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Abstract: The fast prediction of the extent and impact of accidental air pollution releases is important
to enable a quick and informed response, especially in cities. Despite this importance, only a small
number of case studies are available studying the dispersion of air pollutants from fires in a short
distance (O(1 km)) in urban areas. While monitoring pollution levels in Southampton, UK, using low-
cost sensors, a fire broke out from an outbuilding containing roughly 3,000 reels of highly flammable
cine nitrate film and movie equipment, which resulted in high values of PM2.5 being measured by
the sensors approximately 1500 m downstream of the fire site. This provided a unique opportunity to
evaluate urban air pollution dispersion models using observed data for PM2.5 and the meteorological
conditions. Two numerical approaches were used to simulate the plume from the transient fire: a
high-fidelity computational fluid dynamics model with large-eddy simulation (LES) embedded in
the open-source package OpenFOAM, and a lower-fidelity Gaussian plume model implemented
in a commercial software package: the Atmospheric Dispersion Modelling System (ADMS). Both
numerical models were able to quantitatively reproduce consistent spatial and temporal profiles
of the PM2.5 concentration at approximately 1500 m downstream of the fire site. Considering the
unavoidable large uncertainties, a comparison between the sensor measurements and the numerical
predictions was carried out, leading to an approximate estimation of the emission rate, temperature,
the start and duration of the fire. The estimation of the fire start time was consistent with the local
authority report. The LES data showed that the fire lasted for at least 80 minutes at an emission
rate 50 g/s of PM2.5. The emission was significantly greater than a ‘normal’ house fire reported
in the literature, suggesting the crucial importance of the emission estimation and monitoring of
PM2.5 concentration in such incidents. Finally, we discuss the advantages and limitations of the two
numerical approaches, aiming to suggest the selection of fast response numerical models at various
compromised levels of accuracy, efficiency and cost.

Keywords: Atmospheric Dispersion; Fast response; Fire start time; Fire duration; Emission rate;
Gaussian plume model; Large eddy simulation; Peak PM2.5 concentration; Sensor measurements

1. Introduction

Air pollution [e.g. 1–7], in particular with spatially or temporally extreme concentra-
tion [e.g. 8–12], is currently a worldwide concern, having received increasing attention
especially in the last two decades due to its rising level in many regions. One of its direct
impacts is on respiratory systems leading to diseases, strokes, and heart attacks [13–15].
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) can be a large
health risk. As the population of cities grows, the impact of air pollution on health and
the environment will likely increase [5,16]. Both long-term exposure and acute short-term
exposure can have evident impact on health [17].
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1.1. Short-term release and exposure

Many published papers [e.g. 18–23] report investigations on urban pollution using
sensor networks in urban areas. These usually focus on the long-term pollution, such
as the annual mean concentration. Research on the estimation of short-term exposure
and its impact, such as from an accidental event of hazardous materials released from a
fire, is extremely challenging [9,11,12]. On the other hand, a fast response to a short-term
but intensive release, such as applying evacuation measures or temporary closure of all
openings of buildings, is of crucial importance.

Only a small number of studies [2,8–12,24–27] report spatial and temporal dispersion
of pollutant concentration from a localised source, with a focus on a large (extreme) concen-
tration or exposure in a short time. Studies [2,24–28] investigates the effect on pollutant
concentration due to a fire emission. Carruthers et al. [2] present a comparison of dispersion
from chemical warehouse fires between the Atmospheric Dispersion Modelling System
(ADMS) predictions and wind tunnel measurements. They also compared warehouse fire
data with ground level point sources with no building present. They green showed that
“the level of agreement shown between the models in the present paper is as good as can
reasonably be expected”, and suggest that the ADMS model can be used to predict disper-
sion from fire. Vedal and Dutton [25] observed abrupt increases in particulate matter from
wildfires. Cusworth et al. [26] investigated the effect of agricultural fires on urban pollution
by checking PM2.5 concentration using surface observations and a Lagrangian particle
dispersion model, which showed an increase of 7% to 78% of PM2.5 concentration for the
particular meteorological conditions, emission rate, and number of fires. Emmanuel [27]
states that forestry fires have a large effect on respiratory illness based on haze-related con-
ditions attendance from accident and emergency services. However, very few studies have
been published looking at urban fires and their effect on air pollution in the neighbourhood
region.

1.2. Fast prediction of dispersion from a short-term release

Designing a tool for fast prediction of dispersion from a short-term release is always a
compromise between accuracy and computational cost [10,11,29–31]. Here fast prediction
refers to ’faster’ than the real time of the spreading of the pollutants. One of the most
challenging topics is to request a high accuracy (e.g. 1 metre resolution) for the fast
prediction of pollutant concentration in the near field, e.g. within several hundred metres,
in the event of highly toxic emission. This requires fast pre-processing including generation
of the computational geometry and mesh, fast transient computational fluid dynamics
(CFD) solvers for the turbulent flow and pollutant transport equations involving thousands
of computer processors using parallel computation, and fast post-processing to show the
massive data [31]. The priority of this approach is to reduce the computational cost to
be manageable for non-academic users. We denote this genuine CFD approach, ideally
large-eddy simulation, as full-CFD method.

Large-eddy simulation (LES) is becoming an increasingly popular choice for point-
source short-distance dispersion problems [4,32], because it resolves genuine large-scale
eddies and intermittent pollutant clouds. As winds and near-source dispersion are highly
transient in the real world, LES provides high accuracy simulations of urban boundary
layer flows and pollution dispersion [4,32–35]. The LES method solves the filtered (grid-size
spatial averaging) Navier-Stokes equations and the relevant scalar transport equations,
which resolves eddies larger than the grid size and models smaller eddies [e.g. 34]. The
grid resolution is usually required to be within the inertial subrange of turbulence. The
mesh resolution and quality are of crucial importance as the mesh needs to be fine enough
to resolve most of the turbulent kinetic energy for the simulation to be of high accuracy.
Overall, LES can be considered as a virtual wind tunnel experiment.

If urban air quality is concerned, LES embedded in engineering type CFD packages,
such as OpenFOAM [36], is focused on dealing with building-resolved street-scale problems
(O(100 m)) in a neighbourhood scale (O(1 km)) domain. Meteorological type models, such



Atmosphere 2024, 1, 0 3 of 24

as the US weather research and forecasting (WRF) model [37–40], are focused on scales
greater than neighbourhood scale, and usually are not able to resolve buildings. The
first family of LES models are used in the development of modelling city-scale (O(10
km)) problems and capturing meso-scale unsteadiness, such as the open source package
parallelized large-eddy simulation model (PALM) [41], while the second family of LES
models endeavor to resolve much smaller scales by using nested mesh, such as a resolution
of ten metres in Zhong et al. [39] and Kumar et al. [40]. A buoyant plume model has been
developed in WRF and is used [e.g. 37] for a number of applications, such as modelling
dispersion of forest fire. The authors are not aware of the buoyant plume model in WRF
being used for building resolved problems to date.

On the other hand, due to its extremely high efficiency the Gaussian plume model is
widely adopted in the operational models for fast response, such as the UK CERC’s model
ADMS [2], and the US Environmental Protection Agency (EPA)’s model AERMOD [42].
Hertwig et al. [11] state that “Gaussian plume models are based on an empirical-analytical
representation of the downwind concentration spread, with the plume shape being de-
termined through empirically defined concentration standard deviations in lateral and
vertical directions”. Various studies are on-going to expand these models’ capabilities, such
as taking account of the tall building effect to asymptotically meet the target to predict
the near-field concentration, and improving the estimation accuracy of the concentration
standard deviations by using high-fidelity numerical approaches or experiments consid-
ering complex building configurations. We denote this fully parameterised approach as
full-parameterisation method.

Other approaches for fast response can be grouped into the hybrid method of CFD
and parameterisation. The latter is not necessarily based on the Gaussian plume model.
For a brief review of various levels of hybrid method (e.g. the FAST3D-CT [29], the street-
network model [30]), the reader is recommended to read the paper by Hertwig et al. [11].
The current paper aims to explore the capability of using both the full-CFD method, i.e.
Large-eddy simulation, and the full-parameterisation, i.e. the ADMS model, by comparing
the numerical data against the low-cost sensor data.

1.3. Outline of the current work

The key objective of this work is to present a case study for predicting urban air
pollution from urban fires using real-world sensor data and both low- and high-fidelity
numerical models. The case study includes methodology taking account of the uncertainties
in meteorological conditions, emission duration and emission rate; critical discussion on
the confidence of the numerical predictions, and key findings based on the real-world
sensor measurements and the numerical data.

When monitoring pollution levels of PM2.5 using the low-cost sensor network in
Southampton, UK, a fire broke out just south of Southampton Common Park, and the
plume of smoke was captured by the air pollution sensors on one station near the St Mary’s
Football Stadium (see Fig. 1). This paper reports the effects of the urban fire on the pollutant
concentration by investigating the time history of the measured PM2.5 concentration, and a
comparison to a Gaussian plume model in ADMS software and a large-eddy simulation
model in OpenFOAM [36]. This provides a unique case study of modelling urban fire
dispersion using both the full CFD method (i.e. LES) and the full-parameterisation method
(i.e. ADMS), being validated against sensor measurements. Hopefully the study is able
to shed light on understanding dispersion from an urban fire in complex meteorological
conditions, and provides valuable guidance for modelling dispersion from urban fires.

One big challenge of numerical modelling is dealing with the uncertainties in the setup
of the fire emission. The estimated fire start time and its duration may have considerable
uncertainties as these times in the study were based on eyewitness and news article
reports [43,44]. Except for reference data from the literature, there are no recorded data
for the emission rate or temperature of the fire. The second challenge is dealing with
the uncertainty in the local meteorological conditions during the event, and setting up
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Figure 1. Location of low-cost sensors (black markers) across Southampton along with fire location
(red marker). The smoke plume from the fire was captured primarily by the sensor located near St
Mary’s, southeast of the source of the fire.

appropriate conditions in the numerical models. To address these two key challenges,
extensive sensitivity tests were carried out in ADMS and OpenFOAM packages, and
numerous comparisons between the sensor measurements, the ADMS data, and the LES
data were performed to narrow down the range of the fire emission data, as well as to
estimate more precisely the meteorological conditions based on Met Office weather forecast
data and local meteorological station data.

Section 2 shows details of the fire and the meteorological conditions at the time
collected from the public domain. Section 3 first presents details of the pollution monitoring
sensor network in service at the time of the fire. The modelling settings are then presented
for both the ADMS and OpenFOAM packages. Section 4 presents the sensor measurements
and the numerical data. Section 5 draws concluding remarks.

2. The case study
2.1. The accidental fire

The city of Southampton is the 19th largest city in the UK with a population of around
250,000 [45]. Its terrain is fairly flat with a gentle south-north slope starting from the port.
The city has an urban density typical of a port city with mixed industrial and residential
usage. The fire we are studying occurred in a brick outbuilding near the Hill Lane junction
with Archers Road (50°54’53.5"N 1°24’55.3"W), in Southampton, UK (see Fig. 1). The
firefighter crews were called at about 18:00 on 2 December 2019, according to news reports
and the Hampshire & Isle of Wight Fire and Rescue Service (HIWFRS)[43,44,46]. Therefore
the fire start time must be earlier than 18:00. Our data analysis including the comparison
between the simulations of the resulting plume of smoke and the sensor data and the
sensitivity tests,suggests that the fire start time was 17:30, which is referred to as time equal
to zero in this study. The data analysis also suggests that the fire produced smoke at a
steady rate for at least 80 minutes, even though the entire duration of the active fire is
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uncertain. This is because the wind direction changed significantly 2 hours after the fire
started. Nevertheless, the 80 minute steady release of pollutant in a north-westerly wind
which aligns with the fire site to the sensor station direction, gives a big advantage for
numerical simulations.

The material burnt in the fire and the reason of the subsequent large amount of
particulate matter produced are revealed. The HIWFRS [44] reports that “The outbuilding
contained roughly 3,000 reels of highly flammable cine nitrate film and movie equipment,
and was used as a private cinema theatre”, and “more than 3,000 film reels destroyed in
fire”, resulting in a much greater amount of air pollution being released than from a typical
fire event. A Southampton resident tweeted: "It’s super smokey and smells like fire even
over in Ocean Village. The smell’s noticeable in my flat as well" [43]. It is to be noted that
the Ocean Village is much further downwind of the St Mary’s Football Stadium (see Fig. 1),
which is about 2500 metres downwind of the fire site.

A literature review was carried out to identify the range of the temperature of urban
house fire. Cote [47] states that "typical home fire peak temperatures can approach 1,093◦C
during structural collapse", while "the average peak temperature of a house fire is around
593°C ". Sensitivity tests for the fire temperature uncertainty were performed to provide
confidence of the estimation.

2.2. The meteorological conditions

It is challenging but vital to use appropriate meteorological data in the CFD and ADMS
for evaluation purposes when compared with the field sensor data. The meteorological
conditions over the city of Southampton covering the time duration of the fire were obtained
from the Met Office Unified Model (UM) prediction, and the open-access data (Site ID
32005831) [48]. The meteorological weather station is located in the city centre at latitude
50°53’59"N, longitude 01°23’44"W, and elevation 32 m above sea-level, where the ground
elevation is about 5 m ASL, resulting in an above-ground height of 27 m.

At the time of the fire, the wind direction was from the west and northwest direction
during the time of the fire with low wind speeds of approximately 2 mph (0.9 m/s), an
ambient temperature of approximately 2°C, zero precipitation, humidity 78%, clear sky and
scattered clouds. Figure 2 shows a time series of the average ground-level UM wind speed
(at 10 meters). The wind gust speed measured at the weather station is also presented,
defined as the maximum three second average wind speed occurring in any period. Figure 2
shows that the gust speed is highly correlated to the wind speed. Time = 0 denotes the fire
start time, corresponding to the local time 17:30 on 2 December 2019.

It is to be noted this weather data relates to the conditions measured within the urban
canopy height, where the wind speed and direction are influenced by local buildings [4,49].
We estimate that the average building height h in the Southampton City centre area is
16.5 m, which is not very different from the average building height of a typical UK city.
The time-averaged wind speed at a higher altitude (i.e. freestream) can be much greater
than those given in Fig. 2. The time-averaged wind speed within the urban atmospheric
boundary layer (ABL) and above the urban canopy can be assumed to follow a logarithmic
law as

U(z) =
u∗
κ

ln
z − d

z0
, (1)

where U(z) is the time-averaged wind speed at height z, u∗ is the friction velocity, κ = 0.41
is the von Kármán constant, z0 is the roughness height estimated being approximately
1.5 m, and d is the displacement height estimated to be approximately three-quarters of the
average building height [50]. From Eq. 1, the ratio of wind speed at 1,000 m (freestream)
and 27 m is estimated to be approximately 3. Therefore, we estimate the freestream speed
at Time= 0 is roughly 3 m/s (when applying this ratio to Fig. 2), which is used for the CFD
settings.

Figure 3 shows the variation of the wind direction measured at the Southampton
Weather station. It shows a fairly steady north-westerly wind direction for approximately
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Figure 2. Time series of wind speed and wind gust speed. Time = 0 denotes fire start time, corre-
sponding to local time 17:30.

Figure 3. Same as in Fig. 2, but for wind direction.
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Figure 4. Same as in Fig. 2, but for air temperature.

4 hours after the fire started. In particular, during the first 1.5 hours time, the wind
direction is fixed at approximately 310◦. These provide a large duration of quasi-steady
meteorological conditions for setting up the CFD and ADMS models. Again, the ground
level wind direction from the Met Office UM code [48] is also plotted in Fig. 3, showing an
excellent agreement with the weather station data and giving confidence of using these
meteorological data.

Estimates of the ambient temperature and the temperature of the fire are important
for estimating the significance of buoyancy effects. Figure 4 shows a time series of ambient
air temperature measured at the Southampton Weather station around the time of the fire.
Carruthers et al. [2] defined a dimensionless buoyancy flux (FB) parameter as

FB =
g∆ρV

πρaU3
re f L

, (2)

where g is the gravitational acceleration, V is the volume emission rate of the discharged
fire plume, Ure f is the reference ground velocity, L is the characteristic length scale, and
∆ρ = ρ − ρa where ρ is the density of the fire plume gas and ρa is the ambient air density.
FB is similar to the Richardson number which quantifies the intensity of the thermal
stratification. To consider the local buoyancy effect at the fire, L can be the average building
size, while V can be estimated by L2 ∗ we, where we is the fire plume gas exit velocity
from the building. For temperatures of 500◦C and 1000◦C, ∆ρ/ρa is about 0.5 and 0.75,
respectively, resulting in FB being at least of the order of magnitude of 1 as we would
expect (see [2]). Downwind about 1500 m (e.g. at the sensor location) from the fire site, the
characteristic length is the plume width, which is two orders of magnitude greater than the
building size, suggesting that the thermal stratification due to the fire plume is small at the
sensor site.

The thermal stability of the atmosphere on the day of the fire is also important to
consider as this influences the tendency of the atmosphere to cause or prohibit vertical
mixing of air. In the ADMS package, the atmospheric boundary layer is characterised by
the boundary layer height zBL and the Monin-Obukhov length defined as

LMO =
−u3

∗
κgFθ0

ρacpT0

, (3)
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where T0 is the surface temperature, cp is the specific heat capacity, and Fθ0 the surface heat
flux [51,52]. The atmospheric boundary layer is then expressed as functions of z/zBL and
z/LMO, where z is the distance in the vertical direction from the ground. The stability of the
atmosphere for that particular time can be determined from the ratio zBL/LMO. The ratio
zBL/LMO greater than 1 suggests a stable ABL, −0.3 < zBL/LMO ≤ 1 suggests a neutral
ABL, and zBL/LMO ≤ −0.3 suggests an unstable ABL [52]. Using the tools with ADMS
and the available UM data, the value of zBL/LMO was estimated to be approximately
6, suggesting that the atmospheric boundary layer was stable, in which condition the
turbulence is suppressed, and air pollution tends to stay at the ground level where the
sensors were located.

3. Methodology and settings
3.1. Sensor Network

A sensor network consisting of 21 low-cost sensors was installed for measuring PM2.5
across the Southampton city between 2019 and 2020. The sensors used were the Plantower
PMS5003 (PMS) and the Sensirion SPS30 (SPS), which are particle optical sensors connected
to a Raspberry Pi. The data stored on the Pi and communication to each Pi was achieved
over LoRaWAN networking protocol wirelessly [53]. The sensor network is shown on the
map in Fig. 1 at various heights above the ground indicated by the drop marker, which was
created in Google maps [54] using GPS coordinates of the sensor locations. The location
of the fire is marked on the map by the fire symbol at the Hill Lane junction with Archers
Road. The smoke plume from the fire was captured primarily by the sensor located near St
Mary’s, approximately 1500 m southeast of the source of the fire. The sensors recorded the
concentration of PM2.5 onto CSV files with a date stamp at a frequency of 1/60 Hz.

This sensor network consists of low-cost pollution monitoring sensors which are a
compromise of low-cost and high-quality data [55]. The data captured by both types of
sensors are directly compared in Fig. 5. Comparing both the PMS and SPS sensor readings
shows that the PMS sensor tends to provide higher concentration values compared to
the SPS sensor; however, both sensor types show very close trends giving confidence to
the accuracy of the measurements. The spread of the data is slightly broader at higher
measured values, showing a higher uncertainty for the more extreme events. Other work
has developed better calibration methods for these sensors against more accurate reference
data so that for future pollution monitoring there would be a reduction in discrepancy [56].

3.2. The Gaussian plume model in ADMS and settings

Initial analysis was made in this study using the ADMS software package [2,52], which
is based on a Gaussian plume model . With this model based on empirical plume spread
parameters taking account of the meteorological conditions such as wind conditions and
temperature, the pollutant concentration at any point resulting from a defined source can
be estimated. The ADMS version used in this study was 5.01.03 [52]. ADMS takes a few
simple inputs which include source conditions, meteorology data, and geographical terrain
information to predict the extent of pollution dispersion.

It should be noted that the ADMS package has some limitations for the current study.
As the software was designed mainly for pollution analysis over large periods such as
months or years, it is setup for 1-hour intervals (time step). Therefore it can estimate the
pollutant (e.g. PM2.5) concentration for each 1-hour interval in a steady manner, while
for a point source short-distant dispersion problem 1-hour emission time is much longer
than many published case studies [e.g. 4]. The ADMS v5.01.03 cannot take account of the
history of previous time steps, and therefore cannot simulate point-source dispersion with
a varying emission rate or in transient winds.

In this study, the fire was estimated as a point source. The diameter of the source was
estimated to be 5 m with an elevation height of 1 m, in order to best match descriptions
of the outbuilding from the news and fire reports [43,44]. For a heated point source, the
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Figure 5. Comparison of PMS and SPS sensor data showing a consistency in monitored concentrations
of PM2.5.

plume rise model is used which elevates the source taking into account the buoyancy and
momentum of the plume.

Two crucial parameters, i.e. the emission rate and the fire temperature of the source,
were not able to be estimated solely by using ADMS. Instead, they were estimated from
a systematic comparison between the CFD simulations, the ADMS simulations and the
sensor data (see Section 5.3)) considering the uncertainties involved in the approaches, as
well as compared to a number of references [2,57–59]. A base source emission rate of 50 g/s
and a base source temperature of 500°C were estimated (see Section 5.3). The molecular
mass was set to 62 g/mol and a specific heat of 1.55 J/g/K for nitrate [60].

The meteorological data were input into ADMS from the Met Office open-access data
[48] covering the conditions at the time of the fire (Sect. 2.2), including the background
ABL stratification condition. Short-term averaging was used in the calculations to obtain a
smaller temporal resolution output of 1-hour intervals compared to the default long-term
model averaging over 24 hours.

Geospatial data was provided using Ordinance Survey maps in Geo TIFF file format
[61]. A roughness length was then set in ADMS to account for the type of terrain. As the
city of Southampton is built up with a vast amount of buildings densely spaced of different
heights up to 50 m, a roughness length z0 of 1.5 m was used. ADMS has a graphic interface
known as Mapper in which the Ordinance Survey map could be visualised, the location of
sources placed, and the solution viewed. A grid is required to compute the calculations
and a total of 62,500 equally spaced points was used. All other unspecified settings for the
ADMS were left as default. ADMS gives a fast prediction of a steady solution of the scalar
concentration field.

3.3. Large-eddy simulation in OpenFOAM and its settings

An open-source high-fidelity LES code embedded in the CFD package OpenFOAM
v2.1.1 was used for simulations of the time-dependent puff release from the fire. Open-
FOAM is a finite volume method (FVM) based CFD software package [36]. It has been
released as an open source package since 2004, and has become widely used in academia
and industry. Although it is an open source package, OpenFOAM has a number of features
that require the end-users’ involvement to setup, such as the implementation of the inflow
turbulence generation method [e.g. 4,34]. The LES method with the temporal and spatial
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St. Mary’s Stadium

Flat edge for 
inflow 
condition

Figure 6. CFD domain with a size of 3450 m (streamwise, x coordinate) × 2200 m (spanwise, y
coordinate) × 1000 m (vertical, z coordinate). The streamwise direction is from the 310◦ wind
direction (north-westerly wind).

discretisation schemes in 2nd-order accuracy was used in all simulations. The mixed time
scale Sub-Grid Scale (SGS) model was used to avoid using the near-wall damping functions
as used in the Smagorinsky SGS model.

Digital maps and Ordnance Survey information were used to construct a 15 km ×
15 km CAD model of the city including buildings and terrain. The final CFD domain (Fig. 6)
is 3450 m (streamwise, x coordinate) × 2200 m (spanwise, y coordinate) × 1000 m (vertical,
z coordinate) with a four-meter resolution within and above the urban canopy (Fig. 7). The
streamwise direction is the 310◦ wind direction (north-west).

The meshing approach in this study used the snappyHexMesh mesher built into
OpenFOAM. This method allows flexible and robust mesh refinement. The size of the
mesh is important to ensure a reasonable level of eddies is resolved, aiming to capture
80% of the turbulent kinetic energy. Three levels (4 m, 8 m and 16 m) of refinement were
used, resulting in a total cell count of 25 million which was used throughout this study.
Refining to 2 m at ground level did not significantly alter the results but increased the
cell count to 100 million and significantly increased computational costs. Fig. 7 shows the
mesh at two levels of zoom in the domain. The dimensionless inflow mean velocity and
turbulence statistics for synthetic turbulence generation were the same as in [4] and [62]
in neutral conditions, which were obtained from wind tunnel experiments and linearly
scaled [63] to match the freestream wind speed and turbulence intensity. Zero gradient
outflow boundary conditions were used for the outlet. No-slip wall boundary conditions
were used to enforce zero velocity at the ground and the building surfaces. Symmetric
boundary conditions were used for the lateral and top boundaries.

A very high temporal resolution with a small time step of 0.4 s was used, which
satisfied the condition CFL < 1. After a sufficient initialisation duration for the flow to
fully develop, the source started to release at t = 0. It took less than 48 hours of wall-clock
time using 320 processors to finish one case. An example of the simulated instantaneous
wind velocity field is presented in figure 8. To assess the effect of the duration of the fire,
without having to run multiple simulations, four different species with varying emission
periods were set up in the simulation.
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Figure 7. Mesh visualised on a plane within the city domain for zoomed-in near the St. Mary’s
Football Stadium at ground level (left) and overview of mesh on the ground and far field (right).

Figure 8. CFD simulated instantaneous streamwise velocity (m/s).



Atmosphere 2024, 1, 0 12 of 24

(a) (b)

Figure 9. Sensor data downstream of fire with respect to the estimated fire start time (a) and zoomed-
in for the duration of fire (b). The left side scale presents the measurements in units of µg/m3,
whereas the right side scale presents the measurements non-dimensionalised based on an estimated
emission rate Q = 50 g/s, the reference velocity Ure f , and the average building height h to aid the
comparison in section 5.3.

4. Measured PM2.5 concentration from the sensor network

Section 3.1 has demonstrated the sensor accuracy by comparing the two data from the
two different types of sensor. In this section, the measurements from the two types sensors
during the fire incident are further analysed.

4.1. Verification of the sensor measurement during the fire incident

The data acquired from the sensor network before, during and after the fire incident is
analysed. We focus specifically on the PM2.5 concentrations. This study estimates the air
pollution resulting from the fire as the difference between typical daily pollution levels and
the pollution level measured during the fire incident.

As there was a predominant steady north-westerly wind several hours before and five
hours after the start of the fire (Figs. 2,3), only the sensor directly downwind of the fire
detected significant change in the PM2.5 concentration. The location of the downstream
sensor is shown in Fig. 1 just north of St Mary’s Football Stadium. The concentration
measured by this sensor is shown in Fig. 9a with clear spikes following the start of the
fire with magnitudes greater than 2-3 times the background levels, demonstrating the
effectiveness of the low-cost sensor. Fig. 9b zooms in on the time of the fire and shows a
good agreement between the SPS and PMS sensors, demonstrating the confidence of the
measurements.

4.2. Estimation of the fire start time from the sensor data

There is an initial time delay from the start time of the fire to the time that a spike
was seen in the sensor data. This delay is the travel time of the pollutant cloud being
advected from the fire site to the sensor by the mean advection velocity of the wind Uadv.
The advection time, T50, is defined as the elapsed time (since release starting time) when the
ensemble-averaged concentration reaches 50% of its local maximum at the sensor location
and can be estimated as [e.g. 62]

T50 =
D

Uadv
, (4)

where D=1500 m is the distance from the fire site to the sensor location. Xie et al. [62]
suggests that typically Uadv = 0.15U∞, where U∞ is the freestream velocity, which was
estimated to be 3 m/s in section 2.2. This leads to the advection time T50 = 0.9 hours in
the current case study. Considering the elapsed time T50 against the sensor-measured
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concentration time series, the fire start time (at 17:30) is estimated, which is 28 minutes
earlier than the news and the HIWFRS reports [43,44]. Figure 9b confirms that at T =0.9
hours, the concentration of PM2.5 reaches about 50% of the peak concentration.

4.3. Discussion of the fire duration based on the sensor data

Fig. 9b shows that the PM2.5 concentration reaches a first peak at T = 1.5 hours, then
drops abruptly, and reaches a second spike at T = 2 hours. Looking at wind direction data
at the time of the fire (Fig. 3), the wind direction was north-west at 0 ≤ T ≤ 1.5 hours,
forcing the pollutant plume to pass over the sensors. Likely due to the change in wind
direction to a southwesterly wind after T = 1.5 hours, the measured concentration drops
abruptly. Afterwards, the wind speed dropped to approximately 1 m/s at T = 2 hours (Fig.
2), resulting in a second low peak of PM2.5 concentration at the T = 2 hours. In the first 2
hours, the wind was overall in a steady state, and the pollutant release rate was likely more
steady than other period [43,44,46]. This suggests that the numerical simulations and data
analysis should focus on the first two hours.

During 2 ≤ T ≤ 3 hours, the wind was mostly in the south-west or west directions,
shifting pollutant plume away from the sensors (assuming the fire was still actively emitting
pollutants), resulting in a lower PM2.5 concentration at T ≤ 3 hours. During 3 ≤ T ≤ 4
hours, the wind direction again changed from north-northwest to northwest, and to north,
resulting in a narrow peak at T = 3.3 hours and a broad peak at T = 4 hours. During
4 ≤ T ≤ 6 hours, the wind direction was initially from the north, and later changed to the
northeast, resulting in a sudden drop in sensor measurements. In summary, during 2 ≤
T ≤ 6 hours, the wind direction was very complicated, it would be extremely challenging
to carry out numerical simulations and comparison with the sensor data if the simulations
are not driven by ’real-life’ winds varying in direction and magnitude. Therefore, the
period 2 ≤ T ≤ 6 hours is not the focus of the study.

5. Numerical simulations and estimation of the emission rate

This section is to use numerical data to confirm the fire start time 17:30 estimated in
Sect. 4.2 from the sensor data, and to estimate the emission rate. The fire duration is also
discussed again.

5.1. Estimated concentration from ADMS

The Gaussian plume model in the ADMS package was used to efficiently produce
initial results taking account the thermal buoyancy effect by inputting an initial guess of
500◦C for the fire temperature. The detailed settings are presented in Sect. 3.2. The wind
speed and direction respectively shown in Figs. 2 and 3 were assumed to be constant over
60 minute intervals. Again, the study was focused on the period 0 ≤ T ≤ 2 hours, when the
wind direction was more steady and the pollutant emission rate was more likely constant.

The contours of ground level PM2.5 concentration at T = 1.5 hours are visualised
in Fig. 10, showing the plume is aligned with the wind direction. The maximum value
of PM2.5 concentration occurs downstream of the source, which is due to the thermal
buoyancy effect being taken into account in ADMS. Figure 10 shows that the sensor was
located just inside of the PM2.5 plume. This also suggests that when the wind became more
northerly at T = 4 hours, the plume shifted off the sensors and was no longer measured.
The fire temperature was assessed in ADMS and is discussed in Sect. 5.3.

5.2. Estimation of the fire start time from OpenFOAM

Following Sect. 4.3 that this study is focused on the period of a steady wind in the first
2 hours, several LES tests were carried out to assess the sensitivity due to the uncertainty
of the start time and duration of the fire. Four different scalar species were released at the
same rate Q =50 g/s, the same time and at the same location where the fire broke out,
with release periods of 20 minutes, 40 minutes, 60 minutes and 80 minutes, respectively.
The four sources each had the same spatial size (5 m × 5 m × 5 m). The time series of the
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PM2.5 g/m3 PM2.5 g/m3

Figure 10. Contours of ground level PM2.5 concentration at T = 1.5 hours for a source temperature
500◦ with an emission rate 50 g/s, calculated from ADMS and presented over a wide domain in (a)
and zoomed in close to the sensor in (b).

0 0.5 1 1.5 2

Time (hours)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

E
m

m
is

io
n

20mins
40mins
60mins
80mins

Figure 11. Dimensionless emission rates for various source release periods.
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Figure 12. Dimensionless concentration at the sensor location from 4 CFD releases, compared with
the sensor data. These are based on the estimated emission rate Q = 50 g/s, the freestream velocity
Ure f , and the averaged building height h.

emission rate normalized by Q =50 g/s for each source is shown in Fig. 11. To simplify the
LES settings, the wind direction and speed were kept constant, which were based on the
fact that the wind was nearly steady in the first 2 hours from the fire start (Figs. 2, 3). The
evident variations in wind speed and the small variations in wind direction during the first
2 hours of the fire are taken into account when comparing the LES data to the sensor data
in Sect. 5.3.

Fig. 12 presents the simulated concentration at the sensor location from the four
releases, non-dimensionalised based on the estimated emission rate Q = 50 g/s, the
reference velocity Ure f , and the averaged building height h = 16.5 m/s. As a baseline the
dimensionless sensor data based on the same characteristic quantities is also shown in
Fig.12. Here the sensitivity tests address two key questions: (1) what time the fire started,
and (2) how long the fire lasted. Other key questions, e.g. the emission rate assumed to be
50 g/s in Fig. 12, are discussed extensively in Sect. 5.3.

Comparing the four sets of CFD data to the sensor data shown in Fig. 12, we can
conclude that the 80-minute release produces results from CFD with the closest match
to the sensor data, both having an approximately 80-minute period with a concentration
greater than 50% of its local maximum. Note that Fig. 3 shows a very steady wind direction
in the first 2 hours time, at an average freestream wind speed of 2 m/s (Fig. 2), which is
the windiest period during the entire fire event. Therefore, we conclude that the LES gives
the most reliable prediction in the first 2 hours, confirming that the fire started at 17:30 and
lasted steadily for at least 80 minutes producing nearly constant emission of pollutants.

At T = 2 hours, the wind changed from north-west to south-west (i.e. 250◦), shifting
the plume out of the reach of the sensors (see Fig. 1), leading to a sudden concentration drop
shown in Fig. 5. It is not clear whether the sudden drop was solely due to the change of the
wind direction, or also due to the possible reduction of the release rate, since the firefighter
crew started on 18:00 to control the fire [43,44,46]. This results in a great uncertainty in
the estimation of emission rate at the T = 2 hours time and afterwards. At T = 3 hours
time, the wind direction changed to north-west (330◦), shifting the plume back in the
sensors’ reach range and leading to a small concentration peak. At T = 3.5 hours time, the
wind direction changed to 310◦ and stayed for about 1 hour, leading to a second greatest
concentration peak (Fig. 9b). Given the wind speed at T = 4 hours time is only one-third
of that in the first 2 hours, and the measured PM2.5 concentration at T = 4 hours is about
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Figure 13. Instantaneous concentration C/Q contours on ground level at 1.5 (top) and 3 (bottom)
hours time after the fire started, provided by LES in OpenFOAM with a 80-minutes release. The
streamwise direction was the incoming wind direction from left to right.

half of the peak concentration in the first 2 hours, one can deduce from the dimensional
analysis that the emission rate must be significantly reduced at earlier than T = 4 hours
time, considering the advection time. At the T = 5 hours time, the wind changed to a
northerly direction, the sensors were entirely out of the plume even if the remainder of the
fire was still emitting pollutants. Due to the greater uncertainty after T = 2 hours time,
hereafter only the 80-minute release in the CFD is considered. Again, 80 minutes release
along with the steady wind is more than 5 times longer than the 15 minutes release [e.g
4,62] for a puff release study, and should be enough for an estimation of the emission rate
in Sect. 5.3.

Visualisation of the PM2.5 concentration from the LES in OpenFOAM is a key ad-
vantage compared to using sensors and the ADMS software package. Fig. 13 shows
ground-level concentration contours, which are similar to the PM2.5 concentration contours
shown in Fig. 10 from the ADMS simulations. Both the LES and ADMS data confirm
that the sensor was located inside the plume. Nevertheless, there are evident differences
between Figs. 10 and 13. For example, the former shows a cross-wind symmetry over the
entire streamwise range, whereas the latter shows an asymmetry in the near field, which
is due to the street canyon effect captured in the LES. The LES in OpenFOAM produced
4-dimensional data (i.e. 3 dimensional in space and 1 dimensional in time). Figures 12 and
13 clearly shows such extremely rich details.

5.3. Estimation of the emission rate from available data

In this section, the two different modelling methods used in this study were compared
to the sensor data. As discussed earlier, ADMS cannot produce transient solutions. Here
the ADMS outputs are the time-averaged steady-state results for a one-hour period. Under
the quasi-steady meteorological conditions in the first 2 hours, the concentration sampled
at the sensor location from the OpenFOAM 80-minute release shows a near-constant value
during a period of approximately 1 hour (Fig. 12). The average of the 1 hour concentration
is considered as the maximum concentration. The period with concentration greater than
50% of the the maximum concentration is considered as the local plume duration, which is
slightly over 1 hour. The-time averaged concentration during this period is denoted as the
mean concentration.
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Figure 14. Dimensionless concentration (ĉ = C ∗ Uref ∗ h2/Q) time series. Sensor measurements
normalized by 3 guessed emission rates: 5 g/s, 50 g/s and 150 g/s. 3 fire temperatures tested in
ADMS: 100◦C, 500◦C and 1000◦C. 2 sample locations tested in OpenFOAM (OF): sensor site, and
plume centre.

In Sections 4.2 and 5.2, the fire start time and duration have been addressed. In
addition to these, the emission rate as well as the high and localised fire temperature
uncertainties must be estimated when comparing the ADMS and CFD data to the sensor
data. To check the uncertainties due to the estimation of the fire temperature, three guesses
100◦C, 500◦C and 1000◦C were made for the fire temperature considering published reports
[47], and were tested in ADMS with the same emission rate. To check the uncertainties
due to the sample location relative to the plume centre, two sample locations, i.e. one at
the sensor site and one at the plume centre, were tested for the ADMS data and for the
OpenFOAM data. To study the effects due to fire temperature and emission rate, Figure 14
shows comparison between the sensor measurements, ADMS, and CFD concentrations in
non-dimensional form as ĉ = C ∗ Uref ∗ h2/Q. Three guesses of 5 g/s, 50 g/s and 150 g/s
were made for the emission rate Q, from which we endeavoured to choose a more possible
one in the following paragraph.

The large variation of the fire temperature evidently changed the dimensionless
concentration ĉ up to 4 times. Figure 14 shows that increasing the fire temperature from
500◦C to 1000◦C in the ADMS settings, ĉ converges asymptotically to some constant.
According to Cote [47], “the average peak temperature of a house fire is around 593°C”.
Therefore, an average fire temperature of 500◦C over the first 2 hours time in the incident is
a more reasonable guess. The sensor measurements ‘Sensor Data ( 50 g/s)’ were in the best
match with the ADMS data ’ADMS (500Deg, Sensor Location)’, suggesting an emission
rate Q = 50 g/s and a fire temperature 500◦C in the first 80 minutes of the fire. The CFD
data ’OF-80 mins release (Sensor Location)’ fell into this range, confirming the suggested
emission rate and the fire temperature.

The dimensionless concentration ĉ sampled at the centre of the plume (i.e. the case
‘OF 80-mins release, (plume centre)’) with the same distance to the fire site is about one
order of magnitude greater than that at the sensor location. Both the ADMS data (Fig. 10)
and the CFD data (Fig. 13) show that the sensors are located at the edge of the plume in the
steady 310◦ wind so it is unlikely that the plume centre passed directly over the sensors
during the fire incident.
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Figure 15. A comparison of the mean concentrations obtained from all three methods (sensors, CFD
and ADMS) along with error bars representing the total uncertainty associated with each method
and their associated assumptions.

5.4. Uncertainties and confidence of the estimation

Figure 15 shows the dimensionless mean concentrations during the hours 1 ≤ T ≤ 2
obtained from all three methods together along with their uncertainties. The major sensor
uncertainty is due to the background PM2.5 concentration, which is approximately 15% of
the peak sensor data (Fig. 9). The upper and lower error bars for the sensor data shown in
Fig. 15 are set respectively +15% and -15% on the base of the sensor data.

The first CFD uncertainty is due to the assumption of the neutral stratification, ignoring
the stable stratification in the background atmospheric boundary layer (ABL). The back-
ground ABL during the fire incident was diagnosed being stable with a ratio zBL/LMO = 6
in Sect. 2.2, suggesting that the background ABL stability tended to suppress the plume to
spread in the vertical direction and hence to increase the concentration at the sensor site.
Sessa et al. [34] shows that a medium stable stratification in the background urban ABL can
increase the concentration by three times compared to when the stability of the atmosphere
is neutral. Considering this, the upper error bar for the CFD data in Fig. 15 is set at three
times the LES-predicted concentration.

The second CFD uncertainty is due to not considering the localised unstable stratifi-
cation at the fire site. The local fire temperature increases the influence of buoyancy and
effectively raises the source elevation. Fackrell and Robins [1] carried out wind tunnel
experiments to investigate the difference of dispersion between a ground-level point source
and an elevated point source at a height of about 0.2zBL. They reported that the concen-
tration measured at ground-level stations 3zBL downstream or further of the elevated
source was approximate half of that for the ground-level source. On the same stations
3zBL downstream of the source, the plume size in the vertical direction for the elevated
source was twice that for the ground-level source, while the plume width in the cross-wind
direction was the same. At 17:30 2 December when the fire started, it was 1.5 hours after
the sunset time 16:00 in the UK. Kotthaus and Grimmond [64] show that the ABL thickness
zBL over London was approximately 500 metres at 17:30 in the winter time in the similar
meteorological conditions as the current case study. This suggests that the distance from
the sensor station to the fire site was 3zBL, more than the 1.5zBL distance criteria noted in
Fackrell and Robins [1].
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Figure 16. Concentration time series from sensor measurements, CFD and ADMS predictions, based
on an estimated emission rate 50 g/s (see Fig. 14). Different fire temperatures 100◦C, 500◦C and
1000◦C were tested for the ADMS data.

The third CFD uncertainty is due to the assumption of steady wind direction settings,
while the real-life is never strictly steady [4] even though the study was focused on the first
2-hour period of the fire when the wind was in a nearly steady north-west direction. Xie [4]
carried out a study on a ground-level point source dispersion in similar wind conditions,
showing that a non-stationary wind can reduce the concentration to half compared to a
stationary wind. It should be noted that both the effective elevated source and the variation
of wind direction caused the meandering of the pollutant plume and the resulting reduced
PM2.5 concentration on the ground level. As the sensor site was 3zBL downstream from the
source where the plume size in the vertical direction was close to the ABL thickness zBL
(see Fackrell and Robins [1]), the lower error bar for the CFD data in Fig. 15 is set being half
of the LES-predicted concentration while Considering both the second and third factors.

The ADMS uncertainty is due to the estimate of the fire temperature. Fire temper-
atures of 100◦C and 1000◦C were also simulated using the ADMS package, respectively
corresponding to the upper and lower error bars for the ADMS data. Both Figs. 14 and
15 show that the dimensionless concentration tends to asymptotically converge for fire
temperature greater than 500◦C, suggesting a likelihood of small error due to the fire
temperature estimate.

The error due to the estimate of the emission rate is usually not small, and is not
presented in the dimensionless concentration plots in Fig. 15. Figure 16 brings together the
concentration time series obtained from sensor measurements, CFD and ADMS predictions.
The CFD and ADMS predictions are based on an estimated emission rate of 50 g/s, which
is much greater than the value of 1 g/s used by Carruthers et al. [2] and in the ADMS
6 Buildings Validation Warehouse Fires Wind Tunnel Experiments [28]. Compared with
the case study of [2], which reported a measured peak concentration of around 1 µg/s at
487.5 m downwind to the fire site, the measured peak concentration from the Southampton
fire is about 100 µg/s measured about 1500 m downwind from the fire site, suggesting
that the estimated emission rate in the current study is within a reasonable range. The
burnt material was mainly highly flammable cine nitrate film, which produced massive
amount of particulate matter. A comment from a resident living 2500 m downwind of the
fire provided consistent evidence to support this estimate (see [43] and Sect. 2.1).
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Table 1. A summary of the advantages, limitations and their potential applications of the Gaussian
plume model (GPM) and the large-eddy simulation (LES) for prediction of pollutant dispersion from
an urban fire.

LES GPM
Spatial resolution (m) 1 10
Temporal resolution(s) 1 3600
Complexity in setup Complex Simple
Wind speed& direction Yes Yes
Wind vertical profiles etc Yes No
Considering ABL stability Yes but not here Yes
Considering fire buoyancy Yes but not here Yes
User experience level Experienced CFD user Easy to use
Comput. cost(CPU hrs.) O(104) O(10−1)
Efficiency (wall-clock mins.) 60 (Supercomputer) 1 (Personal computer)
Output data dimensions 3D in space & 1D in time 2D in space
Output concentration Mean & flucts., plume extent Mean,plume extent
Potential apps.(now) Support parameterisation Fast predict. for

for GPM improvement scenarios as this case
Potential apps.(future) Fast predict. with supercomp. Improved fast predict.

6. Discussion and concluding remarks

While monitoring air pollution in the City of Southampton, a fire broke out which
caused a significant release of smoke in the region. Using measurements from the sensor
network, the key objective of this work is to present a unique case study for predicting
pollutant PM2.5 concentration from urban fires using both low- and high-fidelity numerical
models, aiming to explore the capability of the low-fidelity numerical model – ADMS for
fast response, and the accuracy of the high-fidelity numerical model – large eddy simulation
embedded in OpenFOAM for such applications.

6.1. Advantages and limitations of both numerical approaches, and their potential roles in fast
response applications

Designing an integrated tool for fast response is always a compromise of economic
cost and required accuracy. This study used the most efficient approach – Gaussian plume
model embedded in ADMS (a full-parameterisation method) and the most accurate but
computationally expensive approach –large eddy simulation embedded in OpenFOAM
(a full-CFD method) to estimate pollutant dispersion from an urban fire. Using the two
extreme approaches is able to explore the capabilities of the fast response tools including the
intermediate-level tools, such as the FAST3D-CT model [29] and the street-network models
[11,30]). The advantages and limitations of these tools scatter in a very wide range, and are
not possible to present a complete list. More studies on high-resolution modelling of urban
air quality can be found in a review paper [e.g. 37]. Table 1 presents an unexhaustive list of
the advantages, limitations and their potential applications of the Gaussian plume model
(GPM) and the large-eddy simulation (LES) for prediction of pollutant dispersion from an
urban fire.

Fourteen aspects are compared in Table 1 between the LES and GPM models. These
can be grouped into four categories. The first category is resolution and accuracy, i.e.
spatial and temporal resolution, and output data, in which LES has a higher resolution and
accuracy. The second is efficiency and complexity in the use of the software packages, i.e.
complexity in setup, user experience level, computational cost (CPU hours), and efficiency
(wall-clock mins), in which GPM is more efficient and simpler to use. The third is the
inclusion of physical parameters, i.e. wind speed & direction, wind vertical profiles etc,
ABL stability, and fire buoyancy effect, in which LES has more potential than GPM. The
fourth is the potential applications for the considered areas. Currently, GPM can be used
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for some fast response problems as demonstrated in this case study, while LES data can be
used to improve the GPM parameterisation schemes. In the near future (e.g. in ten years
time), LES with supercomputers can hopefully be used for fast response problems [31],
while developing an integrated tool including geometry and mesh generation, running
LES faster than real time, and visualising the LES data, is the top priority.

6.2. Concluding remarks

By comparing the sensor measurements, the ADMS data, and the LES data, an iterative
process is presented, which demonstrates that the Gaussian plume model embedded in
ADMS can produce a fast estimate of the smoke plume extent and magnitude at a distance
more than 1500 m downwind of the fire. In addition, six points must be emphasized here:
1) real-life sensor measurements are always useful, such as for calibrating the numerical
models, checking the fire start time and duration. 2) using the real-life meteorological data
is of crucial importance for setting up the numerical models, as well as for understanding
the sensor data etc. 3) Depending on the burnt materials, the emission rate of pollutants in
one incident can be one order of magnitude difference compared to another. Identifying the
burning materials is of crucial importance for the estimate of emission rate. 4) The Gaussian
plume model in ADMS can give a reasonable prediction at downstream 1000m, if the
emission rate can be estimated based from a database and the meteorological conditions are
known. 5) Large-eddy simulations can be useful to improve the parameterisation schemes
in the ADMS models, such as for the near-source dispersion from an urban fire. 6) for final
decision making, the relevant uncertainties, including the meteorological conditions, the
emission rate, the fire temperature, the fire start time and its duration, must be taken into
account.

This research provides an unique case study for testing fast response models for ap-
plications of pollutant dispersion from an urban fire. It also demonstrates the capability
of using the Gaussian plume model for fast response, and the future potential applica-
tion of using the large-eddy simulation model for near-field dispersion in fast response
applications.
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