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Abstract
Rotating neutron stars that support long-lived, non-axisymmetric deformations
known as mountains have long been considered potential sources of gravit-
ational radiation. However, the amplitude from such a source is very weak
and current gravitational-wave interferometers have yet to witness such a
signal. The lack of detections has provided upper limits on the size of the
involved deformations, which are continually being constrained. With expec-
ted improvements in detector sensitivities and analysis techniques, there is
good reason to anticipate an observation in the future. This review concerns
the current state of the theory of neutron-star mountains. These exotic objects
host the extreme regimes of modern physics, which are related to how they
sustain mountains. We summarise various mechanisms that may give rise to
asymmetries, including crustal strains built up during the evolutionary history
of the neutron star, the magnetic field distorting the star’s shape and accretion
episodes gradually constructing a mountain. Moving beyond the simple rotat-
ing model, we also discuss how precession affects the dynamics and modifies
the gravitational-wave signal. We describe the prospects for detection and the
challenges moving forward.
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1. Introduction

We live in a fortuitous timewhen it comes to gravitational-wave astronomy. Since the inaugural
detection of the black-hole binary GW150914 (Abbott et al 2016), sensitive, ground-based,
gravitational-wave instruments—LIGO (Aasi et al 2015) and Virgo (Acernese et al 2015)—
have witnessed approximately 100 compact-binary mergers in the first three observing runs
(Abbott et al 2019a, 2021a, 2021b, 2021c). Indeed, with no corresponding electromagnetic
counterpart to the black-hole events (that we have seen, at least), gravitational-wave interfero-
meters provide astronomers a new lens to observe the optically dark sector of the Universe. In
addition to black holes, detectors have also seen coalescences involving neutron stars, which
include neutron star-neutron star (Abbott et al 2017b, 2020) and neutron star-black hole mer-
gers (Abbott et al 2021d). Among these detections is the spectacular event GW170817 (Abbott
et al 2017b), which was accompanied by a host of electromagnetic signals across the spectrum
(Abbott et al 2017c), thereby beginning a new era of multimessenger astronomy.

Given this remarkable success, it would be quite easy to take such measurements from far-
away, cataclysmic events for granted. Naturally, it would be remiss to forget the shear scale of
the original problem: detecting strains at least of the order of 10−21 (Saulson 2000). For the
kilometre-length arms of LIGO and Virgo, this corresponds to measuring displacements the
size of a fraction of a proton. In a feat of experimental and data-analytical triumph, this level of
precision has been reached, enabling accurate measurements of the gravitational-wave strain.
In tandem with this achievement, theory has played a vital role in developing waveforms to
match the strain measurements. However, we surely cannot be blamed for dreaming of more.
And with third-generation detectors on the horizon—The Einstein Telescope (Punturo et al
2010) and Cosmic Explorer (Reitze et al 2019)—with vastly improved design sensitivities,
there is a good chance that we will see more.

There are good reasons to be particularly excited by the prospect of further gravitational-
wave signals from neutron stars. Perhaps the most compelling reason lies in the simple fact
that they are material bodies, in contrast to vacuum black holes. Although they are far from
typical stars—due to their compactness, neutron-star interiors reach densities in excess of nuc-
lear saturation. For this reason, they likely hold the key to understanding ultra-dense nuclear
matter; in particular, the thermodynamic equation of state (Lattimer and Prakash 2001, 2007,
Haensel et al 2007, Lattimer 2012, Özel and Freire 2016). Indeed, we have begun probing this
information since the high signal-to-noise ratio event GW170817 provided an upper limit on
the tidal deformabilities of the involved neutron stars, which in turn constrains the equation
of state (Abbott et al 2017b, 2018, 2019b). There are numerous other aspects of neutron-
star physics that make them veritable astrophysical laboratories, including their strong mag-
netic fields, solid crusts and high spin frequencies to name but a few, and gravitational waves
present the very real possibility of probing much of this physics, in tandem with electromag-
netic observations.

At the risk of looking a gift horse in the mouth, we are yet to witness gravitational radiation
from the simple case of a deformed, rotating neutron star. But why should we expect neutron
stars to support such deformations in the first place? The answer is quite simple, even though
the precise details are not. The formation history of a neutron star is expected to be quite
complex. They begin their lives as the remnant of a supernova. Newly born neutron stars will
be hot and rapidly rotating, as they retain some of the angular momentum of the progenitor
star. As the star cools, its crust will solidify, since it becomes energetically favourable at low
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densities to form a crystal lattice. The neutron star may, at some point in its lifetime, exhibit
glitches and accrete from a companion star. Many of these processes will build up strain in the
crust and cause the star to change shape. It is therefore inevitable that the typical neutron star,
much like planets with a solid component, will be deformed in a non-axisymmetric fashion
and emit gravitational waves. In addition to strain in the crust, there are other ways in which
an asymmetry can develop, which we will explore in this review.

In this review, our focus will be on the physics of deformed neutron stars. This review is not
intended to be exhaustive by any means and the objective is provide an accessible overview of
this research area. Throughout this article, references are provided to important review articles,
textbooks and selected papers, which will be useful to readers less familiar with the topics
discussed. For related reviews on deformed neutron stars, see Jones (2002), Prix (2009), Lasky
(2015) and Glampedakis and Gualtieri (2018). We will primarily consider relatively long-lived
perturbations known asmountains. These are separate to oscillationmodes, whichmay become
excited and radiate gravitational waves. Since mountains are long lived, they are promising
candidates for continuous gravitational-wave detection. There are complementary reviews on
this subject, which the reader is referred to for more information (Palomba 2012, Sieniawska
and Bejger 2019, Tenorio et al 2021, Piccinni 2022, Haskell and Bejger 2023, Riles 2023,
Wette 2023).

This article is structured as follows. We begin in section 2 with the motivation for why
neutron-star mountains are interesting from a gravitational-wave perspective. With this motiv-
ation in hand, we move on to discuss how neutron stars can develop such asymmetries. In
section 3, we review the involvement of the crust in supporting mountains, particularly with
regards to how large the deformations can become before the crust fractures. Next, in section 4,
we consider how the magnetic field can distort the star into a quadrupolar shape and discuss
estimated mountain sizes. In section 5, we discuss how accretion can give rise to mountains in
low-mass x-ray binaries. This scenario includes mountains sourced by temperature-sensitive
reactions (section 5.1) and those confined by the magnetic field (section 5.2). Following these
mechanisms, in section 6, we consider how precession modifies the picture. We summarise the
prospects for continuous gravitational-wave detection of neutron-star mountains in section 7,
highlighting the challenges that lie ahead. We summarise and conclude in section 8.

In this article, we use the metric signature (−,+,+,+). The Einstein summation conven-
tion is adopted, where repeated indices denote a summation. We use early Latin characters
a,b,c, . . . for spacetime indices and later characters i, j,k, . . . for spatial indices. We reserve the
characters (l,m) for spherical harmonics. We will also encounter the following physical con-
stants: Newton’s gravitational constant G, the speed of light in a vacuum c and Boltzmann’s
constant kB. So, without further ado, let us begin.

2. Motivation

Gravitational waves are a remarkable prediction of Einstein’s general theory of relativity. Since
the first detection of gravitational waves in 2015, we have a new way to observe the Universe.
In this section, we will provide an overview of how gravitational waves are produced in gen-
eral relativity. We will see that they are emitted when a massive source has a time-varying
mass quadrupole moment. We will show how a rotating neutron star that is deformed non-
axisymmetrically emits gravitational radiation. Since we detect many spinning pulsars using
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conventional electromagnetic telescopes, we briefly discuss the tentative evidence for gravit-
ational waves from such observations.

2.1. Gravitational-wave theory

In general relativity, accelerating masses generate gravitational radiation1. It is a standard
textbook exercise to show that metric perturbations hab in spacetime satisfy a wave equation
(Misner et al 1973, Hartle 2003, Maggiore 2008, Poisson and Will 2014, Andersson 2019,
Schutz 2022)

□h̄ab =−16πG
c4

Tab, (1)

where □= ∂a∂
a is the (flat) d’Alembertian, h̄ab = hab− ηabhcc/2 is the trace-reversed metric

perturbation, ηab is theMinkowski metric and Tab is the contribution to the stress-energy tensor
of the source that enters at linear order in the perturbations (we will soon see that it is the part of
the stress-energy tensor due to asymmetric matter motion). In deriving equation (1), it has been
assumed that the perturbation exists on top of a Minkowskian spacetime and the coordinates
have been chosen such that the metric perturbation satisfies the harmonic gauge ∂bh̄ab = 0.2

Equation (1) shows that general relativity permits small perturbations that travel at the speed
of light. Thus, we call the solutions gravitational waves.

The solution to equation (1) can be obtained using a retarded Green’s function,

h̄ab
(
t,xi

)
=

4G
c4

ˆ
Tab

(
t ′ = t− |xi − x ′i|/c,x ′i

)
|xi − x ′i|

dV ′, (2)

where the strain is calculated at a spacetime point (t,xi) in the harmonic gauge and the integ-
ration is taken over the volume of the source, using coordinates (t ′,x ′i), with volume element
dV ′. In order to understand the features, it is convenient to consider a region of space far from
a weak-gravity source. In this context, with the help of the conservation equation ∂bTab = 0,
we find

h̄i j
(
t,xi

)
=

2G
c6d

d2

dt2

ˆ
Ttt

(
t ′ = t− d/c,x ′i

)
x ′i x

′
j dV

′ +O
(
d−2

)
=

4G
c4d

d2Mi j

dt2
(t− d/c)+O

(
d−2,c−6

)
, (3)

where d= |xi − x ′i| is the distance to the source and we have identified its (Newtonian) mass
quadrupole moment tensor Mi j =

´
ρxi xj dV from Ttt = ρc2 +O(1) with ρ the mass density.

This is formally a post-Newtonian expansion of general relativity, which is appropriate in

1 This is analogous to how accelerating charges produce electromagnetic radiation. Indeed, there exist many analogies
between general relativity and electromagnetism, which has been the subject of some study and termed gravito-
electromagnetism (Maartens and Bassett 1998, Mashhoon 2003).
2 The assumption that the background is flat is particularly restrictive and is inapplicable to many situations of astro-
physical interest. Fortunately, this assumption can be relaxed by averaging over several wavelengths, but the calcula-
tion is quite involved. For our pedagogical purposes, it will be sufficient to assume a flat background.
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a region where the source’s gravity is weak (Misner et al 1973, Futamase and Itoh 2007,
Blanchet 2014, Poisson and Will 2014, Levi 2020). However, we expect, and indeed know,
that the strongest gravitational-wave emitters are hardly weak-gravity sources. One would
assume (quite reasonably) that the post-Newtonian approximation would be fairly ineffective
at describing such compact objects. It turns out that this is not the case, and the post-Newtonian
expansion is very useful and fairly indispensable for describing these kind of systems, even
during the late inspiral and merger of two black holes (Will 2011). In practice, the mass quad-
rupole moment that one reads off from the expansion corresponds to the relativistic quantity
(Thorne 1980). For a summary of the multipole moments, see box 1.

Box 1. Multipole moments

Spherical symmetry is a convenient simplification, but it rarely describes celestial bod-
ies in Nature. For neutron stars, rotation and strains built up in the crust will cause the star
to deviate from sphericity. When these deviations are relatively small, multipole expan-
sions are a powerful way to describe the star’s shape.

We consider an observer at position xi outside a Newtonian matter source with mass
density ρ. The observer will measure the exterior gravitational field of the source Φ—
which is governed by Poisson’s equation ∇2Φ = 4πGρ—as

Φ
(
t,xi

)
=−G

ˆ
ρ
(
t,x ′i

)
|xi − x ′i|

dV ′.

The factor of |xi − x ′i|−1 can be expressed in terms of the spherical harmonics Yml (θ,ϕ),
so that

Φ(t,r,θ,ϕ) =−G
∞∑
l=0

l∑
m=−l

4π
2l+ 1

Qlm (t)
Yml (θ,ϕ)
rl+1

,

where r= |xi| and we have introduced the multipole moments

Qlm (t) =
ˆ
ρ
(
t,xi

)
rlYm∗l (θ,ϕ) dV,

with ∗ denoting a complex conjugate. We may decompose a generic scalar function using
spherical harmonics,

ρ(t,r,θ,ϕ) =
∞∑
l=0

l∑
m=−l

ρlm (t,r)Y
m
l (θ,ϕ) .

Inserting this decomposition into Qlm leads to

Qlm (t) =
ˆ
ρlm (t,r)r

l+2 dr.

Thus, each harmonic of the mass density ρ sources a multipole moment Qlm.
There exists an alternative (but equivalent) formulation of the multipole moments

involving symmetric, trace-free tensors. Instead of expanding |xi − x ′i|−1 with spherical
harmonics, one can instead use a Taylor series. Thus, in a Cartesian basis,

Φ =−G
[
M
r
+
pi ni
r2

+
3
2
Qi j

r3

(
ni nj−

1
3
δi j

)]
+O

(
r−4

)
,
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where ni = ∂i r is a unit vector and we identify the monopole M=
´
ρd3x, dipole pi =´

ρxi d3x and trace-free quadrupole [cf, equation (5)]

Qi j =

ˆ
ρ

(
xi xj− 1

3
r2δi j

)
dV.

We are always free to choose a coordinate system where pi = 0. This is the centre-of-
mass frame. For a discussion of the multipole moments in general relativity, where mass
multipoles are joined by the relativistic current multipoles, see Thorne (1980).

It turns out that we have residual freedom to choose a specific set of coordinates within
the harmonic gauge. It is common to choose the transverse-traceless gauge denoted by hTTi j ,

3

where we now have

hTTi j
(
t,xi

)
=

4G
c4d

d2Qi j

dt2
(t− d/c)+O

(
d−2,c−6

)
(4)

with the traceless mass quadrupole moment tensor

Qi j =

ˆ
ρ

(
xi xj−

1
3
r2δi j

)
dV, (5)

where we have adopted a Cartesian basis. Here, we have Einstein’s famous quadrupole for-
mula (4), which serves as the basis of many useful gravitational-wave estimates (Einstein 1918,
Landau and Lifshitz 1971). We observe that gravitational radiation (i) is sourced by acceler-
ating massive bodies, (ii) falls off as 1/d and (iii) is quadrupolar at leading post-Newtonian
order. The absence of monopole radiation is a consequence of Birkoff’s theorem (Jebsen 1921,
Birkhoff and Langer 1923), whereas dipole radiation does not exist due the lack of negative
charges in gravity (in stark contrast to electromagnetic waves).

An important step in the development of the theory was the demonstration that gravitational
waves carry energy. This component of the theory was the subject of much controversy in its
development (Kennefick 2007). A particular issue was the fact that the effective stress-energy
tensor of the waves tab was gauge-dependent; one could simply choose an inertial frame where
the radiation vanishes. It was eventually shown that the physical effect of the waves manifests
over several cycles (Isaacson 1968),

⟨tab⟩=
c4

32πG
⟨∂ahTTi j ∂bhi j TT⟩, (6)

where ⟨. . .⟩ denotes an average over wavelengths. This form, the Isaacson stress-energy
tensor (6), is gauge invariant, as it must be in order to be physically relevant. The Isaacson
stress-energy tensor (6) describes the energy the gravitational radiation carries away from
the source, which can be combined with the quadrupole formula (4) to obtain the total
gravitational-wave luminosity

F =
dEGW

dt
=

G
5c5

⟨
d3Qi j

dt3
d3Qi j

dt3

⟩
+O

(
c−7

)
. (7)

3 The transverse-traceless gauge picks out a particular frame where the metric perturbation is purely spatial hTTti = 0
and trace-free hi TTi = 0. The harmonic gauge condition implies that such a perturbation is transverse, ∂ jhTTi j = 0.

6



Class. Quantum Grav. 41 (2024) 043001 Topical Review

This effect is known as the gravitational-radiation reaction on the source. Gravitational waves
carry energy away from the source at a rate given by equation (7).

In summary, provided the source has a time-varying quadrupole moment (or higher multi-
pole), then it will emit gravitational radiation. Compact objects are the most promising candid-
ates, since they strongly disturb spacetime. Of course, we have seen radiation from compact
binaries, but the focus of this review is on a different source.

2.2. Rotating, deformed neutron stars

An isolated body must spin and be deformed away from rotational axisymmetry in order to
gravitationally radiate4. Neutron stars possess solid crusts close to the surface, which enable
them to support long-lived, non-axisymmetric perturbations. We will examine how a rotating
body emits gravitational waves.

In this review, we will treat the star in an entirely Newtonian setting. We do this to illustrate
the physics, since there is still substantial uncertainty surrounding the different ingredients
required to model real neutron stars. However, caution should be exercised. Although it is
tempting to consider general relativity as a ‘correction’ to the Newtonian theory (where res-
ults are typically altered at the 15%–20% level), for compact objects, gravity is a leading-order
effect. The stellar-structure equations provide an example of this. It is well known that incor-
porating realistic supranuclear equations of state into a Newtonian description of the structure
provide spurious masses and radii that differ greatly from the relativistic results. In order to
construct realistic neutron-star models, we will need to bring all the physics together within
full, gory general relativity. At present, we are some way from the final description, but this
should be our ultimate goal.

We begin by erecting an inertial, Cartesian coordinate system (x,y,z). In this coordinate
system, we place a uniformly rotating star with angular velocity Ω about the z-axis, where the
origin coincides with the centre of mass. The star carries with it a co-rotating coordinate system
(x̄, ȳ, z̄) known as the body frame, shown in figure 1, where we align z̄= z for simplicity. We
endow the star with a non-trivial mass quadrupole and treat it as rigid. For the time being, we
are not concerned with the stellar interior.

We consider the star’s moment of inertia tensor

Ii j =
ˆ
ρ
(
r2δi j− xi xj

)
dV, (8)

which can be straightforwardly related to the quadrupole tensor (5). In the body frame, the star
has principal moments of inertia (I1, I2, I3) defined in the body frame by

[
Īīj
]
=

I1 0 0
0 I2 0
0 0 I3

 . (9)

The star is non-axisymmetric if at least one of I1 and I2 differs from I3.We can simply transform
to the inertial frame with a rotation in the x̄− ȳ plane to obtain

4 Although a rotating body will inherit a natural quadrupolar deviation from (spherical) symmetry due to the centri-
fugal force, this will not be sufficient to emit gravitational waves. The wave solution (4) shows that the quadrupole
moment of the body must vary in time with respect to its second time derivative.
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Figure 1. An illustration of a non-axisymmetrically deformed star rotating with angular
velocityΩ. As the star rotates, its body frame (x̄, ȳ, z̄) co-rotates with it. The star’s shape
is characterised by its principal moments of inertia (I1, I2, I3), defined as the moment I1
about its x̄-axis, I2 about its ȳ-axis and I3 about its z̄-axis.

[Ii j] =

 1
2 (I1 + I2)+ 1

2 (I1 − I2)cos(2ϕ) 1
2 (I1 − I2)sin(2ϕ) 0

1
2 (I1 − I2)sin(2ϕ) 1

2 (I1 + I2)− 1
2 (I1 − I2)cos(2ϕ) 0

0 0 I3

 , (10)

where ϕ is the angle between the two frames. Since the rotation is uniform, we are free ori-
entate the frames such that ϕ =Ωt. Here, we see that a rotating, quadrupolar source will
radiate gravitational waves at twice the rotation rate 2ϕ̇, where a dot denotes a time deriv-
ative5,6. Gravitational waves will also be emitted at a second frequency of ϕ̇ under the influ-
ence of mechanisms such as precession (which we discuss later in section 6), magnetic fields
(Bonazzola and Gourgoulhon 1996) and pinned superfluidity (Jones 2010).

We are now in a position to obtain some useful estimates. For these calculations, wewill rely
on the post-Newtonian formulae presented in section 2.1. Recall that this formalism applies
for weakly relativistic sources and so, for the neutron stars that we are interested in, the post-
Newtonian approximation will be used for order-of-magnitude estimates. By equation (4), we
introduce the strain amplitude

h0 =
4G
c4
ϵI3Ω2

d
≈ 10−25

(
10 kpc
d

)( ϵ

10−6

)( I3
1045 gcm−1

)( ν

500 Hz

)2
, (11)

where ν =Ω/(2π) is the star’s spin frequency and we have defined the ellipticity of the star

ϵ≡ I2 − I1
I3

, (12)

which is a dimensionless measure of the star’s quadrupolar deviation from symmetry about the
z̄-axis. We see from equation (11) that, even for a reasonably close and rapidly rotating source,

5 This is also true for binaries, where the waves are emitted at twice the orbital frequency. However, if the radiation
is generated by an oscillation mode of the star, then the gravitational waves will be emitted at the frequency of the
mode. Additionally, we will see later that when precession is involved gravitational waves are also emitted at the spin
frequency.
6 Although the star will experience centrifugal deformation due to the rotation, this will be a constant contribution to
the moment of inertia.
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the gravitational-wave strain is extremely weak. The nearby Crab pulsar PSR B0531+21 is
useful to consider. It is a distance of d≈ 2 kpc away and rotates at ν ≈ 30 Hz. Thus,

h0 ≈ 2× 10−27
( ϵ

10−6

)( I3
1045 gcm−1

)
. (13)

The sceptic may be tempted to call it a day there; clearly such systems are well beyond current
(and expected future) sensitivities of gravitational-wave instruments—surely this is a deeply
misguided exercise? However, there is cause for some (cautious) optimism. If the source is
observed for a sufficiently long period of time, the strain data measured at the detector can be
folded over itself in order to improve the signal-to-noise ratio. The simplest version of this is
matched filtering, where the effective strain amplitude hc increases as the square-root of the
number of detected cycles. Suppose we could observe the Crab for a year. Then we have

hc ≈ 10−22
( ϵ

10−6

)( I3
1045 gcm−1

)(
Tobs

1yr

)1/2

, (14)

where Tobs is the length of the observing run. This is a substantial improvement.
But, so far, we have made no mention of how large these mountains might be. An obvious

quantitative question we can ask is how large can we reasonably expect ϵ to be? This limit is
set by the crust of the neutron star. This is obviously a crucial, but involved question, which
we will discuss in section 3. But for now, we will consider whether there are other types of
observations that may provide some hope for this endeavour.

2.3. Evidence from electromagnetic observations

We are used to observing the electromagnetic emission from rotating neutron stars. Indeed, the
first evidence for the existence of neutron stars came from a radio observation (Hewish et al
1968). To date, we have seen approximately 3000 pulsars. By accurately timing the signals,
we are able to determine their spins to high precision. According to equation (11), the strain
depends sensitively on the rotation of the star. In principle, a (non-axisymmetric) star rotating
at 300 Hz will radiate waves with an amplitude (300/30)2 = 100 times stronger than the Crab
pulsar, all else being equal. Therefore, the more rapidly rotating systems are among the most
promising for gravitational-wave detection. The fastest-spinning neutron stars are either found
as radio pulsars or in low-mass x-ray binaries. The two observed distributions of spins⩾100Hz
are shown in figure 2.

In particular, accreting neutron stars have long been considered potential gravitational-wave
emitters (Papaloizou and Pringle 1978a, Wagoner 1984, Bildsten 1998, Andersson et al 1999).
(Wewill discuss this scenario further in section 5.) The reasonwhy is twofold. Firstly, accretion
is expected to play an important role in producing fast rotators, as the accreted gas carries
angular momentum to the neutron star (Alpar et al 1982, Radhakrishnan and Srinivasan 1982).
The second is related to the star’s quadrupole moment. As the matter falls from the accretion
disc and gets close to the neutron star, the magnetic-field lines will direct the gas towards the
poles. Assuming the magnetic poles are misaligned with the rotation axis (which is supported
by observations of pulsars), the star will develop a natural mass asymmetry. This picture is
somewhat simplistic, but it provides the key motivation.

It is believed that the rapidly rotating radio pulsars are spun up through the accretion scen-
ario (for a review on observations, see Patruno and Watts 2021). It has been suggested that
accretion should be sufficient to spin up neutron stars to the centrifugal break-up frequency
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Figure 2. The distributions of spin frequencies above 100 Hz for known radio and
accreting neutron stars. No system spins faster than PSR J1748–2446ad at 716 Hz and
the accreting systems pile up around ∼600 Hz. This provides evidence for a spin-down
torque in the population of rapidly rotating neutron stars. The radio data are obtained
from the ATNF catalogue (Manchester et al 2005).

(Cook et al 1994), which should be∼1 kHz for most equations of state (Lattimer and Prakash
2007). However, the fastest observed pulsar PSR J1748–2446ad rotates at 716 Hz (Hessels
et al 2006), far below the mass-shedding limit. Additionally, there have been statistical stud-
ies that show the population as a whole possesses a cut-off around 730 Hz (Chakrabarty et al
2003, Chakrabarty 2005, Patruno 2010, Patruno et al 2017, cf, figure 2). This issue is not new
and it has been argued that the apparent speed limit indicates the presence of a spin-down
mechanism (Haskell et al 2018).

The star will be spun down by any mechanism that takes away angular momentum. There
are two candidates to explain the observations. One is the interaction between the magnetic-
field lines and the accretion disc (Ghosh et al 1977, Ghosh and Lamb 1978, 1979a, 1979b,
White and Zhang 1997, Andersson et al 2005). The second is the emission of gravitational
waves (Bildsten 1998, Andersson et al 1999). However, it has been suggested that incorporat-
ing only the magnetic field-accretion disc coupling is not sufficient to explain the observations
and gravitational radiation is indeed necessary (Gittins and Andersson 2019).

Along this direction, there is support for a minimum quadrupole in the population of fast-
spinning neutron stars. The recent study of Woan et al (2018) consider 128 ms pulsars with
measurements of the stars’ spin and spin-down rate. By considering a simple model for the
spin behaviour of the neutron stars, incorporating electromagnetic dipole and gravitational-
wave quadrupole radiation, they find strong statistical support for the population possessing a
non-zero minimum ellipticity of ϵ≈ 10−9.

While gravitational waves are a natural and attractive explanation for features in the
observed distribution (figure 2), it is by no means a settled issue. The disc-magnetosphere
interaction still remains a viable candidate for specific systems like XTE J1814–338 and SAX
J1808.4–3658 (Haskell and Patruno 2011) and some studies argue against the necessity of
gravitational waves to describe the fast-spinning population as a whole (Patruno et al 2012,
D’Angelo 2017). (See Patruno et al 2017, for a detailed discussion of the two perspectives.)
Recently, Ertan and Alpar (2021) conjecture that the maximum spin frequency is explained by
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a correlation between the accretion rate and frozen magnetic field. Let us move on to consider
more precisely how gravitational radiation impacts the dynamics.

From equation (7), a star with a quadrupole moment will radiate energy according to

dE
dt

=−32G
5c5

ϵ2I23Ω
6. (15)

We assume that the moment of inertia I3 is fixed, so the energy must come from the rotation,
exerting a torque on the star. Thus, the star spins down according to

dΩ
dt

=−32G
5c5

ϵ2I3Ω
5. (16)

This result shows that gravitational waves will cause the star to spin down proportional to Ω5.
Therefore, the faster the star spins, the greater its spin-down from gravitational waves. This
behaviour would support a speed limit provided the star hosts a non-trivial deformation ϵ.

Alas, we do not expect realistic neutron stars to be so simple. In reality, a neutron star will
have a variety of torques acting on it during its lifetime, which will influence its spin evolution.
In box 2, we introduce the braking index n, which is often used to categorise pulsars. The
Crab pulsar has been measured to have n≈ 2.5, which supports its spin being dominated by
electromagnetic waves, as opposed to gravitational radiation (Lyne et al 2015).

Box 2. The braking index

When pulsars are observed using radio or x-ray instruments, typically what is recor-
ded are discrete measurements of the spin frequency ν as a function of time. Modern
telescopes have extremely high resolution, so provided a clean enough signal the first ν̇
and second time derivatives ν̈ can be inferred from this information.

There are a variety of different mechanisms that can influence the spin of a neutron star.
The vast majority of pulsars are observed to be spinning down. It is therefore convenient
to define the braking index n by

ν̇ ∝ νn =⇒ n=
νν̈

ν̇2
,

which can be calculated from the observational data. The most common mechanisms for
spin-down torques in the literature are the following:

• n= 1—relativistic particle wind (Michel 1969, Michel and Tucker 1969),
• n= 3—electromagnetic dipole radiation (Pacini 1968),
• n= 5—gravitational mass-quadrupole radiation (a mountain),
• n= 7—gravitational current-quadrupole radiation (e.g. an r-mode; Thorne 1980).

Thus, accurately tracking the rotation rate can give an indication of the dominant torques
on the star.

In practice, it can be challenging to get a clean signal. There are 12 systems for which
there are reliable estimates of the associated braking indices (Livingstone et al 2007,
Espinoza et al 2011, 2017, Livingstone and Kaspi 2011, Weltevrede et al 2011, Roy et al
2012, Ferdman et al 2015, Lyne et al 2015, Archibald et al 2016, Clark et al 2016). They
all cluster around n= 3 and below. However, there has been some evidence in support of
gravitational-wave emission.

11
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Sarin et al (2020) suggested that GRB 061 121may have a magnetar remnant powering
the emission with a braking index of n= 4.85+0.11

−0.15, which would imply the presence of a
mass quadrupole. There has also some discussion surrounding the inter-glitch evolution
of PSR J0537–6910, which displays behaviour consistent with n= 7 (Andersson et al
2018, Ho et al 2020).

It should be noted that the braking index is a measure of the dominant spin-down torque
on the star. It is entirely consistent that a star may be predominantly spinning down due to
the emission of electromagnetic radiation and still emit gravitational waves. Indeed, this
was shown by Palomba (2000) who derived non-trivial, upper limits on the ellipticity of
four pulsars with n< 3.

But what about other pulsars? The accreting pulsar J1023+0038 is a particularly interesting
source. It spins at 592 Hz and has been observed to transition between a radio state and an
accretion-powered x-ray state (Haskell and Patruno 2017). Timing the two phases shows that
the neutron star spins down 27% more rapidly during the accretion phase. This is surprising,
since accretion is expected to typically spin the star up. However, this behaviour is consistent
with the emergence of amountain during the x-ray phase, resulting in a greater spin-down. This
would require an ellipticity of ϵ≈ 5.7× 10−10 to explain the additional spin-down through
gravitational-wave emission. Using a different approach and exploring a range of parameters,
Bhattacharyya (2020) revisited this source and found similar ellipticities. Additionally, Chen
(2020) provide estimates for 13 systems in the range of 9× 10−10 ≲ ϵ≲ 2.34× 10−8.

3. Crustal strains

We have seen how a non-axisymmetric, spinning star will radiate gravitational waves. The
gravitational-wave strain that is measured by, e.g. an interferometer on Earth depends on the
distance to the source d, how fast it rotates Ω and how strongly it is deformed ϵ. We observe
pulsars all across the galaxy with frequencies as high as ν ∼ 700 Hz.

The obvious place to start in considering deformations of neutron stars is to assume that
there is strain in its solid crust. In this section, we will discuss the role of the crust in supporting
asymmetries. We will see that the crust sets the limit on how large the mountain can be, but
this comes with substantial uncertainties regarding how the mountain was formed in the first
place.

3.1. An estimate from energetics

Shortly after the discovery of glitches, a crust-quake model was proposed (Baym and Pines
1971, Pines and Shaham 1972). Ultimately, this model went out of favour when observations
required a larger energy budget than was physically feasible (Lyne and Graham-Smith 2012).
Although this framework was unable to describe the glitch phenomenon, it proves to be quite
useful for discussing likely asymmetries in neutron stars.

We return to the star of figure 1 with an ellipticity ϵ and assume it to be non-rotating for sim-
plicity. Suppose that its crust would be unstrained if the star had a shape given by an ellipticity
of ϵ0. The star then has energy

E= E0 +Aϵ2 +B(ϵ− ϵ0)
2
. (17)
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The first term E0 is the energy the star would have were it spherical and without a crust. The
second contribution Aϵ2 represents the increase in gravitational potential energy due to its non-
spherical shape ϵ. The final term B(ϵ− ϵ0)

2 is the energy stored up in the strain of the elastic
crust. The quantities A and B are related to the star’s binding energy and the shear modulus,
respectively, and we assume them to be constant.

The shape ϵ of the star will minimise the energy, such that

ϵ=
B

A+B
ϵ0. (18)

If the star had no crust at all, then B= 0 and the ellipticity would vanish. A non-rotating,
fluid star in the absence of other forces must be spherical. The opposite extreme is A/B= 0,
corresponding to a rigid body. Then, we simply have ϵ= ϵ0, where the elastic component holds
the shape fixed.

Detailed calculations have found that B/(A+B)≈ 2× 10−6 for quadrupole deformations
(Cutler et al 2003). Stresses in the crust will only slightly deform the body because the
Coulomb forces are much weaker than the strong gravity of the neutron star. Therefore, given
a relaxed shape ϵ0, the neutron star will settle into an ellipticity of ϵ≈ 2× 10−6ϵ0, held in
tension by the gravitational and elastic forces.

We can use this simple estimate to shed some light on how large the deformation can be.
This is determined by the crust. Above a critical strain σ̄max, known as the breaking strain, the
crust yields and the strain is released. Therefore, we set |ϵmax − ϵ0|= σ̄max to find

ϵmax ≈ 2× 10−7
( σ̄max

0.1

)
. (19)

There is some degree of uncertainty around how large the crustal breaking strain may be.
Molecular-dynamic simulations for high-pressure Coulomb crystals suggest that it is remark-
ably strong, σ̄max ≈ 0.1 (Horowitz and Kadau 2009). However, this is under the assumption
that the crust is a perfect crystal. Indeed, Baiko and Chugunov (2018) argue that neutron-star
crusts will have lower strains, σ̄max ≈ 0.04. For more amorphous materials, like many ter-
restrial solids, the breaking strain will lie in the range 10−4 ⩽ σ̄max ⩽ 10−2. For a neutron star
of characteristic radius R∼ 10 km, these deformations are of the size ∼ ϵmaxR∼ 0.1 cm. So
they are unlikely to rival the peaks we find on Earth and perhaps it is rather grandiose to call
them ‘mountains’.

3.2. Elastic deformations

If we want to be more precise—which we must in order to say anything quantitative about the
physics—we need to consider the stellar interior. As we will see, this is not a totally straight-
forward venture; it involves evolutionary aspects of neutron stars that are currently poorly
understood. In particular, we need to know why the star is deformed in the first place and what
the relaxed shape ϵ0 is likely to be for a typical neutron star. As we have discussed, this will
ultimately be a challenging task, but necessary to make progress.

We consider a neutron star with mass density ρ, pressure p and gravitational potential Φ.
The star is governed by the following system of equations (for a modern textbook, see Thorne
and Blandford 2017): mass conservation (the continuity equation)

∂tρ+∇i
(
ρvi

)
= 0, (20a)
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momentum conservation (the Euler equation with shear stresses)

ρ
dvi
dt

=−∇j (pgi j+ ti j)− ρ∇iΦ (20b)

and the field equation (Poisson’s equation)

∇2Φ = 4πGρ, (20c)

where vi is the velocity field, ti j is the shear-stress tensor of the crust, gi j is the flat-space,
Euclidean metric, ∇i is a covariant derivative and ∇2 =∇i∇i is the Laplacian. The crust
enters the system in equation (20b) through the star’s stress tensor (pgi j+ ti j). The presence
of a crust enables the star to support anisotropic stresses and to deviate from axisymmetry. In
practice, equation (20a) are difficult to solve, but there are some convenient simplifications we
can make.

First, we assume that the star does not deviate far from sphericity. That is, we can construct
a spherically symmetric, unstrained background from the usual equations of stellar structure

∇i p=−ρ∇iΦ, (21a)

∇2Φ = 4πGρ (21b)

and the asymmetric contributions are calculated as perturbations on top of this background.We
denote an Eulerian perturbation of a quantity by δ. Second, we will assume that the perturb-
ations are static. By considering the difference of equations (20a) and (21a) and linearising,
we obtain the following perturbation equations (Lynden-Bell and Ostriker 1967, Friedman and
Schutz 1978):

δρ=−∇i
(
ρξi

)
, (22a)

0=−∇j (δpgi j+ ti j)− δρ∇iΦ − ρ∇i δΦ, (22b)

∇2δΦ = 4πGδρ, (22c)

where ξi is the Lagrangian displacement vector that describes the position of fluid elements
relative to their position in the spherical configuration. Third and finally, we will assume
that the perturbations are entirely in the (l,m) = (2,2) spherical harmonic, such that, e.g.
δρ(r,θ,ϕ) = δρ22(r)Re[Y2

2(θ,ϕ)]. This is obviously quite idealised. A realistic evolutionary
history will likely result in the star being deformed in other harmonics, but the (l,m) = (2,2)
harmonic couples the most strongly with gravitational waves7. We note that other harmon-
ics will contribute to the strain of the crust, without increasing the quadrupole moment. This
simplification is suitable for considering upper limits on the size of the deformations.

There exists a simple relationship between the ellipticity ϵ and the (l,m) = (2,2) moment
(the quadrupole moment)

Q22 =

ˆ
δρ22 (r)r

4 dr (23)

7 As we saw in section 2.1, the leading-order contribution to the strain comes from the quadrupole moment tensor (see
equation (4)). In general, if there is also an (l,m) = (2,−2) perturbation, this will also contribute to the gravitational-
wave strain. However, since we are interested in real, physical perturbations of the star, this has identical angular
dependence to the (l,m) = (2,2) harmonic.

14



Class. Quantum Grav. 41 (2024) 043001 Topical Review

(see box 1). Given that the perturbations describe the deviation from sphericity, we have
[cf equation (12)]

ϵ=

√
8π
15

Q22

I3
, (24)

where I3 is sourced by the spherical background. It is common to assume the fiducial value
I3 = 1045 gcm−1. Under this assumption, ϵ is known as the fiducial ellipticity, which is often
reported in observational papers. The star’s true principal moment of inertial can be different
from this fiducial value by a factor of a few. There are no particular difficulties in calculating
I3; however, this convention exists and it is more than sufficient to make order-of-magnitude
estimates.

We need to be careful regarding the crustal strains that sit in equation (22b). The shear-stress
tensor is given by

ti j =−2µ̂σi j, (25)

where µ̂ is the shear modulus of the crust and

σi j =
1
2
(∇i ηj+∇jηi)−

1
3
∇kη

kgi j (26)

is the symmetric, trace-free strain that arises from a displacement field ηi. We expect a typical
neutron star to have a complicated evolutionary history such that its unstrained shape—the
shape the crust will be relaxed in—will not be spherical (see figure 3). (The star has an ellipt-
icity ϵ, whereas the relaxed configuration has an ellipticity ϵ0, connecting with the discussion
of section 3.1.) Since, in general, we cannot assume that the relaxed shape of the crust is that
of a perfect sphere, we assert ηi ̸= ξi.
A priori, we do not know what the relaxed configuration of the star is. Nevertheless, we

can make progress by considering how large a mountain can be before the neutron-star crust
breaks. We will see that there are subtleties in this question. The earliest study in this direction
was by Ushomirsky et al (2000), assuming the Cowling approximation—neglecting perturba-
tions of the gravitational potential δΦ = 0. Under this approximation, there is no support for
pressure perturbations in the fluid and only the crust contributes to the quadrupole moment.
The maximum mountain will occur when the crust is close to breaking. To define the elastic
limit, it is common to use the von Mises criterion: the solid will yield when the von Mises
strain σ̄, given by

σ̄2 =
1
2
σi jσ

i j, (27)

exceeds the breaking strain σ̄ ⩾ σ̄max. Ushomirsky et al (2000) imposed that the crust was
maximally strained at every point, subject to the criterion (27). With this shape, they obtained
a quadrupole moment of

Qmax
22 ≈ 1.2× 1039

( σ̄max

0.1

)(1.4M⊙

M

)1.2( R
10 km

)6.26

gcm−1. (28a)

In terms of the fiducial ellipticity (24),

ϵmax ≈ 1.6× 10−6
( σ̄max

0.1

)(1.4M⊙

M

)1.2( R
10 km

)6.26

. (28b)
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Figure 3. A schematic illustration of the evolutionary history of a deformed neutron star.
The spherical star S is simply a reference shape used to define the quadrupole moment
and construct perturbations with respect to. It is not a shape the star necessarily ever had.
Star Ã is the shape the crust is relaxed in. The abstract force maps star A (and star Ã)
to star S. The force represents the formation history of the history that leads to the non-
spherical, unstrained shape; it is not a physical, external force acting on the star. The final
configuration, star B, supports the asymmetric deformations self-consistently through
the elastic strains described by the displacement vector ηi. Reproduced fromGittins et al
(2021) by permission of Oxford University Press on behalf of the Royal Astronomical
Society. This figure is not covered by the open access license of this publication.

The maximum mountain of Ushomirsky et al (2000) differs from the simple energetics
argument (19) by a factor of a few. However, there are a number of simplifications embed-
ded in the result—in particular, the Cowling approximation and Newtonian gravity. These
two assumptions were lifted by Johnson-McDaniel and Owen (2013). For anM= 1.4M⊙ star
described by the SLy equation of state (Douchin and Haensel 2001), they obtained

Qmax
22 ≈ 2× 1039

( σ̄max

0.1

)
gcm−1, ϵmax ≈ 3× 10−6

( σ̄max

0.1

)
. (29)

It was noted by Haskell et al (2006) (and later discussed in more detail by Gittins et al 2021)
that, by demanding the crust to be at breaking strain throughout, the neutron star is forced into
a shape that violates physical boundary conditions. The (linearised) traction vector Ti, given
by (see equation (22b))

Ti =
(
δpgi j+ ti j

)
∇jr, (30)

must be continuous throughout the star. At an interface between a fluid region (the neutron-
star core or ocean) and the solid crust, there is expected to be a first-order phase transition
where the crust sharply obtains a non-zero shear modulus µ̂. (In the fluid, this is zero, since
it cannot support shear stresses.) In order for the traction (30) to be continuous, components
of the strain tensor σi j must go to zero at an interface. Since the crust is maximally strained at
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Figure 4. The maximum quadrupole deformation, given in terms of the quadrupole
moment Q22 and fiducial ellipticity ϵ, due to different perturbing forces as functions
of the stellar massM and crustal thickness∆Rc. The perturbing forces are simple math-
ematical models for illustrative purposes with no explicit connection to the neutron-star
physics. The results illustrate that the size of the mountain strongly depends on the neut-
ron star’s formation history. Reproduced from Gittins and Andersson (2021) by permis-
sion of Oxford University Press on behalf of the Royal Astronomical Society. This figure
is not covered by the open access license of this publication.

every point, the strain components have instead finite values. Thus, continuity of the traction
cannot be satisfied and the maximally strained approach is unphysical.

One could imagine allowing the star to be at breaking strain at every point except at the
interfaces, such that the traction is continuous. This ad hoc situation is difficult to implement
and the result will likely be very similar to that of Ushomirsky et al (2000). However, these
issues raise the important question of whether we expect the crust to get so close to breaking
strain throughout?

Haskell et al (2006) considered the situation with an (l,m) = (2,2) force at the surface that
supported the deformation. They calculated Newtonian stellar models, ensuring continuity of
the traction, and found that—under such a surface force—the crust yielded at specific points.
The corresponding results were (surprisingly) an order of magnitude more optimistic than that
of equation (28a). But, in their calculation, they implicitly assumed the relaxed shape to be
spherical, where ηi = ξi in the strain (26).

In order to capture the deformed, relaxed configuration, it turns out to be convenient to
introduce an abstract force density into the problem (Gittins et al 2021). The situation is illus-
trated schematically in figure 3. The force density contains information about the non-spherical
shape the crust will be relaxed in and is therefore related to the star’s evolutionary history. But,
it plays no role in supporting the mountain; the deformed shape of the star is self-consistently
supported by crustal strains and a solution to equation (22a).

Gittins et al (2021) suggested a scheme for calculating the structure of the strained star
with knowledge of the unstrained shape through the abstract force. The inclusion of the abstract
force is important to ensure the boundary conditions are satisfied, such that the shape of the star
is a physically acceptable solution. Gittins and Andersson (2021) used this scheme to calculate
the mountains of fully relativistic neutron-star models subject to some mathematically simple
forms of the abstract force. The results, displayed in figure 4, show the dependence of the
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mountain on the history of the neutron star. This has been further supported by the recent
(Newtonian) calculations of Morales and Horowitz (2022).

Moving forward, we will inevitably require detailed, evolutionary simulations of neutron
stars in order to understand how such deformations can arise. Even for a simple, isolated neut-
ron star, there is a lot of physics to keep track of. To simulate such a system, one would need to
model the crust, rapid rotation, electromagnetic dipole radiation and glitches. However, aspects
of the physics are highly uncertain. Indeed, it is generally assumed that, once the elastic crust
reaches the yield point, all the strain is released. It is not clear how appropriate this assump-
tion is. Additionally, both the magnetic-field configuration of a typical neutron star and reliable
glitch models are open questions. Along this vein, Kerin and Melatos (2022) developed a phe-
nomenological model where asymmetries are developed as the star spins down due to dipole
radiation and the crust repeatedly fractures. They find that the star needs to be born rapidly
spinning with ≳750 Hz for this process of crustal fracturing to occur and obtain very modest
final ellipticities in the range of 5× 10−14 ≲ ϵ≲ 10−12.

It will also be interesting to consider the effects of plasticity. Calculations generally assume
the crust to be an elastic solid, possessing the linear relationship of equation (25) between
the strain and the induced stresses. Terrestrial materials tend to exhibit some form of plastic
behaviour and neutron-star crusts are likely to be similar (Smoluchowski and Welch 1970,
Jones 2003, Chugunov and Horowitz 2010). If this is the case, then the crust will retain some
of the strain beyond the yield point and the star may be able to develop larger quadrupole
moments.

Before we conclude our discussion on crustal deformations, it is worth noting that the
maximum ellipticities presented so far assume the neutron stars to be composed of ordinary
baryonic matter. Given the extreme pressures in neutron-star cores, it is conceivable that more
exotic phases of matter exist (for a review, see Baym et al 2018). Johnson-McDaniel and Owen
(2013) considered additional phases and obtained maximum quadrupoles of ∼ 1044 gcm−1

for 1.4M⊙ entirely crystalline colour-superconducting quark stars and∼1041 gcm−1 for 2M⊙
hadron-quark hybrid stars with solid cores. These more exotic stars can sustain significantly
larger quadrupole deformations before their crust yields.

4. The magnetic field

So far, we have paid little attention to what physical processes may produce the mountain. A
natural place to start is to consider the role of the magnetic field, which is particularly strong
in neutron stars. It was first shown by Chandrasekhar and Fermi (1953) that magnetic fields on
stars source quadrupolar deformations. Given that we observe neutron stars that host magnetic
fields misaligned with their spin axis, these are natural sources of gravitational radiation. In
addition, the remarkable observations of the NICER mission indicate that neutron stars may
have rich, complex magnetic-field structures beyond the standard dipole assumptions (Bilous
et al 2019, Miller et al 2019, 2021b, Riley et al 2019, 2021). Here, we discuss the simple
case of an isolated neutron star with a magnetic field that supports a mountain. We call these
magnetic mountains. We will delay discussing the role of the magnetic field in accretion until
section 5.2.

Another simple energetics argument leads to Haskell et al (2008)

ϵ∼ B2R3

GM2/R
≈ 10−12

(
R

10 km

)4(1.4M⊙

M

)2( B
1012G

)2

, (31)
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where B represents the magnetic-field strength. Here, we have compared the energy stored in
the magnetic field to the star’s gravitational potential energy. Similar to as we saw for the crust
in section 3.1, the neutron star’s self-gravity is very strong compared to the magnetic field.

However, this estimate of the field strength is based on the external magnetic field that
is inferred from pulsar timing. The interior field, which will be more relevant for the shape
of the star, is highly uncertain and is (quite predictably) a complicated problem. The main
theoretical challenge that we face is our present inability to construct stable models. Both
analytical (Prendergast 1956, Tayler 1973) and numerical studies (Braithwaite 2006, 2007)
indicate that purely poloidal and purely toroidal magnetic fields are unstable on dynamical
timescales. Whereas mixed fields, where the toroidal field threads the closed-field-line region
of the poloidal component (a twisted-torus configuration), may be stable (Braithwaite and
Nordlund 2006, Akgün and Wasserman 2008, Ciolfi et al 2009), but this could be equation-
of-state dependent (Lander and Jones 2012, Mitchell et al 2015). Of course, much of our
present understanding involves idealised assumptions, like ideal magnetohydrodynamics and
barotropic equations of state. It could also be that a real neutron star is not in always in
equilibrium—the magnetic field may be gradually evolving.

Despite this, there have been calculations of the kind of deformations that a magnetic field
on a neutron star may sustain (Bonazzola and Gourgoulhon 1996, Cutler 2002, Haskell 2008,
Haskell et al 2008, Ciolfi et al 2010, Glampedakis et al 2012, Kalita andMukhopadhyay 2019,
Bera et al 2020, Soldateschi et al 2021). These more detailed calculations approximately agree
with the order-of-magnitude estimate of equation (31), which is not particularly optimistic
from a gravitational-wave standpoint. Assuming the star has a superconducting phase and a
purely toroidal field leads to the ellipticity scaling as (Cutler 2002, Glampedakis et al 2012)

ϵ∼ 10−9

(
B

1012G

)(
Hc

1015G

)
, (32)

where Hc is the critical field strength characterising superconductivity.
It should be further noted that, in principle, a mountain sustained by themagnetic field could

be larger than what the crust allows. Indeed, a sufficiently large deformation would break the
crust, but the magnetic field would hold the star in shape. A strong magnetic field, like that
of a magnetar, will enable the star to develop a large ellipticity. But there is an important
caveat to this. Suppose the magnetic field was B∼ 1015G. This would lead to an ellipticity
ϵ∼ 10−6, similar to what we saw for the maximum mountains sustained by crustal strains in
section 3. The downside is that a strong magnetic field would rapidly spin down the star due to
electromagnetic radiation and reduce the gravitational-wave strain. It is conceivable that some
fraction of neutron stars are born magnetars (Kouveliotou et al 1998, Woods and Thompson
2006) and, if their initial rotation rates are high enough, then newly born magnetars could be
detectable sources of gravitational waves (Palomba 2001, Dall’Osso et al 2009). Clearly, this
involves a number of assumptions and we do not know at present how likely this may be. The
magnetars we observe and classify are consistently slow rotators.

This is not all the whole story for the magnetic field. It plays an important role in accreting
neutron stars. This is the situation we go on to consider now.

5. Accretion

In our discussion of electromagnetic observations (section 2.3), we alluded to the fact that
accretion is expected to have a natural involvement in giving rise to non-axisymmetric deform-
ations. In this context, the star is no longer isolated; it is joined by a companion star fromwhich
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it is accreting gas. The gas will transfer from the gravitational influence of the companion to
that of the neutron star, carrying some angular momentum, and form an accretion disc around
it. The ionised gas in the disc will be channelled onto the surface following the magnetic-
field lines. This process is inherently asymmetric and where the gas will land on the surface
will depend on the configuration of the magnetic field. In the context of accretion, it is com-
mon to consider the balance between accretion torques, which generally spin the star up, and
gravitational-wave torques, which will always spin the star down. This is discussed in brief in
Box 3.

Box 3. Torque balance

One can obtain an estimate for the quadrupole deformation of a neutron star in a low-
mass x-ray binary by assuming that the angular momentum transferred via accretion from
a companion is balanced by the radiation of gravitational waves (Wagoner 1984, Bildsten
1998). One can approximate the spin-up torque due to accretion as (Ghosh and Lamb
1978)

J̇≈ Ṁ
√
GMR,

where Ṁ is the rate of mass transfer to the neutron star. The energy radiated away as
gravitational waves is given by equation (15), which will spin down the star. Balancing
the two torques requires a quadrupolar deformation of

ϵ≈ 1.3× 10−8
(

Ṁ
10−9M⊙ yr−1

)1/2(
500 Hz

ν

)5/2( M
1.4M⊙

)1/4( R
10 km

)1/4(1045 gcm−1

I3

)
,

or equivalently Q22 ≈ 9.8× 1036 gcm−1. Under this assumption, the most rapidly accret-
ing systems will build the largest deformations. This is somewhat intuitive.

Now in reality, this is overly simplified. Accretion torques are more complicated and
we have no particular reason to assume that the torques will balance. What this example
does show is that relatively modest quadrupoles are required to influence the spin evolu-
tion of fast-spinning, accreting systems. However, this is particularly sensitive to the spin
rate of the star. If the star is not fast spinning, then higher deformations are needed in order
to produce significant gravitational-wave torques. In practice, the torque-balance estimate
provides a useful number to benchmark quadrupole-forming mechanisms against.

5.1. Thermal reactions

The accretion scenario has received considerable attention when it comes to sourcing long-
lived, quadrupole deformations on neutron stars (Watts et al 2008, Haskell et al 2015). Bildsten
(1998) proposed that the accreted matter heats the crust giving rise to temperature-sensitive
nuclear reactions involving electron captures. Hotter regions of the crust would have the reac-
tions at lower pressures, so the density variations would occur at higher altitudes in these
regions. This naturally gives rise to a quadrupole moment, which is commonly referred to as a
thermal mountain. There have since been developments upon this work, mostly in an effort to
provide more detail to the modelling (Ushomirsky et al 2000, Osborne and Jones 2020, Singh
et al 2020, Hutchins and Jones 2023). Indeed, the problem is quite involved and requires an
understanding of the composition of the neutron star.
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A simple estimate for the quadrupole formed from nuclear reactions in the outer crust is
given by Ushomirsky et al (2000)

Q22 ≈ 1.3× 1035
(

R
10 km

)4(
δTq

105 K

)(
Eth

30 MeV

)3

gcm−1, (33)

where δTq is the quadrupole component of the temperature variation and Eth is the reaction
threshold energy. Higher threshold energies correspond to reactions deeper in the crust. The
quadrupolar heating δTq will be a fraction of the total heating δT due to the accreted mass∆M
(Ushomirsky and Rutledge 2001),

δT∼ 2× 105
(
kB
C

)(
1030dyncm−2

pd

)(
Q

1 MeV

)(
∆M

10−9M⊙

)
K, (34)

where C is the heat capacity per baryon, pd is the pressure in the star at which the energy is
deposited andQ is the (locally) released heat by the reactions per accreted baryon. The fraction
of total heating that is quadrupolar is poorly understood, but estimated to be δTq/δT≲ 0.1
(Ushomirsky et al 2000).

Particularly relevant for sustaining the mountain is how long the system is in outburst.
Low-mass x-ray binaries are well known to exhibit periods of outburst, where the measured
x-ray luminosity is high (implying rapid accretion rates), and periods of quiescence, where
the luminosity is orders of magnitude lower. During low-accretion phases, the mountains are
expected to decay on the crust’s thermal timescale (Brown et al 1998)

τth ≈ 0.2

(
1.4M⊙

M

)2( R
10 km

)4( pd
1030dyncm−2

)3/4

yr. (35)

If quiescence lasts longer than τth, then the deformation will be washed away by gravity and a
new mountain will be constructed during the next outburst. But a shorter recurrence time may,
on the other hand, lead to an accumulation of material such that the mountain gets larger and
larger. Although it is conceivable that the change in composition due to reactions in the initial
outburst may be frozen and the mountain will get gradually larger.

5.2. Magnetic confinement

Another way an accreting neutron star is expected to develop an asymmetry is through the
magnetic field confining the accreted matter (Brown and Bildsten 1998, Payne et al 2003,
Melatos and Payne 2005, Payne and Melatos 2007, Vigelius and Melatos 2008, 2009, Wette
et al 2010, Priymak et al 2011, Fujisawa et al 2022). Accretion will interact with the magnetic
field and compress it, such that there will be locally strong fields on the star’s surface. This can
lead to larger quadrupoles than those sourced by the background magnetic-field configuration,
which we discussed previously in section 4. We refer to these perturbations as magnetically
confined mountains8.

One of the differences with respect to thermal mountains is that the timescale on which
the deformation relaxes is given by the Ohmic dissipation τO ⩾ 108 yr (Vigelius and Melatos

8 At this point, the nomenclature can get somewhat clumsy. It is not uncommon in the literature to refer to these
deformations as magnetic mountains, but in this review we will reserve this term for mountains solely sourced by the
magnetic field.
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2009). This is sufficiently long that a mountain will form over multiple outburst cycles. A
simple approximation for themagnetic-field quenching leads to Shibazaki et al (1989), Haskell
et al (2015)

Q22 ≈ 1036A

(
∆M

10−9M⊙

)(
1+

∆M
Mc

)−1

gcm−1, (36)

where A≈ 1 is a correction factor, which depends on the equation of state and the geometry
of the accretion (Melatos and Payne 2005), and Mc is the critical accreted mass at which the
mechanism supporting the mountain saturates, which also depends on the equation of state
(Priymak et al 2011). Estimates for Mc have been obtained by Payne and Melatos (2004),
Melatos and Payne (2005)and Priymak et al (2011). There are numerical challenges to calcu-
lating for∆M>Mc. The size of the mountain depends strongly on the magnetic-field strength
at the beginning of the accretion episode.

Early calculations for the mountains supported by the compressed magnetic field, such
as Payne and Melatos (2004) and Melatos and Payne (2005), assumed soft, isothermal
equations of state for neutron-star matter. Under these assumptions, Melatos and Payne (2005)
obtained promising estimates for themagnitude of the deformations, up to ϵ∼ 10−4. Exploring
the matter effects, Priymak et al (2011) found that the perturbations dropped to ϵ≈ 9×
10−7−10−8, depending on the precise equation of state. These calculations have recently been
brought into the regime of general relativity by Rossetto et al (2023), where they found the
usual relativistic suppression of the quadrupole.

Related to this mechanism is the possibility of fall-back accretion following a supernova
or merger (Melatos and Priymak 2014, Dall’Osso et al 2015, Sur and Haskell 2021). In these
scenarios, the accretion rates may be extremely high, so there is the added complication of the
neutron star collapsing to form a black hole at some point. This situation, although interesting,
will not produce sustained gravitational-wave emission.

6. Precession

We have considered the most plausible mechanisms that will produce mountains on neutron
stars. Before we go on to discuss the prospects for gravitational-wave detection, we will return
to the simple model of a quadrupolar, spinning star from section 2.2.

Before, we assumed that the rotation of the star was fixed about an axis with respect to an
inertial observer away from the star (as shown in figure 1). However, the most general form
of rotation is torque-free precession. The configuration of a freely precessing star is shown in
figure 5. We will discuss the problem in detail below, but the central idea is the following: a
body rotates about an axis, which in turn rotates about another axis. As we will see, contrary
to the situation we considered prior, in free precession there are two components of the angu-
lar velocity (rather than one) and the associated gravitational waves radiate at an additional
frequency.

The involvement of precession in gravitational radiation was first discussed by
Zimmermann (1978), Zimmermann and Szedenits (1979) and Zimmermann (1980), building
upon earlier work on the gravitational-wave emission from rigid, rotating bodies (Chau 1970,
Chau and Henriksen 1970, Bertotti and Anile 1973). Since then, there has been development
on this topic, particularly in the direction of modelling neutron stars more accurately to under-
stand the associated gravitational-wave signal (Cutler and Jones 2000, Jones and Andersson
2001, 2002, Van Den Broeck 2005, Gao et al 2020). This work has been partly motivated by
some observational evidence for precession, most notably for PSR B1828–11, which spins at a
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Figure 5. An illustration of a deformed star with angular velocity Ω precessing about
its angular momentum J. The star’s body frame (x̄, ȳ, z̄) is shown along with two angles:
θw and θ̂ are the angles between J andΩ and J and the z̄-axis, respectively. Both angles
exist in the same plane throughout precession. This particular star is prolate in shape
and symmetric with respect to the z̄-axis.

rate of 2.5 Hz with arrival-time residuals of≈ 500d (Stairs et al 2000, Link and Epstein 2001,
Akgün et al 2006), as well as some other sources, including PSR B1642–03 with periodic vari-
ations across ∼1000d (Shabanova et al 2001), potential magnetars in GRB 080602 and GRB
090510 (Suvorov and Kokkotas 2020) and the accreting neutron star in 4U 1820–30 with a
precession period of ∼ 1000 s (Chen and Liu 2023). Although based on the present evidence,
it would seem that the majority of pulsars do not exhibit long-period precession.

During precession, the star has angular velocity Ωi and moves in a cone given by angle θw
about the its angular momentum Ji. This angle is the wobble angle. If we assume that the star
is axisymmetric with respect to its z̄-axis, which we ascribe the unit vector mi, in a Cartesian
coordinate system, the moment of inertia tensor may be decomposed as Jones and Andersson
(2001)

Ii j = I0 δi j+∆I

(
mimj−

1
3
δi j

)
. (37)

Connecting with our discussion in section 2.2, this star has principal moments I1 = I2 = I0 −
∆I/3 and I3 = I0 + 2∆I/3, where ∆I= I3 − I1. A prolate star has ∆I< 0 and an oblate one
has ∆I> 0. The angular momentum is therefore

Ji = Ii jΩ
j = I1Ωi +∆ImimjΩ

j. (38)

This shows that the three vectors (Ji,Ωi,mi) exist in the same plane. The angular momentum is
conserved, so we can always adopt a coordinate system in which the other two vectors rotate
about Ji.

As shown in figure 5, there is another angle θ̂ between Ωi and Ji. Assuming the star is
deformed away from sphericity only slightly such that |∆I| ≪ I0,

θ̂ ≈ ∆I
I1

sinθw cosθw. (39)
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It is convenient to define the unit vector ji in the direction of Ji. Therefore, we can construct
the angular velocity out of the two unit vectors,

Ωi = ϕ̇ji + ψ̇mi. (40)

The two degrees of freedom ϕ̇ and ψ̇ describe the star’s precession about Ji. The symmetry
axis mi rotates about Ji along with angular frequency ϕ̇. This is typical of rotation. Precession
introduces the additional angular frequency ψ̇, which characterises the rotation about mi. The
three angles (ϕ,θw,ψ) are the familiar Euler angles, which describe the orientation of a body
in a coordinate system (Landau and Lifshitz 1976).

Since we assume that the star undergoes torque-free precession (which will not be so when
one considers the back-reaction due to gravitational and electromagnetic radiation), the angular
momentum is constant throughout the motion, Ji = Jji, and so equation (38) provides the two
constraints

J= I1ϕ̇, (41a)

ψ̇ =−∆I
I3
ϕ̇cosθw. (41b)

Equation (41a) is the usual relationship between the angular momentum of the star and its
rotation rate. If I1 = I3 and we have a rotating, rigid, spherical body, then ψ̇ = 0 and there is
no precession. Note that the precession depends on the wobble angle θw.

The precession impacts the gravitational radiation. Transforming to the inertial frame, we
find the energy radiated from the star is

dE
dt

=− 2G
5c5

∆I2ϕ̇6 sin2 θw
(
cos2 θw + 16sin2 θw

)
. (42)

Here, we see that, in the case of θw = 0, there will be no emission, since the star will be
axisymmetric. Whereas, when θw = π/2, we obtain the result (15) from earlier. Calculating
the strain is more involved, since it involves the observer’s inclination with respect to the
star. One finds that a quadrupolar, precessing star will radiate gravitational waves at twice
the rotation rate 2ϕ̇ and at the rotation rate ϕ̇ of the star (Zimmermann and Szedenits 1979).
In fact, for small wobble angles, the dominant contribution is at ϕ̇, in stark contrast with the
non-precessing case.

It should, of course, be noted that a realistic neutron star with a magnetic field will radiate
electromagnetically, which will influence the evolution of ϕ̇ and ψ̇. Additionally, the back-
reaction of the gravitational waves will affect the wobble angle θw. Real neutron stars will
exhibit dissipation through, e.g. bulk and shear viscosity that are related to the nuclear reac-
tions in the interior. These dissipative processes will damp the precessional motion9. In order
for precession to have a meaningful involvement in gravitational-wave emission before it is
damped, the star’s evolutionary history must be such that its wobble angle is significant. This
could involve a number of processes, such as accretion and electromagnetic torques.

Middleditch et al (2000a, 2000b) claimed to find evidence for an optical pulsar with spin
frequency 467.5 Hz in SNR 1987A. The period of precession 2π/ψ̇ was measured to vary

9 The damping mechanisms that exist in neutron stars are also important for oscillations. An oscillation mode of the
star may be excited through (say) a tidal interaction with a compact companion. As the mode rings, it will be damped
by viscosity and gravitational waves. This makes the mode quasi-normal as the energy dissipates. Such damping is
particularly relevant for the famous Chandrasekhar-Friedman-Schutz instability (see, e.g. Andersson 2003).
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between 935 s and 1430 s. Further, they argued that the observed spin-down was consist-
ent with what one would expect if the precessing star was emitting gravitational waves. This
required the wobble angle remaining approximately constant. However, the pulsations van-
ished after 1996 and were never independently confirmed.

7. Detection prospects

Before we conclude, we now consider the opportunities and prospects for gravitational-wave
detections of neutron-star mountains. From equation (11), we know that the strain amplitude
is exceedingly weak. As we have already mentioned, for a steady signal, we can do better by
coherently observing the source for long intervals, building up the effective amplitude. While
this is true, completing such an integration is far from trivial and there are several complicating
factors.

Suppose we have a rotating neutron star hosting a long-lived, quadrupolar deformation
emitting gravitational radiation at a frequency f. In the absence of precession, the frequency is
related to the star’s spin by f =Ω/π = 2ν. Furthermore, we imagine that in order to measure
the waves, we require an observational duration of Tobs = 1yr. This corresponds to a frequency
resolution of 1/Tobs ∼ 30 nHz (Riles 2023). However, since the star is radiating gravitational
waves, it will gradually spin down according to equation (16) and the gravitational-wave fre-
quency will adjust in tandem,

ḟ≈−1.7× 10−9
( ϵ

10−6

)2
(

I3
1045 gcm−1

)(
f

1000 Hz

)5

Hzs−1. (43)

In order for the signal to sit in the frequency bin during the year-long observation, the signal’s
time derivative ḟ must satisfy 1/Tobs ≳ Tobs ḟ. This implies that ḟ≲ 10−15 Hz s−1. Not only are
the Doppler modulations due to the Earth’s motion much larger than this constraint, but the
frequency derivative is also typically much larger. Indeed, equation (43) shows the signal’s
variation for a source solely influenced by gravitational waves. Of course, these two issues
are not particularly severe if the star’s spin evolution is well-known and precisely modelled
by incorporating gravitational and electromagnetic torques. Then, one can make corrections
to keep the signal in the appropriate frequency bin.

Where the problem does get more complicated is when characteristics of the source are not
known, or poorly constrained.Whenever there are large uncertainties with the source (which is
common), substantial computational costs are incurred as the gravitational-wave search much
look over a wide parameter space (Riles 2023, Wette 2023). Indeed, some of the most prom-
ising sources are accreting pulsars (as discussed in section 5). However, we still do not fully
understand the accretion torques in these systems and the matter is further complicated by
variations in the outburst/quiescence cycles (Patruno and Watts 2021).

Scorpius X-1 is the most luminous low-mass x-ray binary in the Earth’s sky. Under the
assumption of torque balance between accretion and gravitational radiation (see box 3), this
makes Scorpius X-1 a natural candidate for gravitational-wave searches (Watts et al 2008).
The downside is that much about this binary is unknown—in particular, the neutron-star spin
frequency is not well constrained (Galaudage et al 2022). Nevertheless, there have been a
number of searches targeting Scorpius X-1, starting with initial LIGO’s second observing run
(Abbott et al 2007) and most recently with advanced LIGO’s third run (Abbott et al 2022b).
To date, no evidence for gravitational waves has been measured, but this has come with upper
limits on the gravitational-wave strain amplitude h0. The most recent constraints from Abbott
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Figure 6. Most recent upper limits on the gravitational-wave strain amplitude h0 with
95% confidence from directed searches on Scorpius X-1 as a function of gravitational-
wave frequency. The results shown are marginalised over spin inclination. The blue
dashed line indicates the limit obtained from torque balance. The upper limits from two
previous cross-correlation searches are shown for comparison—Abbott et al (2017d),
‘CrossCorr O1’ and Zhang et al (2021), ‘CrossCorr O2’. The most stringent limits
lie between 100 Hz and 200 Hz with a sensitivity of h0 ≈ 10−25. Reproduced from
Abbott et al (2022b). The Author(s) Published by the American Astronomical Society.
CC BY 4.0.

et al (2022b) are displayed in figure 6. Current techniques are now able to probe the torque-
balance benchmark at certain frequencies. Searches on Scorpius X-1 would undeniably be
aided by observational constraints on its rotation.

For our purposes, Scorpius X-1 serves as an illustrative example, since no continuous grav-
itational waves have been detected yet from any source. The searches that have been conducted
have provided only upper limits on the gravitational waves, but they have also sharpened the
sensitivities of methods, which are continually improving (for recent reviews, see Riles 2023,
Wette 2023).Whether the first detection is imminent or far off remains amystery. This is in part
due to the uncertainties we have discussed in this review, including how large the mountains
may be Haskell et al (2015).

It should be noted that we are now entering a regime where gravitational-wave searches
are probing astrophysically interesting limits for pulsars. The recent targeted searches in the
LIGO-Virgo third observing run have provided the most stringent upper limit to date (Abbott
et al 2022c). This is for PSR J0711–6830, which has been constrained to have an ellipticity of
ϵ≲ 1.7× 10−8. This result, along with ϵ≲ 5.7× 10−8 for PSR J2124–3358, falls below some
of the maximum-quadrupole estimates that we discussed in section 3.

Probing the dense-nuclear structure of neutron stars is a key science objective for the third
generation of gravitational-wave observatories, The Einstein Telescope and Cosmic Explorer,
which promise significantly enhanced sensitivities (Sathyaprakash et al 2012, Evans et al
2021). These instruments are targeting a factor of ten improvement over the advanced detect-
ors in a wide frequency range of 1 Hz–10 KHz, which will be useful for searches of rotating
neutron stars (Punturo et al 2010, Reitze et al 2019).

There has been some recent activity focused on population-synthesis studies of the detect-
ability of continuous gravitational-wave emission (Cieślar et al 2021, Reed et al 2021, Pagliaro
et al 2023), developing upon older work (Palomba 2005, Knispel and Allen 2008). These stud-
ies are generally in agreement that we may see gravitational waves from galactic neutron stars
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with current detectors, but the prospects are far more favourable for third-generation detectors.
(See also Soldateschi and Bucciantini 2021, for a related study on magnetic deformations.)

In the exciting event that we obtain a confident detection of a continuous gravitational wave,
it is natural to askwhat couldwe learn from the signal (Jones 2022)? From the outset, we should
acknowledge that there are other candidates for producing long-lasting gravitational radiation
in addition to spinning neutron stars. Many of these are of a speculative nature and include
boson clouds around black holes (D’Antonio et al 2018), primordial black holes (Miller et al
2021a) and the direct interaction of dark photon dark matter with the interferometers (Abbott
et al 2022a). For now, we will assume the source to be a neutron star.

From the theory perspective, there are two basic mechanisms for producing continuous
gravitational waves. These are either from a long-lived mountain (the focus of this review) or
an excited oscillation mode. Provided that the rotational frequency of the star ν is known, these
two mechanisms are quite easily distinguishable from one another. As we have discussed, a
mountain would give rise to gravitational radiation with frequency f = 2ν. If the neutron star
is precessing, deformed by the magnetic field or has a pinned superfluid component, there may
also be a signal at f = ν. Whereas an oscillation mode would emit radiation at the frequency of
the mode. The most promising oscillation mode from a gravitational-wave perspective is the
r-mode. For a simple Newtonian model, the (l,m) = (2,2) r-mode has a frequency of 4ν/3
(Papaloizou and Pringle 1978b).10

The situation would become significantly more difficult if there were no electromagnetic
counterpart and thus no measurement of the spin. This is, in some sense, the worst-case scen-
ario for continuous-wave detection. Suppose the signal was sufficient to determine up to the
second time derivative of f (which would require the star to be spinning down relatively rap-
idly). Then, since we expect f ∝ ν, we can determine the braking index n from f and its deriv-
atives (see Box 2). This would be able to differentiate between a neutron star solely spinning
down due to a mountain n= 5 and one solely spinning down due to an excited r-mode n= 7.
However, as we have discussed, the neutron stars we observe are rarely so simple.

The central issue in the absence of a measured spin frequency is the following: there exists
a degeneracy in the gravitational-wave strain (11) between the three quantities (d, ϵ, I3).11

Sieniawska and Jones (2022) have discussed in detail how this degeneracy may be broken.
Under the assumption that the spin-down is dominated by gravitational radiation, the signal
will evolve according to equation (43). Based on realistic equations of state, the moment of
inertia I3 generally varies by only a factor of 2. This allows an estimate of the ellipticity ϵ to
within a factor of

√
2 and the distance d can be similarly constrained. Sieniawska et al (2023)

suggest that gravitational-wave parallax measurements of the source would be useful in further
breaking the degeneracy. However, given the ignorance of the star’s rotation, one cannot be
sure that the gravitational wave is from a mountain; it may just as well be from an oscillation.

It should also be noted that with or without a spin measurement, it will be difficult to distin-
guish between mountain formation channels. A strong assumption that most analyses make is
to assume that the mountain is constant throughout the observation. This should be reasonable
for an isolated, well-behaved neutron star, where the deformation is sustained by crustal strains

10 The calculation of an r-mode becomes more complicated in general relativity. At present, the equations seem to
imply a continuous spectrum of frequencies for the relativistic r-mode (Kojima 1998, Lockitch et al 2000). It seems
unlikely that this result is physical and may be an artefact of our ignorance of the problem. If this is indeed the case,
the expectation is that general relativity will provide some correction to the Newtonian mode frequency of 4ν/3.
11 This is quite contrary to the situation for gravitationally radiating binaries, where the signal alone is sufficient to
calculate the distance to the source (Schutz 1986, Abbott et al 2017a).

27



Class. Quantum Grav. 41 (2024) 043001 Topical Review

(section 3) or the magnetic field (section 4), but this will not be the case for more complicated,
dynamical sources, like an accreting neutron star (section 5). One interesting possibility for
a gravitational-wave detection of an accreting pulsar is that the in-principle measurement of
cyclotron resonance scattering features in the x-ray spectrummay distinguish between thermal
and magnetically confined mountains (Priymak et al 2014, Haskell et al 2015).

8. Summary

The future looks bright when it comes to gravitational-wave astronomy. Current-generation,
ground-based detectors have seen nearly 100 compact-binary coalescences since 2015 and
several of these sources include neutron stars. Aside from binaries, we know that non-
axisymmetrically deformed, spinning neutron stars will radiate gravitationally, but the expec-
ted amplitude of the radiation is very weak. There is a substantial effort ongoing in developing
and improving the necessary methods to extract such weak signals from the strain data, along
with plans for the construction of third-generation detectors well in development. Therefore,
there is good reason to remain optimistic about the possibility of detecting continuous gravit-
ational waves from rotating neutron stars.

In this review, we discussed the status of the theory on neutron-star mountains. We motiv-
ated why mountains are of interest from a gravitational-wave perspective and briefly con-
sidered the electromagnetic evidence for neutron stars spinning down due to gravitational
radiation. The evidence is far from conclusive, but it does illustrate a complementary approach
to searching for gravitational waves indirectly—akin to the gravitational waves inferred from
the radio observations of the famous Hulse–Taylor binary (Hulse and Taylor 1975, Wagoner
1975). We reviewed the mechanisms that would give rise to such deformations on a neutron
star. These include (i) elastic strains in the crust that were produced during the star’s evolution,
(ii) the magnetic field distorting the stellar shape and (iii) accretion producing either a thermal
or magnetically confined mountain. All of these mechanisms would produce a gravitational-
wave signal at twice the star’s spin frequency. Later, we discussed how precession enters the
picture and modifies the associated gravitational radiation. There is some observational evid-
ence for precession in neutron stars and a gravitational-wave detection would be particularly
interesting, since it would come with an additional frequency component, as compared to the
non-precessing case. Finally, we considered the current prospects for detection, in particular,
discussing the difficulties that arise in the absence of electromagnetic information about the
source and the degeneracy problem. Indeed, the degeneracy that exists in a gravitational-wave
signal is quite severe and presents a serious hinderance for inferring aspects about the involved
neutron star. Furthermore, without additional information on the neutron star’s spin, it will be
difficult to distinguish whether the signal comes from a mountain or an oscillation mode, or
from an entirely different gravitational-wave source altogether.

From the modelling perspective, there is no shortage of problems to work on. However, it
should be emphasised that much of our present understanding comes from calculations of equi-
librium neutron stars and we lack sophisticated, evolutionary simulations. Evolutionary com-
putations will be necessary in order to make progress understanding what deformed shapes
typical neutron stars take and their ellipticities. Of course, such simulations will inevitably
require inputting aspects of physics that are still highly uncertain, such as accretion and mag-
netic fields. Although speculative, it seems entirely plausible that exploring these issues from
the theory may lead to opportunities to break the existing degeneracy problem.

Since the focus of this review has been on long-lived mountains that will produce continu-
ous gravitational waves, we have not discussed in detail transient sources. We mentioned that

28



Class. Quantum Grav. 41 (2024) 043001 Topical Review

fall-back accretion following a supernova or merger may give rise to gravitational radiation.
In addition to this, there is the possibility that glitches in neutron stars could be associated
with the development of a transient asymmetry (Keitel et al 2019, Yim and Jones 2020, 2023,
Moragues et al 2023).

This review highlights that there is a wealth of neutron-star physics involved in sourcing
mountains. While there are many questions that remain unanswered from the theory front,
it is likely that observations will play an important role in providing the answers. With the
variety of exotic physics that neutron stars harbour, the prospect of probing their interiors with
gravitational waves is quite tantalising indeed.
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