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Abstract

Compact binaries with asymmetric mass ratios are key expected sources for next-
generation gravitational wave detectors. Gravitational self-force theory has been suc-
cessful in producing post-adiabatic waveforms that describe the quasi-circular inspiral
around a non-spinning black hole with sub-radian accuracy, in remarkable agreement
with numerical relativity simulations. Current inspiral models, however, break down at
the innermost stable circular orbit, missing part of the waveform as the secondary body
transitions to a plunge into the black hole. In this work we derive the transition-to-plunge
expansion within a multiscale framework and asymptotically match its early-time be-
haviour with the late inspiral. Our multiscale formulation facilitates rapid generation of
waveforms: we build second post-leading transition-to-plunge waveforms, named 2PLT
waveforms. Although our numerical results are limited to low perturbative orders, our
framework contains the analytic tools for building higher-order waveforms consistent
with post-adiabatic inspirals, once all the necessary numerical self-force data becomes
available. We validate our framework by comparing against numerical relativity simula-
tions, surrogate models and the effective one-body approach.
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1 Introduction

Future space-based gravitational wave (GW) detectors such as the Laser Interferometer Space
Antenna (LISA) [1] will facilitate new, high-precision tests of general relativity. Due to launch
in the mid-2030s, LISA will detect GWs in the mHz frequency band. A key source of such GWs
are extreme-mass-ratio inspirals (EMRIs), binary systems in which a supermassive black hole
(the primary) of mass M is orbited by a stellar-mass compact object (the secondary) [2]. EMRIs
naturally lend themselves to modelling by black hole perturbation theory, where the secondary
is treated as a point-like particle of mass mp with no internal structure, which perturbs the
background spacetime governed by the primary. Quantities are then expanded around their
background value as an expansion in powers of the small mass ratio, defined by ϵ := mp/M ,
with typical ranges of 10−4 − 10−7 [2].

At the time of writing, the small-mass-ratio expansion, in conjunction with a multiscale
(or two-timescale) framework [3,4], has thus far been used to model EMRIs and their emitted
waveforms during inspiral for generic orbits in a Kerr background at leading order in ϵ [5,6].
The structure of the multiscale approach (in combination with hardware acceleration and
other methods) has also enabled waveform generation that is sufficiently rapid for GW data
analysis [7]. In the special case of a Schwarzschild background and quasi-circular orbits, these
results have been extended through next-to-leading order in ϵ [8], which corresponds to sec-
ond order in gravitational self-force (GSF) theory. The multiscale expansion for quasi-circular
orbits [9] takes account of the fact that the orbital phase of the secondary’s motion, φp, evolves
on the fast timescale∼ M , whereas the orbital parameters such as the orbital radius rp and or-
bital frequencyΩ, in addition to the mass and angular momentum of the primary, evolve on the
much slower radiation-reaction timescale ∼ M/ϵ. Such an approach (and therefore the wave-
form model in [8]) is incomplete, however, because the inspiral dynamics break down at the in-
nermost stable circular orbit (ISCO). As the secondary transitions to a plunge into the primary,
the orbital parameters evolve more rapidly, on a timescale∼ M/ϵ1/5 [10,11], whereas the pri-
mary mass and angular momentum still evolve on the timescale ∼ M/ϵ. An evolution scheme
that takes into account these three disparate timescales is therefore required around the ISCO.

A treatment of the transition to plunge that asymptotically matches with the quasi-circular
inspiral for equatorial orbits (in Kerr spacetime) was studied by two of us in [12–14]. That
work, however, focused on the orbital motion, not expanding the Einstein field equations,
which prevented the construction of transition-to-plunge waveforms. In this paper we present
a framework that incorporates the inspiral and the transition-to-plunge regimes both for the
secondary’s motion and the metric perturbation, which will allow us to build waveform mod-
els that extend beyond the ISCO. Our formulation of the transition-to-plunge expansion also
differs from past formulations in a way that should naturally facilitate rapid waveform gener-
ation.

Accurately modelling the transition to plunge is expected to improve parameter estimation
by matched filtering with detected signals. Crucially, this improvement will be dramatically
more significant for larger values of ϵ. Indeed, the duration of the inspiral scales as ϵ−1,
whereas the duration of the transition to plunge scales as ϵ−1/5. Ignoring the ringdown, taking
the ratio of these two timescales tells us that for binaries with mass ratios of 1:10, the transition
to plunge takes up ∼ 16% of the entire waveform. For mass ratios of 1:1000, this reduces to
≲ 0.4%. While GWs are loudest around merger, EMRIs accumulate the majority of their signal-
to-noise ratio (SNR) during their long-lasting inspirals, whereas detecting intermediate-mass-
ratio coalescences (IMRACs)1 and comparable-mass binary coalescences relies on the relatively
high SNRs around the transition to plunge and merger. Therefore, accurately modelling the
transition to plunge becomes more important as ϵ increases. An accurate and proper handling

1We use the terminology of [15,16] instead of intermediate-mass-ratio inspirals (IMRIs).
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of the transition-to-plunge (and plunge) regime represents an important step towards full
inspiral-merger-ringdown self-force waveforms for such binaries. This will prevent parameter-
estimation biases caused by the abrupt termination of inspiral-only waveforms [17] and could
also be useful even for EMRI data analysis studies by avoiding ad hoc choices of truncation.

From [8,18], there is evidence to suggest that, at least for a Schwarzschild background and
when carried to second perturbative order, the small-mass-ratio expansion accurately describes
GWs for mass ratios as large as ϵ ∼ 1/10. Hence, it is reasonable to assume that a small-mass-
ratio expansion during the transition to plunge will similarly be applicable for IMRACs as well
as EMRIs. The relevance of the transition to plunge for IMRACs and the expected validity of
the small-mass-ratio expansion are the main motivations for this work. Our waveform mod-
elling effort therefore also serves as preparatory modelling for third-generation ground-based
detectors such as the Einstein Telescope, with expected signals from IMRACs [19]. Further mo-
tivation arises from the fact that IMRACs occupy part of the parameter space of mass ratios that
is particularly challenging to model. Numerical relativity (NR) has achieved great success in
simulating compact binary systems with mass ratios of 1:1 to 1:10. It has also made progress
towards the 1:100 regime [20] (and even the 1:1000 regime, for head-on collisions [21]).
However, systems with such small mass ratios become prohibitively computationally expen-
sive for NR to simulate. The approach of post-Newtonian (PN) theory, effective for large orbital
separations and weak fields, has also had great success. However, systems with small mass
ratios spend many orbits in the strong field regime where PN theory loses accuracy. Other
approaches to GW modelling, such as phenomenological models, surrogates, and effective
one-body (EOB) approaches, require input from first-principles methods. EOB, in particular,
synthesizes results from NR, PN and GSF theory to cover a broad parameter space [22]. In
addition to providing a first-principles framework (there are no free parameters except for the
physical ones), our model should provide qualitatively new information from GSF methods
for universal models such as EOB [10,23–30].

The paper is outlined as follows. Section 2 introduces the equations governing the sec-
ondary’s motion and presents the Einstein field equations formulated using hyperboloidal slic-
ing and a tensor spherical harmonic decomposition. Section 3 contains the multiscale expan-
sions of the orbital motion, the Einstein field equations and the self-force for the quasi-circular
inspiral. We perform these expansions through second post-adiabatic (2PA) order. Despite
only needing to model the inspiral to first post-adiabatic (1PA) order [3], we derive the sub-
leading terms to better capture the structure of the asymptotic match with the transition-to-
plunge regime. We then compute the near-ISCO behaviour of all quantities (orbital variables,
metric perturbation and self-force), which we will match with the corresponding early-time
transition-to-plunge solutions. Analogously to the inspiral expansion of section 3, in section 4
we perform the multiscale expansion of the transition-to-plunge dynamics. The transition-to-
plunge expansion parameter is λ := ϵ1/5, which implies that each order of ϵ corresponds to
five orders in λ. We consider the transition-to-plunge expansion to the seventh post-leading
transition-to-plunge (7PLT) order, that is, up to corrections of order λ7 with respect to the
leading-order term. We finally compute the asymptotic early-time solutions of the orbital quan-
tities, the metric perturbation and the self-force with the aim of matching the near-ISCO inspi-
ral. In section 5 we analytically verify the asymptotic match between the near-ISCO inspiral
(to 2PA order) and the early-time transition-to-plunge (to 7PLT order) solutions. This scheme
of matched asymptotic expansions enables us to obtain quantities in the transition-to-plunge
expansion in terms of already known inspiral quantities, ultimately reducing the number of
equations we need to solve. In section 6 we present the waveform generating scheme and the
numerical implementation of 2PLT waveforms. We compare our results with NR simulations
from the SXS collaboration [31] and surrogate waveform models [32, 33]. In section 7 we
also compare our transition-to-plunge model with the one of Apte and Hughes [34] and to
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the EOB approach [10, 22]. Finally, we present our conclusions in section 8. The appendices
contain relevant analytical expressions, which are also provided as supplementary material in
a GitHub repository.

2 Coupled Einstein’s equations and compact body motion

In this section we present the equations governing the orbital evolution of the secondary and
the structure of the perturbatively expanded Einstein field equations in a tensor spherical har-
monic basis. The full spacetime metric gµν, comprising the background gµν of the primary
and the perturbation hµν ∼ ϵ due to the small secondary, can be written as

gµν = gµν + hµν . (1)

We consider the primary as a Schwarzschild black hole, described by the metric

gµν = diag(− f , f −1, r2, r2 sin2 θ )

in Boyer-Lindquist coordinates (t, r,θ ,φ), where f := 1− 2M/r. This background metric is
used to raise and lower indices. The tortoise coordinate x is defined from d x = dr/ f .

We formulate the Einstein field equations using hyperboloidal slicing. The hyperboloidal
time s is defined as

s := t −κ(x) , (2)

where κ is the height function. We consider the slicing such that s = t in a neighbourhood of
the worldline (κ(xp) = 0) and it becomes null as x →±∞, where limx→±∞ κ(x) = ±x (see
figure 1 of [9]). We also define

H(r) :=
dκ
d x

�

�

�

�

x=x(r)
. (3)

The primary’s mass and spin evolve due to the GW fluxes of energy and angular momentum
through its horizon. In order to build a consistent perturbative expansion, we need to take
into account this dynamical change. We write the black hole’s total mass as M + ϵ δM and
total spin as ϵ δJ , where M is the constant mass of the Schwarzschild background gµν and
δM(s) and δJ(s) are the evolving corrections (normalized by ϵ), which appear in the metric
perturbation hµν.

Within this general setting, we will adopt a multiscale expansion in each of the two regimes
we consider: the inspiral and the transition to plunge. Our multiscale expansions follow the
approach developed in references [4, 8, 9, 35]; see, for example, appendix A of reference [9]
(or the more self-contained section IIA of reference [18]), section IV of reference [35], and
section 7 of reference [4]. The key idea in this approach is that the particle’s trajectory and the
spacetime metric only depend on the time s through their dependence on a set of dynamical
mechanical variables that characterize the binary. This allows us to recast the Einstein equa-
tions, coupled to the companion’s equation of motion, as a problem on the binary’s mechanical
phase space. Generating waveforms then divides into an offline step (solving the problem on
the phase space) followed by an online step (evolving along a physical trajectory in the phase
space). We will recall key advantages of this approach over the course of our analysis. In
this section, we will describe the coupled field equations and orbital evolution in a form that
applies to both the inspiral and the transition to plunge; we then specialize to each of the two
regimes in subsequent sections.
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2.1 Orbital motion and binary phase space

We consider the motion of the secondary on quasi-circular orbits in the equatorial plane of the
primary. The worldline zµ(ϵ, t) can be parametrized as

zµ(ϵ, t) =
�

t, rp(ϵ, J a(ϵ, t)),
π

2
,φp(ϵ, t)

�

, (4)

where, recall, we label spacetime coordinates with a subscript p when evaluated on the world-
line, and the hyperboloidal time s reduces to t on the worldline. The quantities J a = (Ω,δM ,δJ)
are the set of mechanical parameters that characterize the slowly evolving binary system: the
orbital frequency Ω is related to the azimuthal phase φp by

dφp

d t
= Ω , (5)

while δM and δJ are the corrections to the primary’s mass and spin described above. Note
that throughout this paper, we suppress functional dependence on the background mass M .

In the inspiral regime, (J a,φp) represent good coordinates on the binary phase space. The
multiscale expansion in the inspiral will consist of writing all quantities of interest as functions
of (ϵ, J a,φp) and then performing expansions in powers of ϵ at fixed (J a,φp). This approach
fails during the transition to plunge, which occurs in a narrow frequency interval of width
∼ ϵ2/5 around the ISCO frequency. In the transition-to-plunge regime, we will therefore adopt
a new frequency coordinate:

∆Ω :=
Ω−Ω∗
ϵ2/5

, (6)

where Ω∗ := 1/(6
p

6M) denotes the geodesic ISCO frequency. By construction, ∆Ω ∼ ϵ0 in
the transition-to-plunge regime. Our multiscale expansion in this regime will then consist of
expansions in (non-integer) powers of ϵ at fixed (∆J a,φp), where ∆J a := (∆Ω,δM ,δJ).

Any function of (ϵ, J a,φp) can be re-expressed equivalently as a function of (ϵ,∆J a,φp).
In this section we use the notation (∆)J a to denote either J a for the inspiral or ∆J a for the
transition to plunge. We will also use the notation δM+ := δM and δM− := δJ , which is
motivated by the fact that δM is the correction to the leading even-parity multipole moment,
while δJ is the correction to the leading odd-parity multipole moment. We define (∆)J a as
functions of hyperboloidal time s: on a given slice of constant s, (∆)Ω is equal to its value at
the point where the slice intersects the worldline, and δM± are equal to their values where
the slice intersects the horizon. In both the inspiral and the transition to plunge, the state of
the system can be computed at a given value of (∆)J a, and the system can then be evolved to
new values using an evolution equation of the form

d(∆)J a

ds
= F (∆)J

a
(ϵ, (∆)J b) . (7)

The forcing terms F (∆)Ω will be obtained in terms of the self-force using the equation of mo-
tion (10) given below, while FδM and FδJ are determined from the horizon fluxes of energy and
angular momentum. We remark that the solutions to the ordinary differential equations (5)
and (7) explicitly depend on ϵ, which justifies the ϵ dependence of φp introduced in eq. (4).

Since we use t as our time parameter along the particle’s worldline, we will write the
particle’s equation of motion directly in terms of it. Defining the redshift U := d t/dτ, where
τ is the proper time as measured in the background spacetime, we can write the four-velocity
uµ := dzµ/dτ as

uµ(ϵ, (∆)J a) = U(ϵ, (∆)J a)

�

1, F (∆)J
b
(ϵ, (∆)J c)

∂ rp(ϵ, (∆)J d)

∂ (∆)J b
, 0,Ω

�

, (8)
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with summation over the repeated b index. The normalization of the four-velocity for massive
particles, gµνu

µuν = −1, leads to an equation for the redshift,

U−2 = −gµν
dzµ

d t
dzν

d t
. (9)

The trajectory is governed by the equation of motion

d2zµ

d t2
+ U−1 dU

d t
dzµ

d t
+ Γµνσ

dzν

d t
dzσ

d t
= U−2 f µ , (10)

where Γµνσ are the background Schwarzschild Christoffel symbols, and f µ is the gravitational
self-force per unit mass mp. The self-force has only two independent components because
f θ = 0 on equatorial orbits and because the normalization gµνu

µuν = −1 implies uµ fµ = 0.
Explicitly, the self-force per unit mass mp (the self-acceleration) acting on the secondary is
given by [36,37]

f µ = −
1
2

Pµν(δρν − hRρ
ν )(2hR

βρ;α − hR
αβ;ρ)u

αuβ +O(ϵ3) , Pµν := gµν + uµuν . (11)

We have split the metric perturbation hµν as hµν = hP
µν + hR

µν, where hP
µν is an analytically

known puncture and hR
µν is the residual field as defined in [38]. A semicolon indicates a

covariant derivative with respect to the background metric gµν.
Our phase-space formalism here differs from the formulation of the inspiral in the main

text of [9] and the formulation of the transition to plunge in [14]. Those references, rather
than using three variables (∆)J a to characterize the slowly evolving state of the system, used
a single “slow time" variable (ϵt during the inspiral and ϵ1/5(t − t∗) during the transition to
plunge, where t∗ is the time at which the particle reaches the ISCO). The two formulations are
formally equivalent, in the sense that the equations in the slow-time formalism can be obtained
from those in the phase-space formalism by expanding (∆)J a for small ϵ at fixed slow time.
We use the phase-space approach due to its better accuracy (see the comparison between
the 1PAT1 and 1PAT2 models in [8]) and because it will enable our approach to waveform
generation. The phase-space formulation we use here was first presented in appendix A of [9]
for the inspiral regime. Reference [4] detailed it for generic inspirals in Kerr spacetime. Here
we apply it to the transition to plunge for the first time.

2.2 Einstein’s field equations

We now introduce the formalism that we use to tackle Einstein’s field equations, extending
the phase-space approach from [9] to include the transition-to-plunge expansion. The metric
perturbation due to the small secondary can be written as

hµν(ϵ, s, x i) =
∑

n≥1

ϵnhn
µν((∆)J

a(s),φp(s), x i) , x i = (r,θ ,φ) , (12)

where s is the hyperboloidal time defined in eq. (2). The number n is a natural number in
the case of the inspiral expansion, and an integer multiple of 1/5 in the transition-to-plunge
expansion. The reason for these specific non-integer powers will become clear in later sections.
In either regime, the integer part ⌊n⌋ denotes the level of non-linearity of the perturbation:
terms with ⌊n⌋= 1 are linear (meaning hn

µν for 1≤ n< 2 are generated by sources that are at
most linear in lower-order hn

µν’s); terms with ⌊n⌋= 2 are quadratic (meaning hn
µν for 2≤ n< 3

are generated by sources that are at most quadratic in lower-order hn
µν’s); and so on. The level

of non-linearity ⌊n⌋ in the transition-to-plunge expansion is incremented by 1 every 5 orders in
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the expansion. For the inspiral, we will denote hn
µν with parentheses as h(n)µν (J

a,φp, x i), while

for the transition to plunge we will denote hn
αβ

with square brackets as h[5n]
αβ
(∆J a,φp, x i).

Our convention allows us to label tensors at each order in perturbation theory with an integer
superscript. In this section we introduce both cases simultaneously. All the time dependence
of the metric perturbation is encoded in (∆)J a and φp.

It will be convenient to introduce the nth-order trace-reversed metric perturbation

h̄n
µν

:= hn
µν −

1
2

gµνgαβhn
αβ

along with the sum h̄µν :=
∑

n ϵ
nh̄n
µν. We note that expansions analogous to eq. (12) also hold

for the puncture and residual fields, hP
µν and hR

µν, such that hµν = hP
µν + hR

µν. In the puncture
scheme, the secondary is replaced with a singular puncture in the spacetime geometry. The
puncture diverges on the worldline and approximates the physical behaviour of the metric near
the secondary. At linear order, the puncture scheme is equivalent to considering the secondary
as a point particle of mass mp moving on the worldline zµ.

It will also be convenient to isolate the metric perturbations’ dependence on δM±. The
nth-order metric perturbation is a polynomial of order ⌊n⌋ in δM and δJ , that is, we can
decompose it as

⌊n⌋= 1 : hn
µν((∆)J

a,φp, x i) = hn,a
µν ((∆)Ω,φp, x i)δM a , (13a)

⌊n⌋= 2 : hn
µν((∆)J

a,φp, x i) = hn,ab
µν ((∆)Ω,φp, x i)δM aδM b , (13b)

where δM a := (1,δM ,δJ) and the repeated indices are summed over. The components that
are purely along δM± (i.e., hn,δM±

µν , hn,δM±δM±
µν , and hn,δM±δM∓

µν ) represent perturbations to-
wards a slowly-evolving Kerr metric with mass M+ϵ δM and spin ϵ δJ . This means that these
components do not depend on the orbital phase φp, and after the harmonic decomposition
we perform below, they only receive ℓ = 0,1, m = 0 contributions at the linear level and
ℓ= 0, 1,2, m= 0 at the quadratic level [9].

We now turn to the field equations and their harmonic decomposition. We will perform
the multiscale expansion separately for the inspiral and transition-to-plunge regimes in sec-
tions 3.2 and 4.2, respectively. We first substitute the metric (1) into the vacuum Einstein
equations (which apply at all points off the secondary’s worldline) and work in Lorenz gauge,
∇νh̄µν = 0. The expansion of the field equations in (potentially non-integer) powers of ϵ,
in terms of the coefficients hn

µν, will depend on the regime. Hence, in this section, we focus
on the generic structure of the field equations, expressed in terms of powers of the total met-
ric perturbation hµν. Up to terms cubic in hµν (i.e., neglecting terms of order ϵ4) and using
Gµν[g] = 0, we obtain

Eµν[h̄] = 2δ2Gµν[h̄, h̄] + 2δ3Gµν[h̄, h̄, h̄] +O(ϵ4) (14)

away from the worldline. Here Eµν[h̄] := ∇α∇αh̄µν + 2Rα βµ νh̄αβ is −2δGµν in the Lorenz
gauge, where δGµν is the linearized Einstein tensor. Following the notation of [9], tensors
inside square brackets, i.e. tensors that are being operated on, have their indices suppressed.
δ2Gµν and δ3Gµν are the quadratic and cubic couplings of linear perturbations, that is, the
pieces in the expansion of Gµν[g+h] that are quadratic and cubic in h̄µν. An explicit expression
for δ2Gµν can be found in [9]. Equation (14) can be extended to the worldline using a puncture
scheme, in which the puncture contribution to h̄µν is moved to the right-hand side of the field
equations and treated as a source [39]:

Eµν[h̄
R] = 2δ2Gµν[h̄, h̄] + 2δ3Gµν[h̄, h̄, h̄]− Eµν[h̄

P] +O(ϵ4) . (15)
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At low orders, working in the puncture formulation is equivalent to using a point-particle
source,

Tµν = mp

∫

uµuν
δ4(xµ − zµ(τ))
p

−detg
dτ+O(ϵ2) . (16)

The form of this source allows us to more easily justify our multiscale ansatz in eq. (28) below.
The second-order terms in Tµν are made up of terms proportional to hR

µν multiplying delta
functions supported on the worldline [40]. Although the third-order terms have not been
derived, the reasoning in [40] implies that they will be structurally similar. In terms of this
Tµν, we can rewrite eq. (15) as

Eµν[h̄] = −16πTµν + 2δ2Gµν[h̄, h̄] + 2δ3Gµν[h̄, h̄, h̄] +O(ϵ4) . (17)

We refer to [40] for discussion of the strict interpretation of (and equivalence between)
eqs. (15) and (17). We will not explicitly require the O(ϵ2) and higher terms in the stress-
energy tensor, and in later sections we will freely move between the puncture formulation and
the point-particle stress-energy formulation.

We next decompose the fields into tensor spherical harmonic modes, using the Barack-
Lousto-Sago basis of harmonics [41]. We start by decomposing the trace-reversed metric per-
turbations h̄n

µν as

h̄n
µν =

∑

iℓm

aiℓ

r
h̄n

iℓm((∆)J
a,φp, r)Y iℓm

µν (r,θ ,φ) , (18)

and analogously h̄iℓm :=
∑

n ϵ
nh̄n

iℓm, where i = 1, . . . , 10, ℓ ≥ 0 and m = −ℓ, . . . ,ℓ. A useful
property of this basis is that the corresponding expansion of hµν is identical to eq. (18) but
with the i = 3,6 terms exchanged, i.e., h̄n

3ℓm = hn
6ℓm and h̄n

6ℓm = hn
3ℓm. The tensor harmonics

Y iℓm
µν and the normalization factors aiℓ are defined in appendix A.1. The harmonic modes h̄n

iℓm
(and similarly the harmonic modes Φiℓm of any symmetric tensor Φµν) are computed as

h̄n
iℓm =

r
aiℓκi

∮

dSηµαηνβ h̄n
µνY

iℓm∗
αβ , (19)

with
∮

dS =
∫ 2π

0 dφ
∫ π

0 dθ sinθ , κi = f 2 if i = 3 and 1 otherwise, and ηµν defined in eq. (A.4)
below.

To motivate our ansatz for the tensor-harmonic modes of the metric perturbation, we first
decompose the source terms in the Einstein equation (17). Changing the integration variable
in eq. (16) to t, we can evaluate the integral and obtain

Tµν = mp
uµuν
U r2

p
δ(r − rp)δ(θ −π/2)δ(φ −φp) +O(ϵ2) . (20)

Given that mp = M ϵ, the harmonic modes of the point-particle stress-energy tensor then read

Tiℓm =−
r f (r)
4aiℓκi

∮

dSηµαηνβTµνY
iℓm∗
αβ (r,θ ,φ) +O(ϵ2)

=−
ϵ f (rp)M

4aiℓκi
ηµαηνβ

uµuν
U rp

Y iℓm∗
αβ

�

r,
π

2
, 0
�

e−imφpδ(r − rp) +O(ϵ)

:=ϵ t iℓme−imφpδ(r − rp) +O(ϵ2) .

(21)

Here we have used the analog of eq. (19) with an additional factor − f (r)/4 to simplify later
expressions. The mode amplitudes t iℓm are evaluated on the worldline (4). The harmonic
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modes of the quadratic Einstein tensor, δ2Giℓm, can be computed from

δ2Giℓm

�

h̄, h̄
�

= −
r f (r)
4aiℓκi

∮

dSηµαηνβδ2Gµν
�

h̄, h̄
�

Y iℓm∗
αβ . (22)

The metric perturbations appearing in the integral can themselves be decomposed as pre-
scribed by eq. (18). Schematically, we can rewrite the harmonic modes of the quadratic Ein-
stein tensor in terms of the modes of the metric perturbations as

δ2Giℓm

�

h̄, h̄
�

=
∑

i1ℓ1m1

∑

i2ℓ2m2

δ2G i1ℓ1m1,i2ℓ2m2
iℓm h̄i1ℓ1m1

h̄i2ℓ2m2
, (23)

where δ2G i1ℓ1m1,i2ℓ2m2
iℓm is a bilinear differential operator acting on h̄i1ℓ1m1

and h̄i2ℓ2m2
sepa-

rately [42]. It is important to notice that m= m1+m2 since the integration over φ in eq. (22)
gives

∫

dφ e−imφeim1φeim2φ∝ δm,m1+m2
. (24)

An equivalent reasoning holds for the cubic Einstein tensor.
After the harmonic decomposition, the field equations (17) are given by a set of coupled

partial differential equations for the harmonic modes h̄iℓm (i = 1, . . . , 10),

Ei jℓmh̄ jℓm = −16πTiℓm + 2δ2Giℓm[h̄, h̄] + 2δ3Giℓm[h̄, h̄, h̄] +O(ϵ4) , (25)

with summation over the repeated index j only. The decomposed linear Einstein operator
Ei jℓm is given by

Ei jℓm =
δi j

4

�

(∂t)
2
r − (∂x)

2
t + 4Vℓ(r)

�

+Mi j
r (r) +Mi j

t (r)(∂t)r . (26)

The potential is Vℓ(r) := f
4

�

2M
r3 +

ℓ(ℓ+1)
r2

�

. The operator matrix Mi j :=Mi j
r +Mi j

t (∂t)r , with

i, j = 1, . . . , 10, couples between modes h̄ jℓm with different j but the same ℓ and m. The explicit
componentsMi j are given in appendix A.2. SinceMi j = 0 for i = 1, . . . , 7 with j = 8, 9,10 and
for i = 8,9, 10 with j = 1, . . . , 7, the field equations at each order in the multiscale expansion
will split into seven coupled equations for the even modes (h̄iℓm, i = 1, . . . , 7) and three coupled
equations for the odd modes (h̄iℓm, i = 8,9, 10).

When acting on a function of (∆)J a(s), φp(s) and r, derivatives with respect to t and r
become operators on phase space. The t derivative at fixed radial coordinate r, (∂t)r , becomes

(∂t)r = Ω
∂

∂ φp
+ F (∆)J

a ∂

∂ (∆)J a
, (27a)

where we have used eq. (7) for d(∆)J a/ds. Likewise, for the radial derivative at fixed t, (∂r)t ,

f (∂r)t = (∂x)t = (∂x)(∆)Ja ,φp
−H

�

Ω
∂

∂ φp
+ F (∆)J

a ∂

∂ (∆)J a

�

, (27b)

where H is defined in eq. (3). Consequently, the linear and nonlinear operators Ei jℓm and
δnGiℓm become operators on phase space. We use this to promote the Einstein equation (de-
composed in tensor harmonics) to a partial differential equation in ((∆)J a,φp, r) rather than
(s, r), treating ((∆)J a,φp) as independent coordinates. The solution on phase space becomes
a solution on spacetime when evaluated on a physical trajectory ((∆)J a(s),φp(s)) that satisfies
eqs. (5) and (7).
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Since the source (21) has a 2π/m periodicity in φp, we adopt the following ansatz for the
metric perturbations:

h̄n
iℓm((∆)J

a,φp, r) = Rn
iℓm((∆)J

a, r)e−imφp . (28)

In summary, the trace-reversed metric perturbation is therefore decomposed as

h̄µν(ϵ, s, x i) =
∑

n≥1

ϵn
∑

iℓm

aiℓ

r
Rn

iℓm((∆)J
a(ϵ, s), r)e−imφp(ϵ,s)Y iℓm

µν (r,θ ,φ) , (29)

with analogous expansions for the puncture and residual fields. The metric perturbation is
likewise expanded as hµν =

∑

n ϵ
n
∑

iℓm
aiℓ
r Rn

iℓm((∆)J
a, r)e−imφp Y iℓm

µν (r,θ ,φ), where 3 = 6,
6 = 3 and i = i otherwise. Note that aiℓ = aiℓ. Following the discussion above eq. (24), we
can write

δ2Giℓm

�

h̄i1ℓ1m1
, h̄i2ℓ2m2

�

= δ2Giℓm

�

Ri1ℓ1m1
, Ri2ℓ2m2

�

e−imφp , (30)

and similarly for δ3Giℓm. Hence, at all orders, the sources and solutions only depend on φp

through the exponential e−imφp , which we can then factor out of the equations.
Finally, the harmonic decomposition of the field equations (14) reads

bEi jℓmR jℓm = 2Ôδ2G iℓm[R, R] + 2Ôδ3G iℓm[R, R, R] +O(ϵ4) , (31)

where Riℓm :=
∑

n ϵ
nRn

iℓm. The operators bEi jℓm and ÔδnG iℓm are given by Ei jℓm and δnGiℓm with
the prescription (27) for t and r derivatives and the further replacement of φp derivatives
with ∂φp

→ −im. Equation (31) is complete once we include the Lorenz gauge condition

Zµ := ∇νh̄µν = 0. Substituting eq. (29) and taking the derivatives as prescribed by eq. (27),
we obtain the harmonic decomposition of the Lorenz gauge condition,

�

Zra j(r) + Zta j(r)

�

−imΩ+
d(∆)J b

d t
∂

∂ (∆)J b

��

R jℓm = 0 , (32)

with a = 1,2, 3,4 and where Zra j are operators that contain (∂x)(∆)Ja and Zta j(r) is a radial
vector, which are given explicitly in appendix A.3.

3 Quasi-circular inspiral

As mentioned in section 1, two disparate timescales characterize the quasi-circular inspi-
ral: the phase φp evolves on the orbital timescale ∼ M , while the mechanical parameters
J a = (Ω,δM ,δJ) = (Ω,δM±) evolve on the radiation-reaction timescale ∼ M/ϵ. In order
to reflect this behaviour, we perform an inspiral expansion of all orbital quantities, in integer
powers of the mass ratio ϵ at fixed mechanical parameters J a. The multiscale nature of this
expansion will become evident in section 3.2. Explicitly, we expand the orbital radius and
redshift as

rp(ϵ, J a) = r(0)(Ω) +
∞
∑

n=1

ϵn r(n)(J
a) , (33)

U(ϵ, J a) = U(0)(Ω) +
∞
∑

n=1

ϵn U(n)(J
a) . (34)

Terms labelled with a subscript (n) in parentheses appear at order ϵn with n = 0,1, 2, . . . .
The leading-order term in the inspiral expansion is known as the adiabatic or the zeroth post-
adiabatic (0PA) order. As we will show below, the adiabatic order only depends on Ω and not
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on δM and δJ . The nth subleading term is called the nth post-adiabatic or nPA order and
depends on the full set of mechanical parameters. Since we are expanding all functions at
fixed J a, we also expand the rates of change dJ a/d t as

1
ϵ

dJ a

d t
(ϵ, J a) = F Ja

(0)(Ω) +
∞
∑

n=1

ϵn F Ja

(n)(J
b) . (35)

The factor of ϵ−1 appearing on the left-hand side reflects the fact that the evolution of the
mechanical parameters takes place over the radiation-reaction timescale. The slow time t̃ = ϵ t
could be introduced to absorb this factor, but we opt to keep a lighter notation.

The inspiral expansion of the self-force reads

f µ(ϵ, J a) = ϵ f µ(1)(Ω) +
∞
∑

n=2

ϵn f µ(n)(J
a) , µ= t,φ , (36a)

f r(ϵ, J a) = ϵ f r
(1)(J

a) +
∞
∑

n=2

ϵn f r
(n)(J

a) . (36b)

Consistently with equatorial motion, we have f θ = 0. In the quasi-circular case, the split
of the self-force into dissipative and conservative pieces is straightforward: the dissipative
self-force is antisymmetric under time reversal (t,φ) → (−t,−φ) and is therefore given by
f µdiss =

�

f t , 0, 0, f φ
�

. The conservative piece is then f µcons = (0, f r , 0, 0), which is symmetric
under time reversal. In section 3.3 we perform the inspiral expansion of eq. (11) and obtain
explicit expressions for the self-force in terms of the metric perturbations. This allows us to
show that, as anticipated in eq. (36a), the dissipative first-order self-force only depends on Ω.

Adiabatic inspiral waveforms have been computed since the seminal work by Poisson and
collaborators in 1993 [43–45], while 1PA inspiral waveforms were only obtained in 2021 [8].
Higher-order nPA waveforms will not be required for detection or parameter estimation for
LISA EMRI sources [46]. Though they would be useful for mass ratios closer to unity [18],
higher-order nPA waveforms are unlikely to be obtained in the near future, and key theoretical
ingredients, such as the third-order puncture and third-order self-force, have not yet been
derived. However, since the matching procedure between two asymptotically expanded series
mixes the perturbative orders, we derive the behaviour of the 2PA approximation for a better
understanding of the asymptotic match between the inspiral and the transition to plunge. For
this purpose, it is sufficient to obtain the structure of the third-order self-force without the
need for its explicit expression.

3.1 Orbital motion at 0PA, 1PA and 2PA order

We perform the inspiral expansion of the worldline (4) and the four-velocity (8), and substitute
them into the normalization condition (9) and the equation of motion (10). At each order ϵn,
n ≥ 0, we obtain algebraic equations for U(n) and r(n) from the normalization condition and
the radial component of the equation of motion, respectively. We obtain the forcing terms FΩ(n)
from the time component of the equation of motion at order ϵn+1. The forcing terms FδM

(n) and

FδJ
(n) can be determined from the GW fluxes of energy and angular momentum through the

horizon of the primary. For the purpose of this paper we are only interested in their structure,
which we derive in section 3.2.

The 0PA and 1PA quantities were given in [9] and are repeated here for completeness. At
adiabatic order we obtain

r(0) =
M

(MΩ)2/3
, U(0) =

1
p

1− 3(MΩ)2/3
, FΩ(0) = −

3Ω f(0)
(MΩ)2/3U4

(0)D
f t
(1) , (37)
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where we have defined

D := 1− 6(MΩ)2/3 , f(0) := 1−
2M
r(0)
= 1− 2(MΩ)2/3 . (38)

The adiabatic motion is driven by the dissipative first-order self-force only. Since f t
(1) does not

depend on δM and δJ (see eq. (62) below), the adiabatic motion is only determined by the
orbital frequency Ω. The 1PA quantities read

r(1) =−
f r
(1)

3Ω2U2
(0) f(0)

, U(1) = 0 , (39a)

FΩ(1) =−
3Ω f(0)

(MΩ)2/3U4
(0)D

f t
(2) −

4(1− 6(MΩ)2/3 + 12(MΩ)4/3)
(MΩ)U6

(0) f(0)D
2

f t
(1) f

r
(1)

−
2

(MΩ)1/3U4
(0) f(0)D

F Ja

(0)∂Ja f r
(1) .

(39b)

Corrections to the orbital radius depend on the first-order radial self-force. At 1PA order, the
slow evolution of the orbital frequency is driven by the full first-order and the dissipative
second-order self-force. Given the structure of the self-force presented in section 3.3 below,
both r(1) and FΩ(1) are linear in δM a = (1,δM ,δJ) and can be decomposed as r(1) = ra

(1)δM a

and FΩ(1) = FΩ a
(1) δM a. Finally, the 2PA quantities are given by

r(2) = −
1

3Ω2U2
(0) f(0)

f r
(2) +

2
�

4− 45(MΩ)2/3 + 114(MΩ)4/3 − 72(MΩ)2
�

3Ω3(MΩ)U6
(0)D

3

�

f t
(1)

�2

+

�

1− 4(MΩ)2/3
�

9Ω3(MΩ)1/3U4
(0) f

3
(0)

�

f r
(1)

�2
−

2 f(0)
Ω2(MΩ)U8

(0)D
2

f t
(1)∂Ω f t

(1) ,

(40a)

U(2) =
2 f(0)

Ω2(MΩ)2/3U5
(0)D

2

�

f t
(1)

�2
+

1

6Ω2U(0) f
2
(0)

�

f r
(1)

�2
, (40b)

FΩ(2) = −
3Ω f(0)

(MΩ)2/3U4
(0)D

f t
(3)

+
4
�

1− 6(MΩ)2/3 + 12(MΩ)4/3
�

3Ω(MΩ)1/3U2
(0) f

2
(0)D

�

FΩ(0) f
r
(2) + FΩ(1) f

r
(1)

�

+
8

Ω(MΩ)2U10
(0)D

6

�

22− 481(MΩ)2/3 + 3909(MΩ)4/3 − 14610(MΩ)2

+26784(MΩ)8/3 − 22680(MΩ)10/3 + 6480(MΩ)4
�

�

f t
(1)

�3

−
12 f(0)

�

16− 175(MΩ)2/3 − 252(MΩ)2 + 420(MΩ)4/3
�

(MΩ)2U12
(0)D

5

�

f t
(1)

�2
∂Ω f t

(1)

+
36Ω f 2

(0)

(MΩ)2U14
(0)D

4

h

f t
(1)

�

∂Ω f t
(1)

�2
+
�

f t
(1)

�2
∂ 2
Ω f t
(1)

i

+

�

3− 26(MΩ)2/3 − 120(MΩ)2 + 84(MΩ)4/3
�

Ω(MΩ)4/3U8
(0) f

3
(0)D

2
f t
(1)

�

f r
(1)

�2

(40c)
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−
2

�

(MΩ)1/3 − 8(MΩ) + 12(MΩ)5/3
�

U4
(0)

�

F Ja

(0)∂Ja
f r
(2) + F Ja

(1)∂Ja
f r
(1)

�

+

�

1− 4(MΩ)2/3
�2

Ω(MΩ)2/3U4
(0) f

3
(0)D

f r
(1)F

Ja

(0)∂Ja
f r
(1) .

The third-order dissipative self-force begins to appear at 2PA order, alongside the full first- and
second-order self-forces. The 2PA quantities r(2), U(2) and FΩ(2) are quadratic in δM a.

The quantity D defined in eq. (38) vanishes at the ISCO, and inverse powers of it in the
above expressions indicate how rapidly a term in the inspiral expansion diverges as the inspiral
approaches the ISCO.

3.2 Einstein’s field equations at 0PA, 1PA and 2PA order

We now consider the field equations in the inspiral regime. The expansion (29) of the trace-
reversed metric perturbation is

h̄µν(ϵ, s, x i) =
∞
∑

n=1

ϵn
∑

iℓm

aiℓ

r
R(n)iℓm(J

a(ϵ, s), r)e−imφp(ϵ,s)Y iℓm
µν (r,θ ,φ) , (41)

where n takes integer values. By factoring out the rapidly oscillating phases e−imφp , we factor
out the orbital “fast-time” dynamics from the field equations. The Einstein equation (31)
will consequently reduce to a sequence of radial ordinary differential equations for the slowly
evolving mode amplitudes R(n)iℓm (see eq. (52) below).

Recalling eq. (35), we start by performing the inspiral expansion of eq. (27). We obtain

d(∂t)r = −imΩ+ ϵ
∞
∑

n=0

ϵn F Ja

(n)∂Ja , (42a)

Ô(∂x)t = (∂x)Ja + imHΩ− ϵH
∞
∑

n=0

ϵnF Ja

(n)∂Ja , (42b)

where we have again used a hat to denote operators on functions of J a and r, for which
∂φp
→−im. The linearized Einstein operator (26) is then expanded as

bEi jℓm(ϵ, J a, r) = E(0)i jℓm(Ω, r) + ϵ E(1)i jℓm(Ω, r) + ϵ2E(2)i jℓm(J
a, r) +O(ϵ3) , (43)

where

E(0)i jℓm = −
δi j

4

�

∂ 2
x + imΩ (∂x H + 2H∂x) +m2Ω2

�

1−H2
�

− 4Vℓ
�

+Mi j
r − imΩMi j

t ,
(44a)

E(1)i jℓm =
δi j

4

�

�

∂x H + 2imH2Ω− 2imΩ
�

F Ja

(0)∂Ja + 2HF Ja

(0)∂Ja∂x

−im
�

1−H2
�

FΩ(0)
�

+Mi j
t F Ja

(0)∂Ja

:= E(1)Ai jℓm + FΩ(0)E
(1)B
i jℓm ,

(44b)

E(2)i jℓm =
δi j

4

�

�

∂x H + 2imH2Ω− 2imΩ
�

F Ja

(1)∂Ja + 2HF Ja

(1)∂Ja∂x−im
�

1−H2
�

FΩ(1)

+(1−H2)FΩ(0)∂ΩF Ja

(0)∂Ja + (1−H2)F Ja

(0)F
J b

(0)∂Ja∂J b

�

+Mi j
t F Ja

(1)∂Ja

:= E(2)Ai jℓm + FΩ(0)E
(2)B
i jℓm + FΩ(1)E

(2)C
i jℓm +

�

FΩ(0)
�2

E(2)Di jℓm + FΩ(0)∂ΩFΩ(0)E
(2)E
i jℓm .

(44c)
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In the inspiral expansion we use capital Latin letters A, B, . . . to denote the components of
an expression according to the decomposition in polynomials of FΩ(n), n ≥ 0, and their J a

derivatives, which are the only terms that diverge at the ISCO. Note that the forcing terms
FδM
(n) and FδJ

(n), n ≥ 0, have themselves been decomposed in an analogous way (see eq. (55)
below).

We similarly expand the source terms in the field equation (25). We can formally expand
the harmonic mode amplitudes t iℓm of the first-order point-particle stress-energy tensor (21)
as a functional of the orbital radius rp and its rate of change ṙp := drp/d t,

ϵ t iℓm

�

rp(ϵ, J a), ṙp(ϵ, J a)
�

= ϵ t(1)iℓm(Ω) + ϵ
2 t(2)iℓm(J

a) + ϵ3 t(3)iℓm(J
a) +O(ϵ3) , (45)

where

t(1)iℓm = t iℓm|(0) , (46a)

t(2)iℓm = r(1)
∂ t iℓm

∂ rp

�

�

�

�

(0)

+ FΩ(0)∂Ωr(0)
∂ t iℓm

∂ ṙp

�

�

�

�

(0)

:= t(2)Aiℓm + FΩ(0) t
(2)B
iℓm , (46b)

t(3)iℓm = r(2)
∂ t iℓm

∂ rp

�

�

�

�

(0)

+
r2
(1)

2
∂ 2 t iℓm

∂ r2
p

�

�

�

�

�

(0)

+ FΩ(1)∂Ωr(0)
∂ t iℓm

∂ ṙp

�

�

�

�

(0)

+ F Ja

(0)∂Ja r(1)
∂ t iℓm

∂ ṙp

�

�

�

�

(0)

+
1
2

�

FΩ(0)∂Ωr(0)
�2 ∂ 2 t iℓm

∂ ṙ2
p

�

�

�

�

�

(0)

+ r(1)F
Ω
(0)∂Ωr(0)

∂ 2 t iℓm

∂ rp∂ ṙp

�

�

�

�

(0)

:= t(3)Aiℓm + FΩ(0) t
(3)B
iℓm + FΩ(1) t

(3)C
iℓm +

�

FΩ(0)
�2

t(3)Diℓm + FΩ(0)∂ΩFΩ(0) t(3)Eiℓm .

(46c)

We use the notation t iℓm|(0) := t iℓm(r(0), 0). We can compute these terms explicitly by substi-
tuting eqs. (8), (33), (34) and (35) into the definition (21). In the notation of [9,41,47], the
leading-order modes t(1)iℓm are given by

t(1)iℓm = −
1
4
E(0)α

(1)
iℓm

¨

Y ∗
ℓm(

π
2 , 0) i = 1, . . . , 7,

∂θY ∗
ℓm(

π
2 , 0) i = 8, 9,10.

(47)

Here E(0) = M f(0)U(0) and the coefficients α(1)iℓm are given by (dropping the ℓ and m indices)

α
(1)
1 =

f 2
(0)

r(0)
, α

(1)
2,5,9 = 0 , α

(1)
3 =

f(0)
r(0)

, α
(1)
4 = 2imf(0)Ω , α

(1)
6 = r(0)Ω

2 ,

α
(1)
7 =

�

ℓ(ℓ+ 1)− 2m2
�

r(0)Ω
2 , α

(1)
8 = 2 f(0)Ω , α

(1)
10 = 2imΩ2r(0) .

(48)

We will use punctures rather than stress-energy terms when writing down the field equations
for n > 1, meaning t(2)iℓm and t(3)iℓm will not be explicitly needed. However, for completeness,

the 1PA modes t(2)iℓm are given in appendix B.1. We next perform the inspiral expansion of
harmonic modes of the quadratic and the cubic Einstein tensor using eq. (41). Up to order ϵ3,
we are interested in the structure of the following terms:

Ôδ2G iℓm[R
(1), R(1)] = δ2G(0)iℓm[R

(1), R(1)] + ϵ
�

δ2G(1)Aiℓm [R
(1), R(1)]

+FΩ(0)δ
2G(1)Biℓm [R

(1), R(1)]
�

+O(ϵ2) ,
(49)

Ôδ2G iℓm[R
(1), R(2)] = δ2G(0)iℓm[R

(1), R(2)] +O(ϵ) , (50)
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Ôδ3G iℓm[R
(1), R(1), R(1)] = δ3G(0)iℓm[R

(1), R(1), R(1)] +O(ϵ) . (51)

The O(ϵ) terms originate from the O(ϵ) terms that appear when taking t and r derivatives of
the metric perturbations appearing in the quadratic and cubic Einstein tensors as prescribed
by eq. (42).

Finally, we substitute these expansions along with Riℓm =
∑

n ϵ
nR(n)iℓm into the field equa-

tions (31). The result reads

E(0)i jℓmR(1)jℓm = − 16π t(1)iℓmδ(r − r(0)) , (52a)

E(0)i jℓmR(2)Rjℓm = 2δ2G(0)iℓm[R
(1), R(1)]− E(0)i jℓmR(2)Pjℓm − E(1)i jℓmR(1)jℓm , (52b)

E(0)i jℓmR(3)Rjℓm = 2δ3G(0)iℓm[R
(1), R(1), R(1)] + 4δ2G(0)iℓm[R

(1), R(2)]

+ 2δ2G(1)Aiℓm [R
(1), R(1)] + 2FΩ(0)δ

2G(1)Biℓm [R
(1), R(1)]

− E(0)i jℓmR(3)Pjℓm − E(1)i jℓmR(2)jℓm − E(2)i jℓmR(1)jℓm .

(52c)

As mentioned above, we have written the field equations for n> 1 in terms of the residual field,
using punctures R(2)Piℓm and R(3)Piℓm rather than t(2)iℓm and t(3)iℓm. Also as alluded to previously, the
field equations have been reduced to ordinary differential equations in r. This is a consequence
of the fact that derivatives with respect to J a are accompanied by forcing terms F Ja

(n), which are
suppressed by powers of ϵ by virtue of eq. (42). Such derivatives therefore become sources
rather than appearing on the left-hand side of the field equations.

Each of the equations (52) represents 10 coupled radial ordinary differential equations for
each value of ℓ and m. Several properties that reduce the level of coupling are summarized
in section V.E of [9]. We do not report them here since they are not of major interest to our
analysis. Equation (52a) does not contain terms that are singular at the ISCO frequency and
is therefore solved by a function that is smooth in Ω, R(1)iℓm(J

a, r). At second order, substituting
eq. (44b) into eq. (52b), we can separate the terms proportional to FΩ(0) from those that are
not. Accordingly, we write the second-order puncture and residual fields as

R(2)iℓm(J
a, r) = R(2)Aiℓm (J

a, r) + FΩ(0)R
(2)B
iℓm (J

a, r) , (53)

where R(2)Aiℓm and R(2)Biℓm are smooth functions of the orbital frequency. This allows us to split the
field equations (52b) as follows:

E(0)i jℓmR(2)RA
jℓm = 2δ2G(0)iℓm[R

(1), R(1)]− E(0)i jℓmR(2)PA
jℓm − E(1)Ai jℓmR(1)jℓm , (54a)

E(0)i jℓmR(2)RB
jℓm = −E(0)i jℓmR(2)PB

jℓm − E(1)Bi jℓmR(1)jℓm . (54b)

In addition to the puncture and the first-order field R(1)Riℓm , the second-order mode amplitudes

R(2)RB
iℓm are also sourced by ∂ΩR(1)Riℓm . Note that R(2)RB

iℓm is not sourced by the quadratic term

δ2G(0)iℓm even though it is a second-order perturbation. Therefore, recalling the decomposition

in eq. (13), we can deduce from eq. (54) that the fields R(2)RA
iℓm and R(2)RB

iℓm are quadratic and
linear in δM a = (1,δM ,δJ), respectively.

The forcing terms FδM
(n) and FδJ

(n), n≥ 0, which drive the evolution of the corrections to the
background mass and spin, are computed from the GW fluxes of energy and angular momen-
tum into the primary. Since the fluxes are proportional to the square of the time derivative
of the metric perturbation, the structure of the forcing terms directly follows from the ones of
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R(1)iℓm and R(2)iℓm that we have just derived. While FδM
(0) and FδJ

(0) are functions of Ω only and are

smooth at the ISCO, FδM
(1) and FδJ

(1) display the following structure:

FδM±
(1) (J

a) = FδM±
(1)A (J

a) + FΩ(0)F
δM±
(1)B (J

a) . (55)

From the right-hand side of eq. (52c) and using eqs. (44b), (44c) and (53), we can finally
infer the structure of the third-order metric perturbation mode amplitudes:

R(3)iℓm(J
a, r) = R(3)Aiℓm (J

a, r) + FΩ(0)R
(3)B
iℓm (J

a, r) + FΩ(1)R
(3)C
iℓm (J

a, r)

+
�

FΩ(0)
�2

R(3)Diℓm (J
a, r) + FΩ(0)∂ΩFΩ(0)R

(3)E
iℓm (J

a, r) .
(56)

The cubic term δ3G(0)iℓm in eq. (52c) only sources R(3)Aiℓm , while the quadratic terms δ2G(n)iℓm only

source R(3)Aiℓm and R(3)Biℓm .

3.3 Self-force

We now obtain explicit expressions for the self-force in terms of the metric perturbations.
After using eqs. (33), (34) and (35) in eqs. (4) and (8), we arrive at inspiral expansions of the
worldline and the four-velocity to 1PA order:

zµ = zµ(0) + ϵ zµ(1) +O(ϵ2) =
�

t, r(0),
π

2
,φp

�

+ ϵ
�

0, r(1), 0, 0
�

+O(ϵ2) , (57)

uµ = uµ(0) + ϵ uµ(1) +O(ϵ2) =
�

U(0), 0, 0, U(0)Ω
�

+ϵ
�

0, U(0)F
Ω
(0)∂Ωr(0), 0, 0

�

+O(ϵ2) , (58)

where we have already used the fact that U(1) = 0. Substituting these expansions together
with the inspiral expansion of the residual piece of the metric perturbation,

hR
µν =

∞
∑

n=1

ϵn
∑

iℓm

aiℓ

r
R(n)Riℓm (J

a, r)e−imφp Y iℓm
µν (r,θ ,φ) , (59)

into eq. (11), we find that the first- and second-order self-forces have the following form:

f µ(1) = f µ(1)(Ω) , µ= t,φ , f r
(1) = f r

(1)(J
a) , (60a)

f µ(2) = f µ(2)A(J
a) + FΩ(0) f

µ

(2)B(J
a) . (60b)

The terms appearing in these expressions are explicitly given by

f µ(1) =
1
2

gµνh(1)Ru(0)u(0),ν
, (61a)

f µ(2)A =
1
2

gµνh(2)RA
u(0)u(0),ν

+
1
2

r(1)
�

∂r gµνh(1)Ru(0)u(0),ν
+ gµνh(1)Ru(0)u(0),νr

�

− Pµν(0)

�

3U2
(0)Ω

2 f(0)r(1)δ
σ
r h(1)Rσν +

1
2

h(1)Rρν h(1)Ru(0)u(0),ρ

�

− FδM±
(0)

�

Pµν(0)U(0)u
β

(0)h
(1)R
βν,δM±−

1
2

uµ(0)U(0)h
(1)R
u(0)u(0),δM±−

δ
µ
t

2
g t th(1)Ru(0)u(0),δM±

�

,

(61b)

f µ(2)B =
1
2

gµνh(2)RB
u(0)u(0),ν

− Pµν(0)U(0)u
β

(0)h
(1)R
βν,Ω +

1
2

uµ(0)U(0)h
(1)R
u(0)u(0),Ω

+
δ
µ
t

2
g t th(1)Ru(0)u(0),Ω

+ U(0)∂Ωr(0)

�

gµνh(1)Rαr,ν uα(0) + 2Pµν(0)Γ
σ(0)
αr h(1)Rσν uα(0)

− gµνh(1)R
βν,r uβ(0) −

1
2

uµ(0)h
(1)R
u(0)u(0),r

�

.

(61c)
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We have made use of the notation introduced in [9], where h(n)Ru(0)u(0),ν
:= h(n)R

αβ ,νuα(0)u
β

(0). We warn
the reader that the ν derivative does not act on the four-velocities. Any t derivative appearing
in these final expanded expressions should be interpreted as ∂t 7→ Ω∂φp

, as the full expansion
of the time derivative from eq. (42) has already been applied. All fields are evaluated on the
adiabatic worldline zµ(0). As a consequence, the self-force depends only on the mode amplitudes

R(n)Riℓm and not on the rapidly oscillating phases. Indeed, since on the worldline φ = φp, we

have that Y iℓm
µν e−imφp∝ eim(φ−φp) = 1. The t component of the first-order self-force,

f t
(1) =

g t t

2
h(1)Ru(0)u(0),φp

Ω=
iΩ

2 f(0)r(0)

∑

iℓm

m aiℓR
(1)R
iℓm (J

a, r(0))Y
iℓm
αβ (r(0),π/2,0)uα(0)u

β

(0) , (62)

only receives contributions from the m ̸= 0 modes. It is therefore fully determined in terms
of the orbital frequency Ω and does not depend on the parameters of the slowly-evolving
background δM and δJ , which only enter into the ℓ = 0 and ℓ = 1, m = 0 contributions [9].
Recalling eq. (13), we note that since only the m ̸= 0 modes of h(2)Rµν appear in the dissipative
second-order self-force, it is linear in δM a = (1,δM ,δJ). The expressions for the radial self-
force are such that f r

(1) is linear in δM a, while f r
(2) is quadratic (given the discussion below

eq. (54), the f r
(2)B component is however linear in δM a).

In obtaining the results above it is crucial to note the following: since uµ(0) has components
only along the t and φ directions and since φ and φp derivatives of the metric perturbations
only differ by an overall minus sign, we have the property

h(n)R
αβ ,νuν(0) =

�

h(n)R
αβ ,φp

+ h(n)R
αβ ,φ

�

ΩU(0) +O(ϵ) = O(ϵ)

for all n ≥ 1. Further details on this derivation (without the terms proportional to FδM
(0) and

FδJ
(0) in eq. (61b)) can be found in [48]. In order to obtain eqs. (61b) and (61c), one only needs

to replace the FΩ∂Ω terms occurring in [48] with F Ja
∂Ja .

While the first-order self-force (61a) agrees with the one of [9] when re-written in the
slow-time formulation, our expression at second order corrects the analogous one obtained
in [9], where several terms were missed.

The structure of the first- and second-order self-forces (60) follows the one of the respective
metric perturbations obtained in the previous subsection. At third order, given the structure
of the metric perturbations (56), the self-force admits the following structure:

f µ(3) = f µ(3)A(J
a) + FΩ(0) f

µ

(3)B(J
a) + FΩ(1) f

µ

(3)C(J
a) +

�

FΩ(0)
�2

f µ(3)D(J
a) + FΩ(0)∂ΩFΩ(0) f

µ

(3)E(J
a) . (63)

3.4 Near-ISCO solution: orbital motion

Recall that the function D, which appears as a pole in eqs. (37), (39) and (40), vanishes at the
ISCO frequency Ω∗ = 1/(6

p
6M). The ISCO marks the breakdown of the inspiral expansion

as the motion enters into the transition-to-plunge regime. In order to asymptotically match
with the transition-to-plunge expansion in section 5 below, we are interested in the near-ISCO
limit of the inspiral motion. After substituting the self-force and the forcing terms FδM

(1) and

FδJ
(1) using eqs. (60), (63) and (55), we take the Ω → Ω∗ limit of eqs. (37), (39) and (40).

For easier comparison with the transition-to-plunge motion, we replace the difference Ω−Ω∗
using the near-ISCO scaling of the orbital frequency, Ω = Ω∗ + λ2∆Ω where λ := ϵ1/5 (recall
eq. (6)). Near the ISCO we then have D = −4

p
6Mλ2∆Ω+O(λ4∆Ω2). At adiabatic order, we

find that r(0) and FΩ(0) have the following near-ISCO solutions:

r(0)(Ω→ Ω∗) = 6M +
∞
∑

n=1

r(2n,n)
(0) λ2n∆Ωn , (64a)
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ϵ FΩ(0)(Ω→ Ω∗) = F (3,−1)
(0)

λ3

∆Ω
+
∞
∑

n=0

F (5+2n,n)
(0) λ5+2n∆Ωn . (64b)

We have highlighted the terms that diverge at the ISCO, which contain negative powers of∆Ω,
by taking them out of the summation. The expansion coefficients are constants constructed
from Ω∗. We use the following notation: each coefficient r(i, j)(n) and F (i, j)(n) with n ∈ N and
i, j ∈ Z is labelled according to the powers of, respectively, λ and ∆Ω with which it appears
in the expansion. Note that each couple (i, j) originates from a single term (n), but we keep
the notation (n) explicit for book-keeping purposes. Starting from 1PA order the expansion
coefficients in general depend on δM and δJ . Some of these coefficients are defined explicitly
in appendix B.2. Expanding the 1PA equations (39), we obtain

ϵ r(1)(Ω→ Ω∗,δM±) =
∞
∑

n=0

r(5+2n,n)
(1) λ5+2n∆Ωn , (65a)

ϵ2FΩ(1)(Ω→ Ω∗,δM±) = F (6,−2)
(1)

λ6

∆Ω2
+ F (8,−1)

(1)
λ8

∆Ω
+
∞
∑

n=0

F (10+2n,n)
(1) λ10+2n∆Ωn . (65b)

The near-ISCO expansion of the 2PA equations (40) gives

ϵ2r(2)(Ω→ Ω∗,δM±) = r(4,−3)
(2)

λ4

∆Ω3
+ r(6,−2)
(2)

λ6

∆Ω2
+ r(8,−1)
(2)

λ8

∆Ω
+
∞
∑

n=0

r(10+2n,n)
(2) λ10+2n∆Ωn ,

(66a)

ϵ3FΩ(2)(Ω→ Ω∗,δM±) = F (3,−6)
(2)

λ3

∆Ω6
+ F (5,−5)

(2)
λ5

∆Ω5
+ · · ·+

∞
∑

n=0

F (15+2n,n)
(2) λ15+2n∆Ωn . (66b)

We now determine the range of validity of the adiabatic and post-adiabatic approximations
based on the near-ISCO solutions computed in this subsection. The 0PA inspiral is valid outside
the ISCO as long as 1PA corrections remain subleading. The adiabatic breakdown frequency
Ω0PA

bd is therefore reached when the leading-order terms in the ϵ FΩ(0) and ϵ2FΩ(1) near-ISCO so-

lutions, respectively F (3,−1)
(0) λ3∆Ω−1 and F (6,−2)

(1) λ6∆Ω−2, become comparable. This condition

leads to (we recall that λ= ϵ1/5)

Ω0PA
bd = Ω∗ − ϵ

�

�

�

�

�

�

F (6,−2)
(1)

F (3,−1)
(0)

�

�

�

�

�

�

. (67)

Similarly, the 1PA motion breaks down when the term F (3,−6)
(2) λ3∆Ω−6 in the 2PA near-ISCO

inspiral (66b) becomes of the same magnitude as the leading-order term in the 1PA solu-
tion (65b). The 1PA breakdown frequency is therefore given by

Ω1PA
bd = Ω∗ − ϵ

1/4

�

�

�

�

�

�

F (3,−6)
(2)

F (6,−2)
(1)

�

�

�

�

�

�

1/4

, (68)

which was already obtained in eq. (29) of [18]. We give the numerical values of the coefficients
appearing in the expressions above in appendix D.2. As a consequence of the alternating
structure between even and odd post-adiabatic orders in the near-ISCO limit of the inspiral
motion [14, 18], the ratio of the degree of divergence at the ISCO of the (2n + 1)PA forcing
term over the 2nPA forcing term is identical for all n. The qualitative behaviour in terms of the
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Figure 1: Breakdown frequencies in terms of the mass ratio for the 0PA motion
(eq. (67)) in blue and the 1PA motion (eq. (68)) in orange. The horizontal dashed
line marks the ISCO frequency. The 0PA and 1PA approximations are valid in the
regions below the blue and orange curves, respectively.

mass ratio for such 2n will therefore be similar to the one in eq. (67). Equivalently, the ratio
of the degree of divergence at the ISCO of the (2n + 2)PA forcing term over the (2n + 1)PA
forcing term is identical for all n and is again qualitatively similar to the one in eq. (68).
We plot the 0PA and 1PA breakdown frequencies as a function of the mass ratio in figure 1.
The breakdown frequencies derived using the near-ISCO solutions provide a rough estimate
of the domain of validity of the inspiral expansion truncated at some order in the mass ratio.
This estimate is most accurate for small mass ratios: for nearly comparable-mass systems,
the separation between subsequent post-adiabatic orders is less marked. In this scenario, the
breakdown might already occur at frequencies where the near-ISCO solutions are not yet valid,
and the method we have used here to derive the breakdown frequencies can therefore not
be applied. The breakdown frequencies represent the upper limit on the validity of a given
nPA approximation. This does not necessarily coincide with the range of frequencies where
the inspiral accurately describes the motion, and the transition-to-plunge expansion becomes
more accurate before the breakdown frequency is reached. We discuss this in more detail in
section 5.

3.5 Near-ISCO solution: metric perturbation and self-force

The first-order quantities R(1)iℓm and f µ(1) are smooth functions of the orbital frequency and can
therefore be Taylor-expanded around the ISCO as

R(1)iℓm(Ω→ Ω∗,δM±, r) = R(1)iℓm

�

�

�

∗
+λ2∆Ω ∂ΩR(1)iℓm

�

�

�

∗
+
λ4∆Ω2

2
∂ 2
ΩR(1)iℓm

�

�

�

∗
+O(λ6∆Ω3) , (69)

f µ(1)(Ω→ Ω∗,δM±) = f µ(1)

�

�

�

∗
+λ2∆Ω ∂Ω f µ(1)

�

�

�

∗
+
λ4∆Ω2

2
∂ 2
Ω f µ(1)

�

�

�

∗
+O(λ6∆Ω3) , (70)

where we have introduced the short notation |∗ to indicate functions evaluated at Ω = Ω∗.
The expansion coefficients are constants in Ω, but still depend on δM , δJ and, in the case of
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the metric perturbations, on the field point r. At second order, the metric perturbation mode
amplitudes and the self-force have the structure given by eqs. (53) and (60b), respectively.
Taylor-expanding the smooth functions of Ω in these expressions and using the near-ISCO
solution (64b), we obtain

R(2)iℓm(Ω→ Ω∗,δM±, r) =
F (3,−1)
(0)

λ2∆Ω
R(2)Biℓm

�

�

�

∗
+ R(2)Aiℓm

�

�

�

∗
+ F (3,−1)

(0) ∂ΩR(2)Biℓm

�

�

�

∗

+ F (5,0)
(0) R(2)Biℓm

�

�

�

∗
+λ2∆Ω

�

∂ΩR(2)Aiℓm

�

�

�

∗
+ F (7,1)

(0) R(2)Biℓm

�

�

�

∗

+ F (5,0)
(0) ∂ΩR(2)Biℓm

�

�

�

∗
+

1
2

F (3,−1)
(0) ∂ 2

ΩR(2)Biℓm

�

�

�

∗

�

+O(λ4∆Ω2) ,

(71)

f µ(2)(Ω→ Ω∗,δM±) =
F (3,−1)
(0)

λ2∆Ω
f µ(2)B

�

�

�

∗
+ f µ(2)A

�

�

�

∗
+ F (3,−1)

(0) ∂Ω f µ(2)B

�

�

�

∗

+ F (5,0)
(0) f µ(2)B

�

�

�

∗
+λ2∆Ω

�

∂Ω f µ(2)A

�

�

�

∗
+ F (7,1)

(0) f µ(2)B

�

�

�

∗

+ F (5,0)
(0) ∂Ω f µ(2)B

�

�

�

∗
+

1
2

F (3,−1)
(0) ∂ 2

Ω f µ(2)B

�

�

�

∗

�

+O(λ4∆Ω2) .

(72)

Finally, substituting eqs. (64b) and (65b) into eqs. (56) and (63) and Taylor-expanding the
smooth functions of Ω, we compute the near-ISCO behaviour of the third-order metric pertur-
bation mode amplitudes and self-force:

R(3)iℓm(Ω→ Ω∗,δM±, r) =−

�

F (3,−1)
(0)

�2

λ6∆Ω3
R(3)Eiℓm

�

�

�

∗
+

1
λ4∆Ω2

h

F (6,−2)
(1) R(3)Ciℓm

�

�

�

∗

+
�

F (3,−1)
(0)

�2
R(3)Diℓm

�

�

�

∗
− F (3,−1)

(0) F (5,0)
(0) R(3)Eiℓm

�

�

�

∗

−
�

F (3,−1)
(0)

�2
∂ΩR(3)Eiℓm

�

�

�

∗

i

+O(λ−2∆Ω−1) ,

(73)

f µ(3)(Ω→ Ω∗,δM±) =−

�

F (3,−1)
(0)

�2

λ6∆Ω3
f µ(3)E

�

�

�

∗
+

1
λ4∆Ω2

h

F (6,−2)
(1) f µ(3)C

�

�

�

∗

+
�

F (3,−1)
(0)

�2
f µ(3)D

�

�

�

∗
− F (3,−1)

(0) F (5,0)
(0) f µ(3)E

�

�

�

∗

−
�

F (3,−1)
(0)

�2
∂Ω f µ(3)E

�

�

�

∗

i

+O(λ−2∆Ω−1) .

(74)

4 Transition to plunge

There are three timescales during the transition to plunge: as during the inspiral, the az-
imuthal phase φp changes on the orbital period ∼ M and the primary black hole’s evolution
takes place on a timescale ∼ M/ϵ. However, the orbital parameters now evolve on the ISCO-
crossing timescale ∼ M/ϵ1/5. Fortunately, the ISCO-crossing timescale and background evo-
lution timescale are commensurate, which allows us to expand all quantities simultaneously
in an ϵ1/5 expansion.

In the Ori-Thorne analysis [11], the orbital frequency is held fixed at its geodesic ISCO
value during the full transition-to-plunge regime, leading to inconsistencies in the normaliza-
tion of the four-velocity [49]. It was shown in [14] that in the transition-to-plunge expansion
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that matches with the quasi-circular inspiral, the orbital frequency scales with the small mass
ratio to the power 2/5. As anticipated in section 2.1, the mechanical parameters we consider
for the transition to plunge are∆J a = (∆Ω,δM ,δJ) = (∆Ω,δM±), where∆Ω is defined from
the near-ISCO scaling of the orbital frequency,

Ω(t) = Ω∗ +λ
2∆Ω(t) , Ω∗ :=

1

6
p

6M
, λ := ϵ1/5 . (75)

As during the inspiral, δM and δJ are the variations of mass and spin of the primary divided
by ϵ, which we collectively denote as δM±.

We now introduce the transition-to-plunge expansion of the orbital quantities, that is, an
expansion in integer powers of λ at fixed mechanical parameters ∆J a. For the orbital radius
and the redshift we have

rp(λ,∆J a) = r∗ +λ
2

2
∑

n=0

λnr[n](∆Ω) +λ
2
∞
∑

n=3

λnr[n](∆J a) , r∗ := 6M , (76)

U(λ,∆J a) = U∗ +λ
2

6
∑

n=0

λnU[n](∆Ω) +λ
2
∞
∑

n=7

λnU[n](∆J a) , U∗ :=
p

2 , (77)

where r∗ and U∗ are the geodesic ISCO values. We indicate the leading transition-to-plunge
order or the zeroth post-leading transition-to-plunge (0PLT) order with a subscript [0] in
square brackets. Here this term appears at the leading order λ2, where the power 2 can be
interpreted as a critical exponent under the scaling λ 7→ 0 in the transition-to-plunge expan-
sion [11,14,49–51]. We refer to the nth subleading term in the transition-to-plunge expansion
as nth post-leading transition-to-plunge or nPLT order and label it with a subscript [n]. As we
will see in the next section, for each orbital variable an associated number of low PLT orders
only depend on∆Ω, while the higher-order terms are in general functions of∆J a. During the
transition to plunge, the evolution of the mechanical parameters ∆J a is given by

1
λ

d∆Ω
d t

=
1
λ3

dΩ
d t
=

2
∑

n=0

λnF∆Ω[n] (∆Ω) +
∞
∑

n=3

λn F∆Ω[n] (∆J a) , (78)

1
λ5

dδM±

d t
=

2
∑

n=0

λn FδM±
[n] (∆Ω) +

∞
∑

n=3

λn FδM±
[n] (∆J a) . (79)

The ISCO-crossing “slow-time" variable λ t could be introduced to absorb the inverse power
of λ on the left-hand side of eq. (78), while the background evolution time λ5 t could be
introduced to absorb the λ−5 factor in eq. (79). As for the inspiral, we find it most natural not
to introduce any of these auxiliary times and simply consider the evolution in Boyer-Lindquist
time t, keeping the factors of λ explicit. The transition-to-plunge expansion of the self-force
reads

f µ(λ,∆J a) =
∞
∑

n=0

λ5+n f µ[5+n](∆J a) . (80)

We refer to the term appearing at order λ5+n as the nPLT term because the leading-order
term in the self-force is proportional to λ5 (this is also the case for the metric perturbation,
see section 4.2). This is consistent with our convention to denote the first non-vanishing
term in the transition-to-plunge expansion as the 0PLT term (independently of the power of
λ multiplying this leading-order term). As we will see from the explicit expressions we derive
in section 4.3, the self-force at 1PLT order is identically zero, f µ[6] = 0. The dissipative self-

force up to 2PLT order is independent of δM and δJ : f t
[5] and f φ[5] are constants, while f t

[7]
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and f φ[7] are constants multiplied by∆Ω. Up to 5PLT order, the dissipative self-force is linear in
δM a = (1,δM ,δJ), with terms up to 10PLT order being quadratic. The conservative self-force
is linear in δM a up to 4PLT order and quadratic up to 9PLT order.

4.1 Orbital motion from 0PLT to 7PLT order

Using eqs. (75), (76), (77), (78) and (79), we perform the transition-to-plunge expansion of
the worldline (4) and the four-velocity (8). We substitute these expansions together with the
one of the self-force (80) into the normalization condition (9) and the equation of motion (10).
At order λ2+n, n≥ 0, we obtain algebraic equations for r[n] and U[n] from the radial component
of the equation of motion and the normalization of the four-velocity, respectively. The forcing
terms F∆Ω[n] satisfy ordinary differential equations that are obtained from the t component of

the equation of motion at order λ5+n. The forcing terms FδM
[n] and FδJ

[n] are determined from
flux-balance laws at the horizon of the primary. As we will demonstrate in section 5, it is
necessary to solve the transition-to-plunge motion up to 7PLT order to ensure a continuous (C0)
composite solution for the rate of change dΩ/d t that involves the 1PA inspiral (this implies
a C1 composite solution for Ω and a C2 composite solution for φp after one and two time
integrations, respectively).

At leading order we obtain

U[0] = 4
p

3M∆Ω , (81a)

r[0] = −24
p

6M2∆Ω . (81b)

The 1PLT corrections to the orbital radius and redshift vanish: r[1] = U[1] = 0. At 2PLT order
we obtain

U[2] = 24
p

2M2∆Ω2 , (82a)

r[2] = 144M3

�

5∆Ω2 − 18
p

6M F∆Ω[0]
dF∆Ω[0]
d∆Ω

�

. (82b)

The expressions up to 7PLT order are presented in appendix C.1.
The leading-order forcing term F∆Ω[0] (∆Ω) satisfies the following ordinary differential equa-

tion:
�

F∆Ω[0]
�2 d2F∆Ω[0]

d∆Ω2
+ F∆Ω[0]

�

dF∆Ω[0]
d∆Ω

�2

−
1

9
p

6M
∆Ω F∆Ω[0] = −

f t
[5]

432
p

6M3
. (83)

This equation is in disguise the Painlevé transcendental equation of the first kind,
identified in [50] following [10, 11]. This can be seen as follows. We define the time
s[0] =

∫

d∆Ω(F∆Ω[0] )
−1 with the integration constant chosen such that s[0] = 0 at the ISCO

crossing. This definition implies

d∆Ω
ds[0]

= F∆Ω[0] ,
d2∆Ω

ds2
[0]

=
dF∆Ω[0]
d∆Ω

F∆Ω[0] ,
d3∆Ω

ds3
[0]

=
�

F∆Ω[0]
�2 d2F∆Ω[0]

d∆Ω2
+ F∆Ω[0]

�

dF∆Ω[0]
d∆Ω

�2

. (84)

After integrating eq. (83) once and using s[0] = 0 at the ISCO, it becomes indeed a Painlevé
transcendental equation of the first kind,

d2∆Ω

ds2
[0]

−
1

18
p

6M
∆Ω2 = −

f t
[5]

432
p

6M3
s[0] . (85)
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We select the unique monotonic solution of this differential equation as done in [11,14].
The subleading forcing terms, F∆Ω[n] (∆Ω) for 1 ≤ n ≤ 2 and F∆Ω[n] (∆J a) for n ≥ 3, obey the

sourced ordinary differential equations

�

F∆Ω[0]
�2 d2F∆Ω[n]

d∆Ω2
+ 2F∆Ω[0] F∆Ω[n]

d2F∆Ω[0]
d∆Ω2

+ F∆Ω[n]

�

dF∆Ω[0]
d∆Ω

�2

+ 2F∆Ω[0]
dF∆Ω[0]
d∆Ω

dF∆Ω[n]
d∆Ω

−
1

9
p

6M
∆Ω F∆Ω[n] = S∆Ω[n] . (86)

The source terms S∆Ω[n] are listed in appendix C.1 from n = 2 to n = 5. For n = 1, the source

is zero, S∆Ω[1] = 0. The homogeneous differential operator is the linearization of the non-linear
Painlevé operator on the left-hand side of eq. (83). The linearized Painlevé solutions around
the monotonic solution are all oscillatory, see [14]. We therefore set all these homogeneous
solutions to zero. In particular, we set F∆Ω[1] = 0. The leading-order transition-to-plunge motion
is driven by the t component of the first-order self-force evaluated at the ISCO, f t

[5]. At 2PLT
order, the equations start to depend also on f t

[7](∆Ω). The 3PLT order additionally requires the
knowledge of f t

[8](∆J a), f r
[5](∆J a) and f r

[7](∆J a). Hence, starting from 3PLT order, the forcing
terms depend on δM and δJ . In general, nPLT corrections with n≥ 4 require f t

[5+n](∆J a) and
f r
[4+n](∆J a), in addition to self-force terms already appearing at lower orders. Therefore,

starting from 6PLT order, self-force data quadratic in δM a = (1,δM ,δJ) is required in order
to solve for the motion. This leads us to write the following decompositions in terms of δM a:

S∆Ω[n] = S∆Ω[n]aδM a , F∆Ω[n] = F∆Ω[n]aδM a , n= 3, 4,5 ,

S∆Ω[n] = S∆Ω[n]abδM aδM b , F∆Ω[n] = F∆Ω[n]abδM aδM b , n= 6, 7 .
(87)

Obtaining the transition-to-plunge motion to 7PLT order amounts to solving the non-linear
Painlevé equation for F∆Ω[0] and in total 22 sourced linearized Painlevé equations for F∆Ω[n] ,

n = 2,3, 4,5, 6,7 (one for F∆Ω[2] ; 9 for all F∆Ω[n]a with n = 3, 4,5 and a = 1, 2,3; and 18 for

all F∆Ω[n]ab with n= 6, 7 and ab = (ab) symmetrized with a, b = 1, 2,3).

4.2 Einstein’s field equations from 0PLT to 7PLT order

We now turn to the expansion of the field equations (31) during the transition-to-plunge
regime. The transition-to-plunge expansion (29) of the trace-reversed metric perturbation
takes the form

h̄µν(λ, s, x i) =
∞
∑

n=0

λ5+n
∑

iℓm

aiℓ

r
R[5+n]

iℓm (∆J a(λ, s), r)e−imφp(λ,s)Y iℓm
µν (r,θ ,φ) . (88)

We call the term appearing at order λ5+n the nPLT term. The residual and puncture parts of
R[n]iℓm are denoted respectively as R[n]Riℓm and R[n]Piℓm .

In analogy with eq. (42), the transition-to-plunge expansion of eq. (27) gives

d(∂t)r = −imΩ∗ − imλ2∆Ω+λ
∞
∑

n=0

λnF∆Ω[n] ∂∆Ω +λ
5
∞
∑

n=0

λnFδM±
[n] ∂δM± , (89a)

Ô(∂x)t = (∂x)∆Ja +H

�

imΩ∗ + imλ2∆Ω−λ
∞
∑

n=0

λnF∆Ω[n] ∂∆Ω −λ
5
∞
∑

n=0

λnFδM±
[n] ∂δM±

�

. (89b)
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Here we have used eqs. (78) and (79) and recalled the replacement ∂φp
→−im in hatted op-

erators acting on functions of (∆J a, r). The linearized Einstein operator (26) is then expanded
as

bEi jℓm(λ,∆J a, r) =
3
∑

n=0

λnE[n]i jℓm(∆Ω, r) +
6
∑

n=4

λnE[n]ai jℓm(∆Ω, r)δM a

+λ7E[7]ab
i jℓm (∆Ω, r)δM aδM b + . . . ,

(90)

where

E[0]i jℓm = −
δi j

4

�

∂ 2
x + imΩ∗ (∂x H + 2H∂x) +m2Ω2

∗

�

1−H2
�

− 4Vℓ
�

+Mi j
r − imΩ∗M

i j
t ,

(91a)

E[1]i jℓm =
δi j

4

�

�

∂x H − 2imΩ∗(1−H2)
�

F∆Ω[0] ∂∆Ω + 2HF∆Ω[0] ∂∆Ω∂x

�

+Mi j
t F∆Ω[0] ∂∆Ω , (91b)

E[2]i jℓm =
δi j

4

�

− 2m2Ω∗∆Ω(1−H2)

+ (1−H2)
�

F∆Ω[0]
�

∂∆ΩF∆Ω[0]
�

∂∆Ω +
�

F∆Ω[0]
�2
∂ 2
∆Ω

�

− im∆Ω (∂x H + 2H∂x)
�

− im∆ΩMi j
t .

(91c)

Note that the leading term, E[0]i jℓm, is identical to the leading term E(0)i jℓm in the inspiral evalu-

ated at the ISCO frequency. The linearized Einstein operators E[n]ai jℓm, n = 3,4, 5,6 and E[7]ab
i jℓm

are provided in appendix C.2. Just as in the inspiral, this expansion of the linearized Ein-
stein operator will reduce the partial differential equations in (∆J a, r) to ordinary differential
equations in r because derivatives with respect to ∆J a are accompanied by powers of λ.

Unlike in the inspiral, where nonlinear sources appear at the first subleading order, in the
transition to plunge there are several intermediate orders (2PLT through 4PLT) in which no
nonlinearities appear. At these orders, the sources are constructed entirely from subleading
terms in the expansions of (i) bEi jℓm and (ii) the point-particle stress-energy mode amplitudes
t iℓm. We obtain the transition-to-plunge expansion of t iℓm by substituting eqs. (8), (76), (77),
(78) and (79) together with the results of section 4.1 and appendix C.1 into the definition (21).
In order to compactify the notation, we absorb the radial δ-function appearing in eq. (21) into
the definition of the mode amplitudes. We obtain

ϵ t iℓm(λ,∆J a)δ(r − rp) = λ
5

4
∑

n=0

λn t[5+n]
iℓm (∆Ω) +λ5

∞
∑

n=5

λn t[5+n]
iℓm (∆J a) . (92)

The leading-order modes are given by

t[5]iℓm = −
1
4
δ(r − 6M)E∗α

[5]
iℓm

�

Y ∗
ℓm(

π
2 , 0) i = 1, . . . , 7 ,

∂θY ∗
ℓm(

π
2 , 0) i = 8,9, 10 ,

(93)

where E∗ = M f∗U∗ = 2
p

2M/3 (here f∗ := 1 − 2M/r∗ = 2/3) and the coefficients α[5]iℓm are
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given by (dropping ℓ and m indices)

α
[5]
1 =

f 2
∗

r∗
=

2
27M

, α
[5]
2,5,9 = 0 , α

[5]
3 =

f∗
r∗
=

1
9M

, α
[5]
4 = 2imf∗Ω∗ =

i
p

2m

9
p

3M
,

α
[5]
6 = r∗Ω

2
∗ =

1
36M

,α[5]7 = [ℓ(ℓ+ 1)− 2m2]r∗Ω
2
∗ =
ℓ(ℓ+ 1)− 2m2

36M
,

α
[5]
8 = 2 f∗Ω∗ =

p
2

9
p

3M
, α

[5]
10 = 2imΩ2

∗ r∗ =
im

18M
.

(94)

At 1PLT order we obtain t[6]iℓm = 0. The 2PLT modes are given by

t[7]iℓm =∆Ω t[7]Aiℓm = −
∆Ω

4
E∗α

[7]A
iℓm

¨

Y ∗
ℓm(

π
2 , 0) i = 1, . . . , 7 ,

∂θY ∗
ℓm(

π
2 , 0) i = 8,9, 10 ,

(95)

where (dropping again the ℓ and m indices and using the short notation δ := δ(r − 6M) and
δ′ := δ′(r − 6M))

α
[7]A
1 =

16
3

√

√2
3

Mδ′ , α
[7]A
2,5,9 = 0 , α

[7]A
3 =

2
3

√

√2
3

�

δ+ 12Mδ′
�

,

α
[7]A
6 =

2
3

√

√2
3

�

δ+ 3Mδ′
�

, α
[7]A
7 =

2
3

√

√2
3

�

ℓ(ℓ+ 1)− 2m2
� �

δ+ 3Mδ′
�

,

α
[7]A
8 =

8
9

�

δ+ 6Mδ′
�

, α
[7]A
10 =

4
3

√

√2
3

im
�

δ+ 3Mδ′
�

.

(96)

The modes at 3PLT and 4PLT order are given in appendix C.3. Higher subleading terms can
also be straightforwardly calculated.

Up to 2PLT order, the expanded field equations (31) then read

E[0]i jℓmR[5]jℓm = −16πt[5]iℓm , (97)

E[0]i jℓmR[6]jℓm = −E[1]i jℓmR[5]jℓm , (98)

E[0]i jℓmR[7]jℓm = −16πt[7]iℓm − E[1]i jℓmR[6]jℓm − E[2]i jℓmR[5]jℓm . (99)

The first of these equations is equivalent to the field equation for R(1)iℓm in the inspiral (52a)
evaluated at the ISCO frequency. Therefore,

R[5]iℓm(∆J a, r) = R[5]Aiℓm (δM±, r) = R[5]Aa
iℓm (r)δM a = R(1)iℓm(Ω∗,δM±, r) .

As a consequence, the right-hand side of eq. (98) vanishes, E[1]i jℓmR[5]jℓm = 0, leading to

R[6]iℓm(∆J a, r) = 0. Using t[7]iℓm =∆Ω t[7]Aiℓm , eq. (99) reduces to

E[0]i jℓmR[7]jℓm = −16π∆Ω t[7]Aiℓm

+∆Ω

�

δi j

4

�

2m2Ω∗(1−H2) + im (∂x H + 2H∂x)
�

+imMi j
t

�

R[5]jℓm .
(100)

We can therefore write R[7]iℓm(∆J a, r) = ∆ΩR[7]Aiℓm (δM±, r) = ∆ΩR[7]Aa
iℓm (δM±, r)δM a. The ∆Ω

dependence then factors out and the mode amplitudes R[7]Aiℓm solve a system of 10 coupled
ordinary differential equations in the radius r for each value of ℓ and m.
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The field equations (31) up to 4PLT order (equivalently, up to O(λ9)) take the form

E[0]i jℓmR[5+n]
jℓm = −16πt[5+n]

iℓm −
n
∑

k=1

E[k]i jℓmR[5+n−k]
jℓm . (101)

Given the structure of the sources, the mode amplitudes R[n]iℓm for n= 8,9 reduce (as for n= 7)
to sums of terms factored into ∆Ω-dependent and ∆Ω-independent pieces while still being
linear in δM a. Up to 4PLT order we summarize such decompositions as

R[5]iℓm(∆J a, r) = R[5]Aiℓm (δM±, r) = R[5]Aa
iℓm (r)δM a , (102a)

R[6]iℓm(∆J a, r) = 0 , (102b)

R[7]iℓm(∆J a, r) =∆ΩR[7]Aiℓm (δM±, r) =∆ΩR[7]Aa
iℓm (r)δM a , (102c)

R[8]iℓm(∆J a, r) = F∆Ω[0] R[8]Aiℓm (δM±, r) = F∆Ω[0] R[8]Aa
iℓm (r)δM a , (102d)

R[9]iℓm(∆J a, r) =∆Ω2R[9]Aiℓm (δM±, r) + F∆Ω[0] ∂∆ΩF∆Ω[0] R[9]Biℓm (δM±, r)

=
�

∆Ω2R[9]Aa
iℓm (r) + F∆Ω[0] ∂∆ΩF∆Ω[0] R[9]Ba

iℓm (r)
�

δM a .
(102e)

As we have done for the inspiral, we deduce the structure of the FδM±
[n] forcing terms from the

horizon fluxes, which are quadratic in ∂thµν. We obtain

FδM±
[0] (∆J a) = FδM±

[0]abδM aδM b , (103a)

FδM±
[1] (∆J a) = 0 , (103b)

FδM±
[2] (∆J a) =∆Ω FδM±

[2]AabδM aδM b , (103c)

where FδM±
[0]ab and FδM±

[2]Aab are given purely by numerical values.

Nonlinear sources appear in the field equations starting from order λ10 (5PLT order), en-
tering through the harmonic modes of the quadratic Einstein tensor defined in eq. (23). Sub-
stituting eq. (88), we find that the structure of its transition-to-plunge expansion reads

Ôδ2G iℓm = δ
2G[0]iℓm[R

[5], R[5]] +λ2
�

δ2G[2]iℓm[R
[5], R[5]] + 2δ2G[0]iℓm[R

[5], R[7]]
�

+O(λ3) . (104)

This expansion originates from taking t and r derivatives of the metric perturbation in eq. (88)
as prescribed by eq. (89). The term δ2G[1]iℓm[R

[5], R[5]], which would appear at orderλ, vanishes

since R[5]iℓm does not depend on ∆Ω.
Finally, up to 7PLT order, the expanded field equations (31) for the residual fields read

E[0]i jℓmR[10]R
jℓm = 2δ2G[0]iℓm[R

[5], R[5]]− E[0]i jℓmR[10]P
jℓm −

5
∑

k=1

E[k]i jℓmR[10−k]
jℓm , (105a)

E[0]i jℓmR[11]R
jℓm = −E[0]i jℓmR[11]P

jℓm −
6
∑

k=1

E[k]i jℓmR[11−k]
jℓm , (105b)

E[0]i jℓmR[12]R
jℓm = 2δ2G[2]iℓm[R

[5], R[5]] + 4δ2G[0]iℓm[R
[5], R[7]]− E[0]i jℓmR[12]P

jℓm −
7
∑

k=1

E[k]i jℓmR[12−k]
jℓm ,

(105c)
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Each of these equations comprises of 10 coupled radial ordinary differential equations for each
value of ℓ and m.

As we have seen above, at each nPLT order (n ≥ 0) the mode amplitudes R[5+n]
iℓm can be

written as a sum of terms factored into ∆Ω-dependent and ∆Ω-independent pieces. Writing
the field equations explicitly up to 7PLT order, we deduce the following structure:

R[10]
iℓm (r,∆J a) = R[10]A

iℓm +
�

F∆Ω[0]
�2 �
∂ 2
∆ΩF∆Ω[0]

�

R[10]B
iℓm + F∆Ω[0]

�

∂∆ΩF∆Ω[0]
�2

R[10]C
iℓm

+∆Ω F∆Ω[0] R[10]D
iℓm + F∆Ω[2] R[10]E

iℓm ,
(106a)

R[11]
iℓm (r,∆J a) = F∆Ω[3] R[11]A

iℓm +
�

∂∆ΩF∆Ω[0]
�

F∆Ω[2] R[11]B
iℓm + F∆Ω[0]

�

∂∆ΩF∆Ω[2]
�

R[11]C
iℓm

+
�

F∆Ω[0]
�2

R[11]D
iℓm +∆Ω F∆Ω[0]

�

∂∆ΩF∆Ω[0]
�

R[11]E
iℓm +∆Ω3R[11]F

iℓm ,
(106b)

R[12]
iℓm (r,∆J a) = F∆Ω[4] R[12]A

iℓm +
�

∂∆ΩF∆Ω[0]
�

F∆Ω[3] R[12]B
iℓm + F∆Ω[0]

�

∂∆ΩF∆Ω[3]
�

R[12]C
iℓm

+
�

F∆Ω[0]
�2 �
∂∆ΩF∆Ω[0]

�

R[12]D
iℓm +

�

∂∆ΩF∆Ω[0]
�2

F∆Ω[2] R[12]E
iℓm

+ F∆Ω[0]
�

∂ 2
∆ΩF∆Ω[0]

�

F∆Ω[2] R[12]F
iℓm +F∆Ω[0]

�

∂∆ΩF∆Ω[0]
��

∂∆ΩF∆Ω[2]
�

R[12]G
iℓm

+
�

F∆Ω[0]
�2 �
∂ 2
∆ΩF∆Ω[2]

�

R[12]H
iℓm +∆ΩR[12]I

iℓm +∆Ω2F∆Ω[0] R[12]J
iℓm

+∆Ω F∆Ω[2] R[12]K
iℓm +∆Ω F∆Ω[0]

�

∂∆ΩF∆Ω[0]
�2

R[12]L
iℓm

+∆Ω
�

F∆Ω[0]
�2 �
∂ 2
∆ΩF∆Ω[0]

�

R[12]M
iℓm .

(106c)

All the terms on the right-hand side labelled with capital Latin letters do not depend on ∆Ω
and are only functions of δM , δJ and the radial field point r. Note that at 5PLT order the
dependency on FδM±

[0] is included in the term R[10]A
iℓm (r), while at 7PLT order the dependency on

FδM±
[2] is included in the term ∆ΩR[12]I

iℓm (r), as a consequence of eq. (103). Recalling eq. (13),

we have R[n]iℓm = R[n]aiℓm (∆Ω, r)δM a for 5 ≤ n ≤ 9, while R[n]iℓm = R[n]ab
iℓm (∆Ω, r)δM a δM b for

10 ≤ n ≤ 14. Note that the equations of motion (86) can be used to simplify some of these
expressions by substituting the ∂ 2

∆ΩF∆Ω[0] and ∂ 2
∆ΩF∆Ω[2] terms. However, the current form turns

out to be more convenient when asymptotically matching with the inspiral fields in section 5.3
below.

4.3 Self-force

We now perform the transition-to-plunge expansion of the self-force (11). Using eqs. (75),
(76), (77), (78) and (79), we obtain the transition-to-plunge expansions of the worldline (4)
and the four-velocity (8) as

zµ = z∗ +λ
2zµ[0] +λ

3zµ[1] +O(λ4) =
�

t, r∗,
π

2
,φp

�

+λ2
�

0, r[0], 0, 0
�

+O(λ4) , (107)

uµ = u∗ +λ
2uµ[0] +λ

3uµ[1] +O(λ4) = (U∗, 0, 0, U∗Ω∗)

+λ2
�

U[0], 0, 0, U[0]Ω∗ + U∗∆Ω
�

+λ3
�

0, U∗F
∆Ω
[0] ∂∆Ωr[0], 0, 0

�

+O(λ4) ,

(108)

where we have already used the fact that r[1] = U[1] = 0. The residual piece of the metric
perturbation is expanded as

hR
µν =

∞
∑

n=5

λn
∑

iℓm

aiℓ

r
R[n]Riℓm (∆J a, r)e−imφp Y iℓm

µν (r,θ ,φ) . (109)
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Substituting the expansions above into eq. (11), we obtain up to 3PLT order

f µ[5](∆J a) =
1
2

gµνh[5]Ru∗u∗,ν
, (110a)

f µ[6](∆J a) = 0 , (110b)

f µ[7](∆J a) =∆Ω f µ[7]A(δM±) , (110c)

f µ[8](∆J a) = F∆Ω[0] f µ[8]A(δM±) , (110d)

where, using the structure of the metric perturbations obtained in the previous subsection,

f µ[7]A(δM±) :=
1
2

gµνh[7]RA
u∗u∗,ν
− 12

p

6M2
�

∂r gµνh[5]Ru∗u∗,ν
+ gµνh[5]Ru∗u∗,νr

�

+ gµνuα∗
�

4
p

3Mh[5]Rαt,ν + 4
p

3MΩ∗h
[5]R
αφ,ν+ U∗h

[5]R
αφ,ν

�

+
δ
µ
t

2
g t th[5]Ru∗u∗,φp

,

(111a)

f µ[8]A(δM±) :=
1
2

gµνh[8]RA
u∗u∗,ν
− PµνU∗u

β
∗ h
[7]RA
βν

+
1
2

uµ∗U∗h
[7]RA
u∗u∗

+
δ
µ
t

2
g t th[7]RA

u∗u∗

+ U∗∂∆Ωr[0]

�

gµνh[5]Rαr,ν uα∗ + 2PµνΓσαrh
[5]R
σν uα∗

− gµνh[5]R
βν,r uβ∗ −

1
2

uµ∗h
[5]R
u∗u∗,r

�

.

(111b)

Any t derivative in these final expanded expressions needs to be computed with the rule
∂t 7→ Ω∗∂φp

, as the full expansion of the time derivative has already been applied. All fields
are evaluated at the ISCO. Like for the inspiral, the forces only depend on the mode ampli-
tudes R[n]Riℓm and not on the oscillatory phase. The computational details are analogous to the
inspiral. Recalling eq. (13) and following the same reasoning as below eq. (62), we deduce
that the dissipative self-forces at 0PLT and 2PLT order do not depend on δM and δJ , while
the conservative pieces are linear in δM a = (1,δM ,δJ). The 3PLT self-force is linear in δM a

as well.
By comparing eqs. (110) and (111) with the corresponding results for the inspiral (61), we

can anticipate some of the results that we will obtain from the asymptotic match of section 5.3.
It is easy to see that f µ[5] is given by the first-order self-force in the inspiral (61a) evaluated

at the ISCO, after identifying h[5]µν = h(1)µν |∗. The 2PLT term f µ[7] matches the linear term in

the Taylor expansion of f µ(1) around the ISCO frequency, f µ[7] = ∆Ω∂Ω f µ(1)|∗. This is true if we

consider the matching condition h[7]Aµν = ∂Ωh(1)µν |∗. Finally, by comparing f µ[8]A with f µ(2)B and

anticipating that h[8]Aµν = h(2)Bµν |∗, we recognize that f µ[8]A = f µ(2)B|∗. The matching conditions
for the metric perturbations that we have assumed to hold in order to derive these results are
obtained in section 5.3 below.

At each perturbative order, the structure of the self-forces (110) follows one of the metric
perturbations obtained in section 4.2. We therefore write the structure of the self-force up to
7PLT order as

f µ[9](∆J a) =∆Ω2 f µ[9]A+ F∆Ω[0]
�

∂∆ΩF∆Ω[0]
�

f µ[9]B , (112a)

f µ[10](∆J a) = f µ[10]A+
�

F∆Ω[0]
�2 �
∂ 2
∆ΩF∆Ω[0]

�

f µ[10]B + F∆Ω[0]
�

∂∆ΩF∆Ω[0]
�2

f µ[10]C

+∆Ω F∆Ω[0] f µ[10]D + F∆Ω[2] f µ[10]E ,
(112b)
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f µ[11](∆J a) = F∆Ω[3] f µ[11]A+
�

∂∆ΩF∆Ω[0]
�

F∆Ω[2] f µ[11]B + F∆Ω[0]
�

∂∆ΩF∆Ω[2]
�

f µ[11]C

+
�

F∆Ω[0]
�2

f µ[11]D +∆Ω F∆Ω[0]
�

∂∆ΩF∆Ω[0]
�

f µ[11]E +∆Ω
3 f µ[11]F ,

(112c)

f µ[12](∆J a) = F∆Ω[4] f µ[12]A+
�

∂∆ΩF∆Ω[0]
�

F∆Ω[3] f µ[12]B + F∆Ω[0]
�

∂∆ΩF∆Ω[3]
�

f µ[12]C

+
�

F∆Ω[0]
�2 �
∂∆ΩF∆Ω[0]

�

f µ[12]D +
�

∂∆ΩF∆Ω[0]
�2

F∆Ω[2] f µ[12]E

+ F∆Ω[0]
�

∂ 2
∆ΩF∆Ω[0]

�

F∆Ω[2] f µ[12]F + F∆Ω[0]
�

∂∆ΩF∆Ω[0]
��

∂∆ΩF∆Ω[2]
�

f µ[12]G

+
�

F∆Ω[0]
�2 �
∂ 2
∆ΩF∆Ω[2]

�

f µ[12]H +∆Ω f µ[12]I +∆Ω
2F∆Ω[0] f µ[12]J

+∆Ω F∆Ω[2] f µ[12]K +∆Ω F∆Ω[0]
�

∂∆ΩF∆Ω[0]
�2

f µ[12]L

+∆Ω
�

F∆Ω[0]
�2 �
∂ 2
∆ΩF∆Ω[0]

�

f µ[12]M .

(112d)

All the terms on the right-hand side labelled with capital Latin letters do not depend on ∆Ω
and are only functions of δM and δJ . Concerning the decomposition in δM a = (1,δM ,δJ),
the dissipative self-force is linear in δM a up to 5PLT order, and quadratic up to 10PLT order.
Similarly, the conservative self-force is linear inδM a up to 4PLT order, and quadratic up to 9PLT
order. This difference is due to the fact that the dissipative self-force f µ[n]diss depends on h[n]µν
only through aφp derivative, which does not contain any δM± dependence (see the discussion
below eq. (62)), and the (non-)linearity structure is given by the metric perturbations of order
n− 1 and lower.

4.4 Early-time solution: orbital motion

At early times, the transition-to-plunge motion is expected to asymptotically match with the
inspiral’s near-ISCO solution. The early-time limit is reached as ∆Ω → −∞. We substitute
the structure of the self-force (110) and (112) and the FδM

[n] and FδJ
[n] forcing terms (103) into

eqs. (83) and (86) with the sources listed in appendix C.1. We find that the early-time solutions
for the F∆Ω[n] forcing terms are consistent with the following series expansions:

λ3+nF∆Ω[n] (∆Ω→−∞,δM±) = λ3+n
∞
∑

i=0

F
(3+n,c−[n]−5i)

[n] ∆Ω
c−[n]−5i ∀n≥ 0 , (113)

with c−[n] := n−2
2 for n ≥ 0 even, and c−[n] := n−7

2 for n ≥ 3 odd, recalling that F∆Ω[1] = 0, and
hence there is no n= 1 term. We have verified eq. (113) up to n= 7 and assume this structure
holds to any nPLT order with n> 7. Explicitly,

λ3F∆Ω[0] (∆Ω→−∞) = λ
3





F (3,−1)
[0]

∆Ω
+

F (3,−6)
[0]

∆Ω6
+O(∆Ω−11)



 , (114)

λ4F∆Ω[1] (∆Ω→−∞,δM±) = λ4
�

0
∆Ω3

+
0
∆Ω8

+O(∆Ω−13)
�

, (115)

λ5F∆Ω[2] (∆Ω→−∞) = λ
5



F (5,0)
[2] +

F (5,−5)
[2]

∆Ω5
+O(∆Ω−10)



 , (116)

λ6F∆Ω[3] (∆Ω→−∞,δM±) = λ6





F (6,−2)
[3]

∆Ω2
+

F (6,−7)
[3]

∆Ω7
+O(∆Ω−12)



 , (117)
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where we have included the vanishing term F∆Ω[1] to clearly illustrate the alternating struc-
ture; cf. table I in [18]. This alternating pattern between even and odd orders in the early-
time transition-to-plunge solutions was also found in [14]. In a similar manner, taking the
∆Ω → −∞ limit of eqs. (81b), (82b) and (C.2), we obtain the early-time behaviour of the
nPLT corrections to the orbital radius,

λ2+nr[n](∆Ω→−∞,δM±) = λ2+n
∞
∑

i=0

r
(2+n,d−[n]−5i)

[n] ∆Ω
d−[n]−5i ∀n≥ 0 , (118)

where d−[n] := n+2
2 for n ≥ 0 even, and d−[n] := n−3

2 for n ≥ 3 odd. We have verified this up to

n = 8. Again, since r[1] = 0, the solution at 1PLT order is trivial. The coefficients F (i, j)[n] and

r(i, j)[n] with n ∈ N and i, j ∈ Z appearing in the early-time transition-to-plunge solutions are
labelled with the powers i of λ and j of ∆Ω at which they appear in the expansions and in
general depend on δM and δJ . Some of these coefficients are given explicitly in appendix C.4.

4.5 Early-time solution: metric perturbation and self-force

We now compute the early-time behaviour of the metric perturbation mode amplitudes
(eqs. (102) and (106)) and the self-force (eqs. (110) and (112)) by substituting the corre-
sponding solutions for the forcing terms (113). We present the early-time solutions up to
5PLT order explicitly. It is straightforward to obtain the 6PLT and 7PLT solutions in the same
manner.

The 0PLT, 1PLT and 2PLT solutions are trivial. At 3PLT order we get

R[8]iℓm =





F (3,−1)
[0]

∆Ω
+

F (3,−6)
[0]

∆Ω6
+O

�

∆Ω−11
�



R[8]Aiℓm (119)

for the metric perturbations and

f µ[8] =





F (3,−1)
[0]

∆Ω
+

F (3,−6)
[0]

∆Ω6
+O

�

∆Ω−11
�



 f µ[8]A (120)

for the self-force. The 4PLT solutions read

R[9]iℓm =∆Ω
2R[9]Aiℓm +



−

�

F (3,−1)
[0]

�2

∆Ω3
− 7

F (3,−1)
[0] F (3,−6)

[0]

∆Ω8
+O

�

∆Ω−13
�



R[9]Biℓm , (121)

f µ[9] =∆Ω
2 f µ[9]A+



−

�

F (3,−1)
[0]

�2

∆Ω3
− 7

F (3,−1)
[0] F (3,−6)

[0]

∆Ω8
+O

�

∆Ω−13
�



 f µ[9]B . (122)

Finally, at 5PLT order we obtain

R[10]
iℓm =R[10]A

iℓm +



2

�

F (3,−1)
[0]

�3

∆Ω5
+O

�

∆Ω−10
�



R[10]B
iℓm +





�

F (3,−1)
[0]

�3

∆Ω5
+O

�

∆Ω−10
�



R[10]C
iℓm

+
�

F (3,−1)
[0] +O

�

∆Ω−5
�

�

R[10]D
iℓm +

�

F (5,0)
[2] +O

�

∆Ω−5
�

�

R[10]E
iℓm

(123)
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for the metric perturbations and

f µ[10] = f µ[10]A+



2

�

F (3,−1)
[0]

�3

∆Ω5
+O

�

∆Ω−10
�



 f µ[10]B +





�

F (3,−1)
[0]

�3

∆Ω5
+O

�

∆Ω−10
�



 f µ[10]C

+
�

F (3,−1)
[0] +O

�

∆Ω−5
�

�

f µ[10]D +
�

F (5,0)
[2] +O

�

∆Ω−5
�

�

f µ[10]E

(124)

for the self-force.

5 Asymptotic match between the inspiral and the transition to
plunge

The inspiral and transition-to-plunge regimes overlap in a buffer region exterior to the ISCO,
where rp > r∗ and Ω < Ω∗. Since the two expansions are describing the same motion, they
must agree in this overlapping region. In order to compare them, we have re-expanded the
post-adiabatic expansion of the inspiral in the near-ISCO limit at fixed ϵ in sections 3.4 and 3.5,
and computed the early-time behaviour of the transition-to-plunge expansion in sections 4.4
and 4.5. In this section we perform the match between these asymptotic solutions in the
buffer region. The asymptotic match of the orbital motion was obtained in [12, 14] using
the slow-time formulation. Here we revisit the asymptotic match of the orbital motion and
complete the asymptotic match by including the metric perturbation and the self-force. We
furthermore discuss composite solutions that join the inspiral and transition-to-plunge regimes.
The overlapping region where both the inspiral and the transition-to-plunge solutions are valid
is described in terms of proper time as −λ−5≪ τ− τ∗≪−λ−1 [14]. In terms of ∆Ω we can
reformulate this region as −λ−2≪ M∆Ω≪−λ0 or, equivalently,

−
λ0

M
≪ Ω−Ω∗≪−

λ2

M
. (125)

5.1 Orbital motion

The near-ISCO solution of the inspiral motion obtained in section 3.4 is consistent with the
following expansions:

rp = 6M +
∞
∑

i=0

λ5i
∞
∑

j=0

r
(5i+2 j−2p(i), j−p(i))
(i) λ2( j−p(i))∆Ω j−p(i) , (126)

dΩ
d t
=
∞
∑

i=0

λ5+5i
∞
∑

j=0

F
(5+5i+2 j−2q(i), j−q(i))
(i) λ2( j−q(i))∆Ω j−q(i) . (127)

The near-ISCO solution up to 2PA order takes exactly that form with p(0) = −1, p(1) = 0,
p(2) = 3 and q(0) = 1, q(1) = 2, q(2) = 6. We conjecture that this pattern holds to any nPA order
with appropriate numbers p(n) and q(n), n≥ 3.

The early-time transition-to-plunge solutions can be obtained by summing all contributions
given in eqs. (118) and (113),

rp = 6M +
∞
∑

n=0

λ2+n
∞
∑

m=0

r
(2+n,d−[n]−5m)

[n] ∆Ω
d−[n]−5m , (128)

dΩ
d t
=
∞
∑

n=0

λ3+n
∞
∑

m=0

F
3+n,c−[n]−5m

[n] ∆Ω
c−[n]−5m . (129)
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The inspiral and transition-to-plunge solutions listed above can be matched in the overlap-
ping region (125) exterior to the ISCO. We obtain the matching conditions by equating the co-
efficients of equal powers of λ and∆Ω, identifying n= 5i+2 j−2p(i)−2 and j−p(i) = d−[n]−5m
for the match of the orbital radius and n = 2+ 5i + 2 j − 2q(i) and j − q(i) = c−[n] − 5m for the
match of dΩ/d t,

r
(5i+2 j−2p(i), j−p(i))
(i) = r

(5i+2 j−2p(i), j−p(i))
[5i+2 j−2p(i)−2] , (130)

F
(5+5i+2 j−2q(i), j−q(i))
(i) = F

(5+5i+2 j−2q(i), j−q(i))
[2+5i+2 j−2q(i)]

. (131)

In order to verify these matching conditions, the match of the self-force between the inspiral
and the transition to plunge is required. In practice, one proceeds order by order (both in the
λ and the ∆Ω expansion) for the orbital motion, the metric perturbation and the self-force
together at the same time to obtain the matching conditions. For the sake of presentation,
we will defer the matching of the metric perturbation and the self-force to section 5.3 below.
We have explicitly verified eqs. (130) and (131) for all terms involved in the match between
the inspiral up to 2PA order and the transition to plunge up to 7PLT order, using the coeffi-
cients listed in appendices B.2 and C.4. The structure of the asymptotic match between the
inspiral and transition-to-plunge orbital motions is summarized in table 1: the coefficients in
the 0PA near-ISCO solution are matched by the leading-order coefficients in the early-time
solutions of the even (2nPLT, n ≥ 0) transition-to-plunge orders; the coefficients in the 1PA
near-ISCO solution are matched by the leading-order coefficients in the early-time solutions
of the odd ((2n+ 1)PLT, n ≥ 0) transition-to-plunge orders; the coefficients in the 2PA near-
ISCO solution are matched by the first-subleading-order coefficients in the early-time solutions
of the even transition-to-plunge orders and so forth. In what follows, we label the asymp-
totic coefficients with the inspiral and transition-to-plunge orders they originate from, that is,
F (i, j)(m) , F (i, j)[n] → F (i, j)(m)/[n] for i, j ∈ Z and m, n ∈ N.

5.2 0PA-2PLT and 1PA-7PLT composite solutions

The asymptotic match allows us to write composite solutions, which are valid in the domain
Ω ≤ Ω∗ (or, equivalently, rp ≥ r∗) and uniformly approximate the exact solution dΩ/d t = FΩ

in that region. They are constructed, following standard practice in matched asymptotic ex-
pansions, by adding the inspiral and transition-to-plunge expansions truncated at some specific
perturbative order and subtracting the common matching values, which would otherwise be
counted twice. Similar composite solutions can also be written for any other orbital quantity.
We label the composite solution with the highest inspiral and transition-to-plunge orders con-
sidered. Relevant composite solutions (because of their smoothness properties as explained
below) are

FΩ0PA-2PLT(λ,Ω) = λ5FΩ(0)(Ω) +λ
3F∆Ω[0]

�

Ω−Ω∗
λ2

�

+λ5F∆Ω[2]

�

Ω−Ω∗
λ2

�

−λ5





F (3,−1)
(0)/[0]

Ω−Ω∗
+ F (5,0)

(0)/[2]



 ,

(132)
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and

FΩ1PA-7PLT(λ, J a) = λ5FΩ(0)(Ω) +λ
10FΩ(1)(J

a) +λ3
7
∑

n=0

λnF∆Ω[n]

�

Ω−Ω∗
λ2

,δM±
�

−λ5





F (3,−1)
(0)/[0]

Ω−Ω∗
+ F (5,0)

(0)/[2] + (Ω−Ω∗)F
(7,1)
(0)/[4] + (Ω−Ω∗)

2F (9,2)
(0)/[6]





−λ10





F (6,−2)
(1)/[3]

(Ω−Ω∗)2
+

F (8,−1)
(1)/[5]

(Ω−Ω∗)
+ F (10,0)

(1)/[7]



 ,

(133)

which neglect terms of order λ6 (3PLT) and λ11 (8PLT), respectively. Sufficiently near the
ISCO, the subtracted terms cancel the inspiral terms, leaving the correct transition-to-plunge
approximation; sufficiently far from the ISCO, the subtracted terms cancel the transition-to-
plunge terms, leaving the correct inspiral approximation. In this way, the composite solutions
join the inspiral and transition-to-plunge regimes without the need to switch from one approx-
imation scheme to the other at some radius exterior to the ISCO. In practice, we would only
need to switch at the ISCO between one such inspiral/transition-to-plunge composite solution
and a (not defined in this paper) transition-to-plunge/plunge composite solution.

The behaviour of the composite solution FΩ1PA-7PLT can be summarized as follows: close to
the ISCO, the 0PA and 1PA forcing terms are approximated by their near-ISCO solutions (64b)

Table 1: Visualization of the matching conditions (130) and (131) between inspiral
and transition to plunge for the orbital radius rp and the rate of change dΩ/d t.

0PA 1PA 2PA · · ·

0PLT
r(2,1)
(0) = r(2,1)

[0]

F (3,−1)
(0) = F (3,−1)

[0]

−
−

F (3,−6)
(2) = F (3,−6)

[0]

· · ·

1PLT − − − · · ·

2PLT
r(4,2)
(0) = r(4,2)

[2]

F (5,0)
(0) = F (5,0)

[2]

−
r(4,−3)
(2) = r(4,−3)

[2]

F (5,−5)
(2) = F (5,−5)

[2]

· · ·

3PLT −
r(5,0)
(1) = r(5,0)

[3]

F (6,−2)
(1) = F (6,−2)

[3]

− · · ·

4PLT
r(6,3)
(0) = r(6,3)

[4]

F (7,1)
(0) = F (7,1)

[4]

−
r(6,−2)
(2) = r(6,−2)

[4]

F (7,−4)
(2) = F (7,−4)

[4]

· · ·

5PLT −
r(7,1)
(1) = r(7,1)

[5]

F (8,−1)
(1) = F (8,−1)

[5]

− · · ·

6PLT
r(8,4)
(0) = r(8,4)

[6]

F (9,2)
(0) = F (9,2)

[6]

−
r(8,−1)
(2) = r(8,−1)

[6]

F (9,−3)
(2) = F (9,−3)

[6]

· · ·

7PLT −
r(9,2)
(1) = r(9,2)

[7]

F (10,0)
(1) = F (10,0)

[7]

− · · ·

...
...

...
...

. . .
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and (65b). The divergent and constant terms in those expansions are exactly cancelled by the
subtracted terms in eq. (133), while the terms proportional to positive powers of ∆Ω go to
zero. The composite solution FΩ1PA-7PLT then reduces to the transition-to-plunge solution in the
near-ISCO limit. Considering the transition-to-plunge motion up to 7PLT order is necessary
and sufficient to obtain a solution that is regular at the ISCO, cancelling all divergent and
constant terms in the 1PA inspiral (65b). For the purpose of extending a 0PA inspiral beyond
the ISCO, only the 2PLT order is required; that is, we need to build FΩ0PA-2PLT. Considering
now the early-time limit (∆Ω → −∞), the terms proportional to negative powers of ∆Ω
in the early-time transition-to-plunge solution (129) become negligible, while constant and
divergent terms are again cancelled by the subtracted terms. At early times, the composite
solution is then only given by the inspiral terms. With this construction, both the FΩ0PA-2PLT and
FΩ1PA-7PLT composite solutions are C0 functions at the ISCO (and smooth elsewhere), ensuring
that Ω is C1 and φp is C2 there. Higher differentiability can be obtained by adding further PLT
orders. We display the behaviour of the 0PA-2PLT composite solution for two different mass
ratios in figure 2.

A caveat to this approach is that the early-time limit ∆Ω = (Ω − Ω∗)/λ2 → −∞ is for-
mally a small-mass-ratio limit λ → 0 since Ω → 0 in the early inspiral while Ω∗ ≃ 0.068/M
is finite. For a mass ratio sufficiently close to 1, at early times the transition-to-plunge part
of the composite solution will become numerically comparable to the inspiral part, spoiling
the numerical accuracy of the composite solution. To see this, note that the ϵ F (3,−1)

(0)/[0]/(Ω−Ω∗)

and ϵ F (5,0)
(0)/[2] terms in the composite solution (132) will, by design, cancel the early-time con-

tribution from the transition-to-plunge solution, but this cancellation is not exact: it leaves a
residue of ϵ3F (3,−6)

(2)/[0]/(Ω − Ω∗)
6, ϵ3F (5,−5)

(2)/[2]/(Ω − Ω∗)
5, and further subleading terms from the

early-time transition-to-plunge solutions (114) and (116), which for sufficiently large mass
ratios become comparable with the inspiral term ϵ FΩ(0). We can obtain the value of ϵ where

this occurs as follows. Let us take as a benchmark the early inspiral at r(0) = rearly
(0)

:= 20M

(equivalent to Ω = Ωearly := 1/(40
p

5M)) and require that the transition-to-plunge terms are
smaller than the inspiral terms by 1%,

�

�

�

�

�

�

F (3,−6)
(2)/[0]

ϵ3

(Ω−Ω∗)6
+ F (5,−5)

(2)/[2]
ϵ3

(Ω−Ω∗)5

ϵ FΩ(0)(Ω)

�

�

�

�

�

�

Ω=Ωearly

< 0.01 . (134)

Using the explicit numerical values listed in appendix D.2, we find that this holds as long
as ϵ ≲ 1/180, which makes the 0PA-2PLT composite solution numerically inaccurate in the
most interesting range of mass ratios for ground-based detectors. We have kept the leading-
order residues of both λ3F∆Ω[0] and λ5F∆Ω[2] in the numerator of eq. (134), and not only the term

∝ 1/(Ω−Ω∗)5, which could naively be considered the dominant term at early times: since Ω
monotonically increases from 0 to Ω∗ ≃ 0.068/M , it is actually always true (at least outside
the ISCO) that

�

�1/(Ω−Ω∗)6
�

� >
�

�1/(Ω−Ω∗)5
�

�. We have excluded the subleading residues of
order ϵ5 and higher, which we could have considered without affecting our evaluation. In
conclusion, the composite solution should not be trusted for intermediate mass ratios and
comparable-mass systems. When comparing against NR simulations in section 6, we will limit
our analysis to pure transition-to-plunge waveforms, leaving the methods of meshing the in-
spiral and transition-to-plunge approximations for future work.

Previously, we estimated the frequencies at which the inspiral approximation breaks down,
in the sense that omitted terms become more important than included ones; those breakdown
frequencies were given in eqs. (67) and (68). We now consider a different question. Rather
than estimating how near to the ISCO we can trust the inspiral approximation, we consider
how near to the ISCO we should be in order for the transition-to-plunge approximation to be
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Figure 2: Rate of change of the orbital frequency from Ω = 1/(40
p

5M), corre-
sponding to an orbital radius r(0) = 20M , to Ω= Ω∗. The considered mass ratios are
ϵ = 1/10 (top panel) and ϵ = 1/500 (bottom panel). The adiabatic rate of change,
ϵFΩ(0), given by the dashed blue curve, diverges at the ISCO frequency, marked by
the vertical dashed gray line. The rate of change in the transition-to-plunge approx-
imation to 2PLT order, λ3F∆Ω[0] + λ

5F∆Ω[2] , is displayed as a dashed orange curve. The
composite solution (132) in black reduces to the inspiral solution at small frequen-
cies (this is only true in the lower panel, see the discussion around eq. (134)) and to
the transition-to-plunge motion close to the ISCO. The vertical dotted gray line marks
the lower boundary of the region in which the transition-to-plunge curve represents
a better approximation than the inspiral curve. As expected, this region becomes
narrower as the mass ratio decreases.

superior to the inspiral approximation. Concretely, we compute the critical frequency beyond
which the 7PLT transition-to-plunge motion approximates the exact solution better than the
1PA inspiral motion: Ω1PA-7PLT

crit = Ω∗+λc∆Ωc+O(λ2c) such that∆Ωc < 0 and 0< c < 2 (which

36

https://scipost.org
https://scipost.org/SciPostPhys.17.2.056


Select SciPost Phys. 17, 056 (2024)

is an intermediate scaling between the inspiral, c = 0, and the transition-to-plunge motion,
c = 2). The behaviour of the inspiral and transition-to-plunge solutions in terms of the critical
frequency is summarized below:

Ω< Ω1PA-7PLT
crit :

�

�

�λ5FΩ(0) +λ
10FΩ(1) − FΩ1PA-7PLT

�

�

�<

�

�

�

�

�

λ3
7
∑

n=0

λnF∆Ω[n] − FΩ1PA-7PLT

�

�

�

�

�

, (135a)

Ω> Ω1PA-7PLT
crit :

�

�

�λ5FΩ(0) +λ
10FΩ(1) − FΩ1PA-7PLT

�

�

�>

�

�

�

�

�

λ3
7
∑

n=0

λnF∆Ω[n] − FΩ1PA-7PLT

�

�

�

�

�

, (135b)

Ω= Ω1PA-7PLT
crit :

�

�

�λ5FΩ(0) +λ
10FΩ(1) − FΩ1PA-7PLT

�

�

�=

�

�

�

�

�

λ3
7
∑

n=0

λnF∆Ω[n] − FΩ1PA-7PLT

�

�

�

�

�

. (135c)

We can obtain the critical exponent c and the correction∆Ωc by imposing the condition (135c).
Since both the inspiral and transition-to-plunge solutions need to be simultaneously valid, the
critical frequency lies in the matching region. We can therefore approximate the inspiral and
transition-to-plunge solutions with their near-ISCO and early-time behaviours, respectively. At
leading order, eq. (135c) then gives

λ15−6c
�

�

�∆Ω−6
c F (3,−6)

(2)/[0]

�

�

�= λ5+3c
�

�

�∆Ω3
c F (11,3)
(0)/[8]

�

�

� . (136)

Solving this equation for c and ∆Ωc and recalling that λ= ϵ1/5, we find the critical frequency

Ω1PA−7PLT
crit = Ω∗ − ϵ2/9

�

�

�

�

�

�

F (3,−6)
(2)/[0]

F (11,3)
(0)/[8]

�

�

�

�

�

�

1/9

+O(ϵ4/9) . (137)

The critical exponent is c = 10/9, lying within the chosen range 0 < c < 2. If we instead
consider a 0PA-2PLT motion, the critical frequency becomes

Ω0PA−2PLT
crit = Ω∗ − ϵ2/7

�

�

�

�

�

�

F (3,−6)
(2)/[0]

F (7,1)
(0)/[4]

�

�

�

�

�

�

1/7

+O(ϵ4/7) . (138)

We give the numerical values of the coefficients appearing in the expressions above in ap-
pendix D.2. Figure 3 shows the behaviour of the critical frequencies as functions of the mass
ratio in the range where the the composite solution is a good approximation of the exact so-
lution (see the discussion around eq. (134)) and can therefore be used in deriving the critical
frequencies from eq. (135c). For all mass ratios, Ω1PA−7PLT

crit < Ω0PA−2PLT
crit < Ω∗: as more per-

turbative terms are added to the transition-to-plunge motion the description becomes more
accurate, extending its region of validity to smaller frequencies earlier in the inspiral. As the
mass ratio increases, the region where the transition-to-plunge approximation is more accu-
rate than the inspiral one becomes larger. This points to the fact that the transition-to-plunge
approximation becomes crucial for modelling intermediate-mass-ratio and nearly comparable-
mass binaries within self-force theory, indicating the importance of including transition-to-
plunge effects over an increasingly large frequency interval for larger ϵ. This behaviour is
already expected from the scaling around the ISCO of the orbital quantities such as the radius
rp − r∗ ∼ ϵ2/5 and the frequency Ω−Ω∗ ∼ ϵ2/5.
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Figure 3: Critical frequencies as functions of the mass ratio for the 0PA-2PLT mo-
tion (eq. (138), dashed blue curve) and the 1PA-7PLT motion (eq. (137), dashed
orange curve). The horizontal dashed line marks the ISCO frequency. The solid blue
and orange curves show the 0PA and 1PA breakdown frequencies (67) and (68), re-
spectively. The inspiral (resp. transition-to-plunge) approximation most accurately
describes the motion below (resp. above) the dashed curves. We have restricted the
plot to the range of mass ratios where the composite solution faithfully represents
the exact solution, following the bound imposed by eq. (134). Importantly, the tran-
sition to plunge takes over before the inspiral approximation breaks down.

5.3 Metric perturbation and self-force

We now obtain the asymptotic match for the metric perturbation and the self-force. We can
write the near-ISCO solution of the inspiral metric perturbation mode amplitudes by adding
up eqs. (69), (71) and (73) in the post-adiabatic expansion,

ϵRiℓm(Ω→ Ω∗,δM±, r) = λ5 R(1)iℓm

�

�

�

∗
+λ7∆Ω ∂ΩR(1)iℓm

�

�

�

∗
+λ8

F (3,−1)
(0)

∆Ω
R(2)Biℓm

�

�

�

∗

+λ9





1
2
∆Ω2 ∂ 2

ΩR(1)iℓm

�

�

�

∗
−

�

F (3,−1)
(0)

�2

∆Ω3
R(3)Eiℓm

�

�

�

∗





+λ10
h

R(2)Aiℓm

�

�

�

∗
+ F (3,−1)

(0) ∂ΩR(2)Biℓm

�

�

�

∗
+ F (5,0)

(0) R(2)Biℓm

�

�

�

∗

i

+O∆Ω(λ
11) +OΩ(ϵ

4) .

(139)

Here OΩ(ϵ) and O∆Ω(ϵ) (or, equivalently, OΩ(λ) and O∆Ω(λ)) refer to the limit ϵ → 0 in the
inspiral expansion at fixed Ω and in the near-ISCO expansion at fixed ∆Ω, respectively. Com-
bining the structure of the metric perturbations in the transition-to-plunge regime (eqs. (102)
and (106)) with eqs. (119), (121) and (123), we find that the early-time transition-to-plunge
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solution is given by

ϵRiℓm(∆Ω→−∞,δM±, r) =λ5R[5]iℓm +λ
7∆ΩR[7]Aiℓm +λ

8





F (3,−1)
[0]

∆Ω
+O

�

∆Ω−6
�



R[8]Aiℓm

+λ9



∆Ω2R[9]Aiℓm −

�

F (3,−1)
[0]

�2

∆Ω3
R[9]Biℓm +O

�

∆Ω−8
�





+λ10
�

R[10]A
iℓm + F (3,−1)

[0] R[10]D
iℓm + F (5,0)

[2] R[10]E
iℓm +O(∆Ω−5)

�

+O∆Ω(λ
11) .

(140)

We recall that all the mode amplitudes on the right-hand side of these equations are functions
of δM , δJ and r, while the F (i, j)(m)/[n] coefficients in general depend on δM and δJ . Comparing
the coefficients of equal powers of λ and ∆Ω in eqs. (139) and (140) and recalling the results
of table 1, we obtain the following matching conditions for the metric perturbation mode
amplitudes:

R[5]iℓm = R(1)iℓm

�

�

�

∗
, (141a)

R[7]Aiℓm = ∂ΩR(1)iℓm

�

�

�

∗
, (141b)

R[8]Aiℓm = R(2)Biℓm

�

�

�

∗
, (141c)

R[9]Aiℓm =
1
2
∂ 2
ΩR(1)iℓm

�

�

�

∗
, R[9]Biℓm (r) = R(3)Eiℓm

�

�

�

∗
, (141d)

R[10]A
iℓm = R(2)Aiℓm

�

�

�

∗
, R[10]D

iℓm = ∂ΩR(2)Biℓm

�

�

�

∗
, R[10]E

iℓm = R(2)Biℓm

�

�

�

∗
. (141e)

We have also verified that the mode amplitudes involved in these matching conditions actually
satisfy the same field equations. The subleading terms in the ∆Ω→−∞ expansions at each
order in λ in eq. (140) match with terms that originate from subleading post-adiabatic orders
in eq. (139). In analogy to what we have done for the orbital motion, we can write a composite
solution also for the mode amplitudes of the metric perturbation:

ϵR1PA−5PLT
iℓm = λ5R(1)iℓm +λ

10R(2)iℓm +λ
5

5
∑

n=0

λnR[5+n]
iℓm

−λ5

�

R(1)iℓm

�

�

�

∗
+ (Ω−Ω∗) ∂ΩR(1)iℓm

�

�

�

∗
+
(Ω−Ω∗)

2

2
∂ 2
ΩR(1)iℓm

�

�

�

∗

�

−λ10





F (3,−1)
(0)/[0]

Ω−Ω∗
R(2)Biℓm

�

�

�

∗
+ R(2)Aiℓm

�

�

�

∗
+ F (3,−1)

(0)/[0] ∂ΩR(2)Biℓm

�

�

�

∗
+ F (5,0)

(0)/[2] R(2)Biℓm

�

�

�

∗



 .

(142)

This composite solution behaves analogously to the one in eq. (133), reducing to the inspiral
and transition-to-plunge approximations in the early-time and near-ISCO limits, respectively.
Considering the transition to plunge up to 5PLT order is necessary and sufficient to obtain a
composite solution that is regular at the ISCO. Fewer transition-to-plunge terms are required
compared to the composite solution (133) for the rate of change of the orbital frequency, which
is due to the milder divergence close to the ISCO of the inspiral quantities here.
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We now turn to the self-force. We obtain the near-ISCO solution of the inspiral self-force
by appropriately summing the contributions in eqs. (70), (72) and (74),

f µ(Ω→ Ω∗,δM±) = λ5 f µ(1)

�

�

�

∗
+λ7∆Ω ∂Ω f µ(1)

�

�

�

∗
+λ8

F (3,−1)
(0)

∆Ω
f µ(2)B

�

�

�

∗

+λ9





1
2
∆Ω2 ∂ 2

Ω f µ(1)

�

�

�

∗
−

�

F (3,−1)
(0)

�2

∆Ω3
f µ(3)E

�

�

�

∗





+λ10
h

f µ(2)A

�

�

�

∗
+ F (3,−1)

(0) ∂Ω f µ(2)B

�

�

�

∗
+ F (5,0)

(0) f µ(2)B

�

�

�

∗

i

+O∆Ω(λ
11) +OΩ(ϵ

4) .

(143)

Using the structure of the self-force in the transition-to-plunge regime (eqs. (110) and (112))
together with eqs. (120), (122) and (124), we find that the early-time transition-to-plunge
solution reads

f µ(∆Ω→−∞,δM±) = λ5 f µ[5] +λ
7∆Ω f µ[7]A+λ

8





F (3,−1)
[0]

∆Ω
+O

�

∆Ω−6
�



 f µ[8]A

+λ9



∆Ω2 f µ[9]A−

�

F (3,−1)
[0]

�2

∆Ω3
f µ[9]B +O

�

∆Ω−8
�





+λ10
�

f µ[10]A+ F (3,−1)
[0] f µ[10]D + F (5,0)

[2] f µ[10]E +O(∆Ω−5)
�

+O∆Ω(λ
11) .

(144)

Comparing the coefficients of equal powers of λ and∆Ω in eqs. (143) and (144) and recalling
the results of table 1, we obtain the following matching conditions for the self-force:

f µ[5] = f µ(1)

�

�

�

∗
, (145a)

f µ[7]A = ∂Ω f µ(1)

�

�

�

∗
, (145b)

f µ[8]A = f µ(2)B

�

�

�

∗
, (145c)

f µ[9]A =
1
2
∂ 2
Ω f µ(1)

�

�

�

∗
, f µ[9]B = f µ(3)E

�

�

�

∗
, (145d)

f µ[10]A = f µ(2)A

�

�

�

∗
, f µ[10]D = ∂Ω f µ(2)B

�

�

�

∗
, f µ[10]E = f µ(2)B

�

�

�

∗
. (145e)

Again, the subleading terms in the∆Ω→−∞ expansions at each order inλ in eq. (144) match
with terms that originate from subleading post-adiabatic orders in eq. (143). Considering the
third-order self-force in deriving eq. (143) is, however, enough to determine the self-force
matching conditions needed for the asymptotic match between the inspiral and the transition-
to-plunge approximations truncated at 2PA and 7PLT order, respectively (see table 1). All
relevant self-force matching conditions, including those for f µ[11] and f µ[12], are summarized in
appendix D.1.

The matching conditions (141) are particularly useful since they allow us to determine
some of the metric perturbations in the transition-to-plunge regime from inspiral quantities
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without needing to solve any additional field equations. With the quasi-circular inspiral in
Schwarzschild spacetime computed to 1PA order [8,52,53] (meaning the functions R(1)iℓm, R(2)Aiℓm

and R(2)Biℓm are known), we can determine all transition-to-plunge mode amplitudes up to 5PLT

order with the exception of R[9]Biℓm , R[10]B
iℓm and R[10]C

iℓm . In order to obtain these missing terms one
needs to solve the field equations directly in the transition-to-plunge regime (or, equivalently,
solve additional equations in the inspiral expansion and obtain the terms of interest through
the asymptotic match). By virtue of the matching conditions (145), the same is true also for
the self-force. As an example, let us consider the self-force in the transition-to-plunge regime
through 3PLT order,

f µ = λ5 f µ[5](δM±) +λ7∆Ω f µ[7]A(δM±) +λ8F∆Ω[0] f µ[8]A(δM±) +O(λ4) . (146)

The ∆Ω-independent quantities can be obtained from the matching conditions (145) rather
than deriving them from the metric perturbations using the results in eqs. (110) and (111). The
∆Ω-dependent factors, which are in general combinations of the forcing terms F∆Ω[n] (n≥ 0) and
their ∆J a derivatives, can be obtained within the transition-to-plunge expansion by solving
eq. (86).

6 2PLT motion and waveforms

Post-adiabatic waveforms for the inspiral regime have already been generated using the for-
malism reviewed herein [8]. We have now further developed the formalism to include the
transition to plunge. Given the matching conditions between the inspiral and the transition to
plunge, all numerical self-force data necessary to model waveforms up to second post-leading
transition-to-plunge (2PLT) order is already available and can be readily computed using the
Teukolsky package within the Black Hole Perturbation Toolkit (BHPToolkit) [54]. Further nu-
merical work is required to extract the self-force data at 3PLT order and beyond. In this section,
we will limit the production of explicit waveforms to 2PLT order.

6.1 Overview of the model

The 2PLT dynamics is governed by the following two ordinary differential equations:

dΩ(t,λ)
d t

= FΩ2PLT(λ,Ω(t,λ)) , (147)

dφp(t,λ)

d t
= Ω(t,λ) , (148)

where the driving force is given by

FΩ2PLT(λ,Ω) := λ3F∆Ω[0]

�

Ω−Ω∗
λ2

�

+λ5F∆Ω[2]

�

Ω−Ω∗
λ2

�

, (149)

and is displayed in figure 4. We notice that FΩ2PLT ≤ 0 in some frequency range outside the
ISCO. This breakdown at early times is specific to the 2PLT model and is possibly overcome as
further PLT orders are added. We will limit our 2PLT model to the range of frequencies where
FΩ2PLT > 0 when producing waveforms. We also define the 0PLT driving force as

FΩ0PLT(λ,Ω) := λ3F∆Ω[0]

�

Ω−Ω∗
λ2

�

. (150)
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Figure 4: Rate of change of the orbital frequency from Ω = 1/(10
p

10M) to the
light-ring frequency ΩLR := 1/(3

p
6M). The vertical dashed line marks the ISCO

frequency. The considered mass ratio is ϵ = 1/10. The rate of change to 2PLT
order (149) is displayed in orange. For reference, we also plot the 0PLT rate of
change (150) in blue.

The transition-to-plunge driving forces F∆Ω[0] and F∆Ω[2] are expressed in terms of the self-
force in eqs. (83) and (86) (with the source (C.3)). By virtue of those equations, in order
to evolve the orbital frequency in eq. (147), the only required inputs are the self-force terms
f t
[5] and f t

[7] = ∆Ω f t
[7]A. These can be obtained from the first-order inspiral self-force and

its derivative at the ISCO, f t
(1)(Ω∗) and ∂Ω f t

(1)(Ω∗), using the matching conditions (145a) and
(145b). Standard balance laws [9,55] allow us to compute the force f t

(1)(Ω), in turn, from the

0PA energy flux to infinity (F∞0PA) and down the black hole horizon (FH
0PA) as

f t
(1)(Ω) = −

U(0)(Ω)

f (r(0)(Ω))

�

F∞0PA(Ω) +FH
0PA(Ω)

�

. (151)

The fluxes are readily obtained using the BHPToolkit’s Teukolsky package. We list the numer-
ical values of f t

[5] and f t
[7]A in appendix D.2.

Given a phase-space trajectory (Ω(t,λ),φp(t,λ)), the waveform is obtained from the met-
ric perturbation at future null infinity. Analogously to the motion, for the metric perturbation
we write

hµν(λ,Ω,φp, x i) =
∑

iℓm

aiℓ

r
R2PLT

iℓm (λ,Ω, r)e−imφp Y iℓm
µν (x

i) , (152)

where the 2PLT mode amplitudes are given by

R2PLT
iℓm (λ,Ω, r) := λ5R[5]iℓm +λ

7∆ΩR[7]Aiℓm = λ
5
h

R(1)iℓm

�

�

�

∗
+ (Ω−Ω∗) ∂ΩR(1)iℓm

�

�

�

∗

i

. (153)

In order to derive these expressions we have used the matching conditions (141a) and (141b).
Note that as a first approximation we have set δM = δJ = 0. Their contribution is numerically
subdominant during the inspiral [8,18] and it is safe to assume this will also be the case during
the transition to plunge since the rate of change of δM and δJ remains of order λ5. The strain
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is expressed in terms of the two GW polarizations as the limit r →∞ of the expression

r(h+ − ih×) = rhµνm̄
µm̄ν =

∑

ℓ≥2

ℓ
∑

m=−ℓ

rhℓmm̄m̄ −2Yℓm(θ ,φ) , (154)

where m̄ = 1p
2
(0,0, 1,−i cscθ ) and −2Yℓm is a spin-weighted spherical harmonic. For conve-

nience, we define hℓm := limr→∞(r hℓmm̄m̄) and write the asymptotic ℓm mode of the waveform
as

hℓm(ϵ,Ω,φp) = Hℓm(ϵ,Ω)e
−imφp . (155)

In terms of the Barack-Lousto-Sago coefficients, the complex amplitude Hℓm is given by [4]

Hℓm =
1

2
p

(ℓ+ 2)(ℓ+ 1)ℓ(ℓ− 1)
[R7ℓm(ϵ,Ω,∞) + i R10ℓm(ϵ,Ω,∞)] . (156)

We can compute the numerical inputs for Hℓm from the outputs of the BHPToolkit’s Teukolsky
package, just as we did for the 2PLT driving forces. We consider here only the oscillatory modes
(m ̸= 0); quasistationary modes (m = 0) are related to the displacement memory effect and
require a separate treatment. Using the relationships between 0PA Teukolsky amplitudes and
0PA metric perturbation amplitudes at infinity, as given in eq. (420a) of [4], we write

Hℓm = H2PLT
ℓm (ϵ,Ω) = 2ϵ

¨

−2Cup
ℓm(Ω)

(mΩ)2

�

�

�

�

�

∗

+ (Ω−Ω∗) ∂Ω

�

−2Cup
ℓm(Ω)

(mΩ)2

�

�

�

�

�

�

∗

«

. (157)

Here −2Cup
ℓm(Ω) are the mode amplitudes that are output by the Teukolsky package after ex-

pressingΩ as a function of the radius r(0) using eq. (37). Note that to 2PLT order, the amplitude
H2PLT
ℓm coincides with the first two terms in a Taylor series expansion of H0PA

ℓm around the ISCO
frequency.

In summary, the 2PLT waveform is given by eq. (155) with (157), where φp and Ω are
solutions to eqs. (147) and (148). Recall that because of our choice of hyperboloidal slicing,
time t along the worldline is identified with retarded time u along future null infinity; we can
hence simply replace t with u in eqs. (147) and (148). Also recall that, as stressed earlier in
this paper, a key advantage of the multiscale formulation is that it enables rapid waveform
generation by dividing the problem into a (slow) offline step and a (fast) online step. Here the
offline step consists of computing all the necessary functions ofΩ (driving forces and waveform
amplitudes).2 The online step consists of solving eqs. (147) and (148) and substituting the
result into eq. (155).3 Concretely, for our 2PLT waveforms, in the offline stage we use the
BHPToolkit’s Teukolsky package to first compute the amplitudes −2Cup

ℓm and their associated GW

fluxes F∞/H0PA as functions ofΩ. Since these are 0PA inspiral quantities, they are identical to the
amplitudes and fluxes from geodesic circular orbits of frequencyΩ, which are provided directly
as outputs of the Teukolsky package’s function TeukolskyPointParticleMode. We use
TeukolskyPointParticleMode to compute the amplitudes and fluxes on a densely sampled
grid around the ISCO, for a set of spherical harmonic modes ℓ = 2, . . . ,ℓmax, m = −ℓ, . . . ,ℓ.
We include contributions up to ℓmax = 30 in the calculation of the 0PA fluxes. This data is
then stored as interpolating functions of Ω (or of orbital radius r(0)(Ω)). For the fluxes, only

2In practice, the field equations are solved in units with M = 1, and outputs are stored in those units. Equiv-
alently, stored functions of Ω are actually functions of the dimensionless quantity MΩ or r(0)/M . This is relevant
when comparing to numerical relativity simulations, for example, which are in units with mp +M = 1.

3For data analysis purposes, the online step would also involve summing over modes of the waveform. For
generic orbits, this is the slowest part of the online step [7], but it is not a major consideration for the quasicircular
orbits we consider here.
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the total fluxes (summed over ℓ and m) are interpolated. For the waveform amplitudes, we
interpolate each mode up to ℓ = 5, m = 5; the higher-ℓ modes contribute very little to the
amplitude (even though, through the flux, they have a significant cumulative impact on the
waveform phase). As explained above eq. (151), all the driving forces appearing in eq. (147)
can be obtained from the fluxes F∞/H0PA . The 0PLT and 2PLT driving forces are obtained from
the fluxes by solving the differential equations (83) and (86) (with source (C.3)); we solve
these in advance and store the solutions as interpolating functions of ∆Ω. We stress that the
entirety of the offline stage is completed without involving φp and without specifying a mass
ratio or initial conditions. In the online step, we solve eq. (147) after specifying ϵ, Ω(0), and
φp(0). These choices are detailed in the following subsections.

6.2 Qualitative comparison with numerical relativity waveforms

In this subsection we construct waveform templates using the procedure we have just de-
scribed. We then compare our waveforms with those of NR simulations from the SXS cata-
logue [31] with large mass ratio q := 1/ϵ = M/mp ranging from q = 1 to q = 10. We have
chosen simulations of binary black hole mergers with low eccentricity (≲ 10−3) and small di-
mensionless spins of the individual black holes (≲ 10−7). In view of these comparisons, we
re-expand the relevant quantities for our waveform generation in powers of the symmetric
mass ratio ν := Mmp/(M +mp)2 = ϵ/(1+ ϵ)2 at fixed total mass Mtot := M +mp = M(1+ ϵ).
Inverting the relation between ν and ϵ gives ϵ = (1−2ν−

p
1− 4ν)/(2ν), which, in the small-

mass-ratio expansion, leads to ϵ = ν+ 2ν2+O(ν3). At the orders we are interested in we can
simply substitute ϵ→ ν and M → Mtot. Functions of Ω stored in units with M = 1 can then be
used without change and interpreted as being in units with Mtot = 1.

We consider two different scenarios for our self-force waveforms. We list them below,
together with the details on the metric perturbation and the evolution equations for the orbital
frequency and phase. In both cases,φp is obtained from dφp/d t = Ω, and∆Ω= (Ω−Ω∗)/ν2/5.

We define H[n]
ℓm from R[n]iℓm via eq. (156).

• Model: 0PLT. The leading-order transition-to-plunge approximation, but including the
2PLT amplitude correction (the 0PLT amplitude would only be given by a constant,
νH[5]
ℓm ):

dΩ
d t
= ν3/5F∆Ω[0] (∆Ω), hℓm = ν

�

H[5]
ℓm + ν

2/5H[7]
ℓm (∆Ω)

�

e−imφp . (158)

• Model: 2PLT. The transition to plunge through 2PLT order:

dΩ
d t
= ν3/5F∆Ω[0] (∆Ω) + ν F∆Ω[2] (∆Ω), hℓm = ν

�

H[5]
ℓm + ν

2/5H[7]
ℓm (∆Ω)

�

e−imφp . (159)

We compute the evolution of the orbital frequency and phase in the two scenarios described
above. We start at the ISCO frequency Ω(t = 0) = 1/(6

p
6Mtot) (and choose φp(t = 0) = 0)

and integrate eqs. (158) and (159) backward and forward in time until, respectively, an initial
frequency Ωi ≈ 0.49/Mtot and a final frequency at the light-ring, Ω f = 1/(3

p
6Mtot). We have

chosen the lower bound such that, for all the considered mass ratios, the rate of change of the
orbital frequency to 2PLT order remains positive (see figure 4). Physically, the orbital frequency
increases until the light ring where it starts to decrease before vanishing at the horizon. This
does not happen in our transition-to-plunge model, and including the final plunge is necessary
to correctly capture the dynamics in this late stage. We therefore cut off the integration at the
light ring and leave the modelling of the plunge and its hybridization with the transition-to-
plunge expansion to future work.
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In figures 5 to 9 we compare the self-force waveforms to the chosen NR simulations for the
dominant (ℓ, m) = (2,2) mode, which we write as h22 = |h22|e−iΦ22 , where Φ22 := −arg(h22).
For each comparison, we align the two waveforms in phase at the ISCO, that is, at the NR time
t∗ such that the waveform frequency defined asω22 := 1/2 dΦ22/d t isω22(t∗) = 1/(6

p
6Mtot).

We notice that to the left of the ISCO the 2PLT model covers a much larger range of the NR
waveform compared to the 0PLT model, while the opposite is true to the right of the ISCO.
We can explain this feature by looking at figure 4, which displays the rate of change of the
orbital frequency for the specific case of q = 10 (but the general behaviour remains valid also
for other mass ratios): to the left of the ISCO the frequency increases more rapidly in the 0PLT
model, meaning the lower bound Ωinit is reached earlier. This trend is inverted to the right
of the ISCO, where the 2PLT rate of change is much larger than the 0PLT one. In the region
where the 0PLT and 2PLT waveforms overlap, the 2PLT model performs significantly better in
the comparison with the NR simulations.

During the transition to plunge, the phase admits an expansion of the form

φp =
1
λ

�

φ[0]p (∆Ω) +λ
2φ[2]p (∆Ω) +O(λ3)

�

, (160)

consistently with eqs. (5) and (78). The 2PLT model reduces the orbital phase error from O(λ)
to O(λ2). From eq. (160) we also deduce that on a fixed-∆Ω interval the total accumulated
phase (like the total elapsed time) scales as 1/λ, increasing with q. We have highlighted such
a fixed-∆Ω interval in figures 5 to 9 with blue and orange colored regions, which contain an
increasing portion of phase as q increases.

These results, although preliminary, are promising: given the improvement between the
0PLT and 2PLT models, we expect the comparison with NR to markedly improve as we proceed
to significantly higher PLT orders. The orders considered so far only included dissipative 0PA
information, while starting from 3PLT order the model will also include post-adiabatic effects.
Furthermore, we expect accuracy to significantly improve once we incorporate the final plunge,
given that the peak merger amplitude occurs roughly when the particle crosses the light ring
at r = 3Mtot [10], which occurs at a frequency outside the expected domain of validity of our
transition-to-plunge expansion.

6.3 Quantitative comparisons with numerical relativity and surrogate wave-
forms

In the previous subsection we qualitatively compared our model with NR waveforms for quasi-
circular and non-spinning black hole binaries with different mass ratios for the (l, m) = (2, 2)
mode. In this section we quantitatively assess the accuracy of our model’s underlying ingredi-
ents (its amplitudes and the dynamics that determines its phasing) as functions of frequency
and mass ratio.

We again compare to SXS simulations, but we now also consider the surrogate model
BHPTNRSur1dq1e4 [32,33]. This model is built from a 0PA inspiral, a “generalized” leading-
order (Ori-Thorne) transition to plunge [34], and a geodesic plunge. We discuss the dynamics
and waveform-generation mechanism of this model in the next section, but here we only note
that it includes both a transition and a plunge. The full BHPTNRSur1dq1e4 model includes
calibration parameters that allow it to mimic NR waveforms in the comparable-mass regime,
but to better assess our own sources of error we compare only to the uncalibrated BHPTNR-
Sur1dq1e4 model. We specifically opt to compare against this model because its construction
and expected accuracy are most similar to our own (since it is based on a 0PA inspiral and a
transition-to-plunge model), while other inspiral-merger-ringdown models are largely indis-
tinguishable from NR for the systems and mass ratios we consider here. When comparing to
SXS simulations, we work in units of Mtot = 1 (the units used in the SXS output data) and
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Figure 5: Gravitational waveforms ((ℓ, m) = (2, 2)mode) for a non-spinning compact
binary with mass ratio q = 1. We compare the waveform corresponding to our 0PLT
and 2PLT models (displayed as blue and orange curves, respectively) with the NR
simulation SXS:BBH:1132 [56] of the same binary (plotted as a dashed black curve).
The waveforms are aligned in frequency and phase at the vertical dotted gray line,
where ω22 = 1/(6

p
6Mtot). The blue and orange colored regions cover a portion of,

respectively, the 0PLT and 2PLT self-force waveform that corresponds to an interval
of fixed ∆Ω of width 0.04/Mtot. This interval was chosen such that the phase has
the expected behaviour with increasing q, far enough from the 2PLT rate of change
becoming negative.
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Figure 6: Same as figure 5 for a mass ratio q = 4. The NR simulation is
SXS:BBH:1220 [57].
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Figure 7: Same as figure 5 for a mass ratio q = 6. The NR simulation is
SXS:BBH:0181 [58].
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Figure 8: Same as figure 5 for a mass ratio q = 9.2. The NR simulation is
SXS:BBH:1108 [59].

with ν as our expansion parameter, as explained in the previous section. When comparing to
BHPTNRSur1dq1e4, we work in units of M = 1 and with ϵ as our expansion parameter (the
conventions of the uncalibrated BHPTNRSur1dq1e4).

Because our formalism is based on functions of Ω (or∆Ω), in this section we directly com-
pare functions of frequency rather than functions of time. This also provides a clearer view
of our model’s intrinsic properties rather than involving arbitrary choices of initial time and
phase, as was done for the SXS waveform comparisons in the previous section. For an invari-
ant comparison of observables, we must use the waveform frequency rather than the orbital
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Figure 9: Same as figure 5 for a mass ratio q = 10. The NR simulation is
SXS:BBH:1107 [60].

frequency (and indeed, this is the only frequency we can extract from the SXS and BHPTNR-
Sur1dq1e4 simulations). Let us first write the ℓm mode of the waveform as hℓm = |hℓm|e−iΦℓm ,
defining the ℓm-mode waveform phase as Φℓm := −arg(hℓm). Substituting our transition-to-
plunge expansion of hℓm, we find the waveform phase is given by

Φℓm = mφp − arctan





Im
�

H[5]
ℓm

�

Re
�

H[5]
ℓm

�





−λ2
Re
�

H[5]
ℓm
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(161)

where the corrections are constructed from the real and imaginary parts of

Hℓm = λ
5H[5]
ℓm +λ

7H[7]
ℓm +λ

8H[8]
ℓm + . . .

We next define the ℓm-mode waveform frequency as ωℓm := 1
m

dΦℓm
d t . Using eqs. (78) and (79)

when taking the time derivative of Φℓm, we obtain

ωℓm = Ω∗ +λ
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2 F∆Ω[0] ∂∆ΩF∆Ω[0] +O(λ5) ,

(162)
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where we have used the fact that H[7]
ℓm =∆ΩH[7]A

ℓm and H[8]
ℓm = F∆Ω[0] H[8]A

ℓm , which follows directly

from eqs. (102) and (156). We now define ∆ωℓm := (ωℓm −Ω∗)/λ2, and invert the equation
above to obtain ∆Ω as a function of ∆ωℓm,

∆Ω=∆ωℓm +λ
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(163)

where all functions on the right-hand side are now functions of∆ωℓm. Finally, taking the time
derivative of eq. (162) and using eq. (163), we obtain the rate of change of the ℓm waveform
frequency as a function of ∆ωℓm,

dωℓm
d t

=λ3F∆ω[0] (∆ωℓm) +λ
5F∆ω[2] (∆ωℓm) +O(λ6)
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(164)

We emphasise the somewhat surprising result that H[8]
ℓm , which represents a 3PLT term in the

waveform amplitude, enters at the same order as F∆Ω[2] in the waveform’s frequency evolu-
tion. In our comparisons, we will include all the contributions to the above equations at the
displayed orders except contributions proportional to H[8]

ℓm , which would need to be extracted
from second-order calculations in the inspiral. We highlight the potential importance of these
omitted H[8]

ℓm terms below.
We extractωℓm (and its time derivative) from the SXS and BHPTNRSur1dq1e4 waveforms

by applying a second-order central finite difference scheme to the GW phase. Forward and
backward finite difference schemes were applied at the end points of the data sets. It was found
that more efficient cubic splines were inaccurate as a method of differentiating the data. In the
case of the SXS simulations, a Savitzky–Golay filter was applied to the frequency and frequency
evolution data to reduce high-frequency noise. This was done using Python’s scipy.signal
savgol_filter function with the options set to the following: window=101, order=6,
deriv=0, delta=0.01, mode=‘interp’. The filter was applied to data starting after junk
radiation and before the common horizon time in the frequency range −0.05≤∆ω22 ≤ 0.25,
the minimum frequency range of the SXS simulations chosen to compare with, determined
by the q = 20 simulation. In the case of the BHPTNRSur1dq1e4 datasets, small portions of
the data were removed where “stitching” occurs, to avoid very high-frequency noise when
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Figure 10: Comparisons of the waveform amplitude |h22| as a function of the wave-
form frequency ω22 for a series of mass ratios. Top: comparison between data from
SXS simulations SXS:BBH:0180 (q = 1), SXS:BBH:0056 (q = 5) and SXS:BBH:1107
(q = 10) (dashed lines) and our 2PLT waveform model in eq. (165) with the replace-
ment ϵ → ν (solid lines). Bottom: comparison between data from the uncalibrated
BHPTNRSur1dq1e4 model (dashed lines) and our 2PLT waveform model in eq. (165)
(solid lines).

differentiating [32]. See more details on how the BHPTNRSur1dq1e4 model is implemented
in section 7.1. Each of these details can be seen explicitly in the supplementary material.

We now turn to the comparisons. Figure 10 compares the amplitude |h22| as a function of
the waveform frequency ω22 for several mass ratios. Using eqs. (159) and (163), we see the
amplitude of the 2PLT model is simply given by

�

�h2PLT
ℓm

�

�= ϵ
�

�

�H[5]ℓm + (ωℓm −Ω∗)H
[7]A
ℓm

�

�

� . (165)

The above equation translates to a roughly linear growth with the waveform frequency. The
top panel of figure 10 compares our 2PLT model to data from SXS simulations, showing that
the 2PLT amplitudes capture the behaviour of the NR amplitudes for ω22 < Ω∗ for all mass
ratios, but with large disagreement at higher frequencies. This inaccuracy could be due to
our omission of higher-order terms or due to our omission of the final plunge. We can gain
some insight into the source of error by comparing to BHPTNRSur1dq1e4 in the bottom panel
of figure 10, which shows good agreement between the 2PLT amplitudes and those of the

50

https://scipost.org
https://scipost.org/SciPostPhys.17.2.056


Select SciPost Phys. 17, 056 (2024)

Figure 11: Comparisons of the rate of change of the waveform frequency, ω̇22, as a
function of ∆ω22 for a series of mass ratios. Top: comparison between data from
SXS simulations SXS:BBH:0180 (q = 1), SXS:BBH:0056 (q = 5) and SXS:BBH:1107
(q = 10) (dashed lines) and our 2PLT model defined in eq. (164) (solid lines), with
the replacement λ→ ν1/5. Bottom: comparison between the uncalibrated BHTNR-
Sur1dq1e4 model (dashed lines) and our 2PLT model (164) (solid lines).

uncalibrated BHPTNRSur1dq1e4 model across all mass ratios, despite the fact that BHPTNR-
Sur1dq1e4 incorporates the final plunge. This suggests that in the frequency range shown in
these figures, our omission of the plunge cannot account for our error, and the dominant source
of error is likely our omission of higher-order terms in the transition-to-plunge expansion.

We next compare the underlying dynamics that drives the waveform phasing. This is en-
tirely encoded in the evolution of the waveforms frequency, ω̇ℓm := dωℓm/d t. The com-
parisons against SXS simulations and the BHPTNRSur1dq1e4 model are shown in the top
and bottom panels of figure 11, respectively. The comparison against SXS simulations, in
the top panel, shows that the accuracy of our 2PLT dynamics is significantly lower than the
accuracy of our waveform amplitudes. To compare between figure 11 and figure 10, note
that the frequency interval in figure 11 is significantly narrower than in figure 10: the in-
terval ∆ω22 ∈ (−0.02, 0.02) in figure 11 corresponds to a frequency interval ranging from
ω22 ∈ (0.057,0.080) for q = 1 to ω22 ∈ (0.061, 0.075) for q = 10. We can again question
whether our error stems primarily from our omission of higher-order terms or from our omis-

51

https://scipost.org
https://scipost.org/SciPostPhys.17.2.056


Select SciPost Phys. 17, 056 (2024)

sion of the plunge. However, in this case we see substantial differences even at ∆ω22 = 0,
indicating that higher-order terms in the dynamics are important regardless of the impact of
the plunge. In the bottom panel of figure 11, we also notice a significant difference between
our results and those of BHPTNRSur1dq1e4. This difference does not appear to converge to
zero with increasing q. Such lack of convergence between the two models might be due to
the particular numerical details of BHPTNRSur1dq1e4 or of our extraction of ω̇22. However,
we will explore this in more detail in the next section, where we perform an isolated com-
parison with the underlying transition-to-plunge model used in BHPTNRSur1dq1e4; in that
comparison, we do observe that the two models converge as expected for q→∞.

Since we are working with asymptotic approximations, the reduction in error with increas-
ing q (or, equivalently, decreasing ϵ, λ and ν) is ultimately the most crucial test of our formu-
lation. The validity of our method rests on the assumption that for all finite n ≥ 0, the error
(i.e., the difference between an nPLT model and an exact solution) scales appropriately with
λ. Assuming sufficiently small numerical errors and sufficiently small eccentricity in the NR
simulations, our formalism implies

�

�ω̇nPLT
ℓm − ω̇

NR
ℓm

�

� = O(λn+4) for all n ≥ 2. We now test that
criterion by examining the residual between NR and the 0PLT/2PLT dynamics as a function of
mass ratio at a fixed value of ∆ω22. From eq. (164) we first define

Fω0PLT (ν,∆ωℓm) := ν3/5F∆ω[0] (∆ωℓm) , (166)

Fω2PLT (ν,∆ωℓm) := ν3/5F∆ω[0] (∆ωℓm) + νF∆ω[2] (∆ωℓm) , (167)

noting again that we omit H[8]
ℓm terms in F∆ω[2] . In principle, at fixed ∆ω22 and for sufficiently

small ν, the residual
�

�ω̇NR
ℓm − Fω0PLT

�

� should approach νF∆ω[2] = Fω2PLT − Fω0PLT, and
�

�ω̇NR
ℓm − Fω2PLT

�

�

should scale as a 3PLT term, O(ν6/5). We plot these residuals in figure 12. Although the residu-
als decrease as we move from the 0PLT to the 2PLT model (see the orange and green dots), the
residual

�

�ω̇NR
ℓm − Fω0PLT

�

� does not agree well with νF∆ω[2] . Moreover, the residual
�

�ω̇NR
ℓm − Fω2PLT

�

�

does not decay more rapidly than the residual
�

�ω̇NR
ℓm − Fω0PLT

�

�, i.e. the slope of the green points
is not steeper than the slope of the orange points. However, both of these findings are expected
because we neglect the contribution due to H[8]

ℓm in eq. (164). We leave the inclusion of H[8]
ℓm

in our model, and assessment of its impact, to future work.

7 Comparison with other approaches

The preceding section compared our 2PLT model with “exact” NR simulations and with an
inspiral-merger-ringdown model that (like our model) is based on black hole perturbation
theory. Rather than making further numerical comparisons, we now examine how our overar-
ching approach differs from other approaches used in inspiral-merger-ringdown models. We
specifically compare to two approaches: (i) the method used by the surrogate model BHPT-
NRSur1dq1e4 [32, 33], including its underlying treatment of the transition to plunge [34],
and (ii) the EOB framework. Both of these approaches are conceptually similar to our own
but differ in important ways. In both cases, we suggest how our approach might be used to
improve models that are based on these methods.

7.1 Comparison with the transition-to-plunge model of BHPTNRSur1dq1e4

We now compare our transition-to-plunge expansion with the approach used in the surrogate
model BHPTNRSur1dq1e4 [32,33].

The most fundamental difference between our approach and BHPTNRSur1dq1e4’s is that
we adopt a multiscale expansion of the Einstein equations, while BHPTNRSur1dq1e4 follows
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Figure 12: Waveform frequency evolution and residuals across mass ratios at a fixed
value of ∆ω22 = −0.008/Mtot, well within the transition-to-plunge regime. Blue
points: ω̇22 calculated from SXS data. Blue line: Fω2PLT, for which in this plot we

have excluded the term containing the 3PLT mode amplitude H[8]
ℓm in eq. (164). Or-

ange points: residual of the SXS data after subtracting Fω0PLT. Orange line: the 2PLT
contribution ν F∆ω[2] . Green points: the residual after subtracting Fω2PLT from the SXS
data. Sixteen SXS simulations were used, with mass ratios varying from q = 1 to
q = 10.

a type of iterative approach to solving the field equations. As stressed earlier in sections 2
and 6.1, in the multiscale approach we solve field equations on a grid of parameter values
(J a for the inspiral and ∆J a for the transition to plunge) as an offline step, and the online
waveform generation is then a rapid process of evolving through the parameter space. This is
the basis of the Fast EMRI Waveforms framework [7,61] and of the 0PA waveforms in [5,62],
for example. It is also the only extant method of generating 1PA waveforms, and its extension
to generic orbits in Kerr at 1PA (and higher) order is well understood [4]. But nearly all work
on this method has been restricted to the inspiral phase, and none at all has been done for
the transition to plunge. The iterative approach of BHPTNRSur1dq1e4 instead begins with
leading-order, geodesic motion, solves a field equation with that motion as a source, uses the
outputs (fluxes and self-forces, for example) to determine a corrected, evolving trajectory, and
then solves field equations with that new trajectory. This is the basis for schemes in [63–66],
which BHPTNRSur1dq1e4 builds on. An advantage of this approach is that once an inspiral-
transition-plunge trajectory is known, it is straightforward to construct time-domain inspiral-
merger-ringdown waveforms using a time-domain Teukolsky solver. A disadvantage is that
waveform generation in this approach is slow because solving the field equations with an
evolving, non-geodesic source is expensive. BHPTNRSur1dq1e4 overcomes that limitation by
simulating a large bank of time-domain waveforms and then constructing a surrogate model
for those waveforms; the surrogate model can then generate waveforms rapidly. Another
potential disadvantage is that no framework has been developed to extend the iterative method
to second order, and it is unclear whether surrogate models can be straightforwardly built for
generic binary configurations.

Beyond this difference in overall strategy, our approach also differs from
BHPTNRSur1dq1e4 in its construction of the transition-to-plunge trajectory, even at low or-

53

https://scipost.org
https://scipost.org/SciPostPhys.17.2.056


Select SciPost Phys. 17, 056 (2024)

ders in our expansion. BHPTNRSur1dq1e4 uses the “generalized Ori-Thorne” model of Apte
and Hughes [34], which corresponds to a transition-to-plunge expansion truncated at leading
order in the small-mass-ratio expansion, with refinements that remove pathologies from the
Ori-Thorne model. The Apte-Hughes model builds a full trajectory by switching between the
adiabatic inspiral, the transition to plunge and the geodesic plunge at some times t i and t f
outside and inside the ISCO, respectively. These sharp jumps from one regime to another lead
to discontinuities (at t i and t f ) in orbital quantities such as orbital frequency, energy E = −ut ,
and azimuthal angular momentum Lz = uφ . This is precisely what is meant by the “stitching”
in the BHPTNRSur1dq1e4 model mentioned in section 6.2. These discontinuities are resolved
by introducing different smoothing procedures dubbed “Model 1” and “Model 2”, which we
review below.

In addition to removing discontinuities, the Apte-Hughes model corrects an inconsistency
in the original Ori-Thorne model [11]. The Ori-Thorne model keeps the orbital frequency fixed
at its ISCO value during the full transition-to-plunge regime, trivially relating the corrections
to the orbital energy and angular momentum through δE = Ω∗δLz . As noted by Kesden [49],
this is in conflict with the normalization of the four-velocity; the orbital frequency and orbital
radius change by a comparable amount (∼ λ2) over the transition to plunge, making it in-
consistent to freeze one while the other evolves. Even though it is not explicitly mentioned,
this incorrect feature of the Ori-Thorne model is bypassed in the Apte-Hughes treatment by
allowing the corrections to the orbital energy and angular momentum to evolve independently
from the Ori-Thorne constraint. This makes the Apte-Hughes model consistent at 0PLT order.

Since our analysis has centred on frequency evolution throughout this paper, in our com-
parison we consider the Apte-Hughes orbital frequency, which we can write as4

Ω(λ, ˆ̄τ) =
f (rp(λ, ˆ̄τ))Lz(λ, ˆ̄τ)

E(λ, ˆ̄τ)rp(λ, ˆ̄τ)2
; (168)

cf. eq. (4.9) of [34]. Here we have introduced a slow-time variable ˆ̄τ := λ(τ̄ − τ̄∗), where
τ̄ is Mino time, related to coordinate time via dτ̄ = d t/(r2

p U), and where τ̄∗ is the Mino

time at which the particle crosses the ISCO. rp has the form rp = 6M + λ2δR( ˆ̄τ), where δR
satisfies a Painlevé differential equation derived by Ori and Thorne [11] (and independently
by Buonanno and Damour [10]). E and Lz have the forms E∗+δE(λ, ˆ̄τ) and Lz∗+δLz(λ, ˆ̄τ). In
the original Ori-Thorne treatment, δE = λ4 dE

dτ̄

�

�

∗
ˆ̄τ and the analogue for δLz , corresponding

to the leading flux-driven changes around the ISCO. In order to remove the discontinuities
at t i , mentioned above, the Apte-Hughes Model 1 and Model 2 modify these transition-to-
plunge expansions of E and Lz by adding corrections corresponding to higher-order terms in a
Taylor series around the ISCO (as well as a correction to values at the ISCO, in Model 1). The
coefficients in this extended Taylor series are fixed by requiring E and Lz to be C1 at t i .

Apte and Hughes’ addition of these new terms in E and Lz , and their method of fixing them,
is (self-admittedly) ad hoc. However, it is conceivable that the additional terms implicitly
mimic higher-order PLT terms, effectively raising the Apte-Hughes model beyond 0PLT order.
To explore that possibility, we consider the Apte-Hughes frequency evolution in more detail.
We restrict our analysis to their Model 2, which was indicated as the preferred choice in [34]
and used in BHPTNRSur1dq1e4. We perform the comparison with our model using Mino time.
The orbital frequency in the Apte-Hughes Model 2 is obtained by substituting the expansions
of the orbital radius, energy and angular momentum,

rp = 6M +λ2δR(τ̄) , (169)

4Note that here λ= ϵ1/5, while in [34] λ is Mino time and the mass ratio is denoted as η.
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Figure 13: Rate of change of the orbital frequency with respect to Mino time, Ω′,
obtained from the Apte-Hughes Model 2 (solid curves) and our 0PLT (dotted curves)
and 2PLT (dashed curves) approximations in eq. (172). The scale on the y-axis is
logarithmic. The considered mass ratios are ϵ = 10−1 (blue), ϵ = 10−2 (orange),
ϵ = 10−3 (green), ϵ = 10−4 (red). With decreasing mass ratio all curves converge to
the 0PLT approximation, as expected.
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6

�

ˆ̄τ
λ

�3

LM2
3 , (171)

into eq. (168). The values of the coefficients EM2
2 , EM2

3 , LM2
2 and LM2

3 were provided to us by
the authors of [34] and depend on the mass ratio. It is then straightforward to compute the rate
of change of the orbital frequency with respect to Mino time, Ω′ := dΩ/dτ̄, which we plot as a
function of ∆Ω in figure 13 (solid curves). In order to compare with the transition-to-plunge
expansion to 2PLT order, we convert eq. (78) to Mino time as

dΩ
dτ̄
= r2

p U
dΩ
d t
= λ3

�

36
p

2F∆Ω[0]
�

+λ5
�

36
p

2F∆Ω[2] + 12
p

2r[0]F
∆Ω
[0] + 36U[0]F

∆Ω
[0]

�

+O(λ6) .
(172)

We display the 0PLT and 2PLT approximations in figure 13 as dotted and dashed curves, respec-
tively. We notice that as the mass ratio decreases, both the 2PLT approximation and Model 2
asymptotically converge to the 0PLT approximation.

We now look at the transition-to-plunge expansion of the orbital frequency in more detail.
From eqs. (4.5) and (4.6) of [34] we extract the mass-ratio scaling of Apte-Hughes’ Model 2
parameters: EM2

2 ∼ LM2
2 ∼ λ

8 and EM2
3 ∼ LM2

3 ∼ λ
11. Substituting eqs. (169), (170) and (171)
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into eq. (168), we then obtain

Ω=Ω∗ −λ2 δR

24
p

6M2
+λ4

2
p

3
�

1− 54M2
� dE

dτ̄

�

�

∗
ˆ̄τ+ 3
p

6δR2

2592M3

+λ6
108M2

�p
2L̄M2

2 − 3
p

3M ĒM2
2

�

ˆ̄τ2 − 3
p

3
�

1− 54M2
� dE

dτ̄

�

�

∗δR ˆ̄τ− 2
p

6δR3

15552M4

+O(λ8) ,

(173)

where L̄M2
2 := LM2

2 /λ
8 and ĒM2

2 := EM2
2 /λ

8. We can compare this expression for Ω with an
analogous one obtainable within our framework. For easier comparison with eq. (173) we
compute the transition-to-plunge expansion of the orbital frequency in the slow-time formu-
lation, that is, we expand all orbital quantities in integer powers of λ at fixed ˆ̄τ. We obtain,
up to 3PLT order,

Ω=Ω∗ −λ2
r[0]

24
p

6M2
+λ4

5M r2
[0] + r ′′[0] − 24M2r[2]

576
p

6M4
−λ5

54M2 f r
[5] + r[3]

24
p

6M2

+λ6
70M r3

[0] + 36r[0]
�

r ′′[0] − 20M2r[2]
�

+ 9
�

192M3r[4] + 3(r ′[0])
2 − 8M r ′′[2]

�

41472
p

6M5
+O(λ7) .

(174)

Here, r[n] are the coefficients of the expansion of the orbital radius at fixed ˆ̄τ,

rp = 6M +λ2
∞
∑

n=0

λnr[n]( ˆ̄τ) ,

and primed quantities are differentiated with respect to ˆ̄τ. f r
[5] is given by the first-order

inspiral self-force evaluated at the ISCO-crossing time (after a matching procedure analogous
to the one carried out in section 5.3). Finally, we expand eq. (174) around ˆ̄τ= 0,

Ω=Ω∗ +λ
2
�

c(2,3) ˆ̄τ
3 +O( ˆ̄τ8)

�

+λ4
�

c(4,1) ˆ̄τ+O( ˆ̄τ6)
�

+λ5
�

c(5,0) +O( ˆ̄τ5)
�

+λ6
�

c(6,4) ˆ̄τ+O( ˆ̄τ9)
�

+O(λ7) .
(175)

The coefficients c(m,n), m, n ∈ N, labelled with the powers of λ and ˆ̄τ with which they appear
in the expansion, are constructed from ISCO quantities only. They can be easily obtained by
solving the equations of motion for the radial corrections r[n], n ≥ 0, in the limit ˆ̄τ→ 0 (ex-
plicitly, we find r[0] ∼ ˆ̄τ3+O( ˆ̄τ8), r[2] ∼ ˆ̄τ6+O( ˆ̄τ11), r[3] ∼ ˆ̄τ5+O( ˆ̄τ10) and r[4] ∼ ˆ̄τ4+O( ˆ̄τ9)).
By comparing eqs. (174) and (175) with eq. (173), we again confirm that the transition-to-
plunge description of Apte and Hughes is equivalent to our 0PLT approximation since r[0] and
δR solve the same Painlevé transcendental equation. Although Model 2 does not include r[2],
it correctly captures the general behaviour (linear in ˆ̄τ at leading order) of the 2PLT order,
though the explicit time dependence is distinct. The two models begin to significantly differ
at 3PLT order (and in general all odd PLT orders, which are absent in Apte-Hughes’ Model 2),
where our expansion starts to include conservative effects.

Our analysis in this section shows that the ability of the correction terms in Apte and
Hughes’ model to consistently mimic higher PLT orders is limited. This leads us to conclude
that the inclusion of higher-order PLT terms should improve the performance of BHPTNR-
Sur1dq1e4 and similar models. We note, in particular, that 2PLT terms are easily calculated
from 0PA fluxes and therefore can be easily incorporated.
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The Apte-Hughes model describes the transition to plunge for all black hole spins, while the
results in this paper are limited to a Schwarzschild primary. It is important to mention that the
multiscale, phase-space framework presented here remains unchanged and naturally carries
over to quasi-circular and equatorial orbits in Kerr spacetime (results limited to the orbital
motion in the slow-time formulation were presented in [12–14]). Given the availability of
adiabatic inspirals in Kerr spacetime, 2PLT waveforms can be computed within a framework
equivalent to the one we have presented in this paper (see [67]). Moving to higher PLT orders
presents the same challenges that are being tackled in constructing 1PA inspiral waveforms in
Kerr spacetime (e.g., the construction of the second-order source) [68].

7.2 Comparison with the effective one-body framework

The EOB waveform-generation framework is conceptually very similar to our own. The key
inputs (a Hamiltonian, waveform amplitudes, and radiation-reaction forces) are calculated as
functions on phase space, and the waveform is then computed by solving ordinary differential
equations to find phase-space trajectories. EOB also provides an important point of comparison
for several reasons:

1. The EOB dynamics is known to exactly recover 0PLT dynamics in the small-mass-ratio
limit [10]. It is important to assess whether EOB also captures subleading PLT dynamics.

2. Quasicircular EOB waveforms are based on a quasicircular approximation in which
dΩ/d t (or drp/d t) is explicitly set to zero in the calculation of waveform amplitudes
and fluxes, and in the late inspiral and plunge this treatment of the amplitudes is cor-
rected through non-quasicircular (NQC) factors that are calibrated to numerical wave-
forms [24, 69, 70]. It is conceivable that these NQC corrections are related to the sub-
leading terms involving dΩ/d t and d∆Ω/d t that appear throughout our multiscale ex-
pansion.

3. The inclusion of NQC corrections has been crucial for achieving high accuracy with EOB
waveforms [71, 72], but their importance is significantly reduced by using self-force
data to improve EOB’s treatment of energy fluxes [73]. It is possible that EOB can be
further improved, and its reliance on NQC corrections can be further reduced, by using
information from the self-forced transition to plunge.

Motivated by these considerations, in this section we show that EOB can, in principle,
reproduce our results for the transition-to-plunge dynamics at least to 3PLT order in the small-
mass-ratio limit. However, we also pinpoint how EOB implementations can miss certain effects
related to evolution of Ω (or rp), and we highlight possible ways our results could be used to
inform EOB models.

The EOB formalism begins by mapping the two-body dynamics onto the effective dynamics
of a particle in a deformed Schwarzschild background, with the deformation parametrized by
the symmetric mass ratio ν. We consider the EOB Hamiltonian [10,22,74]

HEOB :=
Mtot

mp

√

√

√

√

√1+ 2ν





√

√

√

√A(rp)

�

1+
p2

r m2
p

µ2B(rp)
+

p2
φ

m2
p

µ2r2
p
+Q(rp, pr)

�

− 1



 , (176)

where the total mass Mtot, the reduced mass µ and the symmetric mass ratio ν are defined as

Mtot := M +mp = M(1+ ϵ) , µ :=
Mmp

Mtot
=

Mϵ
1+ ϵ

, ν :=
µ

Mtot
=

ϵ

(1+ ϵ)2
. (177)
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To facilitate the comparison with the self-force dynamics, we have rescaled the EOB Hamilto-
nian and the momenta pµ with the mass of the secondary mp = Mϵ (though we recognize this
is unnatural in the EOB framework, where one would normally use µ for such rescaling). The
EOB potentials expanded in powers of ν are given by [75,76]

A(rp) = 1−
2Mtot

rp
+ ν a(Mtot/rp) + ν

2a2(Mtot/rp) +O(ν3) , (178)

B(rp) =
1

A(rp)

�

1+ ν d(Mtot/rp) + ν
2d2(Mtot/rp) +O(ν3)

�

, (179)

Q(rp, pr) = νq(Mtot/rp) p
4
r +O(ν2, p6

r ) . (180)

The potentials B and Q only affect eccentric orbits and do not enter the comparison we consider
here until high order (e.g., we have found the potential d affects the transition-to-plunge
dynamics at 5PLT order). At the orders we consider explicitly here, we will only encounter the
potential νa(Mtot/rp), and we can replace ν with ϵ in that term.

The system’s Hamilton equations read [10]

drp

d t
=
∂ HEOB

∂ pr
, (181a)

dφp

d t
:= Ω=

∂ HEOB

∂ pφ
, (181b)

dpr

d t
= −
∂ HEOB

∂ rp
+ Fr , (181c)

dpφ
d t
= Fφ . (181d)

The radiation-reaction forces appearing in the Hamilton equations are given by [23,73]

Fr = −
FEOB

Ω

pr

pφ
, Fφ = −

FEOB

Ω
, (182)

where FEOB is the energy flux per unit secondary mass [73]

FEOB =
1

8πmp

∑

ℓ,m

(mΩ)2 |Hℓm|
2 . (183)

Before we examine the transition to plunge, it will be instructive to consider the simpler
case of the inspiral, comparing the EOB dynamics with the self-force inspiral expansion of
section 3. To make this comparison, we perturbatively expand the EOB equations in integer
powers of ϵ at fixed mechanical parameters J a. We refer to reference [77] for a more detailed
treatment of this expansion of the EOB dynamics. In practice, we substitute rp and dJ a/d t
using, respectively, eqs. (33) and (35), and additionally expand

pr(ϵ, J a) = ϵ
�

p(0)r (Ω) + ϵ p(1)r (J
a) +O(ϵ2)

�

, (184)

pφ(ϵ, J a) = p(0)
φ
(Ω) + ϵ p(1)

φ
(J a) +O(ϵ2) , (185)

FEOB(ϵ, J a) = ϵFEOB
(1) (Ω) + ϵ

2FEOB
(2) (J

a) +O(ϵ3) . (186)

The radiation-reaction forces (182) then admit the following expansions:

Fr(ϵ, J a) = ϵ2F (2)r (J
a) +O(ϵ3) , (187a)
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Fφ(ϵ, J a) = ϵ F (1)
φ
(Ω) + ϵ2F (2)

φ
(J a) +O(ϵ3) . (187b)

At adiabatic order, the expanded Hamilton equations (181) give

r(0) =
M

(MΩ)2/3
, (188)

FΩ(0) = −
3Ω4/3

M2/3U(0)D
F (1)
φ

. (189)

The radiation-reaction force Fφ defined from eq. (181d) is related to the azimuthal self-force

by Fφ =
fφ
U , which at adiabatic order reduces to F (1)

φ
=

f (1)
φ

U(0)
=

f (r(0))
ΩU(0)

f t
(1), where the last equality

derives from the orthogonality condition uµ f µ = 0. Substituting this into eq. (189) allows us
to correctly reproduce the 0PA result in eq. (37). The 1PA correction to the orbital radius reads

r(1) =
M

6(MΩ)2/3
�

6− 4U(0) + 8(MΩ)2/3U(0) − a′
�

(MΩ)2/3
��

. (190)

This is a gauge-dependent quantity. While the EOB framework we discuss here is set up
in the Schwarzschild gauge, our formalism uses the Schwarzschild gauge only at the back-
ground level, without specifying a gauge for the metric perturbations appearing in the self-
force (61). Equating eqs. (190) and the 1PA result (39a) corresponds to adopting the EOB
gauge for the self-force dynamics. The 1PA rate of change of the orbital frequency then re-
produces the self-force result in eq. (39b), after substituting the radiation-reaction force as
F (2)
φ
= 1

U(0)
f (2)
φ
− U(1)

U2
(0)

f (1)
φ

and using the orthogonality condition to write f (2)
φ

in terms of the t

and r components of the first- and second-order self-force,

f (2)
φ
=

1
Ω

�

f (r(0)) f
t
(2) + f ′(r(0))r(1) f

t
(1) −

∂Ωr(0)F
Ω
(0)

f (r(0))
f r
(1)

�

.

This analysis shows that the EOB dynamics can reproduce the 1PA self-force dynamics
when expanded in the same small-mass-ratio, multiscale form. Referring back to our enumer-
ated items at the beginning of the section, we can now judge that the EOB dynamics without
NQCs already correctly encodes the effects of nonzero dΩ/d t during the inspiral. These terms
arise from substituting expansions in powers of ϵ at fixedΩ into the left-hand side of Hamilton’s
equations (and applying the chain rule). In fact, the multiscale expansion in the small-mass-
ratio limit is roughly equivalent to the post-adiabatic expansion used in EOB [78]. Like our
inspiral expansion, the post-adiabatic EOB expansion breaks down at an ISCO due to the be-
haviour of dΩ/d t in this approximation; such breakdown can be seen by eye from the plots in
reference [78].

However, there are several caveats to this conclusion:

1. Exactly reproducing the 1PA self-force dynamics requires fixing the EOB potential a in
eq. (178) to agree with its value in self-force theory. This has been done in a gauge-
invariant way in references [75,79,80], for example.

2. We have equated the EOB radiation-reaction force Fφ to the local self-force fφ/U . Since
Fφ in EOB is obtained from energy fluxes via eq. (182), we have implicitly assumed fφ
is linked to fluxes through an energy balance law of the form (182). This relationship is
not known to be true at second order in self-force theory.

3. Even assuming energy balance, the EOB dynamics will only reproduce the 1PA dynamics
if the fluxes FEOB

(1) and FEOB
(2) are made to agree with their values from self-force theory.
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Since the EOB fluxes are calculated from waveform amplitudes via eq. (183), repro-
ducing the self-force fluxes requires reproducing the amplitudes H(1)

ℓm and H(2)
ℓm . This

calibration has been done in reference [73], for example. Importantly, the amplitudes
H(2)
ℓm contain contributions directly proportional to Ω̇ (through Ω̇ terms that appear as

sources in the second-order Einstein equation). These contributions must be consistently
accounted for in the EOB inspiral amplitudes. They also appear to be distinct from NQC
corrections: the terms that appear in H(2)

ℓm are linear in Ω̇, while NQC corrections to the
amplitudes appear as a multiplicative factor that depends only on even powers of pr
(∼ Ω̇) [73]. This hints that, at least in some variants of EOB, NQC corrections might
serve to mask inaccuracies in the inspiral dynamics rather than serving to correct fun-
damental inadequacies of a quasicircular approximation.

4. Equation (183) for the energy flux is itself not exact. First, it must include fluxes into
the primary black hole (or into both black holes for comparable-mass binaries). Second,
if we write the waveform modes in terms of real amplitudes, as hℓm = |Hℓm(J a)|e−iΦℓm ,
then the exact flux to future null infinity (per unit secondary mass) is

F = 1
8πmp

∑

ℓm

|ḣℓm|2 =
1

8πmp

∑

ℓm

�

(mωℓm)
2 |Hℓm|

2 +
�

dJ a

d t
∂Ja |Hℓm|

�2�

, (191)

whereωℓm := 1
m Φ̇ℓm. This is the physical energy flux, proportional to minus the integral

over the sphere at infinity of the square of the time derivative of the shear. Note the
numerically dominant piece of the second term comes from Ω̇∂Ω|Hℓm|.

Equation (191) differs from the flux formula (183) in two ways. First, it involves factors
of the waveform mode frequency ωℓm, which differs from Ω by small but non-negligible
O(ϵ) corrections proportional to Ω̇, in analogy with eq. (162); see Appendix B of refer-
ence [18]. Second, eq. (191) depends explicitly on (Ω̇)2. However, the terms propor-
tional to (Ω̇)2 are suppressed by O(ϵ2) because Ω̇= O(ϵ), meaning this second correction
is not relevant to the 1PA dynamics.

We now turn to the transition-to-plunge expansion of the EOB dynamics, keeping in mind
our findings from the inspiral. To compare with the results we have obtained within the self-
force formalism in section 4, we consider the near-ISCO scaling of the orbital frequency (75)
and expand the orbital radius and the rates of change of ∆J a according to eqs. (76), (78) and
(79). The momenta pr and pφ and the EOB energy flux are also expanded as

pr(λ,∆J a) = λ3
2
∑

n=0

λnp[n]r (∆Ω) +λ
3
∞
∑

n=3

λnp[n]r (∆J a) , (192)

pφ(λ,∆J a) =
4
∑

n=0

λnp[n]
φ
(∆Ω) +

∞
∑

n=5

λnp[n]
φ
(∆J a) , (193)

FEOB(λ,∆J a) = λ5FEOB
[5] +λ

7FEOB
[7] (∆Ω) +

∞
∑

n=8

λnFEOB
[n] (∆J a) . (194)

Substituting these expansions into eq. (182), we find that the radiation-reaction forces admit
the following expansions:

Fr(λ,∆J a) = λ8F [8]r (∆J a) +O(λ9) , (195a)

Fφ(λ,∆J a) = λ5F [5]
φ
+λ7F [7]

φ
(∆Ω) +λ8F [8]

φ
(∆J a) +O(λ9) . (195b)
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We can relate the radiation-reaction forces (195) to the t and r components of the transition-

to-plunge self-force (80) by again using Fφ =
fφ
U and the orthogonality condition uµ fµ = 0:

F [5]
φ
= 4
p

3M f t
[5] , (196a)

F [7]
φ
= 4M

�p
3 f t
[7] − 30

p
2M∆Ω f t

[5]

�

, (196b)

F [8]
φ
= 4
p

3M
�

f t
[8] + 54

p

6M2F∆Ω[0] f r
[5]

�

. (196c)

We obtain the equations of motion for the forcing terms F∆Ω[n] from the expanded Hamilton

equations (181). After using the relations (196), we have checked up to 3PLT order that F∆Ω[0]
satisfies eq. (83), while the subleading terms F∆Ω[2] and F∆Ω[3] obey eq. (86) with sources (C.3)
and (C.4), respectively.

From this analysis, we conclude that the EOB formalism correctly captures the dynamics
of the transition to plunge at least to 3PLT order in the small-mass-ratio limit. However, all of
the caveats we listed for the inspiral are even more pronounced for the transition to plunge.
In particular, precise balance laws between the local force and asymptotic flux have not been
derived for the transition-to-plunge expansion, and corrections to the flux formula (183) could
be important. The exact flux formula (191) in the transition-to-plunge regime becomes

F = 1
8πmp

∑

ℓm

�

(mωℓm)
2 |Hℓm|

2 +
�

d∆J a

d t
∂∆Ja |Hℓm|

�2�

. (197)

As shown in eq. (161), the waveform frequencyωℓm differs from the orbital frequency Ω by an
amount of order ϵ3/5 (3PLT), which could be substantially more significant than the analogous
difference in the inspiral. Moreover, the scalings d∆Ω

d t ∼ ϵ
1/5 and ∂∆Ja |Hℓm| ∼ ϵ2/5 suggest that

the second term in eq. (197) is only suppressed by a factor ϵ6/5 relative to the first term, again
making it more significant than the analogous correction in the inspiral.

These considerations suggest that EOB inspiral-merger-ringdown waveforms might be fur-
ther improved using self-force waveform amplitudes (or fluxes) during the transition to plunge.
However, this might require carrying self-force calculations to 3PLT order and higher. Con-
versely, the fact that EOB dynamics encodes the transition-to-plunge dynamics (given correct
radiation-reaction forces) suggests that our transition-to-plunge results might be resummable
into a simpler form.

8 Conclusion

We have established from first principles a framework based on multiscale expansions that en-
ables fast waveform generation during the transition-to-plunge stage of asymmetric compact
binary coalescences. Our framework builds on the waveform-generation formalism presented
in [4, 8, 9] for the inspiral, combined with the scheme of matched asymptotic expansions be-
tween the inspiral and the transition to plunge developed in [12–14, 48]. Our framework is
complete for non-spinning, quasi-circular and equatorial binaries, and in particular takes into
account the dynamical change of the background mass and spin.

We have considered the coupled problem of the orbital motion and the field equations in
the inspiral and transition-to-plunge regimes separately, and have shown that the solutions
to the two problems can be asymptotically matched in a buffer region exterior to the ISCO
where the two regimes overlap. Using the GSF data that is currently available, we have built
the simplest transition-to-plunge waveforms using a 0PLT and a 2PLT model, which takes into
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account the transition-to-plunge dynamics to leading and first non-vanishing subleading order
in the multiscale expansion, respectively. We have left the hybridization of our transition-
to-plunge waveforms with the inspiral and the plunge at, respectively, early and late times
to future work. We have performed extensive comparisons between our GSF models and
NR simulations, the BHPTNRSur1dq1e4 surrogate model and the EOB formalism. We found
that our models lead to a promising route for capturing both the orbital dynamics and the
waveforms of asymmetric binaries; see, e.g., figures 5 and 12. These numerical results validate
our GSF model and encourage the numerical implementation of higher-order PLT models.
They also motivate the analytic development and numerical implementation of more complete
models that include the primary spin and arbitrary orbital dynamics including eccentricity and
spin precession. This is left for future work.

Finally, we conclude by estimating how the model should improve as higher PLT orders
are included. For the inspiral, the GSF community has focused specifically on achieving 1PA
accuracy because the orbital phase (and hence the GW phase) has an expansion of the form [3]

φp =
1
ϵ

�

φ(0)p (Ω) + ϵφ
(1)
p (Ω,δM±) +O(ϵ2)

�

. (198)

The validity of this expansion can be seen straightforwardly from the structure of the equations
that determine φp during the inspiral, reproduced here for convenience:

dφp

d t
= Ω , (199)

dΩ
d t
= ϵ

�

FΩ(0)(Ω) + ϵF
Ω
(1)(Ω,δM±) +O(ϵ2)

�

. (200)

Equation (198) shows that, on any fixed frequency interval (e.g., the LISA frequency band),
the phase error of a 1PA model scales linearly with ϵ in the ϵ→ 0 limit. A 1PA model can there-
fore guarantee sufficiently small phase errors for sufficiently small ϵ. During the transition to
plunge, the phase instead admits an expansion of the form

φp =
1
ϵ1/5

�

φ[0]p (∆Ω) + ϵ
2/5φ[2]p (∆Ω) +O(ϵ3/5)

�

, (201)

as can be seen from the structure of the transition-to-plunge equations

dφp

d t
= Ω∗ + ϵ

2/5∆Ω , (202)

d∆Ω
d t

= ϵ1/5
�

F∆Ω[0] (∆Ω) + ϵ
2/5F∆Ω[2] (∆Ω) +O(ϵ3/5)

�

. (203)

This suggests that phase errors vanish in the ϵ → 0 limit even for a 0PLT model. For a 7PLT
model (being the highest PLT order considered in this paper) the phase error scales as ϵ7/5,
formally even smaller than the phase error accumulated over a 1PA inspiral. Such scaling
estimates should be used with caution for the transition to plunge because the low fractional
powers of ϵ mean that subsequent terms can easily compete with each other. However, when
combined with our promising results at 0PLT and 2PLT order, these estimates suggest that a
higher-order PLT model should be highly accurate for mass ratios in the range ≲ 1/10, which
is of interest for ground-based detectors.
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A Material for section 2

A.1 Barack-Lousto-Sago basis of tensor spherical harmonics

The Barack-Lousto-Sago harmonics [41, 81, 82] in Schwarzschild coordinates (t, r,θ ,φ) are
given by

Y 1ℓm
µν =

Y ℓm
p

2







1 0 0 0
0 f −2 0 0
0 0 0 0
0 0 0 0






, Y 2ℓm

µν =
Y ℓm
p

2 f







0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0






,

Y 3ℓm
µν =

Y ℓm
p

2







f 0 0 0
0 − f −1 0 0
0 0 0 0
0 0 0 0






, Y 4ℓm

µν =
r Y ℓm
p

2γ1







0 0 ∂θ ∂φ
0 0 0 0
∂θ 0 0 0
∂φ 0 0 0






,

Y 5ℓm
µν =

r Y ℓm
p

2γ1 f







0 0 0 0
0 0 ∂θ ∂φ
0 ∂θ 0 0
0 ∂φ 0 0






, Y 6ℓm

µν =
r2Y ℓm
p

2







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 s2






,

Y 7ℓm
µν =

r2Y ℓm
p

2γ2







0 0 0 0
0 0 0 0
0 0 D2 D1
0 0 D1 −s2D2






, Y 8ℓm

µν =
r Y ℓm
p

2γ1







0 0 s−1∂φ −s ∂θ
0 0 0 0

s−1∂φ 0 0 0
−s ∂θ 0 0 0






,

Y 9ℓm
µν =

r Y ℓm
p

2γ1 f







0 0 0 0
0 0 s−1∂φ −s ∂θ
0 s−1∂φ 0 0
0 −s ∂θ 0 0






, Y 10ℓm

µν =
r2Y ℓm
p

2γ2







0 0 0 0
0 0 0 0
0 0 s−1D1 −s D2
0 0 −s D2 −s D1






,

(A.1)

where s := sinθ , f := 1 − 2M/r, D1 := 2(∂θ − cotθ )∂φ , D2 := ∂ 2
θ
− cotθ∂θ − s−2∂ 2

φ
and

Y ℓm = Y ℓm(θ ,φ) are the standard scalar spherical harmonics. The coefficients γ1 and γ2 are
defined as

γ1 := ℓ(ℓ+ 1), γ2 := (ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2) . (A.2)

Here we use the definition of Y 3ℓm
µν from [41] rather than [81]; the two differ by a factor of f .

The harmonics Y iℓm
µν are orthogonal with respect to a certain inner product, which satisfies

∮

dSηαµηβνY iℓm
µν Y ∗ jℓ

′m′

αβ
= κiδi jδℓℓ′δmm′ , (A.3)
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with dS = sinθdθdφ the surface element on the unit sphere,

ηµν := diag
�

1, f 2, r−2, r−2 sin−2 θ
�

, (A.4)

and

κi :=

�

f 2 for i = 3 ,
1 otherwise .

(A.5)

Equation (A.4) corrects a typo appearing in [81], as previously noted in [9,83].
The normalization factors aiℓ appearing in eq. (18) are defined as

aiℓ :=
1
p

2







1 for i = 1,2, 3,6 ,
1/
p
γ1 for i = 4,5, 8,9 ,

1/
p
γ2 for i = 7,10 .

(A.6)

A.2 The matrix operator Mi j

The radial operators appearing in eq. (26) are given by

M1 j
r =

�

f
2r2

�

1−
4M

r

�

, 0,
f ′ f 2

2
∂r −

f 2

2r2

�

1−
4M

r

�

, 0,−M11
r ,−

f 2

2r2

�

1−
6M

r

�

, 0, 0, 0, 0

�

,

M2 j
r =

�

−
f ′ f
2

�

∂r +
1
r

�

,
f
2

�

f ′∂r +
f
r2

�

,
f ′ f 2

2

�

∂r +
1
r

�

,−
f 2

2r2
,

f ′ f
2r

,
f ′ f 2

r
, 0, 0, 0, 0

�

,

M3 j
r =

§

−
f

2r2
, 0,

f
2r2

�

1−
4M

r

�

, 0,
f

2r2
,

f
2r2

�

1−
4M

r

�

, 0, 0, 0, 0
ª

,

M4 j
r =

§

0,−
γ1 f
2r2

, 0,
f ′ f
4

�

∂r −
3
r

�

,−
f ′ f
4

�

∂r +
2
r

�

,−
γ1 f ′ f

4r
,

f ′ f
4r

, 0, 0, 0
ª

,

M5 j
r =

�

−
γ1 f
2r2

, 0,
γ1 f 2

2r2
, 0,

f
r2

�

1−
9M
2r

�

,
γ1 f
2r2

�

1−
3M

r

�

,−
f

2r2

�

1−
3M

r

�

, 0, 0, 0

�

,

M6 j
r =

§

−
f

2r2
, 0,

f
2r2

�

1−
4M

r

�

, 0,
f

2r2
,

f
2r2

�

1−
4M

r

�

, 0, 0, 0, 0
ª

,

M7 j
r =

§

0,0, 0,0,−
γ2 f

2γ1r2
, 0,−

f
2r2

, 0, 0, 0
ª

,

M8 j
r =

§

0, 0,0, 0,0,0, 0,
f ′ f
4

�

∂r −
3
r

�

,−
f ′ f
4

�

∂r +
2
r

�

,
f ′ f
4r

ª

,

M9 j
r =

§

0, 0,0, 0,0, 0,0, 0,
f
r2

�

1−
9M
2r

�

,−
f

2r2

�

1−
3M

r

�ª

,

M10 j
r =

§

0,0, 0,0, 0,0, 0,0,−
γ2 f

2γ1r2
,−

f
2r2

ª

,

(A.7)
where f ′ = 2M/r2 and γ1 and γ2 are defined in eq. (A.2) above. The radial derivatives are
taken at fixed (∆)J a and φp. All components of the radial matrix Mi j

t vanish except

M13
t =M23

t = −
f f ′H

2
,

−
1
2
M21

t =
1
2
M22

t =M44
t = −M

45
t =M88

t = −M
89
t =

f ′(1−H)
4

.

(A.8)
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The matrix operator Mi j = Mi j
r +Mi j

t (∂t)r agrees with the one given in eqs. (A1)-
(A10) of [41]with (∂v)u =

f
2 (∂r)(∆)Ja ,φp

+ 1−H
2

�

−imΩ+ F (∆)J
a
∂(∆)Ja

�

and (∂r)t replaced using
eq. (27b).

A.3 Harmonic decomposition of the Lorenz gauge condition

We list the operators Zra j and the components of the radial vector Zta j for a = 1, 2,3, 4 and
j = 1, . . . , 10, which appear in the harmonic decomposition of the Lorenz gauge condition (32):

Zr12 = Zr21 = −(∂x)(∆)Ja −
f
r

, (A.9a)

Zr14 = Zr25 = Zr37 = Zr410 =
f
r

, (A.9b)

Zr23 = f (∂x)(∆)Ja +
f 2

r
, (A.9c)

Zr26 =
2 f 2

r
, (A.9d)

Zr35 = Zr49 = −(∂x)(∆)Ja −
2 f
r

, (A.9e)

Zr36 = −ℓ(ℓ+ 1)
f
r

, (A.9f)

and

Zt11 = Zt22 = Zt34 = Zt48 = 1 , (A.10a)

Zt12 = Zt21 = Zt35 = Zt49 = H , (A.10b)

Zt13 = f , (A.10c)

Zt23 = − f H . (A.10d)

All other terms vanish. With these explicit expression, the conditions (32) agree with
eqs. (A13)-(A16) of [41] upon substituting ∂t and ∂r in that reference with eq. (27).

B Material for section 3

B.1 Inspiral expansion of the point-particle stress-energy tensor

After performing the inspiral expansion of the first-order term in eq. (21), we find that the
mode amplitudes of the stress-energy tensor at 1PA order are explicitly given by

t(2)iℓm = −
1
4
E(0)α

(2)
iℓm

¨

Y ∗
ℓm(

π
2 , 0) i = 1, . . . , 7 ,

∂θY ∗
ℓm(

π
2 , 0) i = 8,9, 10 ,

(B.1)
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where the coefficients α(2)iℓm read (dropping the ℓ and m indices)

α
(2)
1 = −

�

r(0) − 8M
�

f(0)r(1)
r3
(0)

, α
(2)
2 = −

2 f(0)
�

∂Ωr(0)
�

FΩ(0)
r(0)

,

α
(2)
3 = −

�

r(0) − 6M
�

r(1)
r3
(0)

, α
(2)
4 =

8imMΩ r(1)
r2
(0)

, α
(2)
5 = −2imΩ (∂Ωr(0))F

Ω
(0) ,

α
(2)
6 =

Ω2r(1)
f(0)

, α
(2)
7 =

�

ℓ(ℓ+ 1)− 2m2
�

Ω2r(1)
f(0)

, α
(2)
8 =

α
(1)
4

im
,

α
(2)
9 =

α
(1)
5

im
, α

(2)
10 = 2imα(1)6 .

(B.2)

The coefficients of FΩ(0) in these terms are the explicit expressions of t(2)Biℓm in eq. (46b), while

the remaining terms give t(2)Aiℓm .

B.2 Coefficients of the near-ISCO inspiral solutions

This appendix contains explicit expressions for some of the coefficients appearing in the near-
ISCO solutions of the inspiral motion up to 2PA order. All self-force and forcing terms are
evaluated at the ISCO frequency. The coefficients appearing at the lowest orders in the near-
ISCO solution of the orbital radius (eqs. (64a), (65a) and (66a)) are given by

r(2,1)
(0) = −24

p

6M2 , r(4,2)
(0) = 720M3 , (B.3)

r(6,3)
(0) = −3840

p

6M4 , r(8,4)
(0) = 126720M5 , (B.4)

r(5,0)
(1) = −54M2 f r

(1) , (B.5)

r(7,1)
(1) = 54M2

�

14
p

6M f r
(1) − ∂Ω f r

(1)

�

, (B.6)

r(9,2)
(1) = −27M2

�

1560M2 f r
(1) − 28

p

6M∂Ω f r
(1) + ∂

2
Ω f r
(1)

�

, (B.7)

r(4,−3)
(2) =

9
4

√

√3
2

�

f t
(1)

�2
, (B.8)

r(6,−2)
(2) = −

9
8

f t
(1)

�

120M f t
(1) −

p

6∂Ω f t
(1)

�

, (B.9)

r(8,−1)
(2) =

9
8

f t
(1)

�

12M
�

52
p

6M f t
(1) − 3∂Ω f t

(1)

�

− f r
(2)B

�

. (B.10)

The coefficients appearing at the lowest orders in the near-ISCO solutions for the forcing terms
FΩ(n) with n= 0,1, 2 (eqs. (64b), (65b) and (66b)) read

F (3,−1)
(0) =

f t
(1)

48M2
, (B.11)

F (5,0)
(0) = −

1
48M2

�

7
p

6M f t
(1) − ∂Ω f t

(1)

�

, (B.12)

F (7,1)
(0) =

1
96M2

�

100M2 f t
(1) − 14

p

6M∂Ω f t
(1) + ∂

2
Ω f t
(1)

�

, (B.13)
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F (9,2)
(0) =

1
288M2

�

1836
p

6M3 f t
(1) + 300M2∂Ω f t

(1) − 21
p

6M∂ 2
Ω f t
(1) + ∂

3
Ω f t
(1)

�

, (B.14)

F (11,3)
(0) = −

1
1152M2

�

243552M4 f t
(1) − 7344

p

6M3∂Ω f t
(1) − 600M2∂ 2

Ω f t
(1)

+28
p

6M∂ 3
Ω f t
(1) − ∂

4
Ω f t
(1)

�

,
(B.15)

F (6,−2)
(1) = −

f t
(1)

2304M4

�

36
p

6M2 f r
(1) − 9M∂Ω f r

(1) − f t
(2)B

�

, (B.16)

F (8,−1)
(1) =

1
2304M4

�

48M2 f t
(2)A− 14

p

6M f t
(1) f

t
(2)B − 162

p

6M2 f t
(1)∂Ω f r

(1)

+ f t
(2)B∂Ω f t

(1) + 9M∂Ω f r
(1)∂Ω f t

(1) + 36M2 f r
(1)

�

108M f t
(1) −

p

6∂Ω f t
(1)

�

+ f t
(1)∂Ω f t

(2)B + 9M f t
(1)∂

2
Ω f r
(1) + 432M3

�

FδM
(0) ∂δM f r

(1) + FδJ
(0)∂δJ f r

(1)

��

,

(B.17)

F (10,0)
(1) = −

1
4608M2

�

672
p

6M3 f t
(2)A− 788M2 f t

(1) f
t
(2)B − 16164M3 f t

(1)∂Ω f r
(1)

+ 28
p

6M f t
(2)B∂Ω f t

(1) + 324
p

6M2∂Ω f r
(1)∂Ω f t

(1) − 96M2∂Ω f t
(2)A

+ 28
p

6M f t
(1)∂Ω f t

(2)B − 2∂Ω f t
(1)∂Ω f t

(2)B + 288
p

6M2 f t
(1)∂

2
Ω f r
(1)

− 18M∂Ω f t
(1)∂

2
Ω f r
(1) − f t

(2)B∂
2
Ω f t
(1) − 9M∂Ω f r

(1)∂
2
Ω f t
(1)

+ 36M2 f r
(1)

�

2108
p

6M2 f t
(1) − 216M∂Ω f t

(1) +
p

6∂ 2
Ω f t
(1)

�

− f t
(1)∂

2
Ω f t
(2)B

− 9M f t
(1)∂

3
Ω f r
(1) + 6048

p

6M4
�

FδM
(0) ∂δM f r

(1) + FδJ
(0)∂δJ f r

(1)

�

− 864M3
�

∂ΩFδM
(0) ∂δM f r

(1) + ∂ΩFδJ
(0)∂δJ f r

(1)

+FδM
(0) ∂Ω∂δM f r

(1) + FδJ
(0)∂Ω∂δJ f r

(1)

��

,

(B.18)

F (3,−6)
(2) =

√

√3
2

�

f t
(1)

�3

2048M5
, (B.19)

F (5,−5)
(2) = −

�

f t
(1)

�2

12288M5

�

252M f t
(1) − 5

p

6∂Ω f t
(1)

�

, (B.20)

F (7,−4)
(2) = −

f t
(1)

221184M6

�

18M f r
(2)B f t

(1) − 324
p

6M3
�

f t
(1)

�2
− 36

p

6M
�

∂Ω f t
(1)

�2

+ f t
(1)

�

2 f t
(3)E + 27M

�

200M∂Ω f t
(1) −

p

6∂ 2
Ω f t
(1)

��

�

,

(B.21)

F (9,−3)
(2) =

f t
(1)

221184M6

�

15552M4
�

f r
(1)

�2
+ 1228608M4

�

f t
(1)

�2
+ 2 f t

(2)B f t
(3)C

+ 2 f t
(1) f

t
(3)D + 28

p

6M f t
(1) f

t
(3)E + 18M f t

(2)B∂Ω f r
(1) + 18M f t

(3)C∂Ω f r
(1)

+ 162M2
�

∂Ω f r
(1)

�2
− 72

p

6M2 f r
(1)

�

f t
(2)B + f t

(3)C + 18M∂Ω f r
(1)

�

+ 18M f r
(2)B

�

10
p

6M f t
(1) − ∂Ω f t

(1)

�

− 7956
p

6M3 f t
(1)∂Ω f t

(1)

− 2 f t
(3)E∂Ω f t

(1) − 864M2
�

∂Ω f t
(1)

�2
− 2 f t

(1)∂Ω f t
(3)E

− 2268M2 f t
(1)∂

2
Ω f t
(1) + 18

p

6∂Ω f t
(1)∂

2
Ω f t
(1) + 9

p

6M f t
(1)∂

3
Ω f t
(1)

�

.

(B.22)
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C Material for section 4

C.1 Transition-to-plunge equations

In this appendix we list the transition-to-plunge equations up to 7PLT order. The nPLT correc-
tions (n= 3, . . . , 7) to the redshift are algebraically determined as

U[3] = 0 , (C.1a)

U[4] = 16
p

2M3
h

324M
�

F∆Ω[0]
�2
+ 5

p

6∆Ω3
i

, (C.1b)

U[5] = 0 , (C.1c)

U[6] = −48
p

2M3
�

9F∆Ω[0]
�p

6 f t
[5] − 24M F∆Ω[2]

�

− 22M∆Ω4

+ 432M2
�

F∆Ω[0]
�2 �

2
p

6∆Ω− 27M
�

∂∆ΩF∆Ω[0]
�2�

�

,
(C.1d)

U[7] = 1296
p

2M4F∆Ω[0]
�

8F∆Ω[3] + 3
p

6 f r
[5]∂∆ΩF∆Ω[0]

�

, (C.1e)

while for the orbital radius we obtain

r[3] = −54M2 f r
[5] , (C.2a)

r[4] = 96M4
�

810M
�

F∆Ω[0]
�2
−
p

6
�

40∆Ω3 + 27F∆Ω[2] ∂∆ΩF∆Ω[0]
�

+ 27F∆Ω[0]
�

108M∆Ω∂∆ΩF∆Ω[0] −
p

6∂∆ΩF∆Ω[2]
�

�

,
(C.2b)

r[5] = −54M2
�

f r
[7] − 2

p

6M
�

7∆Ω f r
[5] − 24M

�

F∆Ω[3] ∂∆ΩF∆Ω[0] + F∆Ω[0] ∂∆ΩF∆Ω[3]
���

, (C.2c)

r[6] = −18M2
�

3 f r
[8] + 13824M4

�

F∆Ω[0]
�2 �

10
p

6∆Ω− 27M
�

∂∆ΩF∆Ω[0]
�2�

− 16M2
�

440M∆Ω4 + 972M∆ΩF∆Ω[2] ∂∆ΩF∆Ω[0]

−9
p

6
�

F∆Ω[4] ∂∆ΩF∆Ω[0] + F∆Ω[2] ∂∆ΩF∆Ω[2]
��

+ 36M F∆Ω[0]
�

12
p

6M f t
[5] − 240M2F∆Ω[2] + 5568

p

6M3∆Ω2∂∆ΩF∆Ω[0]

−432M2∆Ω∂∆ΩF∆Ω[2] + 4
p

6M∂∆ΩF∆Ω[4] − ∂∆Ω f t
[7]

�

�

,

(C.2d)

r[7] = −54M2
�

f r
[9]−2M

�

7
p

6∆Ω f r
[7] − 6M

�

65∆Ω2 f r
[5] − 432M∆ΩF∆Ω[3] ∂∆ΩF∆Ω[0]

+4
p

6
�

F∆Ω[5] ∂∆ΩF∆Ω[0] + F∆Ω[3] ∂∆ΩF∆Ω[2] + F∆Ω[2] ∂∆ΩF∆Ω[3]
���

− 12M F∆Ω[0]
�

240M2F∆Ω[3] + 126
p

6M2 f r
[5]∂∆ΩF∆Ω[0] + 432M2∆Ω∂∆ΩF∆Ω[3]

−4
p

6M∂∆ΩF∆Ω[5] + ∂∆Ω f t
[8]

�

�

.

(C.2e)

The sources appearing in eq. (86) are given by

S∆Ω[2] :=−
f t
[7]

432
p

6M3
−
∆Ω f t

[5]

108M2
+

11
9
∆Ω2F∆Ω[0] + 26

p

6M
�

F∆Ω[0]
�2
∂∆ΩF∆Ω[0] , (C.3)
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S∆Ω[3] :=−
f t
[8]

432
p

6M3
+

F∆Ω[0] f r
[5]

12M
−

F∆Ω[0] ∂∆Ω f r
[7]

48
p

6M2
, (C.4)

S∆Ω[4] :=−
1

2592M3
�

F∆Ω[0]
�2

�

2332800M5
�

F∆Ω[0]
�5
+ 3

p

6 f t
[5]

�

F∆Ω[2]
�2

− 2F∆Ω[0] F∆Ω[2]

�

p

6 f t
[7] + 24

�

M∆Ω
�

f t
[5] +

p

6M F∆Ω[2]
�

− 54M3F∆Ω[2]
�

∂∆ΩF∆Ω[0]
�2��

+
�

F∆Ω[0]
�2 �p

6 f t
[9] + 12M

�

2∆Ω f t
[7] − 3M

�

∆Ω2
�

7
p

6 f t
[5] − 88M F∆Ω[2]

�

+144M F∆Ω[2] ∂∆ΩF∆Ω[0] ∂∆ΩF∆Ω[2]
���

− 3M
�

F∆Ω[0]
�3
�

2560
p

6M3∆Ω3 − 3
�

288M2
�

∂∆ΩF∆Ω[2]
�2
+
p

6∂∆Ω f r
[8]

+12M∂∆ΩF∆Ω[0]
�

156M f t
[5] −

p

6∂∆Ω f t
[7]

��

�

+ 108
�

F∆Ω[0]
�4 �

33984M5∆Ω∂∆ΩF∆Ω[0] −
p

6M2
�

624M2∂∆ΩF∆Ω[2] + ∂
2
∆Ω f t

[7]

��

�

,

(C.5)
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(C.6)

and higher-order terms are straightforwardly computed from the transition-to-plunge expan-
sion of the t component of the equation of motion.

C.2 Linearized Einstein operators

The linearized Einstein operators E[n]i jℓm, n= 3, 4,5, 6,7, explicitly read

E[3]i jℓm =

�

Mi j
t −δi j

im
2
Ω∗
�

1−H2
�

+
δi j

4
(∂x H + 2H∂x)

�

F∆Ω[2] ∂∆Ω

−δi j
im
4

�

1−H2
�

F∆Ω[0] (1+ 2∆Ω∂∆Ω) ,

(C.7)

69

https://scipost.org
https://scipost.org/SciPostPhys.17.2.056


Select SciPost Phys. 17, 056 (2024)
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(C.8)
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(C.9)
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�
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(C.11)

Here we have introduced the Kronecker delta δa
1 such that δa

1δM a = 1. In the last equa-
tion, the notation (ab) stands for weighted symmetrization over ab: T (ab) = 1

2 T ab + 1
2 T ba.

For n ≥ 5, E[n]i jℓm depends upon FδM±
[m] , 0 ≤ m ≤ n − 5. Higher-order terms can be obtained

straightforwardly.

C.3 Transition-to-plunge expansion of the point-particle stress-energy tensor

The nPLT (n ≥ 3) mode amplitudes of the first-order stress-energy tensor can be obtained
from the transition-to-plunge expansion of eq. (21). The mode amplitudes of the stress-energy
tensor at 3PLT order, t[8]iℓm, are given by

t[8]iℓm = F∆Ω[0] t[8]Aiℓm := −F∆Ω[0]
E∗
4
α
[8]A
iℓm

¨

Y ∗
ℓm(

π
2 , 0) i = 1, . . . , 7 ,

∂θY ∗
ℓm(

π
2 , 0) i = 8, 9,10 ,

(C.12)
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where (dropping the ℓ and m indices)

α
[8]A
1,3,4,6,7,8,10 = 0, α

[8]A
2 = 16

√

√2
3

Mδ(r − 6M) ,

α
[8]A
5 = 8imMδ(r − 6M), α

[8]A
9 = 8Mδ(r − 6M) .

(C.13)

The mode amplitudes of the first-order stress-energy tensor at 4PLT order, t[9]iℓm, are given by

t[9]iℓm =∆Ω
2 t[9]Aiℓm + F∆Ω[0]

�

∂∆ΩF∆Ω[0]
�

t[9]Biℓm
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E∗
4
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iℓm + F∆Ω[0]
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α
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iℓm
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Y ∗
ℓm(

π
2 , 0) i = 1, . . . , 7 ,

∂θY ∗
ℓm(

π
2 , 0) i = 8,9, 10 ,

(C.14)

where (dropping again the ℓ and m indices)
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5δ+ 36Mδ′ + 144M2δ′′
�

,

α
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3

√

√2
3

M
�
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α
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2
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(C.15)

and

α
[9]B
1 = −16

p

6M2
�

δ− 12Mδ′
�

, α
[9]B
2,5,9 = 0, α

[9]B
3 = 288

p

6M3δ′ ,

α
[9]B
4 = −96imM2
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, α
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p

6M2
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α
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p

6M2
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ℓ(ℓ+ 1)− 2m2
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δ− 4Mδ′
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,
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8 = −96M2

�

δ− 6Mδ′
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, α
[9]B
10 = −36

p

6imM2
�

δ− 4Mδ′
�

.

(C.16)

Note that we have introduced δ := δ(r − 6M), δ′ := δ′(r − 6M) and δ′′ := δ′′(r − 6M) to
shorten expressions.

C.4 Coefficients of the early-time transition-to-plunge solutions

Up to 7PLT order, the first coefficients in the early-time solutions for the orbital radius (118)
are given by

r(2,1)
[0] = −24

p

6M2 , r(2,1−5i)
[0] = 0, ∀ i ≥ 1 , (C.17)
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r(3,−1)
[1] = 0 , r(3,−1−5i)

[1] = 0, ∀ i ≥ 1 , (C.18)

r(4,2)
[2] = 720M3 , r(4,−3)

[2] =
9
4

√

√3
2

�

f t
[5]

�2
, (C.19)

r(5,0)
[3] = −54M2 f r

[5] , r(5,−5i)
[3] = 0, ∀ i ≥ 1 , (C.20)
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, (C.21)
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. (C.24)

The first coefficients in the early-time solutions of the F∆Ω[n] forcing terms (113) up to 7PLT
order read

F (3,−1)
[0] =
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, (C.25)

F (4,−3)
[1] = 0 , F (4,−3−5i)

[1] = 0, ∀ i ≥ 0 , (C.26)
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F (6,−2)
[3] = −

f t
[5]

2304M4

�

36
p

6M2 f r
[5] − 9M f r

[7]A− f t
[8]A

�

, (C.29)
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(C.35)

D Material for sections 5 and 6

D.1 Self-force matching conditions

The self-force matching conditions involved in the asymptotic match between the quasi-
circular inspiral (up to 2PA order) and the transition to plunge (up to 7PLT order) are given by

f µ[5] = f µ(1)

�

�

�

∗
, (D.1)

f µ[7]A = ∂Ω f µ(1)

�

�
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∗
, (D.2)
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�

�

�

∗
, (D.3)
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1
2
∂ 2
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∗
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∗
, (D.4)
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�

�

�

∗
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∗
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�
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∗
, (D.5)
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∗
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∗
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∗
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∗
, f µ[11]F =

1
6
∂ 3
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(D.6)

f µ[12]A = f µ(2)B
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∗
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∗
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∗
, f µ[12]K= ∂Ω f µ(2)B
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�

�

∗
. (D.7)

We recall that |∗ denotes evaluation of functions (in this case of Ω, δM and δJ) at Ω= Ω∗.
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D.2 Explicit values of the asymptotic coefficients

The breakdown and critical frequencies of the inspiral motion require the knowledge of the
coefficients F (3,−1)

(0)/[0], F (7,1)
(0)/[4], F (11,3)

(0)/[8], F (6,−2)
(1)/[3] and F (3,−6)

(2)/[0] defined, respectively, in eqs. (B.11),

(B.13), (B.15), (B.16) and (B.19). We take the value F (6,−2)
(1)/[3] = −3.537409407224891× 10−6

(setting M = 1) from [18], while evaluating the remaining coefficients only requires the first-
order self-force data f t

(1)(Ω∗) and ∂ n
Ω f t
(1)(Ω∗) with n= 1, 2,3,4.

We can obtain all the necessary self-force data from the first-order energy flux F0PA of [53],

f t
(1)(Ω) = g t t(r(0)) f

(1)
t = −

U(0)
f (r(0))

F0PA = −
F∞0PA(Ω) +FH

0PA(Ω)
�

1− 3(MΩ)2/3
�1/2 �

1− 2(MΩ)2/3
�

. (D.8)

The coefficients we are interested in then evaluate to (setting M = 1)

F (3,−1)
(0)/[0] = −4.155752096668726× 10−5 , (D.9)

F (7,1)
(0)/[4] = −3.280188141361921× 10−2 , (D.10)

F (11,3)
(0)/[8] = −5.104634123185608× 10−2 , (D.11)

F (3,−6)
(2)/[0] = −4.746661778492238× 10−12 . (D.12)

The value of the coefficient F (5,−5)
(2)/[2] (B.20) appearing in eq. (134) is

F (5,−5)
(2)/[2] = −3.559185516345344× 10−10 . (D.13)

Finally, setting again M = 1, we also obtain the numerical values for f t
[5] and f t

[7]A (which
are related to the first-order self-force (D.8) through the matching conditions (D.1) and (D.2),
respectively)

f t
[5] = −1.994761006400989× 10−3 , (D.14)

f t
[7]A = −1.307874324117794× 10−1 . (D.15)
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