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In this thesis, we aim to understand the behaviour of quasiconvexity under the basic
operation of taking joins of subgroups. We will also study the relation between
quasiconvexity and residual properties of relatively hyperbolic groups.

In particular, suppose that G is a relatively hyperbolic group, and let Q and R be
relatively quasiconvex subgroups of G. We provide sufficient conditions for the join
⟨Q′, R′⟩ of subgroups Q′ ⩽ Q and R′ ⩽ R to be relatively quasiconvex. Further, we
determine the structure of the maximal parabolic subgroups of ⟨Q′, R′⟩ in this setting.

We show that, given suitable assumptions on the profinite topology of G, these
conditions can be arranged to hold for sufficiently deep finite index subgroups
Q′ ⩽ f Q and R′ ⩽ f R. As a consequence, we show that ⟨Q′, R′⟩ decomposes as an
amalgamated free product when the parabolic subgroups of Q and R are almost
compatible.

Finally, we show that if G is hyperbolic relative to product separable subgroups,
then the product of any finitely generated quasiconvex subgroups is separable in G.
We record applications of this to various classes of nonpositively curved groups.
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Z the set of integers





1

Chapter 1

Introduction

The central theme of geometric group theory is to exhibit group actions on metric
spaces, and from this extract information about the group. In his seminal essay,
Gromov (1987) introduced the influential notion of a hyperbolic group, unifying the
combinatorial and geometric methods that were being developed in group theory
over the preceding decades. The key observation is that when a group admits a nice
action on a space that has some nonpositive or negative curvature, many strong
statements can be made about the algebraic properties of the group. Hyperbolic metric
spaces, introduced in the same paper, serve as a robust model for negative curvature in
arbitrary metric spaces. Indeed, hyperbolic groups are exactly the finitely generated
groups that admit proper and cocompact actions by isometries on hyperbolic metric
spaces. In this way, hyperbolic groups mimic the fundamental groups of compact
hyperbolic manifolds.

The class of hyperbolic groups, though large, is somewhat restricted, and many
natural and important examples of groups fall outside this class. For example, any
group containing a higher rank free abelian subgroup cannot be hyperbolic. As such,
it is often useful to relax the condition on the group action to allow for such examples.
In this thesis, we will be focused primarily on the class of relatively hyperbolic groups,
which admit cobounded actions on hyperbolic spaces that are in some sense proper
away from a fixed collection of bounded subsets.

Relatively hyperbolic groups were suggested by Gromov (1987), and expanded on by
various authors. The concept was more substantially developed by Bowditch (2012),
Farb (1998), Druţu and Sapir (2005), Osin (2006b), and Groves and Manning (2008),
whose varied definitions were shown equivalent by Hruska (2010). Relative
hyperbolicity is a relative property of a group G in the sense that one must specify a
collection of peripheral subgroups with respect to which G is relatively hyperbolic.
Archetypal examples include small cancellation quotients of free products and
fundamental groups of finite volume manifolds of pinched negative curvature, which
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are hyperbolic relative to the images of the free factors and to their cusp subgroups
respectively (see, for example, Osin (2006b)).

We will also be interested in studying aspects of the profinite topology in groups. The
profinite topology is an object that encodes information about the finite quotients of a
group. Any group G can be equipped with the profinite topology by declaring (left)
cosets of finite index subgroups of G to be a basis of open sets. This naturally makes G
into a topological group, which is Hausdorff if and only if the trivial subgroup is
closed: in this case G is called residually finite.

Let us introduce some terminology. We will say that a subset U ⊆ G is separable in the
profinite topology on G when U is closed. If each finitely generated subgroup of G is
separable, we say that G is LERF (locally extended residually finite). Likewise, we say
that G is double coset separable if for any two finitely generated subgroups H, K ⩽ G, the
double coset HK is separable.

Knowing that certain subsets of groups are separable has important applications to
geometric and algebraic problems. For instance, the membership problem is solvable
for a finitely generated subgroup H of a finitely presented group G if H is separable in
G (c.f. (Lyndon and Schupp, 1977, IV.4.6)). For fundamental groups of complexes,
separability of subgroups and subsets corresponds to useful lifting properties in the
complex. Double coset separability has recently proven to be instrumental in
characterising the property of virtual specialness in relation to fundamental groups of
nonpositively curved cube complexes (Haglund and Wise (2008)).

1.1 Quasiconvex subgroups and combination theorems

In trying to understand the structure of a group, it is essential to study the structure of
its subgroups. We often restrict our attention to subgroups generated by finitely many
elements of the group, as the infinitely generated subgroups can be especially wild. In
the setting of hyperbolic groups, arbitrary finitely generated subgroups may still be
quite poorly behaved. For instance, Rips (1982) developed a method to construct
hyperbolic groups containing 2-generated normal subgroups exhibiting wild
properties (e.g. with distortion greater than any computable function).

It is often fruitful, therefore, to further restrict one’s attention to the class of quasiconvex
subgroups of hyperbolic groups. Quasiconvex subgroups are exactly the finitely
generated quasi-isometrically embedded subgroups of hyperbolic groups, and they
play a central role in the theory of hyperbolic groups. It is a consequence of the above
definition that quasiconvex subgroups are themselves hyperbolic.

If Q and R are quasiconvex subgroups of a hyperbolic group G, then the intersection
S = Q ∩ R is also quasiconvex (Short (1991)). On the other hand, the join ⟨Q, R⟩ of Q
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and R may fail to be quasiconvex. Indeed, cyclic subgroups of hyperbolic groups are
quasiconvex, while infinite index normal subgroups are quasiconvex only when they
are finite, so the construction of Rips mentioned above provides counterexamples.
This failure can be remedied by considering instead virtual joins: subgroups of the
form ⟨Q′, R′⟩ for some finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R. Under the
assumption that the intersection S = Q ∩ R is separable, Gitik (1999) showed that
there exist finite index subgroups as above with Q′ ∩ R′ = S such that ⟨Q′, R′⟩ is
quasiconvex. Moreover, this virtual join ⟨Q′, R′⟩ is naturally isomorphic to the
amalgamated free product Q′ ∗S R′.

In the setting of relatively hyperbolic groups, the natural sub-objects are the relatively
quasiconvex subgroups, which are themselves relatively hyperbolic in a way that is
compatible with the ambient group. Basic examples of relatively quasiconvex
subgroups are maximal parabolic subgroups (i.e. conjugates of the peripheral
subgroups), parabolic subgroups (subgroups of maximal parabolic subgroups), and
finitely generated quasi-isometrically embedded subgroups (Hruska (2010)).

Suppose that Q and R are relatively quasiconvex subgroups of relatively hyperbolic
group G. In Hruska (2010), it was proven that the intersection S = Q ∩ R is again
relatively quasiconvex. However, previously the existence of a relatively quasiconvex
virtual join ⟨Q′, R′⟩, for Q and R with S = Q ∩ R separable in G, was only known in a
few special cases:

• Martı́nez-Pedroza (2009) proved it in the case when R ⩽ P, for some maximal
parabolic subgroup P of G, such that Q ∩ P ⊆ R;

• Martı́nez-Pedroza and Sisto (2012) proved it when Q and R have compatible
parabolics (that is, for every maximal parabolic subgroup P of G either
Q ∩ P ⊆ R ∩ P or R ∩ P ⊆ Q ∩ P);

• Yang (2012) (unpublished; see also McClellan’s thesis McClellan (2019)) proved
it when R is a full subgroup of G (that is, for every maximal parabolic subgroup P
in G, R ∩ P is either finite or has finite index in P).

Similarly to Gitik (1999), in all three cases above the authors establish an isomorphism
between the virtual join ⟨Q′, R′⟩ and the amalgamated free product Q′ ∗S′ R′, where
S′ = Q′ ∩ R′ ⩽ f S as an essential component of their proofs.

The extra assumptions on Q and R in each of the above results imply that Q and R
have almost compatible parabolics (see Definition 1.3 below). Unfortunately this is still a
significant restriction and a more general result is desirable. Moreover, in the absence
of almost compatibility one cannot expect a virtual join to split as an amalgamated
free product of Q′ and R′, for if both Q and R are subgroups of the same abelian
peripheral subgroup of G then any virtual join ⟨Q′, R′⟩ would again be abelian.



4 Chapter 1. Introduction

One of the goals of this thesis is to establish the quasiconvexity of virtual joins without
making any compatibility assumptions on Q and R. However we need to impose
stronger assumptions on the properties of the profinite topology on G than just
separability of S = Q ∩ R: we will require the finitely generated relatively quasiconvex
subgroups to be separable and the peripheral subgroups are double coset separable.

We will say that a relatively hyperbolic group is QCERF if each of its finitely generated
relatively quasiconvex subgroups are separable.

Theorem 1.1. Let G be a finitely generated group that is QCERF hyperbolic relative to double
coset separable subgroups. For any finitely generated relatively quasiconvex subgroups
Q, R ⩽ G, there are finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R such that ⟨Q′, R′⟩ is
relatively quasiconvex.

In fact, we establish the existence of many finite index subgroups of Q and R whose
join is relatively quasiconvex rather than just a single pair, though the existential
statement is a little technical: see Section 4.2 for details.

As mentioned above, a relatively quasiconvex subgroup Q of G is itself relatively
hyperbolic in way that is compatible with the relative hyperbolicity of G. To be
precise, Q is hyperbolic relative to infinite subgroups of the form Q ∩ P where P ⩽ G
is a maximal parabolic subgroup of G. As such, to understand the structure of the
virtual joins obtained from Theorem 1.1 as relatively hyperbolic groups, we study
these intersections. We find that the finite index subgroups Q′ and R′ may be chosen
such that the intersection of the virtual join ⟨Q′, R′⟩ with a maximal parabolic
subgroup is itself, up to conjugacy, a join of intersections of Q and R with a maximal
parabolic subgroup of G.

Theorem 1.2. Let G be a finitely generated group that is QCERF hyperbolic relative to double
coset separable subgroups, and let Q, R ⩽ G be finitely generated relatively quasiconvex
subgroups. Then there are finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R such that ⟨Q′, R′⟩ is
relatively quasiconvex and the following is true.

Suppose that P ⩽ G is a maximal parabolic subgroup with ⟨Q′, R′⟩ ∩ P infinite. Then there is
u ∈ ⟨Q′, R′⟩ such that

⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ K, R′ ∩ K⟩u−1,

where K = u−1Pu.

Note that the conjugator u in the above statement is strictly necessary: suppose K ⩽ G
is a maximal parabolic subgroup of G such that either Q′ ∩ K or R′ ∩ K is infinite. Then
for any v ∈ ⟨Q′, R′⟩, the intersection ⟨Q′, R′⟩ ∩ vKv−1 contains v(Q′ ∩ K)v−1 and
v(R′ ∩ K)v−1, and is therefore infinite. However, it may be that u ∈ ⟨Q′, R′⟩ is such
that the subgroups Q′ ∩ P and R′ ∩ P are both trivial, where P = u−1Ku. This
precludes the possibility that they generate ⟨Q′, R′⟩ ∩ P.



1.1. Quasiconvex subgroups and combination theorems 5

We actually prove a more detailed characterisation of the subgroup ⟨Q′, R′⟩ ∩ P: see
Theorem 4.27. Using this stronger result, we generalise and unify the previous results
of Martı̀nez-Pedroza, Sisto, McClellan, and Yang mentioned above. For this we will
need to introduce some terminology and notation.

We will use a preorder ≼ on the sets of subsets of a group G, introduced by Minasyan
(2005b). Given subsets U, V ⊆ G, we will write U ≼ V if there exists a finite subset
Y ⊆ G such that U ⊆ VY.

If d is a proper metric on G and U and V are subsets of G, then U ≼ V if and only if U
is contained in a finite d-neighbourhood of V. If U and V are subgroups of G then
U ≼ V is equivalent to [U : U ∩ V] < ∞ (see (Minasyan, 2005b, Lemma 2.1)).

Definition 1.3. Let Q and R be subgroups of a relatively hyperbolic groups G, and let
P be a maximal parabolic subgroup of G. We say that Q and R are almost compatible at
P if Q ∩ P ≼ R ∩ P or Q ∩ P ≼ R ∩ P. We will say that Q and R have almost compatible
parabolics if Q and R are almost compatible at every maximal parabolic subgroup of G.

We note the condition of having almost compatible parabolics was introduced by
Baker and Cooper (2008) in the context of discrete subgroups of Isom(Hn). We are
able to promote the condition of having almost parabolic subgroups to that of having
compatible parabolics on the nose, after passing to finite index subgroups.

Theorem 1.4. Let G be a finitely generated QCERF relatively hyperbolic group. Suppose that
Q, R ⩽ G are finitely generated relatively quasiconvex subgroups with almost compatible
parabolics. There are finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R such that Q′ and R′ have
compatible parabolics.

Combining this with the combination theorem of Martı́nez-Pedroza and Sisto (2012),
we obtain the following.

Corollary 1.5. Let G be a finitely generated QCERF relatively hyperbolic group. Suppose that
Q, R ⩽ G are finitely generated relatively quasiconvex subgroups with almost compatible
parabolics. Then there are finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R such that ⟨Q′, R′⟩ is
relatively quasiconvex and ⟨Q′, R′⟩ ∼= Q′ ∗Q′∩R′ R′.

Let us say a few words on the assumptions of the above theorems. The results apply
to a wide class of relatively hyperbolic groups, including all limit groups,
fundamental groups of many finite volume hyperbolic manifolds and many groups
acting on CAT(0) cube complexes. Regarding QCERF-ness, Manning and
Martı́nez-Pedroza (2010) proved that the following two statements are equivalent:

(a) every finitely generated group hyperbolic relative to a finite collection of LERF
and slender subgroups is QCERF;

(b) all word hyperbolic groups are residually finite.
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Recall that a group is called slender if every subgroup is finitely generated. The
question of whether statement (b) is true is a well-known open problem. If the answer
to it is positive then, for example, all finitely generated groups hyperbolic relative to
virtually polycyclic subgroups will be QCERF.

Large classes of relatively hyperbolic groups have already been proved to be QCERF.
One of the first results in this direction is due to Wilton (2008), who established
QCERF-ness of limit groups. The ground-breaking work of Haglund and Wise (2008)
and Agol (2013) implies that any word hyperbolic group acting geometrically on a
CAT(0) cube complex is QCERF. One of the consequences of this result is that all
geometrically finite Kleinian groups are QCERF. More recently, Groves and Manning
(2022) extended this theory to relatively hyperbolic groups. They show that if a group
is hyperbolic relative to a collection of LERF subgroups and admits a weakly relatively
geometric action on a CAT(0) cube complex, then G is QCERF. Einstein and Ng (2021)
showed that C′(1/6)-small cancellation quotients of free products exhibit such
actions. It follows that a C′(1/6)-small cancellation quotient of a free product of LERF
groups is QCERF, for example.

By a theorem of Lennox and Wilson (1979), all virtually polycyclic groups are double
coset separable, hence the assumption about peripheral subgroups is automatically
true in many relevant cases. However whether this assumption is actually necessary is
less obvious. It is required in our approach, but it would be interesting to see whether
Theorems 1.1 and 1.2 remain valid without it.

Metric conditions

Let G be a relatively hyperbolic group with finite generating set X, let Q, R ⩽ G be
relatively quasiconvex subgroups of G, and write S = Q ∩ R . The overarching
strategy we employ to prove the above results is to show that if Q′ ⩽ Q and R′ ⩽ R
are subgroups satisfying a certain set of metric conditions, then the desired results on
quasiconvexity and structure hold for their join. Then, we will use the assumptions of
separability to find finite index subgroups of Q and R satisfying these conditions.
First, therefore, we must introduce our collection of rather technical metric conditions.

Given a finite collection P of maximal parabolic subgroups of G, constants B, C ≥ 0
and subgroups Q′ ⩽ Q, R′ ⩽ R, consider the following:

(C1) Q′ ∩ R′ = S;

(C2) minX

(
Q⟨Q′, R′⟩Q \ Q

)
≥ B and minX

(
R⟨Q′, R′⟩R \ R

)
≥ B;

(C3) minX

(
(PQ′ ∪ PR′) \ PS

)
≥ C, for each P ∈ P .
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Moreover, if not all of the subgroups in P are abelian then we will need two more
conditions (here for subgroups H ⩽ G and P ∈ P , we use HP to denote the
intersection H ∩ P ⩽ P):

(C4) QP ∩ ⟨Q′
P, R′

P⟩ = Q′
P and RP ∩ ⟨Q′

P, R′
P⟩ = R′

P, for every P ∈ P ;

(C5) minX

(
q⟨Q′

P, R′
P⟩RP \ qQ′

PRP

)
≥ C, for each P ∈ P and all q ∈ QP.

Remark 1.6. If the peripheral subgroups of G are abelian then condition (C4) follows
from (C1) and condition (C5) is trivially true. Indeed, if P is abelian, then, in the
notation of (C4), ⟨Q′

P, R′
P⟩ = Q′

PR′
P, hence

Q′
P ⊆ QP ∩ ⟨Q′

P, R′
P⟩ = QP ∩ Q′

PR′
P = Q′

P(QP ∩ R′
P) ⊆ Q′

PSP = Q′
P,

where the last equality used that SP = S ∩ P ⊆ Q′
P by (C1). The second equality of

(C4) can be proved in the same fashion.

Similarly, if q ∈ QP then q⟨Q′
P, R′

P⟩RP = qQ′
PR′

PRP = qQ′
PRP, so that

minX

(
q⟨Q′

P, R′
P⟩RP \ qQ′

PRP

)
= minX(∅) = +∞,

thus (C5) holds.

Remark 1.7. As mentioned above, we are interested in the existence of finite index
subgroups Q′ ⩽ f Q and R′ ⩽ f R satisfying the above metric conditions. Thus it may
be easier to interpret the conditions when viewed through the lens of the profinite
topology on G (see Section 4.2):

• conditions (C1) and (C4) can be ensured by choosing any finite index subgroup
M ⩽ f G with S ⊆ M, and setting Q′ = Q ∩ M, R′ = R ∩ M;

• the existence of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R satisfying condition
(C2) can be deduced from separability of Q and R in G;

• the existence of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R satisfying condition
(C3) can be deduced from separability of the double coset PS in G;

• if Q′
P ⩽ f QP is already chosen then R′

P ⩽ f RP, satisfying (C5), can be constructed
with the help of separability of the double coset Q′

PRP in P. Indeed, if
QP =

⋃n
j=1 ajQ′

P, then the inequality in (C5) can be re-written as
minX

(
aj⟨Q′

P, R′
P⟩Q′

pRP \ ajQ′
PRP

)
≥ C, for every j = 1, . . . , n. Thus our approach

to establishing (C5) will be to choose R′ ⩽ f R after Q′ ⩽ f Q has already been
constructed (in other words, R′ will depend on Q′).

The aim is to prove the following (see Theorem 3.26).

Theorem 1.8. Let G be a finitely generated relatively hyperbolic group, and suppose that Q
and R are relatively quasiconvex subgroups of G. There are constants B, C ≥ 0 and finite
family of maximal parabolic subgroups P such that the following is true. If Q′ ⩽ Q and
R′ ⩽ R are relatively quasiconvex subgroups satisfying (C1)–(C5) with constants B, C, and
family P , then ⟨Q′, R′⟩ is relatively quasiconvex.
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1.2 Product separability

It is often useful in group theory to know that products of certain subgroups are
separable. For instance, double coset separability in limit groups and certain graphs of
free groups was used to show that such groups satisfy the “geometric Hanna
Neumann conjecture” concerning the rank of intersections of finitely generated
subgroups in Fisher and Morales (2023). Recently, Abdenbi and Wise (2024) used
separability of up to quintuple cosets of finitely generated subgroups of free groups to
show that partial local isometries of special cube complexes extend to automorphisms
of a larger special cube complex.

Definition 1.9. Let G be a group and let s ∈ N. We say that P has property RZs if for
arbitrary finitely generated subgroups H1, . . . , Hs ⩽ P, the product H1 . . . Hs is
separable in P. If G has property RZs for all s ∈ N, we say that G is product separable.

Thus RZ1 means that the group is LERF and RZ2 is equivalent to double coset
separability. The definition of RZs is due to Coulbois (2001); he named it after Ribes
and Zalesskii, who proved in Ribes and Zalesskii (1993) that free groups are product
separable, confirming a conjecture of Pin and Reutenauer (1991). Product separability
was first considered in its connection to Rhodes’ type II conjecture from semigroup
theory (see Pin and Reutenauer (1991) and Pin (1989) for background). The property
was further used to obtain a language-theoretic extension of Hrushovski’s theorem on
extending partial automorphisms of graphs by Herwig and Lascar (2000).

Let us recount what is known about separability of products in groups. Polycyclic
groups are known to be double coset separable, though the integral Heisenberg group
Heis3(Z) (which is finitely generated nilpotent of class 2) contains a triple coset that is
not separable (Lennox and Wilson (1979)). Double coset separability of free groups
was first proved by Gitik and Rips (1995). Shortly after, Niblo (1992) came up with a
new criterion for separability of double cosets and applied it to show that finitely
generated Fuchsian groups and fundamental groups of Seifert-fibred 3-manifolds are
double coset separable.

Previously, few examples of groups were known to be product separable: free abelian
groups, free groups (Ribes and Zalesskii (1993)), groups of the form F × Z, where F is
free (You (1997)), and locally quasiconvex LERF hyperbolic groups (Minasyan (2006))
(e.g., surface groups). Additionally, the class of product separable groups is closed
under taking subgroups, finite index supergroups and free products (Coulbois (2001)).
In his thesis, Coulbois (2000) also showed that groups of the form G ∗C F are product
separable, where G is product separable, F is free, and C is a maximal cyclic subgroup
of F. However, this class is not closed under direct products. Indeed, the direct
product of non-abelian free groups is not even LERF (Allenby and Gregorac (1973)).
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Generalising the result of Ribes and Zalesskii (1993), it was proven by Minasyan
(2006) that the product of finitely many quasiconvex subgroups is separable in a
QCERF word hyperbolic group. Moreover, Coulbois (2001) showed that, for every
s ∈ N, free products of groups with property RZs also have property RZs. Taken
together, these facts motivate the following theorem.

Theorem 1.10. Let G be a finitely generated group hyperbolic relative to a finite collection of
subgroups {Hν | ν ∈ N}, and let s ∈ N. Suppose that G is QCERF and Hν has property RZs

for each ν ∈ N . If Q1, . . . , Qs ⩽ G are finitely generated relatively quasiconvex subgroups of
G, then the product Q1 . . . Qs is separable in G.

The hypotheses in the above theorem are minimal, as parabolic subgroups are
relatively quasiconvex. We note that separability of products of full relatively
quasiconvex subgroups in a QCERF relatively hyperbolic group was proved by
McClellan (2019). Using Theorem 1.10 we are able to expand the class of groups
known to be product separable.

Theorem 1.11. The following groups are product separable:

• limit groups;

• finitely generated Kleinian groups;

• balanced fundamental groups of graphs of free groups with cyclic edge groups.

Recall that a group G is a limit group if it is finitely generated and fully residually free
(i.e. for each finite subset U ⊆ G there is a free group F and a homomorphism
φ : G → F that is injective when restricted to U). Limit groups naturally arise in the
study of algebraic geometry over groups, and played an important role in the
solutions of Tarski’s problems on the first order theory of free groups by Sela (2006)
and Kharlampovich and Myasnikov (2006). Wilton (2008) proved they are LERF.

Kleinian groups are discrete subgroups of the isometry group of hyperbolic 3-space,
which is isomorphic to PSL(2, C). Kleinian groups play a central role in hyperbolic
geometry. Agol (2013) proved that finitely generated Kleinian groups are LERF.

Following Wise, we say that a group is balanced if for every infinite order element
g ∈ G, gn and gm are conjugate only when n = ±m. Wise (2000) proved that the
fundamental group of a finite graph of free groups with cyclic edge groups is LERF if
and only if it is balanced if and only if it does not contain any subgroups of the form
⟨a, t | tamt−1 = an⟩ with n ̸= ±m. The subgroups in this latter condition are exactly the
non-Euclidean Baumslag-Solitar groups, which are in a sense the obvious obstructions to
separability of subgroups in this context (as the cyclic subgroup ⟨a⟩ is not separable).

Parts of this thesis are based on joint work with Ashot Minasyan, and as such many
sections include jointly written and edited material. Sections 3.3, 4.2–4.5, and 5.7 in
particular contain material to which his contribution was large.





11

Chapter 2

Preliminaries

2.1 Basic notions

By a generating set X of G we will mean a set X together with a map X → G such that
the image of X under this map generates G. The combinatorial Cayley graph Γ(G, X)

is the labelled directed graph whose vertex set is G, with an edge from an element g to
an element h if g−1h ∈ X.

We will identify the combinatorial Cayley graph with its geometric realisation. The
latter is a geodesic metric space, though not necessarily uniquely geodesic. Thus,
given x, y ∈ Γ(G, X) there will usually be a choice for geodesic [x, y], which will either
be specified or will be clear from the context (e.g., if x and y already belong to some
geodesic path under discussion, then [x, y] will be chosen as the subpath of that path).
Note that the metric dX is proper if the generating set X is finite. In this thesis we
work with metrics associated to both finite and infinite generating sets of groups,
which may fail to be proper.

By a combinatorial path in a graph Γ, we will mean a sequence of edges e1, . . . , en ∈ EΓ
such that (ei)+ = (ei+1)− for each i = 1, . . . , n − 1. If γ1, . . . , γn are combinatorial paths
with (γi)+ = (γi+1)−, for each i ∈ {1, . . . , n − 1}, we will denote their concatenation
by γ1 . . . γn.

The following general fact will be used quite often.

Lemma 2.1. Let G be a group and suppose that X is a finite generating set for G. If A, B ⩽ G
are subgroups of G then for every K ≥ 0 there is a constant K′ = K′(A, B, K) ≥ 0 such that
for any x ∈ G we have

NX(xA, K) ∩ NX(xB, K) ⊆ NX(x(A ∩ B), K′).
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Proof. After applying the left translation by x−1, which preserves the metric dX, we
can assume that x = 1. Now the statement follows, for example, from (Hruska, 2010,
Proposition 9.4).

We will also make use of the following elementary fact.

Lemma 2.2. Let G be an infinite group and let H, K ⩽ G be infinite subgroups. If all but
finitely many elements of H are contained in K, then H ⊆ K.

Proof. Suppose that H \ K is finite, so that its complement (in H) H ∩ K is infinite. Let
g ∈ H \ K. As H \ K is finite and H ∩ K is infinite, there is some h ∈ H ∩ K such that
hg /∈ H \ K. That is to say, hg ∈ H ∩ K. It follows that g = (h−1)(hg) ∈ H ∩ K, a
contradiction. Thus H \ K must be empty and H ⊆ K as required.

2.1.1 Quasigeodesic paths

In this subsection we assume that Γ is a graph equipped with the standard path length
metric d(·, ·) giving edges unit length.

Definition 2.3 (Quasigeodesic). Let λ ≥ 1 and c ≥ 0 and let p be an edge path in Γ.
Recall that p is said to be (λ, c)-quasigeodesic if for every combinatorial subpath q of p
we have

ℓ(q) ≤ λ d(q−, q+) + c.

Note that in the literature, quasigeodesic paths may be defined with a lower bound on
length as well as an upper bound. For us, all paths will be assumed continuous so the
lower bound holds trivially. We will see in the next subsection that quasigeodesic
paths are particularly well-behaved in hyperbolic spaces. First let us collect some
general facts. In the following lemma we show that if we append short paths to the
start and end of a quasigeodesic path, the result is quasigeodesic with only slightly
worse constants.

Lemma 2.4. Suppose that s = rpt is a concatenation of three combinatorial paths r, p and t in
Γ such that ℓ(r) ≤ D and ℓ(t) ≤ D, for some D ≥ 0, and p is (λ, c)-quasigeodesic, for some
λ ≥ 1 and c ≥ 0. Then the path s is (λ, c′)-quasigeodesic, where c′ = c + 2(λ + 1)D.

Proof. Consider an arbitrary combinatorial subpath q of s. We need to show that

ℓ(q) ≤ λ d(q−, q+) + c + 2(λ + 1)D. (2.1)

If q is contained in r or in t then the desired inequality follows from the assumptions
that ℓ(r) ≤ D and ℓ(t) ≤ D. Therefore we can further suppose that q− is a vertex of rp
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and q+ is a vertex of pt. The bounds on the lengths of r and t imply that there is a
combinatorial subpath a of p such that there are at most D edges of s between q− and
a− and between a+ and q+. Thus d(q−, a−) ≤ D, d(q+, a+) ≤ D and ℓ(q) ≤ ℓ(a) + 2D

The assumption that p is (λ, c)-quasigeodesic implies that

ℓ(q) ≤ ℓ(a) + 2D ≤ λ d(a−, a+) + c + 2D. (2.2)

The triangle inequality gives d(a−, a+) ≤ d(q−, q+) + 2D, which, combined with (2.2),
shows that (2.1) holds, as required.

We now show that the quasigeodesicity constants of a path obtained by replacing
every edge of a quasigeodesic path with short paths are well-controlled.

Lemma 2.5. Let λ ≥ 1, c ≥ 0 and K ∈ N. Suppose that p is a combinatorial path in Γ and let
p′ be a path obtained by replacing some edges of p with combinatorial paths of length at most
K. If p is (λ, c)-quasigeodesic then p′ is (Kλ, 2K2λ + Kc + 2K)-quasigeodesic.

Proof. Let q be any combinatorial subpath of p′ and write q− = x and q+ = y. We need
to show that

ℓ(q) ≤ Kλ d(x, y) + 2K2λ + Kc + 2K. (2.3)

If q does not contain any vertices of p then ℓ(q) ≤ K and (2.3) holds. Otherwise, let z
and w be the first and the last vertices of q that lie on p respectively, and let r be the
subpath of p starting at z and ending at w. The assumptions imply that d(x, z) ≤ K,
d(y, w) ≤ K and

ℓ(q) ≤ Kℓ(r) + 2K. (2.4)

Using the quasigeodesicity of p and the triangle inequality, we obtain

ℓ(r) ≤ λ d(z, w) + c ≤ λ d(x, y) + 2Kλ + c,

which, combined with (2.4), gives (2.3).

2.1.2 Hyperbolic metric spaces

In this subsection we take (Γ, d) be a geodesic metric space.

Definition 2.6 (Gromov product). Let x, y, z ∈ Γ be points. The Gromov product of x
and y with respect to z is

⟨x, y⟩z =
1
2

(
d(x, z) + d(y, z)− d(x, y)

)
.
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It is easy to see that the Gromov products satisfy the following equations:

d(x, y) = ⟨y, z⟩x + ⟨x, z⟩y, d(y, z) = ⟨x, z⟩y + ⟨x, y⟩z and d(z, x) = ⟨x, y⟩z + ⟨y, z⟩x.

The following elementary property of Gromov products is an immediate consequence
of the triangle inequality.

Remark 2.7. Suppose that x, y, z are points in Γ, u is a point on any geodesic segment
from x to z, and v is a point on any geodesic segment from z to y. A straightforward
application of the triangle inequality tells us that ⟨u, v⟩z ≤ ⟨x, y⟩z.

Definition 2.8 (δ-thin triangle). Let ∆ be a geodesic triangle in Γ with vertices x, y, and
z, and let δ ≥ 0. Denote by T∆ the (possibly degenerate) tripod with edges of length
⟨x, y⟩z, ⟨y, z⟩x, and ⟨z, x⟩y respectively. There is a map from {x, y, z} to the extremal
vertices of T∆, which extends uniquely to a map ϕ : ∆ → T∆, whose restriction to each
side of ∆ is an isometry. If the diameter in Γ of ϕ−1({t}) is at most δ, for all t ∈ T∆,
then ∆ is said to be δ-thin.

Definition 2.9 (Hyperbolic space). The space Γ is said to be a hyperbolic metric space if
there is a constant δ ≥ 0 such that every geodesic triangle in Γ is δ-thin.

The above definition of δ-hyperbolicity is not the most commonly used in the
literature, though it is well-known to be equivalent to other definitions after possibly
increasing δ: see, for example, (Bridson and Haefliger, 1999, III.H.1.17). For technical
reasons we will always assume that δ is chosen to be sufficiently large so that all the
definitions in this reference are satisfied.

In the remainder of this subsection we assume that Γ is a graph which, equipped with
the standard path length metric d(·, ·), is a δ-hyperbolic space for some δ ≥ 0.

Definition 2.10 (Broken line). A broken line in Γ is a path p which comes with a fixed
decomposition as a concatenation of combinatorial geodesic paths p1, . . . , pn in Γ, so
that p = p1 p2 . . . pn. The paths p1, . . . , pn will be called the segments of the broken line
p, and the vertices p− = (p1)−, (p1)+ = (p2)−, . . . , (pn−1)+ = (pn)− and
(pn+1)+ = p+ will be called the nodes of p.

The following statement is a special case of Lemma 4.2 from Minasyan (2005a),
applied to the situation when each pi is geodesic (so, in the notation of that lemma, we
can take λ = 1, c = 0 and ν = δ). Note that due to a slightly different definition of
quasigeodesicity used in Minasyan (2005a), a (λ, c)-quasigeodesic in the sense of
Minasyan (2005a) is (1/λ, c/λ)-quasigeodesic in the sense of Definition 2.3 above, and
vice-versa. The statement gives sufficient conditions for a broken line to be
quasigeodesic.

Lemma 2.11. Let c0, c1 and c2 be constants such that c0 ≥ 14δ, c1 = 12(c0 + δ) + 1 and
c2 = 10(δ + c1). Suppose that p = p1 . . . pn is a broken line in Γ, where pi is a geodesic with



2.2. Relatively hyperbolic groups 15

(pi)− = xi−1, (pi)+ = xi, i = 1, . . . , n. If d(xi−1, xi) ≥ c1 for i = 1, . . . , n, and
⟨xi−1, xi+1⟩xi ≤ c0 for each i = 1, . . . , n − 1, then the path p is (4, c2)-quasigeodesic.

We will need an extension of the above lemma which allows the first and the last
geodesic segments p1 and pn to be short.

Lemma 2.12. For any constant c0, satisfying c0 ≥ 14δ, let c1 = c1(c0) = 12(c0 + δ) + 1 and
c3 = c3(c0) = 10(δ + 2c1).

Suppose that p = p1 . . . pn is a broken line in Γ, where pi is a geodesic with (pi)− = xi−1,
(pi)+ = xi, i = 1, . . . , n. If d(xi−1, xi) ≥ c1 for i = 2, . . . , n − 1, and ⟨xi−1, xi+1⟩xi ≤ c0 for
each i = 1, . . . , n − 1, then the path p is (4, c3)-quasigeodesic.

Proof. This follows easily by combining Lemma 2.11 with Lemma 2.4. Indeed, there
are four possibilities depending on whether or not d(x0, x1) ≥ c1 and d(xn−1, xn) ≥ c1.
Since these cases are similar, we concentrate on the situation when d(x0, x1) < c1 and
d(xn−1, xn) ≥ c1. Then the path q = p2 p3 . . . pn is (4, c2)-quasigeodesic by Lemma 2.11,
where c2 = 10(δ + c1). Since ℓ(p1) = d(x0, x1) < c1, we can apply Lemma 2.4 to
deduce that the path p = p1 . . . pn = p1q is (4, c3)-quasigeodesic, where
c3 = c2 + 10c1 = 10(δ + 2c1) as required.

2.2 Relatively hyperbolic groups

In this section we will define relatively hyperbolic groups and collect various
properties that will be used throughout this work.

2.2.1 Definitions and basic properties

Hyperbolic groups are characterised by having linear isoperimetric inequalities: given a
combinatorial loop in a Cayley complex corresponding to a finite presentation of such
a group, the number of discs needed to fill that loop is bounded by a linear function of
the length of the loop. This property can also be characterised algebraically in terms of
the minimum number of relators needed to express a word representing the identity is
a presentation.

We will define relatively hyperbolic groups following the approach of Osin, which
builds on a notion of relative isoperimetric functions (for full details, see Osin (2006b)).

Definition 2.13 (Relative generating set, relative presentation). Let G be a group,
X ⊆ G a subset and {Hν | ν ∈ N} a collection of subgroups of G. The group G is said
to be generated by X relative to {Hν | ν ∈ N} if it is generated by X ∪H, where
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H =
⊔

ν∈N (Hν \ {1}) (with the obvious map X ∪H → G). If this is the case, then there
is a surjection

F = F(X) ∗ (∗ν∈N Hν) → G,

where F(X) denotes the free group on X. Suppose that the kernel of this map is the
normal closure of a subset R ⊆ F. Then G can equipped with the relative presentation

⟨X, Hν, ν ∈ N | R⟩. (2.5)

If X is a finite set, then G is said to be finitely generated relative to {Hν | ν ∈ N}. If R is
also finite, G is said to be finitely presented relative to {Hν | ν ∈ N} and the presentation
above is a finite relative presentation.

With the above notation, we call the Cayley graph Γ(G, X ∪H) the relative Cayley graph
of G with respect to X and {Hν | ν ∈ N}. Note that when X is itself a generating set of
G, we have that dX∪H(g, h) ≤ dX(g, h), for all g, h ∈ G.

Definition 2.14 (Relative Dehn function). Suppose that G has a finite relative
presentation (2.5) with respect to a collection of subgroups {Hν | ν ∈ N}. If w is a
word in the free group F(X ∪H), representing the identity in G, then it is equal in F to
a product of conjugates

w F
=

n

∏
i=1

airia−1
i ,

where ai ∈ F and ri ∈ R, for each i. The relative area of the word w with respect to the
relative presentation, Arearel(w), is the least number n among products of conjugates
as above that are equal to w in F.

A relative isoperimetric function of the above presentation is a function f : N → N such
that Arearel(w) is at most f (|w|), for every freely reduced word w in F(X ∪H)

representing the identity in G. If an isoperimetric function exists for the presentation,
the smallest such function is called the relative Dehn function of the presentation.

Definition 2.15 (Relatively hyperbolic group). Let G be a group and let {Hν | ν ∈ N}
be a collection of subgroups of G. If G admits a finite relative presentation with
respect to this collection of subgroups which has a well-defined linear relative Dehn
function, it is called hyperbolic relative to {Hν | ν ∈ N}. When it is clear what the
relevant collection of subgroups is, we refer to G simply as a relatively hyperbolic group.
The groups {Hν | ν ∈ N} are called the peripheral subgroups of the relatively hyperbolic
group G, and their conjugates in G are called maximal parabolic subgroups. Any
subgroup of a maximal parabolic subgroup is said to be parabolic.

Lemma 2.16 (Osin (2006b), Corollary 2.54). Suppose that G is a group generated by a finite
set X and hyperbolic relative to a collection of subgroups {Hν | ν ∈ N}, and let
H =

⊔
ν∈N (Hν \ {1}). Then the Cayley graph Γ(G, X ∪H) is δ-hyperbolic for some δ ≥ 0.
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Remark 2.17. If G is a finitely generated group that is finitely presented relative to a
collection of nontrivial subgroups {Hν | ν ∈ N}, then this collection is necessarily
finite (Osin, 2006b, Corollary 2.48).

Definition 2.18 (Path components). Let p be a combinatorial path in Γ(G, X ∪H). A
non-trivial combinatorial subpath of p whose label consists entirely of elements of
Hν \ {1}, for some ν ∈ N , is called an Hν-subpath of p.

An Hν-subpath is called an Hν-component if it is not contained in any strictly longer
Hν-subpath. We will call a subpath of p an H-subpath (respectively, an H-component)
if it is an Hν-subpath (respectively, an Hν-component), for some ν ∈ N .

Definition 2.19 (Connected and isolated components). Let p and q be edge paths in
Γ(G, X ∪H) and suppose that s and t are Hν-subpaths of p and q respectively, for
some ν ∈ N . We say that s and t are connected if s− and t− belong to the same left coset
of Hν in G. The latter means that for all vertices u of s and v of t either u = v or there is
an edge e in Γ(G, X ∪H) with Lab(e) ∈ Hν \ {1} and e− = u, e+ = v.

If s is an Hν-component of a path p and s is not connected to any other Hν-component
of p then we say that s is isolated in p.

Definition 2.20 (Phase vertex). A vertex v of a combinatorial path p in Γ(G, X ∪H) is
called non-phase if it is an interior vertex of an H-component of p (that is, if it lies in an
H-component which it is not an endpoint of). Otherwise v is called phase.

Definition 2.21 (Backtracking). If all H-components of a combinatorial path p are
isolated, then p is said to be without backtracking. Otherwise we say that p has
backtracking.

Remark 2.22. If p is a geodesic edge path in Γ(G, X ∪H) then every H-component of p
will consist of a single edge, labelled by an element from H. Therefore every vertex of
p will be phase. Moreover, it is easy to see that p will be without backtracking.

The following terminology is less standard than the above, but will be useful to us.

Definition 2.23 (Consecutive, adjacent and multiple backtracking). Let p = p1 . . . pn

be a broken line in Γ(G, X ∪H). Suppose that for some i, j, with 1 ≤ i < j ≤ n, and
ν ∈ N there exist pairwise connected Hν-components hi, hi+1, . . . , hj of the paths
pi, pi+1, . . . , pj, respectively. Then we will say that p has consecutive backtracking along
the components hi, . . . , hj of pi, . . . , pj. Moreover, if j = i + 1, we will call it an instance
of adjacent backtracking, while if j > i + 1 will use the term multiple backtracking.

Quasigeodesic paths in Cayley graphs of hyperbolic groups are generally very
well-behaved. We would like to say the same about quasigeodesics in the relative
Cayley graphs of relatively hyperbolic groups, but it is a priori possible that such
paths behave poorly due to the presence of H-components. The following lemma is an
essential tool in controlling H-components, which moderates instances of such poor
behaviour.
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Lemma 2.24. Let G be a group hyperbolic relative to subgroups {Hν | ν ∈ N}. Then there is
a finite subset Ω of G and a constant M ≥ 1 such that if h1, . . . , hn are isolated H-components
of a cycle q in Γ(G, X ∪H), then h̃i ∈ ⟨Ω⟩ for each i = 1, . . . , n and

n

∑
i=1

|hi|Ω ≤ Mℓ(q).

Proof. Since G is hyperbolic relative to {Hν | ν ∈ N}, it has a relative presentation
satisfying a well-defined linear relative isoperimetric inequality. The statement then
follows by applying (Osin, 2006b, Lemma 2.27).

Remarkably, when the cycle in consideration is a polygon with geodesic sides, the
bound on lengths of H-components can be taken to depend only on the number of
sides.

Proposition 2.25 (Osin (2007), Proposition 3.2). There is a constant L ≥ 0 such that if P is
a geodesic n-gon in Γ(G, X ∪H) and some side p is an isolated H-component of P then
|p|Ω ≤ Ln.

A basic consequence of having a well-defined relative Dehn function is that the
intersection of two distinct maximal parabolic subgroups is finite (Osin, 2006b,
Theorem 1.4). We extend this result by showing that there are finitely many conjugacy
classes of elements belonging to such intersections when the group is relatively
hyperbolic.

Proposition 2.26. Let a, b ∈ G and λ, ν ∈ N be such that aHλa−1 ̸= bHνb−1. Then each
element of aHλa−1 ∩ bHνb−1 is conjugate to an element h ∈ G with |h|Ω ≤ 4L.

Proof. Conjugating if necessary, we may assume that a = 1. Further, suppose that
b ∈ G is such that |b|X∪H is minimal among elements in the coset Hλb. Now let
g ∈ Hλ ∩ bHνb−1 be a nontrivial element, and let h ∈ Hν be such that g = bhb−1.

Let γ be a geodesic in Γ(G, X ∪H) with γ− = 1 and γ+ = b. Further, let u be the
Hλ-edge of Γ(G, X ∪H) with u− = 1 and ũ = g, and let v be the Hν-edge of
Γ(G, X ∪H) with v− = b and ṽ = h. Note that v+ = bh = gb by definition, so that
γ′ = g · γ (i.e. the translate of γ by g) has endpoints u+ and v+. Now consider the
geodesic quadrilateral Q with sides u, γ, v, and γ′. We will show that u is isolated in Q.

If u and v are connected, then we must have λ = ν and both u− = 1 and v− = b lie in
the same Hλ-coset. However, this means that Hλ = bHνb−1, contrary to the
assumption. Therefore u must be connected to an Hλ-component s of either γ or γ′.
We suppose, without loss of generality, that s lies in γ. Since u and s are connected and
γ− = u− = 1, the endpoints of s satisfy dX∪H(s−, γ−) ≤ 1 and dX∪H(s+, γ−) ≤ 1.
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Therefore s must be the initial edge of γ, for otherwise the geodesicty of γ is
contradicted. But then s̃−1b ∈ Hλb and

|s̃−1b|X∪H = dX∪H(s̃, b) = dX∪H(s+, γ+) < |γ|X∪H = |b|X∪H

contradicting the minimality of b.

As s cannot contain v or be an Hλ-component of γ or γ′, u is isolated in Q.
Proposition 2.25 then tells us that |g|Ω = |u|Ω ≤ 4L, as required.

As the set Ω is finite, there are only finitely many elements of G whose length with
respect to Ω is less than any given number. The result then immediate.

Corollary 2.27. There are finitely many conjugacy classes of elements in G belonging to more
than one maximal parabolic subgroup.

2.2.2 Geodesics and quasigeodesics in relatively hyperbolic groups

Convention 2.1. Unless explicitly stated otherwise, for the remainder of this thesis we
will assume that G is a finitely generated group with finite generating set X. We will
suppose that G is hyperbolic relative to infinite subgroups {Hν | ν ∈ N}, and that X is
also a finite relative generating set corresponding to a finite presentation relative to
{Hν | ν ∈ N} which satisfies a well-defined linear relative isoperimetric inequality.
Moreover, in this case we may assume without loss of generality that X contains the
set Ω obtained from Lemma 2.24, so that |g|X ≤ |g|Ω for all g ∈ G (for example, see
(Osin, 2006b, §3.1)).

The following is a basic observation about the lengths of paths in the relative Cayley
graph whose H-components are uniformly short.

Lemma 2.28. Let p be a path in Γ(G, X ∪H) and suppose there is a constant Θ ≥ 1 that for
any H-component h of p, we have |h|X ≤ Θ. Then |p|X ≤ Θℓ(p).

Proof. We can write p as a concatenation p = a0h1a1 . . . an−1hnan, where h1, . . . , hn are
the H-components of p and a0, . . . , an are subpaths of p all whose edges are labelled by
elements of X±1.

It follows from the triangle inequality that

|p|X = dX(p−, p+) ≤
n

∑
i=0

dX((ai)−, (ai)+) +
n

∑
i=1

dX((hi)−, (hi)+).
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Since each edge of ai is labelled by an element of X±1, we have that
dX((ai)−, (ai)+) ≤ ℓ(ai), for all i = 0, . . . , n. Moreover for each i = 1, . . . , n,
dX((hi)−, (hi)+) = |hi|X ≤ Θℓ(hi) by the hypothesis of the lemma, as ℓ(hi) ≥ 1.

Combining the above three inequalities with the fact that Θ ≥ 1, we obtain

|p|X ≤
n

∑
i=0

ℓ(ai) +
n

∑
i=1

Θℓ(hi) ≤ Θ
( n

∑
i=0

ℓ(ai) +
n

∑
i=1

ℓ(hi)
)
= Θℓ(p).

Lemma 2.29. For any λ ≥ 1, c ≥ 0 and A ≥ 0 there is a constant η = η(λ, c, A) ≥ 0 such
that the following is true.

Suppose that p is a (λ, c)-quasigeodesic path in Γ(G, X ∪H) possessing an isolated
H-component h such that |h|X ≥ η. Then |p|X ≥ A.

Proof. Let M ≥ 1 be the constant from Lemma 2.24, and set

η = M(1 + λ)A + Mc. (2.6)

Let q be a path in Γ(G, X ∪H), labelled by a word over X±1, with endpoints q− = p−
and q+ = p+, such that ℓ(q) = |p|X.

Consider the cycle r = pq−1 in Γ(G, X ∪H), formed by concatenating p and the
inverse of q. By the quasigeodesicity of p, ℓ(p) ≤ λ|p|X∪H + c ≤ λ|p|X + c. Now
ℓ(r) = ℓ(p) + ℓ(q), therefore

ℓ(r) ≤ (1 + λ)|p|X + c. (2.7)

Since h is isolated in p it must also be an isolated H-component of the cycle r (because
all edges of q are labelled by letters from X±1). Hence |h|X ≤ Mℓ(r) by Lemma 2.24, so
(2.7) implies that

|p|X ≥ 1
1 + λ

(ℓ(r)− c) ≥ 1
M(1 + λ)

(|h|X − Mc). (2.8)

Combining the above inequality with (2.6) and the assumption that |h|X ≥ η, we
obtain the desired bound |p|X ≥ A.

Lemma 2.30. There is a constant ξ ≥ 0 such that if v is a vertex of a geodesic p in
Γ(G, X ∪H), then dX(p−, v) ≤ ξ|p|2X.

Proof. For λ ≥ 0 and A ≥ 0, the constant η(λ, 0, A) of Lemma 2.29 is a multiple of A
that depends only on λ: see (2.6). Thus there is ξ ≥ 0 such that η(1, 0, |p|X) = ξ|p|X.
Now an application of Lemma 2.29 tells us that if h is an H-component of p, then
|h|X ≤ η(1, 0, |p|X) = ξ|p|X. Finally, noting that there are at most |p|X∪H ≤ |p|X edges
of p between p− and v gives that dX(p−, v) ≤ ξ|p|2X as required.
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Lemma 2.31. Let L ≥ 0 be the constant provided by Proposition 2.25. If p1 and p2 are
geodesic paths in Γ(G, X ∪H) with (p1)+ = (p2)−, and s and t are connected
Hν-components of p1, p2 respectively, for some ν ∈ N , then dX(s+, t−) ≤ 3L.

Proof. Since the component s of p1 is connected to the component t of p2, we know
that h = (s+)−1t− ∈ Hν. If h = 1 then s+ = t− and there is nothing to prove, otherwise
s+ and t− are endpoints of an edge e labelled by h in Γ(G, X ∪H).

Consider the geodesic triangle ∆ with vertices s+, (p1)+ and t−, where the sides
[s+, (p1)+] and [(p1)+, t−] are chosen to be subpaths of p1 and p2 respectively, and the
side [s+, t−] is the edge e.

If v ∈ [s+, (p1)+] is a vertex belonging to the left coset s+Hν then dX∪H(s−, v) = 1 and
s+ ∈ [s−, v] in p1. Since dX∪H(s−, s+) = 1 and p1 is geodesic, we can conclude that
v = s+. Similarly, the only vertex of [(p1)+, t−] which belongs to the left coset
t−Hν = s+Hν is t−. It follows that the edge e is an isolated Hν-component of ∆. Hence
dX(s+, t−) ≤ 3L by Proposition 2.25.

Yet another characterisation of hyperbolicity in metric spaces goes as follows: a
geodesic triangle ∆ is said to be δ-slim if each of its sides is contained in a
δ-neighbourhood of the other two, and a space is δ-hyperbolic if all geodesic triangles
are δ-slim. There is a strong analogue for this property in the setting of relative Cayley
graphs.

Proposition 2.32 (Osin (2006b), Theorem 3.26). Let ∆ be a combinatorial geodesic triangle
in Γ(G, X ∪H) with sides p, q and r. There is a constant σ ∈ N0 such that for any vertex
u ∈ p, there is a vertex v ∈ q ∪ r with dX(u, v) ≤ σ.

Likewise, the Morse property of quasigeodesics in hyperbolic spaces, which states that
quasigeodesics whose endpoints are close stay in uniform neighbourhoods of one
another, has an analogue for relative Cayley graphs.

Definition 2.33 (k-similar paths). Let p and q be paths in Γ(G, X ∪H), and let k ≥ 0.
The paths p and q are said to be k-similar if dX(p−, q−) ≤ k and dX(p+, q+) ≤ k.

Proposition 2.34 (Osin (2006b), Proposition 3.15, Lemma 3.21 and Theorem 3.23). For
any λ ≥ 1, c, k ≥ 0 there is a constant κ = κ(λ, c, k) ≥ 0 such that if p and q are k-similar
(λ, c)-quasigeodesics in Γ(G, X ∪H) and p is without backtracking, then

1. for every phase vertex u of p, there is a phase vertex v of q with dX(u, v) ≤ κ;

2. every H-component s of p, with |s|X ≥ κ, is connected to an H-component of q.

Moreover, if q is also without backtracking then

3. if s and t are connected H-components of p and q respectively, then we have
dX(s−, t−) ≤ κ and dX(s+, t+) ≤ κ
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One of the tools for proving Theorem 1.8 will be a result of Martı́nez-Pedroza (2009).

Proposition 2.35 (Martı́nez-Pedroza (2009), Proposition 3.1). There are constants ζ0 ≥ 0
and λ0 ≥ 1 such that the following holds. If q = r0s1 . . . rnsn+1 is a concatenation of geodesic
paths r0, s1, . . . , rn, sn+1 in Γ(G, X ∪H) such that

1. si is an H-component of q, for each i = 1, . . . , n + 1,
2. |si|X ≥ ζ0, for every i = 1, . . . , n + 1,
3. si is not connected to si+1, for every i = 1, . . . , n,

then q is (λ0, 0)-quasigeodesic in Γ(G, X ∪H) without backtracking.

We will actually need a slightly more general version of Proposition 2.35, as follows.

Proposition 2.36. There exist constants λ ≥ 1 and c ≥ 0 such that for every ρ ≥ 0 there is
ζ1 > 0 such that the following holds. Suppose that p = a0b1a1 . . . bnan is a concatenation of
geodesic paths a0, b1, . . . , bn, an in Γ(G, X ∪H) such that

1. bi is an H-subpath of p, for each i = 1, . . . , n,
2. |bi|X ≥ ζ1, for each i = 1, . . . , n;
3. bi is not connected to bi+1, for every i = 1, . . . , n − 1;
4. if bi is connected to a component h of ai or ai−1 then |h|X ≤ ρ, i = 1, . . . , n.

Then p is a (λ, c)-quasigeodesic without backtracking.

Proof. The argument below employs the following trick: for each i = 1, . . . , n, we
replace the H-component of p containing bi by a single edge si, and then embed the
resulting path p′ into a larger path q to which Proposition 2.35 can be applied. Since a
subpath of a (λ, c)-quasigeodesic path without backtracking is again
(λ, c)-quasigeodesic and without backtracking, this will complete the proof. In order
to construct the path q we add an extra infinite peripheral subgroup Z by embedding
G into a larger relatively hyperbolic group G′.

Let us consider the free product G′ = G ∗ Z, where Z = ⟨z⟩ is an infinite cyclic group.
Since G is hyperbolic relative to the family {Hν | ν ∈ N}, the group G′ is hyperbolic
relative to the union {Hν | ν ∈ N} ∪ {Z} (this can be fairly easily deduced from the
definition or from many existing combination theorems for relatively hyperbolic
groups, e.g. (Osin, 2006a, Corollary 1.5)).

Note that G embeds in G′ and G′ is generated by the finite set X′ = X ⊔ {z}. Let
H′ = H⊔ Z \ {1}, so that the Cayley graph Γ(G, X ∪H) is naturally a subgraph of the
Cayley graph Γ(G′, X′ ∪H′). Therefore we can think of p as a path in Γ(G′, X′ ∪H′).

The normal form theorem for free products (Lyndon and Schupp, 1977,
Theorem IV.1.2) implies that the embedding of G into G′ is isometric with respect to
both proper and relative metrics, more precisely

dX(g, h) = dX′(g, h) and dX∪H(g, h) = dX′∪H′(g, h), for all g, h ∈ G. (2.9)
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An alternative way to see this is to use the retraction r : G′ → G, such that r(x) = x for
all x ∈ X and r(z) = 1. Then r(X′) = X ∪ {1}, r(Hν) = Hν, for all ν ∈ N , and
r(Z) = {1}.

Let ζ0 ≥ 0 and λ0 ≥ 1 be the constants provided by Proposition 2.35 applied to the
group G′, its finite generating set X′ and its Cayley graph Γ(G′, X′ ∪H′). Set
ζ1 = ζ0 + 2ρ + 1 > 0.

For each i = 1, . . . , n, let ti denote the Hνi -component of p containing the edge bi,
νi ∈ N . Note that t1, . . . , tn are pairwise distinct by condition (3), in particular no two
of them share a common edge. In view of Remark 2.22, for every i = 1, . . . , n we can
represent ti as a concatenation ti = hi−1bi fi, where

• hi−1 is either the last edge and an Hνi -component of ai−1 if ai−1 ends with an
Hνi -component, or hi−1 is the trivial path, consisting of the vertex (ai−1)+, if ai−1

does not end with an Hνi -component;

• fi is the first edge and an Hνi -component of ai if ai starts with an Hνi -component,
or fi is the trivial path, consisting of the vertex (ai)−, if ai does not start with an
Hνi -component.

Note that for each i = 1, . . . , n we have |hi−1|X ≤ ρ and | fi|X ≤ ρ, by condition (4). By
(2) and the triangle inequality we get

|ti|X ≥ |bi|X − 2ρ ≥ ζ0 + 1, for i = 1, . . . , n. (2.10)

Therefore p decomposes as a concatenation

p = r0t1r1 . . . tnrn,

where ri is a subpath of ai, i = 0, . . . , n, so that a0 = r0h0, a1 = f1r1h1, . . . , an = fnrn.

By (2.10) the endpoints of the Hνi -component ti of p must be distinct, hence there is an
edge si joining them in Γ(G, X ∪H), such that Lab(si) ∈ Hνi \ {1}, i = 1, . . . , n. Now,
(2.10) and (2.9) imply that

|si|X′ = |ti|X′ = |ti|X ≥ ζ0, for i = 1, . . . , n.

Choose k ∈ N so that |zk|X′ ≥ ζ0 and let sn+1 be the edge in Γ(G′, X′ ∪H′), starting at
p+ = (rn)+ and labelled by zk. Observe that |sn+1|X′ = |zk|X′ ≥ ζ0.

Consider the path q in Γ(G′, X′ ∪H′), defined as the concatenation q = r0s1 . . . rnsn+1.
By (2.9) the paths r0, . . . , rn are still geodesic in Γ(G′, X′ ∪H′), and s1, . . . , sn+1 are
H′-components of q, by construction. Finally, si is not connected to si+1, for
i = 1, . . . , n − 1, because elements of G that belong to different Hν-cosets continue to
do so in G′, and sn is not connected to sn+1 because Hνn and Z are distinct peripheral
subgroups of G′. Therefore all of the assumptions of Proposition 2.35 are satisfied,
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which allows us to conclude that the path q is (λ0, 0)-quasigeodesic without
backtracking in Γ(G′, X′ ∪H′).

Consequently, the path p′ = r0s1r1 . . . snrn is (λ0, 0)-quasigeodesic without
backtracking in Γ(G′, X′ ∪H′), as a subpath of q. Since p′ only contains vertices and
edges from Γ(G, X ∪H), we see that p′ is also (λ0, 0)-quasigeodesic without
backtracking in Γ(G, X ∪H).

Now, the original path p can be obtained by replacing the edges s1, . . . , sn of p′ by
paths t1, . . . , tn, each of which has length at most 3. Hence, by Lemma 2.5, p is
(3λ0, 18λ0 + 6)-quasigeodesic. Since p′ is without backtracking and every
H-component of p is connected to an H-component of p′ (and vice-versa), by
construction, the path p must also be without backtracking.

Thus we have shown that the path p is (λ, c)-quasigeodesic without backtracking in
Γ(G, X ∪H), where λ = 3λ0 and c = 18λ0 + 6.

2.2.3 Quasiconvex subsets in relatively hyperbolic groups

In this thesis we shall use the definition of a relatively quasiconvex subgroup given by
Osin (2006b). For convenience we state it in the case of arbitrary subsets rather than
just subgroups.

Definition 2.37 (Relatively quasiconvex subset). A subset Q ⊆ G is said to be relatively
quasiconvex (with respect to {Hν | ν ∈ N}) if there exists ε ≥ 0 such that for every
geodesic path q in Γ(G, X ∪H), with q−, q+ ∈ Q, and every vertex v of q we have
dX(v, Q) ≤ ε. Any such number ε ≥ 0 will be called a quasiconvexity constant of Q.

Osin proved that relative quasiconvexity of a subset is independent of the choice of a
finite generating set X of G: see (Osin, 2006b, Proposition 4.10) – the proof there is
stated for relatively quasiconvex subgroups but actually works more generally for
relatively quasiconvex subsets.

We outline some basic properties of quasiconvex subsets and subgroups of G in the
next two lemmas.

Lemma 2.38. Let Q be a relatively quasiconvex subset of G. Then

(a) the subset gQ is relatively quasiconvex, for every g ∈ G;

(b) if T ⊆ G lies at a finite dX-Hausdorff distance from Q then T is relatively quasiconvex.

Proof. Claim (a) follows immediately from the fact that left multiplication by g induces
an isometry of G with respect to both the proper metric dX and the relative metric
dX∪H.
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To prove claim (b), suppose that ε ≥ 0 is a quasiconvexity constant of Q and the
dX-Hausdorff distance between Q and T is less than k ∈ N. Consider any geodesic
path t in Γ(G, X ∪H) with t−, t+ ∈ T, and take any vertex v of t. Then there are
x, y ∈ Q such that dX(x, t−) ≤ k and dX(y, t+) ≤ k. Let q be any geodesic connecting x
with y. Then q is k-similar to t, hence there is a vertex u of q such that dX(v, u) ≤ κ,
where κ = κ(1, 0, k) ≥ 0 is the global constant given by Proposition 2.34 applied to
k-similar geodesics. By the relative quasiconvexity of Q, there exists w ∈ Q such that
dX(u, w) ≤ ε. Moreover, dX(w, T) ≤ k by assumption. Therefore dX(v, T) ≤ κ + ε + k,
thus T is relatively quasiconvex in G.

Lemma 2.39. Suppose that Q ⩽ G is a relatively quasiconvex subgroup. Then for all g ∈ G
and Q′ ⩽ f Q the subgroups gQg−1 and Q′ are relatively quasiconvex in G.

Proof. By claim (a) of Lemma 2.38, the coset gQ is relatively quasiconvex and the
dX-Hausdorff distance between this coset and gQg−1 is at most |g|X, hence gQg−1 is
relatively quasiconvex in G by claim (b) of the same lemma.

Suppose that Q =
⋃m

i=1 Q′hi, where hi ∈ Q, i = 1, . . . , m. Then the dX-Hausdorff
distance between Q and Q′ is bounded above by max{|hi|X | 1 ≤ i ≤ m}, so Q′ is
relatively quasiconvex by Lemma 2.38(b).

Corollary 2.40. Any parabolic subgroup of G is relatively quasiconvex.

Proof. Let H = gQg−1 be a parabolic subgroup, where g ∈ G and Q ⩽ Hν, for some
ν ∈ N . The subgroup Q is relatively quasiconvex in G (with quasiconvexity constant
0), because any geodesic connecting two elements of Q consists of a single edge in
Γ(G, X ∪H). Therefore H is relatively quasiconvex by Lemma 2.39.

Lemma 2.41. Let P be a maximal parabolic subgroup of G and let Q be a finitely generated
relatively quasiconvex subgroup of G. Then the subgroups P and Q ∩ P are finitely generated.

Proof. The fact that each Hν is finitely generated, provided G is finitely generated, was
proved by Osin in (Osin, 2006b, Theorem 1.1).

Now, Hruska proved in (Hruska, 2010, Theorem 9.1) that every quasiconvex subgroup
Q of G is itself relatively hyperbolic and maximal parabolic subgroups of Q are
precisely the infinite intersections of Q with maximal parabolic subgroups of G. In
other words, if P ⩽ G is maximal parabolic, then Q ∩ P is either finite or a maximal
parabolic subgroup of Q. Combined with Osin’s result (Osin, 2006b, Theorem 1.1)
mentioned above we can conclude that if Q is finitely generated then so is Q ∩ P, as
required.
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Lemma 2.42. Let Q ⩽ G be a hyperbolic relatively quasiconvex subgroup of G. Then for any
maximal parabolic subgroup P ⩽ G, the intersection Q ∩ P is quasiconvex in Q. In particular,
Q ∩ P is hyperbolic.

Proof. Again Q is hyperbolic relative to a collection of infinite subgroups of the form
Q ∩ H, where H ⩽ G is a maximal parabolic subgroup of G (Hruska, 2010, Theorem
9.1). Thus if Q ∩ P is infinite, it is a maximal parabolic subgroup of Q and is
undistorted in Q by (Osin, 2006b, Lemma 5.4). It follows that Q ∩ P is quasiconvex in
Q and hence hyperbolic (Bridson and Haefliger, 1999, Proposition III.Γ.3.7). On the
other hand, if Q ∩ P is finite then it is trivially hyperbolic.

The following property of quasiconvex subgroups will be useful.

Lemma 2.43. Let Q, R ⩽ G be relatively quasiconvex subgroups of G. For every ζ ≥ 0 there
exists a constant µ = µ(ζ) ≥ 0 such that the following holds.

Suppose x ∈ G, a ∈ Q, b ∈ R are some elements, [x, xa] and [x, xb] are geodesic paths in
Γ(G, X ∪H), and u ∈ [x, xa], v ∈ [x, xb] are vertices such that dX(u, v) ≤ ζ. Then there is
an element z ∈ x(Q ∩ R) such that dX(u, z) ≤ µ and dX(v, z) ≤ µ.

Proof. Denote by ε ≥ 0 a quasiconvexity constant of the subgroups Q and R. After
applying the left translation by x−1, which is an isometry with respect to both metrics
dX and dX∪H, we can assume that x = 1. Let K′ = K′(Q, R, ε + ζ) be the constant given
by Lemma 2.1.

Since x = 1 ∈ Q ∩ R, xa = a ∈ Q and xb = b ∈ R, by the relative quasiconvexity of Q
and R we know that u ∈ NX(Q, ε) and v ∈ NX(R, ε). By the assumptions dX(u, v) ≤ ζ,
it follows that u ∈ NX(Q, ε + ζ) ∩ NX(R, ε + ζ), hence u ∈ NX(Q ∩ R, K′) by
Lemma 2.1.

Thus there exists z ∈ Q ∩ R such that dX(u, z) ≤ K′, and, hence, dX(v, z) ≤ K′ + ζ by
the triangle inequality. Therefore the statement of the lemma holds for µ = K′ + ζ.

We record two existing combination theorems for relatively quasiconvex subgroups of
relatively hyperbolic groups.

Theorem 2.44 (Martı́nez-Pedroza (2009), Theorem 1.1). Suppose that Q is a relatively
quasiconvex subgroup of G, P is a maximal parabolic subgroup of G and D = Q ∩ P. There is
a constant C ≥ 0 such that the following holds. If H ⩽ P is any subgroup satisfying

1. H ∩ Q = D, and

2. minX(H \ D) ≥ C,

then the subgroup A = ⟨H, Q⟩ is relatively quasiconvex in G and is naturally isomorphic to
the amalgamated free product H ∗D Q.
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Moreover, for every maximal parabolic subgroup T of G, there exists u ∈ A such that

either A ∩ T ⊆ uQu−1 or A ∩ T ⊆ uHu−1.

Theorem 2.45 ((Martı́nez-Pedroza and Sisto, 2012, Theorem 2)). Let Q and R be
relatively quasiconvex subgroups with compatible parabolics, and let S′ ⩽ f S = Q ∩ R be a
finite index subgroup of their intersection. There is a constant M = M(Q, R, S′) ≥ 0 such
that the following is true.

If Q′ ⩽ Q and R′ ⩽ R satisfy Q′ ∩ R′ = S′ and |g|X ≥ M for all g ∈ (Q′ ∪ R′) \ S′, then
⟨Q′, R′⟩ is relatively quasiconvex and ⟨Q′, R′⟩ ∼= Q′ ∗S′ R′.
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Chapter 3

Joins of quasiconvex subgroups

This chapter of the thesis is devoted to the proof of Theorem 1.8 and a metric version
of Theorem 1.2. Let us start by giving brief outlines of the arguments. We continue to
follow Convention 2.1 and take two finitely generated relatively quasiconvex
subgroups Q, R ⩽ G. Set S = Q ∩ R and suppose that Q′ ⩽ Q and R′ ⩽ R are
subgroups satisfying conditions (C1)-(C5), with a suitable finite collection of maximal
parabolic subgroups P and parameters B and C that are sufficiently large.

Every element g ∈ ⟨Q′, R′⟩ can be written as a product of elements of Q′ and R′, which
gives rise to a broken geodesic line in Γ(G, X ∪H) (not necessarily uniquely), whose
label represents g in G. We choose a path p from the collection of such broken lines,
representing g, that is minimal in a certain sense. The path p may fail to be uniformly
quasigeodesic, as it may travel through Hν-cosets for an arbitrarily long time. We do,
however, have some metric control over such instances of backtracking, using the fact
that Q′ and R′ satisfy conditions (C1)-(C5) and the minimality of p.

We construct a new path from p, which we call the shortcutting of p, that turns out to
be uniformly quasigeodesic. Informally speaking, the shortcutting of p is obtained by
replacing each maximal instance of backtracking in consecutive geodesic segments of
p with a single edge, then connecting these edges in sequence by geodesics. The
resulting path can be seen to satisfy the hypotheses of Proposition 2.36. It follows that
the shortcutting of p is uniformly quasigeodesic, and hence ⟨Q′, R′⟩ is relatively
quasiconvex. This proves Theorem 1.8.

To establish the result on the structure of maximal parabolic subgroups of ⟨Q′, R′⟩, we
must further analyse shortcuttings of broken lines representing parabolic elements of
this subgroup. Up to conjugacy in ⟨Q′, R′⟩, the problem reduces to studying elements
whose associated paths essentially constitute one large instance of backtracking
through a single Hν-coset. We leverage this to construct a broken line approximating
the original, each of whose segments represents an element of Q′ ∩ K or R′ ∩ K for a
particular maximal parabolic subgroup K ⩽ G, giving the desired result.
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3.1 Constructing quasigeodesics from broken lines

In this section we detail a procedure that takes as input a broken line and a natural
number, and outputs another broken line together with some additional vertex data.
We show that if a broken line satisfies certain metric conditions, then the new path
constructed through this procedure is uniformly quasigeodesic.

The outline of the construction is as follows: we begin with a broken line p = p1 . . . pn

in Γ(G, X ∪H). Starting from the initial vertex p−, we note in sequence (along the
vertices of p) the vertices marking the start and end of maximal instances of
consecutive backtracking in p involving sufficiently long H-components. Once we
have done this, we construct the new path by connecting (in the same sequence) the
marked vertices with geodesics.

Procedure 3.1 (Θ-shortcutting). Fix a natural number Θ ∈ N and let p = p1 . . . pn be a
broken line in Γ(G, X ∪H). Let v0, . . . , vd be the enumeration of all vertices of p in the
order they occur along the path (possibly with repetition), so that v0 = p−, vd = p+
and d = ℓ(p).

We construct broken lines Σ(p, Θ) and Σ0(p, Θ), which we call Θ-shortcuttings of p,
which come with a finite set V(p, Θ) ⊂ {0, . . . , d} × {0, . . . , d} corresponding to
indices of vertices of p that we shortcut along.

In the algorithm below we will refer to numbers s, t, N ∈ {0, . . . , d} and a subset
V ⊆ {0, . . . , d} × {0, . . . , d}. To avoid excessive indexing these will change value
throughout the procedure. The parameters s and t will indicate the starting and
terminal vertices of subpaths of p in which all H-components have lengths less than
Θ. The parameter N will keep track of how far along the path p we have proceeded.
The set V will collect all pairs of indices (s, t) obtained during the procedure. We
initially take s = 0, N = 0 and V = ∅.

Step 1: If there are no edges of p between vN and vd that are labelled by elements of H,
then add the pair (s, d) to the set V and skip ahead to Step 4. Otherwise,
continue to Step 2.

Step 2: Let t ∈ {0, . . . , d} be the least natural number with t ≥ N for which the edge of p
with endpoints vt and vt+1 is an H-component hi of a geodesic segment pi of p,
for some i ∈ {1, . . . , n}.

If i = n or if hi is not connected to a component of pi+1 then set j = i. Otherwise,
let j ∈ {i + 1, . . . , n} be the maximal integer such that p has consecutive
backtracking along H-components hi, . . . , hj of segments pi, . . . , pj. Proceed to
Step 3.

Step 3: If
max

{
|hk|X

∣∣∣ k = i, . . . , j
}
≥ Θ,
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then add the pair (s, t) to the set V and redefine s = N in {1, . . . , d} to be the
index of the vertex (hj)+ in the above enumeration v0, . . . , vd of the vertices of p.
Otherwise let N be the index of (hi)+, and leave s and V unchanged.

Return to Step 1 with the new values of s, N and V.

Step 4: Set V(p, Θ) = V. The above constructions gives a natural ordering of V(p, Θ):

V(p, Θ) = {(s0, t0), . . . , (sm, tm)},

where sk ≤ tk < sk+1, for all k = 0, . . . , m − 1. Note that s0 = 0 and tm = d.
Proceed to Step 5.

Step 5: For each k = 0, . . . , m, let fk be a geodesic segment (possibly trivial) connecting
vsk with vtk . Similarly for each k = 0, . . . , m let p′k be the (possibly trivial) subpath
of p with endpoints vsk and vtk . Note that when k < m, vtk and vsk+1 are in the
same left coset of Hν, for some ν ∈ N . If vtk = vsk+1 then let ek be the trivial path
at vtk , otherwise let ek be an edge of Γ(G, X ∪H) starting at vtk , ending at vsk+1

and labelled by an element of Hν \ {1}.

We define the broken line Σ(p, Θ) to be the concatenation f0e1 f1e2 . . . fm−1em fm.
We also define the broken line Σ0(p, Θ) to be the concatenation
p′0e1 p′1e2 . . . p′m−1em p′m.

Remark 3.1. Let us collect some observations about Procedure 3.1.

(a) Since p has only finitely many vertices and N increases at each iteration of Step 3
above, the procedure will always terminate after finitely many steps.

(b) The newly constructed broken lines Σ(p, Θ) and Σ0(p, Θ) have the same
endpoints as p, and each of their nodes of is a vertex of p.

(c) By construction, for any k ∈ {0, . . . , m} the subpath of p between vsk and vtk

contains no edge labelled by an element h ∈ H satisfying |h|X ≥ Θ. In particular,
if Θ = 1 then the paths p′0, . . . , p′m contain no edges labelled by elements of H.

Figure 3.1 below sketches an example of the output of Procedure 3.1.

f0

e1

f1
e2

f2
e3

f3

FIGURE 3.1: An example of a shortcutting of a path p in Γ(G, X ∪H).

We begin with the following observation.
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Lemma 3.2. Let λ ≥ 1 and c ≥ 0. Let p = p1 . . . pn be a (λ, c)-quasigeodesic broken line in
Γ(G, X ∪H) with |pi|X∪H > λ + c for each i = 2, . . . , n − 1. Then the path Σ0(p, 1)
obtained from Procedure 3.1 is a (λ, c)-quasigeodesic without backtracking.

Proof. Let q be a subpath of Σ0 = Σ0(p, 1) = p′0e1 p′1 . . . p′m−1em p′m. Since for each i, p′i is
a subpath of p and ei consists of at most a single edge, q− and q+ are vertices of p. Let
p′ be the subpath of p with p′− = q− and p′+ = q+. The path q can be obtained by
replacing subpaths of p′ with single edges, so that the length of q is bounded by the
length of p′. Then by the quasigeodescity of p we have

ℓ(q) ≤ ℓ(p′) ≤ λ dX∪H(p′−, p′+) + c = λ dX∪H(q−, q+) + c,

so Σ0 is (λ, c)-quasigeodesic.

We must now show that Σ0 is without backtracking, so suppose for a contradiction
that it does have backtracking. As noted in Remark 3.1(c) the subpaths p′0, . . . , p′m
contain no H-subpaths. That is, if h is an H-subpath of Σ0, it must be one of the paths
e1, . . . , em. Therefore it must be that there are integers 1 ≤ k < l ≤ m such that ek and el

are nontrivial connected H-subpaths of Σ0. Thus,

dX∪H((ek)+, (el)−) ≤ 1. (3.1)

Let h1 be the H-component of a segment of p with (h1)+ = (ek)+ and let h2 be the
H-component of a segment of p with (h2)− = (el)−. Since ek and el are connected, so
are h1 and h2. Following Remark 2.22, h1 and h2 cannot lie in the same segment of p. If
h1 and h2 lie in adjacent segments of p, then they are part of the same instance of
consecutive backtracking and the construction of Σ0 is contradicted. Otherwise, the
path p′k contains a full segment of p, say ps, with 1 < s < n. Then

ℓ(ps) ≤ ℓ(p′k) ≤ λ dX∪H((ek)+, (el)−) + c ≤ λ + c, (3.2)

by quasigeodesicity of p and (3.1). However, since ps is a geodesic, |ps|X∪H = ℓ(ps).
Therefore (3.2) contradicts the lemma hypothesis that ℓ(ps) > λ + c.

In the next definition we describe paths that will serve as the prototypical input for
Procedure 3.1. Essentially, such paths will be broken lines with long segments with
instances of consecutive backtracking well-controlled.

Definition 3.3 (Tamable broken line). Let p = p1 . . . pn be a broken line in
Γ(G, X ∪H), and let B, C, ζ ≥ 0, Θ ∈ N. We say that p is (B, C, ζ, Θ)-tamable if all of the
following conditions hold:

(i) |pi|X ≥ B, for i = 2, . . . , n − 1;

(ii) ⟨(pi)−, (pi+1)+⟩rel
(pi)+

≤ C, for each i = 1, . . . , n − 1;
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(iii) whenever p has consecutive backtracking along H-components hi, . . . , hj, of
segments pi, . . . , pj, such that

max
{
|hk|X

∣∣∣ k = i, . . . , j
}
≥ Θ,

it must be that dX

(
(hi)−, (hj)+

)
≥ ζ.

The main goal of this section is to prove the following result about quasigeodesicity of
shortcuttings for tamable paths with appropriate constants.

Proposition 3.4. Given arbitrary C ≥ 14δ and η ≥ 0 there are constants λ = λ(C) ≥ 1,
c = c(C) ≥ 0 and ζ = ζ(η, C) ≥ 1 such that for any natural number Θ ≥ ζ there is
B0 = B0(Θ, C) ≥ 0 satisfying the following.

Let p = p1 . . . pn be a (B0, C, ζ, Θ)-tamable broken line in Γ(G, X ∪H) and let Σ(p, Θ) be
the Θ-shortcutting obtained by applying Procedure 3.1 to p, so that
Σ(p, Θ) = f0e1 f1 . . . fm−1em fm. Then ek is non-trivial, for each k = 1, . . . , m, and Σ(p, Θ) is
(λ, c)-quasigeodesic without backtracking.

Moreover, for any k ∈ {1, . . . , m}, if we denote by e′k the H-component of Σ(p, Θ) containing
ek, then

∣∣e′k∣∣X ≥ η.

The idea of the proof will be to show that under the above assumptions the broken
line Σ(p, Θ) satisfies the hypotheses of Proposition 2.36.

Notation 3.2. For the remainder of this section we fix arbitrary constants C ≥ 14δ and
η ≥ 0. We let ρ = κ(4, c3, 0), where c3 = c3(C) ≥ 0 is the constant from Lemma 2.12
and κ(4, c3, 0) is the constant obtained by applying Proposition 2.34 to
(4, c3)-quasigeodesics. Let ζ1 > 0, λ ≥ 1 and c ≥ 0 be the constants given by
Proposition 2.36, applied with constant ρ. Note that the constants λ and c only depend
on C and do not depend on η.

We now define the constant ζ by

ζ = max
{

ζ1, η
}
+ 2ρ + 1. (3.3)

Finally we take any natural number Θ ≥ ζ and

B0 = max
{
(12C + 12δ + 1)Θ, 4(1 + c3)Θ + 1

}
. (3.4)

The proof of Proposition 3.4 will consist of the following four lemmas. Throughout
these lemmas we use the constants defined above and assume that p = p1 . . . pn is a
(B0, C, ζ, Θ)-tamable broken line in Γ(G, X ∪H). As before, we write v0, . . . , vd for the
set of vertices of p in the order of their appearance. We let the Θ-shortcutting of p,
Σ(p, Θ) = f0e1 f1 . . . fm−1em fm, and the set V(p, Θ) = {(s0, t0), . . . , (sm, tm)} be those
obtained by applying Procedure 3.1 to p.
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Lemma 3.5. For each k = 1, . . . , m, we have |ek|X ≥ ζ > 0.

Proof. By the construction in Procedure 3.1, there are pairwise connected
H-components hi, . . ., hj of consecutive segments of p, such that j ≥ i, (hi)− = (ek)−,
(hj)+ = (ek)+ and max{|hl |X | l = i, . . . , j} ≥ Θ.

If j = i we see that |ek|X = |hi|X ≥ Θ ≥ ζ, and if j > i then we know that |ek|X ≥ ζ by
property (iii) from Definition 3.3.

Lemma 3.6. The subpaths of p between vsk and vtk are (4, c3)-quasigeodesic for each
k = 0, . . . , m.

Proof. We write c1 = c1(C) = 12C + 12δ + 1, as in Lemma 2.12.

Choose any k ∈ {0, . . . , m} and denote by p′ be the subpath of p starting at vsk and
terminating at vtk . If vsk and vtk are both vertices of pi, for some i ∈ {1, . . . , n}, then p′ is
geodesic and we are done. Otherwise p′ = p′i pi+1 . . . pj−1 p′j, for some i, j ∈ {1, . . . , n},
with i < j, where p′i is a terminal segment of pi and p′j is an initial segment of pj.

By Remark 3.1(c), the paths pi+1, . . . , pj−1 contain no H-components h with |h|X ≥ Θ.
Since p is (B0, C, ζ, Θ)-tamable, |pl |X ≥ B0 for each l = i + 1, . . . , j − 1 by condition (i).
Thus we can combine Lemma 2.28 with (3.4) to obtain

dX∪H
(
(pl)−, (pl)+

)
= ℓ(pl) ≥

1
Θ
|pl |X ≥ B0

Θ
≥ c1, for each l ∈ {i + 1, . . . , j − 1}.

Again, from the assumption that p is (B0, C, ζ, Θ)-tamable, we have that

⟨(pl)−, (pl+1)+⟩rel
(pl)+

≤ C, for all l = i, . . . , j − 1,

using condition (ii). In view of Remark 2.7,

⟨(p′i)−, (pi+1)+⟩rel
(p′i)+

≤ C and ⟨(pj−1)−, (p′j)+⟩rel
(pj−1)+

≤ C.

Therefore we can use Lemma 2.12 to conclude that p′ is (4, c3)-quasigeodesic, as
required.

Lemma 3.7. If k ∈ {0, . . . , m − 1} and h is an H-component of fk or fk+1 that is connected
to ek+1, then |h|X ≤ ρ.

Proof. Arguing by contradiction, suppose that h is an H-component of fk connected to
ek+1 and satisfying |h|X > ρ (the other case when h is an H-component of fk+1 is
similar). Remark 2.22 tells us that h is a single edge of fk. Moreover, since h and ek+1

are connected and ( fk)+ = (ek+1)−, we have dX∪H(h−, ( fk)+) ≤ 1. The geodesicity of
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fk in Γ(G, X ∪H) now implies that h must in fact be the last edge of fk, so that
h+ = ( fk)+ = vtk .

Let p′ = p′i pi+1 . . . pj−1 p′j be the subpath of p with p′− = vsk and p′+ = vtk , where p′i and
p′j are non-trivial subpaths of pi and pj respectively. By Lemma 3.6, p′ is
(4, c3)-quasigeodesic.

Since |h|X > ρ = κ(4, c3, 0) we may apply Proposition 2.34 to find that h is connected
to an H-component of p′ (which may consist of multiple edges, each of which is an
H-component of a segment of p). We write h′ for the final edge of this H-component
and denote by u the edge of p with endpoints vtk and vtk+1 (see Figure 3.2).
Procedure 3.1 and the assumption that h is connected to ek+1 imply that u is an
H-component of a segment of p and h′ and u are connected as H-subpaths of p.

ek+1

uh′

fk

h

vsk+1vsk

vtk

pi

pj

FIGURE 3.2: Illustration of Lemma 3.7.

Suppose, first, that p′j is a proper subpath of pj, so that u belongs to the segment pj, as
shown on Figure 3.2. Then there are the following possibilities.

Case 1: h′ is an edge of pj.

In this case h′ and u are connected distinct H-subpaths of pj, which is a geodesic. This
contradicts the observation of Remark 2.22, that geodesics are without backtracking
and H-components of geodesics are single edges.

Case 2: h′ is an H-component of pj−1.

Let t ∈ {0, . . . , d} be such that vt = h′−, and note that

sk ≤ t < tk. (3.5)

By the construction from Procedure 3.1, there are pairwise connected H-components
hj, . . . , hj+l , of segments pj, . . . , pj+l , with (ek+1)− = (hj)− = vtk and
(ek+1)+ = (hj+l)+ = vsk+1 , such that

max{
∣∣hj

∣∣
X, . . . ,

∣∣hj+l
∣∣

X} ≥ Θ

and l ∈ {0, . . . , n − j} is chosen to be maximal with this property. Then the
components h′, hj, . . . , hj+l constitute a larger instance of consecutive backtracking,
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starting at h′− = vt, with

max
{∣∣h′∣∣X,

∣∣hj
∣∣

X, . . . ,
∣∣hj+l

∣∣
X} ≥ Θ.

In view of (3.5), this contradicts the choice of tk and the inclusion of (sk, tk) in the set
V(p, Θ) at Steps 2 and 3 of Procedure 3.1.

Case 3: h′ is an H-component of one of the paths p′i, pi+1, . . . , pj−2.

Then the subpath q of p′ from h′+ to p′+ = vtk contains all of pj−1. By Remark 3.1(c),
pj−1 contains no H-components r satisfying |r|X ≥ Θ. Therefore, in view of
Lemma 2.28 and the assumption that p is (B0, C, ζ, Θ)-tamable, we can deduce that
Θℓ(pj−1) ≥

∣∣pj−1
∣∣

X ≥ B0. Combining this with the (4, c3)-quasigeodesicity of p′, we
obtain

dX∪H(h′+, p′+) ≥
1
4

(
ℓ(q)− c3

)
≥ 1

4

(
ℓ(pj−1)− c3

)
≥ B0

4Θ
− c3

4
> 1,

where the last inequality follows from (3.4). On the other hand, the fact that h′ and h
are connected gives dX∪H(h′+, p′+) = dX∪H(h′+, h+) ≤ 1, contradicting the above.

In each case we arrive at a contradiction, so it is impossible that |h|X > ρ if p′j is a
proper subpath of pj. If p′j is instead the whole subpath pj, we may carry out a similar
analysis. In this situation it must be that u is an H-component of the segment pj+1. We
now have only two relevant cases to consider: h′ is an H-component of pj or h′ is an
H-component of one of the paths p′i, pi+1, . . . , pj−1. Both of them will lead to
contradictions similarly to Cases 2 and 3 above.

Therefore it must be that |h|X ≤ ρ, as required.

Lemma 3.8. For each k ∈ {1, . . . , m − 1}, the H-subpaths ek and ek+1 of Σ(p, Θ) are not
connected.

Proof. Suppose that ek is connected to ek+1 for some k ∈ {1, . . . , m − 1}. As before,
according to Procedure 3.1, there exist two sets of pairwise connected H-components
of consecutive segments of p, h1, . . . , hi and q1, . . . , qj, such that (h1)− = (ek)−,
(hi)+ = (ek)+, (q1)− = (ek+1)−, (qj)+ = (ek+1)+ and

max
{
|h1|X, . . . , |hi|X

}
≥ Θ, max

{
|q1|X, . . . ,

∣∣qj
∣∣

X

}
≥ Θ.

Since ek and ek+1 are connected, hi and q1 will be connected H-subpaths of p, in
particular they cannot be contained in the same segment of the broken line p by
Remark 2.22. If hi and q1 are H-components of adjacent segments of p, then the
components h1, . . . , hi, q1, . . . , qj constitute a longer instance of consecutive
backtracking in p, which contradicts the construction of ek in Procedure 3.1.
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Therefore it must be the case that the subpath p′ of p between (ek)+ = (hi)+ = vsk and
(ek+1)− = (q1)− = vtk contains at least one full segment pl (with 1 < l < n). By
Remark 3.1(c) the path p′ has no H-components h satisfying |h|X ≥ Θ. Therefore we
can combine Lemma 2.28 with the fact that p is (B0, C, ζ, Θ)-tamable to deduce that

ℓ(p′) ≥ ℓ(pl) ≥
|pl |X

Θ
≥ B0

Θ
. (3.6)

Moreover, by Lemma 3.6 the path p′ is (4, c3)-quasigeodesic so that

ℓ(p′) ≤ 4dX∪H((ek)+, (ek+1)−) + c3 ≤ 4 + c3,

where the last inequality is true because ek and ek+1 are connected. Combined with
(3.6), the above inequality gives B0 ≤ (4 + c3)Θ, which contradicts the choice of B0 in
(3.4).

Therefore ek and ek+1 cannot be connected, for any k ∈ {1, . . . , m − 1}.

Proof of Proposition 3.4. The construction, together with Lemmas 3.5, 3.7 and 3.8, show
that the Θ-shortcutting Σ(p, Θ) = f0e1 f1 . . . fm−1em fm satisfies the hypotheses of
Proposition 2.36 and ek is non-trivial, for each k = 1, . . . , m. Therefore Σ(p, Θ) is
(λ, c)-quasigeodesic without backtracking.

For the final claim of the proposition, consider any k ∈ {1, . . . , m} and denote by e′k the
Hν-component of Σ(p, Θ) containing ek, for some ν ∈ N . Lemma 3.8 implies that e′k is
the concatenation h1ekh2, where h1 is either trivial or it is an Hν-component of fk−1,
and h2 is either trivial or it is an Hν-component of fk. Combining the triangle
inequality with Lemmas 3.5, 3.7 and equation (3.3), we obtain

∣∣e′k∣∣X ≥ |ek|X − |h1|X − |h2|X ≥ ζ − 2ρ ≥ η,

as required.

We will also need the following result, which asserts some control over the subpaths
of a tamable broken line between the shortcuts. Recall that given a broken line p and
Θ ∈ N, Procedure 3.1 gives us a collection of subpaths p′0, . . . , p′m of p.

Lemma 3.9. Under the same hypotheses as Proposition 3.4, the following is true. For each
i = 0, . . . , m, the shortcutting Σ0(p′i, 1) is a (4, c3)-quasigeodesic without backtracking, and
each of its H-components h satisfies |h|X ≤ 3L + 2Θ, where L ≥ 0 is the constant of
Proposition 2.25.
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Proof. Let t be a segment of p′i, which is a geodesic. By Remark 3.1, any H-component
h of t has |h|X ≤ Θ, so by Lemma 2.28 and the assumption that p is tamable

|t|X∪H = ℓ(t) ≥ B0

Θ
> 4 + c3

whenever t is not the first or last segment of p′i. Moreover, Lemma 3.6 gives that p′i is
(4, c3)-quasigeodesic. Therefore by Lemma 3.2, Σ0(p′i, 1) is a (4, c3)-quasigeodesic
without backtracking.

Now let h be an H-component of Σ0(p′i, 1). Then h is either an H-component of a
segment of p′i or shares its endpoints with two connected H-components q and r of
segments of p′i. In the former case, |h|X ≤ Θ and we are done, so suppose the latter.

The path p′i is a broken line with p′i = p′j pj+1 . . . pk−1 p′k, where p′j (respectively, p′k) is a
subpath of pj with (p′j)− = vsi and (p′j)+ = (pj)+ (respectively, of pk with
(p′k)− = (pk)− and (p′k)+ = vti ). As in Remark 3.1(c), each H-component h of the
paths p′j, pj+1, . . . , pk−1, p′k satisfies |h|X ≤ Θ. This implies

|q|X + |r|X ≤ 2Θ. (3.7)

Since each segment of p is geodesic, q and r must be connected H-components of
distinct segments of p, say pa and pb. Without loss of generality, we assume a < b. If
b > a + 1 then the subpath of p′i between q− and r+ contains the entire segment pa+1.
By Lemma 2.28,

ℓ(pa+1) ≥
1
Θ
|pa+1| ≥

B0

Θ
, (3.8)

where the last inequality is given by condition (i) of tamability.

Lemma 3.6 tells us that p′i is (4, c3)-quasigeodesic. Combining this fact with (3.8) and
the choice of B0, we have

dX∪H(q−, r+) ≥
1
4
ℓ(pa+1)−

c3

4
≥ B0 − Θc3

4Θ
> 1.

On the other hand, q and r are connected, so that dX∪H(q−, r+) ≤ 1, a contradiction.
Therefore q and r must lie in adjacent segments pa and pa+1 of p.

If q+ ̸= r−, then there is an H-edge h′ in Γ(G, X ∪H) with h′− = q+ and h′+ = r−. The
edge h′ must be isolated in the geodesic triangle h ∪ [q+, (pa)+] ∪ [(pa)+, r−]. Thus by
Proposition 2.25, we have |h′|X = dX(q+, r−) ≤ 3L. Otherwise q+ = r−, in which case
dx(q+, r−) = 0. Together with (3.7), we obtain

|h|X = dX(q−, r+) ≤ dX(q−, q+) + dX(q+, r−) + dX(r−, r+) ≤ 3L + 2Θ,

as required.
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3.2 Path representatives

Let us set the notation that will be used in the next few sections.

Convention 3.3. As G is relatively hyperbolic, the Cayley graph Γ(G, X ∪H) is
δ-hyperbolic, for some δ ∈ N (see Lemma 2.16). Furthermore, we assume that
Q, R ⩽ G are fixed relatively quasiconvex subgroups of G, with a quasiconvexity
constant ε ≥ 0, and denote S = Q ∩ R. We fix U and V nonempty subsets of either Q
or R (independently of one another).

Let Q′ ⩽ Q and R′ ⩽ R be arbitrary subgroups. Elements of U⟨Q′, R′⟩V are labels of
certain broken lines in Γ(G, X ∪H) which can be assigned a numerical invariant.
When this numerical invariant is minimal and Q′ and R′ satisfy certain conditions,
these broken lines are will satisfy useful geometric properties. In this section we
define path representatives of elements of U⟨Q′, R′⟩V.

Definition 3.10 (Path representative). Consider an element g ∈ U⟨Q′, R′⟩V. Let
p = up1 . . . pnv be a broken line in Γ(G, X ∪H) with geodesic segments u, p1, . . . , pn,
and v such that

• p̃ = g;

• p̃i ∈ Q′ ∪ R′ for each i ∈ {1, . . . , n};

• ũ ∈ U and ṽ ∈ V.

We will call p a path representative of g.

To choose an optimal path representative we define their types.

Definition 3.11 (Type of a path representative). Suppose that p = up1 . . . pnv is a path
representative of an element of U⟨Q′, R′⟩V. Let T denote the set of all H-components
of the segments of p. We define the type τ(p) of p to be the triple

τ(p) =
(

n, ℓ(p), ∑
t∈T

|t|X
)
∈ N0

3.

Definition 3.12 (Minimal type). Given g ∈ U⟨Q′, R′⟩V, the set S of all path
representatives of g is non-empty. Therefore the subset τ(S) = {τ(p) | p ∈ S} ⊆ N0

3,
where N0

3 is equipped with the lexicographic order, will have a unique minimal
element. We will say that p = up1 . . . pnv is a path representative of g of minimal type if
τ(p) is the minimal element of τ(S).

The minimality of the type of a path representative is thus a numerical condition on
the segments of a path representative and the total lengths of their components. In the
next few sections we will study local properties induced by this global condition.
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Convention 3.4. We call the sets U and V trivial when U = V = {1}. In this case the
segments of a path representative of U⟨Q′, R′⟩V corresponding to U and V are
necessarily constant paths on a vertex. We may omit mention of these segments and of
the sets U and V in this setting (i.e. we simply refer to path representatives of ⟨Q′, R′⟩).

Definition 3.13. We say that U and V are Q′/R′-absorbing if both of the following
conditions hold:

• UQ′ = U or UR′ = U;

• Q′V = V or R′V = V.

Remark 3.14. Suppose that U and V are trivial or Q′/R′-absorbing and note that if p1

and p2 are paths with (p1)+ = (p2)− whose labels both represent elements of Q′ (or,
respectively, both R′), then the label of any geodesic [(p1)−, (p2)+] also represents an
element of Q′ (respectively, R′). Hence in a path representative of g ∈ U⟨Q′, R′⟩V of
minimal type, the labels of consecutive segments alternate between representing
elements of Q \ S and R \ S, whenever g is not an element of UQ′V or UR′V.

Notation 3.5. Let x, y, z ∈ G. We will write

⟨x, y⟩rel
z =

1
2

(
dX∪H(x, z) + dX∪H(y, z)− dX∪H(x, y)

)
to denote the Gromov product of x and y with respect to z in the relative metric dX∪H.

Lemma 3.15 (Gromov products are bounded). There is a constant C0 ≥ 0 such that the
following holds.

Suppose U and V are either trivial or Q′/R′-absorbing. Let Q′ ⩽ Q and R′ ⩽ R be subgroups
satisfying condition (C1). If p = up1 . . . pnv is a minimal type path representative of an
element g ∈ U⟨Q′, R′⟩V and f0, . . . , fn+2 ∈ G are the nodes of p then ⟨ fi−1, fi+1⟩rel

fi
≤ C0 for

each i = 1, . . . , n + 1.

Proof. Let σ ∈ N0 be the constant from Proposition 2.32 and let µ = µ(σ) ≥ 0 be given
by Lemma 2.43. Set C0 = µ + δ + 2σ + 2, and assume that p = up1 . . . pnv is a path
representative of g ∈ U⟨Q′, R′⟩V of minimal type.

Take any i ∈ {1, . . . , n + 1} and let t1 and t2 be the consecutive segments of p with
fi = (t1)+ = (t2)−. If either t1 or t2 are the constant path then the statement is trivial,
so suppose otherwise. Choose vertices x ∈ t1 and y ∈ t2 so that

dX∪H( fi, x) = dX∪H( fi, y) = ⌊⟨ fi−1, fi+1⟩rel
fi
⌋.

As Γ(G, X ∪H) is δ-hyperbolic, we must have dX∪H(x, y) ≤ δ.

If ⟨ fi−1, fi+1⟩rel
fi

< C0 then we are done, so suppose otherwise. Then we have
dX∪H(x, fi) ≥ δ + σ + 1 ∈ N, so there is a vertex x1 on the subpath [x, fi] of t1 such that

dX∪H(x1, x) = δ + σ + 1.
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Applying Proposition 2.32 to the geodesic triangle ∆ with sides [x, fi], [ fi, y] and [x, y]
(here we choose [ fi, y] to be a subpath of t2), we can find some vertex
y1 ∈ [x, y] ∪ [ fi, y] with dX(x1, y1) ≤ σ . If y1 ∈ [x, y], then, by the triangle inequality,

dX∪H(x1, x) ≤ dX∪H(x1, y1) + dX∪H(x, y) ≤ σ + δ,

which would contradict the choice of x1. Therefore it must be that y1 ∈ [ fi, y] (see
Figure 3.3).

fi

fi−1 fi+1

z

y1

y

x1

x

FIGURE 3.3: Illustration of Lemma 3.15.

Since the path representative p has minimal type, in view of Remark 3.14 we must
have either t̃1 ∈ Q and t̃2 ∈ R or t̃1 ∈ R and t̃2 ∈ Q. Without loss of generality let us
assume the former. We can apply Lemma 2.43 to find z ∈ fi(Q ∩ R) with dX(x1, z) ≤ µ

and dX(y1, z) ≤ µ. Let t′1 be a geodesic path in Γ(G, X ∪H) joining fi−1 = (t1)− with z
and let t′2 be a geodesic path joining z with fi+1 = (t2)+. Observe that Q′ ∩ R′ = Q ∩ R
by (C1), whence

t̃′1 = f−1
i−1z = f−1

i−1 fi f−1
i z ∈ t̃1(Q′ ∩ R′).

Similarly, t̃′2 ∈ (Q′ ∩ R′)t̃1. When t1 is one of the segments p1, . . . , pn−1, we have that
t̃′1 ∈ Q′(Q′ ∩ R′) = Q′ and t̃′2 ∈ (Q′ ∩ R′)R′ = R′. In the case that t1 is the segment u
(respectively, pn), we have t̃′1 ∈ U(Q′ ∩ R′) ⊆ U and t̃′2 ∈ (Q′ ∩ R′)R′ = R′

(respectively, t̃′1 ∈ Q′(Q′ ∩ R′) = Q′ and t̃′2 ∈ (Q′ ∩ R′)V ⊆ V) as U and V are
Q′/R′-absorbing. In any case the broken line p′ obtained by replacing the segments t1

and t2 of p with t′1 and t′2 is also a path representative of the same element
g ∈ U⟨Q′, R′⟩V.

Since p has minimal type, by the assumption, it must be the case that
ℓ(t1) + ℓ(t2) ≤ ℓ(t′1) + ℓ(t′2), which can be re-written as

dX∪H( fi−1, fi) + dX∪H( fi, fi+1) ≤ dX∪H( fi−1, z) + dX∪H(z, fi+1). (3.9)
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Since x1 ∈ t1, we have dX∪H( fi−1, fi) = dX∪H( fi−1, x1) + dX∪H(x1, fi). On the other
hand, we have

dX∪H( fi−1, z) ≤ dX∪H( fi−1, x1) + dX∪H(x1, z) ≤ dX∪H( fi−1, x1) + µ,

by the triangle inequality. Similarly,

dX∪H( fi, fi+1) = dX∪H( fi, y1) + dX∪H(y1, fi+1)

and
dX∪H(z, fi+1) ≤ dX∪H(y1, fi+1) + µ.

Combining the above inequalities with (3.9), we obtain

dX∪H(x1, fi) + dX∪H( fi, y1) ≤ 2µ. (3.10)

Now, by construction, we have

dX∪H(x1, fi) = dX∪H(x, fi)− dX∪H(x1, x) = ⌊⟨ fi−1, fi+1⟩rel
fi
⌋ − (δ + σ + 1). (3.11)

On the other hand, since dX∪H(x1, y1) ≤ σ, we achieve

dX∪H( fi, y1) ≥ dX∪H(x1, fi)− dX∪H(x1, y1) ≥ ⌊⟨ fi−1, fi+1⟩rel
fi
⌋ − (δ + 2σ + 1). (3.12)

After combining (3.11), (3.12) and (3.10), we obtain

2⌊⟨ fi−1, fi+1⟩rel
fi
⌋ − (2δ + 3σ + 2) ≤ 2µ.

Therefore, we can conclude that ⟨ fi−1, fi+1⟩rel
fi

≤ µ + δ + 2σ + 2 = C0, as required.

3.3 Adjacent backtracking in path representatives

In this section we continue working under Convention 3.3. Our goal here is to study
the possible backtracking within two adjacent segments in a minimal type path
representative.

Lemma 3.16. For all non-negative numbers ζ and ξ there exists τ = τ(ζ, ξ) ≥ 0 such that
the following holds.

Suppose U and V are either trivial or Q′/R′-absorbing. Let Q′ ⩽ Q and R′ ⩽ R be subgroups
satisfying (C1), g ∈ U⟨Q′, R′⟩V and p is a path representative of g of minimal type. If s1 and
s2 are connected H-components of consecutive segments t1 and t2 of p respectively, such that
dX((s1)−, (s2)+) ≤ ζ and dX((s1)+, (t1)+) ≤ ξ, then |s1|X ≤ τ and |s2|X ≤ τ.
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Proof. Let µ = µ(ζ) ≥ 0 be the constant from Lemma 2.43. Since |X| < ∞ and
|N | < ∞ we can define the constant k ≥ 0 as follows:

k = max{K′(Q ∩ R, cHνc−1, ξ + µ) | ν ∈ N , c ∈ G, |c|X ≤ ξ}, (3.13)

where for each c ∈ G and ν ∈ N the constant K′(Q ∩ R, cHνc−1, ξ + µ) is given by
Lemma 2.1. Let L ≥ 0 be the constant from Proposition 2.25 and set
τ = 2k + 2ξ + ζ + 3L ≥ 0.

Let p = up1 . . . pnv be a path representative of some g ∈ U⟨Q′, R′⟩V of minimal type.
Suppose that s1 and s2 are connected Hν-components of consecutive segments t1 and
t2 of p respectively, for some ν ∈ N , such that dX((s1)−, (s2)+) ≤ ζ and that
dX((s1)+, (t1)+) ≤ ξ.

Note that, by Lemma 2.31,
dX((s1)+, (s2)−) ≤ 3L. (3.14)

Denote x = (t1)+ = (t2)− ∈ G, a = x−1s+ ∈ G and b = x−1t− ∈ G: see Figure 3.4.

s1 s2

e f

(t1)− (t2)+

w

wa wb

(t1)+ = x

y ∈ xaHνa
−1

xa = (s1)+ (s2)− = xb

βα

(s1)− (s2)+

z ∈ x(Q ∩R)

FIGURE 3.4: Illustration of Lemma 3.16.

Note that
aHν = bHν, hence aHνa−1 = bHνb−1, (3.15)

because the Hν-components s1 and s2 are connected. Using the lemma hypotheses and
(3.14) we also have

|a|X = dX(x, (s1)+) ≤ ξ and |b|X ≤ dX(x, (s1)+) + dX((s1)+, (s2)−) ≤ ξ + 3L. (3.16)

In view of Remark 3.14, without loss of generality we can assume that Lab(t1)

represents an element of Q and Lab(t2) represents an element of R in G (the other case
can be treated similarly). Applying Lemma 2.43, we can find z ∈ x(Q ∩ R) such that
dX((s1)−, z) ≤ µ.
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Consider the element y = (s1)−a−1 = xas̃1
−1a−1 ∈ xaHνa−1, and observe that

dX((s1)−, y) = |a−1|X ≤ ξ. Moreover, dX((s1)−, x(Q ∩ R)) ≤ dX((s1)−, z) ≤ µ,
whence

(s1)− ∈ NX

(
x(Q ∩ R), ξ + µ

)
∩ NX

(
xaHνa−1, ξ + µ

)
.

Therefore, according to Lemma 2.1, there exists w ∈ x(Q ∩ R ∩ aHνa−1) such that

dX((s1)−, w) ≤ k, (3.17)

where k ≥ 0 is the constant defined in (3.13).

Let α be the subpath of t1 from (s1)+ = xa to (t1)+ = x. Choose the geodesic path
[wa, w] as the translate wx−1α. Observe that (s1)− ∈ xaHν and wa ∈ xaHνa−1a = xaHν

lie in the same Hν-coset. Thus dX∪H((s1)−, wa) ≤ 1; if (s1)− = wa we let e be the
trivial path in Γ(G, X ∪H) consisting of the single vertex s−, and otherwise we let e be
the edge of Γ(G, X ∪H) labelled by an element of Hν \ {1} that joins (s1)− to wa.
Define the path q in Γ(G, X ∪H) as the concatenation

q = [(t1)−, (s1)−] e [wa, w], (3.18)

where [(t1)−, (s1)−] is chosen as the initial segment of t1.

Since ℓ(e) ≤ 1 = dX∪H((s1)−, (s2)+), we can bound the length of the path q from
above as follows:

ℓ(q) = dX∪H((t1)−, (s1)−) + ℓ(e) + dX∪H(wa, w)

≤ dX∪H((t1)−, (s1)−) + dX∪H((s1)−, (s1)+) + dX∪H(xa, x) = ℓ(t1).
(3.19)

Now we construct a similar path from w to (t2)+. Let β be the subpath of t2 from
(t2)− = x to (s2)− = xb. Choose the geodesic path [w, wb] as the translate wx−1β.
Recall that (s2)+ ∈ xbHν and note that the inclusion w ∈ xaHνa−1, together with
(3.15), imply that wb ∈ xbHν also. If (s2)+ = wb then let f be the trivial path in
Γ(G, X ∪H) consisting of the single vertex (s2)+, otherwise let f be the edge in
Γ(G, X ∪H) joining the vertices wb and (s2)+ with Lab( f ) ∈ Hν \ {1}. We now define
the path r in Γ(G, X ∪H) as the concatenation

r = [w, wb] f [t+, (t2)+], (3.20)

where [(s2)+, (t2)+] is chosen as the ending segment of t2. Similarly to the case of q we
can estimate that

ℓ(r) ≤ ℓ(t2). (3.21)

Note that since q− = (t1)− = xt̃1
−1

, q+ = w ∈ x(Q ∩ R) and Q ∩ R = Q′ ∩ R′ by (C1),
we have q̃ ∈ t̃1(Q′ ∩ R′). Similarly, r̃ ∈ (Q′ ∩ R′)t̃2.
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Let t′1 be a geodesic path from q− = (t1)− to q+ = w, and let t′2 be a geodesic path from
w = r− to (t2)+ = r+. When t1 is one of the segments p1, . . . , pn−1, we have that
t̃′1 ∈ Q′(Q′ ∩ R′) = Q′ and t̃′2 ∈ (Q′ ∩ R′)R′ = R′. In the case that t1 is the segment u
(respectively, pn), we have t̃′1 ∈ U(Q′ ∩ R′) ⊆ U and t̃′2 ∈ (Q′ ∩ R′)R′ = R′

(respectively, t̃′1 ∈ Q′(Q′ ∩ R′) = Q′ and t̃′2 ∈ (Q′ ∩ R′)V ⊆ V) as U and V are
Q′/R′-absorbing. Hence, the broken line p′ obtained by replacing t1 and t2 in p with t′1
and t′2 respectively is a path representative of the same element g ∈ G.

If at least one of the paths q, r is not geodesic in Γ(G, X ∪H), then, in view of (3.19)
and (3.21) we have

ℓ(t′1) + ℓ(t′2) < ℓ(q) + ℓ(r) ≤ ℓ(t1) + ℓ(t2),

hence ℓ(p) = ℓ(u) + ℓ(v) + ∑n
i=1 ℓ(pi) > ℓ(p′), contradicting the minimality of the

type of p.

Hence both q and r must be geodesic in Γ(G, X ∪H) , so we can further assume that
t′1 = q and t′2 = r. Moreover, the inequality ℓ(p) ≤ ℓ(p′) must hold by the minimality
of the type of p. Therefore ℓ(t1) + ℓ(t2) ≤ ℓ(q) + ℓ(r), which, in view of (3.19) and
(3.21), implies that ℓ(q) = ℓ(t1), ℓ(r) = ℓ(t2) and ℓ(p) = ℓ(p′). In particular, e and f
are actual edges of Γ(G, X ∪H) (and not trivial paths).

The definition (3.18) of q implies that Lab(q) can differ from Lab(t1) in at most one
letter, which is the label of the Hν-component e in Lab(q) and the label of the
Hν-component s1 in Lab(t1). Indeed,

Lab(t1) = Lab([(t1)−, (s1)−])Lab(s1)Lab(α), and

Lab(q) = Lab([(t1)−, (s1)−])Lab(e)Lab(α),

where we used the fact that [wa, w] is the left translate of α, by definition, and hence its
label is the same Lab(α). Similarly, (3.20) implies Lab(r) can differ from Lab(t1) in at
most one letter which is the label of f in r and the label of s2 in t2. The minimality of
the type of p therefore implies that

|s1|X + |s2|X ≤ |e|X + | f |X. (3.22)

Now, using the triangle inequality, (3.17) and (3.16) we obtain

|e|X = dX((s1)−, wa) ≤ dX((s1)−, w) + dX(w, wa) ≤ k + |a|X ≤ k + ξ. (3.23)

To estimate | f |X we also use the inequality dX((s1)−, (s2)+) ≤ ζ:

| f |X = dX((s2)+, wb) ≤ dX((s2)+, w) + |b|X
≤ dX((s2)+, (s1)−) + dX((s1)−, w) + ξ + 3L

≤ ζ + k + ξ + 3L.

(3.24)



46 Chapter 3. Joins of quasiconvex subgroups

Combining (3.22)–(3.24) together, we achieve

max{|s1|X, |s2|X} ≤ |e|X + | f |X ≤ 2k + 2ξ + ζ + 3L = τ.

This inequality completes the proof of the lemma.

The following auxiliary definition will only be used in the remainder of this section.

Definition 3.17. Let C0 ≥ 0 be the constant provided by Lemma 3.15, let L ≥ 0 be the
constant given by Proposition 2.25 and let κ = κ(1, 0, 3L) ≥ 0 be the constant from
Proposition 2.34.

Define the sequences (ζ j)j∈N, (ξ j)j∈N and (τj)j∈N of non-negative real numbers as
follows. Set ζ1 = κ, ξ1 = C0 + 1 and τ1 = max{κ, τ(ζ1, ξ1)}, where τ(ζ1, ξ1) is given by
Lemma 3.16.

Now suppose that j > 1 and the first j − 1 members of the three sequences have
already been defined. Then we set

ζ j = κ, ξ j = C0 + 1 +
j−1

∑
k=1

τk and τj = max{κ, τ(ζ j, ξ j)},

where where τ(ζ j, ξ j) is given by Lemma 3.16.

Lemma 3.18. There exists a constant C1 ≥ 0 such that the following is true.

Suppose U and V are either trivial or Q′/R′-absorbing. Let Q′ ⩽ Q and R′ ⩽ R be subgroups
satisfying (C1) and let p = up1 . . . pnv be a minimal type path representative for an element
g ∈ U⟨Q′, R′⟩V. Suppose that q and r are connected H-components of adjacent segments t1

and t2 of p. Then dX(q+, (t1)+) ≤ C1 and dX((t1)+, r−) ≤ C1.

Proof. Denote x = (t1)+ = (t2)− ∈ G. First, let us show that

dX∪H(q+, x) ≤ C0 + 1, (3.25)

where C0 ≥ 0 is the global constant provided by Lemma 3.15. Indeed, the latter lemma
states that ⟨(t1)−, (t2)+⟩rel

x ≤ C0. Since q+ and r− are points on the geodesics t1 and t2,
Remark 2.7 implies that

⟨q+, r−⟩rel
x ≤ ⟨(t1)−, (t2)+⟩rel

x ≤ C0.

Consequently,

C0 ≥ ⟨q+, r−⟩rel
x =

1
2

(
dX∪H(x, q+) + dX∪H(x, r−)− dX∪H(q+, r−)

)
≥ 1

2

(
2 dX∪H(x, q+)− 2 dX∪H(q+, r−)

)
≥ dX∪H(x, q+)− 1,

where the last inequality used the fact that dX∪H(q+, r−) ≤ 1, which is true because q
and r are connected H-components. This establishes the inequality (3.25).
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Let α denote the subpath of t1 starting at q+ and ending at x, and let β denote the
subpath of t2 starting at x and ending at r−. Let s1, . . . , sl , l ∈ N0, be the set of all
H-components of α listed in the reverse order of their occurrence. That is, s1 is the last
H-component of α (closest to α+ = x) and sl is the first H-component of α (closest to
α− = q+). Note that, by (3.25),

l ≤ ℓ(α) = dX∪H(x, q+) ≤ C0 + 1. (3.26)

Let L ≥ 0 be the constant given by Proposition 2.25. Then by Lemma 2.31,

dX(α−, β+) = dX(q+, r−) ≤ 3L. (3.27)

It follows that the geodesic paths α and β−1 are 3L-similar in Γ(G, X ∪H). Let
κ = κ(1, 0, 3L) ≥ 0 be the constant provided by Proposition 2.34.

We will now prove the following.

Claim 3.6. For each j = 1, . . . , l we have

|sj|X ≤ τj, (3.28)

where τj ≥ 0 is given by Definition 3.17.

We will establish the claim by induction on j. For the base of induction, j = 1, note
that if |s1|X < κ then the inequality |s1|X ≤ τ1 will be true by definition of τ1. Thus we
can suppose that |s1|X ≥ κ. In this case, by Proposition 2.34, s1 must be connected to
some H-component of β−1. Claim (3) of the same proposition implies that there is an
H-component s′1 of β, such that s1 is connected to s′1 and dX((s1)−, (s′1)+) ≤ κ. Note
that, by construction, s1 and s′1 are also connected H-components of t1 and t2

respectively.

Observe that the subpath of α from (s1)+ to x is labelled by letters from X±1 because it
has no H-components. Therefore dX((s1)+, x) ≤ ℓ(α) ≤ C0 + 1. Consequently, we can
apply Lemma 3.16 to deduce that |s1|X ≤ τ(ζ1, ξ1), where ζ1 = κ and ξ1 = C0 + 1.

Thus we have shown that |s1|X ≤ τ1, where τ1 = max{κ, τ(ζ1, ξ1)}, and the base of
induction has been established.

Now, suppose that j > 1 and inequality (3.28) has been proved for all strictly smaller
values of j. If |sj|X < κ then are done, because τj ≥ κ by definition. So we can assume
that |sj|X ≥ κ. As before, we can use Proposition 2.34, to find an H-component s′j of β

such that sj is connected to s′j and dX((sj)−, (s′j)+) ≤ κ.
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By construction, s1, . . . , sj−1 is the list of all H-components of the subpath [(sj)+, x] of
α, hence

dX((sj)+, x) ≤ ℓ(α) +
j−1

∑
k=1

|sk|X ≤ C0 + 1 +
j−1

∑
k=1

τk,

where the second inequality used (3.26) and the induction hypothesis. This allows us
to apply Lemma 3.16 again, and conclude that |sj|X ≤ τ(ζ j, ξ j), where ζ j = κ and
ξ j = C0 + 1 + ∑

j−1
k=1 τk.

Thus, |sj|X ≤ max{κ, τ(ζ j, ξ j)} = τj, as required. Hence the claim has been proved by
induction on j.

We are finally ready to prove the main statement of the lemma. Since s1, . . . , sl is the
list of all H-components of α, we can combine the inequalities (3.26) and (3.28) to
achieve

dX(q+, (t1)+) = |α|X ≤ ℓ(α) +
l

∑
j=1

|sj|X ≤ C0 + 1 +
l

∑
j=1

τj ≤ C0 + 1 +
⌊C0+1⌋

∑
j=1

τj.

On the other hand, by the triangle inequality and (3.27), we have

dX((t1)+, r−) ≤ 3L + dX(q+, (t1)+) ≤ 3L + C0 + 1 +
⌊C0+1⌋

∑
j=1

τj.

We have shown that the constant C1 = 3L + C0 + 1 +
⌊C0+1⌋

∑
j=1

τj > 0 is an upper bound

for dX(q+, (t1)+) and dX((t1)+, r−), thus the lemma is proved.

The next lemma shows that, among path representatives of minimal type, instances of
adjacent backtracking where at least one of the components is sufficiently long with
respect to the proper metric dX must have initial and terminal vertices far apart in dX.

Lemma 3.19 (Adjacent backtracking is long). For any ζ ≥ 0 there is Θ0 = Θ0(ζ) ∈ N

such that the following holds.

Suppose U and V are either trivial or Q′/R′-absorbing. Let Q′ ⩽ Q and R′ ⩽ R be subgroups
satisfying (C1) and let p = p1 . . . pn be a minimal type path representative for an element
g ∈ U⟨Q′, R′⟩V. Suppose that adjacent segments t1 and t2 of p have connected
H-components s1 and s2 respectively, satisfying

max{|s1|X, |s2|X} ≥ Θ0.

Then dX((s1)−, (s2)+) ≥ ζ.

Proof. For any ζ ≥ 0 we can define Θ0 = ⌊τ(ζ, C1)⌋+ 1, where C1 is the constant from
Lemma 3.18 and τ(ζ, C1) is provided by Lemma 3.16. It follows that whenever
dX((s1)−, (s2)+) < ζ, we have |s1|X < Θ0 and |s2|X < Θ0, which is the contrapositive
of the required statement.
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3.4 Multiple backtracking in path representatives

We will keep working under Convention 3.3. In this section we deal with multiple
backtracking in path representatives of elements from U⟨Q′, R′⟩V. Proposition 3.22
below uses condition (C3) to show that any instance of multiple backtracking
essentially takes place inside a single parabolic subgroup. In order to achieve this we
first prove two auxiliary statements.

Notation 3.7. Let C1 ≥ 0 be the constant given by Lemma 3.18 and M ≥ 0. We will
denote by PM the finite collection of parabolic subgroups of G defined by

PM = {tHνt−1 | ν ∈ N , |t|X ≤ C1 + M}.

Consider the subset O = {o ∈ PS | P ∈ P1, |o|X ≤ 2C1} of G. Since |O| < ∞, we can
choose and fix a finite subset Ξ ⊆ S such that every element o ∈ O can be written as
o = f h, where f ∈ P, for some P ∈ P1, and h ∈ Ξ. We define a constant E by

E = max{|h|X | h ∈ Ξ} ≥ 0. (3.29)

Lemma 3.20. There exists a constant D ≥ 0 such that the following holds.

Let ν ∈ N and b ∈ G be an element with |b|X ≤ C1, so that P = bHνb−1 ∈ P0, and let p be a
geodesic path in Γ(G, X ∪H) with p̃ ∈ Q ∪ R. Suppose that there is a vertex v of p and an
element u ∈ P such that v ∈ Pb = bHν and u−1 p− ∈ S = Q ∩ R. Then there exists a
geodesic path p′ in Γ(G, X ∪H) such that

• p′− = u and dX(p′+, v) ≤ D;

• if p̃ ∈ Q then p̃′ ∈ Q ∩ P, otherwise p̃′ ∈ R ∩ P.

p

p′

x

u

vb−1

b

∈ xQ

w

∈ S

∈ P

v

≤D

FIGURE 3.5: Illustration of Lemma 3.20.

Proof. Let K = max{C1, ε} ≥ 0, where ε is the quasiconvexity constant of Q and R, and
let

D = max{K′(Q, P, K), K′(R, P, K) | P ∈ P0}, (3.30)

where K′(Q, P, K) and K′(R, P, K) are obtained from Lemma 2.1.



50 Chapter 3. Joins of quasiconvex subgroups

Denote x = p− ∈ G and assume, without loss of generality, that p̃ ∈ Q (the case p̃ ∈ R
can be treated similarly). By the quasiconvexity of Q, we have that dX(v, xQ) ≤ ε.
Moreover, xQ = uQ as u−1x ∈ S ⊆ Q.

By the assumptions, vb−1 ∈ P, hence dX(v, P) ≤ |b|X ≤ C1. Since uP = P we see that

v ∈ NX(uQ, ε) ∩ NX(uP, C1).

Applying Lemma 2.1, we find w ∈ u(Q ∩ P) such that dX(v, w) ≤ D (see Figure 3.5).
Let p′ be any geodesic in Γ(G, X ∪H) starting at u and ending at w. It is easy to see
that p′ satisfies all of the required properties, so the lemma is proved.

The next lemma describes how condition (C3) is used.

Lemma 3.21. Let M ≥ 0 and suppose that subgroups Q′ ⩽ Q and R′ ⩽ R satisfy conditions
(C1) and (C3) with constant C and family P such that C ≥ M + C1 + 1 and P ⊇ PM. Let
P = bHνb−1 ∈ PM, for some ν ∈ N and b ∈ G, with |b|X ≤ M, and let p be a path in
Γ(G, X ∪H) with p̃ ∈ Q′ ∪ R′.

Suppose that there is a vertex v of p and an element u ∈ P satisfying u−1 p− ∈ S, v ∈ Pb, and
dX(v, p+) ≤ C1. Then there exists a geodesic path p′ such that (p′)− = u, p̃′ ∈ P,
(p′)−1

+ p+ ∈ S, and dX((p′)+, p+) ≤ E, where E is the constant from (3.29). In particular, if
p̃ ∈ Q′ (respectively, p̃ ∈ R′) then p̃′ ∈ Q′ ∩ P (respectively, p̃′ ∈ R′ ∩ P).

p

p′

x

u zf

b

z

∈ S

∈ P

v y

∈ P

∈ S

FIGURE 3.6: Illustration of Lemma 3.21.

Proof. Denote x = p−, y = p+ and z = vb−1 ∈ P (see Figure 3.6). Then u−1z ∈ P and
x−1y = p̃ ∈ Q′ ∪ R′. Since u−1x ∈ S = Q′ ∩ R′, we obtain

u−1y = (u−1x)(x−1y) ∈ Q′ ∪ R′,

whence z−1y = (z−1u)(u−1y) ∈ P(Q′ ∪ R′). Now, observe that

|z−1y|X = dX(z, y) ≤ dX(z, v) + dX(v, y) ≤ |b|X + C1 ≤ M + C1 < C.
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Condition (C3) now implies that z−1y ∈ PS. That is, z−1y = f h for some f ∈ P and
h ∈ Ξ, where Ξ is the finite subset of S defined above the statement of the lemma. Let
p′ be a geodesic path starting at u and ending at z f ∈ P. Then p̃′ = u−1z f ∈ P,

(p′)−1
+ p+ = f−1z−1y = h ∈ S and dX((p′)+, p+) = |h|X ≤ E.

The last statement of the lemma follows from (C1) and the observation that

p̃′ = u−1(p′)+ = u−1 p− p̃ (p+)−1(p′)+ ∈ S p̃ S.

Proposition 3.22. Let D ≥ 0 is the constant provided by Lemma 3.20, and let E be given by
(3.29). Suppose that Q′ ⩽ Q and R′ ⩽ R are subgroups satisfying (C1) and (C3), with
constant C ≥ 2C1 + 1 and family P ⊇ P0. Further, suppose that U and V are either trivial or
Q′/R′-absorbing.

Let p be a path representative for an element g ∈ U⟨Q′, R′⟩V with minimal type. If p has
consecutive backtracking along H-components hi, . . . , hj of consecutive segments pi, . . . , pj

respectively, then there is a subgroup P ∈ P0 and a path p′ = p′i . . . p′j satisfying the following
properties:

(i) p′k is geodesic with p̃′k ∈ P for all k = i, . . . , j;
(ii) (p′i)+ = (pi)+, (p′k)

−1
+ (pk)+ ∈ S and dX((p′k)+, (pk)+) ≤ E, for all

k = i + 1, . . . , j − 1;
(iii) dX(p′−, (hi)−) ≤ D and dX(p′+, (hj)+) ≤ D;
(iv) p̃′i ∈ Q ∩ P if p̃i ∈ Q, and p̃′i ∈ R ∩ P if p̃i ∈ R; similarly, p̃′j ∈ Q ∩ P if p̃j ∈ Q, and

p̃′j ∈ R ∩ P if p̃j ∈ R;
(v) for each k ∈ {i + 1, . . . , j − 1}, Lab(p′k) either represents an element of Q′ ∩ P or an

element of R′ ∩ P.

Proof. Let p = up1 . . . pnv be a path representative of g ∈ U⟨Q′, R′⟩V of minimal type.
For simplicity, we assume that hi, . . . , hj are connected H-components of the segments
pi, . . . , pj. The case when the consecutive backtracking begins in the segment u or ends
in the segment v may be dealt with identically.

Figure 3.7 below is a sketch of the path p′ above the subpath pi pi+1 . . . pj−1 pj of p.

Note that claim (v) follows from claim (ii) and condition (C1), so we only need to
establish claims (i)–(iv).

By the assumptions, there is ν ∈ N such that for each k ∈ {i, . . . , j}, the path pk is a
concatenation pk = akhkbk, where hk is an Hν-component of pk and ak, bk are subpaths
of pk.

According to Lemma 3.18, we have

|bk|X ≤ C1, for k = i, . . . , j − 1. (3.31)
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hi

hi+1 hj−1

hj

p′i

p′i+1
p′j−1

p′j

≤D ≤D

FIGURE 3.7: Illustration of Proposition 3.22.

After translating everything by (pi)
−1
+ we can assume that (pi)+ = 1. From here on,

we let b = b̃i
−1 ∈ G and P = bHνb−1. As noted in (3.31), |b|X = |bi|X ≤ C1, so P ∈ P0.

Since the components hi and hk are connected, for every k = i + 1, . . . , j, the elements
(hi)+ = (bi)− = b and (hk)+ all belong to the same left coset bHν = Pb, thus

(hk)+ ∈ Pb, for all k = i + 1, . . . , j. (3.32)

The rest of the argument will be divided into three steps.

Step 1: construction of the path p′i.

Set ui = (pi)+ = 1 and vi = (hi)−. Then vi = b̃i
−1

h̃i
−1 ∈ bHν = Pb, so the path p−1

i , its
vertex vi and the element ui = 1 ∈ P satisfy the assumptions of Lemma 3.20. Therefore
there exists a path t with t− = ui, dX(t+, vi) ≤ D and such that t̃ ∈ Q ∩ P if p̃i ∈ Q and
t̃ ∈ R ∩ P if p̃i ∈ R.

It is easy to check that the path p′i = t−1 enjoys the required properties.

Step 2: construction of the paths p′k, for k = i + 1, . . . , j − 1.

We will define the paths p′k by induction on k. For k = i + 1 we consider the path pi+1,
its vertex vi+1 = (hi+1)+ and the element ui = 1 = (pi+1)−. Since vi+1 ∈ Pb by (3.32)
and dX(vi+1, (pi+1)+) = |bi+1|X ≤ C1 by (3.31), we can apply Lemma 3.21 to find a
geodesic path p′i+1 starting at ui and satisfying the required conditions.

Now suppose that the required paths p′i+1, . . . , p′m have already been constructed for
some m ∈ {i + 1, . . . , j − 2}. To construct the path p′m+1, let vm+1 be the vertex (hm+1)+

of pm+1 and set um = (p′m)+. Then um ∈ P and u−1
m (pm+1)− = (p′m)

−1
+ (pm)+ ∈ S by the

induction hypothesis. In view of (3.32) and (3.31), vm+1 ∈ Pb and
dX(vm+1, (pm+1)+) ≤ C1, therefore we can find a geodesic path p′m+1 with the desired
properties by using Lemma 3.21.



3.4. Multiple backtracking in path representatives 53

Thus we have described an inductive procedure for constructing the paths p′k, for
k = i + 1, . . . , j − 1.

Step 3: construction of the path p′j.

This step is similar to Step 1: the path p′j will start at uj−1 = (p′j−1)+ ∈ P and can be
constructed by applying Lemma 3.20 to the path pj and the elements vj = (hj)+ ∈ Pb,
uj−1 ∈ P.

We have thus constructed a sequence of geodesic paths p′i, . . . , p′j whose concatenation
p′ satisfies all the properties from the proposition.

We will now prove the main result of this section, which states that the initial and
terminal vertices of an instance of multiple backtracking in a minimal type path
representative must lie far apart in the proper metric dX, provided Q′ ⩽ Q and R′ ⩽ R
satisfy (C1)–(C5) with sufficiently large constants.

Proposition 3.23 (Multiple backtracking is long). For any ζ ≥ 0 there is C2 = C2(ζ) ≥ 0
such that if Q′ ⩽ Q and R′ ⩽ R are subgroups satisfying conditions (C1)-(C5) with constants
B ≥ C2 and C ≥ C2 and a family P ⊇ P0, then the following is true.

Suppose U and V are trivial or Q′/R′-absorbing and let g ∈ U⟨Q′, R′⟩V with g /∈ UQ′V
and g /∈ UR′V. Let p be a minimal type path representative of g in Γ(G, X ∪H). If p has
multiple backtracking along H-components hi, . . . , hj of consecutive segments of p, then
dX((hi)−, (hj)+) ≥ ζ.

Proof. Let ζ ≥ 0 and define C2(ζ) = max {2C1, ζ + 2D}+ 1, where D ≥ 0 is the
constant obtained from Lemma 3.20. Suppose that pi, . . . , pj are consecutive segments
of p such that hk is an Hν-component of pk for each k = i, . . . , j.

In view of the assumptions we can apply Proposition 3.22 to find a path p′ = p′i . . . p′j
and P ∈ P0 satisfying properties (i)–(v) from its statement. Let α be a geodesic with
α− = (p′j)− and α+ = (pj)−, and let β = p′i+1 . . . p′j−1. We will denote xk = p̃k and

x′k = p̃′k, for each k ∈ {i, . . . , j}, and z = α̃. Condition (C1), together with property (ii)
of Proposition 3.22, tell us that z ∈ S = Q′ ∩ R′, and property (v) yields that

β̃ = x′i+1 . . . x′j−1 ∈ ⟨Q′
P, R′

P⟩ (3.33)

(as before, for a subgroup H ⩽ G we denote by HP ⩽ G the intersection H ∩ P).

Now suppose, for a contradiction, that dX((hi)−, (hj)+) < ζ. Then

|p′|X = dX(p′−, p′+) < ζ + 2D < C2 ≤ min{B, C}, (3.34)
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by claim (iii) of Proposition 3.22. There are four cases to consider depending on
whether p̃i and p̃j are elements of Q or R.

Case 1: xi = p̃i ∈ Q and xj = p̃j ∈ Q. Then, by claim (iv) of Proposition 3.22, both x′i
and x′j are elements of QP . It follows that p̃′ ∈ QP⟨Q′

P, R′
P⟩QP ⊆ Q⟨Q′, R′⟩Q. By (3.34)

and (C2), there is q ∈ Q such that p̃′ = q. Therefore

β̃ = x′i
−1 p̃′ x′j

−1
= x′i

−1 q x′j
−1 ∈ Q. (3.35)

Combining (3.35) with (3.33) and using condition (C4), we get

β̃ ∈ Q ∩ ⟨Q′
P, R′

P⟩ = QP ∩ ⟨Q′
P, R′

P⟩ = Q′
P.

Let γ be any geodesic path in Γ(G, X ∪H) starting at (pi)− and ending at (pj)+. Then
γ shares the same endpoints with the path piβαpj, therefore their labels represent the
same element of G:

γ̃ = xi β̃ z xj ∈ xiQ′
P Sxj = xiQ′xj.

When neither pi and pj are segments corresponding to U and V respectively,
xi, xj ∈ Q′ and so γ̃ ∈ Q′. Thus we can use γ to obtain another path representative for
g by replacing the subpath pi . . . pj in p with γ, which consists of strictly fewer
geodesic subpaths than p = p1 . . . pn. This contradicts the minimality of the type of p.
If U and V are trivial we are now done, so suppose otherwise.

For the remaining possibilities, the assumption that U and V are Q′/R′-absorbing
gives that either γ̃ ∈ UQ′, γ̃ = Q′V, or g = γ̃ ∈ UQ′V. In the former two cases, take
geodesics γ1 and γ2 with (γ1)− = γ−, (γ1)+ = (γ2)−, and (γ2)+ = γ+ such that
γ̃1 ∈ U and γ̃2 ∈ Q′ (respectively, γ̃1 ∈ Q′ and γ̃2 ∈ V). We may then replace pi . . . pj

with γ1γ2 as before to obtain a path representative of lesser type. In the final case, the
hypothesis that g /∈ UQ′V is contradicted. Hence Case 1 is considered.

Case 2: p̃i and p̃j are elements of R. This case can be dealt with identically to Case 1.

Case 3: xi = p̃i ∈ Q and xj = p̃j ∈ R. Then x′i ∈ QP and x′j ∈ RP by claim (iv) of
Proposition 3.22. Hence Lab(p′) represents an element of x′i⟨Q′

P, R′
P⟩RP with x′i ∈ QP.

In view of (3.34), we can use condition (C5) to deduce that p̃′ ∈ x′iQ
′
PRP. It follows that

β̃ = (x′i)
−1 p̃′ (x′j)

−1 ∈ Q′
P RP,

so there exist q ∈ Q′
P and r ∈ RP such that β̃ = qr. Combining this with (3.33) we

conclude that r = q−1 β̃ ∈ RP ∩ ⟨Q′
P, R′

P⟩, so r ∈ R′
P by condition (C4), whence

β̃ = qr ∈ Q′
P R′

P. (3.36)
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Observe that the paths γ = pi . . . pj and piβαpj have the same endpoints, hence their
labels represent the same element of G:

γ̃ = xi β̃zxj ∈ xiQ′
P R′

P Sxj ⊆ xiQ′R′xj.

When neither pi and pj are segments corresponding to U and V respectively, xi ∈ Q′

and xj ∈ R′ and so γ̃ ∈ Q′R′. Therefore there are elements q1 ∈ Q′ and r1 ∈ R′ such
that γ̃ = q1r1.

Let γ1 be a geodesic path in Γ(G, X ∪H) starting at γ− = (pi)− and ending at γ−q1

and let γ2 be a geodesic path starting at (γ1)+ and ending at (γ1)+r1 = γ+ = (pj)+.
Since γ̃1 = q1 ∈ Q′ and γ̃2 = r1 ∈ R′ the path obtained from p by replacing the
subpath pi . . . pj with γ1γ2 is a path representative of g. Moreover, it consists of fewer
than n geodesic segments because j > i + 1 (by the definition of multiple
backtracking), contradicting the minimality of the type of p. If U and V are trivial, we
are now done, so suppose otherwise.

For the remaining possibilities, the assumption that U and V are Q′/R′-absorbing
gives that either γ̃ ∈ UR′ or γ̃ = Q′V, or g = γ̃ ∈ UV. In the former two cases, take
geodesics γ1 and γ2 with (γ1)− = γ−, (γ1)+ = (γ2)−, and (γ2)+ = γ+ such that
γ̃1 ∈ U and γ̃2 ∈ Q′ (respectively, γ̃1 ∈ Q′ and γ̃2 ∈ V). We may then replace pi . . . pj

with γ1γ2 as before to obtain a path representative of lesser type. In the final case, the
fact that g ∈ UV contradicts the hypothesis that g is not an element of UQ′V or UR′V.

Case 4: xi = p̃i ∈ R and xj = p̃j ∈ Q. Then x′i ∈ RP while x′j ∈ QP, which implies that

p̃′ ∈ RP⟨Q′
P, R′

P⟩x′j, hence p̃′
−1 ∈ (x′j)

−1⟨Q′
P, R′

P⟩RP.

By (3.34), we can use (C5) to conclude that p̃′
−1 ∈ (x′j)

−1Q′
PRP, thus p̃′ ∈ RPQ′

Px′j. The
rest of the argument proceeds similarly to the previous case, leading to a contradiction
with the minimality of the type of p. Hence Case 4 is also impossible.

We have arrived at a contradiction in each of the four cases, so dX((hi)−, (hj)+) ≥ ζ, as
required.

3.5 Metric quasiconvexity theorem

In this section we prove Theorem 1.8. As usual, we work under Convention 3.3. First
we will show that if some subgroups Q′ ⩽ Q and R′ ⩽ R satisfy conditions (C1)-(C5)
with appropriately large constants, then minimal type path representatives of ⟨Q′, R′⟩
meet the conditions of Proposition 3.4. We will then use the quasigeodesicity of
shortcuttings of these path representatives to obtain quasiconvexity of ⟨Q′, R′⟩.
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Lemma 3.24. Suppose that Q′ ⩽ Q and R′ ⩽ R satisfy (C2) with constant B ≥ 0. Then

minX

(
(Q′ ∪ R′) \ S

)
≥ B.

Proof. Let g ∈ (Q′ ∪ R′) \ S. If g ∈ Q′ then g /∈ R as g /∈ S. Therefore
g ∈ Q′ \ R ⊆ R⟨Q′, R′⟩R \ R, whence |g|X ≥ B by (C2). Similarly, if g ∈ R′ then
g ∈ Q⟨Q′, R′⟩Q \ Q, and (C2) again implies that |g|X ≥ B.

Notation 3.8. For the remainder of this section we fix the following notation:

• C0 is the constant provided by Lemma 3.15;

• C′
0 = max{C0, 14δ} and c3 = c3(C′

0) is the constant obtained by applying
Lemma 2.12;

• λ = λ(C′
0) and c = c(C′

0) are the first two constants from Proposition 3.4;

• C1 ≥ 0 is the constant from Lemma 3.18;

• P0 is the finite family of parabolic subgroups of G defined by

P0 = {tHνt−1 | ν ∈ N , |t|X ≤ C1}

as in Notation 3.7 (with M = 0).

Lemma 3.25. For each η ≥ 0 there are constants B1 = B1(η) ≥ 0, C3 = C3(η) ≥ 0,
ζ = ζ(η) ≥ 1, and Θ1 = Θ1(η) ∈ N such that the following is true.

Suppose that Q′ ⩽ Q and R′ ⩽ R are subgroups satisfying conditions (C1)-(C5) with
constants B ≥ B1 and C ≥ C3 and family P ⊇ P0. If p = p1 . . . pn is a minimal type path
representative for an element g ∈ ⟨Q′, R′⟩ then p is (B, C′

0, ζ, Θ1)-tamable.

Moreover, let Σ(p, Θ1) = f0e1 f1 . . . fm−1em fm be the Θ1-shortcutting of p obtained from
Procedure 3.1, and let e′k be the H-component of Σ(p, Θ1) containing ek, k = 1, . . . , m. Then
Σ(p, Θ1) is a (λ, c)-quasigeodesic without backtracking and

∣∣e′k∣∣X ≥ η, for each k = 1, . . . , m.

Proof. We define the following constants:

• ζ = ζ(η, C′
0) ≥ 0, the constant provided by Proposition 3.4;

• C3 = C2(ζ) ≥ 0, where C2(ζ) is given by Proposition 3.23;

• Θ1 = max{Θ0(ζ), ζ}, where Θ0 is the constant of Lemma 3.19;

• B1 = max{B0(Θ1, C′
0), C2(ζ)} ≥ 0, where B0 is the remaining constant of

Proposition 3.4.

Let B ≥ B1 and C ≥ C3. Suppose that Q′, R′, g and p are as in the statement of the
lemma. In view of Remark 3.14, p̃i ∈ (Q′ ∪ R′) \ S, for every i = 2, . . . , n − 1.
Therefore, by Lemma 3.24, we have

|pi|X ≥ B, for each i = 2, . . . , n − 1. (3.37)

On the other hand, Lemma 3.15 tells us that

⟨(pi)−, (pi+1)+⟩rel
(pi)+

≤ C0 ≤ C′
0, for each i = 1, . . . , n − 1. (3.38)
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Now suppose that p has consecutive backtracking along H-components hi, . . . , hj of
segments pi, . . . , pj satisfying

max
{
|hi|X, . . . ,

∣∣hj
∣∣

X

}
≥ Θ1.

If j = i + 1 then Lemma 3.19 and the choice of Θ1 give that dX((hi)−, (hj)+) ≥ ζ.
Otherwise Proposition 3.23 gives the same inequality. The above together with (3.37)
and (3.38) show that p is (B, C′

0, ζ, Θ1)-tamable.

The remaining claims of the lemma follow from Proposition 3.4.

We can now deduce the relative quasiconvexity of ⟨Q′, R′⟩ by applying Lemma 3.25
with η = 0.

Theorem 3.26. Suppose that Q′ ⩽ Q and R′ ⩽ R are relatively quasiconvex subgroups of G
satisfying conditions (C1)-(C5) with family P ⊇ P0 and constants B ≥ B1(0), C ≥ C3(0),
where B1(0) and C3(0) are the constants provided by Lemma 3.25 applied to the case when
η = 0. Then the subgroup ⟨Q′, R′⟩ is relatively quasiconvex in G.

Proof. By assumption the subgroups Q′ and R′ are relatively quasiconvex, with some
quasiconvexity constant ε′ ≥ 0. For any element g ∈ ⟨Q′, R′⟩ consider a geodesic τ in
Γ(G, X ∪H) with τ− = 1 and τ+ = g. Let u be any vertex of τ.

Since g ∈ ⟨Q′, R′⟩, it has a path representative p = p1 . . . pn of minimal type, with
p− = 1. Let Σ(p, Θ) = f0e1 f1 . . . fm−1em fm be the Θ-shortcutting of p obtained from
Procedure 3.1, where Θ = Θ1(0) is provided by Lemma 3.25. This lemma implies that
p is (B, C′

0, ζ, Θ)-tamable and Σ(p, Θ) is a (λ, c)-quasigeodesic without backtracking,
where λ ≥ 1 and c ≥ 0 are the constants fixed in Notation 3.8. Therefore, by
Proposition 2.34, there is a phase vertex v of Σ(p, Θ) with dX(u, v) ≤ κ(λ, c, 0).

Since each ei is a single edge, the vertex v lies on the geodesic subpath fi of Σ(p, Θ), for
some i ∈ {0, . . . , m}. The subpath of p sharing endpoints with fi is
(4, c3)-quasigeodesic by Lemma 3.6. Hence there is a vertex w of p such that
dX(v, w) ≤ κ(4, c3, 0), by Proposition 2.34.

Now w is a vertex of a subpath pj of p, for some j ∈ {1, . . . , n}. Let x = (pj)−, and note
that x ∈ ⟨Q′, R′⟩. Without loss of generality, suppose that p̃j ∈ Q′ (the case when
p̃j ∈ R′ can be treated similarly). Then by the relative quasiconvexity of Q′,
dX(w, xQ′) ≤ ε′, whence dX(w, ⟨Q′, R′⟩) ≤ ε′. Therefore

dX(u, ⟨Q′, R′⟩) ≤ dX(u, v) + dX(v, w) + dX(w, ⟨Q′, R′⟩)

≤ κ(λ, c, 0) + κ(4, c3, 0) + ε′,

so that ⟨Q′, R′⟩ is a relatively quasiconvex subgroup of G, with the quasiconvexity
constant κ(λ, c, 0) + κ(4, c3, 0) + ε′.
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3.6 Shortcuttings for paths representing parabolic elements

In this section we study the behaviour of shortcuttings of tamable broken lines that
represent elements from parabolic subgroups of G. The aim is to show that tamable
broken lines representing elements of some bHνb−1 consist of essentially a single
instance of consecutive backtracking that involves all its segments, given that the
element is sufficiently long in comparison to the conjugator b.

As a simplifying assumption, throughout this section we will often assume that b is
such that |b|X∪H is minimal among elements in its left Hν-coset. We observe that it
does not cost us a lot to make such an assumption.

Remark 3.27. Let b ∈ G and ν ∈ N . Suppose |b|X∪H is not minimal among elements of
bHν. Let b1 = bh ∈ bHν be such a minimal element, so that |b1|X∪H < |b|X∪H. Since
b1 ∈ bHν, it must be that |b|X∪H ≤ |b1|X∪H + 1. Combining these inequalities, we in
fact have that |b|X∪H = |b1|X∪H + 1. Therefore the path p = [1, b1]e, where e is an
Hν-edge labelled by h−1, is a geodesic in Γ(G, X ∪H). Moreover, if |b|X ≤ M then by
Lemma 2.30, |b1|X = dX(1, e−) ≤ ξM2 where ξ is the constant of that lemma.

Lemma 3.28. For any M ≥ 0 there is N0 = N0(M) ≥ 1 such that the following is true.

Let b ∈ G with |b|X ≤ M, and let p be a geodesic in Γ(G, X ∪H) with p̃ ∈ bHνb−1 for some
ν ∈ N . Suppose that |b|X∪H is minimal among elements of bHν and denote by h the Hν-edge
with h− = p−b and p̃ = bh̃b−1. If |p|X ≥ N0, then h is connected to an Hν-component h′ of
p with

dX(h−, h′−) ≤ 3L and dX(h+, h′+) ≤ 3L,

where L is the constant from Proposition 2.25.

h′

h

p− p+

s

FIGURE 3.8: Illustration of Lemma 3.28.

Proof. Take N0 = 2M + κ, where κ = κ(1, 0, M) is the constant from Proposition 2.34
applied to M-similar geodesics. Suppose that |p|X ≥ N0, so that |h|X ≥ |p|X − 2M ≥ κ

by the triangle inequality. Now we apply Proposition 2.34 to the M-similar geodesics
h and p, which shows that h is connected to an Hν-component h′ of p. If h′− = h−, then
we are done, so suppose otherwise. Take s = [h−, h′−] to be the Hν-edge in
Γ(G, X ∪H) labelled by the element h−1

− h′− ∈ Hν.
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We will show that s is isolated in the geodesic triangle [p−, h−] ∪ [p−, h′−] ∪ s, whence
we can conclude that |s|X = dX(h−, h′−) ≤ 3L by applying Proposition 2.25. Suppose
for a contradiction that s is connected to an Hν-component t of [p−, h−]. Since s is
connected to h, h is also connected to t. That is, the vertices t− and h− lie in the same
Hν-coset which implies that dX∪H(t−, h−) ≤ 1. However, by minimality of |b|X∪H
among elements of bHν, t cannot be the final edge of [p−, h−]. This means that
dX∪H(t−, h−) ≥ 2 by geodesicity of [p−, h−], a contradiction. Similarly, if s is
connected to an Hν-component t of [p−, h′−], then t is in turn connected to h′, this time
contradicting geodesicity of p (via Remark 2.22).

Thus dX(h−, h′−) ≤ 3L by Proposition 2.25. The same argument, by symmetry, shows
that dX(h+, h′+) ≤ 3L.

For the remainder of the section, we fix a constant C ≥ 14δ, let λ = λ(C) and c = c(C)
be the constants obtained from Proposition 3.4. Given any η ≥ 0 we will write ζ(η, C)
and, given any Θ ≥ ζ(η, C), we write B0 = B0(Θ, C) for the constants obtained from
the same proposition. Finally, let c3 = c3(C) be the constant of Lemma 2.12.

Lemma 3.29. There is a constant κ0 = κ0(C) ≥ 0 such that for any
M ≥ 0, η ≥ 0, Θ ≥ ζ = ζ(η, C) there is N1 = N1(Θ, M) ≥ 1 such that the following holds.

Let b ∈ G with |b|X ≤ M. Let p = p1 . . . pn be a (B0, C, ζ, Θ)-tamable broken line, and
suppose that p̃ ∈ bHνb−1 for some ν ∈ N . Suppose that |b|X∪H is minimal among elements of
bHν and denote by Σ(p, Θ) = f0e1 f1 . . . fm−1em fm its Θ-shortcutting. Let h be the Hν-edge
in Γ(G, X ∪H) with h− = p−b such that p̃ = bh̃b−1.

If |p|X ≥ N1, then h is connected to ek for some k = 1, . . . , m and

dX(h−, (ek)−) ≤ κ0 and dX(h+, (ek)+) ≤ κ0.

p− p+

ek

≤ κ0

≤ κ0

h

FIGURE 3.9: Illustration of Lemma 3.29.

Proof. We take the constants

• κ1 = κ(λ, c, 0) and κ2 = κ(4, c3, 0), obtained by applying Proposition 2.34 to
(λ, c)- and (4, c3)-quasigeodesics with the same endpoints respectively;

• N1 = max{N0, 2M + 9L + 2κ1 + 2κ2 + 2Θ}+ 1, where N0 = N0(M) is the
constant of Lemma 3.28 and L is the constant of Proposition 2.25;
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• κ0 = κ1 + ρ + 3L, where ρ = ρ(C) is the constant of Lemma 3.7.

Suppose that |p|X ≥ N1. First observe that N1 is greater than N0, so that by
Lemma 3.28 h is connected to an Hν-component h′ of a geodesic [p−, p+] (see
Figure 3.10) with

dX(h−, h′−) ≤ 3L and dX(h+, h′+) ≤ 3L. (3.39)

As p̃ = bhb−1, the triangle inequality gives us that

|h|X ≥ |p|X − 2|b|X
≥ N1 − 2M

≥ 9L + 2κ1 + 2κ2 + 2Θ + 1.

(3.40)

Combining (3.39) and (3.40) yields that |h′|X ≥ |h|X − 6L ≥ κ1. Moreover, by
Proposition 3.4, Σ(p, Θ) is (λ, c)-quasigeodesic without backtracking. Therefore
Proposition 2.34 tells us that there is an Hν-component h′′ of Σ(p, Θ) connected to h′

such that
dX(h′−, h′′−) ≤ κ1 and dX(h′+, h′′+) ≤ κ1. (3.41)

Suppose for a contradiction that h′′ is an Hν-component of fk for some k = 0, . . . , m.
Let p′ be the subpath of p with p′− = ( fk)− and p′+ = ( fk)+. Lemma 3.9 tells us that
Σ0(p′, 1) is (4, c3)-quasigeodesic without backtracking. We have that
|h′′|X ≥ |h|X − 6L − 2κ1 ≥ κ2 by combining equations (3.39), (3.40), and (3.41). Hence
by Proposition 2.34, h′′ is connected to an Hν-component h′′′ of Σ0(p′, 1) with

dX(h′′−, h′′′− ) ≤ κ2 and dX(h′′+, h′′′+ ) ≤ κ2 (3.42)

as in Figure 3.10.

h

p− p+

ek
fk

h′′

h′′′

h′

FIGURE 3.10: Illustration of proof of Lemma 3.29.

By the triangle inequality and equations (3.39)-(3.42), we have

∣∣h′′′∣∣X ≥ |h|X − 6L − 2κ1 − 2κ2 ≥ 3L + 2Θ1 + 1,
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whereas by Lemma 3.9, |h′′′|X ≤ 3L + 2Θ, a contradiction. Therefore h′′ cannot be an
Hν-component of fk. It follows that h′′ is a component of Σ(p, Θ) containing ek for
some k = 1, . . . , m and thus that h is connected to ek (as in Figure 3.9).

It remains to show the inequality in the lemma statement. Following Remark 2.22, h′′

consists of at most three edges, one being ek and the (possible) other two being edges,
respectively the last and the first, of the geodesics fk−1 and fk. Lemma 3.7 then implies
that

dX(h′′−, (ek)−) ≤ ρ and dX(h′′+, (ek)+) ≤ ρ. (3.43)

Finally, (3.39), (3.41), and (3.43) together with the choice of κ0 give the inequalities

dX(h−, (ek)−) ≤ κ0 and dX(h+, (ek)+) ≤ κ0

as required.

Lemma 3.30. For any M ≥ 0, there is a constant η0 = η0(M) ≥ 0 such that for any
Θ ≥ ζ = ζ(η0, C) the following is true.

Let b ∈ G with |b|X ≤ M. Let p = p1 . . . pn a be a (B0, C, ζ, Θ)-tamable broken line, and
suppose that p̃ ∈ bHνb−1 for some ν ∈ N . Suppose that |b|X∪H is minimal among elements of
bHν and denote by Σ(p, Θ) = f0e1 f1 . . . fm−1em fm the Θ-shortcutting of the path p. If
|p|X ≥ N1 (where N1 = N1(Θ, M) is the constant of Lemma 3.29), then m = 1.

Proof. We fix the following constants:

• κ1 = κ(λ, c, 0) and κ2 = κ(1, 0, 3L), the constants obtained by applying
Proposition 2.34 to (λ, c)-quasigeodesics with the same endpoints and 3L-similar
geodesics respectively;

• η = η(1, 0, M + 1) is provided by Lemma 2.29;

• η0 = η + 2κ1 + 2κ2 ≥ 0;

h

p− p+

ek

h′h′′

h′′′

el

FIGURE 3.11: Illustration of Lemma 3.30.

Since p̃ ∈ bHνb−1, denote by h the Hν-edge with h− = p−b and p̃ = bh̃b−1. Lemma 3.29
tells us that h is connected to ek for some k = 1, . . . , m, so m ≥ 1. Moreover, by
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Lemma 3.28, h is connected to an Hν-component h′ of a geodesic [p−, p+] and

dX(h−, h′−) ≤ 3L and dX(h+, h′+) ≤ 3L.

In particular, this implies that [p−, h−] and [p−, h′−] are 3L-similar, and as are [h+, p+]
and [h′+, p+].

Suppose for a contradiction that m > 1, so that there is l ̸= k with 1 ≤ l ≤ m. By
Proposition 3.4, the shortcutting Σ(p, Θ) is (λ, c)-quasigeodesic without backtracking,
and further the H-component e′l of Σ(p, Θ) containing el satisfies the inequality

∣∣e′l∣∣X ≥ η0. (3.44)

Now by Proposition 2.34, e′l is connected to an H-component h′′ of the geodesic
[p−, p+] with

dX(h′′−, (e′l)−) ≤ κ1 and dX(h′′+, (e′l)+) ≤ κ1. (3.45)

Since Σ(p, Θ) is without backtracking, h′′ must be distinct from h′: if not, then e′l and e′k
would be connected H-components of Σ(p, Θ).

We consider only the case that h′′ is an H-component of the subpath [p−, h′−] of
[p−, p+], with the other case being dealt with identically. It follows from (3.44), (3.45),
and the definition of η0 that |h′′|X ≥ κ2. Since [p−, h′−] and [p−, h−] are 3L-similar
geodesics, Proposition 2.34 tells us that h′′ is connected to an H-component h′′′ of
[p−, h−] (respectively [h+, p+]) and h′′ and h′′′ satisfy

dX(h′′−, h′′′− ) ≤ κ2 and dX(h′′+, h′′′+ ) ≤ κ2. (3.46)

Combining (3.45), (3.46), and (3.44), we see that

∣∣h′′′∣∣X ≥
∣∣e′l∣∣X − dX(h′′′− , (e′l)−)− dX(h′′′+ , (e′l)+)

≥ η0 − 2(κ1 + κ2) ≥ η,

where the last inequality comes from the definition of η0. Now we may apply
Lemma 2.29 to see that

|b|X = |[p−, h−]|X ≥ M + 1 > M

contradicting the fact that |b|X ≤ M.

Lemma 3.31. For any M ≥ 0 and Θ ≥ ζ = ζ(η0, C) (where η0 = η0(M) is the constant of
Lemma 3.30) there is B2 = B2(M, Θ, C) ≥ 0 such that the following is true.

Let b ∈ G with |b|X ≤ M. Let p = p1 . . . pn be a (B2, C, ζ, Θ)-tamable broken line, and
suppose that p̃ ∈ bHνb−1 for some ν ∈ N . Suppose that |b|X∪H is minimal among elements of
bHν and denote by Σ(p, Θ) = f0e1 f1 . . . fm−1em fm the Θ-shortcutting of the path p.
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If |p|X ≥ N1 (where N1 = N1(Θ, M) is the constant of Lemma 3.29) then (e1)− is a
non-terminal vertex of p1 p2, and (em)+ is a non-initial vertex of pn−1 pn. Moreover, if
|p1|X ≥ B2 (respectively, |pn|X ≥ B2), then (e1)− is a non-terminal vertex of p1 (respectively,
(em)+ is a non-initial vertex of pn).

Proof. Define B2 = max{B0, (4M + 8 + c0)Θ}. Denote by h the Hν-edge with h− = p−b
and p̃ = bh̃b−1. By Lemma 3.30 we have m = 1, and so by Lemma 3.29, h is connected
to e1.

We prove only the statement involving (e1)−, for a symmetrical argument shows the
corresponding statement for (e1)+. Suppose to the contrary, so that (e1)− is a vertex of
pi for i > 2. The subpath p′ of p with endpoints p′− = p− and p′+ = (e1)− is a
(4, c3)-quasigeodesic broken line in Γ(G, X ∪H) by Lemma 3.6. Each H-component h
of the segments of p′ satisfies |h|X ≤ Θ by Remark 3.1(c). Moreover, p2 is a subpath of
p′ and |p2|X ≥ B1 by tamability condition (i). Then by Lemma 2.28,

ℓ(p′) ≥ ℓ(p2) ≥
B2

Θ
≥ 4M + 8 + c0,

whence by quasigeodesicity of p′ we have

∣∣p′∣∣X∪H ≥ 1
4
ℓ(p′)− c3

4
≥ M + 2. (3.47)

On the other hand, we have dX∪H(p−, h−) = |b|X∪H ≤ |b|X ≤ M and that
dX∪H(h−, (e1)−) ≤ 1 since h and e1 are connected. It follows, then, that:

∣∣p′∣∣X∪H ≤ M + 1,

contradicting (3.47). This means that p′ cannot contain the entire subpath p2. Hence
p′− = (e1)− must be a non-terminal vertex of p1 p2. If, in addition, |p1|X ≥ B2 the same
argument shows (e1)− is a non-terminal vertex of p1, as p1 is also a subpath of p′.

3.7 Reduction to short conjugators

In this section we again follow the notation of Convention 3.3. Our aim now is to
obtain a metric version Theorem 1.2. We will first prove the special case for conjugates
of the peripheral subgroups by uniformly short elements. In this case, taking Q′ and
R′ with sufficiently deep index, the conjugator u ∈ ⟨Q′, R′⟩ in the statement of
theorem will be trivial. In particular, we will prove the following:

Proposition 3.32. For any M ≥ 0 there exist constants B3 = B3(M) ≥ 0 and
C4 = C4(M) ≥ 0 such that the following is true.
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Suppose Q′ ⩽ Q and R′ ⩽ R satisfy conditions (C1)-(C5) with constants B3, C4, and family
PM (see Notation 3.7). If P ∈ PM is such that ⟨Q′, R′⟩ ∩ P is infinite, then

⟨Q′, R′⟩ ∩ P = ⟨Q′ ∩ P, R′ ∩ P⟩.

Proof. Let P ∈ PM and suppose that ⟨Q′, R′⟩ ∩ P is infinite. We will fix the following
notation for the proof:

• P = bHνb−1 where ν ∈ N and b ∈ G with |b|X ≤ M;

• b1 ∈ bHν which has minimal length with respect to dX∪H and |b1|X ≤ ξM2 (as in
Remark 3.27), where ξ is the constant of Lemma 2.30;

• C′
0 = max{C0, 14δ}, where C0 is the constant of Lemma 3.15;

• η0 = η0(ξM2) is the constant of Lemma 3.30;

• B1 = B1(η0), C3 = C3(η0), and Θ1 = Θ1(η0) are the constants obtained from
Lemma 3.25 applied with η0;

• N1 = N1(Θ1, ξ0M2) and κ0 = κ0(C′
0) are the constants of Lemma 3.29;

• B3 = max{B1, B2(ξM2, Θ1, C′
0)}, where B2(ξM2, Θ1, C′

0) is the constant of
Lemma 3.31 and C4 = max{C3, M + C1 + 1}, where C1 is the constant of
Lemma 3.18.

By assumption, ⟨Q′, R′⟩ ∩ P is infinite, so there is an element g ∈ ⟨Q′, R′⟩ ∩ P with
|g|X ≥ N1. Let p = p1 . . . pn be a path representative of minimal type for g (as an
element of U⟨Q′, R′⟩V, with U = V = {1}) with p− = 1. If n = 1 then
g = p̃ ∈ (Q′ ∪ R′) ∩ P and we are done, so suppose that n > 1. We write h for the
Hν-edge of Γ(G, X ∪H) with h− = b1 and g = b1h̃b−1

1 .

We consider the shortcutting Σ(p, Θ1) = f0e1 f1 . . . fm−1em fm of p obtained from
Procedure 3.1. Lemma 3.24, together with the fact that p is minimal and n > 1, gives
us that |pi|X ≥ B3 for each i = 1, . . . , n. Moreover, Lemma 3.25 gives that p is
(B3, C′

0, ζ, Θ1)-tamable. Lemmas 3.30 and 3.31 tell us that m = 1 and that (e1)− and
(e1)+ are non-terminal and non-initial vertices of p1 and pn respectively. As such, we
may suppose that f0 and f1 are chosen to be subpaths of the geodesics p1 and pn

respectively, so that e1 is an H-component of Σ(p, Θ1). Moreover, Lemma 3.29 implies
that e1 is connected to h with

dX(h−, (e1)−) ≤ κ0 and dX(h+, (e1)+) ≤ κ0. (3.48)

It follows that (e1)−Hν = b1Hν = bHν. Denote by h1, . . . , hn the pairwise connected
Hν-components of the segments p1, . . . , pn that constitute the instance of consecutive
backtracking associated to e1.

We will inductively construct a sequence of paths p′1, . . . , p′n−1 (cf. Proposition 3.22)
with the following properties:

• (p′1)− = 1;
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• p̃′i ∈ (Q′ ∪ R′) ∩ P for each i = 1, . . . , n − 1;

• (p′i)
−1 pi ∈ S for each i = 1, . . . , n − 1.

It is straightforward to verify that p1 satisfies the hypotheses of Lemma 3.21 with
u = 1, v = (e1)−, and subgroup bHνb−1. Thus there is p′1 with
(p′1)− = 1, p̃′1 ∈ (Q′ ∪ R′) ∩ P, and (p′1)

−1
+ (p1)+ ∈ S. Similarly, for any 1 < i ≤ n − 1,

we can use Lemma 3.18 to verify that we can apply Lemma 3.21 to the path pi with
u = (p′i−1)+, v = (hi)+, and P = bHνb−1. We thus obtain a path p′i with
(p′i)− = (p′i−1)+, p̃′i ∈ (Q′ ∪ R′) ∩ P, and (p′i)

−1 pi ∈ S.

We will write z = (p′n−1)+ = p̃′1 . . . p̃′n−1 ∈ ⟨Q′ ∩ P, R′ ∩ P⟩. Since g ∈ P and z ∈ P, it is
also true that z−1g ∈ P. Moreover,

z−1g = z−1(pn−1)+(pn−1)
−1
+ g

= ((p′n−1)
−1
+ (pn−1)+) p̃n ∈ S(Q′ ∪ R′) = Q′ ∪ R′,

so that z−1g ∈ (Q′ ∩ P) ∪ (R′ ∩ P). Thus g = zz−1g ∈ ⟨Q′ ∩ P, R′ ∩ P⟩.

Since g was an arbitrary element of ⟨Q′, R′⟩ ∩ P with |g|X ≥ N1, we have shown that
all but finitely many elements of ⟨Q′, R′⟩ ∩ P lie in ⟨Q′ ∩ P, R′ ∩ P⟩. Now applying
Lemma 2.2 shows that the former subgroup is contained in the latter. The reverse
inclusion is immediate.

To complete the proof of the theorem, we reduce computation of the subgroup
⟨Q′, R′⟩ ∩ P, where P = bHνb−1 is an arbitrary maximal parabolic subgroup, to the
case when P belongs to a fixed finite set of maximal parabolic subgroups. An
application of Proposition 3.32 will then yield the general result.

To do this, we observe that when ⟨Q′, R′⟩ ∩ P is infinite, the conjugator b has a
decomposition as an element of ⟨Q′, R′⟩Qx or ⟨Q′, R′⟩Rx where x ∈ G has uniformly
bounded length with respect to dX. Thus, up to conjugation by an element in ⟨Q′, R′⟩,
we need only consider intersections of the form ⟨Q′, R′⟩ ∩ sxHνx−1s−1, where
s ∈ Q ∪ R and ν ∈ N .

Lemma 3.33. There are constants B4 ≥ 0 and σ ≥ 0 such that the following is true.

Suppose Q′ ⩽ Q and R′ ⩽ R satisfy conditions (C1)-(C5) with constants B4, C3(1) (obtained
from Lemma 3.25) and family P0 (as in Notation 3.7, with M = 0). Let P = bHνb−1 be a
maximal parabolic subgroup, with |b|X∪H minimal among elements of bHν.

Suppose that ⟨Q′, R′⟩ ∩ P is infinite. Then there are elements s ∈ Q ∪ R, u ∈ ⟨Q′, R′⟩, and
x ∈ G such that b = usx and |x|X ≤ σ. In particular,

⟨Q′, R′⟩ ∩ P = u
(
⟨Q′, R′⟩ ∩ sxHνx−1s−1

)
u−1,

and usxHνx−1s−1u−1 = P. Moreover, if Q′ ∩ P or R′ ∩ P is infinite, then we may take u = 1
in the above.
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p− p+
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≤ ε

≤ κ0

FIGURE 3.12: Illustration of Lemma 3.33.

Proof. We define the following notation for this proof:

• C′
0 = max{C0, 14δ}, where C0 is the constant of Lemma 3.15;

• ζ = ζ(1), Θ1 = Θ1(1), B1 = B1(1), and C3 = C3(1) are the constants of
Lemma 3.25;

• B4 = B0(Θ1, C′
0) is the constant of Proposition 3.4;

• N1 = N1(Θ1, |b|X) is obtained from Lemma 3.29;

• σ = κ0 + ε, where κ0 = κ0(C′
0) is the constant of Lemma 3.29.

Since ⟨Q′, R′⟩ ∩ P is infinite, there is an element g ∈ ⟨Q′, R′⟩ with |g|X ≥ N1. Let
p = p1 . . . pn be a minimal type path representative of g (as an element of U⟨Q′, R′⟩V,
with U and V trivial) with p− = 1, and let h be the Hν-edge of Γ(G, X ∪H) such that
h− = b and g = p̃ = bh̃b−1.

By Proposition 3.25, p is (B4, C′
0, ζ, Θ1)-tamable. We will denote by

Σ(p, Θ1) = f0e1 f1 . . . fm−1em fm the Θ1-shortcutting of p obtained from Procedure 3.1.
Then by Lemma 3.29, h is connected to ek for some k = 1, . . . , m with

dX(b, (ek)−) = dX(h−, (ek)−) ≤ κ0. (3.49)

Take u = (pi)− ∈ ⟨Q′, R′⟩. If p̃i ∈ Q′ then by quasiconvexity of Q, there is an element
s ∈ Q such that

dX(us, (ek)−) ≤ ε. (3.50)

Otherwise p̃i ∈ R′, whence by the quasiconvexity of R, there is an element s ∈ R
satisfying the same inequality. In either case, take x = s−1u−1b and observe that
combining (3.49) with (3.50) gives

|x|X = dX(b, us) ≤ dX(b, (ek)−) + dX(us, (ek)−) ≤ κ0 + ε = σ.
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It is immediate from the definition of x that b = usx, whence
us−1x−1Hνxsu−1 = bHνb−1 = P. It follows that

u
(
⟨Q′, R′⟩ ∩ sxHνx−1s−1

)
u−1 = u⟨Q′, R′⟩u−1 ∩ usxHνx−1s−1u−1

= ⟨Q′, R′⟩ ∩ P,

as required.

Finally, note that when Q′ ∩ P is infinite we may take g ∈ Q′ ∩ P with |g|X ≥ N1, in
which case p consists of a single geodesic segment. Following the above argument in
this case gives that ek is an Hν-component of this single segment and u = p− = 1. The
case with R′ ∩ P infinite is identical.

When s is not an element of Q′ or R′, the element sx obtained above cannot be further
decomposed in a useful way, but it does fit into a sort of dichotomy. We find that
either ⟨Q′, R′⟩ intersects sxHνx−1s−1 in an elementary way, or that sx is an element of
Q′yHν or R′yHν, where y has uniformly bounded length with respect to dX. This
completes the reduction (up to ⟨Q′, R′⟩-conjugacy) of computing ⟨Q′, R′⟩ ∩ P from
arbitrary maximal parabolic P ⩽ G to finitely many conjugates of Hν, for ν ∈ N .

Proposition 3.34. There are constants B5, C5, τ ≥ 0 such that if Q′ ⩽ Q and R′ ⩽ R satisfy
(C1)-(C5) with B5, C5 and family P0 (as in Notation 3.7) then the following is true.

Let s ∈ Q ∪ R, x ∈ G with |x|X ≤ σ (where σ is the constant of Lemma 3.33), and ν ∈ N . If
⟨Q′, R′⟩ ∩ sxHνx−1s−1 is infinite then one of the following holds:

• s ∈ Q′ ∪ R′ and ⟨Q′, R′⟩ ∩ sxHνx−1s−1 = s⟨Q′ ∩ xHνx−1, R′ ∩ xHνx−1⟩s−1, or
• s ∈ Q and ⟨Q′, R′⟩ ∩ sxHνx−1s−1 = Q′ ∩ sxHνx−1s−1, or
• s ∈ R and ⟨Q′, R′⟩ ∩ sxHνx−1s−1 = R′ ∩ sxHνx−1s−1, or
• there are elements t ∈ Q′ ∪ R′ and y ∈ G, with |y|X ≤ τ, such that sx ∈ tyHν. In

particular,
⟨Q′, R′⟩ ∩ sxHνx−1s−1 = t

(
⟨Q′, R′⟩ ∩ yHνy−1

)
t−1

and tyHνy−1t−1 = sxHνx−1s−1.

Proof. In this proof we use the following notation:

• C0 and C1 are the constants of Lemmas 3.15 and 3.18 respectively, and
C′

0 = max{C0, 14δ};
• x1 ∈ xHν has minimal length with respect to dX∪H and |x1|X ≤ ξσ2 (as in

Remark 3.27), where ξ is the constant of Lemma 2.30;
• η0 = η0(ξσ2) is the constant of Lemma 3.30;
• Θ1 = Θ1(η0) is the constant obtained from Lemma 3.25;
• B5 = max{B1(η0), B2(ξσ2, Θ1, C′

0), B3(σ)} and C5 = max{C3(η0), C4(σ)}, where
B1(η0) and C3(η0) are the constants of Lemma 3.25 B2(ξ0σ2, Θ1, C′

0) is the
constant of Lemma 3.31, and B3(σ) and C4(σ) are those of Proposition 3.32;
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• κ0 = κ0(C′
0) and N1 = N1(Θ1, ξ0σ2) are the constants of Lemma 3.29;

• τ = max{C1, B5 + ξ0σ2 + κ0}.

If s ∈ Q′ ∪ R′, then s−1⟨Q′, R′⟩s = ⟨Q′, R′⟩ so that

⟨Q′, R′⟩ ∩ sxHνx−1s−1 = s
(
⟨Q′, R′⟩ ∩ xHνx−1

)
s−1.

Applying Theorem 3.32 gives us that ⟨Q′, R′⟩ ∩ xHνx−1 = ⟨Q′ ∩ xHνx−1, R′ ∩ xHνx−1⟩.
Combining these two equalities gives the first case of the proposition. Thus we may
assume s /∈ Q′ ∪ R′ for the remainder of the proof.

If s ∈ Q, we define U = s−1Q′, and otherwise set U = s−1R′. In either case let
V = U−1. The sets U and V are Q′/R′-absorbing in both cases. Throughout this proof
we will assume that s ∈ Q, with the case that s ∈ R being identical. Note that these
two cases are mutually exclusive, for otherwise we would have s ∈ Q ∩ R = Q′ ∩ R′

by (C1), contradicting our assumption.

If g ∈ Q′ for all g ∈ ⟨Q′, R′⟩ ∩ sxHνx−1s−1 with |g|X ≥ N1 + 2|s|X, then by Lemma 2.2
we have ⟨Q′, R′⟩ ∩ sxHνx−1s−1 = Q′ ∩ sxHνx−1s−1 and we are done. Suppose to the
contrary, then, that there exists some element g ∈ ⟨Q′, R′⟩ ∩ sxHνx−1s−1 with
|g|X ≥ N1 + 2|s|X such that g /∈ Q′. Then s−1gs /∈ s−1Q′s, and so s−1gs (as an element
of U⟨Q′, R′⟩V) has a minimal type path representative p = up1 . . . pnv with n > 0 and
p− = 1. Moreover, we have

∣∣s−1gs
∣∣

X ≥ N1.

Since x1Hν = xHν and p̃ ∈ xHνx−1, we have p̃ ∈ x1Hνx−1
1 also. Let h be the Hν-edge of

Γ(G, X ∪H) with h− = x1 and s−1gs = p̃ = x1h̃x−1
1 . Denote the Θ1-shortcutting of p

by Σ(p, Θ1) = f0e1 f1 . . . fm−1em fm.

By Lemma 3.25 the path p is (B5, C′
0, ζ, Θ1)-tamable. Lemma 3.29 tells us that h is

connected to ek for some k = 1, . . . , m and dX(h−, (ek)−) ≤ κ0. Moreover, by
Lemma 3.30, k = m = 1, so that Σ(p, Θ1) = f0e1 f1 and

dX(h−, (e1)−) ≤ κ0. (3.51)

Applying Lemma 3.31, we see that (e1)− is a non-terminal vertex of up1 and (e1)+ is a
non-initial vertex of pnv. In any of the cases, p1 contains an Hν-component h′ that is
connected to e1 (and is thus, in turn, connected to h). We will bound dX(ũ, h′−).

Case 1: Suppose first that (e1)− is a vertex of p1. As h′ is the Hν-component of p1

connected to e1, it must be that (e1)− = h′−. By Lemma 3.31, we must have
dX(1, ũ) = |u|X ≤ B5. Further, dX(1, h−) = |x1|X ≤ ξ0σ2. Combining these two
inequalities with (3.51), we obtain

dX(ũ, h′−) = dX(ũ, 1) + dX(1, h−) + dX(h−, h′−)

≤ B5 + ξ0σ2 + κ0.
(3.52)
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Case 2: Suppose now that (e1)− is a non-terminal vertex of u. Since (e1)+ is a vertex of
either pn or v, e1 comes from an instance of consecutive backtracking along the
segments u, p1, . . . , pn and possibly v. In particular, u contains an Hν-component
connected to h′. By Lemma 3.18,

dX(ũ, h′−) = dX(u+, h′−) ≤ C1 (3.53)

concluding the second case.

Since ũ ∈ s−1Q′, there is some t ∈ Q′ such that ũ = s−1t. Take y = t−1sh′−. Following
(3.52) and (3.53), we have

|y|X = dX(s−1t, h′−) = dX(ũ, h′−) ≤ τ.

Moreover, s−1ty = h′− ∈ x1Hν = xHν since h′ and h are connected, and so sx ∈ tyHν. It
follows that tyHνy−1t−1 = sxHνx−1s−1 and

t
(
⟨Q′, R′⟩ ∩ yHνy−1

)
t−1 = t⟨Q′, R′⟩t−1 ∩ tyHνy−1t−1

= ⟨Q′, R′⟩ ∩ sxHνx−1s−1

as required.

3.8 Structure of maximal parabolic subgroups

This section is dedicated to proving the following theorem.

Theorem 3.35. There is s finite set K of maximal parabolic subgroups of G and constants
B6, C6 ≥ 0 such that if Q′ ⩽ Q and R′ ⩽ R satisfy conditions (C1)-(C5) with constants
B ≥ B6, C ≥ C6, and family P ⊇ Pτ (as in Notation 3.7), where τ is the constant obtained
from Proposition 3.34, then the following is true.

Suppose that P is such that ⟨Q′, R′⟩ ∩ P infinite. Then there is an element u ∈ ⟨Q′, R′⟩ such
that either

(i) ⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P or,
(ii) ⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P or,

(iii) ⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ K, R′ ∩ K⟩u−1, where K = u−1Pu is an element of K.

Moreover, if either Q′ ∩ P or R′ ∩ P is infinite, then we may take u = 1 in cases (i) and (ii),
and u ∈ Q′ ∪ R′ in case (iii).

Proof. We define B6 = max{B3(τ), B4, B5} and C6 = max{C3(1), C4(τ), C5}, where
B3(τ) and C4(τ) are the constants of Theorem 3.32, B4 is the constant of Lemma 3.33,
C3(1) is the constant from Lemma 3.25, and B5 and C5 are the constants of
Proposition 3.34. Take K to be the set {yHνy−1 ∈ G | ν ∈ N , |y|X ≤ τ}.
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Let Q′ ⩽ Q and R′ ⩽ R be subgroups satisfying conditions (C1)-(C5) with constants
B ≥ B6, C ≥ C6, and finite family P ⊇ Pτ. Let P = bHνb−1 be a maximal parabolic
subgroup of G such that ⟨Q′, R′⟩ ∩ P is infinite and |b|X∪H minimal among elements of
bHν.

By Lemma 3.33, there is v ∈ ⟨Q′, R′⟩ and s ∈ Q ∪ R such that

⟨Q′, R′⟩ ∩ P = v
(
⟨Q′, R′⟩ ∩ sxHνx−1s−1

)
v−1, (3.54)

where ν ∈ N and x ∈ G with |x|X ≤ σ and b = vsx. It follows that

vsxHνx−1s−1v−1 = bHνb−1 = P. (3.55)

Moreover, when Q′ ∩ P or R′ ∩ P is infinite, v may be taken to be trivial.

Applying Proposition 3.34, we have either that

⟨Q′, R′⟩ ∩ sxHνx−1s−1 = s⟨Q′ ∩ xHνx−1, R′ ∩ xHνx−1⟩s−1 with s ∈ Q′ ∪ R′, (3.56)

or that one of the following equations holds

⟨Q′, R′⟩ ∩ sxHνx−1s−1 = Q′ ∩ sxHνx−1s−1 with s ∈ Q,

⟨Q′, R′⟩ ∩ sxHνx−1s−1 = R′ ∩ sxHνx−1s−1 with s ∈ R,
(3.57)

or finally that
⟨Q′, R′⟩ ∩ sxHνx−1s−1 = t

(
⟨Q′, R′⟩ ∩ yHνy−1

)
t−1 (3.58)

where t ∈ (Q′ ∪ R′), y ∈ G with |y|X ≤ τ, and sx ∈ tyHν so that

tyHνy−1t−1 = sxHνx−1s−1. (3.59)

If (3.56) holds, then we set u = vs and K = xHνx−1. The equality

⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ K, R′ ∩ K⟩u−1

then follows immediately from (3.54). Observe that (3.55) tells us that K = u−1Pu.
Moreover, noting that |x|X ≤ σ ≤ τ, we have that xHνx−1 ∈ K, as required.

If instead one of the equations of (3.57) holds, then from (3.54) we obtain

⟨Q′, R′⟩ ∩ P = v
(

Q′ ∩ s−1x−1Hνxs
)

v−1

or
⟨Q′, R′⟩ ∩ P = v

(
R′ ∩ s−1x−1Hνxs

)
v−1,

where in either case setting u = v gives the desired conclusion by (3.55).
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Lastly, if (3.58) holds, then (3.54) gives that

⟨Q′, R′⟩ ∩ P = vt
(
⟨Q′, R′⟩ ∩ yHνy−1

)
t−1v−1. (3.60)

By the choice of B and C, and the fact that |y|X ≤ τ, we can apply Theorem 3.32 to
obtain

⟨Q′, R′⟩ ∩ yHνy−1 = ⟨Q′ ∩ yHνy−1, R′ ∩ yHνy−1⟩. (3.61)

Combining (3.60) and (3.61) we conclude that

⟨Q′, R′⟩ ∩ P = vt⟨Q′ ∩ K, R′ ∩ K⟩t−1v−1,

where K = yHνy−1 ∈ K. We set u = vt and note that u ∈ ⟨Q′, R′⟩, since t ∈ Q′ ∪ R′.
Since v = 1 when Q′ ∩ P or R′ ∩ P is infinite, we have u ∈ Q′ ∪ R′ in these cases.
Finally, observing that (3.55) and (3.59) give K = t−1sxHνx−1s−1t = u−1Pu completes
the proof.

We note that in this setting nothing can yet be said about the intersections Q′ ∩ K and
R′ ∩ K appearing in case (iii) of the above theorem. A priori, it may be the case that
⟨Q′, R′⟩ ∩ P is infinite, while both of these intersections are finite. In Section 4.6, we are
able to rule out (in a strong way) such exceptional possibilities by passing to
appropriately deep finite index subgroups.
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Chapter 4

Separability and virtual
combination theorems

We continue to work under Conventions 2.1 and 3.3. Suppose now that G is QCERF
and its peripheral subgroups are double coset separable. In Theorem 4.12 we use the
separability assumptions on G and {Hν | ν ∈ N} to deduce the existence of a finite
index subgroup M ⩽ f G such that Q′ = Q ∩ M ⩽ f Q, R′ = R ∩ M ⩽ f R satisfy
conditions (C1)-(C5) with constants B and C large enough to apply Theorem 1.8 (as
suggested in Remark 1.7). Conditions (C1) and (C4) are essentially automatic.
Conditions (C2), (C3) and (C5) can be assured to hold for the subgroups Q′ and R′

using Lemma 4.5 by the QCERF condition on G, separability of double cosets PS
(where P is one of finitely many maximal parabolic subgroups) and double coset
separability of the peripheral subgroups, respectively.

The remaining technical difficulty is in showing that the double cosets of the form PS
as above are separable in G. To this end, we prove a general result about lifting
separability of certain double cosets in amalgamated free products. This is then
combined with a result of Martı́nez-Pedroza (Theorem 2.44), allowing us to deduce
Theorem 1.1 from Theorem 1.8. We note that simplifications are possible in the special
cases that the peripheral subgroups of G are virtually abelian, or when Q and R have
almost compatible parabolics.

Finally, we deduce the full-strength version of Theorem 1.2 on the structure of
maximal parabolic subgroups of ⟨Q′, R′⟩. To do this, we use the QCERF condition,
together with the fact that the set K obtained from Theorem 3.35 is finite and
independent of Q′ and R′, to find appropriate finite index subgroups that avoid all the
possible pathologies. As an consequence, we obtain Theorem 1.4 and hence
Corollary 1.5. We finish by noting a number of other applications of this result.
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4.1 The profinite topology

Let G be a group. The profinite topology on G is the topology PT (G) whose basis
consists of left cosets to finite index subgroups of G.

A subset Z ⊆ G is called separable (in G) if it is closed in PT (G). Evidently finite
unions and arbitrary intersections of separable subsets are separable. It is easy to see
that a subset Z ⊆ G is separable if and only if for every g ∈ G \ Z, there is a finite
group Q and a homomorphism φ : G → Q such that φ(g) /∈ φ(Z) in Q. A subgroup
H ≤ G is separable if and only if it is the intersection of the finite index subgroups of
G containing it.

We recall that a group G is called residually finite if the trivial subgroup is separable in
G, and it is called LERF if each of its finitely generated subgroups are separable. If G is
a relatively hyperbolic group, it is called QCERF if each of its finitely generated
relatiely quasiconvex subgroups are separable.

The following observation stems from the fact that the group operations of taking an
inverse and multiplying by a fixed element are homeomorphisms with respect to the
profinite topology.

Remark 4.1. Let Z be a separable subset of a group G. Then for every g ∈ G the subsets
Z−1, gZ and Zg are also separable.

Lemma 4.2. Suppose that A is a subgroup of a group G.

(a) Every subset of A which is closed in PT (G) is also closed in PT (A).

(b) If every finite index subgroup of A is separable in G then every closed subset of PT (A)

is closed in PT (G).

Proof. Claim (a) immediately follows from the observation that the intersection of A
with any basic closed subset from PT (G) is either empty or is a basic closed subset of
PT (A).

If each finite index subgroup of A is separable in G then, in view of Remark 4.1, every
basic closed set in PT (A) is closed in the profinite topology of G. Claim (b) of the
lemma now follows from the fact that any closed subset of A is the intersection of
basic closed sets.

Lemma 4.3. Let G be a group with subgroups A, B. Suppose that A′ ⩽ f A, B′ ⩽ f B and
A′B′ is separable in G. Then AB is separable in G.

Proof. Let A =
⊔m

i=1 ai A′ and B =
⊔n

j=1 B′bj. Then AB =
⋃m

i=1
⋃n

j=1 ai A′B′bj, which is
separable in G by Remark 4.1.
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We recall the following preorder on subsets of G introduced at the beginning of this
thesis. Given subsets U, V ⊆ G, we will write U ≼ V if there exists a finite subset
Y ⊆ G such that U ⊆ VY.

Lemma 4.4. Let A, B be subgroups of a group G such that A ≼ B. If B is separable in G then
so are the double cosets AB and BA.

Proof. By (Minasyan, 2005b, Lemma 2.1) A ∩ B has finite index in A, so
A =

⊔m
i=1 ai(A ∩ B), for some a1, . . . , am ∈ A. It follows that AB =

⋃m
i=1 aiB, so it is

separable by Remark 4.1. The same remark also implies that BA = (AB)−1 is
separable in G.

The main use of the profinite topology in this thesis stems from the following
elementary facts.

Lemma 4.5. Let G be a group generated by a finite set X, and let P ⩽ G be a subgroup.
Suppose that Z is a separable subset of P.

(a) If a finite subset U ⊆ P is disjoint from Z then there is a normal finite index subgroup
N ◁ f P such that U ∩ ZN = ∅. Thus the image of U in the quotient P/N will be
disjoint from the image of Z.

(b) For every constant C ≥ 0 there is a finite index normal subgroup N ◁ f P such that

minX(ZN \ Z) ≥ C.

(c) For any finite subset A ⊆ P and any C ≥ 0 there exists N ◁ f P such that

minX(aZN \ aZ) ≥ C, for all a ∈ A.

Proof. (a) Let U = {u1, . . . , um} ⊆ P. Since ui /∈ Z and Z is separable in P, there exists
Ni ◁ f P such that uiNi ∩ Z = ∅, for each i = 1, . . . , m. We set N =

⋂m
i=1 Ni ◁ f P, so that

uiN ∩ Z = ∅. That is, ui /∈ ZN for all i = 1, . . . m. Therefore U ∩ ZN = ∅ and (a) has
been proved.

Claim (b) follows by applying claim (a) to the finite subset U = {g ∈ P \ Z | |g|X < C}
of P.

To prove (c), suppose that A = {a1, . . . , ak} ⊆ P. By Remark 4.1, ajZ is separable in P,
for every j = 1, . . . , k, so, according to part (b), there exists Nj ◁ f P such that

minX(ajZNj \ ajZ) ≥ C, for each j = 1, . . . , k.

It is straightforward to verify that the normal subgroup N =
⋂k

j=1 Nj ◁ f P has the
required property.

We can use separability to lift finite index subgroups of a subgroup to finite index
subgroups of the entire group.
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Lemma 4.6. Let G be a group with subgroups K ⩽ f H ⩽ G. If K is separable in G, then there
is L ⩽ f G such that L ∩ H = K

Proof. Since K is of finite index in H, we can write H = K ∪ Kh1 ∪ · · · ∪ Khm for some
h1, . . . hm ∈ H \ K. The subgroup K is separable in G, meaning that it is closed in
PT (G). Following Remark 4.1, the union Kh1 ∪ · · · ∪ Khm is also closed in PT (G).
Thus the subset (G \ H) ∪ K = G \ (Kh1 ∪ · · · ∪ Khm) is open in PT (G) and contains
the identity. It follows from the definition of the profinite topology that there is a finite
index normal subgroup N ◁ f G with N ⊆ (G \ H) ∪ K. Observe that Khi ∩ N = ∅, for
every i = 1, . . . , m, so N ∩ H ⩽ K. Now set L = KN ⩽ f G. Then
L ∩ H = KN ∩ H = K(N ∩ H) = K, as required.

Separability of certain double cosets may also be used for similar purposes.

Lemma 4.7. Let G be a group, H, Q ⩽ G be subgroups of G and let K ⩽ f H be a finite index
subgroup of H, with Q ∩ H ⊆ K. If KQ is separable in G, then there is a finite index subgroup
M ⩽ f G such that Q ⊆ M and M ∩ H ⊆ K.

Proof. Let H = K ∪ Kh1 ∪ · · · ∪ Khm, where h1, . . . , hm ∈ H \ K. Note that
KQ ∩ H = K(Q ∩ H) = K, so h1, . . . , hm /∈ KQ. The double coset KQ is profinitely
closed, so, by Lemma 4.5(a), there exists N ◁ f G such that

{h1, . . . , hm} ∩ KQN = ∅.

Let M = QN ⩽ f G, so that the above implies Khi ∩ M = ∅, for each i = 1, . . . , m. We
then have Q ⊆ M and M ∩ H ⊆ K, as required.

For the remainder of this section we take G to be a relatively hyperbolic group.

Lemma 4.8. Suppose that G is QCERF. If Q is a finitely generated relatively quasiconvex
subgroup of G then every subset of Q which is closed in PT (Q) is also closed in PT (G).

Proof. By Lemma 2.39 every subgroup of finite index in Q is finitely generated and
relatively quasiconvex, hence it is separable in G as G is QCERF. The claim of the
lemma now follows from Lemma 4.2(b).

When G is residually finite, we have control over finite parabolic subgroups of
relatively quasiconvex subgroups, up to passing to finite index subgroups. Note that
we do not require G or Q to be finitely generated in the following.

Proposition 4.9. Suppose that G is residually finite, and let Q ⩽ G be a relatively
quasiconvex subgroup. Then there is a finite index subgroup Q′ ⩽ f Q such that for any
maximal parabolic subgroup P ⩽ G, the subgroup Q′ ∩ P is either infinite or trivial.
Moreover, if Q is finitely generated, Q′ may be taken to be normal in Q.
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Proof. Let S be a set of representatives of conjugacy classes of nontrivial elements of G
belonging to more than one maximal parabolic subgroups of G. Corollary 2.27 tells us
that the set S is finite. That G is residually finite means exactly that the trivial
subgroup {1} is separable, and {1} ∩ S = ∅ so Lemma 4.5(a) gives us a finite index
normal subgroup G1 ◁ f G with G1 ∩ S = ∅. As G1 is normal, it thus contains no
nontrivial elements that belong to more than one maximal parabolic subgroup of G.

Let Q1 = G1 ∩ Q ◁ f Q. Now by (Osin, 2006b, Theorem 4.2), there are only finitely
many conjugacy classes of finite order hyperbolic elements in Q1 (an element of G is
called hyperbolic if it is not conjugate to an element of Hν for any ν ∈ N ). Similarly to
before, by residual finiteness there is Q′ ◁ f Q1 excluding each of these elements by
Lemma 4.5(a). When Q is finitely generated, we may replace Q′ by a finite index
subgroup that is characteristic in Q1 (Lyndon and Schupp, 1977, Theorem IV.4.7), and
is hence normal in Q.

We will show that the subgroup Q′ ⩽ f Q has the desired property. Let P be a set of
maximal parabolic subgroups of G such that Q1 is hyperbolic relative to the collection
of infinite subgroups {Q1 ∩ H | H ∈ P} (see (Hruska, 2010, Theorem 9.4)). Let P ⩽ G
be a maximal parabolic subgroup of G, and suppose that Q′ ∩ P is nontrivial. If Q′ ∩ P
contains an element of infinite order then we are done, so suppose x ∈ Q′ ∩ P is a
nontrivial element of finite order. By construction, Q′ contains no elements of finite
order that are hyperbolic in Q1, so x must be parabolic in Q1. That is, there is q ∈ Q1

such that qxq−1 ∈ Q1 ∩ H for some H ∈ P . It follows that

x ∈ Q1 ∩ P ∩ q−1Hq ⊆ G1 ∩ P ∩ q−1Hq,

whence we must have P = q−1Hq by the definition of G1. This implies that

Q1 ∩ P = Q1 ∩ q−1Hq = q(Q1 ∩ H)q−1

and since Q1 ∩ H is infinite, Q1 ∩ P is infinite as well. The result then follows by
noting that Q′ ∩ P has finite index in Q1 ∩ P.

4.2 Using separability to establish metric conditions

For this section, let G be a group generated by finite set X, fix subgroups Q, R ⩽ G and
a finite collection P of subgroups of G. As usual, we write S = Q ∩ R. We will exhibit
the existence of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R which satisfy the metric
conditions (C1)–(C5), using certain separability assumptions. The existential
statement we are primarily interested in quantifies the existence of finite index
subgroups satisfying a property as follows:
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(E) there exists L ⩽ f G with S ⊆ L such that for any L′ ⩽ f L satisfying S ⊆ L′, there
exists M ⩽ f L′ with Q ∩ L′ ⊆ M such that for any M′ ⩽ f M satisfying
Q ∩ L′ ⊆ M′, we can choose Q′ = Q ∩ M′ and R′ = R ∩ M′ ⩽ f R.

Remark 4.10. The statement (E) above is stable under intersections. That is, suppose
that for i = 1, 2, there are subgroups Li ⩽ f G with S ⊆ Li such that for any L′

i ⩽ f Li

satisfying S ⊆ L′
i, there exists Mi ⩽ f L′

i with Q ∩ L′
i ⊆ Mi such that for any M′

i ⩽ f Mi

satisfying Q ∩ L′
i ⊆ M′

i , the subgroups Q ∩ M′
i and R ∩ M′

i ⩽ f R satisfy some
properties Pi. Take L = L1 ∩ L2 ⩽ f G and note that S ⊆ L, and let L′ ⩽ f L be such that
S ⊆ L′. Now L′ ⩽ f L1 ∩ L2 ⩽ f L1, L2, so there are subgroups Mi ⩽ f L′ with
Q ∩ L′ ⊆ Mi for i = 1, 2. Now take M = M1 ∩ M2, and note that Q ∩ L′ ⊆ M. Let
M′ ⩽ f M be any finite index subgroup with Q ∩ L′ ⊆ M′. Then M′ ⩽ f M1, M2 so the
subgroups Q′ = Q ∩ M′ and R′ = R ∩ M′ satisfy both properties P1 and P2 by the
statement of (E).

We start with finding assumptions for establishing (C2) and (C3).

Proposition 4.11. Suppose that Q and R are separable in G and PS is separable in G, for each
P ∈ P . Then for any constants B, C ≥ 0 there exists a finite index subgroup L ⩽ f G, with
S ⊆ L, such that conditions (C2) and (C3) are satisfied by arbitrary subgroups Q′ ⩽ Q ∩ L
and R′ ⩽ R ∩ L.

Proof. Combining the separability of Q and R in G with Lemma 4.5, we can find
E1, E2 ◁ f G such that minX(QE1 \ Q) ≥ B and minX(RE2 \ R) ≥ B. Set
N0 = E1 ∩ E2 ◁ f G and observe that

QSN0Q = QN0Q = QQN0 = QN0 ⊆ QE1,

as Q is a subgroup containing S and normalising N0 in G. Similarly,
RSN0R = RN0 ⊆ RE2, therefore

minX(QSN0Q \ Q) ≥ B and minX(RSN0R \ R) ≥ B. (4.1)

Let P = {P1, . . . , Pk}. The assumptions imply that for every i ∈ {1, . . . , k} the double
coset PiS is separable in G, hence we can apply Lemma 4.5 again to find finite index
normal subgroups Ni ◁ f G satisfying

minX(PiSNi \ PiS) ≥ C, for each i = 1, . . . , k. (4.2)

Now set L =
⋂k

i=0 SNi ⩽ f G, and choose arbitrary subgroups Q′ ⩽ Q ∩ L and
R′ ⩽ R ∩ L. Then S ⊆ L and ⟨Q′, R′⟩ ⊆ L ⊆ SNi, for all i = 0, . . . , k, by construction,
hence (C2) holds by (4.1) and (C3) holds by (4.2), as desired.

We are now in position to prove the main result of this section.
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Theorem 4.12. Suppose that that for every P ∈ P all of the following hold:

(S1) Q and R are separable in G;
(S2) the double coset PS is separable in G;
(S3) for all K ⩽ f P and T ⩽ f Q, satisfying S ⊆ T and T ∩ P ⊆ K, the double coset KT is

separable in G;
(S4) for all U ⩽ f Q ∩ P, the double coset U(R ∩ P) is separable in P.

Then, given arbitrary constants B, C ≥ 0, there exist a family of pairs of finite index subgroups
Q′ ⩽ f Q and R′ ⩽ f R as in (E) such that conditions (C1)–(C5) are all satisfied.

Proof. The idea is that assumption (S1) will take care of condition (C2), (S2) will take
care of (C3), and that (S3) and (S4) will take care of (C5). The subgroups Q′ and R′ will
satisfy Q′ = Q ∩ M′ and R = R ∩ M′, for some M′ ⩽ f G, with S ⊆ M′, which will
immediately imply (C1) and (C4).

Let P = {P1, . . . , Pk}. Arguing just like in the proof of Proposition 4.11 (using the
assumptions (S1) and (S2)), we can finite finite index normal subgroups Ni ◁ f G,
i = 0, . . . , k, such that

minX(QSN0Q \ Q) ≥ B, minX(RSN0R \ R) ≥ B and

minX(PiSNi \ PiS) ≥ C, for each i = 1, . . . , k.

We can now define a finite index subgroup L ⩽ f G by L =
⋂k

i=0 SNi. Note that S ⊆ L
by construction, and for each i ∈ {1, . . . , k} we have

minX(QLQ \ Q) ≥ B, minX(RLR \ R) ≥ B and minX(PiL \ PiS) ≥ C. (4.3)

Choose an arbitrary finite index subgroup L′ ⩽ f L, with S ⊆ L′, and define
Q′ = Q ∩ L′, so that S ⩽ Q′ ⩽ f Q.

To construct R′ ⩽ f R, consider any i ∈ {1, . . . , k} and denote Qi = Q ∩ Pi, Ri = R ∩ Pi

and Q′
i = Q′ ∩ Pi ⩽ f Qi. Choose some elements ai1, . . . , aini ∈ Qi such that

Qi =
⊔ni

j=1 aijQ′
i. Assumption (S4) implies that the subset Q′

iRi is separable in Pi and
hence, by Lemma 4.5(c), there exists Fi ◁ f Pi such that

minX

(
aijQ′

iRiFi \ aijQ′
iRi

)
≥ C, for j = 1, . . . , ni. (4.4)

Define Ki = Q′
iFi ⩽ f Pi. Then Q′ ∩ Pi = Q′

i ⊆ Ki and aijKiRi = aijQ′
iRiFi, for each

j = 1, . . . , ni. Therefore, from (4.4) we can deduce that

minX

(
aijKiRi \ aijQ′

iRi

)
≥ C, for all j = 1, . . . , ni. (4.5)

By assumption (S3), the double coset KiQ′ is separable in G, so we can apply
Lemma 4.7 to find Mi ⩽ f G such that Q′ ⊆ Mi and Mi ∩ Pi ⊆ Ki.
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We now let M =
k⋂

i=1

Mi ∩ L′ and observe that Q′ ⩽ M ⩽ f L′ and M ∩ Pi ⊆ Ki for each

i ∈ {1, . . . , k}. Inequality (4.5) yields

minX

(
aij(M ∩ Pi)Ri \ aijQ′

iRi

)
≥ C, for all i = 1, . . . , k and j = 1, . . . , ni. (4.6)

We can now choose an arbitrary finite index subgroup M′ ⩽ f M, with Q′ ⊆ M′, and
define R′ = R ∩ M′. Observe that M′ ⩽ f G, by construction, hence R′ ⩽ f R.

Let us check that the subgroups Q′ and R′ obtained above satisfy conditions
(C1)–(C5). Indeed, by construction, S = Q ∩ R ⊆ Q′, so S ⊆ R ∩ M′ = R′, hence

S ⊆ Q′ ∩ R′ ⊆ Q ∩ R = S,

thus (C1) holds. We also have Q′ = Q ∩ L′ = Q ∩ M′, as Q′ ⊆ M′ ⊆ L′, hence

Q′ ⊆ Q ∩ ⟨Q′, R′⟩ ⊆ Q ∩ M′ = Q′,

thus Q ∩ ⟨Q′, R′⟩ = Q′. After intersecting both sides of the latter equation with an
arbitrary P ∈ P , we get QP ∩ ⟨Q′, R′⟩ = Q′

P, hence

Q′
P ⊆ QP ∩ ⟨Q′

P, R′
P⟩ ⊆ QP ∩ ⟨Q′, R′⟩ = Q′

P,

thus QP ∩ ⟨Q′
P, R′

P⟩ = Q′
P. Similarly, RP ∩ ⟨Q′

P, R′
P⟩ = R′

P, so condition (C4) is satisfied.

Conditions (C2) and (C3) hold by (4.3), because Q′, R′ ⊆ L by construction.

To prove (C5), take Pi ∈ P for any i ∈ {1, . . . , k}, and denote Qi = Q ∩ Pi, Q′
i = Q′ ∩ Pi,

Ri = R ∩ Pi and R′
i = R′ ∩ Pi, as before. For any q ∈ Qi there exists j ∈ {1, . . . , ni} such

that q ∈ aijQ′
i. It follows that

q⟨Q′
i, R′

i⟩Ri = aij⟨Q′
i, R′

i⟩Ri and qQ′
iRi = aijQ′

iRi. (4.7)

Since ⟨Q′
i, R′

i⟩ ⩽ M ∩ Pi, we can combine (4.7) with (4.6) to deduce that

minX

(
q⟨Q′

i, R′
i⟩Ri \ qQ′

iRi

)
≥ C,

which establishes condition (C5). Thus the proof is complete.

4.3 Double coset separability in amalgamated free products

In this section we develop a method for establishing the separability assumptions (S2)
and (S3) of Theorem 4.12 using amalgamated products. The idea is that when G is a
relatively hyperbolic group, P is a maximal parabolic subgroup and Q is a relatively
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quasiconvex subgroup of G, we can apply the combination theorem of
Martı́nez-Pedroza (Theorem 2.44) to find a finite index subgroup H ⩽ f P such that
A = ⟨H, Q⟩ ∼= H ∗H∩Q Q, so proving the separability of PQ in G can be reduced to
proving the separability of HQ in the amalgamated free product A.

The next proposition gives a criterion for showing separability of double cosets in
amalgamated free products.

Proposition 4.13. Let A = B ∗D C be an amalgamated free product, where we consider B, C
and D as subgroups of A with B ∩ C = D. Suppose that D is separable in A, and U ⊆ B,
V ⊆ C are arbitrary subsets.

If the product UD (respectively, DV) is separable in A then the product UC (respectively, BV)
is separable in A.

Proof. We will prove the statement in the case of UC, as the other case is similar. If
U = ∅ then UC = ∅, so we can suppose that U is non-empty. Take any u ∈ U.
According to Remark 4.1, without loss of generality we can replace U with u−1U to
assume that 1 ∈ U.

Consider any element g ∈ A \ UC; since 1 ∈ U, we deduce that g /∈ C. We will
construct a homomorphism from A to a finite group L which separates the image of g
from the image of UC.

Since g /∈ D, it has a reduced form g = x1x2 . . . xk, where xi belongs to one of the
factors B, C, for each i, consecutive elements xi, xi+1 belong to different factors, and
xi /∈ D for all i = 1, . . . , k (see (Lyndon and Schupp, 1977, p. 187)).

Since D is separable in A, by Lemma 4.5(a) there is a finite group M and a
homomorphism φ : A → M such that

φ(xi) /∈ φ(D) in M, for every i = 1, . . . , k. (4.8)

Denote by B, C and D the φ-images if B, C and D in M respectively. We can then
consider the amalgamated free product A = B ∗D C, together with the natural
homomorphism ψ : A → A, which is compatible with φ on B and C (in other words,
ψ|B = φ|B and ψ|C = φ|C). It follows that φ factors through ψ. That is, φ = φ ◦ ψ,
where φ : A → M is the natural homomorphism extending the embeddings of B and
C in M. Equation (4.8) now implies that

ψ(xi) /∈ D in A, for every i = 1, . . . , k. (4.9)

Denote xi = ψ(xi) ∈ A, i = 1, . . . , k. In view of (4.9), ψ(g) = x1 . . . xk is a reduced form
in the amalgamated free product A. We will now consider several cases.
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Case 1: assume that k ≥ 3. Then the above reduced form for ψ(g) has length k ≥ 3, so
by the normal form theorem for amalgamated free products (Lyndon and Schupp,
1977, Theorem IV.2.6), it cannot be equal to an element from ψ(UC) = ψ(U)C ⊆ BC,
which would necessarily have a reduced form of length at most 2 in A. Therefore
ψ(g) /∈ ψ(UC) in A.

Since B and C are finite groups, their amalgamated free product A is residually finite
(in fact, A is a virtually free group – see (Serre, 1980, Proposition 2.6.11)), so the finite
subset ψ(UC) is closed in the profinite topology on A. Hence there is a finite group L
and a homomorphism η : A → L such that η(ψ(g)) /∈ η(ψ(UC)) in L. The
composition η ◦ ψ : A → L is the required homomorphism separating the image of g
from the image of UC, and the consideration of Case 1 is complete.

Case 2: suppose that k = 2, x1 ∈ C \ D and x2 ∈ B \ D. Then x1 ∈ C \ D and x2 ∈ B \ D
by (4.9), so that ψ(g) = x1x2 is a reduced form of length 2 in A. Again, the normal
form theorem for amalgamated free products implies that ψ(g) /∈ BC in A, hence
ψ(g) /∈ ψ(UC) and we can find the required finite quotient L of A as in Case 1.

Case 3: g = bc, where b ∈ B \ UD and c ∈ C (here we allow c ∈ D, so this case also
covers the situation when k = 1).

This is the only case where we need to use the assumption that UD is separable in A.
This assumption implies that we can find a finite group M and a homomorphism
φ : A → M satisfying

φ(b) /∈ φ(UD) in M.

As above, we can construct the amalgamated free product A = B ∗D C, together with
the natural homomorphism ψ : A → A, such that φ factors through ψ. It follows that

ψ(b) /∈ ψ(UD) = ψ(U)D in A. (4.10)

Observe that ψ(g) /∈ ψ(UC) = ψ(U)C in A. Indeed, otherwise we would have

ψ(b) = ψ(g)ψ(c−1) ∈ ψ(U)C ∩ B = ψ(U)(C ∩ B) = ψ(U)D,

which would contradict (4.10) (in the first equality we used the fact that B is a
subgroup of A containing the subset ψ(U)). We can now argue as in Case 1 above to
find a homomorphism from A to a finite group L separating the image of g from the
image of UC.

It is not hard to see that since g /∈ UC in A, the above three cases cover all possibilities,
hence the proof is complete.

In the next two corollaries we assume that A = B ∗D C is the amalgamated free
product of its subgroups B, C, with B ∩ C = D.
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Corollary 4.14. Suppose that D is a separable subgroup in A. Then B, C and BC are all
separable in A.

Proof. The separability of C and B in A follows from Proposition 4.13, after choosing
U = {1} and V = {1}. The separability of BC is also a consequence of
Proposition 4.13, where we take U = B (so that UD = BD = B).

We will not need the next corollary in the following, but it may be of independent
interest and can be used to strengthen some of the statements proved in Section 4.4.

Corollary 4.15. Suppose that U ⊆ B, V ⊆ C are subsets such that UD and DV are separable
in A. Then the subset UDV is separable in A.

Proof. If either U or V are empty then UDV is empty, and, hence, separable in A. Thus
we can suppose that there exist some elements u ∈ U and v ∈ V. By Remark 4.1. the
subsets u−1UD ⊆ B and DVv−1 ⊆ C are separable in A. Since both of them contain D,
we see that D = u−1UD ∩ DVv−1, thus D is separable in A.

By Proposition 4.13, the products UC and BV are separable in A, so the statement
follows from the observation that

UC ∩ BV = UDV in A.

When U and V are subgroups, the above corollary shows that we can use separability
of double cosets UD and DV to deduce separability of the triple coset UDV.
Moreover, if both U and V are subgroups containing D, Corollary 4.15 implies that the
double coset UV = UDV is separable in A, as long as U and V are separable in A.

4.4 Separability of double cosets when one factor is parabolic

Throughout this section we will assume that G is group generated by a finite subset X
and hyperbolic relative to a collection of peripheral subgroups {Hν | ν ∈ N}.

Our goal in this section will be to establish separability of double cosets required by
conditions (S2) and (S3) of Theorem 4.12. All statements in this section will assume
that finitely generated relatively quasiconvex subgroups of G are separable – that is, G
is QCERF.

The next statement is essentially a corollary of the combination theorem of
Martı́nez-Pedroza (Theorem 2.44).
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Proposition 4.16. Suppose that G is QCERF. Let P be a maximal parabolic subgroup of G, let
Q ⩽ G be a finitely generated relatively quasiconvex subgroup and let D = Q ∩ P. Then there
exists a finite index subgroup H ⩽ f P such that all of the following properties hold:

• Q ∩ H = D;

• the subgroup A = ⟨H, Q⟩ is relatively quasiconvex in G;

• A is naturally isomorphic to H ∗D Q;

• D is separable in A;

• every subset of A which is closed in PT (A) is also closed in PT (G).

Proof. Let C ≥ 0 be the constant provided by Theorem 2.44, applied to the maximal
parabolic subgroup P and the relatively quasiconvex subgroup Q. By QCERF-ness, Q
is separable in G, so by Lemma 4.5 there exists N ◁ f G such that minX(QN \ Q) ≥ C.
Therefore, after setting H = P ∩ QN ⩽ f P, we get minX(H \ D) = minX(H \ Q) ≥ C.

Note that since D = P ∩ Q ⊆ H ⊆ P, we have H ∩ Q = D. Hence we can apply
Theorem 2.44 to conclude that A = ⟨H, Q⟩ is relatively quasiconvex in G and is
naturally isomorphic to the amalgamated free product H ∗D Q.

Recall, from Lemma 2.41 and Corollary 2.40, that P is finitely generated and relatively
quasiconvex in G, hence it is separable in G by QCERF-ness. It follows that D = P ∩ Q
is separable in G, which implies that it is separable in A by Lemma 4.2.

Observe that H and Q are both finitely generated, hence A is finitely generated and
relatively quasiconvex in G. Therefore Lemma 4.8 yields the last assertion of the
proposition, that every subset of A which is closed in PT (A) is also closed in
PT (G).

By combining Proposition 4.16 with Proposition 4.13 we obtain the first double coset
separability result when one of the factors is parabolic and the other one is finitely
generated and relatively quasiconvex.

Proposition 4.17. Assume that G is QCERF. Let P be a maximal parabolic subgroup of G, let
R ⩽ G be a finitely generated relatively quasiconvex subgroup of G. Suppose that D ⩽ P is a
subgroup satisfying the following condition:

for each U ⩽ f D, the double coset U(R ∩ P) is separable in P. (4.11)

Then the double coset DR is separable in G.

Proof. According to Proposition 4.16, there exists H ⩽ f P such that the subgroup
A = ⟨H, R⟩ is naturally isomorphic to the amalgamated free product H ∗E R, where
E = R ∩ P = R ∩ H is separable in A, and every closed subset from PT (A) is
separable in G.
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Denote U = D ∩ H ⩽ f D. By assumption (4.11), UE is separable in P. Since P is
finitely generated and relatively quasiconvex in G, we can conclude that UE is
separable in G by Lemma 4.8. As UE ⊆ A ⩽ G, UE will also be closed in PT (A), so
we can apply Proposition 4.13 to deduce that the double coset UR is closed in PT (A).
It follows that this double coset is separable in G and, since U ⩽ f D, Lemma 4.3
implies that DR is separable in G, as desired.

Note that when D = Q ∩ P, the condition (4.11) is exactly (S4). We can now prove that
(S3) of Theorem 4.12 holds as long as the relatively hyperbolic group G is QCERF.

Corollary 4.18. Suppose that G is QCERF, P is a maximal parabolic subgroup of G and
Q ⩽ G is a finitely generated relatively quasiconvex subgroup. Then for all finite index
subgroups K ⩽ f P and T ⩽ f Q the double coset KT is separable in G.

Proof. Note that T is finitely generated and relatively quasiconvex in G by
Lemma 2.39. Hence, to apply Proposition 4.17 we simply need to check that for any
U ⩽ f K the double coset U(T ∩ P) is separable in P. The latter is true because
U(T ∩ P) is a basic closed set in PT (P), being a finite union of right cosets to U ⩽ f P.
Therefore KT is separable in G by Proposition 4.17.

The proof of assumption (S2) of Theorem 4.12 is slightly more involved because the
intersection of two finitely generated relatively quasiconvex subgroups need not be
finitely generated. It turns out to follow from (S4) when G is QCERF.

Proposition 4.19. Let P be a maximal parabolic subgroup of G, let Q, R ⩽ G be finitely
generated relatively quasiconvex subgroups, let S = Q ∩ R. Suppose that G is QCERF and
condition (S4) is satisfied. Then the double coset PS is separable in G.

Proof. Let D = Q ∩ P. Since (S4) is satisfied, Proposition 4.17 tells us that the double
coset DR is separable in G. Moreover, G is QCERF so Q is separable in G. Now,
observe that DR ∩ Q = D(R ∩ Q) = DS, since D ⩽ Q. Thus the double coset DS is
separable in G.

According to Proposition 4.16, there exists a finite index subgroup H ⩽ f P such that
Q ∩ H = D, A = ⟨H, Q⟩ ∼= H ∗D Q, D is separable in A, and every closed subset in
PT (A) is closed in PT (G). The double coset DS is separable in A by Lemma 4.2, so
HS is closed in PT (A) by Proposition 4.13. It follows that HS is closed in PT (G),
which implies that the double coset PS is separable in G by Lemma 4.3. Thus the proof
is complete.
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4.5 Quasiconvexity of virtual joins

We will follow Conventions 2.1 and 3.3. Further, we will assume that both Q and R are
finitely generated subgroups throughout the section. In this section we will prove
Theorem 1.1 from the introduction. First we deal with the special case that G is
hyperbolic relative to a collection of virtually abelian groups. As mentioned at the
beginning of this chapter, we obtain a simpler existential statement in this setting.

Theorem 4.20. Suppose that G is QCERF with abelian peripheral subgroups. There exists a
finite index subgroup L ⩽ f G, with S ⊆ L, such that if Q′ ⩽ Q ∩ L and R′ ⩽ R ∩ L are
relatively quasiconvex subgroups of G satisfying (C1), then ⟨Q′, R′⟩ is relatively quasiconvex.

Proof. By combining the assumptions with Lemma 2.41, we know that maximal
parabolic subgroups of G are finitely generated abelian groups. Since such groups are
slender, all relatively quasiconvex subgroups of G are finitely generated (Hruska,
2010, Corollary 9.2). Moreover, finitely generated abelian groups are LERF, and hence,
they are double coset separable (because the product of two subgroups is again a
subgroup). Therefore the double coset PS is separable in G for any maximal parabolic
subgroup P ⩽ G by Proposition 4.19.

In view of Proposition 4.11, for any finite collection P , of maximal parabolic
subgroups of G, and any B, C ≥ 0 there exists L ⩽ f G, with S ⊆ L, such that any
subgroups Q′ ⩽ Q ∩ L and R′ ⩽ R ∩ L satisfy conditions (C1)–(C3), as long as
Q′ ∩ R′ = S. Remark 1.6 tells us that these subgroups automatically satisfy conditions
(C4) and (C5). Thus we can obtain the statement by applying Theorem 3.26.

Corollary 4.21. Suppose that G is QCERF with virtually abelian peripheral subgroups. There
exists L ⩽ f G such that if Q′ ⩽ Q ∩ L and R′ ⩽ R ∩ L are relatively quasiconvex subgroups
of G satisfying Q′ ∩ R′ = S ∩ L then the subgroup ⟨Q′, R′⟩ is also relatively quasiconvex in G.

Proof. By the assumptions for each ν ∈ N there exists a finite index abelian subgroup
Kν ⩽ f Hν. Since G is QCERF, each Kν is separable in G (it is finitely generated by
Lemma 2.41 and it is relatively quasiconvex by Corollary 2.40). Thus, in view of
Lemma 4.6, for every ν ∈ N there exists Lν ⩽ f G such that Lν ∩ Hν = Kν.

Since |N | < ∞, the intersection
⋂

ν∈N Lν has finite index in G, hence it contains a finite
index normal subgroup G1 ◁ f G. Note that for any g ∈ G and any ν ∈ N we have

G1 ∩ gHνg−1 = g(G1 ∩ Hν)g−1 ⊆ g(Lν ∩ Hν)g−1 = gKνg−1, (4.12)

where the first equality follows from the normality of G1, the middle inclusion follows
from the fact that G1 ⊆ Lν, and the last equality is due to the fact that Lν ∩ Hν = Kν. By
Lemma 2.39, G1 is finitely generated and relatively quasiconvex in G, hence, by
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(Hruska, 2010, Theorem 9.1) it is hyperbolic relative to representatives of G1-conjugacy
classes of the intersections G1 ∩ gHνg−1, g ∈ G. Thus, in view of (4.12), all peripheral
subgroups in G1 are abelian.

By (Hruska, 2010, Corollary 9.3), a subgroup of G1 is relatively quasiconvex in G1

(with respect to the above family of peripheral subgroups) if and only if it is relatively
quasiconvex in G. Therefore G1 is QCERF and Q1 = Q ∩ G1 ⩽ f Q, R1 = R ∩ G1 ⩽ f R
are finitely generated relatively quasiconvex subgroups of G1 by Lemma 2.39. After
denoting S1 = S ∩ G1 = Q1 ∩ R1, we can apply Theorem 4.20 to find a finite index
subgroup L ⩽ f G1 such that S1 ⊆ L (thus, S1 = S ∩ L) and the subgroup ⟨Q′, R′⟩ is
relatively quasiconvex in G1, for arbitrary Q′ ⩽ Q1 ∩ L = Q ∩ L and
R′ ⩽ R1 ∩ L = R ∩ L satisfying Q′ ∩ R′ = Q1 ∩ R1 = S1. We can use (Hruska, 2010,
Corollary 9.3) again to deduce that ⟨Q′, R′⟩ is relatively quasiconvex in G.

The following collects the results of the previous sections, allowing us to find
subgroups Q′ and R′ to which Theorem 3.26 can be applied.

Proposition 4.22. Suppose G is QCERF with double coset separable peripheral subgroups.
Then for any B ≥ 0, C ≥ 0, and finite family P of maximal parabolic subgroups of G, there is
a family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) satisfying
(C1)-(C5) with constants B and C and family P .

Proof. We check that all the assumptions of Theorem 4.12 are satisfied for every P ∈ P .
Indeed, assumption (S1) holds because because G is QCERF and assumption (S3) is
true by Corollary 4.18.

Note that the subgroups Q ∩ P and R ∩ P are finitely generated by Lemma 2.41, hence
condition (S4) follows from the double coset separability of P. Finally, assumption (S2)
holds by Proposition 4.19. The statement now follows by applying Theorem 4.12.

Theorem 4.23. Suppose G is QCERF with double coset separable peripheral subgroups.
There exists a family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) such
that ⟨Q′, R′⟩ is relatively quasiconvex.

Proof. This follows immediately from Theorem 3.26 and Proposition 4.22.

Recall that Q and R are said to have almost compatible parabolics if for every maximal
parabolic subgroup P ⩽ G, either Q ∩ P ≼ R ∩ P or R ∩ P ≼ Q ∩ P. We find that in the
case when Q and R have almost compatible parabolics, it is actually not necessary to
assume that the peripheral subgroups are double coset separable:

Proposition 4.24. Suppose that G is QCERF and that Q and R have almost compatible
parabolics. Then for any B ≥ 0, C ≥ 0, and finite family P of maximal parabolic subgroups of
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G, there is a family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E)
satisfying (C1)-(C5) with constants B and C and family P .

Proof. As before, we will be verifying the assumptions of Theorem 4.12. Let P be an
arbitrary maximal parabolic subgroup of G. Assumption (S1) follows from the
QCERF-ness of G and assumption (S3) follows from Corollary 4.18.

Let U ⩽ f Q ∩ P. Since Q and R have almost compatible parabolics and Q ∩ P ≼ U, we
know that either U ≼ R ∩ P or R ∩ P ≼ U. Note that both U and R ∩ P are finitely
generated by Lemma 2.41 and relatively quasiconvex by Corollary 2.40, so they are
separable because G is QCERF. Lemma 4.4 now implies that the double coset
U(R ∩ P) is separable in G, thus condition (S4) is satisfied by Lemma 4.2. Finally,
assumption (S2) holds by Proposition 4.19. This concludes the proof.

Again, applying Theorem 4.12 yields the following.

Theorem 4.25. Suppose that G is QCERF and that Q and R have almost compatible
parabolics. There exists a family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in
(E) such that ⟨Q′, R′⟩ is relatively quasiconvex.

4.6 Structure of virtual joins and combination theorems

For this section we will assume G is a finitely generated QCERF relatively hyperbolic
group, with Q and R finitely generated relatively quasiconvex subgroups of G. We
will prove a more detailed version of Theorem 1.2 from the introduction.

Proposition 4.26. Suppose that either Q and R have almost compatible parabolic subgroups
or that each peripheral subgroup of G is double coset separable. Then there is a family of pairs
of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) satisfying the hypotheses of
Theorem 3.35 such that the following is true.

Suppose that P ⩽ G is a maximal parabolic subgroup of G with ⟨Q′, R′⟩ ∩ P infinite and
u ∈ ⟨Q′, R′⟩ is the element obtained from Theorem 3.35. If Q′ and R′ are almost compatible at
u−1Pu, then either ⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P or ⟨Q′, R′⟩ ∩ P = uR′u−1 ∩ P. In particular,
at least one of Q′ ∩ u−1Pu or R′ ∩ u−1Pu is infinite.

Proof. Let K = {K1, . . . , Kn} be the finite set of maximal parabolic subgroups of G
provided by Theorem 3.35. If each Hν is double coset separable, then by
Proposition 4.22, there are subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) satisfying
(C1)-(C5) with constants B6, C6 (provided by Theorem 3.35) and finite family Pτ,
where τ is the constant of Proposition 3.34. Otherwise, the same conclusion holds in
the case that Q and R have almost compatible parabolics, by applying
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Proposition 4.24. More precisely, there exists L ⩽ f G with S ⊆ L such that for any
L′ ⩽ f L with S ⊆ L′, there is M ⩽ f L′ with Q ∩ L′ ⊆ M such that for any M′ ⩽ f M
with Q ∩ L′ ⊆ M′, the subgroups Q′ = Q ∩ M′ and R′ = R ∩ M′ satisfy these
conditions. All such Q′ and R′ meet the hypotheses of Theorem 3.35.

We will show that the subgroup L can be modified so that the desired conclusion
holds. Fix some i = 1, . . . , n and note that since G is QCERF, Q and R are separable.
Thus their intersection S is also separable. Whenever S ∩ Ki ⩽ f Q ∩ Ki, let Ui be a
finite set of coset representatives of S ∩ Ki in Q ∩ Ki, and otherwise take Ui to be the
empty set. Similarly, whenever S ∩ Ki ⩽ f R ∩ Ki, let Vi be a finite set of coset
representatives of S ∩ Ki in R ∩ Ki, and otherwise take Vi to be the empty set. Take
U =

⋃n
i=1(Ui ∪ Vi), and note that U is a finite set disjoint from S.

Since S is separable, Lemma 4.5(a) gives us N ◁ f G such that SN ⩽ f G is a subgroup
containing S with U ∩ SN = ∅. We take L0 = L ∩ SN ⩽ f G, noting that again S ⊆ L0

and L0 ∩ U = ∅. For any L′ ⩽ f L0 with S ⊆ L′, we have that L′ ⩽ f L. Now there is
M ⩽ f L′ with Q ∩ L′ ⊆ M as in (E). Let M′ ⩽ f M be any finite index subgroup with
Q ∩ L′ ⊆ M′ and write Q′ = Q ∩ M′, R′ = R ∩ M′. By Proposition 4.22, Q′ and R′ also
satisfy (C1)-(C5), so Theorem 3.35 holds.

Let P ⩽ G be a maximal parabolic subgroup of G such that ⟨Q′, R′⟩ ∩ P is infinite, and
let u ∈ ⟨Q′, R′⟩ be the element provided by Theorem 3.35. If either of the first two
cases of the theorem hold, then we are done. Otherwise there is i = 1, . . . , n such that

⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ Ki, R′ ∩ Ki⟩u−1,

with Ki = u−1Pu. By assumption, Q′ and R′ are almost compatible at Ki. In other
words, either S ∩ Ki ⩽ f Q′ ∩ Ki or S ∩ Ki ⩽ f R′ ∩ Ki. In the former case, by the
constructions of N and Q′ we have

S ∩ Ki ⊆ Q′ ∩ Ki = Q ∩ M′ ∩ Ki ⊆ Q ∩ SN ∩ Ki = S ∩ Ki,

so that Q′ ∩ Ki = S ∩ Ki. It follows that ⟨Q′ ∩ Ki, R′ ∩ Ki⟩ = R′ ∩ Ki. Thus

⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ Ki, R′ ∩ Ki⟩u−1 = u(R′ ∩ Ki)u−1 = uR′u−1 ∩ P,

as required. An identical argument (with the roles of Q′ and R′ swapped) gives us that
⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P when S ∩ Ki ⩽ f R′ ∩ Ki.

To conclude, note that if Q′ ∩ u−1Pu is finite, Q′ and R′ are almost compatible at
u−1Pu, whence uR′u−1 ∩ P = ⟨Q′, R′⟩ ∩ P is infinite by the hypotheses.

We are ready to prove the main result of this section.
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Theorem 4.27. Suppose that either Q and R have almost compatible parabolics or that each
peripheral subgroup of G is double coset separable. Then there is a finite set K of maximal
parabolic subgroups of G and a family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R
as in (E) such that the following is true.

Suppose that P ⩽ G is a maximal parabolic subgroup with ⟨Q′, R′⟩ ∩ P infinite. Then there is
an element u ∈ ⟨Q′, R′⟩ such that either

(i) ⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P or,
(ii) ⟨Q′, R′⟩ ∩ P = uR′u−1 ∩ P or,

(iii) ⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ K, R′ ∩ K⟩u−1 where K = u−1Pu is an element of K, and Q′

and R′ are not almost compatible at K.
Moreover, if either Q′ ∩ P or R′ ∩ P is infinite, then we may take u = 1 in cases (i) and (ii),
and u ∈ Q′ ∪ R′ in case (iii).

Proof. Let K be the finite set of maximal parabolic subgroups provided by
Theorem 3.35. There is a family of pairs of finite index subgroups Q′ ⩽ f Q and
R′ ⩽ f R as in (E) satisfying Proposition 4.26.

Let P ⩽ G be a maximal parabolic subgroup of G such that ⟨Q′, R′⟩ ∩ P is infinite, and
suppose that ⟨Q′, R′⟩ ∩ P is not equal to uQ′u−1 ∩ P or uR′u−1 ∩ P for any u ∈ ⟨Q′, R′⟩.
Then Theorem 3.35 gives us u ∈ ⟨Q′, R′⟩ such that ⟨Q′, R′⟩ ∩ P = u⟨Q′ ∩ K, R′ ∩ K⟩u−1,
where K = u−1Pu is an element of K. Suppose that Q′ and R′ are almost compatible at
K. But then Proposition 4.26, gives that either ⟨Q′, R′⟩ ∩ P = uR′u−1 ∩ P or
⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P respectively. In either case we obtain a contradiction,
completing the proof.

When Q and R have almost compatible parabolics, then so do any pair of finite index
subgroups Q′ ⩽ f Q and R′ ⩽ f R. It follows that the third case of Theorem 4.27 cannot
occur for such Q and R.

Corollary 4.28. Suppose that Q and R have almost compatible parabolics. There is a family of
pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) with the following property.

Let P ⩽ G be a maximal parabolic subgroup of G with ⟨Q′, R′⟩ ∩ P infinite. Then there is
u ∈ ⟨Q′, R′⟩ such that ⟨Q′, R′⟩ ∩ P is equal to either uQ′u−1 ∩ P or uR′u−1 ∩ P. In
particular, either uQ′u−1 ∩ P or uR′u−1 ∩ P is infinite. Moreover, if either Q′ ∩ P or R′ ∩ P
is infinite, we may take u = 1 in the above.

We now prove Theorem 1.4 and Corollary 1.5, with more precise existential statements
than given in the introduction. In particular, we find a finite index subgroup Q1 ⩽ f Q
that takes over the role of Q in (E) in the following.

Theorem 4.29. Suppose that Q and R have almost compatible parabolics. There is a finite
index subgroup Q1 ⩽ f Q and a family of pairs of finite index subgroups Q′ ⩽ f Q1 and
R′ ⩽ f R as in (E) such that Q′ and R′ have compatible parabolics.
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Proof. By Proposition 4.9, there is a finite index subgroup Q1 ⩽ f Q such that if P ⩽ G
is a maximal parabolic subgroup of G, then Q1 ∩ P is either infinite or trivial. Let
Q′ ⩽ f Q1 and R′ ⩽ f R be finite index subgroups as in (E) satisfying Corollary 4.28.
Since Q and R have almost compatible parabolics, so do Q′ and R′.

Let P ⩽ G be a maximal parabolic subgroup of G. If Q′ ∩ P is finite, then Q1 ∩ P is
finite and thus trivial by Proposition 4.9. In this case Q′ ∩ P = {1} ⩽ R′ ∩ P. On the
other hand, if Q′ ∩ P is infinite then so is ⟨Q′, R′⟩ ∩ P. Now applying Corollary 4.28,
we obtain that ⟨Q′, R′⟩ ∩ P = Q′ ∩ P or ⟨Q′, R′⟩ ∩ P = R′ ∩ P. It follows that either
R′ ∩ P ⩽ Q′ ∩ P or Q′ ∩ P ⩽ R′ ∩ P as required.

Theorem 4.30. Suppose that Q and R have almost compatible parabolics. There is a finite
index subgroup Q1 ⩽ f Q and a family of pairs of finite index subgroups Q′ ⩽ f Q1 and
R′ ⩽ f R as in (E) such that ⟨Q′, R′⟩ is relatively quasiconvex and ⟨Q′, R′⟩ ∼= Q′ ∗Q′∩R′ R′.

Proof. Suppose Q and R have almost compatible parabolics and let Q1 ⩽ f Q be the
finite index subgroup provided by Theorem 4.29. Note that S′ = Q1 ∩ R is a fixed
finite index subgroup of Q ∩ R depending only on Q. Take M = M(Q, R, S′) ≥ 0 to be
the constant of Theorem 2.45.

Following Remark 4.10, we may combine Proposition 4.24 and Theorem 4.29 to obtain
a family of pairs of finite index subgroups Q′ ⩽ f Q1 and R′ ⩽ f R as in (E) that have
compatible parabolics and satisfy condition (C2) with parameter M. By Lemma 3.24,
minX (Q′ ∪ R′) \ S′ ≥ M. Note that (E) ensures that Q′ ∩ R′ = S′. Now applying
Theorem 2.45, we see that ⟨Q′, R′⟩ is relatively quasiconvex and ⟨Q′, R′⟩ ∼= Q′ ∗Q′∩R′ R′

as required.

A relatively quasiconvex subgroup of G is said to be strongly relatively quasiconvex if its
intersection with each maximal parabolic subgroup of G is finite, and full if its
intersection with each maximal parabolic subgroup of G is either finite or has finite
index in that parabolic. Strongly relatively quasiconvex subgroups are necessarily
hyperbolic (Osin, 2006b, Theorem 4.16). Note that if either of Q and R are strongly
quasiconvex or full, then they have almost compatible parabolics. As a consequence of
Theorem 4.27 one obtains the analogue of Theorem 1.1 for these classes of subgroups.

Corollary 4.31. If Q and R are strongly (respectively, full) relatively quasiconvex subgroups,
then there is a family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) such
that ⟨Q′, R′⟩ is also strongly (respectively, full) relatively quasiconvex.

Proof. Recall that if Q and R are strongly quasiconvex or full, they have almost
compatible parabolics. Let Q and R be strongly relatively quasiconvex subgroups of
G. By Remark 4.10, Theorem 4.23, and Corollary 4.28, there is a family of pairs of finite
index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) such that ⟨Q′, R′⟩ is relatively
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quasiconvex and the conclusion of Corollary 4.28 holds. Let P ⩽ G be a maximal
parabolic subgroup of G. Since Q and R have finite intersections with maximal
parabolic subgroups of G, so do their subgroups Q′ and R′. In particular, uQ′u−1 ∩ P
and uR′u−1 ∩ P are finite for all u ∈ ⟨Q′, R′⟩. Corollary 4.28 now directly implies that
⟨Q′, R′⟩ ∩ P is finite. Therefore ⟨Q′, R′⟩ is strongly relatively quasiconvex.

Now suppose that Q and R are full relatively quasiconvex subgroups, and again let
Q′ ⩽ f Q and R′ ⩽ f R be subgroups as in (E) for which Theorem 4.23 and
Corollary 4.28 hold. If P ⩽ G is a maximal parabolic subgroup of G such that
⟨Q′, R′⟩ ∩ P is infinite, then by Corollary 4.28, there is u ∈ ⟨Q′, R′⟩ such that at least
one of Q′ ∩ u−1Pu or R′ ∩ u−1Pu is infinite. Without loss of generality, say that
R′ ∩ u−1Pu is infinite. Now R′ ∩ u−1Pu has finite index in R ∩ u−1Pu, which has finite
index in u−1Pu since R is fully relatively quasiconvex. Conjugating by u, we see that
uR′u−1 ∩ P has finite index in P. Observing that ⟨Q′, R′⟩ ∩ P contains uR′u−1 ∩ P
completes the proof.

As an immediate consequence of the above, the virtual joins ⟨Q′, R′⟩ are hyperbolic
when both Q and R are strongly relatively quasiconvex. It may be of interest that this
conclusion in fact holds the under slightly weaker hypotheses.

Corollary 4.32. If Q is hyperbolic and R is strongly relatively quasiconvex, then there is a
family of pairs of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) such that ⟨Q′, R′⟩ is
relatively quasiconvex and hyperbolic.

Proof. Let Q be a hyperbolic relatively quasiconvex subgroup of G, and R a strongly
relatively quasiconvex subgroup of G. Since R is strongly quasiconvex, Q and R have
almost compatible parabolics, we can apply Corollary 4.28. Let Q′ ⩽ f Q and R′ ⩽ f R
be subgroups as in (E) for which Corollary 4.28 holds, and let P ⩽ G be a maximal
parabolic subgroup of G with ⟨Q′, R′⟩ ∩ P infinite.

Since R is strongly relatively quasiconvex, uR′u−1 ∩ P is finite for all u ∈ ⟨Q′, R′⟩.
Hence Corollary 4.28 implies that ⟨Q′, R′⟩ ∩ P = uQ′u−1 ∩ P for some u ∈ ⟨Q′, R′⟩. By
Lemma 2.39, uQ′u−1 is relatively quasiconvex. Now applying Lemma 2.42 gives that
uQ′u−1 ∩ P is hyperbolic. By Hruska (Hruska, 2010, Theorem 9.1), ⟨Q′, R′⟩ is
hyperbolic relative to a collection of hyperbolic groups. Finally, (Osin, 2006b,
Corollary 2.41) yields that ⟨Q′, R′⟩ is hyperbolic.
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Chapter 5

Product separability in
nonpositively curved groups

This chapter of the thesis is dedicated to proving Theorem 1.10 from the introduction.
In order to do this we must generalise the discussion of path representatives from
Sections 3.2, 3.3, and 3.4, adapting the proofs there to deal with additional
technicalities. Let us give a summary of the argument.

Let G be a QCERF finitely generated relatively hyperbolic group with a finite
collection of peripheral subgroups {Hν | ν ∈ N}. Suppose that, for each ν ∈ N , the
subgroup Hν has property RZs. Let F1, . . . , Fs ⩽ G be finitely generated relatively
quasiconvex subgroups. In order to show that the product F1 . . . Fs is separable, we
proceed by induction on s. Note that the case that s = 1 is exactly the QCERF
condition, so we may assume s > 1. For ease of reading we relabel the subgroups
F1 = Q, F2 = R, F3 = T1, . . . , Fs = Tm, where m = s − 2 ≥ 0.

We approximate the product QRT1 . . . Tm with sets of the form Q⟨Q′, R′⟩RT1 . . . Tm,
where Q′ ⩽ f Q and R′ ⩽ f R are finite index subgroups of Q and R respectively.
Observe that we can write these sets as finite unions

Q⟨Q′, R′⟩RT1 . . . Tm =
⋃
i,j

ai⟨Q′, R′⟩bjT1 . . . Tm, (5.1)

where the elements ai and bj are coset representatives of Q′ and R′ in Q and R
respectively. Note that the products on the right-hand side of (5.1) now involve only
s − 1 subgroups. By Theorem 1.1, the subgroups Q′ and R′ can be chosen so that
⟨Q′, R′⟩ is relatively quasiconvex, hence we can apply the induction hypothesis to
show that such products are separable in G.

It then remains to prove that the product QRT1 . . . Tm is, in fact, an intersection of
subsets of the form Q⟨Q′, R′⟩RT1 . . . Tm as above. To this end, we study path
representatives qp1 . . . pnrt1 . . . tm of elements of Q⟨Q′, R′⟩RT1 . . . Tm in a similar
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manner to Chapter 3. The main additional difficulty comes from controlling instances
of multiple backtracking that involve segments in the t1 . . . tm part of the path. We
introduce new metric conditions (C2-m) and (C5-m) to deal with these technicalities.

Finally, we will conclude by collecting the applications of Theorem 1.10 to product
separability. In particular, we prove Theorem 1.11, giving new examples of product
separable groups. For limit groups and the fundamental groups of graphs of free
groups, our proofs are predicated on showing that the groups are LERF and locally
quasiconvex (i.e. all finitely generated subgroups are relatively quasiconvex), while for
Kleinian groups we apply some deep theorems coming from the theory of 3-manifolds
to obtain the result.

5.1 Auxiliary definitions

Convention 5.1. In addition to Conventions 2.1 and 3.3, we will assume that
T1, . . . , Tm ⩽ G are fixed relatively quasiconvex subgroups of G, with quasiconvexity
constant ε ≥ 0, where m ∈ N0. Moreover, we use Q′ and R′ to denote subgroups of Q
and R respectively and assume that Q′ ∩ R′ = S (that is, Q′ and R′ satisfy (C1)).

5.1.1 New metric conditions

Suppose B, C ≥ 0 are some constants, P is a finite collection of maximal parabolic
subgroups of G, and U is a finite family of finitely generated relatively quasiconvex
subgroups of G. We will be interested in the following generalisations of conditions
(C2) and (C5) to the multiple coset setting:

(C2-m) minX

(
R⟨Q′, R′⟩RT1 . . . Tj \ RT1 . . . Tj

)
≥ B, for each j = 0, . . . , m;

(C5-m) minX

(
q⟨Q′

P, R′
P⟩RP(U1)P . . . (Uj)P \ qQ′

PRP(U1)P . . . (Uj)P

)
≥ C, for each P ∈ P ,

all q ∈ QP, any j ∈ {0, . . . , m} and arbitrary U1, . . . , Uj ∈ U , where
(Ui)P = Ui ∩ P ⩽ P.

Remark 5.1. Let us make the following observations.

• When j = 0, the inequality from condition (C2-m) reduces to
minX(R⟨Q′, R′⟩R \ R) ≥ B, which is a part of (C2); on the other hand, the
inequality from condition (C5-m) simply becomes (C5). In particular, for each
m ≥ 0, (C5-m) implies (C5).

• In our usage of (C5-m), the set U will consists of finitely many conjugates of
T1, . . . , Tm; in fact, Ui = Tai

i , for some ai ∈ G, i = 1, . . . , m.

Remark 5.2. Similarly to conditions (C1)-(C5), the above metric conditions are best
understood with a view towards the profinite topology.
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• To prove separability of products of relatively quasiconvex subgroups we argue
by induction on the number of factors. That is, we assume that the product of
m + 1 relatively quasiconvex subgroups is separable and then deduce the
separability of the product of m + 2 relatively quasiconvex subgroups. The
existence of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R realising condition
(C2-m) will be deduced from this inductive assumption.

• The existence of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R realising condition
(C5-m), given a finite family U , will be deduced from the assumption that the
peripheral subgroups of G each satisfy the property RZm+2.

5.1.2 Path representatives for products of subgroups

In this subsection we define path representatives for elements of Q⟨Q′, R′⟩RT1 . . . Tm

similarly to the path representatives for elements of U⟨Q′, R′⟩V from Definition 3.10
and discuss their properties.

Definition 5.3 (Product path representative). Let g be an element of the set
Q⟨Q′, R′⟩RT1 . . . Tm. Suppose that p = qp1 . . . pnrt1 . . . tm is a broken line in
Γ(G, X ∪H) satisfying the following properties:

• p̃ = g;

• q̃ ∈ Q and r̃ ∈ R;

• p̃i ∈ Q′ ∪ R′ for each i ∈ {1, . . . n};

• t̃i ∈ Ti for each i ∈ {1, . . . m}.

We say that p is a product path representative of g in the product Q⟨Q′, R′⟩RT1 . . . Tm.

The type of a product path representative is defined similarly to Definition 3.11.

Definition 5.4 (Type and width of a product path representative). Let
g ∈ Q⟨Q′, R′⟩RT1 . . . Tm and let p = qp1 . . . pnrt1 . . . tm be a product path representative
of g. Denote by Y the set of all H-components of the segments of p. We define the
width of p as the integer n and the type of p as the triple

τ(p) =
(

n, ℓ(p), ∑
y∈Y

|y|X
)
∈ N0

3.

The following observation will be useful.

Remark 5.5. Suppose g ∈ Q⟨Q′, R′⟩RT1 . . . Tm can be written as a product

g = xy1 . . . ynzu1 . . . um,

where x ∈ Q, y1, . . . yn ∈ Q′ ∪ R′, z ∈ R and ui ∈ Ti, for each i = 1, . . . , m. Then g has a
product path representative of width n.
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Similarly to path representatives of elements of U⟨Q′, R′⟩V, we will be interested in
product path representatives whose type is minimal (as an element of N0

3 under the
lexicographic ordering). Given an element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm, such a product
path representative is always guaranteed to exist. Let us make the following
observation (c.f. Remark 3.14).

Remark 5.6. Suppose that p = qp1 . . . pnrt1 . . . tm is a minimal type product path
representative of an element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm such that g /∈ QRT1 . . . Tm. Then
n > 0, p̃1 ∈ R′ \ S, p̃n ∈ Q′ \ S and the labels of p1, . . . , pn alternate between
representing elements of R′ \ S and Q′ \ S. In particular, the integer n must be even.

Note that in Definition 5.3 the geodesic paths q, r and t1, . . . , tm are always counted as
segments of the path p, even if they end up being trivial paths. For example a minimal
type product path representative of an element g ∈ R′Q′T1 . . . Tm \ QRT1 . . . Tm will be
a broken line p = qp1 p2rt1 . . . tm with m + 4 segments, where q and r are trivial paths.

The main results from Sections 3.2 and 3.3 can be adapted to apply to minimal type
product path representatives of elements of Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm with
only superficial differences. As such, the proofs of the following generalisations of
Lemmas 3.15, 3.18 and 3.19, respectively, will be omitted.

Lemma 5.7. There is a constant C0 ≥ 0 such that the following holds.

Consider any element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm with g /∈ QRT1 . . . Tm. Let
p = qp1 . . . pnrt1 . . . tm be a product path representative of g of minimal type, with nodes
f0, . . . , fn+m+2 (that is, f0 = q−, fi = (pi)−, for each i ∈ {1, . . . , n}, fn+1 = r−,
fn+1+j = (tj)−, for each j ∈ {1, . . . , m}, and fn+m+2 = (tm)+). Then ⟨ fi−1, fi+1⟩rel

fi
≤ C0,

for all i ∈ {1, . . . , n + m + 1}.

Lemma 5.8. There is a constant C1 ≥ 0 such that the following is true.

Consider a minimal type product path representative p = qp1 . . . pnrt1 . . . tm for an element
g ∈ Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm. If a and b are adjacent segments of p, with a+ = b−,
and h and k are connected H-components of a and b respectively, then dX(h+, a+) ≤ C1 and
dX(a+, k−) ≤ C1.

Lemma 5.9. For any ζ ≥ 0 there is Θ0 = Θ0(ζ) ∈ N such that the following is true.

Consider a minimal type product path representative p = qp1 . . . pnrt1 . . . tm for an element
g ∈ Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm. Suppose that a and b are adjacent segments of p,
with a+ = b−, and h and k are connected H-components of a and b respectively, such that

max{|h|X, |k|X} ≥ Θ0.

Then dX(h−, k+) ≥ ζ.
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5.2 Multiple backtracking in product path representatives:
two special cases

As in Chapter 3, the main difficulty lies in dealing with multiple backtracking in our
chosen path representatives. In this section we will consider two of the possible cases.
We will be working under Convention 5.1.

Throughout the rest of the thesis we fix the following notation.

Notation 5.2. let C1 be the larger of the constants provided by Lemmas 3.18 and 5.8,
and write P0 for the finite collection of maximal parabolic subgroups of G given by

P0 = {Hν
b | ν ∈ N , |b|X ≤ C1}.

The following lemma is roughly analogous to Lemma 3.20.

Lemma 5.10. For any L ≥ 0 and any relatively quasiconvex subgroup T ⩽ G there is a
constant L′ = L′(L, T) ≥ 0 such that the following is true.

Let P = Hν
b ∈ P0, for some ν ∈ N and b ∈ G, with |b|X ≤ C1, and let t be a geodesic path in

Γ(G, X ∪H), with t̃ ∈ T. Suppose that v ∈ Pb = bHν is a vertex of t and u ∈ P is an
element satisfying dX(u, t−) ≤ L. Denote a = u−1t− ∈ G. Then there is a geodesic path t′ in
Γ(G, X ∪H) such that

• t′− = u and dX(t′+, v) ≤ L′;

• t̃′ ∈ Ta ∩ P;

• (t′+)
−1t+ ∈ aT.

Proof. Let K = max{C1, σ + L}, where σ ≥ 0 is a quasiconvexity constant for T.
Denote

L′ = max{K′(P, Ta, K) | P ∈ P0, a ∈ G, |a|X ≤ L}, (5.2)

where K′(P, Ta, K) is obtained from Lemma 2.1.

The hypotheses that v ∈ Pb and |b|X ≤ C1 imply that dX(v, P) ≤ |b|X ≤ C1. As u ∈ P,
we have P = uP and so

dX(v, uP) ≤ C1. (5.3)

Set x = t− = ua. Since t̃ ∈ T, we have dX(v, xT) ≤ σ, as T is σ-quasiconvex. Hence

dX(v, uTa) = dX(v, xTa−1) ≤ dX(v, xT) + |a|X ≤ σ + L.

Combining the latter inequality with (5.3) allows us to apply Lemma 2.1 to find an
element z ∈ u(Ta ∩ P) such that dX(v, z) ≤ L′, where L′ ≥ 0 is the constant from (5.2).
Now take t′ to be any geodesic in Γ(G, X ∪H) with t′− = u and t′+ = z. It is
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straightforward to verify that t′ satisfies the first two of the required properties. For
the last property, observe that

(t′+)
−1t+ =

(
(t′+)

−1u
) (

u−1t−
) (

t−1
− t+

)
= t̃′

−1
at̃ ∈ TaaT = aT.

The following notation will be fixed for the remainder of the section.

Notation 5.3. Let D be the constant from Lemma 3.20, corresponding to C1 and P0

(from Notation 5.2) and subgroups Q, R. We define constants L1, . . . .Lm+1 as follows:

L1 = D + C1 and Li+1 = L′(Li, Ti) + C1, for each i = 1, . . . , m,

where L′ is obtained from Lemma 5.10.

We also define the family of subgroups

U0 =
m⋃

i=1

{
Tg

i

∣∣∣ i ∈ {1, . . . , m}, g ∈ G, |g|X ≤ Li

}
,

consisting of finitely many conjugates of the subgroups T1, . . . , Tm. Note that, by
Lemma 2.39, each U ∈ U0 is a relatively quasiconvex subgroup of G.

The next proposition describes how we approximate an instance of consecutive
backtracking that involves the t1 . . . tm-part of a product path representative of an
element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm; it complements Proposition 3.22 which
takes care of backtracking within the qp1 . . . pnr-part.

Proposition 5.11. Suppose that p = qp1 . . . pnrt1 . . . tm is a product path representative of
minimal type for an element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm. Let P = Hν

b ∈ P0, for
some ν ∈ N and b ∈ G, with |b|X ≤ C1.

Suppose that h1, . . . , hj are connected Hν-components of the segments t1, . . . , tj, respectively,
with j ∈ {1, . . . , m}, such that (h1)− ∈ Pb = bHν. If u1 ∈ P is an element satisfying
dX(u1, (t1)−) ≤ L1 then there exist elements a1, . . . , aj ∈ G and a broken line t′1 . . . t′j in
Γ(G, X ∪H) such that the following conditions hold:

(i) (t′1)− = u1 and dX((t′j)+, (hj)+) ≤ Lj+1;
(ii) ai+1 ∈ aiTi, for i = 1, . . . , j − 1;

(iii) ai = (t′i)
−1
− (ti)− and |ai|X ≤ Li, for each i = 1, . . . , j;

(iv) t̃′i ∈ Tai
i ∩ P, for all i = 1, . . . , j.

Proof. We start by setting a1 = u−1
1 (t1)−, so that |a1|X = dX(u1, (t1)−) ≤ L1. Note that

(h1)+ = (h1)−h̃1 ∈ bHν = Pb. Therefore we can apply Lemma 5.10 to find geodesic t′1
in Γ(G, X ∪H) such that (t′1)− = u1, dX((t′1)+, (h1)+) ≤ L′(L1, T1), t̃′1 ∈ Ta1

1 ∩ P and

(t′1)
−1
+ (t1)+ ∈ a1T1. (5.4)

It follows that properties (ii)–(iv) are satisfied for i = 1, while property (i) holds
because L2 ≥ L′(L1, T1) by definition. If j = 1 then property (ii) is vacuously true.
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We can now suppose that j > 1. Then h1 is connected to the component h2 of t2, so,
according to Lemma 5.8, dX((h1)+, (t1)+) ≤ C1. Set u2 = (t′1)+ and a2 = u−1

2 (t1)+.
Note that a2 ∈ a1T1 by (5.4) and

|a2|X = dX((t1)
′
+, (t1)+) ≤ dX((t′1)+, (h1)+) + dX((h1)+, (t1)+)

≤ L′(L1, T1) + C1 = L2.

Since (t2)− = (t1)+, we see that a2 = u−1
2 (t2)− and dX(u2, (t2)−) = |a2|X ≤ L2.

Now, observe that u2 = u1 t̃′1 ∈ P and (h2)+ ∈ bHν = Pb, as h2 is connected to h1. This
allows us to use Lemma 5.10 to find a geodesic path t′2 in Γ(G, X ∪H) such that
(t′2)− = u2 = (t′1)+, dX((t′2)+, (h2)+) ≤ L′(L2, T2), t̃′2 ∈ Ta2

2 ∩ P and (t′2)
−1
+ t+ ∈ a2T2

(see Figure 5.1).

≤ L1

≤ L2

≤ Lj+1

t1(h1)−

(h1)+
(h2)− (h2)+

(hj)−

(hj)+

t2

tj

≤ Lj
u1

u2 uju3

t′1

t′2

t′j

FIGURE 5.1: The new path t′1 . . . t′j constructed in Proposition 5.11.

If j = 2 then we are done, otherwise we construct the remaining elements a3, . . . , aj

and the paths t′3, . . . , t′j inductively, similarly to the construction of a2 and t′2 above.

The next two propositions prove that, under certain conditions, instances of multiple
backtracking are long. Essentially, they generalise Proposition 3.23. The first of these
shows how we can use condition (C5-m) to deal with particular instances of multiple
backtracking.

Proposition 5.12. For each ζ ≥ 0 there is a constant C2 = C2(ζ) ≥ 0 such that if Q′ ⩽ Q
and R′ ⩽ R satisfy conditions (C1), (C3) and (C5-m) with constant C ≥ C2 and finite families
P and U , such that P0 ⊆ P and U0 ⊆ U , then the following is true.

Let p = qp1 . . . pnrt1 . . . tm be a minimal type product path representative for some element
g ∈ Q⟨Q′, R′⟩RT1 . . . Tm, with g /∈ QRT1 . . . Tm. Suppose that p has multiple backtracking
along Hν-components h1, . . . , hk of its segments, for some ν ∈ N , such that

• h1 is an Hν-component of either q or pi, for some i ∈ {1, . . . , n − 1}, with p̃i ∈ Q′;

• hk is an Hν-component of a segment tj, for some j ∈ {1, . . . , m}.

Then dX((h1)−, (hk)+) ≥ ζ.
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Proof. Take
C2 = max{2C1, D + ζ + Lj | j = 1, . . . , m + 1}+ 1,

where D and Lj are defined in Notation 5.3, and suppose that C ≥ C2.

The proof employs the same strategy as Proposition 3.23: we first construct a path
whose endpoints are close to (h1)− and (hk)+ and whose label represents an element
of a parabolic subgroup. We will then obtain a contradiction with the minimality of
the type of p, using condition (C5-m).

We will focus on the case when h1 is an Hν-component of pi, for some index
i ∈ {1, . . . , n − 1} with p̃i ∈ Q′, with the case when h1 is an Hν-component of q being
similar. Note that since g /∈ QRT1 . . . Tm, it must be that n ≥ 2 by Remark 5.6. After
translating by (pi)

−1
+ , we may assume that (pi)+ = 1. We write b = (h1)+ and note

that, according to Lemma 5.8,

|b|X = dX((h1)+, (pi)+) ≤ C1. (5.5)

Let P = bHνb−1 ∈ P0 ⊆ P . Since h1, . . . , hk are pairwise connected, the vertices (hl)+

lie in the same left coset bHν, for all l = 1, . . . , k, thus

(hl)+ ∈ Pb, for all l = 1, . . . , k. (5.6)

We construct a new broken line p′ = p′i . . . p′nr′t′1 . . . t′j in two steps. It will be used in
conjunction with condition (C5-m) to obtain a product path representative of g with
lesser type than p.

Step 1: we start by constructing geodesic paths p′i, p′i+1, . . . , p′n and r′ by using
condition (C3) and applying Lemmas 3.20 and 3.21, in exactly the same way as in the
proof of Proposition 3.22. The newly constructed paths will have the following
properties:

• p̃′i ∈ QP, p̃′l ∈ Q′
P ∪ R′

P, for each l = i + 1, . . . , n, and r̃′ ∈ RP;

• dX((p′i)−, (h1)−) ≤ D and (p′i)+ = (pi)+ = 1;

• (p′l)+ = (p′l+1)−, for l = i, . . . , n − 1;

• r′− = (p′n)+ and dX(r′+, (hk−j)+) ≤ D;

• (p′l)
−1
+ (pl)+ ∈ S, for l = i + 1, . . . , n.

Step 2: we now construct geodesic paths t′1, . . . , t′j as follows. Set u1 = (r′)+ and
observe that since (p′i+1)− = (p′i)+ = 1, we have

u1 = p̃′i+1 . . . p̃′nr̃′ ∈ P.
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By Lemma 5.8, we have dX((hk−j)+, (t1)−) = dX((hk−j)+, r+) ≤ C1. Moreover, by Step
1 above, dX(u1, (hk−j)+) ≤ D. Therefore

dX(u1, (t1)−) ≤ C1 + D = L1.

Together with (5.6) this allows us to apply Proposition 5.11 to find elements
a1, . . . , aj ∈ G and a broken line t′1t′2 . . . t′j in Γ(G, X ∪H) such that

• (t′1)− = u1 and dX((t′j)+, (hk)+) ≤ Lj+1;

• al+1 ∈ alTl , for l = 1, . . . , j − 1;

• al = (t′l)
−1
− (tl)− and |al |X ≤ Ll , for each l = 1, . . . , j;

• t̃′l ∈ Tal
l ∩ P, for all l = 1, . . . , j.

Observe that

a1 = (t′1)
−1
− (t1)− = u−1

1 r+ = (r′+
−1r′−)(r

′
−
−1r−)(r−1

− r+)

= r̃′
−1
(p′n)

−1
+ (pn)+r̃ ∈ RPSR ⊆ R.

(5.7)

We now define a new broken line p′ in Γ(G, X ∪H) by

p′ = p′i . . . p′nr′t′1 . . . t′j.

Note that p̃′ ∈ p̃′i⟨Q′
P, R′

P⟩RP(T
a1
1 )P . . . (T

aj
j )P (where p̃′i ∈ QP), dX(p′−, (h1)−) ≤ D, and

dX(p′+, (hk)+) ≤ Lj+1. Moreover, Tal
l ∈ U0 ⊆ U , for each l = 1, . . . , j.

Now, suppose, for a contradiction, that dX((h1)−, (hk)+) < ζ. Then, by the triangle
inequality, ∣∣p′∣∣X ≤ D + ζ + Lj+1 < C2.

Thus, as C ≥ C2, we can apply (C5-m) to deduce that p̃′ ∈ p̃′iQ
′
PRP(T

a1
1 )P . . . (T

aj
j )P.

Therefore, there exist elements z ∈ p̃′iQ
′
P, x ∈ R and yl ∈ Tl , l = 1, . . . , j, such that

p̃′ = zxya1
1 . . . y

aj
j . By construction, for each l = 1, . . . , j − 1 there is bl ∈ Tl such that

al+1 = albl , and so a−1
l al+1 = bl ∈ Tl . Recalling that (p′i)+ = (pi)+ = 1, the above

yields
p̃′ = zxya1

1 . . . y
aj
j = zxa1y1b1y2b2 . . . bj−1yja−1

j . (5.8)

Let α and β be geodesic segments in Γ(G, X ∪H) connecting (pi)− with (p′i)− and
(t′j)+ with (tj)+ respectively. Since (pi)+ = (p′i)+, we have

α̃ = (pi)
−1
− (p′i)− = (pi)

−1
− (pi)+(p′i)

−1
+ (p′i)− = p̃i p̃′i

−1
. (5.9)

On the other hand, it follows from the construction that

β̃ = (t′j)
−1
+ (tj)+ = t̃′j

−1
(t′j)

−1
− (tj)− t̃j = t̃′j

−1
aj t̃j ∈ T

aj
j ajTj = ajTj. (5.10)
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The broken lines p and γ = qp1 . . . pi−1αp′βtj+1 . . . tm have the same endpoints in
Γ(G, X ∪H). Hence, in view of (5.9) and (5.8), we obtain

g = p̃ = γ̃ = q̃ p̃1 . . . p̃i−1 α̃ p̃′ β̃ t̃j+1 . . . t̃m

= q̃ p̃1 . . . p̃i−1( p̃i p̃′i
−1
)(zxa1y1b1y2b2 . . . bj−1yja−1

j )β̃ t̃j+1 . . . t̃m

= q̃ p̃1 . . . p̃i−1( p̃i p̃′i
−1

z)(xa1)(y1b1) . . . (yj−1bj−1)(yja−1
j β̃)t̃j+1 . . . t̃m.

(5.11)

Recall that q̃ ∈ Q, p̃1, . . . , p̃i−1 ∈ Q′ ∪ R′ and t̃l ∈ Tl , for l = j + 1, . . . , m, by definition.

On the other hand, p̃i p̃′i
−1

z ∈ Q′ p̃′i
−1

p̃′i Q′
P = Q′, xa1 ∈ R by (5.7) and ylbl ∈ Tl , for

each l = 1, . . . , j − 1, by construction. Finally, yja−1
j β̃ ∈ Tja−1

j ajTj = Tj by (5.10). Thus,
following Remark 5.5, the product decomposition (5.11) for g gives us a product path
representative of g with width i < n. This contradicts the minimality of the type of p,
so the proposition is proved.

Condition (C2-m) can be used deal with another case of multiple backtracking.

Proposition 5.13. For every ζ ≥ 0 there is a constant B1 = B1(ζ) ≥ 0 such that if Q′ ⩽ Q
and R′ ⩽ R satisfy condition (C2-m) with constant B ≥ B1 then the following is true.

Let p = qp1 . . . pnrt1 . . . tm be a minimal type product path representative for some element
g ∈ Q⟨Q′, R′⟩RT1 . . . Tm, with g /∈ QRT1 . . . Tm, and let ν ∈ N . Suppose that p has multiple
backtracking along Hν-components h1, . . . , hk of its segments such that

• h1 is an Hν-component of pi, for some i ∈ {1, . . . , n − 1}, with p̃i ∈ R′;

• hk is an Hν-component of tj for some j ∈ {1, . . . , m}.

Then dX((h1)−, (hk)+) ≥ ζ.

Proof. Take B1 = ζ + 2ε + 1, where ε ≥ 0 is a quasiconvexity constant for the
subgroups R and T1, . . . , Tm (as in Convention 5.1), and let B ≥ B1. Suppose, for a
contradiction, that dX((h1)−, (hk)+) < ζ.

Since p̃i ∈ R′, we have dX((h1)−, (pi)+ R) ≤ ε, by the quasiconvexity of R. Therefore
there is a geodesic path p′i in Γ(G, X ∪H), such that p̃′i ∈ R, dX((p′i)−, (h1)−) ≤ ε and
(p′i)+ = (pi)+. Similarly, using the quasiconvexity of Tj, we can find a geodesic path t′j
in Γ(G, X ∪H), such that t̃′j ∈ Tj, (t′j)− = (tj)− and dX((t′j)+, (hk)+) ≤ ε. Let p′ be the
broken line p′i pi+1 . . . pnrt1 . . . tj−1t′j.

Observe that p̃′ ∈ R⟨Q′, R′⟩RT1 . . . Tj and, by the triangle inequality, |p′|X ≤ ζ + 2ε.
Therefore we can apply condition (C2-m) to p̃′ to find that p̃′ = xy1 . . . yj, where x ∈ R
and yl ∈ Tl , for each l = 1, . . . , j.
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The broken lines p and γ = qp1 . . . pi p′i
−1 p′t′j

−1tj . . . tm have the same endpoints, hence

g = p̃ = γ̃ = q̃ p̃1 . . . p̃i p̃′i
−1

p̃′ t̃′j
−1

t̃j . . . t̃m

= q̃ p̃1 . . . p̃i−1( p̃i p̃′i
−1

x)y1 . . . yj−1(yj t̃′j
−1

t̃j)t̃j+1 . . . t̃m.
(5.12)

Note that p̃i p̃′i
−1

x ∈ R and yj t̃′j
−1

t̃j ∈ Tj. In view of Remark 5.5, the product
decomposition of g from (5.12) can be used to obtain a product path representative p′′

of g with width i − 1 < n. Thus the type of p′′ is strictly less than the type of p, which
yields the desired contradiction.

5.3 Multiple backtracking in product path representatives: the
general case

The statements of Propositions 3.23, 5.12 and 5.13 show that for elements of the set
Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm, instances of multiple backtracking in a minimal
type product path representative p = qp1 . . . pnrt1 . . . tm, that start at a component of q,
or p1, . . . , pn−1, are long. We cannot draw the same conclusion in all cases since we
have no control over the elements r̃, t̃1, . . . , t̃m. Therefore in this section we use a
different approach. Proposition 5.16 below shows that in the remaining cases we can
find a product path representative with one of the segments from the tail section
rt1 . . . tm being short with respect to the proper metric dX. Note that the main constant
ξ0 = ξ0(Q′, ζ), produced in this proposition, will depend on Q′ (unlike the constants
C1, D, C2(ζ), B1(ζ), . . . , defined previously) but will be independent of R′.

As before, we work under Convention 5.1. We will also keep using Notation 5.2 and
5.3. Let us start with the following elementary observation.

Lemma 5.14. For any ζ ≥ 0 and any given subsets A1, . . . , Ak ⊆ G, k ≥ 1, there is a
constant ξ = ξ(ζ, A1, . . . , Ak) ≥ 0 such that if g ∈ A1 . . . Ak and |g|X ≤ ζ, then there exist
a1 ∈ A1,. . ., ak ∈ Ak such that g = a1 . . . ak and |ai|X ≤ ξ, for all i ∈ {1, . . . , k}.

Proof. For each g ∈ A1 . . . Ak fix some elements a1,g ∈ A1, . . . , ak,g ∈ Ak such that
g = a1,g . . . ak,g. Now we can define

ξ = max
{∣∣a1,g

∣∣
X, . . . ,

∣∣ak,g
∣∣

X

∣∣∣ g ∈ A1 . . . Ak, |g|X ≤ ζ
}
< ∞.

Clearly ξ has the required property.

Definition 5.15 (Tail thickness). Suppose that Q′ ⩽ Q, R′ ⩽ R and
p = qp1 . . . pnrt1 . . . tm is a path representative of an element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm.
The tail thickness of p is defined as ωX(p) = min{|r|X, |t1|X, . . . , |tm−1|X}.
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Proposition 5.16. For each ζ ≥ 0, let C2 = C2(ζ) be the larger of the two constants provided
by Propositions 3.23 and 5.12, and let B1 = B1(ζ) be given by Proposition 5.13. Set
B2 = B2(ζ) = max{C2(ζ), B1(ζ)}.

Suppose that Q′ ⩽ Q is a relatively quasiconvex subgroup of G containing S = Q ∩ R. Then
there exists a constant ξ0 = ξ0(Q′, ζ) ≥ 0 such that if R′ ⩽ R and Q′, R′ satisfy conditions
(C1)-(C4), (C2-m) and (C5-m), with constants B ≥ B2 and C ≥ C2 and collections of
subgroups P ⊇ P0 and U ⊇ U0, then the following is true.

Let p = qp1 . . . pnrt1 . . . tm be a minimal type product path representative for some element
g ∈ Q⟨Q′, R′⟩RT1 . . . Tm, with g /∈ QRT1 . . . Tm. Suppose that p has multiple backtracking
along H-components h1, . . . , hk of its segments, with k ≥ 3 and dX((h1)−, (hk)+) ≤ ζ. Then
m ≥ 1 and there is a product path representative p′ for g (not necessarily of minimal type)
such that ωX(p′) ≤ ξ0.

Proof. Let ε′ ≥ 0 be a quasiconvexity constant for Q′. Take ξ0 = ξ0(Q′, ζ) ≥ 0 to be the
maximum, taken over all indices i and j satisfying 1 ≤ i ≤ j ≤ m, of the constants

ξ(ζ + ε + ε′, Q′, R, T1, . . . , Tj), ξ(ζ + 2ε, R, T1, . . . , Tj) and ξ(ζ + 2ε, Ti, . . . , Tj),

obtained from Lemma 5.14.

Suppose that h1, . . . , hk are as in the statement, with dX((h1)−, (hk)+) ≤ ζ. There are
four possible cases to consider, depending on the segments of p to which the
H-components h1 and hk belong to. If hk is an H-component of one of the segments
p2, . . . , pn or r, then one obtains a contradiction to the minimality of type of p by
following the same argument as in Proposition 3.23 (recall that (C5-m) implies (C5) by
Remark 5.1).

If h1 is an H-component of one of the segments q, p1, . . . , pn−1 and hk is an
H-component of one of the segments t1, . . . , tm, we obtain a contradiction by applying
either Proposition 5.12 or 5.13 (depending on whether h1 is a component of a segment
of p representing an element of Q or R, respectively).

It remains to consider the possibility when h1 is an H-component of one of the
segments pn, r, t1, . . . , tm. It follows that hk is an H-component of tj, for some
j ∈ {1, . . . , m}, in particular m ≥ 1. For simplicity we treat only the case when h1 is an
H-component of pn; the remaining cases can be dealt with similarly.

Note that p̃n ∈ Q′ by Remark 5.6. By the relative quasiconvexity of Q′ and Tj there are
geodesic paths α and β in Γ(G, X ∪H) satisfying

dX(α−, (h1)−) ≤ ε′, α+ = (pn)+ and α̃ ∈ Q′,

β− = (tj)−, dX(β+, (hk)+) ≤ ε and β̃ ∈ Tj.
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Let γ = αrt1 . . . tj−1β. Observe that γ̃ ∈ Q′RT1 . . . Tj and, by the triangle inequality,

|γ|X = dX(α−, β+) ≤ ε′ + ζ + ε.

Thus, applying Lemma 5.14, we can find elements x ∈ Q′, y ∈ R, z1 ∈ T1, . . ., zj ∈ Tj

such that γ̃ = xyz1 . . . zj and
|y|X ≤ ξ0. (5.13)

Therefore
g = p̃ = q̃ p̃1 . . . p̃n(α̃

−1 α̃)r̃ t̃1 . . . t̃j−1(β̃ β̃−1)t̃j . . . t̃m

= q̃ p̃1 . . . p̃n α̃−1 γ̃β̃−1 t̃j . . . t̃m

= q̃ p̃1 . . . p̃n−1( p̃n α̃−1 x)yz1 . . . zj−1(zj β̃−1 t̃j)t̃j+1 . . . t̃m.

(5.14)

Following Remark 5.5, the product decomposition (5.14) gives rise to a product path
representative p′ = q′p′1 . . . p′nr′t′1 . . . t′m for g, where q̃′ = q̃ ∈ Q, p̃′i = p̃i ∈ Q′ ∪ R′, for
i = 1, . . . , n − 1, p̃′n = p̃n α̃−1 x ∈ Q′, r̃′ = y ∈ R, t̃′l = zl ∈ Tl , for l = 1, . . . , j − 1,
t̃′j = zj β̃−1 t̃j ∈ Tj and t̃′s = t̃s ∈ Ts, for s = j + 1, . . . , m. In view of (5.13), we see that
ωX(p′) ≤ |y|X ≤ ξ0, so the proof is complete.

The following proposition is an analogue of Lemma 3.25. It employs the constant
C′

0 = max{C0, 14δ}, where C0 is provided by Lemma 5.7, and the constants
λ = λ(C′

0) ≥ 1 and c = c(C′
0) ≥ 0, given by Proposition 3.4.

Proposition 5.17. For any η ≥ 0 there are constants ζ = ζ(η) ≥ 0, C3 = C3(η) ≥ 0,
Θ1 = Θ1(η) ∈ N and B3 = B3(η) ≥ 0 such that if B ≥ B3, C ≥ C3 then there exists
E = E(η, Q′, B) ≥ 0 such that the following holds.

Suppose Q′ and R′ satisfy conditions (C1)-(C4), (C2-m) and (C5-m), with constants B and C,
and families P ⊇ P0 and U ⊇ U0. Let p be a minimal type product path representative for an
element g ∈ Q⟨Q′, R′⟩RT1 . . . Tm \ QRT1 . . . Tm. Assume that for any product path
representative p′ for g we have ωX(p′) ≥ E. Then p is (B, C′

0, ζ, Θ1)-tamable.

Let Σ(p, Θ1) = f0e1 f1 . . . el fl denote the Θ1-shortcutting of p, obtained by applying
Procedure 3.1, and let e′j be the H-component of Σ(p, Θ1) containing ej, j = 1, . . . , l. Then
Σ(p, Θ1) is a (λ, c)-quasigeodesic without backtracking and |e′j|X ≥ η, for each j = 1, . . . , l.

Proof. The proof is similar to the argument in Lemma 3.25. Let us define the necessary
constants:

• ζ = ζ(η, C′
0) is the constant from Proposition 3.4;

• Θ1 = max{Θ0(ζ), ζ}, where Θ0 is the constant from Lemma 5.9;

• B2(ζ) and C3 = C2(ζ) are the constants provided by Proposition 5.16;

• B3 = max{B0(Θ1, C′
0), B2(ζ)}, where B0(Θ1, C′

0) is the constant from
Proposition 3.4;

and, finally, for any given B ≥ B3, C ≥ C3, we set
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• E = max{B, ξ0(η, Q′) + 1}, where ξ0(η, Q′) is the constant from Proposition 5.16.

Suppose that Q′, R′, g and p = qp1 . . . pnrt1 . . . tm are as in the statement of the
proposition. We will now show that p is (B, C′

0, ζ, Θ1)-tamable.

Since Q′ and R′ satisfy (C2), Lemma 3.24 together with Remark 5.6 imply that
|pi|X ≥ B, for each i = 1, . . . , n. Moreover, by assumption,
|r|X, |t1|X, . . . , |tm−1|X ≥ E ≥ B, so condition (i) of Definition 3.3 is satisfied. On the
other hand, condition (ii) is satisfied by Lemma 5.7.

If condition (iii) of Definition 3.3 is not satisfied then p must have consecutive
backtracking along H-components h1, . . . , hk of its segments, such that

max
{
|hi|X | i = 1, . . . , k

}
≥ Θ1 and dX((h1)−, (hk)+) < ζ.

Lemma 5.9 rules out the case of adjacent backtracking (k = 2), so it must be that k ≥ 3.
That is, h1, . . . , hk is an instance of multiple backtracking in p. Proposition 5.16 now
applies, giving a product path representative p′ for g with ωX(p′) ≤ ξ0(η, Q′) < E.
This contradicts a hypothesis of the proposition, so p must also satisfy condition (iii).

Therefore p is (B, C′
0, ζ, Θ1)-tamable, and we can apply Proposition 3.4 to achieve the

desired conclusion.

5.4 Establishing conditions (C2-m) and (C5-m) using
separability

For this section, we will take G to be a group generated by finite set X.

We will exhibit, under suitable assumptions on the profinite topology on G, the
existence of finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R satisfying conditions
(C1)-(C4), (C2-m) and (C5-m). We begin with (C2-m).

Lemma 5.18. Let Q, R, T1, . . . , Tm ⩽ G be subgroups, and let S = Q ∩ R. Suppose that
RT1 . . . Tl is separable in G, for each l = 0, . . . , m. Then for any B ≥ 0 there is a finite index
subgroup N ⩽ f G, with S ⊆ N, such that arbitrary subgroups Q′ ⩽ Q ∩ N and R′ ⩽ R ∩ N
satisfy condition (C2-m) with constant B.

Proof. For each l ∈ {0, . . . , m} the product RT1 . . . Tl is separable, so, by Lemma 4.5(b),
there is a finite index normal subgroup Ml ◁ f G such that

minX(RT1 . . . Tl Ml \ RT1 . . . Tl) ≥ B, for all l = 0, . . . , m. (5.15)
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Define the subgroup M =
⋂m

l=0 Ml ◁ f G, and take N = SM ⩽ f G. Observe that

RNRT1 . . . Tl = RSMRT1 . . . Tl = RSRT1 . . . Tl M = RT1 . . . Tl M, for all l = 0, . . . , m.
(5.16)

Now choose arbitrary subgroups Q′ ⩽ Q ∩ N and R′ ⩽ R ∩ N, so that ⟨Q′, R′⟩ ⊆ N.
Since M ⊆ Ml for all l, we can combine (5.15) with (5.16) to draw the desired
conclusion.

We now tackle (C5-m). The next statement is similar to Theorem 4.12.

Lemma 5.19. Suppose that G is a group generated by finite set X and m ∈ N0. Let Q, R ⩽ G
be some subgroups, and let P and U be finite collections of subgroups of G such that

(1) each P ∈ P has property RZm+2;

(2) the subgroups Q ∩ P, R ∩ P and U ∩ P are finitely generated, for all P ∈ P and all
U ∈ U ;

(3) if P ∈ P , K ⩽ f P and L ⩽ f Q then KL is separable in G.

Then for any C ≥ 0 and any finite index subgroup Q′ ⩽ f Q, there is a finite index subgroup
O ⩽ f G, with Q′ ⊆ O, such for any R′ ⩽ R ∩O the subgroups Q′ and R′ satisfy (C5-m) with
constant C and collections P and U .

Proof. As usual, for subgroups H ⩽ G and P ∈ P we denote H ∩ P by HP.

Fix an enumeration P = {P1, . . . , Pk} and let Q′ ⩽ f Q be a finite index subgroup of Q.
Given any i ∈ {1, . . . , k}, we choose some coset representatives ai1, . . . , aini ∈ QPi of
Q′

Pi
, so that QPi =

⊔ni
j=1 aijQ′

Pi
. Let U be the finite set consisting of all l-tuples

(U1, . . . , Ul), where l ∈ {0, . . . , m} and U1, . . . , Ul ∈ U .

Consider any i ∈ {1, . . . , k} and u = (U1, . . . , Ul) ∈ U, where l ∈ {0 . . . , m}. Note that
Q′

Pi
⩽ f QPi is finitely generated, for each i = 1, . . . , k, since QPi is itself finitely

generated by assumption (2). Combining assumptions (1) and (2), the subset
Q′

Pi
RPi(U1)Pi . . . (Ul)Pi is separable in Pi. Therefore, by Lemma 4.5(c), for any C ≥ 0

there is Fi,u ◁ f Pi such that

minX

(
aijQ′

Pi
Fi,uRPi(U1)Pi . . . (Ul)Pi \ aijQ′

Pi
RPi(U1)Pi . . . (Ul)Pi

)
≥ C, (5.17)

for all j = 1, . . . , ni.

Define Ki,u = Q′
Pi

Fi,u ⩽ f Pi. Then (5.17) implies that for every j = 1, . . . , ni we have

minX

(
aijKi,uRPi(U1)Pi . . . (Ul)Pi \ aijQ′

Pi
RPi(U1)Pi . . . (Ul)Pi

)
≥ C. (5.18)
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Assumption (3) tells us that the double coset Ki,uQ′ is separable in G, and since
Q′ ∩ Pi = Q′

Pi
⊆ Ki,u, we can apply Lemma 4.7 to find a finite index subgroup

Oi,u ⩽ f G such that Q′ ⊆ Oi,u and Oi,u ∩ Pi ⊆ Ki,u.

We can now define a finite index subgroup O of G by

O =
k⋂

i=1

⋂
u∈U

Oi,u ⩽ f G.

Observe that Q′ ⊆ O and O ∩ Pi ⊆ Ki,u, for each i = 1, . . . , k and all u ∈ U. Consider
any subgroup R′ ⩽ R ∩ O. Then Q′

Pi
∪ R′

Pi
⊆ O ∩ Pi, so (5.18) yields that

minX

(
aij⟨Q′

Pi
, R′

Pi
⟩RPi(U1)Pi . . . (Ul)Pi \ aijQ′

Pi
RPi(U1)Pi . . . (Ul)Pi

)
≥ C, (5.19)

for arbitrary i = 1, . . . , k, l = 0, . . . , m, U1, . . . , Ul ∈ U and any j = 1, . . . , ni.

Given any i ∈ {1, . . . , k} and any q ∈ QPi , there is j ∈ {1, . . . , ni} such that
qQ′

Pi
= aijQ′

Pi
. It follows that q⟨Q′

Pi
, R′

Pi
⟩ = aij⟨Q′

Pi
, R′

Pi
⟩, which, combined with (5.19),

shows that Q′ and R′ satisfy condition (C5-m), as required.

For the next result we will follow the notation of Convention 5.1.

Proposition 5.20. Suppose that G is QCERF, the product RT1 . . . Tl is separable in G, for
every l = 0, . . . , m, and each peripheral subgroup of G has property RZm+2. Let P be a finite
collection of maximal parabolic subgroups and let U be a finite collection of finitely generated
relatively quasiconvex subgroups in G.

Then for any B, C ≥ 0 there is a family of pairs of finite index subgroups Q′ ⩽ f Q and
R′ ⩽ f R as in (E) such that Q′ and R′ satisfy conditions (C1)-(C4), (C2-m) and (C5-m) with
constants B and C and collections P and U .

Proof. Fix some constants B, C ≥ 0. By Proposition 4.22, there is a family of pairs of
finite index subgroups Q′ ⩽ f Q and R′ ⩽ f R as in (E) satisfying (C1)-(C5) with
constants B, C, and family P . Let L ⩽ f G with S ⊆ L be the finite index subgroup of G
provided by the existential statement (E) here.

By the hypothesis on G, the subsets RT1 . . . Tl are separable in G, for each l = 0, . . . , m.
We can therefore apply Lemma 5.18 to obtain a finite index subgroup N ⩽ f G from its
statement (in particular, S ⊆ N). Now we define the finite index subgroup L1 ⩽ f G,
from the statement of the proposition, by setting L1 = L ∩ N. Clearly L1 contains S.
Take any L′ ⩽ f L1, with S ⊆ L′, and set Q′ = Q ∩ L′ ⩽ f Q. Let M ⩽ f L′ be the
subgroup provided by (E) above.

Lemma 2.41 and Corollary 4.18 imply that all the assumptions of Lemma 5.19 are
satisfied, so let O ⩽ f G be the subgroup given by this lemma, with Q′ ⊆ O. We now
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define the finite index subgroup M1 ⩽ f L′, from the statement of the proposition, by
M1 = M ∩ O.

Evidently, M1 contains Q′. Choose an arbitrary finite index subgroup M′ ⩽ f M1, with
Q′ ⊆ M′, and set R′ = R ∩ M′. Observe that M′ ⩽ f G, by construction, hence R′ ⩽ f R.
By Proposition 4.22, such Q′ and R′ satisfy (C1)-(C4) with constants B, C and family P ,
while by Lemmas 5.18 and Lemma 5.19 they satisfy (C2-m) and (C5-m) with constants
B, C and families P and U .

5.5 Separability of double cosets in relatively hyperbolic
groups

Let us work under Conventions 2.1 and 3.3. In this section we show that if G is
QCERF with double coset separable peripheral subgroups, and Q, R ⩽ G are finitely
generated relatively quasiconvex subgroups, then the double coset QR is separable in
G. Conceptually, the idea for proving the more general Theorem 1.10 is similar to the
double coset case presented below, but with many additional technicalities. Indeed, to
prove the separability of double cosets requires only the simpler machinery developed
in Chapter 3. As such, we present it separately from the proof of Theorem 1.10.

Let us recall some notation required for the following. By P0 we mean the finite set of
maximal parabolic subgroups defined in Notation 3.7 (with M = 0). Let C0 be the
constant obtained from Lemma 3.15, and write C′

0 = max{C0, 14δ}. The constant
c3 = c3(C′

0) is obtained from Lemma 2.12, and the constants λ = λ(C′
0) and c = c(C′

0)

are from Proposition 3.4. Finally, given η ≥ 0, we will write Θ1(η), B1(η), and C3(η)

for the constants obtained from Lemma 3.25.

Lemma 5.21. For any A ≥ 0 there exist β = β(A) ≥ 0 and γ = γ(A) ≥ 0 such that if
Q′ ⩽ Q and R′ ⩽ R satisfy conditions (C1)-(C5) with constants β, γ, and family P0, then

minX

(
Q⟨Q′, R′⟩R \ QR

)
≥ A.

Proof. Given any A ≥ 0 let η = η(λ, c, A) be the constant provided by Lemma 2.29.
Using Lemma 3.25, set

Θ = Θ1(η), β = max{B1(η), (4A + c3)Θ}, and γ = C3(η).

Suppose that Q′ and R′ satisfy conditions (C1)-(C5) with constants β, γ, and family P0,
and let g ∈ Q⟨Q′, R′⟩R be any element with |g|X < A. Let p = qp1 . . . pnr be a path
representative of g with minimal type (as in Definition 3.10 with U = Q and V = R).
By Lemma 3.25, the broken line p is (B, C′

0, ζ, Θ)-tamable, the Θ-shortcutting
Σ(p, Θ) = f0e1 f1 . . . fm−1em fm is (λ, c)-quasigeodesic without backtracking, and, for
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each k = 1, . . . , m, e′k, the H-component of Σ(p, Θ) containing ek, is isolated and
satisfies

∣∣e′k∣∣X ≥ η.

If m ≥ 1, then, according to Lemma 2.29, |g|X = |Σ(p, Θ)|X ≥ A, contradicting our
assumption. Therefore it must be the case that m = 0 and Σ(p, Θ) = f0. Since
p− = ( f0)− and p+ = ( f0)+, Lemma 3.6 tells us that p is (4, c3)-quasigeodesic.
Moreover, following Remark 3.1(c), we see that pi has no H-component h with
|h|X ≥ Θ, for each i = 1, . . . , n.

Now, arguing by contradiction, suppose that g /∈ QR. Then p̃1 ∈ R′ \ S (by
Remark 3.14), so |p1|X ≥ β, by Lemma 3.24. Lemma 2.28 now implies that

ℓ(p1) ≥ β/Θ ≥ 4A + c3.

Since ℓ(p) ≥ ℓ(p1), the (4, c3)-quasigeodesicity of p yields

A > |g|X ≥ |g|X∪H = |p|X∪H ≥ 1
4
(ℓ(p)− c3) ≥ A,

which is a contradiction. Therefore g ∈ QR and the lemma is proved.

Theorem 5.22. The double coset QR is separable in G.

Proof. Consider any g ∈ G \ QR, and set A = |g|X + 1. Let β = β(A) and γ = γ(A) be
the constants obtained from Lemma 5.21. By Remark 4.10, we may combine
Theorems 4.22 and 4.23 there are subgroups Q′ ⩽ f Q, R′ ⩽ f R satisfying (C1)-(C5)
with constants β, γ and finite family P0 such that ⟨Q′, R′⟩. By Lemma 5.21, we have
g /∈ Q⟨Q′, R′⟩R.

Now Q′ and R′ are finitely generated, ⟨Q′, R′⟩ is finitely generated and relatively
quasiconvex. Hence it is separable in G by the assumption that G is QCERF. Observe
that since Q′ and R′ are finite index subgroups in Q and R respectively,

Q⟨Q′, R′⟩R =
n⋃

i=1

m⋃
j=1

ai⟨Q′, R′⟩bj,

where a1, . . . , an are left coset representatives of Q′ in Q, and b1, . . . , bm are right coset
representatives of R′ in R. Recalling Remark 4.1, we see that the subset Q⟨Q′, R′⟩R is
separable in G, thus it is a closed set containing QR but not containing g. Since we
found such a set for an arbitrary g ∈ G \ QR, we can conclude that QR is closed in
PT (G), as required.
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5.6 Separability of quasiconvex products in relatively
hyperbolic groups

The goal of this section is to prove Theorem 1.10.

Remark 5.23. Let G be a relatively hyperbolic group. Suppose that s ∈ N and the
product of any s finitely generated relatively quasiconvex subgroups is separable in G.
If Q1, . . . , Qs are finitely generated quasiconvex subgroups of G and a0, . . . , as ∈ G are
arbitrary elements, then the subset a0Q1a1 . . . Qsas is separable in G.

Indeed, observe that the subset

a0Q1a1 . . . Qsas = Qa0
1 Qa0a1

2 . . . Qa0 ...as−1
s a0 . . . as

is a translate of a product of conjugates of the subgroups Q1, . . . , Qs. Combining
Lemma 2.39 with Remark 4.1 and the assumption on G yields the desired conclusion.

Proof of Theorem 1.10. We induct on s. The case s = 1 is equivalent to the QCERF
property of G, while the case s = 2 is Theorem 5.22. Thus we can assume that s > 2
and the product of any s − 1 finitely generated relatively quasiconvex subgroups is
separable in G.

Let Q1, . . . , Qs be finitely generated relatively quasiconvex subgroups of G. For ease of
notation we write m = s − 2, Q = Q1, R = Q2 and Ti = Qi+2, for i ∈ {1, . . . , m}. We
work under Convention 5.1.

Arguing by contradiction, suppose that the subset QRT1 . . . Tm = Q1 . . . Qs is not
separable in G. Then there exists g ∈ G \ QRT1 . . . Tm such that g belongs to the
profinite closure of QRT1 . . . Tm in G. Let us fix the following notation for the
remainder of the proof:

• C′
0 = max{C0, 14δ} ≥ 0, where C0 is the constant obtained from Lemma 5.7;

• c3 = c3(C′
0) ≥ 0 is the constant obtained from Lemma 2.12;

• λ = λ(C′
0) ≥ 1 and c = c(C′

0) ≥ 0 are obtained from Proposition 3.4, applied
with the constant C′

0;

• P = P0 is the finite family of maximal parabolic subgroups of G from
Notation 5.2;

• U = U0 is the finite collection of finitely generated relatively quasiconvex
subgroups of G from Notation 5.3;

• A = |g|X + 1 and η = η(λ, c, A) ≥ 0 is obtained from Lemma 2.29;

• ζ = ζ(η) ≥ 0, Θ = Θ1(η) ≥ 0, C3 = C3(η) ≥ 0 and B3 = B3(η) ≥ 0 are the
constants obtained from Proposition 5.17;

• B = max{B3(η), (4A + c3)Θ1} and C = C3(η).
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Observe that, by the induction hypothesis, the product RT1 . . . Tl is separable in G, for
every l = 0, . . . , m. Moreover, by assumption the peripheral subgroups of G satisfy
RZs, so Proposition 5.20 applies. Now by Remark 4.10, we may combine
Proposition 5.20 and Theorem 4.23 to obtain a family of pairs of finite index subgroups
Q′ ⩽ f Q amd R′ ⩽ R as in (E) that satisfy (C1)-(C4), (C2-m), and (C5-m) with
constants B, C and families P and U and with ⟨Q′, R′⟩ relatively quasiconvex.

Let L ⩽ f G with S ⊆ L be the finite index subgroup provided by (E) for the above, and
fix Q′ = Q ∩ L. Let M ⩽ f L with Q′ ⊆ M be the finite index subgroup provided by (E)
corresponding to L′ = L. Now take E = E(η, Q′, B) ≥ 0 to be the constant provided by
Proposition 5.17. Let {Mj | j ∈ N} be an enumeration of the finite index subgroups of
M containing Q′, and define the subgroups

M′
i =

i⋂
j=1

Mj ⩽ f L and R′
i = M′

i ∩ R ⩽ f R, i ∈ N. (5.20)

Note that for every i ∈ N, Q′ ⊆ M′
i , so the condition (E) ensures that the subgroups Q′

and R′
i satisfy conditions (C1)-(C4), (C2-m) and (C5-m) with constants B, C and

families P , U , defined above, and ⟨Q′, R′
i⟩ is relatively quasiconvex. For each i ∈ N,

we consider the subset
Ki = Q⟨Q′, R′

i⟩RT1 . . . Tm.

Choose coset representatives x1, . . . , xa ∈ Q and yi,1, . . . , yi,bi ∈ R such that
Q =

⋃a
j=1 xjQ′ and R =

⋃bi
k=1 R′

i yi,k. Then

Q⟨Q′, R′
i⟩R =

a⋃
j=1

bi⋃
k=1

xj⟨Q′, R′
i⟩yi,k,

hence Ki may be written as the finite union

Ki =
a⋃

j=1

bi⋃
k=1

xj⟨Q′, R′
i⟩yi,kT1 . . . Tm.

Therefore, for every i ∈ N, the subset Ki is separable in G by Remark 5.23 and the
induction hypothesis. Since each Ki contains the product QRT1 . . . Tm and g is in the
profinite closure of QRT1 . . . Tm, it must be the case that g ∈ Ki, for every i ∈ N. The
remainder of the proof will be dedicated to showing that we obtain a contradiction by
considering sufficiently large values of i.

For each i ∈ N, let Si be the set of product path representatives of g in the set
Ki = Q⟨Q′, R′

i⟩RT1 . . . Tm (see Definition 5.3, where R′ is replaced by R′
i). We will now

consider two cases depending on the tail thickness of the representatives in Si.
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Case 1: there exists i ∈ N such that inf
p′∈Si

ωX(p′) ≥ E.

Choose a product path representative of minimal type p = qp1 . . . pnrt1 . . . tm for g in
Ki. Note that n ≥ 1 and p̃1 ∈ R′

i \ S because g /∈ QRT1 . . . Tm (see Remark 5.6). By the
assumption and the above construction, we can apply Proposition 5.17 to conclude
that p is (B, C′

0, ζ, Θ)-tamable and the shortcutting Σ(p, Θ) = f0e1 f1 . . . fl−1el fl ,
obtained from Procedure 3.1, is (λ, c)-quasigeodesic without backtracking, with∣∣e′k∣∣X ≥ η for each k = 1, . . . , l (where e′k denotes the H-component of Σ(p, Θ)

containing ek).

If l > 0, then applying Lemma 2.29 to the path Σ(p, Θ) gives

|g|X = |p|X = |Σ(p, Θ)|X ≥ A > |g|X,

by the choice of η, which gives a contradiction.

Therefore it must be that l = 0. Then p is (4, c3)-quasigeodesic by Lemma 3.6 and,
according to Remark 3.1(c), no segment of p contains an H-component h with
|h|X ≥ Θ. By the quasigeodesicity of p and the fact that p1 is a subpath of p, we have

|g|X∪H = |p|X∪H ≥ 1
4
(ℓ(p)− c3) ≥

1
4
(ℓ(p1)− c3). (5.21)

Applying Lemma 2.28 to the geodesic p1 in Γ(G, X ∪H) we obtain

ℓ(p1) ≥
1
Θ
|p1|X ≥ B

Θ
≥ 4A + c3, (5.22)

where the second inequality follows from the fact that p̃1 ∈ R′
i \ S and Lemma 3.24.

Combining (5.21) and (5.22), we get

|g|X ≥ |g|X∪H ≥ 1
4
(4A + c3 − c3) = A > |g|X,

which is a contradiction.

Case 2: for all i ∈ N we have inf
p′∈Si

ωX(p′) < E.

For each i ∈ N there is a product path representative pi = qi p1,i . . . pni ,irit1,i . . . tm,i ∈ Si

for g such that th(pi) ≤ E. It must either be the case that lim inf
i→∞

|ri|X ≤ E or that

lim inf
i→∞

∣∣tj,i
∣∣

X ≤ E, for some j ∈ {1, . . . , m}. We will consider the former case, as the

latter is very similar.

Since there are only finitely many elements x ∈ G with |x|X ≤ E, we may pass to a
subsequence (pik)k∈N such that r̃ik = r ∈ R is some fixed element, for all k ∈ N. It
follows that

g = p̃ik ∈ Q⟨Q′, R′
ik
⟩rT1 . . . Tm, for each k ∈ N. (5.23)



114 Chapter 5. Product separability in nonpositively curved groups

Now, g /∈ QrT1 . . . Tm (as y ∈ R), and the subset QrT1 . . . Tm is separable in G by the
induction hypothesis and Remark 5.23. By Lemma 4.5(a), there is a finite index normal
subgroup N ◁ f G such that g /∈ QNrT1 . . . Tm. The subgroup M ∩ QN has finite index
in M and contains Q′, therefore M ∩ QN = Mj0 , for some j0 ∈ N.

Choose k ∈ N such that ik ≥ j0, so that M′
ik
⊆ Mj0 ⊆ QN (see the definition (5.20)).

Then R′
ik
= M′

ik
∩ R ⊆ QN, hence

Q⟨Q′, R′
ik
⟩rT1 . . . Tm ⊆ QNyT1 . . . Tm. (5.24)

Since g /∈ QNrT1 . . . Tm, inclusions (5.23) and (5.24) contradict each other.

We have arrived to a contradiction at each of the two cases, hence the proof is
complete.

5.7 New examples of product separable groups

In this section we prove Theorem 1.11. We proceed with the examples in the order
they are listed in the theorem statement. Limit groups are the easiest to treat.

Proposition 5.24. Limit groups are product separable.

Proof. Dahmani (2003) and, independently, Alibegović (2005) proved that every limit
group is hyperbolic relative to a collection of conjugacy class representatives of its
maximal non-cyclic finitely generated abelian subgroups.

Moreover, Wilton (2008) showed that limit groups are LERF and Dahmani (2003)
showed they are locally quasiconvex (that is, each of their finitely generated subgroups
is relatively quasiconvex with respect to the given peripheral structure). Therefore our
Theorem 1.10 yields that limit groups are product separable.

For Kleinian groups, we require the following two lemmas to deal with the case when
one of the factors is not relatively quasiconvex.

Lemma 5.25. Let N be a group and n ≥ 2 be an integer. Suppose that H1, . . . , Hn are
subgroups of N such that Hi ◁ N, for some i ∈ {1, . . . , n}, and the image of the product
H1 . . . Hi−1Hi+1 . . . Hn is separable in N/Hi. Then H1 . . . Hn is separable in N.

Proof. Let φ : N → N/Hi denote the natural epimorphism. By the assumptions, the
subset S = φ(H1 . . . Hi−1Hi+1 . . . Hn) is separable in N/Hi. Observe that

H1 . . . Hn = (H1 . . . Hi−1Hi+1 . . . Hn)Hi = φ−1(S),
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as Hi ◁ N, whence H1 . . . Hn is closed in the profinite topology on N because group
homomorphisms are continuous with respect to profinite topologies.

Lemma 5.26. Let G be a group with finitely generated subgroups F1, . . . , Fn ⩽ G, n ≥ 2.
Suppose there exists a finite index subgroup G′ ⩽ f G and an index i ∈ {1, . . . , n} such that
F′

i = Fi ∩ G′ ◁ G′ and G′/F′
i has property RZn−1. Then F1 . . . Fn is separable in G.

Proof. Let N ◁ f G be a finite index normal subgroup contained in G′, and set
Hj = Fj ∩ N, for j = 1, . . . , n.

Since [Fj : Hj] < ∞, for each j = 1, . . . , n, the product F1 . . . Fn can be written as a finite
union of subsets of the form h1H1h2H2 . . . hnHn, where h1, . . . , hn ∈ G. Observe that

h1H1h2H2 . . . hnHn = Hg1
1 Hg2

2 . . . Hgn
n gn,

where gj = h1 . . . hj ∈ G, j = 1, . . . , n. Thus, in view of Remark 4.1, in order to prove
the separability of F1 . . . Fn in G it is enough to show that the product Hg1

1 Hg2
2 . . . Hgn

n is
separable, for arbitrary g1, . . . , gn ∈ G.

Given any elements g1, . . . , gn ∈ G, the subgroups Hg1
1 , Hg2

2 , . . . , Hgn
n ⩽ G are finitely

generated and are contained in N. Moreover, since the subgroup Hi = Fi ∩ N = F′
i ∩ N

is normal in N and N ⩽ G′ is normal in G, we see that Hgi
i ◁ N and

N/Hgi
i = Ngi /Hgi

i
∼= N/Hi ⩽ G′/F′

i .

Therefore the group N/Hgi
i has RZn−1, as a subgroup of G′/F′

i , so the image of the
product Hg1

1 . . . Hgi−1
i−1 Hgi+1

i+1 . . . Hgn
n is separable in N/Hgi

i . Lemma 5.25 now implies that
Hg1

1 Hg2
2 . . . Hgn

n is separable in N, hence it is also separable in G by Lemma 4.2(b). As
we observed above, the latter yields the separability of F1 . . . Fn in G, as required.

Proposition 5.27. Finitely generated Kleinian groups are product separable.

Proof. Let G be a finitely generated discrete subgroup of Isom(H3). We will first
reduce the proof to the case when H3/G is a finite volume manifold. This idea is
inspired by the argument of Manning and Martı́nez-Pedroza used in the proof of
(Manning and Martı́nez-Pedroza, 2010, Corollary 1.5).

Using Selberg’s lemma, we can find a torsion-free finite index subgroup K ⩽ G. Since
product separability of K implies that of G (Ribes, 2017, Lemma 11.3.5), without loss of
generality we can assume that G is torsion-free. It follows that G acts freely and
properly discontinuously on H3, so that M = H3/G is a complete hyperbolic
3-manifold.

If M has infinite volume then, by (Matsuzaki and Taniguchi, 1998, Theorem 4.10), G is
isomorphic to a geometrically finite Kleinian group. Thus we can further assume that
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G is geometrically finite, which allows us to apply (Brooks, 1986, Theorem 2) to find
an embedding of G into a torsion-free Kleinian group G′ such that H3/G′ is a finite
volume manifold. If G′ is product separable, then so is any subgroup of it, hence we
have made the promised reduction.

Thus we can suppose that G = π1(M), for a hyperbolic 3-manifold M of finite
volume. The tameness conjecture, proved by Agol (2004) and Calegari and Gabai
(2006), combined with (Canary, 1996, Corollary 8.3), implies that any finitely
generated subgroup F ⩽ G is either geometrically finite or is a virtual fibre subgroup.
The latter means that there is a finite index subgroup G′ ⩽ f G such that
F′ = F ∩ G′ ◁ G′ and G′/F′ ∼= Z.

By (Matsuzaki and Taniguchi, 1998, Theorem 3.7), G is a geometrically finite subgroup
of Isom(H3), hence it is finitely generated and hyperbolic relative to a finite collection
of finitely generated virtually abelian subgroups, each of which is product separable
by (Ribes, 2017, Lemma 11.3.5). Moreover, by (Hruska, 2010, Corollary 1.6), a
subgroup of G is relatively quasiconvex if and only if it is geometrically finite. Finally,
G is LERF (and, hence, QCERF) by (Agol, 2013, Corollary 9.4).

Let F1, . . . , Fn be finitely generated subgroups of G, n ≥ 2. If Fj is geometrically finite,
for all j = 1, . . . , n, then the product F1 . . . Fn is separable in G by Theorem 1.10. Thus
we can suppose that Fi is not geometrically finite, for some i ∈ {1, . . . , n}. By the
above discussion, in this case Fi must be a virtual fibre subgroup of G. Since Z is
product separable, we can apply Lemma 5.26 to conclude that F1 . . . Fn is separable in
G, completing the proof.

Limit groups and Kleinian groups are hyperbolic relative to virtually abelian
subgroups. The peripheral subgroups from relatively hyperbolic structures on groups
in Proposition 5.29 will be fundamental groups of graphs of cyclic groups, which
motivates the next auxiliary lemma.

Lemma 5.28. Suppose that G is the fundamental group of a finite graph of infinite cyclic
groups. If G is balanced then it is product separable.

Proof. Suppose that G = π1(G−, Γ), where (G−, Γ) is a graph of groups, associated to a
finite connected graph Γ with vertex set VΓ and edge set EΓ. According to the
assumptions, each vertex group Gv, v ∈ VΓ, is infinite cyclic. W use Ge to denote the
edge group corresponding to e ∈ EΓ (see (Dicks and Dunwoody, 1989, Section I.3) for
the definition and general theory of graphs of groups).

If |EΓ| = 0 then G is cyclic, thus product separable. We proceed by induction on |EΓ|.

Assume first that one of the edge groups Ge is trivial. If removing e disconnects Γ then
G splits as a free product G1 ∗ G2, where G1, G2 are the fundamental groups of finite
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graphs of infinite cyclic groups corresponding to the two connected components of
Γ \ {e}. Otherwise, G ∼= G1 ∗ G2, where G1 the fundamental group of a finite graph of
infinite cyclic groups corresponding to the graph Γ \ {e} and G2 is infinite cyclic.
Moreover, G1 and G2 will be balanced as subgroups of a balanced group G. Hence G1

and G2 will be product separable by induction, so G ∼= G1 ∗ G2 will be product
separable by (Coulbois, 2001, Theorem 1).

Therefore we can assume that every edge group Ge is infinite cyclic. This means that G
is a generalised Baumslag-Solitar group. The assumption that G is balanced now
translates into the assumption that G is unimodular, using Levitt’s terminology from
Levitt (2007). We can now apply (Levitt, 2007, Proposition 2.6) to deduce that G has a
finite index subgroup K isomorphic to the direct product F × Z, where F is a free
group.

Now, K ∼= F × Z is product separable by You’s result (You, 1997, Theorem 5.1), hence
G is product separable as a finite index supergroup of K (see (Ribes, 2017,
Lemma 11.3.5)). Thus the lemma is proved.

Proposition 5.29. Let G be the fundamental group of a finite graph of free groups with cyclic
edge groups. If G is balanced then it is product separable.

Proof. Without loss of generality we can assume that each vertex group is a finitely
generated free group (in particular, G is finitely generated). Indeed, otherwise
G ∼= G1 ∗ F, where G1 is the fundamental group of a finite graph of finitely generated
free groups with cyclic edge groups and F is free (this follows from the fact that any
element of a free group is the product of only finitely many free generators). In this
case we can deduce the product separability of G from the product separability of G1

and F by (Coulbois, 2001, Theorem 1) (recall that F is product separable by (Ribes and
Zalesskii, 1993, Theorem 2.1)).

Now, for each vertex group Gv, choose and fix a finite family of maximal infinite cyclic
subgroups Pv such that

(a) no two subgroups from Pv are conjugate in Gv;

(b) for every edge e incident to v in Γ, the image of the cyclic group Ge in Gv is
conjugate into one of the subgroups from Pv.

Condition (a) means that each Gv is hyperbolic relative to the finite family Pv (for
example, by (Bowditch, 2012, Theorem 7.11)), and condition (b) means that each edge
group of the given splitting of G is parabolic in the corresponding vertex groups.
Therefore we can apply (Bigdely and Wise, 2013, Theorem 1.4) to conclude that G is
hyperbolic relative to a finite collection of subgroups Q, where each Q ∈ Q acts
cocompactly on a parabolic tree (see (Bigdely and Wise, 2013, Definition 1.3)) with
vertex stabilisers conjugate to elements of

⋃
v∈VΓ Pv and edge stabilisers conjugate to
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elements of {Ge | e ∈ Γ}. The structure theorem for groups acting on trees (Dicks and
Dunwoody, 1989, Section I.4.1) implies that every Q ∈ Q is isomorphic to the
fundamental group of a finite graph of infinite cyclic groups. Since Q is balanced,
being a subgroup of G, we can apply Lemma 5.28 to conclude that each Q ∈ Q is
product separable. By Wise’s result (Wise, 2000, Theorem 5.1) G is LERF, hence we can
apply our Theorem 1.10 to deduce that the product of a finite number of finitely
generated relatively quasiconvex subgroups is separable in G.

To establish the product separability of G it remains to show that it is locally
quasiconvex. To achieve this we will again use the results of Bigdely and Wise. More
precisely, according to (Bigdely and Wise, 2013, Theorem 2.6), a subgroup of G is
relatively quasiconvex if it is tamely generated.

Let H ⩽ G be a finitely generated subgroup. The splitting of G as the fundamental
group of the graph of groups (G−, Γ) induces a splitting of H as the fundamental
group of a graph of groups (H−, ∆), where for each vertex u ∈ V∆ the stabiliser Hu is
equal to H ∩ Gv

g, for some v ∈ VΓ and some g ∈ G. Moreover, the graph ∆ is finite,
because H is finitely generated (see (Dicks and Dunwoody, 1989, Proposition I.4.13)).
Note that every edge group from (H−, ∆) is cyclic, hence each vertex group Hu,
u ∈ V∆, must be finitely generated as H is finitely generated (see (Bigdely and Wise,
2013, Lemma 2.5)).

According to (Bigdely and Wise, 2013, Definition 0.1), H is tamely generated if for
every u ∈ V∆ the subgroup Hu = H ∩ Gv

g is relatively quasiconvex in Gv
g, equipped

with the peripheral structure Pv
g. But the latter is true because Gv

g is a finitely
generated free group, so any finitely generated subgroup is undistorted, and hence it
is relatively quasiconvex with respect to any peripheral structure on Gv

g, by (Hruska,
2010, Theorem 1.5). Thus every finitely generated subgroup H ⩽ G is tamely
generated, and so it is relatively quasiconvex in G by (Bigdely and Wise, 2013,
Theorem 2.6).

Remark 5.30. If G is finitely generated and is the fundamental group of a finite graph
of virtually free groups with virtually cyclic edge groups, G has a torsion-free finite
index subgroup K (Shepherd and Woodhouse, 2022, Proposition 3.13). As K has finite
index in G, K is balanced and is isomorphic to the fundamental group of a finite graph
of free groups with cyclic edge groups. Now the product separability of G follows
from the product separability of K by (Ribes, 2017, Lemma 11.3.5). Therefore in the
restricted case that G is finitely generated, Theorem 1.11 extends to graphs of virtually
free groups with virtually cyclic edge groups.

Remark 5.31. In the case when the graph of groups has two vertices and one edge (so
that G is a free amalgamated product of two free groups over a cyclic subgroup),
Proposition 5.29 was originally proved by Coulbois in his thesis: see (Coulbois, 2000,
Theorem 5.18). We can use similar methods to recover another result of Coulbois: if
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G = H ∗C F, where H is product separable, F is free and C is a maximal cyclic
subgroup in F then G is product separable (Coulbois, 2000, Theorem 5.4). Indeed, in
this case G will be hyperbolic relative to Q = {H} and will be LERF by Gitik’s
theorem (Gitik, 1997, Theorem 4.4). As in the proof of Proposition 5.29, the results
from Bigdely and Wise (2013) imply that G is locally quasiconvex. Therefore G is
product separable by Theorem 1.10.
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