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Abstract—In this study, a platform guiding single-moded light
at wavelengths of 480 nm, 520 nm and 633 nm (blue, green and
red) is proposed and designed with several components being fab-
ricated and characterised for the specific wavelength of 633 nm. A
waveguide with propagation losses of 3.6 dB/cm is obtained, with
a high confinement factor of 90.5% and a tight bending radius
of 60 µm with 0.2 dB losses per bend, offering a good trade-off
between losses, confinement factor and compactness. Also, a 1 × 2
MMI is demonstrated, with a footprint of 5 × 161 µm2, and losses
of 0.2 dB. Finally, a silicon nitride single-layer grating coupler
has been validated to allow the fibre-to-chip coupling, with losses
smaller than 11.7 dB. A comparison of the proposed platform
with other state-of-the-art stoichiometric silicon nitride technolo-
gies performing in the range of the spectrum of 630–660 nm is
shown. The present platform demonstrates losses in the order of the
state-of-the-art single-mode waveguides, but with an enhancement
of the confinement factor from 61% to 90.5%, which allows to
decrease the bending radius by 20 µm or more compared with
other state-of-the-art technologies.

Index Terms—Silicon photonics, integrated photonics, visible
spectrum, silicon nitride, building blocks.

I. INTRODUCTION

IN the last two decades, the market for photonic integrated
circuits (PICs) has grown dramatically [1], [2], [3], [4],

[5]. This growth has been mainly driven by telecommunication
applications operating at 1550 nm and 1310 nm [6], [7], [8]. In
this wavelength range, PICs use light to emit, detect, process,
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transmit and store information in order to overcome some of
the major challenges faced by electronics today, particularly
in terms of limited transmission speed, bandwidth and high
power consumption [9]. Although the telecommunication band
has been the most widely exploited, the visible range of the
spectrum has broadened the possibilities to a whole new range of
photonic applications including quantum computing [10], opto-
genetics [11], [12], biological sensing and spectroscopy [13],
[14], imaging and display technologies [15], [16], [17], [18],
light sources [19], [20], and underwater communication [21],
amongst others [22], [23], [24]. Compared to free space optics,
PICs offer miniaturisation, high reliability, energy efficiency and
reduction in manufacturing and packaging costs.

Several material systems have been developed based on
generic processes to offer stable and robust platforms for PICs,
including silicon-on-insulator (SOI), indium phosphide, silicon
dioxide (SiO2) and silicon nitride (SiN) [25], [26], [27], [28],
[29]. However, although many platforms are available, the bulk
development of PICs and process design kits (PDKs) has focused
on the SOI platform due to the low absorption losses it offers
in the wavelength range between 1.1µm and 3.7µm. However,
now that the wavelengths of interest have extended down to
the visible part of the spectrum, SOI is no longer an option as
guiding material, as it is not transparent at wavelengths below
1.1µm. As a result, other material platforms have been explored
for visible light applications, including the mature SiN platform,
alumina (Al2O3) and aluminium nitride (AlN) [30].

Although SiN generally exhibits higher losses than
Al2O3 [31], the CMOS compatibility and fabrication maturity
of SiN makes it a promising material for further development for
visible light integrated photonics platforms. In this case, CMOS
compatibility indicates the standard fabrication process for semi-
conductor devices, in other words, it refers to the processes used
in the semiconductor industry to fabricate integrated circuits.
Since SiN is transparent throughout most of the visible range
— down to at least 400 nm [32] — it is a viable candidate to
implement “silicon photgonics” at wavelengths below 1.1 µm.
SiN provides an alternative low-cost platform in which all fun-
damental non-active photonic components can be implemented.
The advantages over Si are fabrication process flexibility, low
temperature sensitivity, isotropic behaviour in all directions
(amorphous material), refractive index and bandgap tuneability
by varying the deposition conditions on the stoichiometry of the
films, and higher transparency, which all enable the exploitation
of SiN in the visible range. The versatility of the SiN platform
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is key in the implementation of complex multi-layer photonic
circuitry for photonic integrated applications in the range of the
spectrum of 450–700 nm [33], [34].

A number of silicon nitride PIC foundries offer solutions with
state-of-the-art PDKs at telecommunication wavelengths [35].
Having the SiN PIC technology already developed facilitates the
opportunity to expand the PDK of SiN PICs to the visible range
of the spectrum. In this sense, the development of individual
building blocks to facilitate end users the possibility of designing
and fabricating photonic integrated circuits in this range of the
spectrum is key. The visible is a region of emerging interest
for applications in integrated laser beam combiners, variable
optical attenuators, interference pattern generators, bio-sensing,
imaging and display, and more [36], together with the facilities
in acquiring laser sources and photodetectors in this range.
The different emerging applications that can exploit the PICs
advantages lack from photonic standardisation of components,
making more difficult the development of more complex systems
in these areas. Various works have developed photonic integrated
building blocks in the visible range of the spectrum [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46]. In all cases, the
waveguide and device dimensions are smaller than in the near-
infrared, especially in the blue-end of the spectrum, to maintain
the single-mode or few-mode condition. The mode confinement
in the waveguide is also higher at short wavelengths, which
leads to higher sensitivity to surface roughness scattering and
tighter fabrication tolerances. In this paper, the design of a
unique single-mode waveguide geometry, that can support at
the same time red (633 nm), green (520 nm) and blue (480 nm)
is presented; and, specifically, silicon nitride building block
components at 633 nm have been fabricated and characterised
towards the first steps to develop a standarised SiN photonic
integrated platform for the complete visible range.

II. DESIGN AND FABRICATION

The platform used for operation in the visible wavelength
regime consists of a 400 nm thick LPCVD SiN layer on a 3.2µm
buried oxide layer. The geometry of the waveguides in terms of
slab thickness and width was optimised to satisfy single-mode
propagation for TE polarisation at wavelengths of 480 nm,
520 nm and 633 nm at the same time, as can be seen in Fig. 1.
Red and blue wavelengths have been chosen to cover the entire
visible spectrum from 480 nm to 633 nm with the same wave-
guide geometry, satisfying the single-mode condition. Green
has also been selected because is a really interesting regime for
underwater communications [47], sensing [48], and imaging and
display, controlling the use of red, green and blue (RGB) [49].
For the same SiN layer thickness, using rib waveguides allows
to increase fabrication tolerances, avoiding working in the lim-
iting regime of the Deep-UV lithography, while maintaining the
single-mode condition at the three different wavelengths with the
same structure. Rib waveguides soften the width requirements
making the fabrication steps less strict in processes accuracy and
present lower losses due to sidewall roughness [50]. This is why
rib geometry was chosen over strip. As shown in the insert of
Fig. 1(a), a waveguide width of 400 nm was selected to satisfy
the single-mode condition for a slab thickness of 150 nm.

Fig. 1. Core width dependence of the effective index (neff) of LPCVD SiN
waveguides with thickness of 400nm and slab of 150nm for wavelengths of
(a) 633 nm, together with the cross-section schematic of the waveguide,
(b) 520 nm, and (c) 480 nm.

In a similar manner, the bending radius of the waveguides was
optimised by considering the contribution of the propagation
losses (3.6 dB/cm), the radiative losses and the losses due to the
mode mismatch between its straight and bent sections, assuming
that the mode leakage towards the substrate was negligible.
Fig. 2 shows that the optimal bending radius to reduce the total
losses to values <0.05 dB/bend is 60µm for the three different
wavelengths, 480 nm, 520 nm and 633 nm.

There are different coupling methods from the optical fibre
to chip. Even though the edge coupling can achieve lower
losses and higher broadband than the grating couplers [51], the
alignment tolerances are lower, apart from the required cleaving
and polishing of the chips, ensuring that all the integrated waveg-
uides maintain the same coupling interface [52]. Instead, grating
couplers allow wafer scale testing without further fabrication
steps or polishing treatments [53]. In order to couple light into the
waveguides, grating couplers consisting of a 10µmwide surface
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Fig. 2. Bend losses as a function of radius for the LPCVD SiN waveguides
with a width of 400nm for wavelengths of (a) 633 nm, (b) 520 nm, and
(c) 480 nm.

grating were designed to have a sufficient coupling efficiency
to characterise all the integrated optical components without
the necessity of additional fabrication processes, one unique
lithography and etching steps [38], [40]. These grating couplers
were optimised to be efficient for TE polarisation, at a target
wavelength of 633 nm and with a coupling angle of 14◦. The
designed and fabricated waveguides can support both TE and
TM fundamental modes. However, the polarisation dependent
components, such as grating couplers, and multi-mode interfer-
ometers (MMIs), have been selected to work for the TE mode.
TE modes have lower group velocity compared with TM [54],
which means that are less affected by material dispersion, mak-
ing them more suitable for high-speed data transmission. The
confinement factor of the TE mode is higher than the TM mode,
being able to reduce the bending radius. Also, for TE mode,
due to the confinement, the measured propagation losses are
more associated to the core material than for the TM mode,

Fig. 3. Coupling efficiency (insertion loss) versus wavelength estimated for
the grating coupler optimised at 633nm with a coupling angle of 12◦, 14◦ and
16◦, period of 400nm and filling factor of 50%.

reflecting the quality of the deposited SiN. The grating exhibited
a theoretical coupling efficiency of31.5%with a3 dB bandwidth
of 14.9 nm when using a period of 400 nm and filling factor of
50%, as illustrated in Fig. 3. The gratings were then tapered
down to the single-mode width using an adiabatic taper with a
length of 700µm. Grating couplers designs for blue and green
present limitations in terms of feature size, which are difficult
to achieve by Deep-UV lithography. They can be done using
e-beam lithography, however, it is a slow and expensive process,
which is not practical for production.

Finally, 1 × 2 MMIs designed to evenly split light at wave-
lengths of 633 nm, 520 nm, and 480 nm, as depicted in Fig. 4(a),
(b) and (c), have been implemented within PICs. These MMIs are
preferred over directional couplers due to their superior tolerance
to fabrication errors [55]. The width of the multi-mode region
(WMMI) was selected to be 5µm to minimise the footprint
of the device, while the length was set to 41µm, 49µm and
54µm for wavelengths of 633 nm, 520 nm and 480 nm respec-
tively, to achieve the desired splitting ratio (50:50) at the target
wavelengths, as shown in Fig. 4(d), (e), (f). The width and the
length of the input tapers were optimised to 2µm and 60µm
respectively to provide the lowest optical loss possible. Several
structures operating at 633 nm were included in the final layout
to characterise the designed devices.

The devices were fabricated on 8 in (200mm) Si wafers with
a 3.2µm thermally grown SiO2 layer and a 400 nm LPCVD
SiN layer. The structures were defined using a 680 nm M91Y
photoresist and Deep-UV lithography. Then, they were trans-
ferred onto the SiN layer using inductively coupled plasma
etching (ICP) with a SF6:C4F8 chemistry and a target etch depth
of 250 nm. Finally, a 1µm thick layer of PECVD SiO2 was
deposited on top of the devices at 350 ◦C. The devices were
fabricated at University of Southampton.

III. CHARACTERISATION

In order to measure the optical losses of the designed SiN
waveguides, several waveguides of different lengths, ranging
from 2mm up to 26mm, have been fabricated. All of them have
the same number of bends, which have a radius of 60µm, and
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Fig. 4. Schematics of the designed MMIs for the different wavelengths (a) 633nm, (b) 520nm, and (c) 480nm. Insertion loss against length at (d) 633nm,
(e) 520nm, and (f) 480nm.

Fig. 5. (a) Waveguides schematic for different lengths and scanning electron
microscope images of (b) a grating coupler and (c) MMI.

identical input and output grating couplers with tapers of 700µm
to match the single-mode waveguide width, as can be seen in
Fig. 5(a). A Scanning Electron Microscope (SEM) was used to
characterise the fabricated chips and to verify the dimensions
of the three different components, which are all described in the
design and fabrication section. The image of the grating couplers
is depicted in Fig. 5(b), and their parameters can be observed,
showing a period of 400 nm and a pitch of 200 nm, which are
in line with the design parameters. The dimensions of the MMI
are WMMI =5µm and Lred =41µm with corresponding tapers
of 60µm narrowing down to a single-mode waveguide with a
width of 400 nm, as shown in Fig. 5(c).

An in-house set-up was built in order to measure the propa-
gation of the light along these components and their losses. In
order to get a good, stabilised input signal, a He-Ne laser with
an operating wavelength of 633 nm was used as laser source.
As the light is coupled using grating couplers, it is necessary
to control the position of the in-output fibre used for the light
insertion. For that, the optical fibre was coupled to the laser
source and the other side coupled to a polarisation controller to
minimise the coupling losses. After the polarisation controller,
the optical fibre is placed in a micro-manipulator stage with an

Fig. 6. Photonic characterisation images of the coupling between the optic
fibre and the integrated components for (a) straight waveguides and (b) MMIs.

angle controller. Also, the photonic chip was placed on top of
a goniometer to ensure good alignment between the fibre and
the grating coupler. Regarding the output signal, one side of an
optical fibre was placed on an angle controller, positioned on
another micro-manipulator stage, to ensure the right coupling
angle, and the other side of the optical fibre was connected to
a powermeter through a photo-diode sensor, where the output
light intensity was measured. For inspection and easier manual
alignment of the set-up, a camera was placed above the chip.

In Fig. 6(a), a microscope image demonstrates the in-
put/output coupling of the 633 nm laser to a single-mode silicon
nitride waveguide. The polarised light is injected by means of a
single-mode optical fibre and coupling is performed through the
designed grating coupler using an angle of 14◦±2◦. In Fig. 6(b)
a microscope picture shows a SiN MMI splitter fed by a TE
polarised laser at 633 nm.

IV. RESULTS

Six different chips were fabricated and characterised. Each
chip contains ten waveguides of different lengths, ranging from
7mm to 28.33mm as explained in the previous section, and
three measurements for each waveguide were carried out. The
mean value of these three measurements was taken as the value
of the losses of each waveguide length for each chip. This process
has been repeated for the six chips. The losses in the waveguides
of different chips oscillate between 3 dB/cm up to 4.8 dB/cm
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Fig. 7. Propagation loss for different waveguide lengths. The value shown is
the mean of the measurements of six different chips. In blue, the corresponding
error of each measurement.

Fig. 8. Mean value loss for different number of bends with their corresponding
error (in blue).

with a mean value of 3.6 dB/cm. The mean value of all the
measurements of every chip with its standard deviation is shown
in Fig. 7.

From Fig. 7, the y-intercept was calculated, which has a mean
value of27.06 dB. This value corresponds to the losses of sixteen
bends (considering a single bend to be a 90◦ curvature with a
radius of 60µm), two grating couplers, input and output, and
two tapers of 700µm length. In order to separate the bend loss
contribution from the rest, a study of the losses in the bends
was carried out for no bends and three different number of
bends: four, eight and twelve. Like in the previous waveguide
procedure, three measurements of each structure were carried
out of six different chips, and their mean value was taken as
the bend loss value. Fig. 8 shows the measurements of the
structures with different number of bends. From there, a mean
value of 0.2 dB per bend was experimentally demonstrated. It
is worth mentioning that the losses per bending were expected
to be 0.05 dB/bend according with simulations. This variance
is caused by fabrication imperfections and sidewall roughness
that were not present in the simulations and affect the bending
losses. Multiplying these losses by the number of bends that are
in the initially measured waveguides (16 bends), a total value
of 3.2 dB is obtained as the contribution to the losses caused by
the bends. Extracting this value, and the tapers loss (0.5 dB) to
the 27.06 dB previously calculated in Fig. 7, a loss of 11.7 dB

Fig. 9. Insertion loss for different number of MMIs with their corresponding
error (in blue).

TABLE I
OPTICAL PERFORMANCE OF THE SIN BASIC BUILDING BLOCKS

OPERATING AT 633nm

per grating coupler is obtained. The mentioned taper losses have
been extracted from the waveguide propagation loss. The taper
length of 700µm, times the waveguide loss 3.6 dB/cm, results
in 0.5 dB, which are the highest losses this component will ex-
perience, as no losses from the adiabatic change are expected. In
this loss, the value also contains the set-up loss, meaning: the loss
of the connectors, the polarisation error, which produces ripples
in the wavelength spectrum when is not 100 percent TE, the
cleaving of the optic fibres facets and the error in the alignment
angle (±2◦), which is really sensitive [56], [57], as can be seen
in Fig. 3. Apart from that, the fabrication tolerances and the box
thickness can also affect the coupling efficiency [58]. Moreover,
in the simulations, the mean value of the optical fibre mode
field diameter, which is between 3.6-5.3µm according with the
fabricators, has been used. All these contributions are the reason
of the difference between the simulated and experimental grating
response.

Furthermore, in order to characterise the losses of the MMI
building block, different number of MMIs were fabricated: two,
four, six and eight. Again, three measurements for each structure
were done and the mean value is selected for the plot, Fig. 9.
From there, a loss of the MMI building block of 0.2 dB/MMI is
demonstrated. Also, the ratio between the two outputs (P1/P2)
was measured to be 1.015, which ensures a good splitting of light
in half of the input signal. A summary of the results obtained for
each individual component is shown in Table I.

In order to set side by side this study with the state-of-the-art
stoichiometric SiN platforms performing in the range of the
spectrum of 630–660 nm, Table II presents a comparison of
reported SiN integrated technological characteristics. Technolo-
gies developed in ref. [43], [44] and [45] show multi-mode
behavior and they all have a high confinement factor, with values
of 91.3%, 69.1%, and 75.3% respectively; losses ranging from
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TABLE II
STATE-OF-THE-ART STOICHIOMETRIC SIN PLATFORMS, OPERATING AT WAVELENGTHS BETWEEN 630 AND 660nm

0.98 dB/cm up to 1.6 dB/cm and a bending radius from 80µm
up to 400µm. These propagation losses are 2.1–3.7 times lower
than the ones of the platform presented in this paper, but the
footprint is bigger, having bending radius as big as 1.2 to 6.7
times the radius of the studied technology. Other waveguides,
like in the case of ref. [46], are single-moded and have losses
smaller than 0.4 dB/cm, which are 9 times lower than the
losses of the presented waveguide geometry, but it shows a low
confinement factor of 4.8%, which is 18.9 times lower than the
confinement factor of the presented technology. This means that
light travels mostly through the cladding layer in this platform,
and the losses are more related to the losses of the cladding
material rather than the losses of the core material. This fact
implies a large bending radius of 7mm, which is 116.7 times
larger than the one presented. Finally, reference [45] shows two
single-mode platforms, which have similar losses compared with
the present one, going from 3.7 to 4.3 dB/cm, which are 1.2 and
1.03 times the losses of the studied components, respectively.
They also have a similar bending radius of 80µm, which is
1.3 times larger than the presented radius. Finally, they have
a smaller confinement of the light in its core material, 53.6%
and 61.0% each, 0.59 and 0.67 times the confinement of the
present study. The fact of having higher confinement factor
allows lower dispersion in the operation wavelength range [59],
[60], [61]. Comparing the technology of reference [45] with the
presented in this study, both fabrications have been carried out
using Deep-UV lithography. However, in this work, ICP etching
has been chosen over RIE, one of the main differences in the
fabrication process. The etching process has an impact in the
propagation loss due to the sidewall roughness. Furthermore,
the uniformity of the proposed SiN layer is 5%, reducing the
variance in the fabricated waveguides propagation loss. The
waveguide geometry and the quality of the deposited SiN mate-
rial are also a factor that affect the losses.

In PICs, there is always a trade-off between losses and foot-
print [62]. Also, depending on the confinement factor, the losses
can be more associated to the core material or to the cladding.
With all that information, the studied technology arises with an
equilibrium between a high confinement factor, optical losses
and a low footprint. As mentioned previously, some of the
compared platforms have low confinement, so the losses are
more associated to the silicon oxide of the cladding material,
where light is less absorbed and defects of the roughness are
not that important, but they pay the price of having a larger
bending radius. It must also be taken into account that the present
technology operates at 633 nm, which is equal to three other
platforms and lower than the rest. Shorter wavelengths mean

higher losses, as the optical extinction coefficient dispersion
shows that the absorption of silicon nitride increases for shorter
wavelengths. Apart from that, the studied platform demonstrated
an input and output SiN single layer grating coupler without the
presence of metal reflectors or multi-layer stack underneath. This
is an important point, as a good coupling efficiency is obtained
without complex fabrication processes, CMOS compatibility,
and enabling the coupling between fibre and chip to be much
easier than butt-coupling, increasing the alignment tolerances
and allowing wafer-scale testing.

The waveguide cross-section has been chosen to satisfy the
single mode condition at wavelengths of 480 nm, 520 nm and
633 nm at the same time, to avoid modal dispersion. Multi-mode
integrated waveguides experience pulse spreading, due to the
distinct paths that each of the modes follows [63]. In addition,
having higher confinement factor, reducing the dispersion, can
avoid the signals overlapping and interfering with each other,
making easier for the receiver to process the information. Fur-
thermore, optical communication systems that do not require
dispersion-compensation schemes offer advantages in both the
initial investment (lower transceiver price) and operation cost
(lower power consumption), both key requirements for data
transfer. These advantages can be exploited in applications
such as visible light communications or Internet of Things,
where sending information through the light is crucial. In
the applications such as opto-genetics, biological sensing and
spectroscopy, imaging and display technologies or underwater
communications, the waveguide losses are not a big constrain,
however having a high density of components is. Reducing the
bending radius of the platform permits to increase the density
of components that can fit in the same area for high volumes
production. In quantum information, the visible spectrum is
starting to play a big role because single-photon emitters in
nitrogen rich silicon nitride have been demonstrated at room
temperature [64]. However, the losses in quantum systems play
a stronger role than the density of components, meaning that the
presented cross-section will not be the ideal one for quantum
applications, making the best candidate the platform in ref [46].

The presented technology shows passive components. Further
studies may include the combination of functional materials
with this platform, allowing active photonic building blocks,
such as modulators, filters, switches or detectors. As SiN itself
has no active capabilities, materials such as liquid crystals [65],
phase change materials [66], [67], [68], thermal-heaters [69],
graphene [70], [71] or transition metal dichalcogenides [72]
could be used for adding the configurability to the passive
devices.



BLASCO-SOLVAS et al.: SILICON NITRIDE BUILDING BLOCKS IN THE VISIBLE RANGE OF THE SPECTRUM 6025

V. CONCLUSION

In this work, SiN as core guiding material for the light
propagation in the visible range of the spectrum, at a wave-
length of 633 nm, is proposed. Basic photonic integrated circuit
components such as single-mode waveguides, bends, grating
couplers and MMIs have been designed, fabricated and charac-
terised. All of them offering a competitive response comparable
to the already existing cutting-edge platforms in the visible
range. In future, this technology could be expanded with more
passive building blocks, and different visible wavelengths such
as green (520 nm) or blue (480 nm). The presented building
blocks can be utilised in visible applications such as visible light
communications, Internet of Things, bio-sensing, underwater
communications or imaging and display, among others.
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