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Abstract 44 
 45 

 46 
Single cell spatial interrogation of the immune-structural interactions in COVID -19 lungs is challenging, 47 

mainly because of the marked cellular infiltrate and architecturally distorted microstructure.  To 48 
address this, we develop a suite of mathematical tools to search for statistically significant co-locations 49 
amongst immune and structural cells identified using 37-plex imaging mass cytometry.   This unbiased 50 
method reveals a cellular map interleaved with an inflammatory network of immature neutrophils, 51 
cytotoxic CD8 T cells, megakaryocytes and monocytes co-located with regenerating alveolar 52 
progenitors and endothelium. Of note, a highly active cluster of immature neutrophils and CD8 T cells, 53 
is found spatially linked with alveolar progenitor cells, and temporally with the diffuse alveolar damage 54 

stage. These findings offer further insights into how immune cells interact in the lungs of severe 55 
COVID-19 disease.  We provide our pipeline [Spatial Omics Oxford Pipeline (SpOOx)] and visual-56 
analytical tool, Multi-Dimensional Viewer (MDV) software, as a resource for spatial analysis. 57 
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Introduction 87 
 88 
Since the first reports of COVID-19 cases in Dec 2019, the severe acute respiratory syndrome 89 
coronavirus 2 (SARS-CoV-2) has caused more than 6 million deaths worldwide1, mainly from 90 
respiratory failure.  Similarities between COVID-19 and other viral infections of the lungs like SARS and 91 
influenza have been noted, but there are specific differences which may be indicative of underlying 92 

disease mechanisms unique to COVID-19.  In particular, patients with COVID-19 have excess incidence 93 
of thromboembolic disease, endothelial damage, and greater acute and long-term impact on organs 94 
other than lungs 2-5. High-resolution immune studies in the blood have shed light on the potential 95 
mechanisms for severe COVID-19 disease, with evidence supporting myeloid cell overactivation and 96 
dysregulation, T cell exhaustion and cytokine hyperactivation 6-10. Our recent comprehensive multi-97 
modal study of circulating immune cells (COMBAT study)6 and several other major studies have also 98 
concluded that a key hallmark of severity was emergency myelopoiesis6,8,9,11,12, characterized by raised 99 

circulating immature neutrophils, cycling monocytes, and raised haematopoietic progenitors. 100 
However, it is not known how these findings in blood relate to damaged lung structural cells and other 101 
immune cells in the lungs, nor if they formed injurious immune entities.   102 
 103 
Interrogation of the immune response in COVID -19 lungs have lagged behind studies in peripheral 104 
blood. Our understanding of the immune response in the lungs is derived mostly from several single 105 
cell and single nucleus RNA sequencing studies which have provided valuable insights on a 106 
transcriptomic level13-18. However, these are limited by a lack of high resolution (cell level) spatial 107 

context. Transcriptomics studies are also restricted by a lower detection rate for neutrophils as these 108 
cells possess relatively low RNA content and high levels of RNases and other inhibitory compounds 109 
which confound their identification. Notwithstanding these limitations, studies in intact COVID-19 110 
lung tissue are also challenging, due to the distorted lung micro-architecture and massive cellular 111 
infiltrate, making it difficult to unravel cellular connectivity and organisation. An initial evaluation of 112 
COVID-19 lung tissue using imaging mass cytometry by Rendeiro et al concluded that there was 113 
greater spatial proximity between macrophages, stromal cells and fibroblasts in lung samples 114 
obtained later in infection but did not identify reveal further insight into the cause of severe alveolar 115 
damage 19.  116 
 117 
In this study, we develop a bespoke mathematical package to identify statistically significant co-118 
location between different cells, including structural cells, at the level of single cell resolution. We 119 
identify a cluster of closely apposed immature neutrophils and CD8 T cells with high immune activity, 120 



which are spatio-temporally associated with proliferating alveolar epithelium in tissue sections 121 
demonstrating diffuse alveolar damage.   These findings raise the possibility of an injurious entity 122 
generated by the interaction between immature neutrophils and a specific subset of CD8 T cells in  123 
severe COVID-19 pneumonitis.  124 
 125 
 126 

RESULTS 127 
 128 
An integrated pipeline to uncover and quantify spatial association amongst cells  129 
 130 
Our first task was to establish a method to quantify statistically significant spatial correlations between 131 
highly-resolved immune and structural cell types in our lung tissue sections. To do this, we developed 132 
an analytical pipeline which combined an immunology-centric annotation approach with a 3-step 133 

spatial association analysis [quadrat correlation matrices (QCMs), cross-pair correlation functions 134 
(cross- PCFs) and adjacency cell network (ACN)] to provide a set of statistically rigorous spatial 135 
analytical output (Fig. 1A and Supplementary Fig. 1, and described in detail in Methods).  In brief, we 136 
first used the QCM to identify cell pairs that are statistically significantly correlated in cell counts. 137 
Correlated cell pairs, of types A and B say, were then examined for co-location above random spatial 138 
association (using cross-PCF). If the cross-PCF, g(r), is greater than 1, then cells of type B are observed 139 
more frequently at distance r from cells of type A than would be expected under complete spatial 140 
randomness (CSR). We considered g(r=20), the value of the cross-PCF at r=20, as a means of 141 

quantifying how many more cells of type B are observed at distance 20μm from an anchor cell of type 142 
A than under CSR. We then examined whether the co-locating cell pairs were physically in contact 143 
with each other using a spatially embedded ‘adjacency cell network’ (ACN). Using the ACN, we 144 
computed the proportion of cells of type A that were in contact with at least one cell of type B, (full 145 
description found in Methods).   146 

 147 

These work packages were integrated computationally into a workflow of Python and R based 148 
command line tools which may be run individually or as an automated pipeline (Spatial Omics Oxford 149 
pipeline; SpOOx) (Fig. 1A). The pipeline is supported by a visualisation platform [Multi-Dimensional 150 
Viewer (MDV)] (Video V1). Both are available as an open access online resource (see Methods for link).  151 
To differentiate this lung-based from our blood-based study (COMBAT)6, we have called this the 152 
COSMIC (COVID-19 Lung Single Cell Mass Cytometry Imaging Consortium) study.   153 
 154 



 155 
 156 
Histopathology states of inflammation, damage and repair are found in lung sections at point of 157 
death 158 
 159 
We started by examining formalin-fixed paraffin-embedded (FFPE) lung sections from a cohort of 160 

patients who died from PCR-positive COVID-19 pneumonitis from one hospital (University of Navarra, 161 
Spain) (n=12). Samples were obtained at the point of death and fixed immediately, markedly reducing 162 
post-mortem tissue deterioration 20. All samples were collected during the first wave of the pandemic 163 
in 2020, before vaccination and repeat infection with SARS-CoV-2. Healthy lung sections from patients 164 
undergoing lobectomy for early, isolated lung cancer (HC) lungs (n=2) were used as comparators 165 
(Demographics in Supplementary Table 1); obtained from the Oxford Radcliffe Biobank (Oxford 166 
University Hospitals NHS Foundation Trust, UK).  167 

 168 
Six of 12 patients were mechanically ventilated (range 6-23 days). All but three were receiving 169 
corticosteroids at the point of death (Supplementary Table 1). In all patients, thoracic CT scans closest 170 
to the day of death demonstrated typical and extensive COVID-19 pneumonitis comprising ground 171 
glass changes and consolidation (Supplementary Table 1).  Five of 12 lung sections showed evidence 172 
of both PCR and immunostaining for SARS-CoV2 Nucleocapsid protein; 3 were PCR+ but protein 173 

negative (Supplementary Table 2). Four sequential lung sections (6 μm thick) were used for 174 
haematoxylin and eosin (H&E), 37-plex panel staining (35 metal-tagged antibodies and 2 DNA 175 
chelators), and selected immunofluorescence validation sequentially.  176 
 177 
Initial histopathology analysis (independently performed by two senior pathologists with expertise in 178 
lung and infectious disease, and a senior respiratory clinician) revealed a highly distorted lung 179 
architecture with extensive cellular infiltrate in all samples, changes previously observed in post 180 
mortem studies of COVID-19 lung sections21-26. However, all our sections can be categorised into three 181 
formal histopathology classifications of predominantly alveolitis (ALV), diffuse alveolar damage (DAD) 182 
or organising pneumonia (OP) (n=4 patients in each category)27,28 (Fig. 1B and Supplementary Fig. 2). 183 
ALV was characterised by thickened alveolar epithelial wall and septae with immune cell infiltrate and 184 
congestion of alveolar walls; DAD, by widespread alveolar epithelial lining injury accompanied by 185 
hyaline membrane, regenerating/proliferating Type II alveolar epithelium and interstitial oedema, 186 
while OP depicts a repair state typified by presence of fibroblasts, proliferation of alveolar epithelium 187 
and collagen presence around bronchial epithelium 28. In keeping with this, patients with dominant 188 



OP histopathology showed a trend of being sampled furthest away from their first symptoms (Fig. 1C), 189 
had longer periods of stay in hospital and were mechanically ventilated for longer (Supplementary 190 
Table 1 and Supplementary Fig. 3) (no statistical difference observed). All 5 patients with evidence of 191 
dual SARS-CoV-2 N protein and PCR expression had lung sections that showed DAD. No sections with 192 
OP were positive for SARS-CoV-2 protein staining (Supplementary Table 2; Supplementary Fig. 4). 193 
There were no associations between histopathology states and clinical features (age, drugs used, co-194 

morbidities, or C-reactive protein (CRP) nearest the point of death) (Supplementary Table 1, Fig. 1D).   195 
 196 
These results provide a histopathology-based temporally progressive states for further analysis. 2-3 197 
regions of interest (ROIs) per patient (total of 4 mm2 area per patient), selected as representative 198 
areas for the dominant histopathology state, were drawn for ablation.   199 
 200 
Identification of immature neutrophils - CD8 T cell clusters with high immune activity. 201 

 202 
After preliminary staining with an initial panel (Supplementary Table 3, Supplementary Fig. 5) on a 203 
‘sentinel’ cohort, we designed a final panel which incorporated the most abundant structural and 204 
immune cell types (Supplementary Fig. 7A). Single cell segmentation performed using Mesmer library 205 
from the DeepCell algorithm 29 resulted in 677,623 single cells from all ROIs, [ALV (n=10 ROIs), DAD 206 
(n=8), OP (n=8) and HC (n=4)] (Fig. 2A,  Supplementary Fig. 7 and 12).  Cell clusters were derived using 207 
Phenograph and annotation was performed using a combination of expression heat map analyses and 208 
expression density plots (Supplementary Fig. 7). Final annotation was refined with Pseudotime 209 

analysis of selected groups of cell clusters, examination of distributions of the cell clusters in all 210 

samples, and cross-checking with H&E and MiniCAD Design (MCD) images (generated by the Hyperion 211 

imaging system) against known structural cell location and cell morphology (Supplementary Fig. 7). 212 
This produced a final list of 37 identifiable cell clusters (26 immune cell types and 11 structural) (Fig. 213 
2B-C). Expanded description of the annotated cells is provided in Supplementary Table 4. For clarity 214 
of terminology, once the cell clusters were annotated, they were termed ‘cell types’ or ‘cells’ unless 215 

there were more than two cell types in the annotation. 216 
 217 
Compared with healthy lungs (without dividing into different histopathology states), monocytes were 218 
the most abundant immune cells (Fig. 2B). Amongst the annotated cell types, five were found to co-219 
express defining markers of different immune or structural cells, reflecting closely located or apposed 220 
cell groups (Neutrophil and CD8 T cell, Monocyte and CD31+ cells, Monocyte- PAI-1+ cells, CD8 T cells 221 

– PAI-1+ cells and IFN-γhi cells and RAGE+ cells). We labelled these 'adjacent' (ADJ) cell types. 222 



Immunofluorescence staining confirmed presence of two different adjacent cells for the 223 
Neut_CD8_ADJ (immature neutrophil and CD8 T cells) (Fig. 2D, and Supplementary Fig. 7L).   224 
Mono_CD31_ADJ comprised both monocytes that were found adjacent to endothelial cells and CD31-225 
expressing monocytes (Fig. 2E).   226 
 227 
Of note, the Neut_CD8_ADJ cells contained the most immature neutrophil cell type (CD71hi 228 

neutrophils) coupled with CD45RO+ CD107a-CD8 T cells (Fig. 2F). The cluster also had the highest 229 

expression of Granzyme B (GZB), CD172a (SIRPA), IFN-β and IFN-γ (Fig. 2F, G-I). Within the cluster, the 230 
GZB expression was found on the CD8 T cells, indicating these as cytotoxic CD8 T cells (Fig. 2I). The 231 
monocyte subset in the Mono_CD31_ADJ cluster was the least differentiated (to macrophage) 232 

monocyte subset; similar to the Mono_1 cell type (Fig. 2D, Supplementary Fig. 7L). 233 
 234 
High innate immune cell numbers found in all histopathology states 235 
 236 
We next sought to understand how immune cell abundance changed as the overall histology 237 
progresses from injury to repair.  Firstly, we observed that changes in numbers of structural and 238 
relevant immune cells supported the temporal progression of histopathology states from inflammation 239 
to damage and subsequent repair (Fig. 3A).  There was a progressive increase in numbers of all subsets 240 

of macrophages, fibroblasts, proliferating fibroblasts and myofibroblasts from ALV to DAD to OP, 241 
consistent with transition from tissue injury to repair. Endothelial and proliferating endothelial cells, 242 
proliferating bronchial epithelium and bronchial epithelium also increased progressively. Changes in 243 
abundance of macrophages over the three histopathology states reflected accumulation of 244 
macrophages as monocytes differentiate into macrophages with progression of disease.  245 
 246 
Across the three histopathology states, we found high numbers of classical monocytes, immature 247 
neutrophils, and some subsets of MAIT, CD4 and CD8 T cells. The most significant progressive increase 248 
in numbers across the histopathological states (compared to healthy lungs) was observed for CD8 T 249 
cell subsets and CD8 containing ADJ cell clusters, and CD107a+ CD4 T cells (Fig. 3B-D) (see 250 
Supplementary Table 4 for expanded phenotype description of immune cell types). Neut_CD8_ADJ 251 
cluster was increased from the earliest histopathology state and remained high in all states. Apart from 252 

IFN-γlo MAIT cells, there were only small numbers of MAIT and NK cell subsets (Fig. 3C).  Cycling (Ki67+) 253 
monocytes were not found in the lungs.  254 
 255 



Overall, innate cell numbers in the infiltrate did not decline despite disease progression and was 256 
accompanied by increasing numbers of CD8 T cells [even though viral protein was absent in OP (repair) 257 
samples]. Some immune correlates of severity in the blood observed in other studies (cycling 258 
monocytes, NK cells, and activated MAIT cells) were not found in significant numbers in the lungs.   259 
 260 
Distinct spatial organisation found between immune and structural cells  261 

 262 
To determine if the cells showed spatial association and organisation amongst themselves, we 263 
employed spatial statistical algorithms (Fig. 1A and Supplementary Fig. 1) to (a) understand which 264 
immune cells were found co-located with injured structural cells, (b) explore how immune cells 265 
organise themselves amongst themselves, and (c) for the immune cells implicated in severe disease 266 
from  COMBAT (monocyte, megakaryocyte, MAIT, CD4, CD8 and neutrophil subsets), if these were co-267 
located or physically interacting with other immune or structural cells   268 

 269 
In total, we found 3888 non-replicate pairs of cell types (mono1:mono1 and CD15hi iNeut:CD15hi iNeut 270 
were examples of pairs of identical cell types, and filtered out) in the three histopathological states 271 
(ALV, DAD and OP).  Using our three-step spatial analysis, 357 pairs of cell types were identified as 272 
statistically correlated in the QCM analysis (FDR <0.05). These cell pairs were submitted for cross- PCF 273 
analysis, with one cell type in the pair defined as the ‘anchor cell’ -the cell against which statistically 274 
significant connections were quantified. By pre-analysis consensus, pairs of cell types with borderline 275 
statistical significance i.e. FDR values between 0.05 and 0.10 were also submitted to prevent loss of 276 

biologically relevant data from hard mathematical cut-off. The resulting co-located cell pairs were 277 
divided into ‘structure:immune’ pairs (structural cells were designated the ‘anchor’ cell type) (n=33) 278 
and ‘immune: immune’ pairs (one cell type in one of the duplicate pairs was designated the anchor 279 
cell type; e.g. for the CD107a+CD8:mono1 pair and mono1: CD107a+CD8 pair; CD107+CD8 in the former 280 
pair was made the anchor cell, and the latter pair was excluded)  (n=117) (Fig. 4A). ‘Structure’ cells of 281 
interest were the key structural cells that were known to be inflamed or damaged in COVID-19 282 
pneumonitis – endothelium (‘Endothelium’ and ‘proliferating endothelium’) and larger blood vessels 283 
(‘blood vessels’), alveolar epithelial cells (‘proliferating alveolar epithelium') and bronchial epithelial 284 
cells (‘HLA DRhi bronchial epithelium’ ‘HLA DRlo bronchial epithelium’ and ‘bronchial epithelium’). We 285 
were particularly interested in ‘proliferating alveolar epithelium' as their markers and location in the 286 
lung sections suggest they were likely the type II alveolar epithelial cells, the purported progenitors 287 
(or stem cells) of alveolar epithelium (Supplementary Fig. 7J and K). The ability of these cells to 288 



differentiate to type 1 alveolar epithelium is critical to normal repair and alveolar regeneration after 289 
viral induced damage 30-32. 290 
 291 
Amongst the immune cells, the strongest co-location, depicted by g(r=20)>2 [i.e. >2 times more cells 292 
of type B observed at 20 μm from cells of type A (anchor cell) than expected under complete spatial 293 
randomness], was observed for pairs of immune cell types that belonged to the same immune 294 

phenotype, e.g. Mac1 and Mac2 (macrophages), and the CD4 and CD8 T cell types (Fig. 4B). This was 295 
expected biologically and provided a degree of validation for the mathematical analysis.  For example, 296 

close association between  helper CD4 T cells (IFN-γ+ CD4 T cells) and cytotoxic CD8 T cells (CD107a+ 297 
CD8 T cells) is expected as the former plays critical roles in aiding the latter’s anti-viral activities. 298 

However it is notable that this close physical relationship persists in OP, despite lack of viral protein at 299 
this stage of the disease (Supplementary Fig. 9). 300 
 301 
These results signify presence of specific spatial organisation for several immune and structural cells 302 
despite appearance of disorder in tissue.  The strongest co-location between all cells was found 303 

between CD4 and CD8 T cell subsets, particularly active effector memory CD4 T cells (IFN-γ+ CD4 T 304 
cells) and cytotoxic CD8 T cells (CD107a+ CD8 T cells), which did not lessen with progression to repair, 305 
and despite absence of viral proteins.  306 
 307 
Immature neutrophil-CD8 T clusters are co-located with proliferating alveolar epithelium in regions 308 
with maximal alveolar damage 309 
 310 

For the significantly co-located pairs of cells, we next questioned which immune cells were found co-311 
located with injured structural cells. To provide a composite view of the multiple output from our 312 
spatial analysis, we generated a ‘spatial connectivity plot’ to show all cell types that were statistically 313 
co-located with a designated ‘anchor cell type’. Each spatial connectivity plot displayed the strength 314 
of co-location [g(r=20)] and the average count for the immune cell types in the histopathology state 315 
(Fig. 5A, B). The proportions of co-locating cell types which were in direct contact with the anchor cell 316 
type were calculated with the ACN analysis (see Methods) and shown in the accompanying histograms 317 
(Fig. 5C and D). 318 
 319 
Our main structural cell types of interest were the Ki67+ proliferating alveolar epithelial cell and 320 
endothelial cells. Designating proliferating alveolar epithelium as the anchor cell, we found CD15hi 321 
iNeut, Mono_CD31_ADJ and Neut_CD8_ADJ to be significantly co-located with proliferating alveolar 322 



epithelium in DAD (Fig. 5A, B) [g(r=20)>1]. Of these cells, proliferating alveolar epithelium was most in 323 
contact with Mono_CD31_ADJ (average of 17.6% of proliferating alveolar epithelial cells in DAD) and 324 
Neut_CD8_ADJ (8.9% of proliferating alveolar epithelial cells in DAD) (Fig. 5C).  There was also a small 325 

number of IFN-γhi_RAGE_ADJ cells found co-located with proliferating alveolar epithelium in all 326 
histopathology states, which could be resident alveolar macrophages found along alveolar epithelium.  327 
 328 
For endothelial cells (which encompassed the smaller capillaries and the larger blood vessels in the 329 
lungs), the co-locating cell types with highest g(r=20) in DAD were Mono_CD31_ADJ (2.1) and 330 
Mono_PAI-1_ADJ  (1.6) clusters (Fig. 5B,F).  ACN analysis showed more of the endothelial cells were  331 
physically in contact with the Mono_PAI-1_ADJ cluster (21.2%) than Mono_CD31_ADJ (16.5%) in DAD 332 

(Fig. 5D). Mono_CD31_ADJ cells showed significant spatial association with endothelial cells across all 333 
histopathology states. 334 
 335 
Next, we designed a ‘radial connectivity map’ to provide an overview of all immune cells that were 336 
significantly co-located with all structural cells and their corresponding histopathology states (Fig. 5G). 337 
Using this map, and focusing on proliferating alveolar epithelium and endothelial cells, we observed 338 
that while the monocytes (and their subsets and ADJ clusters) were mainly found co-located with both 339 
alveolar epithelium and endothelial cells, immature neutrophils were found predominantly with 340 

proliferating alveolar epithelium. We also observed that besides proliferating alveolar epithelium, the 341 
Neut_CD8_ADJ cluster was not found with any other structural cell types.  342 
 343 
Finally, we developed a topographical correlation map (TCM) (Methods, Supplementary Fig. 15) to 344 
visualise how the spatial correlation between Neut_CD8_ADJ and proliferating alveolar epithelium 345 
changed across an ROI (Fig. 5H). We observed marked heterogeneity in the strength of correlation for 346 
this pair of cell types across the tissue.  347 
 348 
One other cell type of interest was the megakaryocyte. These CD34- platelet precursors, a product of 349 
emergency myelopoiesis, were the most abundant immune correlate in the blood in the COMBAT 350 
study  6.  Examining their spatial connections with our two structural cells of interest, we observed 351 
that megakaryocytes were associated with endothelium in DAD (Fig. 5G). 352 
 353 
Drawing these data together, our spatial analysis identified Neut_CD8_ADJ and Mono_CD31_ADJ 354 
clusters as key spatial correlates with proliferating alveolar epithelium in DAD. A visual exemplar of 355 
this co-location of Neut_CD8_ADJ and alveolar epithelium is shown in Fig. 5I.  Mono_CD31_ADJ and 356 



Mono_PAI-1_ADJ were the strongest spatial correlates with endothelial cells, the former was  the case  357 
across all states. No immature neutrophils (alone or in an ADJ cluster with CD8 T cells) were found 358 
with endothelial cells in any histopathology states. It is noteworthy that there was no significant co-359 
location between any immune cells and the larger blood vessels; nor between CD107a+ CD8 T cells 360 

and IFN-γ+ CD4 T cells with proliferating alveolar epithelium or endothelial cells despite relatively high 361 
abundance in the tissue. In addition, despite a correlation with disease severity in the blood, NK and 362 
MAIT cells did not co-locate with any structural cells. Further, even though macrophage subsets were 363 
the most abundant cells in lungs, there was also no statistically significant co-location between these 364 
cells and damaged structural cells.  365 
 366 

All data, the spatial connectivity plot, radial connectivity map, and topographical correlation map 367 
functions are available as open resources on MDV (https://mdv.molbiol.ox.ac.uk/, Supplementary Fig. 368 
10, Methods). 369 
 370 
Immature neutrophils have a spatial predilection for CD8 T cells  371 
 372 
We next examined how immune cells connected to other immune cells by interrogating the 91 pairs 373 
of immune cells with g(r=20)>1 across the three histopathology states (Fig. 6A-C).  374 

 375 
We observed that as single entities (as opposed to those found within ADJ clusters), immature 376 
neutrophils only co-located with CD8 T cells or CD8-ADJ clusters (Fig. 6A), regardless of histopathology 377 
state.  However, immature neutrophils within the Neut_CD8_ADJ cluster, co-localised with 378 
Mono_CD31_ADJ clusters in DAD and other monocyte subsets in OP (Fig. 6A and D). 379 
 380 
Therefore, in DAD, proliferating alveolar epithelium not only co-located with Neut_CD8_ADJ, but also 381 
with a further network of co-locating immune cell types linked to the Neut-CD8_ADJ cluster, forming 382 
a super network of Neut_CD8_ADJ and Mono_CD31_ADJ clusters around the proliferating alveolar 383 
epithelial cells. This can be seen in the ACN analysis (Fig. 6F) and an MCD image view of the cells in the 384 
tissue (Fig. 6G). 385 
 386 
In contrast to neutrophils, there was a less restricted repertoire of co-locating cell partners for 387 
monocytes. Monocyte subsets and ADJ clusters were found co-located with NK, MAIT, CD4 and CD8 T 388 
cell subsets (Fig. 6B-C). Notably, megakaryocytes were found uniquely associated with 389 
Mono_CD31_ADJ in DAD (Fig. 6E).  390 



 391 
Our analyses showed that there were distinct organisations amongst immune cells in COVID-19 lungs, 392 
with specific predilection of immature neutrophil for CD8 T cells, and upon connection (as the 393 
neutrophil_CD8_ADJ cluster), a further connection with Mono_CD31_ADJ cluster was formed, 394 
resulting in a network of Neut_CD8_ADJ and Mono_CD31_ADJ, linked to proliferating alveolar 395 
epithelium in diffuse alveolar damage.  These were then linked to megakaryocytes via the latter cell 396 

type’s connection with Mono_CD31_ADJ cluster in DAD. Thus, a spatial network of immature 397 
neutrophils, CD8 T cells, classical monocytes and megakaryocyte form a connected web of cells 398 
juxtaposed against proliferating alveolar epithelial cells and alveolar capillaries in DAD.  399 
 400 
 401 
Projection of the circulating source of lung CD8 T cells, monocytes and immature neutrophils  402 
 403 

Finally, we returned to our COMBAT data6 to explore if we can identify the circulating source of the 404 
monocytes, CD8 T cells and neutrophils found in the lungs. Using scmap, a method which enables label 405 
projection by calculating the similarity between cells profiled by two separate studies 33,  we examined 406 
the phenotypic similarity between monocytes and  CD8 T cells in the lungs [this study (COSMIC)] and 407 
blood (COMBAT study). For COMBAT, we used the CYTOF dataset from  neutrophil-depleted whole 408 
blood ( Supplementary Fig. 3 in COMBAT)6. 409 

  410 
Both lung CD107a- CD8 and CD107a+ CD8 matched to blood ‘GZBneg CD8 T cells’ in COMBAT (Fig. 7A). 411 

Lung IFN-γ+ CD4 T cells matched to COMBAT’s ‘activated CD4 T cells’ subset (which contained CD27- 412 
and CD27+ CD4 T cells). All monocyte subsets in the lung [including Mono_CD31_ADJ, Mono_PAI-413 
1_ADJ (but not Mono3)], and all macrophage subsets showed high Jaccard similarity index with HLA 414 
DRhi classical monocytes in the blood (Fig. 7B).  415 
 416 
We next interrogated the markers for these two COMBAT cell types (GZBneg CD8 T cells and HLA 417 
DRhi classical monocytes) (data found in Supplementary Data 3 in COMBAT). We observed that 418 
compared to healthy and disease controls,  GZBneg CD8 T cells expressed markers of exhaustion and 419 
were KLRG1+ compared to other CD8 T cells. HLA DRhi classical monocytes showed high expression of 420 
CLA. Both GZBneg CD8 T cells and HLA DRhi classical monocytes were unique amongst CD8 T cell and 421 
monocyte subsets in showing lower abundance in COVID-19 patients compared to healthy 422 
volunteers6, raising the possibility that these were the subsets that have trafficked to the lungs. This 423 



is not unprecedented given previous findings in lungs which showed sparse antigen-specific T cells in 424 
blood of severe influenza patients but 8 times higher in matched blood-lung samples 34 .  425 
 426 
For neutrophil comparisons between lungs (COSMIC) and blood (COMBAT), we obtained stored whole 427 
blood samples and stained these with a 42-marker CYTOF panel (Supplementary Table 5). 8 428 
subclusters of neutrophils were evident from dimensionality reduction (UMAP) and unsupervised 429 

clustering, and annotated according to maturity – from pro-neutrophil to mature neutrophils (Fig. 7C-430 
D). Compared to the lung neutrophils, ‘immature neutrophil 2’ in the blood (which expressed the 431 
highest level of CD172a amongst the immature CD10- neutrophil subsets),  most closely matched the 432 
neutrophil subset in Neut_CD8_ADJ (Fig. 2F).  Notably, the abundance of  ‘immature neutrophil 2’ 433 
correlated positively with severity of disease (Fig. 7E). 434 
 435 
These findings showed that the lung CD8 T cell subsets matched most closely to a GZBneg KLRG1+ CD8 436 

T cell subset in the blood, which also expressed a T cell exhaustion signature. This suggests that this 437 
blood CD8 T cell subset is a likely source for the GZB+ CD8 T cells found in the Neut_CD8_ADJ cluster; 438 

and that within this cluster, CD8 T cells expressed GZB, possibly with exposure to IFN-β35.  On the other 439 
hand, blood CD172ahi immature neutrophil subset is the likely source for the immature neutrophils in 440 
the lungs, including that found in the Neut_CD8_ADJ cluster.  441 

 442 
 443 
Discussion 444 
 445 
In this paper, we deconvoluted a highly disordered immune and structural landscape to provide 446 
accurate annotations and abundance metrics for the cellular landscape and then leveraged 447 
mathematical techniques to describe co – location and cell contact-based network construction. Our 448 
mathematical tools encompassed a range of spatial statistics and methods from network science; 449 
some transposed from ecology 36-38. The pipeline uncovered a hitherto undescribed physical 450 
partnership between immature neutrophils and CD8 T cells in COVID-19 lungs linked to proliferating 451 
alveolar epithelium in areas with diffuse alveolar damage. This further connected with classical 452 
monocytes and megakaryocyte around endothelial cells, forming a super pro-inflammatory network 453 
across the alveolar bed in DAD. The observations on neutrophils are especially significant since 454 
relatively little is understood of the role of neutrophils in the lungs of patients with COVID-19 due to 455 
poor detection with transcriptomic methods 17,39.   456 
 457 



Our study did not elucidate how neutrophil-CD8 clustering might contribute to disease pathogenesis. 458 
However, evidence from other diseases provide some insight. Neutrophils and CD8 T cells aggregation 459 
in colorectal cancer and graft vs host disease have been shown to enhance T-cell receptor–triggered 460 
activation of CD8+ T cells 40 causing neutrophil-mediated tissue damage by the release of reactive 461 
oxygen species 41. Neutrophils can also act as antigen presenting cell which cross present antigen to 462 
CD8 T cells, further enhancing activation 42,43. CD8 T cells with a similar effector memory and GZB+ 463 

profile as that found in the Neut_CD8_ADJ cluster have also been implicated in immunopathology of 464 
COVID-19 in other organs. Imaging mass cytometry studies in COVID-19 brain tissue showed intriguing 465 
spatial associations with microglia, which also sustained immune activation and neuroinflammation 466 
44. 467 
 468 
The presence of viral antigen could be the trigger for these foci of immature neutrophils and CD8 T 469 
cells, possibly initiated by recognition of viral antigen by CD8 T cells. However, we note abundant 470 

Neut_CD8_ADJ cluster in the OP state (Fig. 3B) where there were no viral proteins or RNA. One 471 
explanation is that these CD8 T cells were self-proliferating, as suggested by Liao’s study using single 472 
cell RNA sequencing of lung-lavaged cells in COVID-19 patients 45. Supporting this, Neut_CD8_ADJ 473 
cluster showed the highest Ki67 expression (Fig. 2F), with MCD imaging isolating this expression to 474 
CD8 T cells (Fig. 2I). Organising pneumonia is not a natural sequela of all viral infection or alveolar 475 
inflammation. Indeed, many patients who do well do not progress to consolidation on computed 476 
tomographic (CT) scans. Thus, a potential deleterious effect of these foci of inflammation could be the 477 
obliteration of regenerative potential in type II alveolar epithelial cells, the purported stem cells for 478 

the alveolar unit 46, and development of organising pneumonia (OP).  479 
 480 
Another cluster highlighted by our analyses was the Mono_CD31_ADJ cluster, which was spatially 481 
associated with Neut_CD8_ADJ cluster, and with proliferating alveolar epithelial cells. Proliferating 482 
alveolar epithelial cells are the nominal stem cells for the alveoli and key to replenishment of type 1 483 
alveolar epithelial cells. Its health, and ability to function optimally, is a key requirement for repair of 484 
infected and damaged alveoli.   A consequence could be that the production of type I IFN, [and other 485 

monocyte-specific cytokines like IL-6 and TNF- α (as reviewed by, 47,48], combined to impact on 486 
regeneration of alveolar epithelium. It is also possible that type I IFN production from these monocytes 487 
causes upregulation of ACE2, thereby sustaining viral entry and alveolar epithelial damage49. This 488 
agrees with observation from transcriptomic studies of the lungs where type II alveolar epithelium 489 
were found in an inflammation-associated intermediate state rather than progressing via normal 490 
regeneration to type I alveolar epithelium 13,15,17.  491 



 492 
 493 
The tight association between a large number of monocytes and endothelial cells in all histopathology 494 
states could result in excess inflammation and also predispose to small vessel thrombosis, particularly 495 
with further presence of megakaryocytes at the point of maximal injury (DAD) (Fig. 5B). Single cell 496 
transcriptomic analyses in COVID lungs have demonstrated upregulation of endothelial-damage 497 

markers, including VWF, ICAM1 and VCAM1, and transcriptional programs suggesting altered vessel 498 
wall integrity and widespread activation of coagulation pathway associated genes in endothelial 499 
cells.13,16,50.  In addition, autopsy studies have shown high numbers of megakaryocytes and platelet 500 
rich thrombi in the lungs with COVID-19 pneumonitis 51.  501 
 502 

Beyond these key messages, other findings clarified the importance of immune cell numbers and 503 
phenotype in blood of patients with severe COVID-19. There was no significant spatial co-location 504 
between activated NK cells and MAIT cells with any structural cells although the numbers for MAIT 505 
cells were increased, in keeping with blood levels. With the ability to identify single cells of CD4 and 506 
CD8 T cells, and quantify their abundance per mm2 of lungs, we also showed definitively that levels 507 
of CD4 and CD8 T cells were high in lung samples in contrast to studies which inferred their depletion 508 
from gene expression profiles 15. Immature cycling monocytes, one of the most striking observations 509 
in the blood of patients with severe compared to mild COVID-19 disease6,8, were not found in lung 510 
tissue. This suggests that immature monocytes are unlikely to be involved in tissue damage, and 511 
unlike immature neutrophils, probably differentiated rapidly to mature monocytes and 512 
macrophages.  513 
 514 
Our findings refined our earlier work on a smaller subset of COVID-19 lungs (n=3) using targeted 515 
transcriptomic analysis (GeoMx) in specified sections in the lungs linked to alveolar damage 52. In that 516 
work, we deconvoluted cells detected by gene expression profile using limited protein markers and 517 

showed that CD8 T cells and macrophages with IFN-γ signature correlated with areas of lungs with 518 
alveolar damage.  Interestingly, areas of severe damage exhibited consistent expression of IFNG-519 
regulated chemokines such as CXCL9/10/11 that may promote CXCR3-mediated chemotaxis or 520 
retention of CD8 T effector lymphocytes.  Further to the findings from this paper, we performed 521 
additional analyses to determine if we can provide a transcriptomic view of the immature neutrophils 522 
and CD8 T cell cluster. This strengthened but did not reveal further findings (described in 523 
Supplementary Fig. 11).  524 
 525 



Another earlier work in the same lung samples showed significant presence of neutrophil extracellular 526 
traps (NETS) in the lung samples which correlated with areas of low CD8 T cell levels.  Re-examining 527 
the number of NETS per lung section, we observed widespread presence with no significant difference 528 
between the three histopathology states (Supplementary Fig. 3C). As NETS production is a feature of 529 
mature rather than immature neutrophils 20, one explanation is that there is a CD8-directed immature 530 
neutrophil localisation to proliferating alveolar epithelium, which is separate from the relatively less 531 

discriminate NETS expression by mature neutrophils.  532 
 533 
The key limitation of our study is that it is an observation of association, albeit that there was clear 534 
comparison between histopathology characterisations of alveolitis, damage and repair. Thus, it is not 535 
possible to elucidate cause or effect. Further functional studies will strengthen the findings. Our 536 
cohort was also small though this was counterbalanced by uniquely fresh samples from lungs, with 537 
minimal effect of degradation due to the sampling methods at the point of death. Finally, our study 538 

was led by specific questions. To that end, the antibody panels, and analyses were targeted to those 539 
questions and cellular identities were constrained to that linked to the antibody panel.  540 
  541 
We conclude that statistically rigorous analyses of spatial associations of immune and structural cells 542 
in lungs of those with fatal COVID-19 identified an inflammatory nidus of immature neutrophils and 543 
CD8 T cells with high immune activity and proliferating capabilities that were linked to alveolar 544 
progenitor cells in areas with greatest alveolar damage. It establishes the importance of emergency 545 
myelopoiesis in lung immune pathology, with potential roles for immature neutrophils and 546 

megakaryocytes in alveolar damage, aberrant alveolar regeneration, and excess thrombogenesis. The 547 
findings support the evaluation of therapeutics that target monocytes and immature neutrophils, 548 
potentially earlier in disease to limit its impact on progression to widespread alveolar damage and 549 
organising pneumonia. It also means that drugs that increase the longevity or survival of CD8 T cells 550 
require further assessment given the potential contribution of CD8 T cells to lung damage.  551 
 552 
 553 
 554 
 555 
 556 

Methods  557 

Table of antibodies and reagents used in imaging mass cytometry and immunofluorescence 558 



All antibodies, their catalogue numbers, final dilutions, and source are documented in Supplementary 559 
Data 1. 560 
 561 
Patients, samples, and ethical approvals 562 
 563 
Lung samples were obtained from collaborators from the University of Navarra, Spain and comprised 564 

those patients who died in hospital after admission with COVID-19.  The only inclusion criteria were 565 
(i) hospitalisation, (ii) evidence for COVID-19 pneumonitis, defined as presence of ground glass 566 
changes +/- consolidation and peri bronchial shadowing in mid to peripheral distribution on thoracic 567 
CT scan begore death, (iii) PCR+ results for nucleocapsid (N) and/or envelope protein I in lung or liver 568 
tissue sample and (iv) negative bacterial culture from blood and lung within 3 days of death. The study 569 
was approved by the Ethics Committee of the University of Navarra, Spain (Approval 2020.192). Tissue 570 
collections were obtained with consent from a first-degree relative, following a protocol approved by 571 

the ethics committee of the University of Navarra (Protocol 2020.192p); and stored under Spain’s 572 
Human Tissue Authority regulations. Samples were collected during the first wave of pandemic (2020) 573 
via an intercostal space incision, using core biopsy methods (BioPince Full Core Biopsy Instrument kit) 574 
immediately after death 20,53. Tissues were immediately fixed in neutral buffered formalin for over 24 575 
hours, and then paraffin-embedded. These samples were also shared with other collaborators and 576 
studies carried out independently 20,52.  577 
 578 
Healthy lung controls were obtained from the Oxford Centre for Histopathology Research and the 579 

Oxford Radcliffe Biobank based at the Oxford University NHS Hospitals Foundation Trust. Ethics 580 
approval was received from Oxford A South-Central NHS REC (ref 19/SC/0173). The inclusion criteria 581 
were that lung sections had to be obtained away from localised lung cancer site on lung imaging; they 582 
had to have normal lung histopathology as agreed by two independent histopathologists, aged 583 
between 50-90y and had no concomitant lung diseases. Altogether 8 such patients were identified, 584 
their lung sections stained with H & E and two representative patients selected to proceed to IMC 585 
staining. H & E stained sections are shown in Supplementary Fig. 4.  586 
 587 
We have considered sex balance in selection of samples. There are 5 females and 7 males in our 588 
cohort.  Patients and relatives were not financially compensated.  589 
 590 
RNA extraction and quantitative RT-PCR for viral genes 591 
 592 



RNA extraction from biopsies was performed using the QIAamp Viral RNA Mini Kit (Qiagen) and the 593 
identification of SARS-CoV-2 transcripts encoding nucleocapsid (N) and an envelope protein I was 594 
performed using a commercial kit (SARS-CoV-2 Real Time PCR Kit, Vircell), both according to 595 
manufacturer recommendations, at the Microbiology Laboratory of the Clinica Universidad de 596 
Navarra (ref). Samples with amplification of both targets with Ct values below 35 were considered 597 
positive for SARS-COV-2. Ct threshold was selected based on comparison between Ct values and 598 

presence of viral DNA on nasopharyngeal-swab standards. 599 
 600 
SARS-CoV-2 Nucleocapsid protein staining   601 
 602 
Slides were deparaffinised and heat-induced epitope retrieval were performed on the Leica BOND-603 
RXm using BOND Epitope Retrieval Solution 2 (ER2, pH 9.0) for 30 minutes at 95°C.  Staining was 604 
conducted with the Bond Polymer Refine Detection kit, a rabbit anti-SARS-CoV-2 nucleocapsid 605 

antibody (Sinobiological; clone: #001; dilution: 1:5000) and counterstained with haematoxylin.     606 
 607 
Region of interest (ROI) selection  608 
 609 
H&E stained sections were examined by two senior pathologists independently and a pulmonologist 610 
and data compiled with consensus at the third iteration. ROIs were selected based on size (2x 2mm 611 
squares or equivalent surface areas) to represent the dominant histopathology findings for the 612 
section. Slides were imaged on AxioScan Z1 slide scanner [Zeiss] and viewed using QuPath 54 613 

 614 
Imaging mass cytometry (IMC) staining 615 
 616 
Sequential 6µm thick FFPE lung tissue section slides were incubated for 2 hours at 60oC on a slide 617 
warmer, dewaxed twice in Histo-clear II (National Diagnostics) for 10 minutes before rehydration 618 
through serial alcohols; 100%, 100%, 95%, 70% ethanol and MilliQ water. Slides were then incubated 619 
for 30 minutes at 96oC in EDTA Target Retrieval Solution, pH 9 (Agilent) and cooled to 70oC before 620 
washing twice in MilliQ water. Slides were blocked in 3% BSA solution in Maxpar PBS (Standard 621 
BioTools; previously Fluidigm) for 45min. Sections were then stained with metal-conjugated 622 
antibodies in Maxpar PBS containing 0.5% BSA overnight. Antibodies conjugated in house were 623 
conjugated with MaxPar X8 antibody labelling kits (Standard BioTools) or Lightning-Link kits (Abcam) 624 
according to manufacturer’s instructions. Slides were washed in 0.2% Triton X-100 then twice in 625 



Maxpar PBS. Intercalator-Ir (Standard BioTools) diluted in Maxpar PBS was used to stain DNA (30min), 626 
slides were washed in MilliQ water then air dried.  627 
 628 
Ablation of the relevant regions of interest (ROIs) was carried out on Standard BioTools Hyperion 629 
Imaging System using CyTOF7 Software v7.0 (Standard BioTools) and visualized using MCD Viewer 630 
(Standard BioTools).  Images were processed for publication using FIJI  55 to de-speckle and sharpen 631 

the images. 632 
 633 
Antibody validation and optimization 634 
 635 
Antibody clones were selected which had previously been published and validated in IMC studies as 636 
well as antibodies frequently utilized for immunofluorescence or immunohistochemistry studies with 637 
FFPE tissues. Staining validation for IMC markers was performed in healthy control lung and tonsil as 638 

well as in some COVID-19 infected lung (Supplementary Fig. 5,6 and 12). During optimisation, we 639 
checked that  (i) mutually exclusive expression pattern were found in key immune and structural 640 
lineage markers i.e. CD68, Epcam, CD3 and CD19 (ii) markers showed appropriate subcellular location 641 
expression i.e. transcription factors Foxp3 and Ki67 were nuclear, whereas CD68 expression was 642 
cytoplasmic and cell membrane. (iii) structural cell identities defined by IMC lineage marker expression 643 
are compatible with cell morphology and location in H&E. Adjacent H&E-stained slides and structural 644 

markers expression was examined e.g. α-SMA expression around vessels and bronchi, EpCAM 645 
expression on bronchial and alveolar epithelial cells. (iv) Non-biological sense expression e.g. CD4 and 646 
CD8 co-expression and biologically expected and coherent co-expression patterns eg. cells expressing 647 
CD45, CD3, CD8 and CD45RO were examined (v.) Expression for the following key markers was 648 
validated by immunofluorescence staining in adjacent slides – CD4, CD8, CD14, CD15, CD31, CD172a, 649 
CD206, ProSPC, PAI-1, Epcam and Ki67. 650 
 651 
Antibody clones that did not perform well i.e. those with weak signal, high background, or nonspecific 652 
staining were discarded. Antibody titration was performed to maximise signal to noise ratio in both 653 
lung and tonsil tissues and panels were designed to minimise the already low levels of signal spill over 654 
see in IMC [less than 1-5%] 56. 655 
 656 
 657 
 658 
 659 



Immunofluorescence 660 
 661 
Paraffin-embedded human lung tissue sections were deparaffinized and each section was pre-treated 662 
using heat-mediated antigen epitope retrieval with sodium citrate buffer (pH 6) for 20 minutes. Then 663 
sections were blocked in 10% normal goat serum (Thermo Fischer Scientific, 50062Z) for 20 minutes 664 
and then incubated with CD14 antibody 1:100 dilution (Abcam, AB183322), CD15 antibody 1:200 665 

dilution (Cell signalling Technology, 4744S), CD31 Antibody 1:100 dilution (LS Bio, LS-B15507-LSP), CD8 666 
Antibody 1:100 dilution(Cell signalling Technology, 90257SF), CD172a, Anti- SIRP-Alpha Antibody 667 
1:100 dilution (Abcam AB19149), Pro-Surfactant Protein C Antibody 1:100 dilution (Abcam AB90716), 668 
overnight at 4˚C. Each section is washed three times in TBS-T (0.1% Tween) and stained with Alexa 669 
Fluor 568 or 647 conjugated Goat anti Rabbit IgG or Alexa Fluor 488 or 568 conjugated goat anti-670 
mouse IgM secondary antibody or Alexa Fluor 488, 568 or 647 conjugated goat anti-mouse IgG1 for 671 
30 minutes and washed three times in TBS-T (0.1% Tween) and mounted with Prolong platinum 672 

antifade Mountant with DAPI (Fischer Scientific) and the section slides were imaged using a Nikon Ti2 673 
microscope (Nikon Instruments, Japan)  attached to an Andor Dragonfly 200 spinning disk confocal 674 
microscope (Oxford Instruments, Belfast). 675 
 676 
Imaging of Fluorescent labeled Tissue Sections 677 
 678 
Slides were imaged using a Nikon Ti2-E microscope (Nikon Instruments, Japan) attached to an Andor 679 
Dragonfly 200 spinning disk confocal unit (Oxford Instruments, Belfast). Using Andor Fusion software, 680 

the microscope was configured for DAPI (Excitation 405 nm: Emission 450/50 nm), GFP (Excitation 488 681 
nm: Emission 525/50 nm), Red (Excitation 561 nm: Emission 600/50 nm) and Far Red (Excitation 647 682 
nm: Emission 700/75 nm). A 10x 0.45 NA objective was initially selected to provide an overview of the 683 
entire area of the tissue section. Relevant areas (or the whole section) were then selected using the 684 
software for higher resolution scanning, utilizing either a Nikon Plan Fluor 40x 1.3 NA oil objective with 685 
1 um z-slice sectioning or a Nikon Plan Apo Lambda 100x 1.45 NA oil objective with 0.13 um z-slice 686 
sectioning, this ensured that the whole thickness of the tissue would be imaged. Images were saved 687 
on a computer for further processing using custom Fiji/Image J macros 55. 688 
 689 
Targeted transcriptomic analysis of specific areas of interest with matched IMC staining and 690 
analyses 691 

 692 
We extracted the RNA sequence data from AOIs (n=46) in three COVID lung sections as described in 693 
our previous paper (Cross, A.R. et al 2022) and organised these into enhanced histopathology 694 



classification as described in this paper – ALV, DAD and OP. We then compiled the differential 695 
expressed gene list between the three states (using DESeq2) and performed a pathway analysis using 696 
Reactome 57 (Supplementary Fig. 11). Here, we found upregulation of genes associated with 697 
neutrophil activation when comparing DAD to OP and ALV as observed in Cross A.R. et al. In particular, 698 
S100A8 (highly expressed in neutrophils and a feature of degranulation) and CXCL10 (chemokine 699 
related to neutrophils trafficking) were highly upregulated, supporting trafficking of neutrophil to the 700 

tissue at the DAD phase58. High expression of CXCL9 a key chemokine in T cell extravasation into tissue 701 
supports finding of T cells (e.g. CD8 T cells) in these AOIs.  702 

 703 
 704 
Data analysis 705 
Software and algorithms 706 
All software and algorithms used are documented in Table 1.  707 
 708 
The Spatial Omics Oxford (SpOOx) Analysis Pipeline  709 

 710 
The SpOOx pipeline is a computational framework that brings together the methods we have used to 711 
derive final spatial interpretation for the COVID-19 lung sections.  It incorporates a suite of Python and 712 
R based command line tools which may be run individually or as a semi-automated pipeline. We have 713 
implemented SpOOx using the Ruffus framework 59. Ruffus allows encapsulation of the workflow and 714 
parameters to enable reproducibility, transparency and code reuse. All steps discussed in the Methods 715 
are encapsulated in the SpOOx pipeline and example commands to achieve the step are shown below. 716 

An overview of the pipeline can be found in Fig. 1a and Supplementary Fig. 1. Full detailed 717 
documentation and a tutorial are included on the SpOOx GitHub page (https://github.com/Taylor-718 
CCB-Group/SpOOx). SpOOx produces a series of output directories and files that may be uploaded to 719 
the Multi-Dimensional Viewer (MDV) software (see below). MDV has been developed based on the 720 
Multi Locus View 60 framework and has been heavily modified and extended to allow visualisation and 721 
analysis of large multidimensional data sets, images and the resulting spatial statistics.  The code to 722 
upload data to MDV is available on GitHub at https://github.com/Taylor-CCB-Group/MDV .  Both the 723 

SpOOx and MDV are open source under the GPL 3.0 license  with these links – SpOOx is available for 724 

install at https://github.com/Taylor-CCB-Group/SpOOx and MDV at https://github.com/Taylor-CCB-725 

Group/MDV. The project data analysis is available online within MDV at  726 
https://mdv.molbiol.ox.ac.uk/projects/hyperion/6567 . 727 
 728 



Conversion of MCD files to TIFF. MCD files were checked for problems with ablation or staining 729 

using the MCD viewer (provided by Standard BioTools). Once these initial checks were 730 

completed, the images were converted to OME-TIFF format for segmentation.  731 

 732 
Commands: python hyperion_pipeline.py make mcd_to_tiff and python hyperion_pipeline.py make 733 
tiff_to_histocat 734 
 735 
Segmentation and cell mask generation  Cell segmentation was performed with the Mesmer library 736 
in DeepCell 61, Nuclear markers (DNA1 and DNA3) and cytoplasmic markers (a-SMA, CCR2, CCR6, 737 

CD107a, CD10, CD114, CD115, CD14, CD15, CD16, CD172a, CD31, CD3, CD45, CD45RO, CD4, CD71, 738 

CD8a, Collagen1, DAP12, EpCAM, GZB, HLA DR, IFN-β, IFN-γ, PAI1, PanCK, PF4 and RAGE) were 739 
extracted to TIFF files and Z projected to single channel nuclear and cytoplasmic single TIFF images ( 740 
Supplementary Fig. 13). These images were contrast adjusted (--contrast 5) and passed to the Mesmer 741 
library (pixel size adjusted to 1 micron) as nuclear and cytoplasm channels. From these, cell 742 
segmentation masks were generated for each ROI. 743 
 744 
Command: python hyperion_pipeline.py make deepcell 745 
 746 
 747 
Extraction of signal intensities for each cell. The intensity of each marker within each labelled cell was 748 
extracted from the data using the segmentation masks using the mean arcsinh-transformed (with –749 
cofactor 5) pixel intensity for each. The data were recorded as a table, each row representing a cell 750 
with a unique id for the ROI). Shape features such as area, perimeter, eccentricity, and centroid were 751 

also extracted from the masks. All cells were then filtered using a cell area greater than 50 μm and 752 

less than 300 μm to exclude poorly segmented cells and cell debris. Further QC was performed within 753 
MDV by plotting the distribution of marker intensity across each ROI.  754 
 755 
Command: python hyperion_pipeline.py make signal_extraction 756 
 757 

Dimensionality reduction and cluster analysis. For all downstream analysis the intensity values were 758 
arcsinh transformed with a cofactor 5. Clustering was performed using the Phenograph algorithm 62 759 
through the implementation of the Rphenograph R package (version 0.99.1) with parameter k=30. 760 
Using MDV, the clusters were first visualised using interactive UMAP scatter plots and heatmaps 761 
(showing the median marker intensities per cluster) then manually annotated to define the cell 762 



phenotypes at the cell level. The clustering was performed at two levels: a sample level (on the 763 
trimmed [q=0.001] and scaled values) and per condition after having integrated the data with 764 
Harmony (version 1.0) 63, using the default parameters with the option do_pca = TRUE. The integration 765 
of the data was performed per condition to remove variation from different patients and to better 766 
define common populations of cells. The annotations before and after integration were compared to 767 
ensure that no biologically meaningful populations were missed when integrating the data. The 768 

heatmaps, PCA and UMAP plots were done using the functions from the CATALYST R package (version 769 
1.16.0). 770 
 771 
Command: python hyperion_pipeline.py make phenoharmonycluster.  772 
 773 
Annotation workflow. Cells were first examined for antibody staining and those cells that did not 774 
show any antibody staining were filtered from further analysis. The remaining cells were grouped into 775 

three mega-clusters termed Structural, Myeloid or Lymphocyte based on presence and/or absence of 776 

CD45, EPCAM, PanCK, CD31, α−SMA, CD56, Vα7.2, CD3, CD14, CD68, PF4 and CD15 expression. The 777 
three mega-clusters were then re-clustered using protein markers selected on immunological basis 778 
(Supplementary Fig. 7). The resultant final clusters were annotated using an integrated approach. In 779 
the first step, we defined clusters using (i) heatmaps showing median marker expression (ii) expression 780 

density histograms which allow better delineation of the range of marker expression, specifically 781 
differentiating low and negative expression levels and (iii) cluster distribution plots which showed the 782 
frequency of each cluster in different samples. Phenotypic similarity of clusters was interrogated via 783 
UMAP and cluster dendrograms. To further define cluster identities, the spatial location of clusters 784 
was visualised using cell centroid plots and mapped onto an adjacent H&E slide with the same ROI. 785 
Based on these analyses, some clusters were excluded under the following criteria: a) clusters with 786 
uniformly low/negative expression of markers, b) clusters only found in one sample, and c) Undefined 787 
clusters (where the combination of markers did not amount to a subset which could be defined). These 788 
clusters were not submitted for spatial analysis. Sub-clusters with very similar expression profiles were 789 
merged and those which contained 2 or more clusters were annotated as such. A small number of 790 
clusters demonstrated expression of markers normally associated with disparate cell populations (e.g. 791 
Neutrophil_CD8 adjacent), which can be attributed to closely apposed cell types. These adjacent cell 792 
populations were validated via high resolution immunofluorescence microscopy.  To aid final 793 
annotation, we also performed Pseudotime inference for selected populations. 794 
 795 



Final annotated clusters were then sense-checked against the MCD images by an independent 796 
investigator not involved in annotating the clusters, and some key clusters of interest were further 797 
examined by immunofluorescence staining with confocal microscopy.   798 
 799 
Pseudotime analysis. The Pseudotime analysis was performed on the macrophage, monocytes and 800 
neutrophils populations (Supplementary Fig. 6). Their arcsinh transformed values were integrated 801 

using Harmony with the same parameters as in the main analysis, followed by dimensionality 802 
reduction using UMAP. Then the Pseudotime inference was performed by applying the Slingshot 803 
algorithm 64 to the UMAP dimensions using the default parameters and the above annotations as 804 
clusterLabels. 805 
 806 
This analysis is not part of the SpOOx pipeline but code is available in GitHub. 807 
Command: R slingshot.R <parameters> 808 

 809 
Differential cell abundance analysis. Differential abundance analysis between conditions was 810 
performed using code from the diffcyt R package (version 1.8.8) with the option testDA_edgeR. To 811 
account for the differences in area between the ablated samples, the area was used as a normalising 812 
factor. The dispersion was estimated using the option trend.method=”none” and the negative 813 
binomial generalized log-linear model  was used for the analysis (with the glmFit and glmLRT 814 
functions). The BH (Benjamini-Hochberg) method was used to adjust p-values for multiple testing.   815 
 816 

Cell centroid maps. For each ROI, the cell centroids were plotted and coloured according to cell type 817 
to produce a cell centroid map which forms the basis of subsequent analyses. These were overlaid 818 
with ROI images in MDV so cell types may be located by colour.  819 
 820 
Spatial analyses  821 

 822 
A suite of mathematical tools for spatial analyses is incorporated in SpOOx (see below under QCM, 823 
cross-PCF and ACN). The following command runs all the spatial analysis methods in SpOOx: 824 
 825 
Command: python hyperion_pipeline.py make spatialstats 826 
 827 
It is also possible to run each spatial function separately and to adjust parameters (see 828 

https://github.com/Taylor-CCB-Group/SpOOx/tree/main/src/spatialstats for details). The command 829 



line option that can be appended to the basic command above is stated after each method is 830 
described. 831 
 832 
Quadrat Correlation Matrix (QCM). The “Quadrat Correlation Matrix” (QCM) describes correlations 833 
between counts of different cell types within square quadrats with edge length 100μm (resulting in 834 
between 100 and 400 quadrats per ROI), following an approach used by 38 to identify statistically 835 

significant co-occurrences (p < 0.05) and applied to multiplex images of cancer by 65. 836 

We construct the QCM by first generating a matrix O whose entries ௜ܱ௝ record the number of cells of 837 

type i in quadrat j, for 1 ≤  ݅ ≤ ݊ and 1 ≤  ݆ ≤ ݉, where n is the number of cell types in the ROI and 838 

m is the number of quadrats. We use O to generate 1000 matrices ࡺଵ, …  ଵ଴଴଴ which form a 839ࡺ,
distribution of “observations” in which the number of cells of each type and the number of cells in 840 
each quadrat are the same as in O, but spatial correlations between cell types are removed by shuffling 841 

cell labels. Each matrix ࢑ࡺ is such that, for each j: 842 

 ∑ ௜ܰ௝௞௜ =  ∑ ௜ܱ௝௜ , (1) 

and for each i: 843 

 ∑ ௜ܰ௝௞௝ =  ∑ ௜ܱ௝௝ , (2) 

We construct each matrix ࡺ௞ as follows. We fix ࢑ࡺ,଴ =  and define rules which permute the entries 844 ,ࡻ

of ࡺ௞,௦ to obtain a new matrix ࡺ௞,௦ାଵ. This is accomplished by selecting two rows (a,b) and two 845 

columns (c,d) of ࡺ௞,௦at random. For some integer ݌ sampled uniformly at random from the interval 846 [0, min( ௕ܰ௖௞,௦, ௔ܰௗ௞,௦)], we then fix: 847 

 ௔ܰ௖௞,௦ାଵ =  ௔ܰ௖௞,௦ +  (3) ,݌

 ௕ܰ௖௞,௦ାଵ =  ௕ܰ௖௞,௦ −  (4) ݌

 ௕ܰௗ௞,௦ାଵ =  ௕ܰௗ௞,௦ +  (5) ݌

and 848 

 ௔ܰௗ௞,௦ାଵ =  ௔ܰௗ௞,௦ −  (6) .݌

This process is repeated for s = 0, 1, … 10,000 to ensure that the final matrix  ࢑ࡺ =  ଵ଴଴଴଴ is well 849,࢑ࡺ  
shuffled. 850 



 851 

Partial correlation matrices ࡻ࡯ and ࡺ࡯భ భబబబࡺ࡯ …  are then calculated for O and ࡺଵ, …  ଵ଴଴଴ 852ࡺ,
respectively. Standard effect sizes (SES) are determined by rescaling the partial correlations in ࡻ࡯ by 853 
the element-wise mean ߤ and standard deviation ߪ of the ࡺ࡯ೖ, such that  854 

ܧܵ  ௜ܵ௝ = ை೔ೕ࡯) − ߤ ቂ࡯ேೖ ቃ௜௝) / (ߪ ቂ࡯ேೖ ቃ௜௝). (7) 

 855 
Non-significant associations are identified by calculating a 2-tailed p-value for each pair of cell types 856 
and applying a Benjamini-Hochberg correction, with false discovery rate FDR = 0.05. Non-significant 857 
entries of SES are set to 0 in order to generate the QCM, a cell association matrix whose non-zero 858 
entries identify standardised effect sizes of pairs of cell types that are statistically significantly 859 
correlated within the ROI. 860 
 861 
The average QCM across Q ROIs is obtained by concatenating the relevant observation matrices. 862 
Denoting by ࡻ௤ the observation matrix from ROI q, we concatenate ࡻଵ, …  ொ to form a combined 863ࡻ,

observation matrix ࡻ = ଶࡻ   ଵࡻ)  ொ), an (n x (m1 + m2 + … + mQ)) matrix, where mq denotes the 864ࡻ … 

number of quadrats in ROI q. Similarly, we concatenate  ࡺଵ௞ , … ொ௞ࡺ,  to form  ࡺ௞ = ଵ௞ࡺ) ଶ௞ࡺ    ொ௞ࡺ…   ). 865 

Standard partial correlation matrices are then calculated and then the process described above for a 866 
single ROI is used to compute the average QCM for multiple ROIs. 867 
 868 
Command option: --function morueta-holme 869 
 870 

Cross pair correlation functions (cross-PCF). Significant correlations identified at length scales in the 871 
range 0-100μm via the QCM are further assessed by using cross pair correlation functions (cross-PCFs 872 
– see, e.g., Bull 2020). Cross-PCFs quantify clustering and dispersal of pairs of cell populations across 873 
a range of length scales (here 0-300μm). The cross-PCF considers pairs of cells which are separated by 874 
distances ݎ ∈ ௞ݎ] , ଴ݎ ௞ାଵ), whereݎ = 0 and ݎ௞ = ௞ିଵݎ + 10 for ݇ = 1, … , 30. 875 
 876 
For cell populations A and B, the cross-PCF, ݃(ݎ௞), is defined as follows: 877 

(௞ݎ)݃  =  ଵேಲ ∑ ∑  ூൣೝೖ,ೝೖశభ൯(|࢞ೌି ್࢞|)ఘಳ஺ೝೖ(࢞ೌ)ேಳ௕ୀଵேಲ௔ୀଵ , (8) 

where ஺ܰ and ஻ܰ are the numbers of cells of types A and B, ܣ௥ೖ(࢞) is the area of that portion of an 878 

annulus centred at ࢞ =  ௞ାଵ which falls within the ROI, ࢞௔ 879ݎ ௞ and outer radiusݎ with inner radius (ݕ,ݔ)
and ࢞௕  are the spatial coordinates of cells a and b (of types A and B respectively), ܫ[௥ೖ,௥ೖశభ)(ݎ) is an 880 



indicator function  ( ܫ[௥ೖ,௥ೖశభ)(ݎ) = 1 if ݎ ∈ ௞ݎ] ,  ஻ is the 881ߩ otherwise), and 0 = (ݎ)(௥ೖ,௥ೖశభ]ܫ  ௞ାଵ) andݎ

density of cells of type B in the ROI. 882 
 883 
A cross-PCF with ݃(ݎ) > 1 means that cells of type A are observed more frequently at distance r from 884 
cells of type B than would be expected under complete spatial randomness (CSR), and is indicative of 885 
clustering at distance r. Conversely, a cross-PCF with ݃(ݎ) < 1 means that cells of type A are observed 886 

less frequently at distance r from cells of type B than would be expected under CSR, and is indicative 887 
of exclusion.  888 
 889 
For individual ROIs, 95% confidence intervals are obtained via bootstrapping. The spatial dependence 890 
of resampled points is accounted for by resampling grid sites within a 20μm square lattice, following 891 
66.  892 
 893 
To aid comparison between the clustering and dispersal of different pairs of cell populations, we 894 

frequently report cross-PCF values at ݎ௞ = 20, corresponding to length scales in the range ݎ ∈ [20,30) 895 
μm. We focus on ݎ௞ = 20 since it approximates the distance between the centroids of cells which are 896 
in physical contact. For notational simplicity, we denote this value as ݃(ݎ = 20). 897 
 898 
Command option: --function paircorrelationfunction 899 
 900 

Topographical Correlation Map. The cross-PCF quantifies clustering and dispersal of pairs of cell 901 
populations at different length scales within an ROI. We also introduce the Topographical Correlation 902 
Map (TCM), to visualise how the spatial correlation between cells of types A and B, say, changes across 903 
an ROI. 904 
 905 
In order to define Γ௔௕, the TCM for cells of types A and B, we first associate a mark ݉௔௕ with each cell 906 ܽ of type A. The mark ݉௔௕  is defined to be the ratio of ܾ, the number of cells of type B within 100μm 907 
of cell ܽ, to the expected number of cells of type B if they were distributed according to CSR: 908 

 ݉௔௕ = ∑ ூ[బ, భబబ)൫ห࢞ೌି࢞ೕห൯ఘಳ஺భబబ(࢞ೌ)ேಳ௝ୀଵ , (9) 

where ߩ஻ is the density of cells of type B in the ROI, ܣଵ଴଴(࢞௔) is the area of that portion of a circle 909 
with radius 100μm centred at ࢞௔ =  is an indicator 910 (ݎ)(଴,ଵ଴଴]ܫ ,which falls within the ROI (௔ݕ,௔ݔ)

function (ܫ[଴,ଵ଴଴)(ݎ) = 1 when 0 ≤ ݎ < 100 and ܫ[଴,ଵ଴଴)(ݎ) = 0 otherwise), and ஻ܰ is the total 911 

number of cells of type B within the ROI. We interpret values of ݉௔௕  in a manner similar to that used 912 



for cross-PCFs: ݉௔௕ < 1 indicates anti-correlation between cells of types A and B within a distance of 913 
100μm, and  ݉௔௕ > 1 indicates correlation. 914 
 915 
To facilitate visualization and interpretation, we normalize the mark ݉௔௕ by introducing the 916 
transformed mark, ܯ௔௕ , where: 917 

௔௕(݉௔௕)ܯ  = 1                if ݉௔௕ ≥  (10) ,ߙ 

௔௕(݉௔௕)ܯ  = ݉௔௕ − ߙ1 − 1         if 1 < ݉௔௕ ≤  (11) ,ߙ

௔௕(݉௔௕)ܯ  = 1 − 1݉௔௕ߙ − 1          if 1ߙ < ݉௔௕ < 1, (12) 

௔௕(݉௔௕)ܯ  = −1                if ݉௔௕ ≤  (13) .ߙ/1

The constant ߙ defines a threshold for extreme clustering. If ݉௔௕  then we have strong clustering 918 ߙ < 
and we fix ܯ௔௕ = 1; if  ݉௔௕ ≤ = ௔௕ܯ then we have strong exclusion and we fix ߙ/1 −1. 919 
A sketch of ܯ௔௕  is presented in Supplementary Fig. 14. 920 
 921 

We note the following properties of the transformed mark,  ܯ௔௕. First, ܯ௔௕(݉௔௕) = )௔௕ܯ−  ଵ௠ೌ್), so 922 

that dispersal and clustering are measured on the same scales. For example, ݉௔௕ = 2 indicates the 923 
presence of twice as many cells of type B as expected under CSR, while ݉௔௕ = 1/2  indicates the 924 
presence of half as many cells of type B as expected under CSR. Secondly, the magnitude of ܯ௔௕  925 
describes the strength of the spatial interaction. Finally, the sign of  ܯ௔௕  identifies whether there is 926 
clustering (ܯ௔௕ > 0) or exclusion (ܯ௔௕ < 0 ) between cell ܽ (of type A) and cells of type B. 927 
 928 
The parameter ߙ characterises the most extreme clustering or exclusion which can be resolved in each 929 
kernel, with extremal values being mapped to 1 and -1 respectively. We use ߙ = 5, so clustering or 930 
exclusion stronger than 5x is interpreted as the strongest clustering/exclusion that we can distinguish. 931 
 932 
After calculating ܯ௔௕  for each cell of type ܽ  across the ROI, we centre a Gaussian kernel, with standard 933 
deviation ߪ =  ௔௕, at ࢞௔. We sum the kernels associated with all cells 934ܯ m, and maximum heightߤ50

of type A to generate the TCM, Γ௔௕(࢞): 935 

 Γ௔௕(࢞) = ෍  ேಲ
௔ୀଵ

ߨ2√ߪ௔௕ܯ ݁ି ଵଶఙమ|࢞ି࢞ೌ|మ . (14) 



 936 
The TCM permits identification of spatial locations in which cells of type A are positively (Γ௔௕ ≫ 0) or 937 
negatively (Γ௔௕ ≪ 0) associated with cells of type B. For computational efficiency, when calculating  938 Γ௔௕, we assume that each kernel has compact support, being centred in a square region of edge length  939 300ߤm. 940 
 941 

Finally, we note that  Γ௔௕ ≠  Γ௕௔, since the kernels used to construct  Γ௔௕ are centered on cells of type 942 
A (and vice versa). While areas in which cells of type A and type B are co-located should be identified 943 
by both  Γ௔௕ and  Γ௕௔, their values will differ in regions rich in one cell type and poor in another. We 944 
therefore stress that  Γ௔௕  describes locations in which cells of type A are correlated or anti-correlated 945 
with cells of type B, and that the presence or absence of cells of type B cannot be inferred from regions 946 
in which Γ௔௕  is close to 0. 947 
 948 

Command option: --function localclusteringheatmaps   949 
 950 
Adjacency Cell Networks. We use the cell segmentation masks generated by DeepCell to produce a 951 
spatially-embedded adjacency cell network (ACN), whose nodes represent cell centres and are 952 
labelled according to their cell type. Nodes are connected by an edge if the corresponding cells in the 953 
segmentation mask share a border. To ensure that small perturbations in cell boundaries do not lead 954 
to errors in cell connections, we expand the border of each segmented cell by 5 pixels before 955 
generating the network. 956 

 957 
We use the ACN to define two statistics for each pairwise combination of cell types A and B. First, we 958 
compute ߶஺஻, the proportion of cells of type A which are in contact with at least one cell of type B: 959 

 ߶஺஻  =  ଵேಲ෌ ஻(ܽ)ேಲ௔ୀଵܫ , (15) 

where ஺ܰ is the number of cells of type A and ܫ஻(ܽ) is an indicator function (ܫ஻(ܽ) = 1 if cell a is 960 
connected with a cell of type B and ܫ஻(ܽ) = 0  otherwise). Secondly, we calculate Φ஺஻, the average 961 
number of cells of type B that are in contact with a cell of type A: 962 

 Φ஺஻ =  ଵேಲ෌ ஻(ܽ)ேಲ௔ୀଵߟ , (16) 

where ߟ஻(ܽ) is the number of cells of type B in contact with cell a. 963 
 964 



In this paper, we used the ACN to calculate ߶஺஻, the proportion of cells of type A that have at least 965 
one cell of type B in contact with them, and Φ஺஻, the average number of cells of type B that are in 966 
contact with a cell of type A in the ROI. 967 
 968 
Command option: --function networkstatistics 969 
 970 

Multi-Dimensional Viewer (MDV) 971 
 972 
MDV is a comprehensive spatial analytics platform that facilitates the interrogation of large complex 973 
data sets and includes various interactive dashboards to facilitate quality control, interactive 974 
clustering, phenotyping and spatial analysis. It is an open source web application which can be 975 
downloaded and installed locally or used on the publicly available web site 976 
http://mdv.molbiol.ox.ac.uk. Users register to use the site and projects can private, shared with other 977 

users or made public. Full documentation and tutorial videos are provided on the MDV website but 978 
we provide an overview here.   979 
 980 
MDV allows output generated by the SpOOx pipeline to be loaded at different states. Data locations 981 
are specified in a yaml format file which can be edited by the user (command: python mdvupload.py 982 
myconfig.yaml).  Examples of data tables that may be uploaded are: 983 
 984 

● Image data (PNGs/OME-TIFF stacks): ROI image stacks, H and E images binary cell 985 

masks. 986 
● Cell data (tab separated file): one cell per row, including size, size, shape, phenograph 987 

clusters identification, UMAP coordinates, marker signal intensities. 988 
● Spatial Statistics data (tab separated file):  one row containing cell to cell interaction 989 

data and associated statistics. 990 
● Data related to the disease states (JSON file): allowing grouping of samples for high 991 

level analysis. 992 
 993 
Once uploaded the data are presented in MDV as a series of views that contain multiple interactive 994 
charts corresponding to different analytical methods from clustering, annotation, cell centroid 995 
visualisation and spatial analytical methods. Each view focuses on a particular aspect of the pipeline. 996 
View contents can be adjusted and added to by adding other chart types and saved as a new view. 997 
Chart types can be D3 components ( https://d3js.org/ ) but we have also written custom chart types 998 



for performance reasons. For example, MDV scatterplot chart can visualise and interrogate at least 10 999 
million data points. We also integrate Viv viewer 67 to visualise composite image stacks. 1000 
 1001 
The complete analysis and data set were published by publicly sharing the data at  1002 
https://mdv.molbiol.ox.ac.uk/projects/hyperion/6356. 1003 
 1004 

COMBAT data mapping 1005 
 1006 
COMBAT CyTOF data generation and processing. Cell suspension mass cytometry (CyTOF) data were 1007 
generated by the COMBAT consortium as previously described6. In brief, whole blood from COVID-19 1008 
patients was stabilised using a Cytodelics fixative solution, red blood cells were lysed, cellular material 1009 
was fixed, and samples were run in a Helios CyTOF machine. Importantly, samples were enriched for 1010 
mononuclear cells before profiling by performing magnetic depletion of CD66+ granulocytes. 1011 

 1012 
After acquisition, data were formatted into a single-cell protein abundance table and annotated into 1013 
cell types based on marker expression 6. For the analyses in the present study, this expression matrix 1014 
was split into two subsets: one containing T and NK cell types, and a second one containing myeloid 1015 
cell types (i.e. monocyte subsets). 1016 
  1017 
Mapping cells from lung tissue to blood cells from the COMBAT study6. Cells in the lung dataset were 1018 
matched to the most closely related cell types in blood using scmap, a method which enables label 1019 

projection by calculating the similarity between cells profiled by two separate studies 33. In brief, 1020 
CyTOF and CITE-seq expression matrices from the COMBAT study were used to build index references 1021 
for label projection. First, proteins which were detected in both studies were identified. This resulted 1022 
in a panel of 13 and 18 proteins shared between our study and the COMBAT CyTOF and CITE-seq 1023 
panels, respectively. Next, these proteins were used as a basis for cell type classification with the 1024 
scmapCluster function. Classification accuracy was tested by splitting the COMBAT data into training 1025 
and test sets containing 80% and 20% of cells, respectively. The training set was used to generate the 1026 
scmap reference index, while the test set was used to assess cell type prediction accuracy 33. Given 1027 
the reduced set of markers shared between studies, not all COMBAT cell populations could be 1028 
accurately predicted. Thus, in order to maximise predictive accuracy similar subpopulations of the 1029 
same cell type were merged into a single group and any cell types known to be absent from our lung 1030 
data, such as B cells and plasmablasts, were removed. This approach achieved over 70% accuracy for 1031 
CyTOF data (71% and 78% predictive accuracy for myeloid and lymphoid cell types, respectively) and 1032 



85% accuracy for CITE-seq data and components of final merged clusters are shown in Supplementary 1033 
Fig. 16. 1034 
  1035 
Indexed references were next used to match cells in the lung to the most similar clusters in blood 1036 
using the scmapCluster() function. To do so, cell type labels were predicted for each cell in the lung 1037 
based on the CyTOF and CITE-seq reference sets. Any unassigned cells were discarded. Cluster overlap 1038 

between studies was visualised using Sankey diagrams 68 and quantified using Jaccard indexes 69. 1039 
 1040 
Neutrophil subset analysis from stored COMBAT samples. Whole blood samples frozen in whole 1041 
blood cell stabilizer (Cytodelics) were obtained from COMBAT consortium storage for healthy 1042 
volunteers (n=11), health care workers (n=12), COVID-19 (n=93) and Sepsis (n=48). Pre-processed 1043 
CD45+ gated FCS files of granulocyte containing whole blood samples were analysed with R (v4.0.0). 1044 
50000 cells per sample were integrated using Harmony (v1.0)2 and the CATALYST package 1045 

(v1.14.0)3 was used for downstream analysis. CD45+ cells were clustered based on the FlowSOM and 1046 
ConsensusClusterPLus algorithms using the cluster () function. 50 metaclusters (xdim=100, ydim=100, 1047 
k=50) were then assigned to major cell types (T cells, B cells, plasmablasts, mononuclear phagocytes 1048 
and neutrophils). Neutrophils were selected and reclustered based on CD45, CD15, CD38, CD64, CD16, 1049 
CD43, CD66b CD10, CD33, KI67, CD172a/b, CD141, CD71, CD114, CD371 and CD274 expression. 30 1050 
neutrophil metaclusters (xdim=100, ydim=100, k=30) were manually merged to 8 neutrophil clusters 1051 
(proNeut, preNeut, iNeut1-3, mNeut1-3) based on median marker expression. 1052 
 1053 

Data availability 1054 
The spatial mass cytometry dataset (MCD) files and results of analysis by the Spatial Omics Oxford 1055 

pipeline are available at https://doi.org/10.5281/zenodo.6513508. The analysis results are also 1056 
presented as a dynamic online resource in Multi-Dimensional Viewer (MDV) 1057 
(https://mdv.molbiol.ox.ac.uk/projects/hyperion/6567).  All source data are found in 1058 
https://doi.org/10.5281/zenodo.6513508; and also within the hyperion 6567 project in the MDV link. 1059 
Specific source data for graphs are also provided in Source Data File. Source data are provided with 1060 
this paper. 1061 
 1062 

Code availability 1063 
The complete code for the Spatial Omics Oxford pipeline is available as a GitHub repository under 1064 
the GPL license: https://github.com/Taylor-CCB-Group/SpOOx. In addition, the SpOOx pipeline has 1065 
been deposited at Zenodo (https://zenodo.org/record/8320986). The Multi-Dimensional Viewer 1066 



code is available under the GPL license: https://github.com/Taylor-CCB-Group/MDV. This package 1067 
has also been deposited at Zenodo (https://zenodo.org/record/8324918).  1068 
  1069 
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Figure legends 1298 

Fig. 1. Spatial analysis pipeline and histopathology categorisation of samples 1299 

A. Overview of the workflow and SpOOx pipeline. The steps of the analysis are presented in 1300 
Supplementary Fig. 1 in more detail.  n=677,623 single cells refer to segmented cells, without 1301 
filtering for cells with no antibody staining, and ‘undefined’ clusters. IMC – imaging mass 1302 
cytometry. 1303 

B. H&E section from COVID-19 tissue section showing formal histopathology features of alveolitis 1304 
(ALV), diffuse alveolar damage (DAD) and organizing pneumonia with their corresponding MCD 1305 

file image showing staining for 5 of 35 antibodies (α-SMA, EpCAM, PanCK, Col 1a and CD31). 1306 
‘a’-‘c’ in figure refer to characteristic features of ALV, DAD and OP.  ‘a’ - thickened alveolar 1307 
epithelial wall and septae with immune cell infiltrate and congestion of alveolar walls ‘b’ 1308 
widespread presence of hyaline membrane, and regenerating/proliferating Type II alveolar 1309 
epithelium and ‘c’ -fibroblasts and collagen presence around bronchial epithelium. See also 1310 
Supplementary Fig. 2. Representative H&E and MCD images is for ROI from n=10 ROIs for ALV, 1311 

n=8 ROIs (DAD), n=8 ROIs (OP); n=12 patients. H&E staining performed once per tissue section. 1312 
37-plex staining was performed once for each lung sample.  1313 

C. Point when samples were obtained from the first day of symptoms and corresponding 1314 
histopathology states in lung sections. Mean and S.D. shown, p value calculated using one-way 1315 
ANOVA test with Tukey’s multiple comparison test; normality tested with d’Agostino & Pearson 1316 
test. n=4 patients in each histopathology group (ALV, DAD and OP). 1317 

D. C-reactive protein (CRP) levels closest to the point of sampling and corresponding 1318 
histopathology state in lung sections. Median and IQR shown, p value calculated using Kruskal-1319 
Wallis test with Dunn’s multiple comparison test. n=4 patients in each histopathology group 1320 
(ALV, DAD and OP). Source data are provided in the Source Data File.  1321 

 1322 
Fig. 2. High definition immunophenotyping of lung cells and identification of tissue structure 1323 

 1324 
A. UMAP representation of myeloid, lymphocyte and structural cell ‘mega clusters’ from all 1325 

regions of interest (ROI) (k = 30) (COVID-19 and HC). See also Supplementary Fig. 7 for extended 1326 
analysis steps. HC – healthy control. 1327 

B-C. Number of cells per mm2 of lung tissue sections in all COVID-19 samples (n=12 patients, 30 1328 
ROIs’ in total) compared to healthy control (HC) samples (n=2 individuals, 4 ROIs in total). 1329 
Median shown, error bars are IQR. n=524,552 cells in total for COVID-19 samples, n= 30,053 1330 



cells for HC. Statistical analysis performed after samples grouped into histopathology states 1331 
(see Fig. 3D). Source data are provided in the Source Data File.  1332 

 1333 
D-E. Immunofluorescence (IF) staining validation for Neut_CD8_ADJ cell cluster and 1334 

Mono_CD31_ADJ cell clusters.  Small panels are high magnification confocal images showing 1335 
CD8 and CD15 staining (top small panel), and CD14 and CD31 staining (bottom small panel) on 1336 

adjacent cells. Broken yellow circles show CD8 T cell (white- CD8) – neutrophil (green-CD15) 1337 
couplets throughout lungs (D); and CD14-staining cells next to CD31-expressing cells 1338 
(endothelium) in lung tissue (E). See also Supplementary Fig. 6 for negative controls. IF images 1339 
shown are representative of lung sections from n=3 patients; staining experiment performed 1340 
once per lung sections.   1341 

F. Heatmap of median scaled intensity for each marker for all cell clusters in the ‘Myeloid’ mega 1342 
cluster. ‘n_cells’ - average number of cells in all COVID-19 ROIs. Total cells – 171, 777. UD – 1343 

undefined cluster 1344 
G-H. Exemplar MCD image from 37-plex imaging mass cytometry (IMC) staining of a DAD ROI 1345 

showing expression of CD8 T cells (CD8 -green), neutrophils (CD15-red) and CD8_CD15_ADJ 1346 
cell clusters (green and red co- expression, making yellow). Image is one of n=26 ROIs,  some 1347 
of which do not have the CD8_CD15_ADJ cell clusters – see Fig. 3B for number of ROIs showing 1348 
presence of this cell cluster in all ROIs (n=26 COVID-19; n=4 HC). H - Same MCD images as (G) 1349 

but with IFN-β channel ‘open’ (white) showing IFN-β expression on Neut_CD8_ADJ (yellow).  1350 
I. Higher magnification of a set of 3 MCD panels - ‘none’ - Neut_CD8_ADJ (yellow) only (arrows); 1351 

‘IFN-γ’ – with ‘IFN-γ’ (white) channel opened on MCD viewer showing expression on 1352 

Neut_CD8_ADJ (yellow) (arrows) and some CD8 (green); ‘GZB’ - with ‘GZB’ (cyan) channel 1353 
opened and showing expression on Neut_CD8_ADJ (yellow) (arrows). CD172a panel shows 1354 
confocal immunofluorescence staining (white) on CD15 and CD8 adjacent to each other. IF 1355 
images shown are representative of lung sections from n=3 patients; staining experiment 1356 
performed once per lung sections.  ALV – alveolitis, DAD – diffuse alveolar damage, OP -1357 
organising  pneumonia. MCD images from all 26 ROIs (n=10 ALV, n=8 DAD and n=8 OP) were 1358 
analysed and median expression intensity for all ROIs shown in (F) and Supplementary Fig. S7. 1359 

All scale bars in μm. 1360 
 1361 
Fig. 3. Quantification of immune and structural cells in COVID-19 lungs 1362 
A-C.  Cell abundance plots for immune cells (myeloid and lymphoid cells) and structural cells  in lung 1363 

tissue, adjusted for surface area in COVID lungs categorised into those with histopathology 1364 



states of alveolitis(ALV) (n=4 patients, 10 ROIs), diffuse alveolar damage (DAD) (n=4 patients, 1365 
8 ROIs) and organising pneumonia (OP) (n=4 patients, 8 ROIs), compared to healthy control 1366 
(n=2 individuals, 4 ROIs). Line in figure represents median. See Supplementary Table 4 for 1367 
extended phenotypic description for all cell types and clusters. Source data are provided in the 1368 
Source Data File.  1369 

 1370 

D.  Heatmap of fold change (FC) difference in abundance of cell types for COVID-19 samples (ALV, 1371 
DAD and OP) vs healthy controls (HC) depicted in (A). Asterisks show those with significant 1372 
differences -  adjusted p-values are *p<0.05 **p<0.01 ***p<0.001, calculated using code from 1373 
the diffcyt R package (version 1.8.8) with the option testDA_edgeR; two-sided analysis 1374 
employed, and multiple comparisons adjusted using Benjamini-Hochberg  method . Arrow 1375 
refers to immune cells that showed progressive increase in abundance with progression 1376 
histopathology states from ALV to OP.  1377 

 1378 
Fig. 4. Spatial analysis of immune and structural cells in COVID-19 lungs 1379 

A. Schematic representation of the sequential spatial analysis of cellular co-location, starting 1380 
with quadrat correlation matrix (QCM), then cross pair correlation function (cross-PCF) 1381 
analysis, interrogation of cross-PCF output and organization according to main questions. 1382 
QCM output is provided in Supplementary Fig. 8. 1383 

B. g(r=20) heatmaps showing statistically significant correlated pairs of cells derived from QCM 1384 
and cross-PCF analysis (see Methods for full description). n=479,349 single cells from n=12 1385 

COVID patients’ lung sections (n=26 ROIs); in total, n=144,937 cells in ALV,  n=146333 in DAD 1386 
and n=163,506 in OP. Red boxes indicate groups of cell subsets from the same immune 1387 
phenotype – neutrophils (Group 1), monocytes and macrophages (Group 2), CD3 T cells 1388 
(Group 3) and MAIT cells (Group 4). 1389 
 1390 

Fig. 5. Spatial organization of immune cells around structural cells in COVID-19 lungs 1391 
A-B. Spatial connectivity plots for proliferating alveolar epithelium, showing immune cells that are 1392 

significantly co-located to proliferating alveolar epithelium (designated ‘anchor cell’) in the three 1393 
histopathology states.  The size of the nodes (filled-in circle) represents mean cell counts 1394 
(abundance) for the specified cell cluster for all the ROIs in the histopathology state (scale shown 1395 
in grey), and colour of nodes relate to histopathology state. Connecting lines indicate a 1396 
statistically significant co-location between the two cell types derived from QCM and cross-PCF 1397 
analyses. The thickness of the lines relates to the g(r=20) value relative to each pair in the plot – 1398 



the thicker the line, the higher the g(r=20) and therefore greater strength of co-location between 1399 
the immune cell type and anchor cell. n=479,349 single cells from n=12 COVID patients’ lung 1400 
sections (n=10 ROIs for ALV; n= 8 DAD; n= 8 OP); n=144,937 cells in ALV,  n=146333 in DAD and 1401 
n=163,506 in OP. 1402 

C-D.  Histogram shows % of two anchor cells – proliferating alveolar epithelial (PAE) cells (C) and 1403 
endothelial cells (D) that are  in contact with  specified immune cell type.  Source data are provided 1404 

in the Source Data File.  1405 
E-F. Cross-PCF profiles for the two most abundant co-located structure:immune cell pairs in DAD. 1406 

Curves show the change in g(r) along the radius(r) from anchor cells [proliferating alveolar 1407 
epithelium (prolif alv epit) and endothelial cells (endo)] for Neut-CD8_ADJ cell clusters and 1408 
Mono_CD31_ADJ cell clusters respectively. Blue coloured area around curve is the 95% 1409 
confidence interval for n=8 ROIs with DAD.  1410 

G. Radial connectivity map depicting all statistically significant pairs of structure:immune cells in all 1411 

histopathology states; anchor cells (structural cells) are in smaller, inner circle. n=479,349 single 1412 
cells from n=12 COVID patients’ lung sections (n=10 ROIs for ALV; n= 8 DAD; n= 8 OP). ‘DRhi BE’ 1413 
– HLADRhi bronchial epithelium; ‘DRlo BE’ – HLA DRlo bronchial epithelium;  “Endo’- endothelial 1414 
cells; ‘PAE’- ‘proliferating alveolar epithelium’, ‘PBE’ – ‘proliferating bronchial epithelium’; ‘PE’ – 1415 
‘proliferating endothelium’ ‘BV” –‘blood vessels’. Numerical values indicate g(r=20) for that pair 1416 
in that state (coloured bar), and % indicates proportion of anchor cells that are co-located with 1417 
the specified immune cells.  1418 

H. Topographical correlation map showing distribution of the co-located Neut_CD8_ADJ cluster and 1419 

proliferating alveolar epithelial cell pair (left panel) in an exemplar tissue (an ROI with DAD). Cells 1420 
of type A (e.g. Neut_CD8_ADJ)  are positively (Γ௔௕ ≫ 0) or negatively (Γ௔௕ ≪ 0) associated with 1421 
cells of type B (e.g. Proliferating alveolar epithelium) (see Methods)  1422 

I. MCD images showing Neut_CD8_ADJ clusters amidst single CD8+ T cells, CD15+ immature 1423 
neutrophils and epithelial markers (EpCAM and PanCK). Couplets of CD8+ and CD15+ cells -  1424 
Neut_CD8_ADJ clusters (red and green merging to form yellow cells) (arrows) are most clearly 1425 
visible in DAD. Exemplar section is shown  from analyses of  n=10 ALV ROIs, n=8 DAD ROIs and 1426 
n=8 OP ROIs (n=12 patients). Sections were stained once with 37 plex panel.  1427 

 1428 
Fig. 6. Spatial organization amongst immune cells in COVID-19 lungs 1429 

A-C. Radial connectivity map depicting all statistically significantly co-located pairs of immune- 1430 
immature neutrophil subsets (including ADJ subsets) (A) immune-monocyte subsets (B and C, 1431 
separated for clarity) cells in all histopathology states (n=10 ALV, n=8 DAD and n=8 OP). Anchor 1432 



cells (immature neutrophil and monocyte subsets) are in smaller, inner circle.  Numerical values 1433 
indicate g(r=20) for that pair in that state (coloured bar), and % indicates proportion of anchor 1434 
cells that are co-located with the specified immune cells.  These significantly co-located pairs of 1435 
cells are derived from n=479,349 single cells in all ROIs from n=12 COVID patients’ lung sections 1436 
(n=10 ROIs for ALV; n= 8 DAD; n= 8 OP); n=144,937 cells in ALV,  n=146333 in DAD and n=163,506 1437 
in OP (see Methods for 3-step mathematical algorithm for determining statistical significance of 1438 

co-location).   1439 
 1440 
D-E. Spatial connectivity plots for Neut_CD8_ADJ (D) and Mono_CD31_ADJ (E), showing immune 1441 

cells that are statistically significant co-located to proliferating alveolar epithelium (designated 1442 
‘anchor cell’) in the three histopathology states (see Methods for 3-step mathematical algorithm 1443 
for determining statistical significance of co-location).  Size of nodes (filled-in circle) represent 1444 
mean cell counts for the specified cell cluster for all the ROIs in the histopathology state, and 1445 

colour of nodes relate to histopathology state. Connecting lines indicate a statistically significant 1446 
co-location between the two cell types derived from QCM and cross-PCF analyses. Thickness of 1447 
line relate to value of g(r=20) relative to each pair in the plot – the thicker the line, the higher the 1448 
g(r=20) and strength of co-location between the immune cell type and anchor cell.  1449 

F. Adjacency cell network (ACN) map showing contact between the Mono_CD31_ADJ cluster, 1450 
Neut_CD8_ADJ cluster and proliferating alveolar epithelial. Cell segmentation masks generated 1451 
by DeepCell were used to produce this spatially-embedded network in which nodes represent 1452 
centres of cell types (e.g. green – Neut_CD8_ADJ cell cluster). Nodes are connected by a line if 1453 

the corresponding cells in the segmentation mask share a border. 1454 
G. MCD image showing CD8 (green), CD15(red) and CD15 and CD8 co-staining (yellow) (representing 1455 

Neut_CD8_ADJ cell clusters) amidst endothelial cells (CD31 staining in turquoise) and monocytes 1456 
(CD14 staining in purple) in a lung section with DAD on histopathology analysis. Exemplar ROI is 1457 
shown for (F) and (G), out of 26 ROIs stained, from 12 patients (n=10 ALV ROI, n=8 DAD and n=8 1458 
OP). 1459 

 1460 
Fig. 7  1461 

A. SCMAP matching heatmaps representing the Jaccard indices of similarity between COMBAT 1462 
(blood)6 and COSMIC (lung) lymphocyte clusters.  CD107a- CD8 T cell and CD107a+ CD8 T cell in 1463 

COSMIC matched to blood GZB- CD8 T cells in COMBAT.  IFN-γ+ CD4 T cells matched to COMBAT’s 1464 

‘activated CD4 T cells’ 1465 



B. SCMAP matching heatmaps representing the Jaccard indices of similarity between COMBAT 1466 
(blood) and COSMIC (lung) myeloid clusters.  Mono_CD31_ADJ and Mono_PAI-1_ADJ and all 1467 
macrophage subsets matched with HLA DRhi classical monocytes in the blood from COMBAT data 1468 

C. UMAP representation of neutrophils from controls and COVID-19 infected patients (n=2,776,928 1469 
single cells from n=77 COVID-19 patients and 11 healthy volunteers (HV), down sampled to 100 1470 
000 cells per condition) obtained from COMBAT consortium, showing 8 subsets of neutrophils.  1471 

D. Heatmap showing median marker expression for genes (selected to match COSMIC’s key protein 1472 
expression on neutrophils) on the 8 neutrophil subsets, demonstrating high similarity of marker 1473 
expression in immature neutrophil 2 (iNeut2) in COMBAT (blood) with Neut_CD8_ADJ in COSMIC 1474 
(lung) (See also Fig. 2F). 1475 

E. Abundance of the 8 neutrophil subsets in blood as % of total neutrophils, from healthy volunteers 1476 
(HV), mild, severe and critical COVID-19 patients from the COMBAT consortium showing a 1477 
progressive increase in immature 2 neutrophils with increasing COVID-19 disease severity. HV 1478 

(n=11), mild (n=18), severe (n=41), critical (n=18) patients, n=1 experiment. The boxplot is 1479 

median, with IQR; whiskers are the range or 1.5*IQR (whichever is smaller). Composition 1480 

analysis was performed using scCODA with inbuilt adjustment for multiple comparison70. 1481 

Credible compositional changes were identified comparing all groups to HV and  FDR<0.1 1482 

is marked with #. Source data are provided in Source Data File. 1483 
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Name of software Source Identifier 

imctools https://github.com/BodenmillerGr

oup/imctools  

RRID:SCR_017132 

Deepcell https://vanvalen.github.io/about/ RRID:SCR_022197 

Phenograph https://github.com/JinmiaoChenLa

b/Rphenograph  

RRID:SCR_016919 

Harmony https://github.com/slowkow/harm

onypy  

RRID:SCR_022206 

Slingshot https://github.com/kstreet13/sling

shot 

RRID:SCR_017012 

Ruffus http://www.ruffus.org.uk/  RRID:SCR_022196 

QuPath https://qupath.github.io/ https://doi.org/10.1038/s41598-

017-17204-5 

MCD https://www.standardbio.com/pro

ducts-services/software 

 

RRID:SCR_023007 

Catalyst R  http://bioconductor.org/packages/

CATALYST/  

RRID:SCR_017127 

Harmony https://github.com/immunogenom

ics/harmony  

RRID:SCR_022206 

diffcyt R package (version 1.8.8) https://www.bioconductor.org/pac

kages/release/bioc/html/diffcyt.ht

ml  

RRID:SCR_023006 

 
Table 1 Software and algorithms used in data analysis. 
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