a final frequency at the light-ring, Ωf = 1/(3
√
6Mtot).

We have chosen the lower bound such that, for all the considered mass ratios, the rate of

change of the orbital frequency to 2PLT order remains positive (see figure 4). Physically, the

orbital frequency increases until the light ring where it starts to decrease before vanishing

at the horizon. This does not happen in our transition-to-plunge model, and including the

final plunge is necessary to correctly capture the dynamics in this late stage. We therefore

cut off the integration at the light ring and leave the modelling of the plunge and its

hybridization with the transition-to-plunge expansion to future work.

In figures 5 to 9 we compare the self-force waveforms to the chosen NR simulations

for the dominant (ℓ,m) = (2, 2) mode, which we write as h22 = |h22|e−iΦ22 , where Φ22 :=

−arg(h22). For each comparison, we align the two waveforms in phase at the ISCO, that

is, at the NR time t∗ such that the waveform frequency defined as ω22 := 1/2 dΦ22/dt is

ω22(t∗) = 1/(6
√
6Mtot). We notice that to the left of the ISCO the 2PLT model covers a

much larger range of the NR waveform compared to the 0PLT model, while the opposite

is true to the right of the ISCO. We can explain this feature by looking at figure 4, which
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Figure 5. Gravitational waveforms ((ℓ,m) = (2, 2) mode) for a non-spinning compact binary

with mass ratio q = 1. We compare the waveform corresponding to our 0PLT and 2PLT models

(displayed as blue and orange curves, respectively) with the NR simulation SXS:BBH:1132 [55] of

the same binary (plotted as a dashed black curve). The waveforms are aligned in frequency and

phase at the vertical dotted gray line, where ω22 = 1/(6
√
6Mtot). The blue and orange colored

regions cover a portion of, respectively, the 0PLT and 2PLT self-force waveform that corresponds

to an interval of fixed ∆Ω of width 0.04/Mtot. This interval was chosen such that the phase has the

expected behaviour with increasing q, far enough from the 2PLT rate of change becoming negative.

displays the rate of change of the orbital frequency for the specific case of q = 10 (but

the general behaviour remains valid also for other mass ratios): to the left of the ISCO

the frequency increases more rapidly in the 0PLT model, meaning the lower bound Ωinit

is reached earlier. This trend is inverted to the right of the ISCO, where the 2PLT rate

of change is much larger than the 0PLT one. In the region where the 0PLT and 2PLT

waveforms overlap, the 2PLT model performs significantly better in the comparison with

the NR simulations.

During the transition to plunge, the phase admits an expansion of the form

ϕp =
1

λ

[
ϕ[0]
p (∆Ω) + λ2ϕ[2]

p (∆Ω) +O(λ3)
]
, (6.14)

consistently with eqs. (2.5) and (4.4). The 2PLT model reduces the orbital phase error

from O(λ) to O(λ2). From eq. (6.14) we also deduce that on a fixed-∆Ω interval the total

accumulated phase (like the total elapsed time) scales as 1/λ, increasing with q. We have

highlighted such a fixed-∆Ω interval in figures 5 to 9 with blue and orange colored regions,

which contain an increasing portion of phase as q increases.

These results, although preliminary, are promising: given the improvement between

the 0PLT and 2PLT models, we expect the comparison with NR to markedly improve as
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Figure 6. Same as figure 5 for a mass ratio q = 4. The NR simulation is SXS:BBH:1220 [56].
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Figure 7. Same as figure 5 for a mass ratio q = 6. The NR simulation is SXS:BBH:0181 [57].

we proceed to significantly higher PLT orders. The orders considered so far only included

dissipative 0PA information, while starting from 3PLT order the model will also include

post-adiabatic effects. Furthermore, we expect accuracy to significantly improve once we

incorporate the final plunge, given that the peak merger amplitude occurs roughly when

the particle crosses the light ring at r = 3Mtot [10], which occurs at a frequency outside
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Figure 8. Same as figure 5 for a mass ratio q = 9.2. The NR simulation is SXS:BBH:1108 [58].
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Figure 9. Same as figure 5 for a mass ratio q = 10. The NR simulation is SXS:BBH:1107 [59].

the expected domain of validity of our transition-to-plunge expansion.
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6.3 Quantitative comparisons with numerical relativity and surrogate wave-

forms

In the previous subsection we qualitatively compared our model with NR waveforms

for quasi-circular and non-spinning black hole binaries with different mass ratios for the

(l,m) = (2, 2) mode. In this section we quantitatively assess the accuracy of our model’s

underlying ingredients (its amplitudes and the dynamics that determines its phasing) as

functions of frequency and mass ratio.

We again compare to SXS simulations, but we now also consider the surrogate model

BHPTNRSur1dq1e4 [31, 32]. This model is built from a 0PA inspiral, a “generalized”

leading-order (Ori-Thorne) transition to plunge [33], and a geodesic plunge. We discuss

the dynamics and waveform-generation mechanism of this model in the next section, but

here we only note that it includes both a transition and a plunge. The full BHPTNR-

Sur1dq1e4 model includes calibration parameters that allow it to mimic NR waveforms

in the comparable-mass regime, but to better assess our own sources of error we com-

pare only to the uncalibrated BHPTNRSur1dq1e4 model. We specifically opt to compare

against this model because its construction and expected accuracy are most similar to

our own (since it is based on a 0PA inspiral and a transition-to-plunge model), while other

inspiral-merger-ringdown models are largely indistinguishable from NR for the systems and

mass ratios we consider here. When comparing to SXS simulations, we work in units of

Mtot = 1 (the units used in the SXS output data) and with ν as our expansion parameter,

as explained in the previous section. When comparing to BHPTNRSur1dq1e4, we work in

units of M = 1 and with ε as our expansion parameter (the conventions of the uncalibrated

BHPTNRSur1dq1e4).

Because our formalism is based on functions of Ω (or ∆Ω), in this section we directly

compare functions of frequency rather than functions of time. This also provides a clearer

view of our model’s intrinsic properties rather than involving arbitrary choices of initial time

and phase, as was done for the SXS waveform comparisons in the previous section. For an

invariant comparison of observables, we must use the waveform frequency rather than the

orbital frequency (and indeed, this is the only frequency we can extract from the SXS and

BHPTNRSur1dq1e4 simulations). Let us first write the ℓm mode of the waveform as hℓm =

|hℓm|e−iΦℓm , defining the ℓm-mode waveform phase as Φℓm := − arg(hℓm). Substituting

our transition-to-plunge expansion of hℓm, we find the waveform phase is given by

Φℓm = mϕp − arctan

 Im
(
H

[5]
ℓm

)
Re
(
H

[5]
ℓm

)


− λ2
Re
(
H

[5]
ℓm

)
Im
(
H

[7]
ℓm

)
− Im

(
H

[5]
ℓm

)
Re
(
H

[7]
ℓm

)
∣∣∣H [5]

ℓm

∣∣∣2
− λ3

Re
(
H

[5]
ℓm

)
Im
(
H

[8]
ℓm

)
− Im

(
H

[5]
ℓm

)
Re
(
H

[8]
ℓm

)
∣∣∣H [5]

ℓm

∣∣∣2 +O(λ4),

(6.15)
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where the corrections are constructed from the real and imaginary parts of Hℓm = λ5H
[5]
ℓm+

λ7H
[7]
ℓm + λ8H

[8]
ℓm + . . . We next define the ℓm-mode waveform frequency as ωℓm := 1

m
dΦℓm
dt .

Using eqs. (4.4) and (4.5) when taking the time derivative of Φℓm, we obtain

ωℓm = Ω∗ + λ2∆Ω− λ3
Re
(
H

[5]
ℓm

)
Im
(
H

[7]A
ℓm

)
− Im

(
H

[5]
ℓm

)
Re
(
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[7]A
ℓm

)
m
∣∣∣H [5]
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∣∣∣2 F∆Ω
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− λ4
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(
H

[5]
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)
Im
(
H

[8]A
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)
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(
H

[5]
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)
Re
(
H

[8]A
ℓm

)
m
∣∣∣H [5]

ℓm

∣∣∣2 F∆Ω
[0] ∂∆ΩF

∆Ω
[0] +O(λ5),

(6.16)

where we have used the fact that H
[7]
ℓm = ∆ΩH

[7]A
ℓm and H

[8]
ℓm = F∆Ω

[0] H
[8]A
ℓm , which follows

directly from eqs. (4.28) and (6.10). We now define ∆ωℓm := (ωℓm − Ω∗)/λ
2, and invert

the equation above to obtain ∆Ω as a function of ∆ωℓm,

∆Ω =∆ωℓm + λ
Re
(
H

[5]
ℓm

)
Im
(
H

[7]A
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)
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m
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)
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(
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)
Re
(
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[7]A
ℓm

))2
m2
∣∣∣H [5]

ℓm

∣∣∣4
+
Re
(
H
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)
Im
(
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[8]A
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)
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(
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)
Re
(
H

[8]A
ℓm

)
m
∣∣∣H [5]

ℓm

∣∣∣2
F∆Ω

[0] ∂∆ΩF
∆Ω
[0] +O(λ3),

(6.17)

where all functions on the right-hand side are now functions of ∆ωℓm. Finally, taking the

time derivative of eq. (6.16) and using eq. (6.17), we obtain the rate of change of the ℓm

waveform frequency as a function of ∆ωℓm,

dωℓm

dt
=λ3F∆ω

[0] (∆ωℓm) + λ5F∆ω
[2] (∆ωℓm) +O(λ6)

:=λ3F∆Ω
[0] + λ5

F∆Ω
[2] −


(
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(
H

[5]
ℓm

)
Im
(
H

[7]A
ℓm

)
− Im
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)
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))2
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Im
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− Im
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Re
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m
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(F∆Ω

[0]

)2
∂2
∆ΩF

∆Ω
[0]

+O(λ6).

(6.18)

We emphasise the somewhat surprising result that H
[8]
ℓm, which represents a 3PLT term

in the waveform amplitude, enters at the same order as F∆Ω
[2] in the waveform’s frequency

evolution. In our comparisons, we will include all the contributions to the above equations
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at the displayed orders except contributions proportional to H
[8]
ℓm, which would need to

be extracted from second-order calculations in the inspiral. We highlight the potential

importance of these omitted H
[8]
ℓm terms below.

We extract ωℓm (and its time derivative) from the SXS and BHPTNRSur1dq1e4 wave-

forms by applying a second-order central finite difference scheme to the GW phase. Forward

and backward finite difference schemes were applied at the end points of the data sets. It

was found that more efficient cubic splines were inaccurate as a method of differentiating

the data. In the case of the SXS simulations, a Savitzky–Golay filter was applied to the

frequency and frequency evolution data to reduce high-frequency noise. This was done us-

ing Python’s scipy.signal savgol filter function with the options set to the following:

window=101, order=6, deriv=0, delta=0.01, mode=‘interp’. The filter was applied

to data starting after junk radiation and before the common horizon time in the frequency

range −0.05 ≤ ∆ω22 ≤ 0.25, the minimum frequency range of the SXS simulations chosen

to compare with, determined by the q = 20 simulation. In the case of the BHPTNR-

Sur1dq1e4 datasets, small portions of the data were removed where “stitching” occurs,

to avoid very high-frequency noise when differentiating [31]. See more details on how the

BHPTNRSur1dq1e4 model is implemented in section 7.1. Each of these details can be seen

explicitly in the supplementary material.

We now turn to the comparisons. Figure 10 compares the amplitude |h22| as a function

of the waveform frequency ω22 for several mass ratios. Using eqs. (6.13) and (6.17), we see

the amplitude of the 2PLT model is simply given by∣∣h2PLTℓm

∣∣ = ε
∣∣∣H [5]

ℓm + (ωℓm − Ω∗)H
[7]A
ℓm

∣∣∣ . (6.19)

The above equation translates to a roughly linear growth with the waveform frequency. The

top panel of figure 10 compares our 2PLT model to data from SXS simulations, showing

that the 2PLT amplitudes capture the behaviour of the NR amplitudes for ω22 < Ω∗ for

all mass ratios, but with large disagreement at higher frequencies. This inaccuracy could

be due to our omission of higher-order terms or due to our omission of the final plunge.

We can gain some insight into the source of error by comparing to BHPTNRSur1dq1e4 in

the bottom panel of figure 10, which shows good agreement between the 2PLT amplitudes

and those of the uncalibrated BHPTNRSur1dq1e4 model across all mass ratios, despite

the fact that BHPTNRSur1dq1e4 incorporates the final plunge. This suggests that in the

frequency range shown in these figures, our omission of the plunge cannot account for our

error, and the dominant source of error is likely our omission of higher-order terms in the

transition-to-plunge expansion.

We next compare the underlying dynamics that drives the waveform phasing. This

is entirely encoded in the evolution of the waveforms frequency, ω̇ℓm := dωℓm/dt. The

comparisons against SXS simulations and the BHPTNRSur1dq1e4 model are shown in the

top and bottom panels of figure 11, respectively. The comparison against SXS simulations,

in the top panel, shows that the accuracy of our 2PLT dynamics is significantly lower than

the accuracy of our waveform amplitudes. To compare between figure 11 and figure 10,

note that the frequency interval in figure 11 is significantly narrower than in figure 10:

the interval ∆ω22 ∈ (−0.02, 0.02) in figure 11 corresponds to a frequency interval ranging
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Figure 10. Comparisons of the waveform amplitude |h22| as a function of the waveform frequency

ω22 for a series of mass ratios. Top: comparison between data from SXS simulations SXS:BBH:0180

(q = 1), SXS:BBH:0056 (q = 5) and SXS:BBH:1107 (q = 10) (dashed lines) and our 2PLT waveform

model in eq. (6.19) with the replacement ε → ν (solid lines). Bottom: comparison between data

from the uncalibrated BHPTNRSur1dq1e4 model (dashed lines) and our 2PLT waveform model in

eq. (6.19) (solid lines).

from ω22 ∈ (0.057, 0.080) for q = 1 to ω22 ∈ (0.061, 0.075) for q = 10. We can again

question whether our error stems primarily from our omission of higher-order terms or

from our omission of the plunge. However, in this case we see substantial differences even

at ∆ω22 = 0, indicating that higher-order terms in the dynamics are important regardless

of the impact of the plunge. In the bottom panel of figure 11, we also notice a significant

difference between our results and those of BHPTNRSur1dq1e4. This difference does not

appear to converge to zero with increasing q. Such lack of convergence between the two

models might be due to the particular numerical details of BHPTNRSur1dq1e4 or of our

extraction of ω̇22. However, we will explore this in more detail in the next section, where

we perform an isolated comparison with the underlying transition-to-plunge model used in

BHPTNRSur1dq1e4; in that comparison, we do observe that the two models converge as
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Figure 11. Comparisons of the rate of change of the waveform frequency, ω̇22, as a function of ∆ω22

for a series of mass ratios. Top: comparison between data from SXS simulations SXS:BBH:0180

(q = 1), SXS:BBH:0056 (q = 5) and SXS:BBH:1107 (q = 10) (dashed lines) and our 2PLT model

defined in eq. (6.18) (solid lines), with the replacement λ → ν1/5. Bottom: comparison between

the uncalibrated BHTNRSur1dq1e4 model (dashed lines) and our 2PLT model (6.18) (solid lines).

expected for q → ∞.

Since we are working with asymptotic approximations, the reduction in error with

increasing q (or, equivalently, decreasing ε, λ and ν) is ultimately the most crucial test

of our formulation. The validity of our method rests on the assumption that for all finite

n ≥ 0, the error (i.e., the difference between an nPLT model and an exact solution) scales

appropriately with λ. Assuming sufficiently small numerical errors and sufficiently small

eccentricity in the NR simulations, our formalism implies
∣∣ω̇nPLT

ℓm − ω̇NR
ℓm

∣∣ = O(λn+4) for

all n ≥ 2. We now test that criterion by examining the residual between NR and the

0PLT/2PLT dynamics as a function of mass ratio at a fixed value of ∆ω22. From eq. (6.18)
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Figure 12. Waveform frequency evolution and residuals across mass ratios at a fixed value of

∆ω22 = −0.008/Mtot, well within the transition-to-plunge regime. Blue points: ω̇22 calculated

from SXS data. Blue line: Fω
2PLT, for which in this plot we have excluded the term containing the

3PLT mode amplitude H
[8]
ℓm in eq. (6.18). Orange points: residual of the SXS data after subtracting

Fω
0PLT. Orange line: the 2PLT contribution ν F∆ω

[2] . Green points: the residual after subtracting

Fω
2PLT from the SXS data. Sixteen SXS simulations were used, with mass ratios varying from q = 1

to q = 10.

we first define

Fω
0PLT (ν,∆ωℓm) := ν3/5F∆ω

[0] (∆ωℓm) , (6.20)

Fω
2PLT (ν,∆ωℓm) := ν3/5F∆ω

[0] (∆ωℓm) + νF∆ω
[2] (∆ωℓm) , (6.21)

noting again that we omit H
[8]
ℓm terms in F∆ω

[2] . In principle, at fixed ∆ω22 and for suffi-

ciently small ν, the residual
∣∣ω̇NR

ℓm − Fω
0PLT

∣∣ should approach νF∆ω
[2] = Fω

2PLT − Fω
0PLT, and∣∣ω̇NR

ℓm − Fω
2PLT

∣∣ should scale as a 3PLT term, O(ν6/5). We plot these residuals in figure 12.

Although the residuals decrease as we move from the 0PLT to the 2PLT model (see the or-

ange and green dots), the residual
∣∣ω̇NR

ℓm − Fω
0PLT

∣∣ does not agree well with νF∆ω
[2] . Moreover,

the residual
∣∣ω̇NR

ℓm − Fω
2PLT

∣∣ does not decay more rapidly than the residual
∣∣ω̇NR

ℓm − Fω
0PLT

∣∣,
i.e. the slope of the green points is not steeper than the slope of the orange points. How-

ever, both of these findings are expected because we neglect the contribution due to H
[8]
ℓm

in eq. (6.18). We leave the inclusion of H
[8]
ℓm in our model, and assessment of its impact, to

future work.

7 Comparison with other approaches

The preceding section compared our 2PLT model with “exact” NR simulations and with

an inspiral-merger-ringdown model that (like our model) is based on black hole pertur-
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bation theory. Rather than making further numerical comparisons, we now examine how

our overarching approach differs from other approaches used in inspiral-merger-ringdown

models. We specifically compare to two approaches: (i) the method used by the surrogate

model BHPTNRSur1dq1e4 [31, 32], including its underlying treatment of the transition to

plunge [33], and (ii) the EOB framework. Both of these approaches are conceptually simi-

lar to our own but differ in important ways. In both cases, we suggest how our approach

might be used to improve models that are based on these methods.

7.1 Comparison with the transition-to-plunge model of BHPTNRSur1dq1e4

We now compare our transition-to-plunge expansion with the approach used in the surro-

gate model BHPTNRSur1dq1e4 [31, 32].

The most fundamental difference between our approach and BHPTNRSur1dq1e4’s is

that we adopt a multiscale expansion of the Einstein equations, while BHPTNRSur1dq1e4

follows a type of iterative approach to solving the field equations. As stressed earlier in

sections 2 and 6.1, in the multiscale approach we solve field equations on a grid of parameter

values (Ja for the inspiral and ∆Ja for the transition to plunge) as an offline step, and

the online waveform generation is then a rapid process of evolving through the parameter

space. This is the basis of the Fast EMRI Waveforms framework [7, 60] and of the 0PA

waveforms in [5, 61], for example. It is also the only extant method of generating 1PA

waveforms, and its extension to generic orbits in Kerr at 1PA (and higher) order is well

understood [4]. But nearly all work on this method has been restricted to the inspiral

phase, and none at all has been done for the transition to plunge. The iterative approach

of BHPTNRSur1dq1e4 instead begins with leading-order, geodesic motion, solves a field

equation with that motion as a source, uses the outputs (fluxes and self-forces, for example)

to determine a corrected, evolving trajectory, and then solves field equations with that

new trajectory. This is the basis for schemes in [62–65], which BHPTNRSur1dq1e4 builds

on. An advantage of this approach is that once an inspiral-transition-plunge trajectory is

known, it is straightforward to construct time-domain inspiral-merger-ringdown waveforms

using a time-domain Teukolsky solver. A disadvantage is that waveform generation in this

approach is slow because solving the field equations with an evolving, non-geodesic source

is expensive. BHPTNRSur1dq1e4 overcomes that limitation by simulating a large bank of

time-domain waveforms and then constructing a surrogate model for those waveforms; the

surrogate model can then generate waveforms rapidly. Another potential disadvantage is

that no framework has been developed to extend the iterative method to second order, and

it is unclear whether surrogate models can be straightforwardly built for generic binary

configurations.

Beyond this difference in overall strategy, our approach also differs from BHPTNR-

Sur1dq1e4 in its construction of the transition-to-plunge trajectory, even at low orders in

our expansion. BHPTNRSur1dq1e4 uses the “generalized Ori-Thorne” model of Apte and

Hughes [33], which corresponds to a transition-to-plunge expansion truncated at leading

order in the small-mass-ratio expansion, with refinements that remove pathologies from the

Ori-Thorne model. The Apte-Hughes model builds a full trajectory by switching between

the adiabatic inspiral, the transition to plunge and the geodesic plunge at some times ti
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and tf outside and inside the ISCO, respectively. These sharp jumps from one regime to

another lead to discontinuities (at ti and tf ) in orbital quantities such as orbital frequency,

energy E = −ut, and azimuthal angular momentum Lz = uϕ. This is precisely what

is meant by the “stitching” in the BHPTNRSur1dq1e4 model mentioned in section 6.2.

These discontinuities are resolved by introducing different smoothing procedures dubbed

“Model 1” and “Model 2”, which we review below.

In addition to removing discontinuities, the Apte-Hughes model corrects an incon-

sistency in the original Ori-Thorne model [11]. The Ori-Thorne model keeps the orbital

frequency fixed at its ISCO value during the full transition-to-plunge regime, trivially re-

lating the corrections to the orbital energy and angular momentum through δE = Ω∗δLz.

As noted by Kesden [48], this is in conflict with the normalization of the four-velocity;

the orbital frequency and orbital radius change by a comparable amount (∼ λ2) over the

transition to plunge, making it inconsistent to freeze one while the other evolves. Even

though it is not explicitly mentioned, this incorrect feature of the Ori-Thorne model is by-

passed in the Apte-Hughes treatment by allowing the corrections to the orbital energy and

angular momentum to evolve independently from the Ori-Thorne constraint. This makes

the Apte-Hughes model consistent at 0PLT order.

Since our analysis has centred on frequency evolution throughout this paper, in our

comparison we consider the Apte-Hughes orbital frequency, which we can write as4

Ω(λ, ˆ̄τ) =
f(rp(λ, ˆ̄τ))Lz(λ, ˆ̄τ)

E(λ, ˆ̄τ)rp(λ, ˆ̄τ)2
; (7.1)

cf. eq. (4.9) of [33]. Here we have introduced a slow-time variable ˆ̄τ := λ(τ̄− τ̄∗), where τ̄ is

Mino time, related to coordinate time via dτ̄ = dt/(r2pU), and where τ̄∗ is the Mino time at

which the particle crosses the ISCO. rp has the form rp = 6M+λ2δR(ˆ̄τ), where δR satisfies

a Painlevé differential equation derived by Ori and Thorne [11] (and independently by

Buonanno and Damour [10]). E and Lz have the forms E∗+δE(λ, ˆ̄τ) and Lz∗+δLz(λ, ˆ̄τ). In

the original Ori-Thorne treatment, δE = λ4 dE
dτ̄

∣∣
∗
ˆ̄τ and the analogue for δLz, corresponding

to the leading flux-driven changes around the ISCO. In order to remove the discontinuities

at ti, mentioned above, the Apte-Hughes Model 1 and Model 2 modify these transition-

to-plunge expansions of E and Lz by adding corrections corresponding to higher-order

terms in a Taylor series around the ISCO (as well as a correction to values at the ISCO,

in Model 1). The coefficients in this extended Taylor series are fixed by requiring E and

Lz to be C1 at ti.

Apte and Hughes’ addition of these new terms in E and Lz, and their method of fixing

them, is (self-admittedly) ad hoc. However, it is conceivable that the additional terms

implicitly mimic higher-order PLT terms, effectively raising the Apte-Hughes model beyond

0PLT order. To explore that possibility, we consider the Apte-Hughes frequency evolution

in more detail. We restrict our analysis to their Model 2, which was indicated as the

preferred choice in [33] and used in BHPTNRSur1dq1e4. We perform the comparison with

our model using Mino time. The orbital frequency in the Apte-Hughes Model 2 is obtained

4Note that here λ = ε1/5, while in [33] λ is Mino time and the mass ratio is denoted as η.
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Figure 13. Rate of change of the orbital frequency with respect to Mino time, Ω′, obtained from

the Apte-Hughes Model 2 (solid curves) and our 0PLT (dotted curves) and 2PLT (dashed curves)

approximations in eq. (7.5). The scale on the y-axis is logarithmic. The considered mass ratios are

ε = 10−1 (blue), ε = 10−2 (orange), ε = 10−3 (green), ε = 10−4 (red). With decreasing mass ratio

all curves converge to the 0PLT approximation, as expected.

by substituting the expansions of the orbital radius, energy and angular momentum,

rp = 6M + λ2δR(τ̄), (7.2)

EM2 =
2
√
2

3
+ λ4 dE

dτ̄

∣∣∣∣
∗
ˆ̄τ +

1

2

(
ˆ̄τ

λ

)2

EM2
2 +

1

6

(
ˆ̄τ

λ

)3

EM2
3 , (7.3)

LM2
z = 2

√
3M + λ4 dLz

dτ̄

∣∣∣∣
∗
ˆ̄τ +

1

2

(
ˆ̄τ

λ

)2

LM2
2 +

1

6

(
ˆ̄τ

λ

)3

LM2
3 , (7.4)

into eq. (7.1). The values of the coefficients EM2
2 , EM2

3 , LM2
2 and LM2

3 were provided to us

by the authors of [33] and depend on the mass ratio. It is then straightforward to compute

the rate of change of the orbital frequency with respect to Mino time, Ω′ := dΩ/dτ̄ , which

we plot as a function of ∆Ω in figure 13 (solid curves). In order to compare with the

transition-to-plunge expansion to 2PLT order, we convert eq. (4.4) to Mino time as

dΩ

dτ̄
= r2pU

dΩ

dt
= λ3

(
36
√
2F∆Ω

[0]

)
+ λ5

(
36

√
2F∆Ω

[2] + 12
√
2r[0]F

∆Ω
[0] + 36U[0]F

∆Ω
[0]

)
+O(λ6).

(7.5)

We display the 0PLT and 2PLT approximations in figure 13 as dotted and dashed curves,

respectively. We notice that as the mass ratio decreases, both the 2PLT approximation

and Model 2 asymptotically converge to the 0PLT approximation.

We now look at the transition-to-plunge expansion of the orbital frequency in more

detail. From eqs. (4.5) and (4.6) of [33] we extract the mass-ratio scaling of Apte-Hughes’
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Model 2 parameters: EM2
2 ∼ LM2

2 ∼ λ8 and EM2
3 ∼ LM2

3 ∼ λ11. Substituting eqs. (7.2),

(7.3) and (7.4) into eq. (7.1), we then obtain

Ω =Ω∗ − λ2 δR

24
√
6M2

+ λ4
2
√
3
(
1− 54M2

)
dE
dτ̄

∣∣
∗
ˆ̄τ + 3

√
6 δR2

2592M3

+ λ6
108M2

(√
2L̄M2

2 − 3
√
3M ĒM2

2

)
ˆ̄τ2 − 3

√
3
(
1− 54M2

)
dE
dτ̄

∣∣
∗ δR

ˆ̄τ − 2
√
6 δR3

15552M4

+O(λ8),

(7.6)

where L̄M2
2 := LM2

2 /λ8 and ĒM2
2 := EM2

2 /λ8. We can compare this expression for Ω with

an analogous one obtainable within our framework. For easier comparison with eq. (7.6)

we compute the transition-to-plunge expansion of the orbital frequency in the slow-time

formulation, that is, we expand all orbital quantities in integer powers of λ at fixed ˆ̄τ . We

obtain, up to 3PLT order,

Ω =Ω∗ − λ2 r[0]

24
√
6M2

+ λ4
5Mr2[0] + r′′[0] − 24M2r[2]

576
√
6M4

− λ5
54M2f r

[5] + r[3]

24
√
6M2

+ λ6
70Mr3[0] + 36r[0]

(
r′′[0] − 20M2r[2]

)
+ 9

(
192M3r[4] + 3(r′[0])

2 − 8Mr′′[2]

)
41472

√
6M5

+O(λ7).

(7.7)

Here, r[n] are the coefficients of the expansion of the orbital radius at fixed ˆ̄τ , rp = 6M +

λ2
∑∞

n=0 λ
nr[n](ˆ̄τ), and primed quantities are differentiated with respect to ˆ̄τ . f r

[5] is given

by the first-order inspiral self-force evaluated at the ISCO-crossing time (after a matching

procedure analogous to the one carried out in section 5.3). Finally, we expand eq. (7.7)

around ˆ̄τ = 0,

Ω =Ω∗ + λ2
[
c(2,3) ˆ̄τ

3 +O(ˆ̄τ8)
]
+ λ4

[
c(4,1) ˆ̄τ +O(ˆ̄τ6)

]
+ λ5

[
c(5,0) +O(ˆ̄τ5)

]
+ λ6

[
c(6,4) ˆ̄τ +O(ˆ̄τ9)

]
+O(λ7).

(7.8)

The coefficients c(m,n), m,n ∈ N, labelled with the powers of λ and ˆ̄τ with which they

appear in the expansion, are constructed from ISCO quantities only. They can be easily

obtained by solving the equations of motion for the radial corrections r[n], n ≥ 0, in the

limit ˆ̄τ → 0 (explicitly, we find r[0] ∼ ˆ̄τ3 + O(ˆ̄τ8), r[2] ∼ ˆ̄τ6 + O(ˆ̄τ11), r[3] ∼ ˆ̄τ5 + O(ˆ̄τ10)

and r[4] ∼ ˆ̄τ4 +O(ˆ̄τ9)). By comparing eqs. (7.7) and (7.8) with eq. (7.6), we again confirm

that the transition-to-plunge description of Apte and Hughes is equivalent to our 0PLT

approximation since r[0] and δR solve the same Painlevé transcendental equation. Although

Model 2 does not include r[2], it correctly captures the general behaviour (linear in ˆ̄τ at

leading order) of the 2PLT order, though the explicit time dependence is distinct. The two

models begin to significantly differ at 3PLT order (and in general all odd PLT orders, which

are absent in Apte-Hughes’ Model 2), where our expansion starts to include conservative

effects.
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Our analysis in this section shows that the ability of the correction terms in Apte

and Hughes’ model to consistently mimic higher PLT orders is limited. This leads us to

conclude that the inclusion of higher-order PLT terms should improve the performance

of BHPTNRSur1dq1e4 and similar models. We note, in particular, that 2PLT terms are

easily calculated from 0PA fluxes and therefore can be easily incorporated.

7.2 Comparison with the effective one-body framework

The EOB waveform-generation framework is conceptually very similar to our own. The key

inputs (a Hamiltonian, waveform amplitudes, and radiation-reaction forces) are calculated

as functions on phase space, and the waveform is then computed by solving ordinary

differential equations to find phase-space trajectories. EOB also provides an important

point of comparison for several reasons:

1. The EOB dynamics is known to exactly recover 0PLT dynamics in the small-mass-

ratio limit [10]. It is important to assess whether EOB also captures subleading PLT

dynamics.

2. Quasicircular EOB waveforms are based on a quasicircular approximation in which

dΩ/dt (or drp/dt) is explicitly set to zero in the calculation of waveform amplitudes

and fluxes, and in the late inspiral and plunge this treatment of the amplitudes is

corrected through non-quasicircular (NQC) factors that are calibrated to numerical

waveforms [23, 66, 67]. It is conceivable that these NQC corrections are related to the

subleading terms involving dΩ/dt and d∆Ω/dt that appear throughout our multiscale

expansion.

3. The inclusion of NQC corrections has been crucial for achieving high accuracy with

EOB waveforms [68, 69], but their importance is significantly reduced by using self-

force data to improve EOB’s treatment of energy fluxes [70]. It is possible that EOB

can be further improved, and its reliance on NQC corrections can be further reduced,

by using information from the self-forced transition to plunge.

Motivated by these considerations, in this section we show that EOB can, in principle,

reproduce our results for the transition-to-plunge dynamics at least to 3PLT order in the

small-mass-ratio limit. However, we also pinpoint how EOB implementations can miss

certain effects related to evolution of Ω (or rp), and we highlight possible ways our results

could be used to inform EOB models.

The EOB formalism begins by mapping the two-body dynamics onto the effective

dynamics of a particle in a deformed Schwarzschild background, with the deformation

parametrized by the symmetric mass ratio ν. We consider the EOB Hamiltonian [10, 21, 71]

HEOB :=
Mtot

mp

√√√√√1 + 2ν


√√√√A(rp)

(
1 +

p2r m
2
p

µ2B(rp)
+

p2ϕm
2
p

µ2r2p
+Q(rp, pr)

)
− 1

, (7.9)
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where the total mass Mtot, the reduced mass µ and the symmetric mass ratio ν are defined

as

Mtot := M +mp = M(1 + ε), µ :=
Mmp

Mtot
=

Mε

1 + ε
, ν :=

µ

Mtot
=

ε

(1 + ε)2
. (7.10)

To facilitate the comparison with the self-force dynamics, we have rescaled the EOB Hamil-

tonian and the momenta pµ with the mass of the secondary mp = Mε (though we recognize

this is unnatural in the EOB framework, where one would normally use µ for such rescal-

ing). The EOB potentials expanded in powers of ν are given by [72, 73]

A(rp) = 1− 2Mtot

rp
+ ν a(Mtot/rp) + ν2a2(Mtot/rp) +O(ν3), (7.11)

B(rp) =
1

A(rp)

[
1 + ν d(Mtot/rp) + ν2d2(Mtot/rp) +O(ν3)

]
, (7.12)

Q(rp, pr) = ν q(Mtot/rp) p
4
r +O(ν2, p6r). (7.13)

The potentials B and Q only affect eccentric orbits and do not enter the comparison we

consider here until high order (e.g., we have found the potential d affects the transition-to-

plunge dynamics at 5PLT order). At the orders we consider explicitly here, we will only

encounter the potential νa(Mtot/rp), and we can replace ν with ε in that term.

The system’s Hamilton equations read [10]

drp
dt

=
∂HEOB

∂pr
, (7.14a)

dϕp

dt
:= Ω =

∂HEOB

∂pϕ
, (7.14b)

dpr
dt

= −∂HEOB

∂rp
+ Fr, (7.14c)

dpϕ
dt

= Fϕ. (7.14d)

The radiation-reaction forces appearing in the Hamilton equations are given by [22, 70]

Fr = −FEOB

Ω

pr
pϕ

, Fϕ = −FEOB

Ω
, (7.15)

where FEOB is the energy flux per unit secondary mass [70]

FEOB =
1

8πmp

∑
ℓ,m

(mΩ)2 |Hℓm|2 . (7.16)

Before we examine the transition to plunge, it will be instructive to consider the simpler

case of the inspiral, comparing the EOB dynamics with the self-force inspiral expansion

of section 3. To make this comparison, we perturbatively expand the EOB equations in

integer powers of ε at fixed mechanical parameters Ja. We refer to reference [74] for a more
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detailed treatment of this expansion of the EOB dynamics. In practice, we substitute rp
and dJa/dt using, respectively, eqs. (3.1) and (3.3), and additionally expand

pr(ε, J
a) = ε

[
p(0)r (Ω) + ε p(1)r (Ja) +O(ε2)

]
, (7.17)

pϕ(ε, J
a) = p

(0)
ϕ (Ω) + ε p

(1)
ϕ (Ja) +O(ε2), (7.18)

FEOB(ε, Ja) = εFEOB
(1) (Ω) + ε2FEOB

(2) (Ja) +O(ε3). (7.19)

The radiation-reaction forces (7.15) then admit the following expansions:

Fr(ε, J
a) = ε2F (2)

r (Ja) +O(ε3), (7.20a)

Fϕ(ε, J
a) = ε F

(1)
ϕ (Ω) + ε2F

(2)
ϕ (Ja) +O(ε3). (7.20b)

At adiabatic order, the expanded Hamilton equations (7.14) give

r(0) =
M

(MΩ)2/3
, (7.21)

FΩ
(0) = − 3Ω4/3

M2/3U(0)D
F

(1)
ϕ . (7.22)

The radiation-reaction force Fϕ defined from eq. (7.14d) is related to the azimuthal self-

force by Fϕ =
fϕ
U , which at adiabatic order reduces to F

(1)
ϕ =

f
(1)
ϕ

U(0)
=

f(r(0))

ΩU(0)
f t
(1), where the

last equality derives from the orthogonality condition uµf
µ = 0. Substituting this into

eq. (7.22) allows us to correctly reproduce the 0PA result in eq. (3.5). The 1PA correction

to the orbital radius reads

r(1) =
M

6(MΩ)2/3

[
6− 4U(0) + 8(MΩ)2/3U(0) − a′

(
(MΩ)2/3

)]
. (7.23)

This is a gauge-dependent quantity. While the EOB framework we discuss here is set

up in the Schwarzschild gauge, our formalism uses the Schwarzschild gauge only at the

background level, without specifying a gauge for the metric perturbations appearing in the

self-force (3.29). Equating eqs. (7.23) and the 1PA result (3.7a) corresponds to adopt-

ing the EOB gauge for the self-force dynamics. The 1PA rate of change of the or-

bital frequency then reproduces the self-force result in eq. (3.7b), after substituting the

radiation-reaction force as F
(2)
ϕ = 1

U(0)
f
(2)
ϕ − U(1)

U2
(0)

f
(1)
ϕ and using the orthogonality condition

to write f
(2)
ϕ in terms of the t and r components of the first- and second-order self-force,

f
(2)
ϕ = 1

Ω

[
f(r(0))f

t
(2) + f ′(r(0))r(1)f

t
(1) −

∂Ωr(0)F
Ω
(0)

f(r(0))
f r
(1)

]
.

This analysis shows that the EOB dynamics can reproduce the 1PA self-force dynamics

when expanded in the same small-mass-ratio, multiscale form. Referring back to our enu-

merated items at the beginning of the section, we can now judge that the EOB dynamics

without NQCs already correctly encodes the effects of nonzero dΩ/dt during the inspiral.

These terms arise from substituting expansions in powers of ε at fixed Ω into the left-hand
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side of Hamilton’s equations (and applying the chain rule). In fact, the multiscale expan-

sion in the small-mass-ratio limit is roughly equivalent to the post-adiabatic expansion

used in EOB [75]. Like our inspiral expansion, the post-adiabatic EOB expansion breaks

down at an ISCO due to the behaviour of dΩ/dt in this approximation; such breakdown

can be seen by eye from the plots in reference [75].

However, there are several caveats to this conclusion:

1. Exactly reproducing the 1PA self-force dynamics requires fixing the EOB potential

a in eq. (7.11) to agree with its value in self-force theory. This has been done in a

gauge-invariant way in references [72, 76, 77], for example.

2. We have equated the EOB radiation-reaction force Fϕ to the local self-force fϕ/U .

Since Fϕ in EOB is obtained from energy fluxes via eq. (7.15), we have implicitly

assumed fϕ is linked to fluxes through an energy balance law of the form (7.15). This

relationship is not known to be true at second order in self-force theory.

3. Even assuming energy balance, the EOB dynamics will only reproduce the 1PA dy-

namics if the fluxes FEOB
(1) and FEOB

(2) are made to agree with their values from self-

force theory. Since the EOB fluxes are calculated from waveform amplitudes via

eq. (7.16), reproducing the self-force fluxes requires reproducing the amplitudes H
(1)
ℓm

and H
(2)
ℓm . This calibration has been done in reference [70], for example. Importantly,

the amplitudes H
(2)
ℓm contain contributions directly proportional to Ω̇ (through Ω̇

terms that appear as sources in the second-order Einstein equation). These contribu-

tions must be consistently accounted for in the EOB inspiral amplitudes. They also

appear to be distinct from NQC corrections: the terms that appear in H
(2)
ℓm are linear

in Ω̇, while NQC corrections to the amplitudes appear as a multiplicative factor that

depends only on even powers of pr (∼ Ω̇) [70]. This hints that, at least in some

variants of EOB, NQC corrections might serve to mask inaccuracies in the inspiral

dynamics rather than serving to correct fundamental inadequacies of a quasicircular

approximation.

4. Equation (7.16) for the energy flux is itself not exact. First, it must include fluxes

into the primary black hole (or into both black holes for comparable-mass bina-

ries). Second, if we write the waveform modes in terms of real amplitudes, as

hℓm = |Hℓm(Ja)|e−iΦℓm , then the exact flux to future null infinity (per unit sec-

ondary mass) is

F =
1

8πmp

∑
ℓm

|ḣℓm|2 = 1

8πmp

∑
ℓm

[
(mωℓm)2 |Hℓm|2 +

(
dJa

dt
∂Ja |Hℓm|

)2]
, (7.24)

where ωℓm := 1
m Φ̇ℓm. This is the physical energy flux, proportional to minus the

integral over the sphere at infinity of the square of the time derivative of the shear.

Note the numerically dominant piece of the second term comes from Ω̇∂Ω|Hℓm|.

Equation (7.24) differs from the flux formula (7.16) in two ways. First, it involves

factors of the waveform mode frequency ωℓm, which differs from Ω by small but
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non-negligible O(ε) corrections proportional to Ω̇, in analogy with eq. (6.16); see

Appendix B of reference [17]. Second, eq. (7.24) depends explicitly on (Ω̇)2. However,

the terms proportional to (Ω̇)2 are suppressed by O(ε2) because Ω̇ = O(ε), meaning

this second correction is not relevant to the 1PA dynamics.

We now turn to the transition-to-plunge expansion of the EOB dynamics, keeping in

mind our findings from the inspiral. To compare with the results we have obtained within

the self-force formalism in section 4, we consider the near-ISCO scaling of the orbital

frequency (4.1) and expand the orbital radius and the rates of change of ∆Ja according

to eqs. (4.2), (4.4) and (4.5). The momenta pr and pϕ and the EOB energy flux are also

expanded as

pr(λ,∆Ja) = λ3
2∑

n=0

λnp[n]r (∆Ω) + λ3
∞∑
n=3

λnp[n]r (∆Ja), (7.25)

pϕ(λ,∆Ja) =
4∑

n=0

λnp
[n]
ϕ (∆Ω) +

∞∑
n=5

λnp
[n]
ϕ (∆Ja), (7.26)

FEOB(λ,∆Ja) = λ5FEOB
[5] + λ7FEOB

[7] (∆Ω) +

∞∑
n=8

λnFEOB
[n] (∆Ja). (7.27)

Substituting these expansions into eq. (7.15), we find that the radiation-reaction forces

admit the following expansions:

Fr(λ,∆Ja) = λ8F [8]
r (∆Ja) +O(λ9), (7.28a)

Fϕ(λ,∆Ja) = λ5F
[5]
ϕ + λ7F

[7]
ϕ (∆Ω) + λ8F

[8]
ϕ (∆Ja) +O(λ9). (7.28b)

We can relate the radiation-reaction forces (7.28) to the t and r components of the transition-

to-plunge self-force (4.6) by again using Fϕ =
fϕ
U and the orthogonality condition uµfµ = 0:

F
[5]
ϕ = 4

√
3Mf t

[5], (7.29a)

F
[7]
ϕ = 4M

(√
3f t

[7] − 30
√
2M∆Ωf t

[5]

)
, (7.29b)

F
[8]
ϕ = 4

√
3M

(
f t
[8] + 54

√
6M2F∆Ω

[0] f r
[5]

)
. (7.29c)

We obtain the equations of motion for the forcing terms F∆Ω
[n] from the expanded Hamilton

equations (7.14). After using the relations (7.29), we have checked up to 3PLT order that

F∆Ω
[0] satisfies eq. (4.9), while the subleading terms F∆Ω

[2] and F∆Ω
[3] obey eq. (4.12) with

sources (C.3) and (C.4), respectively.

From this analysis, we conclude that the EOB formalism correctly captures the dynam-

ics of the transition to plunge at least to 3PLT order in the small-mass-ratio limit. However,

all of the caveats we listed for the inspiral are even more pronounced for the transition to

plunge. In particular, precise balance laws between the local force and asymptotic flux have
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not been derived for the transition-to-plunge expansion, and corrections to the flux for-

mula (7.16) could be important. The exact flux formula (7.24) in the transition-to-plunge

regime becomes

F =
1

8πmp

∑
ℓm

[
(mωℓm)2 |Hℓm|2 +

(
d∆Ja

dt
∂∆Ja |Hℓm|

)2]
. (7.30)

As shown in eq. (6.15), the waveform frequency ωℓm differs from the orbital frequency Ω

by an amount of order ε3/5 (3PLT), which could be substantially more significant than the

analogous difference in the inspiral. Moreover, the scalings d∆Ω
dt ∼ ε1/5 and ∂∆Ja |Hℓm| ∼

ε2/5 suggest that the second term in eq. (7.30) is only suppressed by a factor ε6/5 relative

to the first term, again making it more significant than the analogous correction in the

inspiral.

These considerations suggest that EOB inspiral-merger-ringdown waveforms might be

further improved using self-force waveform amplitudes (or fluxes) during the transition

to plunge. However, this might require carrying self-force calculations to 3PLT order and

higher. Conversely, the fact that EOB dynamics encodes the transition-to-plunge dynamics

(given correct radiation-reaction forces) suggests that our transition-to-plunge results might

be resummable into a simpler form.

8 Conclusion

We have established from first principles a framework based on multiscale expansions that

enables fast waveform generation during the transition-to-plunge stage of asymmetric com-

pact binary coalescences. Our framework builds on the waveform-generation formalism

presented in [4, 8, 9] for the inspiral, combined with the scheme of matched asymptotic

expansions between the inspiral and the transition to plunge developed in [12–14, 47].

Our framework is complete for non-spinning, quasi-circular and equatorial binaries, and in

particular takes into account the dynamical change of the background mass and spin.

We have considered the coupled problem of the orbital motion and the field equa-

tions in the inspiral and transition-to-plunge regimes separately, and have shown that the

solutions to the two problems can be asymptotically matched in a buffer region exterior

to the ISCO where the two regimes overlap. Using the GSF data that is currently avail-

able, we have built the simplest transition-to-plunge waveforms using a 0PLT and a 2PLT

model, which takes into account the transition-to-plunge dynamics to leading and first

non-vanishing subleading order in the multiscale expansion, respectively. We have left the

hybridization of our transition-to-plunge waveforms with the inspiral and the plunge at,

respectively, early and late times to future work. We have performed extensive comparisons

between our GSF models and NR simulations, the BHPTNRSur1dq1e4 surrogate model

and the EOB formalism. We found that our models lead to a promising route for capturing

both the orbital dynamics and the waveforms of asymmetric binaries; see, e.g., figures 5

and 12. These numerical results validate our GSF model and encourage the numerical

implementation of higher-order PLT models.
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Finally, we conclude by estimating how the model should improve as higher PLT orders

are included. For the inspiral, the GSF community has focused specifically on achieving

1PA accuracy because the orbital phase (and hence the GW phase) has an expansion of

the form [3]

ϕp =
1

ε

[
ϕ(0)
p (Ω) + εϕ(1)

p (Ω, δM±) +O(ε2)
]
. (8.1)

The validity of this expansion can be seen straightforwardly from the structure of the

equations that determine ϕp during the inspiral, reproduced here for convenience:

dϕp

dt
= Ω, (8.2)

dΩ

dt
= ε

[
FΩ
(0)(Ω) + εFΩ

(1)(Ω, δM
±) +O(ε2)

]
. (8.3)

Equation (8.1) shows that, on any fixed frequency interval (e.g., the LISA frequency band),

the phase error of a 1PA model scales linearly with ε in the ε → 0 limit. A 1PA model

can therefore guarantee sufficiently small phase errors for sufficiently small ε. During the

transition to plunge, the phase instead admits an expansion of the form

ϕp =
1

ε1/5

[
ϕ[0]
p (∆Ω) + ε2/5ϕ[2]

p (∆Ω) +O(ε3/5)
]
, (8.4)

as can be seen from the structure of the transition-to-plunge equations

dϕp

dt
= Ω∗ + ε2/5∆Ω, (8.5)

d∆Ω

dt
= ε1/5

[
F∆Ω
[0] (∆Ω) + ε2/5F∆Ω

[2] (∆Ω) +O(ε3/5)
]
. (8.6)

This suggests that phase errors vanish in the ε → 0 limit even for a 0PLT model. For

a 7PLT model (being the highest PLT order considered in this paper) the phase error

scales as ε7/5, formally even smaller than the phase error accumulated over a 1PA inspiral.

Such scaling estimates should be used with caution for the transition to plunge because

the low fractional powers of ε mean that subsequent terms can easily compete with each

other. However, when combined with our promising results at 0PLT and 2PLT order, these

estimates suggest that a higher-order PLT model should be highly accurate for mass ratios

in the range ≲ 1/10, which is of interest for ground-based detectors.
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A Material for section 2

A.1 Barack-Lousto-Sago basis of tensor spherical harmonics

The Barack-Lousto-Sago harmonics [40, 78, 79] in Schwarzschild coordinates (t, r, θ, ϕ) are

given by

Y 1ℓm
µν =

Y ℓm

√
2


1 0 0 0

0 f−2 0 0

0 0 0 0

0 0 0 0

 , Y 2ℓm
µν =

Y ℓm

√
2f


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ,

Y 3ℓm
µν =

Y ℓm

√
2


f 0 0 0

0 −f−1 0 0

0 0 0 0

0 0 0 0

 , Y 4ℓm
µν =

r Y ℓm

√
2γ1


0 0 ∂θ ∂ϕ
0 0 0 0

∂θ 0 0 0

∂ϕ 0 0 0

 ,

Y 5ℓm
µν =

r Y ℓm

√
2γ1f


0 0 0 0

0 0 ∂θ ∂ϕ
0 ∂θ 0 0

0 ∂ϕ 0 0

 , Y 6ℓm
µν =

r2Y ℓm

√
2


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 s2

 ,

Y 7ℓm
µν =

r2Y ℓm

√
2γ2


0 0 0 0

0 0 0 0

0 0 D2 D1

0 0 D1 −s2D2

 , Y 8ℓm
µν =

r Y ℓm

√
2γ1


0 0 s−1∂ϕ −s ∂θ
0 0 0 0

s−1∂ϕ 0 0 0

−s ∂θ 0 0 0

 ,

Y 9ℓm
µν =

r Y ℓm

√
2γ1f


0 0 0 0

0 0 s−1∂ϕ −s ∂θ
0 s−1∂ϕ 0 0

0 −s ∂θ 0 0

 , Y 10ℓm
µν =

r2Y ℓm

√
2γ2


0 0 0 0

0 0 0 0

0 0 s−1D1 −sD2

0 0 −sD2 −sD1

 ,

(A.1)

where s := sin θ, f := 1 − 2M/r, D1 := 2(∂θ − cot θ)∂ϕ, D2 := ∂2
θ − cot θ∂θ − s−2∂2

ϕ and

Y ℓm = Y ℓm(θ, ϕ) are the standard scalar spherical harmonics. The coefficients γ1 and γ2
are defined as

γ1 := ℓ(ℓ+ 1), γ2 := (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2). (A.2)

Here we use the definition of Y 3ℓm
µν from [40] rather than [78]; the two differ by a factor

of f . The harmonics Y iℓm
µν are orthogonal with respect to a certain inner product, which

satisfies ∮
dS ηαµηβνY iℓm

µν Y ∗jℓ′m′

αβ = κiδijδℓℓ′δmm′ , (A.3)

with dS = sin θdθdϕ the surface element on the unit sphere,

ηµν := diag
(
1, f2, r−2, r−2 sin−2 θ

)
, (A.4)

and

κi :=

{
f2 for i = 3,

1 otherwise.
(A.5)
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Equation (A.4) corrects a typo appearing in [78], as previously noted in [9, 80].

The normalization factors aiℓ appearing in eq. (2.18) are defined as

aiℓ :=
1√
2


1 for i = 1, 2, 3, 6,

1/
√
γ1 for i = 4, 5, 8, 9,

1/
√
γ2 for i = 7, 10.

(A.6)

A.2 The matrix operator Mij

The radial operators appearing in eq. (2.26) are given by

M1j
r =

{
f

2r2

(
1− 4M

r

)
, 0,

f ′f2

2
∂r −

f2

2r2

(
1− 4M

r

)
, 0,−M11

r ,− f2

2r2

(
1− 6M

r

)
, 0, 0, 0, 0

}
,

M2j
r =

{
−f ′f

2

(
∂r +

1

r

)
,
f

2

(
f ′∂r +

f

r2

)
,
f ′f2

2

(
∂r +

1

r

)
,− f2

2r2
,
f ′f

2r
,
f ′f2

r
, 0, 0, 0, 0

}
,

M3j
r =

{
− f

2r2
, 0,

f

2r2

(
1− 4M

r

)
, 0,

f

2r2
,
f

2r2

(
1− 4M

r

)
, 0, 0, 0, 0

}
,

M4j
r =

{
0,−γ1f

2r2
, 0,

f ′f

4

(
∂r −

3

r

)
,−f ′f

4

(
∂r +

2

r

)
,−γ1f

′f

4r
,
f ′f

4r
, 0, 0, 0

}
,

M5j
r =

{
−γ1f

2r2
, 0,

γ1f
2

2r2
, 0,

f

r2

(
1− 9M

2r

)
,
γ1f

2r2

(
1− 3M

r

)
,− f

2r2

(
1− 3M

r

)
, 0, 0, 0

}
,

M6j
r =

{
− f

2r2
, 0,

f

2r2

(
1− 4M

r

)
, 0,

f

2r2
,
f

2r2

(
1− 4M

r

)
, 0, 0, 0, 0

}
,

M7j
r =

{
0, 0, 0, 0,− γ2f

2γ1r2
, 0,− f

2r2
, 0, 0, 0

}
,

M8j
r =

{
0, 0, 0, 0, 0, 0, 0,

f ′f

4

(
∂r −

3

r

)
,−f ′f

4

(
∂r +

2

r

)
,
f ′f

4r

}
,

M9j
r =

{
0, 0, 0, 0, 0, 0, 0, 0,

f

r2

(
1− 9M

2r

)
,− f

2r2

(
1− 3M

r

)}
,

M10j
r =

{
0, 0, 0, 0, 0, 0, 0, 0,− γ2f

2γ1r2
,− f

2r2

}
,

(A.7)

where f ′ = 2M/r2 and γ1 and γ2 are defined in eq. (A.2) above. The radial derivatives are

taken at fixed (∆)Ja and ϕp. All components of the radial matrix Mij
t vanish except

M13
t = M23

t = −ff ′H

2
,

−1

2
M21

t =
1

2
M22

t = M44
t = −M45

t = M88
t = −M89

t =
f ′(1−H)

4
.

(A.8)

The matrix operator Mij = Mij
r +Mij

t (∂t)r agrees with the one given in eqs. (A1)-(A10)

of [40] with (∂v)u = f
2 (∂r)(∆)Ja,ϕp

+ 1−H
2

(
−imΩ+ F (∆)Ja

∂(∆)Ja

)
and (∂r)t replaced using

eq. (2.27b).
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A.3 Harmonic decomposition of the Lorenz gauge condition

We list the operators Zraj and the components of the radial vector Ztaj for a = 1, 2, 3, 4

and j = 1, . . . , 10, which appear in the harmonic decomposition of the Lorenz gauge con-

dition (2.32):

Zr12 = Zr21 = −(∂x)(∆)Ja − f

r
, (A.9a)

Zr14 = Zr25 = Zr37 = Zr4 10 =
f

r
, (A.9b)

Zr23 = f(∂x)(∆)Ja +
f2

r
, (A.9c)

Zr26 =
2f2

r
, (A.9d)

Zr35 = Zr49 = −(∂x)(∆)Ja − 2f

r
, (A.9e)

Zr36 = −ℓ(ℓ+ 1)
f

r
, (A.9f)

and

Zt11 = Zt22 = Zt34 = Zt48 = 1, (A.10a)

Zt12 = Zt21 = Zt35 = Zt49 = H, (A.10b)

Zt13 = f, (A.10c)

Zt23 = −fH. (A.10d)

All other terms vanish. With these explicit expression, the conditions (2.32) agree with

eqs. (A13)-(A16) of [40] upon substituting ∂t and ∂r in that reference with eq. (2.27).

B Material for section 3

B.1 Inspiral expansion of the point-particle stress-energy tensor

After performing the inspiral expansion of the first-order term in eq. (2.21), we find that

the mode amplitudes of the stress-energy tensor at 1PA order are explicitly given by

t
(2)
iℓm = −1

4
E(0)α

(2)
iℓm

{
Y ∗
ℓm(π2 , 0) i = 1, . . . , 7,

∂θY
∗
ℓm(π2 , 0) i = 8, 9, 10,

(B.1)
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where the coefficients α
(2)
iℓm read (dropping the ℓ and m indices)

α
(2)
1 = −

(
r(0) − 8M

)
f(0)r(1)

r3(0)
, α

(2)
2 = −

2f(0)
(
∂Ωr(0)

)
FΩ
(0)

r(0)
,

α
(2)
3 = −

(
r(0) − 6M

)
r(1)

r3(0)
, α

(2)
4 =

8imMΩ r(1)

r2(0)
, α

(2)
5 = −2imΩ (∂Ωr(0))F

Ω
(0),

α
(2)
6 =

Ω2r(1)

f(0)
, α

(2)
7 =

[
ℓ(ℓ+ 1)− 2m2

]
Ω2r(1)

f(0)
, α

(2)
8 =

α
(1)
4

im
,

α
(2)
9 =

α
(1)
5

im
, α

(2)
10 = 2imα

(1)
6 .

(B.2)

The coefficients of FΩ
(0) in these terms are the explicit expressions of t

(2)B
iℓm in eq. (3.14b),

while the remaining terms give t
(2)A
iℓm .

B.2 Coefficients of the near-ISCO inspiral solutions

This appendix contains explicit expressions for some of the coefficients appearing in the

near-ISCO solutions of the inspiral motion up to 2PA order. All self-force and forcing

terms are evaluated at the ISCO frequency. The coefficients appearing at the lowest orders

in the near-ISCO solution of the orbital radius (eqs. (3.32a), (3.33a) and (3.34a)) are given

by

r
(2,1)
(0) = −24

√
6M2, r

(4,2)
(0) = 720M3, (B.3)

r
(6,3)
(0) = −3840

√
6M4, r

(8,4)
(0) = 126720M5, (B.4)

r
(5,0)
(1) = −54M2f r

(1), (B.5)

r
(7,1)
(1) = 54M2

(
14
√
6Mf r

(1) − ∂Ωf
r
(1)

)
, (B.6)

r
(9,2)
(1) = −27M2

(
1560M2f r

(1) − 28
√
6M∂Ωf

r
(1) + ∂2

Ωf
r
(1)

)
, (B.7)

r
(4,−3)
(2) =

9

4

√
3

2

(
f t
(1)

)2
, (B.8)

r
(6,−2)
(2) = −9

8
f t
(1)

(
120Mf t

(1) −
√
6∂Ωf

t
(1)

)
, (B.9)

r
(8,−1)
(2) =

9

8
f t
(1)

[
12M

(
52
√
6Mf t

(1) − 3∂Ωf
t
(1)

)
− f r

(2)B

]
. (B.10)

The coefficients appearing at the lowest orders in the near-ISCO solutions for the forcing

terms FΩ
(n) with n = 0, 1, 2 (eqs. (3.32b), (3.33b) and (3.34b)) read

F
(3,−1)
(0) =

f t
(1)

48M2
, (B.11)
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F
(5,0)
(0) = − 1

48M2

(
7
√
6Mf t

(1) − ∂Ωf
t
(1)

)
, (B.12)

F
(7,1)
(0) =

1

96M2

(
100M2f t

(1) − 14
√
6M∂Ωf

t
(1) + ∂2

Ωf
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)
, (B.13)

F
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(
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√
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, (B.14)
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(B.18)
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(B.22)

C Material for section 4

C.1 Transition-to-plunge equations

In this appendix we list the transition-to-plunge equations up to 7PLT order. The nPLT

corrections (n = 3, . . . , 7) to the redshift are algebraically determined as

U[3] = 0, (C.1a)

U[4] = 16
√
2M3

[
324M

(
F∆Ω
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)2
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√
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, (C.1b)
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while for the orbital radius we obtain
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The sources appearing in eq. (4.12) are given by
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and higher-order terms are straightforwardly computed from the transition-to-plunge ex-

pansion of the t component of the equation of motion.

C.2 Linearized Einstein operators

The linearized Einstein operators E
[n]
ijℓm, n = 3, 4, 5, 6, 7, explicitly read

E
[3]
ijℓm =

[
Mij

t − δij
im

2
Ω∗
(
1−H2

)
+

δij
4

(∂xH + 2H∂x)

]
F∆Ω
[2] ∂∆Ω

− δij
im

4

(
1−H2

)
F∆Ω
[0] (1 + 2∆Ω∂∆Ω) ,

(C.7)

E
[4]a
ijℓm =

[
Mij

t − δij
im

2
Ω∗
(
1−H2

)
+

δij
4

(∂xH + 2H∂x)

]
F∆Ω a
[3] ∂∆Ω

− δijδ
a
1

1−H2

4

[
m2∆Ω2 −

(
F∆Ω
[0]

∂F∆Ω
[2]

∂∆Ω
+ F∆Ω

[2]

∂F∆Ω
[0]

∂∆Ω

)
∂∆Ω − 2F∆Ω

[0] F∆Ω
[2] ∂2

∆Ω

]
,

(C.8)

E
[5]a
ijℓm =

[
Mij

t − δij
im

2
Ω∗
(
1−H2

)
+

δij
4

(∂xH + 2H∂x)

] [
F∆Ω a
[4] ∂∆Ω + F δM±a

[0] ∂δM±

]
− δij

1−H2

4

[
imδa1F
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E
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ijℓm =

[
Mij

t − δij
im
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(
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δij
4

(∂xH + 2H∂x)

]
F∆Ω a
[5] ∂∆Ω

− δij
1−H2

4

[
imF∆Ωa

[3] (1 + 2∆Ω∂∆Ω)

−

(
F∆Ω
[0]

∂F∆Ωa
[4]

∂∆Ω
+ F∆Ωa

[4]

∂F∆Ω
[0]

∂∆Ω
+ δa1F

∆Ω
[2]

∂F∆Ω
[2]

∂∆Ω

)
∂∆Ω

−
(
2F∆Ω

[0] F∆Ωa
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(
F∆Ω
[2]

)2)
∂2
∆Ω − 2F∆Ω

[0] F δM±a
[0] ∂∆Ω∂δM±

]
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E
[7]ab
ijℓm =

[
Mij

t − δij
im

2
Ω∗
(
1−H2

)
+

δij
4

(∂xH + 2H∂x)

] [
F∆Ω ab
[6] ∂∆Ω + F

δM±(a
[2] δ

b)
1 ∂δM±

]
− δij

1−H2

4

[
imF

∆Ω(a
[4] (1 + 2∆Ω∂∆Ω)−

(
2F∆Ω

[0] F
∆Ω(a
[5] + 2F∆Ω

[2] F
∆Ω(a
[3]

)
∂2
∆Ω

−

F∆Ω
[0]

∂F
∆Ω(a
[5]

∂∆Ω
+ F

∆Ω(a
[5]

∂F∆Ω
[0]

∂∆Ω
+ F∆Ω

[2]

∂F
∆Ω(a
[3]

∂∆Ω
+ F

∆Ω(a
[3]

∂F∆Ω
[2]

∂∆Ω

 ∂∆Ω

+ 2im∆ΩF
δM±(a
[0] ∂δM±

]
δ
b)
1 .
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Here we have introduced the Kronecker delta δa1 such that δa1δM
a = 1. In the last equation,

the notation (ab) stands for weighted symmetrization over ab: T (ab) = 1
2T

ab + 1
2T

ba. For

n ≥ 5, E
[n]
ijℓm depends upon F δM±

[m] , 0 ≤ m ≤ n − 5. Higher-order terms can be obtained

straightforwardly.

C.3 Transition-to-plunge expansion of the point-particle stress-energy tensor

The nPLT (n ≥ 3) mode amplitudes of the first-order stress-energy tensor can be obtained

from the transition-to-plunge expansion of eq. (2.21). The mode amplitudes of the stress-

energy tensor at 3PLT order, t
[8]
iℓm, are given by

t
[8]
iℓm = F∆Ω

[0] t
[8]A
iℓm := −F∆Ω

[0]

E∗
4
α
[8]A
iℓm

{
Y ∗
ℓm(π2 , 0) i = 1, . . . , 7,

∂θY
∗
ℓm(π2 , 0) i = 8, 9, 10,

(C.12)

where (dropping the ℓ and m indices)

α
[8]A
1,3,4,6,7,8,10 = 0, α

[8]A
2 = 16

√
2

3
Mδ(r − 6M),

α
[8]A
5 = 8imMδ(r − 6M), α

[8]A
9 = 8Mδ(r − 6M).

(C.13)
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The mode amplitudes of the first-order stress-energy tensor at 4PLT order, t
[9]
iℓm, are given

by

t
[9]
iℓm = ∆Ω2t

[9]A
iℓm + F∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)
t
[9]B
iℓm

:= −E∗
4

[
∆Ω2α

[9]A
iℓm + F∆Ω

[0]

(
∂∆ΩF

∆Ω
[0]

)
α
[9]B
iℓm

]{ Y ∗
ℓm(π2 , 0) i = 1, . . . , 7,

∂θY
∗
ℓm(π2 , 0) i = 8, 9, 10,
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where (dropping again the ℓ and m indices)

α
[9]A
1 = −8

9
M
[
5δ + 60Mδ′ − 144M2δ′′

]
, α

[9]A
2,5,9 = 0,

α
[9]A
3 = −16

3
M
[
δ + 9Mδ′ − 36M2δ′′

]
,

α
[9]A
4 = −16

3

√
2

3
imM

[
δ + 3Mδ′ − 36M2δ′′

]
,

α
[9]A
6 =

1

3
M
[
5δ + 36Mδ′ + 144M2δ′′

]
,

α
[9]A
7 =

1

3
M
[
ℓ(ℓ+ 1)− 2m2

] [
5δ + 36Mδ′ + 144M2δ′′

]
,

α
[9]A
8 = −16

3

√
2

3
M
[
δ + 3Mδ′ − 36M2δ′′

]
,

α
[9]A
10 =

2

3
imM

[
5δ + 36Mδ′ + 144M2δ′′

]
,

(C.15)

and

α
[9]B
1 = −16

√
6M2

[
δ − 12Mδ′

]
, α

[9]B
2,5,9 = 0, α

[9]B
3 = 288

√
6M3δ′,

α
[9]B
4 = −96imM2

[
δ − 6Mδ′

]
, α

[9]B
6 = −18

√
6M2

[
δ − 4Mδ′

]
,

α
[9]B
7 = −18

√
6M2

[
ℓ(ℓ+ 1)− 2m2

] [
δ − 4Mδ′

]
,

α
[9]B
8 = −96M2

[
δ − 6Mδ′

]
, α

[9]B
10 = −36

√
6imM2

[
δ − 4Mδ′

]
.

(C.16)

Note that we have introduced δ := δ(r − 6M), δ′ := δ′(r − 6M) and δ′′ := δ′′(r − 6M) to

shorten expressions.

C.4 Coefficients of the early-time transition-to-plunge solutions

Up to 7PLT order, the first coefficients in the early-time solutions for the orbital ra-

dius (4.44) are given by

r
(2,1)
[0] = −24

√
6M2, r

(2,1−5i)
[0] = 0, ∀ i ≥ 1, (C.17)

r
(3,−1)
[1] = 0, r

(3,−1−5i)
[1] = 0, ∀ i ≥ 1, (C.18)
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r
(4,2)
[2] = 720M3, r

(4,−3)
[2] =

9

4

√
3

2

(
f t
[5]

)2
, (C.19)

r
(5,0)
[3] = −54M2f r

[5], r
(5,−5i)
[3] = 0, ∀ i ≥ 1, (C.20)

r
(6,3)
[4] = −3840

√
6M4, r

(6,−2)
[4] = −9

8
f t
[5]

(
120Mf t

[5] −
√
6f t

[7]A

)
, (C.21)

r
(7,1)
[5] = 54M2

(
14
√
6Mf r

[5] − f r
[7]A

)
, (C.22)

r
(8,4)
[6] = 126720M5, r

(8,−1)
[6] =

9

8
f t
[5]

[
12M

(
52
√
6Mf t

[5] − 3f t
[7]A

)
− f r

[8]A

]
, (C.23)

r
(9,2)
[7] = −27M2

(
1560M2f r

[5] − 28M
√
6f r

[7]A + 2f r
[9]A

)
. (C.24)

The first coefficients in the early-time solutions of the F∆Ω
[n] forcing terms (4.39) up to 7PLT

order read

F
(3,−1)
[0] =

f t
[5]

48M2
, F

(3,−6)
[0] =

√
3

2

(
f t
[5]

)3
2048M5

, (C.25)

F
(4,−3)
[1] = 0, F

(4,−3−5i)
[1] = 0, ∀ i ≥ 0, (C.26)

F
(5,0)
[2] = − 1

48M2

(
7
√
6Mf t

[5] − f t
[7]A

)
, (C.27)

F
(5,−5)
[2] = −

(
f t
[5]

)2
12288M5

(
252Mf t

[5] − 5
√
6f t

[7]A

)
, (C.28)

F
(6,−2)
[3] = −

f t
[5]

2304M4

(
36
√
6M2f r

[5] − 9Mf r
[7]A − f t

[8]A

)
, (C.29)

F
(7,1)
[4] =

1

48M2

(
50M2f t

[5] − 7
√
6Mf t

[7]A + f t
[9]A

)
, (C.30)
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110592M6
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6M3
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(
f r
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F
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2304M4
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+432M3

(
F δM
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F
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(
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√
6M3f t

[5] + 300M2f t
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√
6Mf t
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)
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D Material for sections 5 and 6

D.1 Self-force matching conditions

The self-force matching conditions involved in the asymptotic match between the quasi-

circular inspiral (up to 2PA order) and the transition to plunge (up to 7PLT order) are

given by

fµ
[5] = fµ

(1)

∣∣∣
∗
, (D.1)

fµ
[7]A = ∂Ωf

µ
(1)

∣∣∣
∗
, (D.2)

fµ
[8]A = fµ

(2)B

∣∣∣
∗
, (D.3)

fµ
[9]A =

1

2
∂2
Ωf

µ
(1)

∣∣∣
∗
, fµ

[9]B = fµ
(3)E

∣∣∣
∗
, (D.4)

fµ
[10]A = fµ

(2)A

∣∣∣
∗
, fµ

[10]D = ∂Ωf
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(2)B

∣∣∣
∗
, fµ

[10]E = fµ
(2)B

∣∣∣
∗
, (D.5)
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(3)C

∣∣∣
∗
, fµ

[11]B = fµ
(3)E

∣∣∣
∗
, fµ

[11]D = fµ
(3)D

∣∣∣
∗
,

fµ
[11]E = ∂Ωf

µ
(3)E

∣∣∣
∗
, fµ

[11]F =
1

6
∂3
Ωf

µ
(1)
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∗
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fµ
[12]A = fµ

(2)B

∣∣∣
∗
, fµ

[12]I= ∂Ωf
µ
(2)A

∣∣∣
∗
, fµ

[12]J =
1

2
∂2
Ωf

µ
(2)B

∣∣∣
∗
, fµ

[12]K= ∂Ωf
µ
(2)B

∣∣∣
∗
. (D.7)

We recall that |∗ denotes evaluation of functions (in this case of Ω, δM and δJ) at Ω = Ω∗.

D.2 Explicit values of the asymptotic coefficients

The breakdown and critical frequencies of the inspiral motion require the knowledge of the

coefficients F
(3,−1)
(0)/[0] , F

(7,1)
(0)/[4], F

(11,3)
(0)/[8], F

(6,−2)
(1)/[3] and F

(3,−6)
(2)/[0] defined, respectively, in eqs. (B.11),

(B.13), (B.15), (B.16) and (B.19). We take the value F
(6,−2)
(1)/[3] = −3.537409407224891×10−6

(setting M = 1) from [17], while evaluating the remaining coefficients only requires the

first-order self-force data f t
(1)(Ω∗) and ∂n

Ωf
t
(1)(Ω∗) with n = 1, 2, 3, 4.

We can obtain all the necessary self-force data from the first-order energy flux F0PA

of [52],

f t
(1)(Ω) = gtt(r(0))f

(1)
t = −

U(0)

f(r(0))
F0PA = −

F∞
0PA(Ω) + FH

0PA(Ω)(
1− 3(MΩ)2/3

)1/2 (
1− 2(MΩ)2/3

) . (D.8)

The coefficients we are interested in then evaluate to (setting M = 1)

F
(3,−1)
(0)/[0] = −4.155752096668726× 10−5, (D.9)

F
(7,1)
(0)/[4] = −3.280188141361921× 10−2, (D.10)

F
(11,3)
(0)/[8] = −5.104634123185608× 10−2, (D.11)

F
(3,−6)
(2)/[0] = −4.746661778492238× 10−12. (D.12)

The value of the coefficient F
(5,−5)
(2)/[2] (B.20) appearing in eq. (5.10) is

F
(5,−5)
(2)/[2] = −3.559185516345344× 10−10. (D.13)

Finally, setting again M = 1, we also obtain the numerical values for f t
[5] and f t

[7]A (which

are related to the first-order self-force (D.8) through the matching conditions (D.1) and

(D.2), respectively)

f t
[5] = −1.994761006400989× 10−3, (D.14)

f t
[7]A = −1.307874324117794× 10−1. (D.15)
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