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Abstract

This paper proposes a new extension to the Sustainable Specimen Collection Problem (SSCP),
where medical specimens are transported by vans, bikes, and uncrewed aerial vehicles (UAVs, or
drones) from local medical practices/offices to a central hospital laboratory for analysis, employing
a two-echelon collection approach. Time restrictions from existing operations and literature are
also introduced, with the study being formulated as a weighted multi-objective problem seeking
to minimise (i) operating costs; (ii) transit times; and (iii) energy/environmental impacts. A
new adaptation of the Clarke and Wright Savings Algorithm is subsequently presented to create
collection rounds that leverage each mode’s strengths. Subsequently, routes are compiled into
workable fixed shifts using a modified bin-packing algorithm in each iteration.

The approach of this study is based on a case study of the UK’s National Health Service
(NHS), involving the collection of pathology samples using traditional vans operating within fixed
time slots. Using case study data from the Solent region (England), a novel test instance gen-
eration methodology was also developed, whereby realistic site positioning and origin-destination
travel data are captured to enable effective algorithm experimentation. The findings from applying
the proposed algorithm to a set of test instances based on this methodology are subsequently dis-
cussed, where it was found that the adapted savings and bin-packing approach produced effective
solutions quickly, with 90% of all large instances (200 sites) being solved within 15 minutes. Fur-
ther algorithm developments and the application of the devised problem/methodologies are also
discussed.
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1. Introduction

Approximately 95% of clinical diagnoses within the UK’s National Health Service (NHS) depend
on timely access to pathology and diagnostics services (NHS, 2014), with a significant proportion of
these requiring efficient logistics and routing. Meanwhile, the NHS is looking to become the world’s
first net-zero emission health provider (NHS, 2020a), requiring substantial changes to the existing
logistics practices that are often fossil-fuel-based and less responsive to demand than desired (Oakey
et al., 2023). To this end, they are exploring novel logistics modes, such as bicycles (pedal-assisted
or otherwise) (NHS, 2020b) and uncrewed aerial vehicles (often referred to as unmanned aerial
vehicles, UAVs, or drones), which have seen growing interest in their use for collecting/delivering
diagnostic specimens in the medical sector (Otto et al., 2018).

This paper builds on previous work by Oakey et al. (2023), investigating the potential for
multiple vehicle modes to work in a two-echelon arrangement to collect patient diagnostic specimens
(often referred to as ‘pathology samples’) from clinics in a community setting and deliver them to
a central laboratory at a hospital for analysis.

As outlined in the initial investigations (Oakey et al., 2023), the rationale for investigating
a move away from the incumbent logistics modes (diesel-fuelled vans/trucks) was to encourage
faster transit times and lower emission deliveries. This study develops the Sustainable Specimen
Collection Problem (SSCP) to include UAVs and work shifts (in addition to the two-echelon bike
and van arrangement addressed in the original SSCP), where vehicle assets can complete multiple
routes to/from the hospital in a given work period (e.g. a morning shift of a few hours).

To the authors’ knowledge, presenting the collection problem with this combination of vehicles,
objectives, and constraints is a novel contribution, and a robust solution approach was required
to obtain good solutions. The column generation method presented by (Oakey et al., 2023) was
deemed unsuitable due to the large number of columns that would be generated when vehicle
departure times could be varied, resulting in a significant computational demand. To this end, a
new adaptation of the Clarke and Wright Savings Algorithm (CWSA) is presented in this study,
whereby multiple savings options using different modes are considered, whilst the scheduling aspects
of the problem are formulated as bin-packing algorithms, using new adaptations of the first-fit
decreasing and best-fit algorithms to efficiently compile routes into work shifts.

The complexity of the proposed problem also introduces challenges in establishing the perfor-
mance limits under realistic input conditions. Given the importance of representing realistic case
study characteristics, a new approach to generate test instances is proposed and implemented,
allowing the algorithm to be configured and its performance assessed.

The following section outlines the relevant literature in the context of this multi-faceted prob-
lem, relating to heterogeneous problems with UAVs, healthcare routing problems, and the use of
savings and packing algorithms in vehicle routing and scheduling.

2. Literature Review

Studies are slowly emerging that demonstrate UAVs are not beneficial in every environment
(Goodchild and Toy, 2018) and (Anonymous, 2022), and including them as part of a mixed-mode
(heterogeneous) fleet with other vehicles (e.g. bikes and vans) enables their benefits to be leveraged
more effectively.
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Many studies have investigated operations with a van and a UAV in a multi-echelon arrangement
(Murray and Chu, 2015; Benarbia and Kyamakya, 2022), often referred to as the “flying side-
kick”. Under such an arrangement, the UAV travels with the van and completes sub-tours from
that van (the “mothership”), before returning at a later point in the round. Several extensions
of these problems have been proposed (Wang and Sheu, 2019), addressing factors such as energy
considerations (Kyriakakis et al., 2022), or time dependencies (Wang et al., 2022); however, none of
these arrangements account for the likely practicalities imposed by regulator constraints on flight
paths or take-off sites (Anonymous, 2022), nor do they investigate additional vehicle modes such
as cycles, which have frequently been cited as effective in urban areas (Conway et al., 2017; Gruber
and Narayanan, 2019). Özoğlu et al. (2019) proposed an adaptation of the Clarke and Wright
Savings Algorithm that was demonstrated to work effectively.

Due to landing and flight restrictions, large UAVs are generally used for return trips, which
is the case in this work; however, in Garcia and Santoso (2019) and do C. Martins et al. (2021)
the authors explored the more flexible setting where each UAV was able to visit multiple sites,
helping to considerably reduce the driven vehicle time. More elaborate settings based on a two-
echelon approach are explored in (Hu et al., 2023). More modes of transport are considered in
Kovač et al. (2021), for which rail and river freight were used in combination with vans and UAVs
in urban logistics, with a “Measurement of Alternatives and Ranking according to Compromise
Solution” (MARCOS) Multi-Criteria Decision-Making (MCDM) method being used to identify the
most beneficial strategies. A more general problem applied in the context of humanitarian aid is
addressed in Scott and Scott (2017) and Romero-Mancilla et al. (2023), where they investigated
UAV routing with heterogeneous multi-echelon arrangements using vans and UAVs to deliver hu-
manitarian aid. Both problems addressed a combined routing and facility location problem, using
vans before onwards movement by UAV to the customers, and used objectives to minimise either
the costs and delivery times, subject to capacity and budget constraints.

The weather resilience of UAVs is a notable challenge highlighted in several studies (Gao et al.,
2021; Ranquist, 2017) and (Anonymous, 2022), and in the event of poor weather, a heterogeneous
system should be able to adapt plans accordingly by switching to use alternative modes for sites
that are not otherwise accessible by air, or scheduling flights for times when conditions are more
favourable. To this end, Thibbotuwawa et al. (2020) considered the effects of weather in their
formulation, investigating different planning strategies and their effects on factors such as energy
consumption and customer satisfaction (a function of delivery priority, demand, and weight). The
findings suggested that changing UAV fleet sizes could make services more flexible when wind
conditions change; however, it was assumed that flights were always possible in the tested scenar-
ios, and the UAVs could carry out multiple deliveries per route. From the authors’ experience
implementing flight trials, this is not likely due to the limitations of the technology, where prac-
tical payloads require a UAV of significant size; and current regulatory constraints, which restrict
take-off/landing locations. With this in mind, the present study seeks to address such limitations
and allow for short-notice planning of routes and vehicle allocation in light of traffic and weather
forecasts (i.e. in the period directly before implementation on the same day). It should be noted
that other modes of transport, such as vans, also face changeable conditions due to traffic or even
weather. In this context, Wang et al. (2022) identified a heuristic approach to minimise the impact
of traffic on routing vans and UAVs.

In addition to the challenges posed by the heterogeneous VRP when introducing UAVs, there
are several factors to account for in healthcare logistics, including time constraints and the multiple
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objectives required to satisfy the targets of the stakeholders involved. As was highlighted in (Oakey
et al., 2023), there are several similar healthcare logistics VRP studies addressing the movement
of diagnostic specimens between medical facilities, subject to constraints around time, cost, and
capacity, although heterogeneity was not commonplace. These included Cherrett and Moore (2020);
McDonald (1972); Grasas et al. (2014); Smith et al. (2015); Elalouf et al. (2018); Yücel et al.
(2013a,b); Zabinsky et al. (2020); Anaya-Arenas et al. (2016); and Naji-Azimi et al. (2016). The
full details of each study have been omitted for brevity, though a summary of the most relevant
examples is given below, and a comparison of these studies in relation to the present study is shown
in Table 1.

The first study investigating the movement of diagnostic specimens was seen in McDonald
(1972), who sought to use heuristic methods, including a Gaskell modified saving algorithm (Gaskell,
1967), which builds on the classical VRP approach, the Clarke and Wright Saving’s algorithm
(Clarke and Wright, 1964). Anaya-Arenas et al. (2016) built on this work to propose the Biomedi-
cal Sample Transportation Problem (BSTP), minimising the total distance travelled whilst subject
to time windows for collection/delivery, highlighting the importance of reducing the transit time
(keeping it lower to 180 minutes). This fact was previously introduced in Wilson (1996), who
suggested transport should seek to limit sample damage with punctual delivery and controlled
intermediate storage. Zabinsky et al. (2020) proposed an exact method to solve a vehicle rout-
ing and scheduling problem for specimen deliveries for specimen deliveries, with an aim to reduce
the delivery time across all sites after an initial time point that samples are ready for collection.
However, the branch and bound exact method is able to optimally solve small problems (e.g. 9
sites).

The initial problem and investigations proposed in (Oakey et al., 2023) used some of the con-
cepts discussed by McDonald (1972) and Anaya-Arenas et al. (2016), noting that existing opera-
tions have limited control over the movement of samples before they are collected by the courier
and delivered at the analysis laboratory. This study focused on the UK’s National Health Service
(NHS), which has ambitions to become net-zero by 2040 (NHS, 2020a); thus, the objectives and
arrangement sought to reduce vehicle driving in place of cycle courier use.

Table 1: Comparison of previous investigations of the specimen collection problem (and similar). MOO = Multi-
objective optimisation. *= for maximum number of instances tested.

Author Problem Title Key Dynamics Objective(s)
Formulation,
Approach

Est.
Runtime*

McDonald
(1972)

VRP Case Study -
Specimen Collection

Vans Only, Time
Constrained

Total Travel Time
Single Obj.,
Heuristic

Not Stated

Anaya-
Arenas
et al.
(2016)

Biomedical Sample
Transportation
Problem (BSTP)

Vans Only, Several
Time Constraints,
Uncapacitated

Travelled Distance
Single Obj.,
Heuristic

1 hr (limit)

Zabinsky
et al.
(2020)

Vehicle Routing and
Scheduling Gen. Alg.
(VeRSA)

Vans Only, Time
Constrained, Vehicles
Re-Used

Total Duration from
Goods Ready to
Delivery

Single Obj.,
Branch and
Bound

2 hr (limit)

Oakey
et al.
(2023)

Sustainable Specimen
Collection Problem
(SSCP)

Vans and gig-economy
cycles, Time
Constrained,
Multi-Echelon

Longest Collection
Round Duration,
Number of Vehs.,
Total Travel Time

Weighted MOO,
Column Gen.
with Imp.
Heuristics

c. 30 secs

Present
Study

SSCP with work shifts
and UAVs

Vans, UAVs, and
gig-economy cycles,
Time-constrained,
Multi-echelon

Maximum transit
time, operating cost,
emissions

Weighted MOO.,
Adapted CWSA
heuristic with
bin-packing

Typical <2
mins, Large
<~10-20
mins
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Other notable examples of healthcare logistics problems have been discussed by Kergosien
et al. (2014); Lodree et al. (2016); Doerner and Hartl (2008); Liu et al. (2013); Osaba et al. (2019);
Ouiss et al. (2022), addressing related problems such as the rapid movement of blood stocks in
humanitarian disasters, and green vehicle routing for at-home patient care. The objectives in
these problems typically related to combinations of cost, time, and emissions. With respect to
solution approaches, heuristics were generally most prevalent due to the significant solution spaces
and constraints applied to the problems, and the need to solve within short periods prior to
implementation.

The scheduling aspect considered in this work could be deemed closely related to a crew schedul-
ing problem, due to drivers and operators being allocated vehicle(s) for an entire shift period. It is
worth noting that the number of operators required in any given shift is a key contributor to the
total cost. The key variation to this concept is seen in UAV operators managing multiple platforms
at once, however, they remain on duty for the entire period. In the literature, it has been noted
that such crew scheduling problems can be effectively solved using bin-packing algorithms (Qiao
et al., 2010).

The SSCP with work shifts and UAVs is further complicated with variable costs for each route,
depending on the assigned position in a shift (due to traffic, etc.). Such behaviour could be likened
to a manufacturing makespan problem, which features varying task durations, depending on their
position in the manufacturing process (Yu et al., 2013). To this end, bin-packing has been shown
to be an effective tool in solving makespan problems (Van De Vel and Shijie, 1991; Coffman et al.,
1987); thus,is explored in the present study.

The remainder of this paper outlines the new extension of the SSCP: the “SSCP with work
shifts and UAVs”, building on Oakey et. al’s initial study (Oakey et al., 2023), presenting a
heterogeneous problem with three different modes in a two-echelon arrangement. Subsequently, a
novel heuristic approach is proposed to solve the problem, using a novel adaptation of the CWSA
for route planning with bin-packing to compile effective work shifts. A new test instance generator
is also introduced to construct realistic dummy datasets, before test results are presented, using
the instances to parameterise and benchmark the algorithm.

3. A Two-Echelon Heterogeneous Vehicle Routing Problem

3.1. Problem Description

This problem further develops the SSCP, where a set of known node locations (clinics) produce
diagnostic specimens that require collection and delivery to a single central hospital laboratory
node without incurring excessive costs, environmental impacts, or time.

Specimens are routinely used in health services throughout the world to support in the diagnosis
of patient medical conditions, with 29% of general practitioner appointments requiring some form of
diagnostic test (Ngo et al., 2017). The current method of transport used for these deliveries varies by
country. For example, in developed countries such as the UK, fleets of diesel vans are currently used
and managed by local healthcare organisational units (known as National Health Service (NHS)
trusts). Meanwhile, in some less developed countries such as Rwanda, UAV delivery services are
being adopted in select locations in addition to traditional ground transport modes (Sigari and
Biberthaler, 2021), and there is interest in adopting similar technologies in more developed nations
as well (Cawthorne and Wynsberghe, 2019). This study has been developed to reflect the typical
operations in the UK, though the principle arrangement could be adapted for other locations.
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As in the initial investigations (Oakey et al., 2023), vans are based at the hospital laboratory
and serve multiple clinics in a route before returning to the hospital within a maximum time con-
straint. Additionally, vans may also be based at the community clinics if facilities and contractual
arrangements permit. Bikes operate on a similar basis but can start at any clinic or the hospital
and serve only a limited number of sites due to capacity constraints, before delivering their payload
back to the same site. Meanwhile, UAVs can only serve one site before returning to the hospital
due to payload capacity constraints.

It should be noted that some studies in the literature assume that UAVs can serve multiple sites
in one route, e.g. (Wang and Sheu, 2019; Benarbia and Kyamakya, 2022), though this is unlikely
given the very limited payloads that UAVs can carry, particularly if industry standard packaging
units are used, as highlighted in (Anonymous, 2022). Similarly, other studies have explored the
use of UAVs flying from dynamically located positions along van routes (Murray and Chu, 2015),
though this is also unlikely due to the regulatory and safety restrictions for such flights to take
place.

As in the original problem (Oakey et al., 2023), this study continues to assume that cycling
can be undertaken as discrete tasks by gig-economy cyclists outside of mealtime peaks (Lord et al.,
2020). Conversely, progressing from the original SSCP study (Oakey et al., 2023), the re-use of
vehicles is permitted through introducing work shifts. In business-as-usual NHS operations in the
UK, vehicles and their drivers typically operate a morning shift and an afternoon shift, collecting
from a given set of sites in each period, with periods being independent of each other. To this
end, this study defines shift periods, in which multiple routes (e.g. Hospital→Site A→Site B→Site
C→Hospital) can be served by a single vehicle and driver (vans)/operator (UAVs), such that
multiple deliveries are made to the hospital in a given period. Due to cycle routes being handled
by gig-economy cyclists on an ad-hoc basis, these remain as standalone routes.

Cycling and van routes can be used to complete consolidation deliveries on a local basis, whereby
sites are served, and their loads are delivered to another clinic for onward transportation by a
(trunk) UAV or van route. Within a shift period, traffic and weather conditions may vary, meaning
that travel times can be departure time dependent for vans and UAVs. Travelled trajectories may
also vary temporally due to changes in traffic and the associated third-party ground risk and
weather conditions (Pilko et al., 2021); thus, distances and associated travel energies are also
departure time dependent.

Samples often have a short life-span and should be analysed in a promptly (as stipulated by the
regulator) to guarantee quality diagnostic results are obtained (NHS and Sedman, 2020); however,
there are sometimes difficulties experienced in realising this (Oakey et al., 2023) and (Anonymous,
2022). As has been noted by Anaya-Arenas et al. (2016) and McDonald (1972), there are many
stages in the sample supply chain, though the period in which planners can have greatest influence
is in the transportation between clinics and the laboratory. To this end, the proposed problem
focuses on the time samples spend in transit (i.e. out of controlled conditions), accounting for
transit times as part of the objective and as a maximum time constraint that planners may wish
to use.

Furthermore, it is envisaged that logistics planners may want to plan the routes for a given
shift with minimal notice to ensure that the strategies match the expected demand for the period
in question and maximise the efficiency of the routing. To this end, any approach used for solving
the VRP must be capable of identifying effective solutions quickly (i.e. within a few minutes or
less).
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When considering the combination of consolidation and trunk routes (hereafter referred to as
a collection round, Figure 1), the maximum time constraint may be imposed so that there is a
limit on the duration between the first collection in a given route combination and the delivery at
the hospital. This is similar to the collection round limit in the original investigations, although
with an update to consider the transit time only, as opposed to the time to final delivery at the
hospital across all rounds, due to the introduction of shift periods and vehicle reuse, which make
the original metric less relevant. Similarly, the first objective, relating the problem to patient care
levels, seeks to minimise the maximum in transit time. This aligns with other healthcare logistics
problems, such as ambulances response times, where metrics seek to ensure operations provide a
consistent minimum level of service (NHS, 2018).

Figure 1: Routing options envisaged in the proposed multi-modal healthcare logistics system.

Where cycling continues to be handled by a third-party gig-economy logistics provider and re-
mains as discrete tasks, a significant level of uncertainty around these routes remained. To this end,
collection rounds featuring cyclists account for the full duration from the cycle courier’s departure
(as opposed to the first collection). Conversely, where route combinations that incurred waiting
time were rarely selected in the initial study and introduces delivery/collection time synchronisation
risks, consolidation waiting time is not permitted in the developed problem.

It should be noted that using historic sample ‘bleed’ and ‘receipt’ time data (i.e. when they
were extracted from patients, and when they were checked in to the laboratory, as presented in
(Oakey et al., 2023)) is not significantly beneficial, as NHS staff have suggested that appointment
times are scheduled around the logistics timetable in the existing system, as opposed to the other
way around. Hence, it could be said that there is some flexibility to move appointments to suit
vehicle scheduling. Additionally, under the proposed arrangement, shorter work shifts could be
adopted to enable a more on-demand style arrangement, as was suggested by (Oakey et al., 2023),
whereby only those sites that require a collection are served in a given period.

With respect to the problem’s environmental emissions objective, the proposed system should
reduce emissions where possible, and the strategic arrangement using consolidation to reduce
mileage and the number of vehicles required intrinsically supports this goal. Additionally, any
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emissions produced generating the power for electrically-propelled vehicles also need to be ac-
counted for. To this end, a move away from fossil-fuels towards electric-powered vans has been
noted to be a committed change in last-mile logistics systems (European Environment Agency,
2020), meaning that further constraints may need to be imposed with respect to vehicle range in
some routing problems, as in Green Vehicle Routing Problems (VRP) (Demir et al., 2014). In this
particular application, it is anticipated that a vehicle will have sufficient range to complete all of
its allocated routes for a given shift before recharging; hence, no overall shift period range limit
has been imposed.

Typically, the energy requirements of a given route correlate with the subsequent emissions
produced (Krol et al., 2023); hence, the environmental objective of the problem seeks to minimise
a function of the energy of the system. This also enables a potential adaptation of the function to
normalise the environmental objective using pricing for the impact of emissions, as is often done
in transport appraisals (Department for Transport, 2021).

Cost is the final objective of the system, which includes the fixed costs of operations for a given
shift period, such as a driver wage for a fixed number of hours, and any standing costs associated
with the vehicles, such as insurance. The cost objective also includes the items which vary relative
to the length and duration of routes. Van costs typically vary per mile driven (FTA, 2022), whilst
the variable costs of UAVs relate to their scheduled maintenance programme based on flight hours
(UK CAA, 2020) and (Anonymous, 2022).

UAV staffing is also subject to an operator ratio as a result of multiple UAVs being overseen
by a single member of staff (e.g. 1 operator may oversee 20 UAVs (Crosby, 2023)), meaning
economies of scale can be possible. Nonetheless, to guarantee the pay of an operator for a shift
period, operation costs follow step changes to meet staffing requirements; i.e. 1 UAV = 1 operator,
20 UAVs = 1 operator, 21 UAVs = 2 operators (1:20 ratio).

With the continued assumption of ad-hoc cycling, cycle costs are based on a function of distance,
number of stops, and a fixed-fee per route (Stuart, 2023). It should be noted that this is a
development on the previous investigations (which were based on a flat rate per route), due to
updates to gig-economy company pay structures and surrounding regulations (Lomas, 2023; The
Fairwork Project, 2020).

3.2. Integer Linear Programming (ILP) model

As outlined in the problem description, this CVRP defines the selection of a set of vehicle work
shifts, each comprising of a set of routes, to collect samples from a known set of nodes before
delivering them to a single node for analysis. The following definition can be described as the
SSCP with work shifts and UAVs. The formulation is as follows:
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Table 2: ILP Notation

Notation Description

Timing

K Set of discrete time points, K = {0, 1, 2, . . . , kn} (1)

kn Number of time points in K (2)

a Number of time intervals in a shift period (3)
k Given time point in K (4)
Iu Time interval bound by time point ku−1 and ku, containing time point k (6)
Locations and Modes
s Individual surgery (indexed using i and j) (7)
S Set of surgeries that require a collection (8)
H Target hospital, where vans/UAVs are based. Destination for all samples. (9)
S′ Set of all nodes, including all surgeries and the hospital (10)
SE Subset of surgeries where vans can also be based (11)
SD Subset of surgeries which can be served by UAVs, SD ∈ S′ (12)
SC Subset of surgeries which can be served by cycles, SD ∈ S′ (13)
V Van mode (14)
D UAV (drone) mode (15)
C Cycle mode (16)
Costs Parameters
pV Commercial running costs of a van per unit distance (e.g. per kilometre) (17)
W V Standing cost of a van and driver per shift period (18)
pD Commercial running costs of a UAV per unit time (e.g. per flight-hour) (19)
WD Standing cost of a UAV platform per shift period (20)
WO Standing cost of a UAV operator per shift period (21)
ϕ Number of UAVs each operator can simultaneously monitor (22)
pJ Cost per cycle job (23)
pS Cost per cycle stop after the first pickup (24)
C l Included distance per cycle job (25)
pC Cost per unit distance beyond C l (26)
Van Travel Parameters
T V
ku−1

(i, j) Fixed travel time for a van journey between sites i, j, departing at time ku−1 (27)

T V
ku
(i, j) Fixed travel time for a van journey between sites i, j, departing at time ku (28)

tVk (i, j)
Travel time for a van journey between sites i, j, departing at time k, scaled
using the fixed travel times for the associated intervals

(29)

LV
ku−1

(i, j)
Fixed travel distance for a van journey between sites i, j, departing at time
ku−1

(30)

LV
ku
(i, j) Fixed travel time for a van journey between sites i, j, departing at time ku (31)

lVk (i, j)
Travel distance for a van journey between sites i, j, departing at time k, scaled
using the fixed travel distances for the associated intervals

(32)

EV
ku−1

(i, j) Fixed travel energy for a van journey between sites i, j, departing at time ku−1 (33)

EV
ku
(i, j) Fixed travel energy for a van journey between sites i, j, departing at time ku (34)

ϵVk (i, j)
Travel distance for a van energy between sites i, j, departing at time k, scaled
using the fixed travel distances for the associated intervals

(35)
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UAV Travel Parameters

tDk (i, j)

Travel time for a UAV journey between sites i, j, departing at time k, scaled
using the fixed travel times for the associated intervals (TD

ku−1
(i, j) and

TD
ku
(i, j), analogous to vans, above)

(36)

lDk (i, j)

Travel distance for a UAV journey between sites i, j, departing at time k,
scaled using the fixed travel distances for the associated intervals (LD

ku−1
(i, j)

and LD
ku
(i, j), analogous to vans, above)

(37)

ϵDk (i, j)

Travel distance for a UAV energy between sites i, j, departing at time k,
scaled using the fixed travel distances for the associated intervals (ED

ku−1
(i, j)

and ED
ku
(i, j), analogous to vans, above)

(38)

Cycle Travel Parameters
tC(i, j) Travel time for a cycle journey between sites i, j (constant across time periods) (39)

lC(i, j)
Travel distance for a cycle journey between sites i, j (constant across time
periods)

(40)

Routes
RV Set of van routes based at the hospital, H (41)
RD Set of UAV routes based at the hospital, H (42)
RC Set of cycle routes based at any site (43)
RE Set of consolidation van routes based at sites in SE (44)
nr Number of surgeries visited in a route (45)
T Service/dwell time per stop in a route (46)
rv,k A trunk van route departing at time k (47)
trv,k Total duration of route rv,k (48)

lrv,k Total distance travelled by route rv,k (49)

ϵrv,k Total energy requirement of route rv,k (50)

prv,k Total running cost of route rv,k, excluding fixed costs (51)

rse,k
A consolidation van route based at surgery s, departing at time k, with
parameters trse,k , lr

s
e,k
, ϵrse,k , and prse,k (analogous to trunk vans)

(52)

rd,k
A UAV route, departing at time k, with parameters trd,k , lrd,k , ϵrd,k , and prd,k
(analogous to vans)

(53)

TD Downtime duration per UAV route (for battery changes, etc.) (54)

rsc,k
A cycle route based at surgery s, departing at time k, with parameters trsc,k ,

lrsc,k , ϵr
s
c,k
, and prsc,k (analogous to trunk vans)

(55)

tcmax Maximum cycle route duration (56)
lcmax Maximum cycle route distance (57)
Collection Rounds
R′ Complete set of all trunk routes (58)
R′′ Complete set of all consolidation routes (59)
rα,k Individual trunk route, departing at time k (60)
rsβ,δ Individual consolidation route, based at surgery s, departing at time δ (δ ∈ K) (61)

rk
Individual collection round, with departure time k (corresponds to collection
round’s trunk route departure)

(62)

R′′rα,k
Subset of consolidation routes associated with trunk route rα,k (63)

R Set of all collection rounds (64)
Srk Set of surgeries served by all of the constituent routes of rk (65)
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r0v,k
Dummy van route serving only H to enable collection rounds containing only
consolidation routes

(66)

r0k Collection round containing r0v,k and consolidation cycle routes based at H

ϵrk Total energy requirement of consolidation round rk (67)

trk
Transit time in collection round rk (duration between the first collection and
the delivery)

(68)

Variables, Constraints and Objective Parameters
xrk Binary decision variable to select collection rounds (69)

Vrk
Number of van routes (trunk and consolidation) being used in collection
round rk

(70)

Drk Number of UAV routes being used in collection round rk (71)

AV
max

Maximum number of vans (trunk and consolidation) being used across all
collection rounds and time points

(72)

AD
max

Maximum number of UAVs being used across all collection rounds and time
points

(73)

tmax
rk

Maximum transit time constraint value (74)

u Maximum transit time across all selected collection rounds (75)
γ Constant multiplier for converting energy to emissions or priced emissions (76)
θ1 Van cost objective function weight (77)
θ2 UAV cost objective function weight (78)
θ3 Cycle cost objective function weight (79)
θ4 Emissions objective function weight (80)
θ5 Maximum transit time objective function weight (81)

Similar to the business-as-usual state, a day is split into multiple shift periods which do not
overlap (e.g. morning shift, afternoon shift, etc). To this end, the time range of a given shift
period is discretised and partitioned into intervals with approximately equal traffic and weather
conditions (Table 2: 1-6). It is worth noting that kn can be large, and for any given time point
k ∈ K there is a unique u ∈ {1, . . . , a} in such a way that set Iu contains k, i,e., ku−1 ≤ k ≤ ku.

Figure 2 visualises this concept, demonstrating the principles using an example, the time point
k = 3 falls between k1 and k2, hence, ku−1 = k1 and ku = k2.

Figure 2: Time point notation visualised

Table 2: 7-13 define the surgeries that require service and the various sets of surgeries relating
to the suitabilities of the three modes defined in Table 2: 14-16. It should be noted that sites in
SE ⊆ S must only be used for purpose of consolidation back to the surgery they are based at for
contractual and space reasons and all vans must finish at the site from which they are based. For
practical reasons (e.g. landing space, staff resource, contracts), UAVs and cycles may be restricted
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such that they can only serve a select subset of surgeries. For example, SC may contain only those
sites within large urban areas due to the service areas of gig-economy courier companies

The respective operating characteristics of each mode are defined by Table 2: 17-40, with the van
travel times/distances/energies being approximated as a function of the travel times/distances/energies
within the travel condition periods that the journey spans. It is assumed that no journey between
an OD pair spans more than two travel condition periods, hence, T V

ku−1
(i, j) is constant and no

period beyond ku need be considered for each pair departing at time k.

tVk (i, j) =min

(
1,

ku − k

T V
ku−1

(i, j)

)
× T V

ku−1
(i, j) + max

(
0, 1− ku − k

T V
ku−1

(i, j)

)
× T V

ku(i, j)

lVk (i, j) =min

(
1,

ku − k

T V
ku−1

(i, j)

)
× LV

ku−1
(i, j) + max

(
0, 1− ku − k

T V
ku−1

(i, j)

)
× LV

ku(i, j)

ϵVk (i, j) =min

(
1,

ku − k

T V
ku−1

(i, j)

)
× EV

ku−1
(i, j) + max

(
0, 1− ku − k

T V
ku−1

(i, j)

)
× EV

ku(i, j)

This follows analogously for UAVs, accounting for potential variations in weather and ground
risk conditions (as assessed by external pathfinding problems, e.g. (Pilko et al., 2021)). Addition-
ally, it should be noted that the First-In-First-Out (FIFO) constraint of vehicle routing is satisfied
by using proportional shares of each time period’s travel durations in conjunction with the min-
max terms. Meanwhile, cycle travel durations are deemed to be independent of departure time
(i.e. constant and unaffected by traffic); thus, the travel duration between a pair of surgeries (i, j)
is given as tC(i, j) ∀k ∈ K and travel distance is given as lC(i, j) ∀k ∈ K. The energy requirement
for cyclists is assumed to be zero/negligible for all OD pairs.

It should be highlighted that a per unit time cost is used for UAVs based on the expected part
lifespans of the platform being the main driver of the variable costs, as outlined by Anonymous
(2022). Additionally, any fixed vehicle fixed costs such as insurance, maintenance, etc. are included
in W V and WD, whilst the labour cost for the shift period is included in W V and WO.

The characteristics of individual routes are listed in Table 2: 41-57, where a trunk van route
is defined as rv,k = (H, s1, . . . , snr , H) ∈ RV . UAV routes are defined analogously as rd,k ∈ RD,
with the additional constraint that they can only serve one surgery per collection; thus, nr =
2 ∀rd,k ∈ RD due to regulation and payload capacity. Similarly, consolidation van and cycle routes
are defined by rse,k ∈ RE and rsc,k ∈ RC , where s indicates the surgery where the route is based.
For cycling, nr ≤ 4 due to capacity constraints (maximum load equal to three surgeries’ worth of
samples). Additionally, cycles can be based at the hospital if H ∈ SC , and all routes can only
serve those sites where the respective mode is permitted, and vehicles must return to their start
location.

Each trunk van route has an associated time, denoted by trv,k and is calculated by summing
the durations of the constituent legs of the route with their individual departure times, where si
denotes the departure surgery and ti denotes the arrival time of the i-th leg, with T being embedded
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in trv,k :

t1 = tVk (H, s1) + k

ti = ti−1 + tVti−1(si−1, si) i = 2, . . . , nr

tnr+1 = tnr + tVtnr (snr , H)

trv,k = tnr+1 − k + nrT

Each trunk van route also has an associated distance and energy requirement, denoted by lrv
and ϵrv,k . Where the departure times depend on the previous legs, the totals are also calculated
by summing the distances/energies of the constituent legs using the timings calculated above:

lrv,k = lVk (H, s1) +

nr−1∑
i=1

lVti (si, si+1) + lVtnr (snr , H)

ϵrv,k = ϵVk (H, s1) +

nr−1∑
i=1

ϵVti (si, si+1) + ϵVtnr (snr , H)

Furthermore, the non-constant (i.e. varying with the length of the route) running cost of a
given van route is calculated as prv,k = pV lrv,k .

Route times, distances, energies (except cycling, where energy is assumed to be zero), and
costs (vans only) for the other modes are calculated analogously to trunk vans. For UAVs, the
non-constant (i.e. varying by the duration of the route) running cost of a given UAV route is
calculated as prd,k = pDtrd,k , whilst cycling route costs are calculated as a function of the route’s

stops and distance, prc,k = pJ + pS(nr − 1)+ pC(lrc,k −C l), where each route’s costs increases after

one pickup (hence, nr − 1) and for distances beyond C l.
Building on the original SSCP, the departure times and durations of the route’s constituent legs

are derived from the departure time of the route such that no waiting time is incurred. Waiting
time for any reason (e.g. arriving before consolidation rounds have finished, or waiting for traffic
changes) is not permitted. This was changed from the original formulation to provide a greater
guarantee with respect to time synchronisation for transshipment.

On arrival back at the hospital, UAVs are also subject to a downtime duration, TD, in addition
to the embedded service time, to allow for battery changes/airworthiness checks to take place prior
to their next departure. This means that a UAV cannot be used for TD minutes on return to the
hospital.

Additionally, cycle routes may be subject to a maximum time constraint of tcmax and maxi-
mum distance constraint lcmax to ensure the cycle routes can be managed as discrete gig-economy
tasks; trsc,k ≤ tcmax and lrsc,k ≤ lcmax . The discrete task arrangement of these routes ensures that
typical gig-economy cycle operator costs can be accounted for, and cyclist availability is more likely.

Surgeries can be served by:
• Trunk van route or UAV route directly to the hospital; or

• Cycle route directly to the hospital (if the route is based at the hospital); or

• A consolidation van route to a surgery, and then onward by trunk van or UAV; or

• A cycle route to a surgery, and then onward by trunk van or UAV.
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Hence, collection rounds are outlined in Table 2: 58-68, where two sets of routes, R′ = {RV , RD}
which contains all of the trunk routes (UAVs and vans originating at H); and R′′ = {RC , RE},
which contains all of the consolidation routes (bikes and vans). It should be noted that the
formulations associated with rα,k and rsβ,δ are analogous to the original route definitions, with k
indicating the departure time of the trunk route, δ denoting the departure time of the consolidation
route, and s indicating the base of the consolidation route. α and β are indexes of each route type,
to differentiate between individual trunk/consolidation routes, respectively.

A collection round, rk = {rα,k} ∪R′′rα,k
, is defined as the combination of a single trunk route

rα,k ∈ R′ with a subset of consolidation routes R′′rα,k
⊆ R′′ such that for any given consolidation

route rβ,δ ∈ R′′rα,k
based at surgery s, it is satisfied that s ∈ rα,k, i.e. any consolidation route in

R′′rα,k
is based at a surgery that is being visited by the trunk route rα,k .

Furthermore, other than surgery s where each rsβ,δ begins/ends, the consolidation routes in
R′′rα,k

, β ∈ {1, . . . , |R′′rα,k
|}, do not share any other surgeries; i.e. no surgery is served by multiple

consolidation routes within one shift period. It should be highlighted that the described prob-
lem relates to only one shift period (e.g. a morning), and surgeries may be served by different
consolidation routes in separate work shifts.

Note that, since R′′rα,k
could be empty, then it can satisfied that R′ ⊆ R and |rk| = 1. The set

of surgeries served by all of the constituent routes of rk is denoted by Srk . Additionally, it should
be noted that a maximum of 2 stages (echelons) can occur in a collection round; consolidation
to a surgery, followed by trunking to the hospital. Chained consolidation (e.g. bike-bike-trunk
van) is not permitted to prevent delays and limit the risks associated with chain of custody over
potentially sensitive goods.

Bike routes are also permitted to start and end at the hospital, in order to serve the immediate
catchment area of the hospital directly. To account for this in the problem formulation, a dummy
van route, v0k ∈ RV , is created. Starting and ending at the hospital, with no intermediate stops
(r0v,k = (H,H)) and a travel time of zero (tr0v,k

= 0), r0v,k enables a collection round where surgeries

which are cycle served only, r0k. These routes can depart at any time within the shift period so
that they are completed by the end time.

The collection round’s departure time, k, is given by the trunk route’s departure time. Mean-
while, the consolidation routes have their own departure times, and for a consolidation round to be
feasible, their departure must result in the consolidation routes in R′′rα,k

being complete before the
trunk route, rα,k, serves the consolidation site, i.e. they do not incur waiting time for the trunk
route. As previously noted, this builds on the initial modelling to ensure timely transshipment.

A binary decision variable, xrk is introduced to select collection rounds:

xrk =

{
1 if the collection round is used in the solution

0 otherwise;

The integer parameter Vrk is also defined for each collection round, denoting the number of
van routes (trunk and consolidation) being used in a collection round. If there is no active route
at time point k, Vrk = 0. Similarly, Drk defines the number of UAVs (trunk) being used in a
collection round.

Vans and UAVs can be reused in the shift period, and in any solution, the number of vans
required throughout the entire shift period will never exceed the maximum number in use across
all time points in K (e.g. Table 3). This is particularly important when calculating the number
of vehicles and drivers/operators that contribute to the cost, with each van being operated by a
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single driver who is on-duty and paid for the entire shift period (regardless of how long they are
driving routes). Similarly, each UAV is monitored by an operator who is also paid for the entire
shift period, but can monitor up to ϕ UAVs simultaneously.

Table 3: Example of the number of vans used in a given solution. Shading indicates van in used. The maximum
across all time points in 3.

Time Point 1 2 3 4 5 6 7 8 . . . k

Van 1
Van 2
Van 3
# In Use 1 2 3 3 2 1 1 2 2 2

Hence, the maximum number of vans and UAVs used throughout the entire shift period are
given by the sum of the vans/UAVs used across all used collection rounds and time points:

AV
max ≥

∑
rk∈R

Vrk′xrk ∀ k′ ∈ K AD
max ≥

∑
rk∈R

Drk′xrk ∀ k′ ∈ K

The number of UAV operators required for a shift period is defined by AO
max; an integer variable

constrained such that:

AO
max ≥ AD

max

ϕ
AO

max <
AD

max

ϕ
+ 1

Due to the likely contractual arrangement of the drivers/operators, it is assumed that pay is
guaranteed for the shift period, regardless of the workload each driver/operator has. Hence, the
fixed costs of a solution are given by W V AV

max and WDAD
max + WOAO

max for vans and UAVs,
respectively. Bikes are considered to be more ad-hoc in arrangement and can be carried out as
standalone discrete tasks (i.e. are not compiled into work shifts) within a given time window.

The priced emissions from the collection system (e.g. greenhouse gas emissions, pollutants)
are calculated by the product of the energies of the selected routes and a constant parameter, γ,
relating the energies to emissions and their societal impact. In the UK, this can be captured by
the energy and emissions pricing values provided by the government for transport appraisals (UK
Government, 2022; Department for Transport, 2021).

As in (Oakey et al., 2023), this problem also takes a pseudo-objective of patient care/sample
quality into account. In this case, the duration tr, relates to the sample transit times, i.e. the period
from the first collection until delivery, as opposed to in the original formulation, which explored the
collection round duration/time after first departure for deliveries to be complete. Cycle routes are
an exception to this update, due to routes being served on a more ad-hoc basis with less certainty
on timing; hence, the time from the cycle route departure until delivery at the hospital is used in
this case. This change accounts for the varying departure times of different routes, meaning that
the time to the final delivery from the original formulation was less relevant in the shift context.
Subsequently, u is also updated to build on the original formulation, making it the maximum of
the transit times across all routes (Constraint 2).

The objective of this problem is to minimise the weighted sum of the operating costs, emissions,
and maximum in-transit time for a shift period. To this end, a generalised multi-term objective

15



function is used to sum the costs of the selected routes and standing costs for each mode, the
emissions costs, and the maximum transit time (see Constraint 1). Constants, θ1, θ2, θ3, θ4, and
θ5 are introduced to allow a Pareto front of solutions to be found by varying the coefficients of
each term (Oakey et al., 2023). Similarly, in the real-world application of the problem, the weights
could also allow decision makers to easily shift the objective function towards a given aim. It
should be noted that in the event that the emissions parameters are not known or transit times
are less certain due to more flexible contractual arrangements, the weighting can be set to zero.
Furthermore, a weighted objective enables simpler modelling that is more easily transferred to
other case study areas.

The problem is constrained such that transit time durations are subject to time constraint of
tmax
r minutes or less (e.g. 90 minutes maximum (McDonald, 1972)) to guarantee the timely delivery
of samples (Constraint 3). A given collection round duration is calculated as the maximum time
between the first collection in any constituent route in rk and delivery to the hospital. If cycle
consolidation routes are used in rk, the time is measured from the start of the cycle route to
account for any uncertainty in the performance of 3PL logistics carriers. The problem assumes an
unlimited number of vehicles and operators/drivers are available.

To ensure all sites are served at least once, a further constraint is also added (Constraint 4),
whilst xr must be binary (Constraint 5).

min :
∑
rk∈R

xrk

 ∑
rv,k∈rk∩RV

θ1prv,k +
∑

re,k∈rk∩RE

θ1pre,k

+
∑

rd,k∈rk∩RD

θ2prd,k +
∑

rc,k∈rk∩RC

θ3prc,k + θ4ϵrkγ


+ θ1W

V AV
max

+ θ2(W
DAD

max +WOAO
max)

+ θ5u

(1)

u ≥ trxr ∀ r ∈ R (2)

u ≤ tmax
r ∀ r ∈ R (3)∑

rk;i∈Srk

xrk ≥ 1 ∀ i ∈ S (4)

xrk ∈ {0, 1} ∀ r ∈ R (5)

4. An Adapted Savings Algorithm with Bin-Packing Heuristics

With the introduction of temporal variations due to using shift periods, significantly more route
options are introduced compared to standard vehicle routing problems. This presents difficulties
when using column generation based algorithms, such as in (Oakey et al., 2023), due to the sub-
stantially increased memory and processing requirements for computationally solving the derived
master problems. Thus, an alternative approach is required to ensure quality solutions are found.
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To this end, this paper proposes a novel algorithm to solve the SSCP with work shifts and UAVs;
an adaptation of the classical CWSA combined with an adapted first-fit decreasing (AFFD) or an
adapted best-fit (ABF) bin-packing algorithm. The adapted CWSA was used in the route gener-
ation process to quickly construct effective collection solutions. To enable the fast compilation of
multiple routes into reasonable vehicle/work shifts, accounting for vehicle re-use, a one-dimensional
bin-packing algorithm was used.

To further enhance processing speeds and keep the computational memory requirements man-
ageable, the upper bounds of the route durations were used to account for the worst-case of traffic
conditions when creating the original routes in the CWSA. The bin-packing algorithms subse-
quently updated these durations to reflect the assigned position in the shift period. Hence, the
packing algorithms were variations on classical approaches to account for the variable size of the
packed items (Coffman et al., 1984).

After using the adapted CWSA and packing algorithms to construct an initial solution, local
search heuristics are used to converge to a local optimum. Meta-heuristics are subsequently applied
to allow the solution to escape local optima and explore more of the solution space, before the
process is repeated until a final solution is reached. Details of the individual aspects of the algorithm
and associated testing are discussed in the remainder of this section, whilst an overview of the full
algorithm and its configurable variable parameters are detailed in Section 4.5. Full details of the
computational experiments and their results are given in Section 5.

4.1. Route Generation Through Savings Algorithm

As previously outlined, the routes produced in the initial solution are generated using an
adaptation of the well-established CWSA. The classical CWSA solution approach starts from a set
of routes containing two arcs, such that one route serves each site. The CWSA then progresses
and evaluates the objective function savings (typically time) through combining routes, accepting
the greatest saving (greedy algorithm) until no further savings can be made within the constraints
of the problem.

In the adaptation of the CWSA presented in this study (Algorithm 1), several saving options are
tested at each iteration (Table 4), including: (i) the classical option of combining routes, provided
they are the same mode and based at the same origin (Figure 3c, Algorithm 1: Line 4); (ii)
substituting in a UAV route for a given surgery, removing it from its current route and replacing
it with an out-and-back UAV route (Figure 3d, Algorithm 1: Line 6); and (iii) transferring a
van/UAV served (trunk route) site to a new or existing van or bike consolidation route, depending
on a given catchment area of the consolidation modes (Figure 3e, Algorithm 1: Line 8).

The CWSA adaptation presented by Özoğlu et al. (2019) has some similarities with this ap-
proach, with UAVs arcs substituting van arcs, however, their approach is only presented for single
van routes, and it is not clear how their adaptation would handle larger, multi-vehicle delivery
networks. Furthermore, the sub-tours created by the side-kick UAVs could be likened to the cy-
cle consolidation routes in the present study, suggesting that the CWSA concept provides a good
platform for sub-tour related problems.

A further saving option could also be considered, whereby individual sites are tested in all
positions within other routes. The savings options could be considered individually (i.e. for a
single surgery move), or compounded over multiple iterations over all routes (i.e. multiple moves
in a single saving option). This functionality could also be used as a local search heuristic after the
solution has converged (see Figure 6c and Algorithm 1: Line 11, detailed further in Section 4.3).
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Table 4: Saving options tested in each iteration of the algorithm.

Action Applies to Explanation

Combine van
routes

All van served nodes
Joins two routes by removing 2 van arcs
and replacing with 1 van arc

Introduce bike All cycleable nodes
Removes 2 trunk arcs and adds 2 bike
arcs

Introduce consol.
van

All van served nodes up to
trunk distance to hospital

Removes 2 trunk arcs and adds 2
consolidation van arcs

Change to UAV All UAV permitted nodes
Replace 2 trunk van arcs with 2 trunk
UAV arcs

Combination options were considered for all routes of the same mode and start location, whilst
UAV route substitution and inter-route moves were considered for all sites, and trunk to consol-
idator options addressed only trunk route (van/UAV) served sites. Furthermore, combination and
transfer options were explored using a best insertion approach when adding sites to routes, with
all routes being considered for insertion into each other once. e.g. combining route A and route B
would be tested by inserting the sites from route B into route A only, not inserting route A into
route B. The best insertion was calculated from a time saving perspective (i.e. the greatest time
reduction saving option was selected).

Additionally, when considering the trunk to consolidation or inter-route options, if the site
being investigated already had consolidation sites associated with it, the associated sites could
either be reallocated to other routes (Figure 4), or the investigated site could be excluded from the
potential options.
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(a) Initial generation of van routes to
all sites within range.

(b) Handling of unallocated sites (con-
solidate or use UAV).

(c) Combine existing routes of the
same mode and origin.

(d) Remove a surgery from a route and
replace with a UAV route.

(e) Remove a surgery from a trunk
route and add to/create a consolida-
tion route.

Figure 3: Demonstration of the adapted CWSA algorithm. (A)-(B): initial construction, (C)-(E): savings options at
each iteration. Solid lines = trunk van, dot-dashed lines = trunk UAV, dashed lines = consolidation.

(a) Current solution, with site of interest high-
lighted.

(b) Transfer to consolidation route and reallocate
associated consolidator.

Figure 4: Demonstration of reallocation of consolidation routes. Trunk to consolidator saving option shown. Solid
lines = trunk van, dot-dashed lines = trunk UAV, dashed lines = consolidation.
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Algorithm 1 Adapted Clarke and Wright Savings Algorithm
Input: R: Existing set of routes; Rp: Cost of existing solution; L: Candidate shortlist size; InterRouteCW : Inter-route strategy
for the savings algorithm; Ccatch: cycle catchment limit.

1: improvement = true
2: while improvement is true do
3: options = {} ▷ Create empty list of candidate improvements
4: options = options ∪ combineRoutes(R,Rp, Ccatch)
5: ▷ Add combination improvements to options list
6: options = options ∪ subInUAV (R,Rp)
7: ▷ UAV sub-in improvements to options list
8: options = options ∪ trunkToConsol(R,Rp, Ccatch)
9: ▷ trunk to consol. improvements to options list
10: if InterRouteCW is true then
11: options = options ∪ interRoute(R,Rp, InterRouteCW , Ccatch)
12: ▷ Add inter-route improvement(s) to options list (multi-move gives one option)
13: end if
14: if options ̸= {} then ▷ If improvement options found
15: shortList = {}
16: Sort options by the objective saving (vs. Rp)
17: shortList← options[0 : L] ▷ Copying first L elements of options to shortList
18: R = Randomly selected option from shortList
19: Rp = Rp −∆p ▷ Update current cost
20: else
21: improvement = false
22: end if
23: end while
24: return R

The classical CWSA is greedy and always selects the saving option of greatest magnitude. To
avoid this potentially ineffective behaviour in the adapted algorithm, an element of randomness
is used, with options being ranked according to the magnitude of their saving, before an option
is selected from a shortlist of the top n options (Algorithm 1, Line 17), in a similar manner to
Pichpibul and Kawtummachai (2012). Similar approaches in VRPs have been noted to be highly
effective and are well addressed in the literature (Hart and Shogan, 1987). Additionally, if a
particular saving option offers significant benefits to the final solution, it will likely continue to
feature in the options shortlist and have a greater chance of being selected.

The SSCP also presents additional time constraints that the traditional CWSA does not directly
address. With respect to the initial generation, it may be the case that the initially generated
van routes cannot serve all of the sites within the given time limits (Figure 3a). In this event,
the proposed CWSA adaptation will attempt to reallocate these sites so that they are served by
consolidation routes or by UAV routes, keeping the best objective solution after each site is resolved
(Figure 3b). In the event a surgery cannot be allocated through these means, the problem is not
feasible.

4.2. Shift Compiling Through bin-packing

Subsequent to the creation of effective routes, work shifts must be compiled to account for the
number of vehicles and staffing required. In the adapted CWSA, work shifts are compiled each
time a saving option is considered, such that the cost associated with each change accounts for any
impacts resulting from vehicle assignments.

This study uses bin-packing to complete this task, with routes being the items to be packed,
and the work shifts being the bins. The two approaches explored in this study are the adapted
first-fit decreasing algorithm and an adapted best-fit algorithm, hereafter referred to as AFFD and
ABF, respectively.
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For context, the classical version of the First-Fit Decreasing algorithm, has been widely inves-
tigated and is generally accepted to be computationally efficient (Johnson, 1973; Dósa, 2007). The
method sorts items by decreasing size, before iterating over the existing bins and testing in the
next available position, and a similar approach has been adopted in this study. Meanwhile, the
ABF presented in this study is understood to be a novel approach, and is not directly based on an
existing method.

In the case of the AFFD, routes are sorted and subsequently selected using the upper bound
of the route durations (i.e. the sum of the most pessimistic travel times within the shift period),
before a revised version of the route with the actual timings at the given time point is assigned to
the vehicle shift (bin). Owing to the prominence of this algorithm in literature and for brevity, a
pseudocode has not been provided.

Weather and traffic conditions have been noted to vary and be a highly influential factor
affecting the use of UAVs (Gao et al., 2021) and (Anonymous, 2022; Anonymous, 2023a). To this
end, an alternative packing approach was developed with a view to leverage the periods of shortest
travel time. The ABF algorithm opens a new bin (vehicle shift) and iterates over each applicable
route at the next available time point (k) in the active bin, calculating the relative (percentage)
difference between the upper bound route duration (as previously defined) and the route duration
at the time point (k). The route with the greatest variability (i.e. the highest percentage difference)
is then assigned; thus, minimising the space a variable item (route) occupies in each bin. If no
route fits at the tested time point, a new bin is opened.

The variable scheduling elements have previously been explored with bin-packing algorithms
in similar problems relating to makespan and crew scheduling (Qiao et al., 2010; Van De Vel and
Shijie, 1991; Coffman et al., 1987), however, the combination of a savings algorithm with bin-
packing for vehicle routing with UAVs is a novel approach. Given the adaptable and fast nature of
these algorithms, good solutions should be reached within a usable timescale for logistics planners.

With respect to the computational complexity, the algorithm tests a maximum of n items in
n positions, meaning it is of quadratic complexity; equal to that of the AFFD algorithm (n2).
The pseudocode of the proposed algorithm is given in Algorithm 2, and a comparison of how the
fitting process would work in practice is seen in Figure 5. Furthermore, it should be noted that
the classical ‘Best-Fit’ packing algorithm is not related to the proposed approach.
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Algorithm 2 Adapted Best-Fit
Input: R: set of routes to be fitted (built using upper-bounds); M : vehicle mode; k0: shift start; kmax: shift end; TD: UAV
downtime.

1: nr ← number of routes in R
2: A← (nr, 1) ▷ Array of 1’s to track unassigned routes
3: b = {} ▷ Create new empty vehicle
4: B = {} ▷ Create empty set of vehicles
5: k = k0
6: while

∑
i∈A i > 0 do ▷ While unallocated routes exist

7: bestRoute = null
8: bestV ariability = 0.00001 ▷ Set to very small value to ensure any route with 0 variability is still assigned.
9: for a ∈ nr do ▷ Loop over route assign array
10: if A(a) = 0 then
11: continue
12: end if
13: r = R(a) ▷ Isolate a route
14: r̂ = reT ime(r, k) ▷ Create a re-timed variant
15: if k + tr̂ > kmax then ▷ If route does not fit vehicle shift, skip
16: continue
17: end if
18: ∆ = r̂ duration

r duration
− 1 ▷ Calculate variance

19: if ∆ < bestV ariability then
20: bestRoute = r̂
21: bestV ariability = ∆
22: end if
23: end for
24: if bestRoute is null then
25: B = B ∪ b ▷ Add vehicle to list of vehicles
26: b = {} ▷ Create a new vehicle
27: k = k0
28: else
29: b = b ∪ r̂
30: A(a) = 0
31: if M = D then ▷ Set next available time, add downtime if UAV
32: k = k + tr̂ + TD

33: else
34: k = k + tr̂
35: end if
36: end if
37: end while
38: return B

As is discussed further in Section 5, both the ABF and AFFD algorithms were tested for the
compilation of trunk van and UAV vehicle shifts (Section 5), and the number of UAV operators was
derived from the number of UAVs, using the given operator ratio; e.g. 5:1 ratio: 1 UAV requires
1 operator, whilst 5 UAVs also requires 1 operator.

Meanwhile, the AFFD algorithm was always used for the compilation of consolidation routes
(vans and bikes) due to bike travel times remaining constant (unaffected by traffic), and rural areas
(where consolidation vans are likely to be based) having low traffic variability. Furthermore, unless
they were limited by the start time of the shift, consolidation routes were timed such that they
would maintain the maximum permitted in-transit time to reduce the likelihood of transshipment
delays, which have been noted to present significant challenges to implementing multi-leg deliveries
(Laseter et al., 2018; PharmaAero, 2022). Whilst this may limit the uptake of consolidation routes
in some cases where transit times are deemed more important, it is a necessary assumption to
ensure service reliability.

An additional variant of the AFFD algorithm (discussed above) was also used to help en-
hance the computational speed of the algorithm. In this process, previously investigated savings
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(a) Adapted First-Fit Decreasing Algorithm

(b) Adapted Best-Fit Algorithm

Figure 5: Comparison of proposed bin-packing algorithms. Dark shading indicates duration of the van route at time
point k (trv,k ), light shading indicates the upper bound of the van route duration (trv,max) in the shift period.

options were stored for recalling in later iterations, removing the need to recalculate each leg’s
timings. To check recalled solution savings were still correct after previous iterations potentially
re-positioned/removed other routes, the original AFFD approach was used to approximate the
solution cost, but without revising and recalculating the allocated route to the assigned time (i.e.
retaining the upper bound time). This enabled a rapid check to identify if the previously computed
saving was of approximately equal magnitude, and prevented solutions with potentially unrealis-
tic/infeasible costs being carried forward.

4.3. Local Search Heuristics

To resolve any inefficiencies potentially introduced by the savings algorithm, such as routes
connecting non-adjacent nodes (i.e. crossing-over paths), local searches are applied to the converged
constructed solutions.

A 2-opt local search is applied to all routes longer than 2 stops across all variations of the
algorithm. This results in a negligible computational speed decrease, though consistently improves
solutions if small inefficiencies arise. Where the 2-opt algorithm evaluates a change to an indi-
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vidual route, an approximation of the overall effect on the objective function is required for quick
computation of improvements. To this end, a pseudo-objective function is used. For example, in
the case of vans:

Estimate = θ1prv,max + θ4γϵrv,max

where rv,max indicates the upper bound of the route with respect to durations (i.e. the maximum
of duration of all of the included OD pairs in the route in the shift period).

The objective impact estimate is similar for UAV and bike routes, with the formulations refer-
ring to the comparable equivalents for those modes. It is assumed that the changes introduced by
the 2-opt checks are sufficiently small that required number of vehicles does not change, meaning
there is no need for re-compiling work shifts and calculating the complete objective function. Sim-
ilarly, it is assumed there is a negligible impact on the maximum transit time duration across all
routes.

As previously detailed in Section 4.1, the inter-route search algorithm can be applied as either a
savings option on a single or multi-move basis, or as an additional local search after the constructed
solution has converged, or a combination of both. When applied as a local search tool, the algorithm
is applied with multiple moves being compounded in a single change (i.e. looped over all surgeries,
cumulative improvement), after to any 2-opt changes have been made. The local searches are
visualised in Figure 6, with the improvements being applied to an example solution.

(a) Example converged solution, prior
to local search.

(b) 2-opt search, testing within each
route.

(c) Inter-route search, testing sites in
positions in all routes.

Figure 6: Demonstration of the local search heuristics. Examples shown demonstrate a consecutive improvement
from (A) through to (C). Solid lines = trunk van routes, dot-dashed lines = trunk UAV routes, dashed lines =
consolidation routes.

4.4. Reset Kick Meta-Heuristic

To avoid cycling around the same locally optimal solution, a meta-heuristic is also introduced
after the local search algorithms have been applied, partially destroying the solution in search of
a global optima. The proposed meta-heuristic, referred to as the ‘reset-kick’, takes a given set of
surgeries and removes them from their respective routes, before restoring them to new van or UAV
out-and-back routes (Figure 7).

In the event that the kick resets routes to UAV service but a site is not permitted to be served
by this mode, it is reset to a van route. This approach is similar to the “ruin and recreate” meta-
heuristic proposed by Schrimpf et al. (2000), but given the CWSA context and the meta-heuristic’s
complete restoration to A-B-A routes (as in the initial CWSA solutions), it was defined as a reset
kick in this algorithm.

In the experiments, the strategy for selecting kicked nodes and the destination mode were
varied. Building on the findings from Oakey et al. (2023), one of the tested strategies kicked sites
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(a) Converged solution, prior to reset
kick.

(b) Identifying sites to reset, depend-
ing on strategy.

(c) Kicked solution, with sites reset to
new routes.

Figure 7: Demonstration of the reset kick meta-heuristic. Example resets sites to van routes, though resetting to
other modes was tested. Solid lines = trunk van routes, dot-dashed lines = trunk UAV routes, dashed lines =
consolidation routes.

from the longest and shortest routes, which were identified to reduce (a) driver utilisation, and (b)
the longest collection round and maximum transit time; all of which are favourable to the objective
function. Other tested strategies included randomly selecting a given percentage of sites across all
routes.

In the event that a selected surgery was a consolidation site, all of the sites from the associated
consolidation routes were also reset, allowing for simpler outcomes that would be unlikely to violate
time constraints. The pseudocode for the reset kick is given in Algorithm 3.
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Algorithm 3 Reset Kick Meta-Heuristic
Input: R: current set of routes; S∗: set of sites to be reset (built using upper-bounds); S: set of all surgeries, excluding hospital;
H: hospital site; M : target mode; M∗: fallback mode if target mode is not permitted.

1: Rµ = {} ▷ Empty set for kicked solution
2: R∗ = R ▷ Set of existing routes to be updated
3: for s ∈ S∗ do ▷ Surgery loop
4: R∆ = {} ▷ Empty set of routes that are to be added
5: R̃ = {} ▷ Empty set of routes that have been removed
6: for r ∈ R∗ do ▷ Route loop
7: if s /∈ r then
8: continue Route loop
9: end if
10: if r is a consolidation route then
11: for a ∈ r do ▷ For each site in r
12: if a permits M then
13: mk = {H, a,H} ▷ Create route using target mode
14: Rµ = Rµ ∪mk ▷ Add route to kicked route list
15: else
16: m∗

k = {H, a,H} ▷ Create route using fallback mode
17: Rµ = Rµ ∪m∗

k ▷ Add route to kicked route list
18: end if
19: end for
20: else
21: r∗ = r \ s ▷ Make updated route without s
22: if r∗ ̸= {H,H} then ▷ If updated route is not empty
23: R∆ = R∆ ∪ r∗ ▷ Add to the changed route set
24: end if
25: if s permits M then
26: mk = {H, a,H} ▷ Create route using target mode
27: Rµ = Rµ ∪mk ▷ Add route to kicked route list
28: else
29: m∗

k = {H, a,H} ▷ Create route using fallback mode
30: Rµ = Rµ ∪mk ▷ Add route to kicked route list
31: end if
32: end if
33: R̃ = R̃ ∪ r ▷ Add r to removal list
34: end for
35: R∗ \ R̃ ▷ Remove old routes featuring surgery s
36: R∗ ∪Rδ ▷ Add updated routes, now without s
37: end for
38: Rµ ∪R∗ ▷ Add finished list of modified routes
39: return Rµ

4.5. Algorithm Summary

Where this algorithm uses the well-established principles of the classical CWSA in an adapted
form with local search heuristics, effective solutions should be found and local optima should be
found quickly. The subsequent reset kick meta-heuristic then facilitates a wider search of the
solution space and reduces the likelihood of stagnating at a local optimal solution. The overall
algorithm is detailed in Algorithm 4.

As highlighted in the problem description (Section 3), solving speed is an important considera-
tion in this problem, with potential users requiring a solution at short notice to allow for just-in-time
deployment of the fleet. To this end, effective calibration of the algorithm is key to ensuring quality
solutions without excessive time penalties. The performance of each configurable component of
the algorithm is analysed in Section 5.
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Algorithm 4 Complete Solution Approach
Input: Ccatch: cycle catchment size limit; N : reset kick iteration limit; InterRoutelocal: Inter-route strategy for the local
search; InterRouteCW : Inter-route strategy for savings algorithm; Y : kick strategy; pack: packing algorithm; shortList:
candidate shortlist size; reallocate: reallocation strategy

1: R = {} ▷ Empty set of routes
2: U = {} ▷ Empty set of unallocated surgeries
3: for s ∈ S do
4: Define cycle catchments (given by Ccatch)
5: if Route to s within constraints then
6: R = R ∪ {H, s,H} ▷ Generate routes using van mode (Figure 3a), if within constraints
7: else
8: U = U ∪ s ▷ Add unallocated site to list for resolving
9: end if
10: end for
11: R = R ∪ resolve(U) ▷ Resolve any unallocated sites beyond mode or time constraints using consolidation or UAVs

(Figure 3b)
12: n = 0
13: for n ∈ N do
14: if n ̸= 0 then
15: R = resetKick(R, Y ) ▷ Complete reset kick (on all but first iteration)
16: end if
17: improvement = true
18: while improvement is true do ▷ Loop until no longer improves and local optima reached
19: R = adaptedCW (R,Ccatch, InterRouteCW , shortList, reallocate) ▷ Run the adapted C&W until no improvement

possible (Figure 3, Algorithm 1 and 2)
20: R = 2opt(R) ▷ Perform 2-opt local search on all routes (Figure 6b)
21: if Inter − routelocal is true then
22: R = interRoute(R,multi) ▷ Perform inter-route (multi-move) local search on all routes (Figure 6c)
23: end if
24: improvement = checkImprovement(R) ▷ Check for improvement in objective
25: end while
26: S∗ = kickSurgeries(R, Y ) ▷ Identify surgeries to be kicked, depending on kick strategy (Figure 7, Algorithm 3)
27: n = n+ 1
28: end for
29: return R

5. Computational Experiments and Results

The solution space described by the SSCP with work shifts and UAVs is significant and makes
proving optimality of a given solution very difficult. To this end, a set of test instances was
generated to help calibrate and test the algorithm’s performance, accounting for factors such as
traffic variability, UAV landing site suitability, and the spatial distribution of the sites (relative to
the road network) needed to be realistic. A new problem generation tool was created and used to
complete this task due to the novelty of the problem.

The adapted CWSA/bin-packing algorithm was calibrated using the generated test sets, start-
ing with the most fundamental parameters, such as the shortlist size and packing strategy, explor-
ing the speed and quality of solutions in different configurations. Local search heuristic and kick
meta-heuristic experiments followed.

All of the computational experiments in this paper were completed in a Microsoft Visual Studio
Code environment running Java (Version 8), with 16 GB of memory and an Intel Core i7-2600 CPU
(3.4 GHz).

For reference, it should be noted that Oakey et al. (2023) addressed a different and more simple
problem that was solved using a column generation approach that did not reflect the additional
modes and associated constraints defined in this work. The original study provided solutions within
5% of optimality with run times up to 99% faster than solving a full enumeration of potential routes
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in small cases (<20 surgeries); however, the column generation approach was less beneficial when
solving larger scenarios. Nonetheless, the heuristics used in the original approach were notably
effective and elements of their operation were explored as part of the metaheuristic element of the
present study.

5.1. Test Instance Generator

To allow for a more representative and robust testing of the algorithm, a test instance generation
tool1 was developed in Java, using a locally hosted GraphHopper Routing engine (GraphHopper,
2020) to identify the paths between OD pairs. To support further development of this research,
the test instances are available from the GitHub repository detailed above.

The test cases were generated sites using a full list of UK postcodes and their coordinates
(Doogal, 2023). GP surgeries were approximately spaced according to population density, which
roughly correlated with postcode/street distribution density (Figure 8); hence, sites were chosen at
random the list of postcodes to approximately represent a typical spatial distribution of surgeries,
using a bounding box to define the limits of the test case. This approach would also work well for
other VRPs, where more densely populated areas are typically more likely to see greater demand.

Figure 8: A comparison of GP surgery distribution (points) and “SO” postcode distribution (heat overlay) in the
Southampton area. (Base Map © OpenStreetMap contributors).

A set of 40 (4×10) tests were generated, between 50 and 200 sites in size, increasing in 50-site
increments between each set of 10 tests. To ensure algorithm performance across locations with
different properties, half of the tests were based in the Southampton area (bounding coordinates:
(50.782, -1.831), (51.000,-1.172), Figure 9a) with a shift period of 09:00-13:00 (1 hour intervals,
1 minute discretisation), whilst the other half were based in the Birmingham area (bounding
coordinates: (52.326, -2.055), (52.558, -2.704), Figure 9b), with a shift period of 13:00-17:00 (1

1URLomittedfordouble-blindreviewing.
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hour intervals, 1 minute discretisation). Delivery locations (i.e. the ‘hospitals’) were chosen either
from a random postcode within the bounding coordinate area, or from the centroid of the selected
sites.

(a) Wider Southampton Area (b) Birmingham area

Figure 9: Bounding boxes for generating test instances (grey shaded area on map, not to scale). (Base Map ©
OpenStreetMap contributors).

With respect to site suitability, all sites were assumed to be cycle serviceable (SC = S′).
Meanwhile, the UAV suitable sites and trajectory circuity were defined by a normal distribution
with a random probability, based on the number of suitable sites in the Southampton area, and a
typical trajectory circuity factor from initial analyses of the Southampton area (Anonymous, 2022;
Anonymous, 2022a). Consolidation van suitability was assumed to be 5% of all sites. In terms of
the test-case objectives, the theta coefficients were set such that the algorithm optimised solely to
cost, with equal weighting. This minimised any impacts arising from the OD-time approximations
in the test case dataset and avoided the need to accurately calculate emissions/energy.

Traffic variability was captured by applying a normally distributed penalty with random prob-
ability to each OD pair, based on UK Department for Transport hourly motor traffic distribution
statistics (pre-COVID pandemic) (Department for Transport, 2022), assuming that travel times
diminish above 1.25× the average flow. Even though this approach simplifies traffic patterns and
may penalise areas that experience lower than average traffic flows, applying a general trend was
sufficient to enable robust testing of the algorithm.

5.2. Algorithm Parameter Selection

Several parameters were varied when parameterising and testing the algorithm (Figure 10),
including: (i) the packing algorithm used to compile vehicle shifts; (ii) the size of the savings options
shortlist; (iii) whether associated consolidation route sites were re-allocated when the base site was
moved; (iv) the maximum size of the cycle catchment; (v) how the inter-route neighbourhood
search was conducted (within the adapted CWSA, or as a local search); and (vi) the strategy
of the reset-kick. Subsequently, combinations of varying parameters were tested to identify the
number of iterations required for their application to be most effective.
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Figure 10: Process/order of algorithm performance testing, with set-up options shown.

The tests for parameters (i)-(v), addressing the initial solution generation, were run for 10 reset
kick iterations (i.e. converge and reset-kick 10 times), whilst the kick strategy tests in (vi) were
run for 50 iterations to better display the performance of the kick. The final configuration tests
were run for 500 iterations to identify the typical run durations to reach the best solutions.

5.2.1. Packing Algorithm for Shift Compilation

To test the performance of the two packing algorithms outlined in Section 4 (AFFD and ABF),
the instances were solved under both algorithms, with constant values set for the other parameters.

Both algorithms have a quadratic computational complexity, though the ABF algorithm dis-
played faster performance (Figure 11a) and the AFFD displayed marginally higher quality results
with respect to the objective function. These differences were caused by the packing performance
for a given set of routes and the potential savings available at each iteration of the adapted CWSA.
In turn, this impacted on the number of iterations within the adapted CWSA loop each packing
algorithm typically utilised (i.e. before converging), with the AFFD approach computing an aver-
age of 9% more intermediate solutions than the ABF within each CWSA loop before stagnating at
a local optima and performing a reset-kick (based on results after 10 reset kick iterations, across all
test cases). Thus, the increased iterations reduced the computational speed of the AFFD algorithm
relative to the BF algorithm.

The performance of the packing algorithms themselves depends significantly on the traffic trends
for ODs in the problem and the variability from the maximum duration. For example, the van OD
travel durations in the Southampton case study (09:00-13:00 shift period) were generally worst in
the 09:00 period, and best at 11:00/12:00 (Figure 12a). Such a trend seemed to be typical for most
areas (Department for Transport, 2022). The greatest and most consistent travel duration variances
were seen on shortest routes, with traffic density generally being more of an issue on shorter OD
journeys. To this end, routes containing a majority of short-range OD pairs typically had a greater
variance and would be more likely to be fitted first in the ABF algorithm, despite them being
largely consistent in their performance throughout the shift period (Figure 12b). Conversely, the
AFFD algorithm would fit the longest routes first, which may be more optimal, depending on the
typical composition of the routes applied to the route construction.
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In conclusion, the different packing behaviours resulted in the AFFD algorithm displaying
a better performance (Figure 11b), with increased iterations enabling access to further savings
options. If duration variability is more significant and consistent across route lengths, then it may
be seen that the ABF performs better, though the difference is likely to remain marginal regardless.
The ABF may also be more robust in areas where timings with scheduled connections (e.g. ferries)
may affect timings, favouring departures that prevent waiting times and longer durations. For the
final algorithms tested in Section 5.3, both options were retained due to the potential trade off
between speed and solution quality.

(a) Computational time after 10 reset kick iterations. (b) Best objective value after 10 reset kick iterations.

Figure 11: Relative performance comparison of the Adapted First-Fit Decreasing (blue) and Adapted Best-Fit
(orange) algorithms. Mean of instance results, scaled relative to worst performing in each test (worst = 100%).

(a) OD-variability, assuming constant travel times for
each hour, based on all OD pairs in the Southampton
diagnostic specimen case study area.

(b) Route variability, based on a significant set of routes (n=5009)
in the Southampton case study area. Discontinuities around each
hour result from the steps between constant condition periods.

Figure 12: OD and route variability over a typical morning shift period (09:00-13:00) for sites served in the Southamp-
ton diagnostic specimen case study area. Upper bound is the slowest/sum of slowest travel times for each OD-pair.
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5.2.2. Introducing Randomness in the Construction Heuristic

To limit any potential impacts of the algorithm being too greedy (i.e. always selecting the
best saving within each iteration), the proposed shortlist was designed to introduce an element of
randomness into the algorithm. In these performance tests, shortlist sizes of 1 (i.e. fully greedy),
2, 5, and 10 were considered (L in Algorithm 1). It should be highlighted that if a saving option
remained feasible and competitive in later iterations of the adapted CWSA, it would recur and still
have a small chance of being selected even if the shortlist size limit was set to a larger number.

In the experiments, the greediest approaches, using a shortlist size of 1 or 2 provided the
best quality solutions, consistently offering the lowest objective value (Figure A.16b). The likely
reason for this is due to the larger shortlists neglecting the best improvements, resulting in an
unrecoverable deviation from more optimal solutions. This was particularly noticeable with larger
tests cases, where the greater number of required CWSA iterations magnifies any deviations.

In the larger cases, the most greedy shortlist options (1, 2) performed well with respect to
computational time (Figure A.16a), despite being less effective in small test cases. A greedy ap-
proach enabled effective truncation of searches when many potential savings options were available
whilst ensuring saving options continued to occur in smaller tests (i.e. more iterations, slower). In
some cases the speed trade-off was significant (up to 50% difference), though the shortlist size of
2 remained the most consistently time efficient option throughout. To this end, the shortlist of 2
and the best quality option of 1 were retained for the final algorithms (Section 5.3).

5.2.3. Reallocation of Consolidation Routes

Reallocation tests explored the effects of permitting reallocation when conducting: (i) trunk to
consolidation (TTC) moves, where any consolidation route sites attached to a trunk-served site are
also reallocated; (ii) inter-route (IR) moves, also where any consolidation route sites attached to a
trunk-served site; or (iii) combinations of (i) and (ii). Results suggested a negative impact in terms
of computational time when permitting reallocation (Figure A.17a). This was largely as expected
due to reallocation resulting in additional savings options being explored in each iteration.

These tests were run with the IR option set to multi-move (i.e. moves are compounded into a
single saving) as a local search, as opposed to being included in the savings options. Hence, the
potential time impact arising from introducing reallocation to IR searches was considerably smaller
than when introducing it to the TTC search. Not permitting reallocation in both searches was
generally more effective in most cases, however, medium sized (100/150) tests were faster when
inter-route reallocation was permitted. This was due to the reallocation option encouraging faster
convergence without detrimental search time trade-off.

With respect to quality of solutions (Figure A.17b), disabling reallocation was generally more
effective, with some select exceptions where other options dominated. The cause is likely due
to reallocated options offering benefits on occasion, whilst potentially encouraging more locally
optimal moves in most other cases, limiting further progress in the adapted CWSA and a deviation
from the optimal solution. Smaller cases did not vary much between settings due to the limited
scope for reallocation. Based on these findings, the no reallocation permitted and the inter-route
permitted searches were retained for the final algorithms.

5.2.4. Cycling Catchment Size Cap

The maximum cycle catchment size was varied between the nearest 5 sites, nearest 10 sites,
and all sites within the cycle-able range (Ccatch in Algorithm 1). Results generally correlated
in terms of computational time and solution quality (Figure A.18), with faster solutions offering
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better objective function outcomes. It should be noted that some exceptions to this trend were
present, with the correlation being more evident when test cases were larger, due to the density
of surgeries being far greater (i.e. catchments were likely to include more sites and reach their
catchment limit).

This was largely to be expected, given close-range consolidation offers reasonable speed benefits
to the solution, without large cost increases or delays. Hence, longer-distance consolidation was
less likely to be selected, whilst also requiring additional time to process. The nearest 5 sites option
was retained for all algorithms due to the consistent objective outcomes and computational speed.

Should the algorithm be applied in a real-world context, users with more cycle consolidation
opportunities in their area and a stronger environmental objective weighting may benefit from
expanding cycle catchments to increase uptake. However, this would likely be detrimental to the
computational runtimes.

5.2.5. Use of Inter-Route Search

IR searches were tested in multiple configurations, with combinations of single-move and multi-
move (i.e. compounded) savings being considered in the adapted CWSA, whilst multi-move
searches were only considered as part of the local search. It should be noted that due to the
memory intensity of some of the tests in the 200 site cases, insufficient memory errors often oc-
curred; thus, these cases were omitted from results to maintain consistency.

An anticipated, introducing the single-move IR option to the CWSA and the multi-move IR
option to the local search simultaneously resulted in the slowest performance. This was due to
the significant number of additional options that required investigation. Similarly, the single-move
CWSA option with no local search option was also computationally intensive and recorded slower
run times. The remaining options were similar in their computational time, with the compounded
CWSA options offering advantages with larger cases.

In small test cases, there was little difference in solution quality (Figure 13b) between all
configurations, whilst in larger cases there was a clear benefit in using the IR option, particularly on
a single-move basis. Using the multi-move option in the CWSA resulted in very rapid convergence
(Figure 13a), with every move replacing a possible saving by another means in the algorithm. This
is likely the main cause for the lower solution quality and faster solving speeds when this option is
enabled. Single-moves in the savings algorithm took considerably longer to run due to the slower
rate of change with each solution progression, though quality is generally better than multi-move.
Local searches with the IR option allow minor improvements, with minimal time penalty.

Owing to the significant benefit in solution quality offered by using the local search, the main
configurations that were carried forward adopted this set-up; one with a single-move savings algo-
rithm search, and one without. Additionally, the multi-move savings/local search off option was
also investigated further for the purpose of fast convergence.
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(a) Computational time after 10 reset kick iterations. (b) Best objective value after 10 reset kick iterations.

Figure 13: Relative performance comparison of the inter-route algorithm usage options. Mean of instance results,
scaled relative to worst performing in each instance test (worst = 100%). CW = savings algorithm option, LS =
local search option, S = single move, M = multi-move (cumulative), Off = not used.

5.2.6. Meta-Heuristic Kick Strategy

The meta-heuristic experiments were conducted using different kick strategies. They included
resetting the sites longest and shortest existing routes to either van-served, or UAV-served routes;
or resetting a percentage (5%/10%/20%) of randomly selected sites across all existing routes to
either van-served, or UAV-served routes.

Building on the previous tests, these experiments were run for 50 reset kick iterations to better
understand the impact of the kick process. The main objective of the reset kicks was to cause
sufficient change in the solutions to enable convergence to a different optima without destroying
the more optimal parts of solution.

In the strategy tests, there was evident benefit in kicking to van served routes over UAV served
routes (Figure 14), whilst the size and origin of the kick was less consistent. In the smaller test
cases, the disparity between kicking to vans and kicking to UAVs was less significant due to the
number of UAV suitable sites limiting the success of the kicks to UAV-served routes (i.e. if sites
weren’t UAV suitable, they would reset to a van-served route). Conversely, the van-targeting kicks
generally performed better than their respective UAV-targeting equivalent in larger cases. With
respect to computational speed, kicking to van-served routes was generally more efficient as well.

With respect to the selection strategy, kicking a random 5% of surgeries typically gave the most
consistent outcomes across all test case sizes in terms of both speed and quality. A random 10%
kick was successful in some tests, but was not so consistent, meanwhile 20% kicks were evidently
destructive to the point where re-convergence was slow and run-times were poor. Kicking from the
longest and shortest routes was also fast and gave reasonable solutions, eliminating some of the
less effective routes that had a disproportionate impact on the objective function. To this end, the
long and short strategy may be effective under a variety of constraints and use cases.

A kick of 5% to van, and long and short to van were both kept for the final algorithms.
Additionally, a 10% kick to UAVs was maintained to understand if lower cost UAVs would result
in better performance under such a strategy.
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(a) Computational time after 50 reset kick iterations. (b) Best objective value after 50 reset kick iterations.

Figure 14: Relative performance comparison of the kick-strategy options. Mean of instance results, scaled relative to
worst performing in each instance test (worst = 100%). RX% = random X% of sites selected for kick, L&S = sites
on longest and shortest routes selected for kick, to van = kicked to van routes (where possible), to UAV = kicked to
UAV routes (where possible).

5.3. Defining Final Algorithms and Their Overall Performance

Using the parameter test results, individual algorithms were defined to establish search strate-
gies that performed well under different user circumstances, taking the parameters that offered
the best performance with respect to speed and/or quality (green highlights in Table 5). Other
parameters that were considered as potentially encouraging greater mode shift were also brought
forward for further investigation (yellow highlights in Table 5), with the compounded inter-route
search offering the opportunity for several simultaneous moves in a single saving option, and the
UAV-targeting meta-heuristic also offering several mode transfers in a single step.

Table 5: Configuration options for all algorithm variables. R/A = Reallocation, IR = Inter-Route, TTC = Trunk
to Consolidator, CW = savings algorithm option, LS = local search option, multi = multi-move (compounded), Off
= not used. Green highlights options brought forward due to good performance during testing. Yellow highlights
indicate other options brought forward to that may enable a more favourable modal shift.

Packing
(5.2.1)

Shortlist
(5.2.2)

R/A (IR/TTC)
(5.2.3)

Catchment
(5.2.4)

IR Usage
(5.2.5)

Kick Origin
(5.2.6)

Kick Destination
(5.2.6)

AFFD 1 Off/Off 5 Sites CW-Off, LS-Off Long & Short Van
ABF 2 On/Off 10 Sites CW-S, LS-Off Random 5% UAV

5 Off/On All Sites CW-M, LS-Off Random 10%
10 On/On CW-Off, LS-M Random 20%

CW-S, LS-M
CW-M, LS-M

Due to the potential time limitations of planning deliveries with minimal foresight of which
sites require service, the model would need to be used in a short space of time, e.g. in the morning,
prior to commencing any vehicle rounds. Conversely, the model could also be used to complete a
longer-term analysis of historic data and identify the typical demands and vehicle requirements for
an area, though this will also require reasonable speed due to the potential quantity of data that
may be tested.

With this in mind, Algorithm 1 was defined using the parameters that typically offered the best
quality outputs, regardless of the computational time; and Algorithm 2 was defined using a slight

35



compromise in quality with a view to improve the computational speed, using the best time options
where quality trade-off was minimal (Table 6). Meanwhile, Algorithms 3 and 4 were constructed
to enable a fast comparison of configurations which are likely to encourage greater modal shift.

Table 6: Selected algorithm configurations. R/A = Reallocation, IR = Inter-Route, TTC = Trunk to Consolidator,
CW = savings algorithm option, LS = local search option, multi = multi-move (compounded), Off = not used.

Alg.
No.

Packing
(5.2.1)

Shortlist
(5.2.2)

R/A (IR/TTC)
(5.2.3)

Catchment
(5.2.4)

IR Usage
(5.2.5)

Kick Origin
(5.2.6)

Kick Destination
(5.2.6)

1 AFFD Shortlist On/Off 5 Sites CW-S, LS-M Random 5% Van
2 BF Shortlist On/Off 5 Sites CW-Off, LS-M Long & Short Van
3 BF Shortlist Off/Off 5 Sites CW-M, LS-Off Random 10% UAV
4 BF Shortlist Off/Off 5 Sites CW-M, LS-Off Random 5% Van

On testing the two core algorithms (1&2), it was demonstrated that the best solution would
be offered by Algorithm 1, as intended (Figure A.19c). Meanwhile, significant speed benefits (at
least 50% faster than Algorithm 1 to 500 kick iterations) were made possible using Algorithm 2,
demonstrating only a minor loss in quality (<5%) in the majority of cases, particularly with smaller
tests which were more typical of real-world case studies (Figure A.19a).

In terms of the required iterations and run-time to find the best solution (within the tested
500 reset kick iterations), test results (Figure A.19b) highlighted that Algorithm 2 converges to its
best solution significantly faster than the others. Furthermore, with 90% of solutions (i.e. the 90th

percentile) reaching their best solution within 90 (out of 500) reset kick iterations, each iteration
was seen to be highly efficient with respect to time and consistency. The equivalent percentile for
Algorithms 1, 2, 3 and 4 were 402, 90, 452, and 442 iterations, respectively, suggesting that there
may still be scope for improvement if more kicks were permitted, though runtime and memory
management may then become a challenge.

The absolute time requirements to solve the SSCP with work shifts and UAVs varied with
respect to the size of the test case (Figure 15). The configurations with the shortest computational
time to reach their best solution typical exhibited a more linear trend with respect to increasing
the test case size, unless a full 500 iteration limit was observed, when an exponential trend was
evident (e.g. Algorithms 3, 4). Conversely, the configurations that took longest to reach their best
solution were generally more stable per kick iteration but required substantially more iterations
to realise their best solution. Nonetheless, 90% of all solutions (i.e. all test cases, regardless of
size) were found within 15.5 minutes in all algorithms, and all typical size problems (~50-100 sites,
(Oakey et al., 2023)) were solved within 512 seconds, providing the required speed for day-to-day
use. In the event that planners are investigating larger cases, it may be advisable to use the faster
algorithms (3/4) if planning time is limited, however, this may present a trade-off with respect to
the objective function.
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(a) Computational time per reset kick iteration. (b) Time taken to reach best objective value.

Figure 15: Absolute time performance comparison of the final algorithms. Legend indicates algorithm used, as
defined in Table 6.

5.3.1. Meta-Heuristic Sensitivity to UAV Cost Changes

The greatest uncertainty in modelling of real-world scenarios lies with the UAV costs. This is
due to the novelty of the technology and limited literature and data covering this area, partially
as a result of commercial sensitivities. To this end, a brief sensitivity analysis with UAV costs was
undertaken.

To support theoretical scenarios such as cheaper UAVs, where mode-shift may be more likely,
Algorithms 3 and 4 were developed and tested. Such an approach was made to ensure that
solutions featuring significant number of UAVs were not missed during sensitivity tests, such as
in (Anonymous, 2023). To test this concept, the small (50/100) test cases were re-run using these
2 algorithms with UAV costs weight set to 0.1 (other costs set to 1.0), effectively reducing the
operating costs of UAV routes to 10% of their value in the other tests.

Findings supported the theory that modal shift was encouraged by the reset kick towards UAV
service (Figure A.20), with 20% (4/20) of solutions containing more UAV routes when calculated
under Algorithm 3 than Algorithm 4. Whilst this may have benefited the objective function in
some solutions, it was also detrimental in others due to the cost challenges associated with operator
ratios not being sufficient to outweigh the economy of scale from van-based solutions.

In general, convergence times were reduced under this arrangement (Figure A.20a), likely due
to early savings from introducing UAVs limiting objective improvements later on in the solving
process and causing stagnation. To this end, the limited site suitability preventing further UAV
uptake and operator utilisation will be a key factor in future applications. Moreover, the quality
of solutions in small cases was not significantly impacted (<10% in most cases, Figure A.20b).

In summary, Algorithm 3 may be beneficial where cost sensitivities are heightened, such as
around the point of cost-parity of UAV routes and van routes, as in (Anonymous, 2023); however,
it would be advantageous to explore the kick meta-heuristic further in future studies.

6. Conclusions

Local healthcare logistics typically need to move goods in a timely manner, though environ-
mentally conscious policies are encouraging changes towards green practices. Meanwhile, the use
of UAVs is seen as a growing area of interest, particularly in healthcare logistics, though it has
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been highlighted that they would only form part of future logistics networks due to operational
and regulatory challenges. To this end, this paper has presented an extension of the heterogeneous
two-echelon VRP known as the “Sustainable Specimen Collection Problem” (SSCP), introducing
UAVs and vehicle reuse as part of scheduled work shifts (SSCP with work shifts and UAVs).

To solve the proposed generalised VRP, a novel heuristic algorithm was introduced, whereby an
adaptation of the Clarke and Wright Savings Algorithm is used to create efficient vehicle routes,
whilst bin-packing algorithms are subsequently used to compile suitable work shifts from these
routes. Additionally, a meta-heuristic based on the ruin and recreate algorithm was proposed to
complement the approach.

To enable realistic testing, a new test case generator was also proposed, taking factors such as
traffic flow and site distribution densities into account. Using a series of test cases ranging from
50 to 200 sites in size, the component parts of the algorithm were profiled, and effective parameter
combinations were defined to ensure computational speed whilst maintaining quality. To this end,
the configurations that limited the search space and encouraged smaller incremental improvements
were generally the most successful at giving quality results in reasonable timescales. Specifically,
it was found that 90% of all solutions (i.e. all test cases, regardless of size: 50/100/200 sites)
were found within 15.5 minutes in all of the identified configurations, and all typical size problems
(~50-100 sites) were solved within 512 seconds, providing the required speed for day-to-day use in
industry.

Whilst the algorithm provides an effective heuristic approach, future work may seek to explore
an exact solution and understand the possible optimality gap. Furthermore, the adapted Clarke
and Wright Savings Algorithm could be applied to other heterogeneous VRPs, particularly where
one mode is likely to serve a substantial proportion of customers.

With respect to the use of UAVs, this paper also identified the challenges that could potentially
limit their uptake, relating to cost and operator ratios, when compared to the economies of scale
offered by traditional logistics modes. Hence, exploring the sensitivities around these areas and
the other objective function components with real case study data could be advantageous. It
should be highlighted that such work is already in progress, as published in (Anonymous, 2023),
investigating the potential cost requirements for UAV services to become feasible in the region. It
should also be noted there are significant contractual and management practicalities to overcome
before implementing any solution, many of which are highly specific to the geographies of interest.

In terms of limitations, this study investigates the proposed solution approach using generated
datasets based on two UK-based regions that could be deemed representative of many urban and
urban-rural areas. This may limit the effectiveness of the algorithm in substantially different
areas; thus, understanding how the performance can vary when more generalised datasets based
on quantified network characteristics are used would be of significant interest. This would also
enable a formulaic rule-of-thumb to be produced for quickly appraising the suitability and expected
outcomes under the SSCP with work shifts and UAVs arrangement.
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Appendix A. Additional Parameterisation Results Plots

Mean of instance results, scaled relative to worst performing in each test (worst = 100%).

(a) Computational time after 10 reset kick iterations. (b) Best objective value after 10 reset kick iterations.

Figure A.16: Relative performance comparison of the savings candidate shortlist length options (indicated by legend).

(a) Computational time after 10 reset kick iterations. (b) Best objective value after 10 reset kick iterations.

Figure A.17: Relative performance comparison of the reallocation options. IR = inter-route, TTC = trunk to
consolidator, 0 = reallocation off, 1 = reallocation on.

(a) Computational time after 10 reset kick iterations. (b) Best objective value after 10 reset kick iterations.

Figure A.18: Relative performance comparison of the cycle catchment size options (limit indicated by legend).
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(a) Computational time after 500 reset kick iterations. (b) Time taken to reach best objective value.

(c) Best objective value after 500 reset kick iterations.

Figure A.19: Relative performance comparison of the final algorithms. Legend indicates algorithm used, as defined
in Table 6.

(a) Time taken to reach best objective value. (b) Best objective value after 500 reset kick iterations.

Figure A.20: Relative performance comparison of Algorithms 3 and 4 under reduced UAV costs. Legend indicates
algorithm used, as defined in Table 6.
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