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In this paper we present an approach to compute analytical post-Minkowskian corrections to
unbound two-body scattering in the self-force formalism. Our method relies on a further low-velocity
(post-Newtonian) expansion of the motion. We present a general strategy valid for gravitational and
non-gravitational self-force, and we explicitly demonstrate our approach for a scalar charge scattering
off a Schwarzschild black hole. We compare our results with recent calculations in [Barack et al.,
PRD 108, 024025 (2023)], showing complete agreement where appropriate and fixing undetermined
scale factors in their calculation. Our results also extend their results by including in our dissipative
sector the contributions from the flux into the black hole horizon.

I. INTRODUCTION

The detection of gravitational waves by the LIGO
and Virgo [1, 2] collaborations has given to the scien-
tific community a new way to investigate physics in the
most extreme regimes, for instance around black holes.
In the coming years, upgrades to ground-based gravi-
tational wave detectors as well as the construction of
new instruments, such as LISA and the Einstein Tele-
scope [3, 4], will require more refined theoretical models
of gravitational waveforms from compact binary coales-
cences. In order to achieve the required accuracy, vari-
ous complementary techniques have been developed, in-
cluding numerical relativity [5–7], gravitational self-force
theory [8–10], and weak-field expansions such as post-
Newtonian (PN) or post-Minkowskian (PM) theory [11–
13]. These direct approaches to producing gravitational
waveforms by solving the Einstein field equations have
also been combined using interpolating models such as
the Effective-One-Body (EOB) approach [14, 15] and the
Phenom family of models [16, 17].

Historically, waveform modelling has been devoted to
the case of binaries on bound inspiralling trajectories re-
sulting in merger events. But in the last few years, in-
creasing attention has been paid to scattering events. In
this case the two objects are initially at a very large sep-
aration in a spacetime that is asymptotically Minkowski,
then upon approaching each other on hyperbolic orbits,
they interact gravitationally, emitting a burst of gravi-
tational radiation before separating again. While such
burst signals are potentially of astrophysical interest, the
feasibility of detecting them is uncertain [18–20]. How-
ever, scattering events are of wide theoretical interest. In
particular, weak-field, PM calculations of two-body scat-
tering have proven to be a powerful tool to inform models
of bound orbits, using a variety of new methods via EOB
Hamiltonians [21–26], mappings between bound and un-
bound observables [27–29], or direct calculation of bound
waveforms from scattering amplitudes [30].

The frontier of research describing weak-field scatter-
ing has been largely dominated by methods developed for
high-energy particle physics, using effective field theory
[31–35] and modern scattering amplitudes methods [36–
39]. These methods have enabled calculations at orders
that were unreachable with standard techniques in clas-
sical PM theory [40, 41] and have been in agreement with
results coming from PN theory [42]. With these meth-
ods it is also possible to compute waveforms and compare
them against standard PN results [43, 44].

Meanwhile, gravitational self-force theory, while tra-
ditionally developed to model extreme-mass-ratio events
for the LISA mission [45], has been showing strong poten-
tial for modelling binaries with mass ratios close to unity
either directly [46] or by informing and calibrating EOB
models [47, 48]. Self-force theory, in the context of the
two-body problem, is an expansion with respect to the
mass ratio of the two black holes. This allows a formu-
lation of the problem within the well-established frame-
work of black hole perturbation theory [10], without re-
sorting to approximations for low velocities, such as PN,
or small gravitational potentials, such as PM. Put an-
other way, at each order in the mass ratio, self-force the-
ory is fully relativistic, containing all orders of the weak-
field expansions (as well as nonperturbative effects that
are never encountered at any order in a weak-field ex-
pansion [49]). At first order in self-force theory, this has
enabled a rich synergy with PN theory, as first-order self-
force calculations can be written in a semi-closed form in
terms of the so-called Mano-Suzuki-Takasugi (MST) so-
lutions [50], which have a natural expansion in the PN
limit. In the context of bound orbits, this MST method
has been leveraged extensively to produce PN expansions
to extremely high PN order at linear order in the mass ra-
tio; see, e.g., [51–56]. PN-expanded self-force results also
played an important role in completing the 4PN conser-
vative binary dynamics [57] and resolving discrepancies
in 4PN results [58].

Synergies between self-force theory and PM theory are
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potentially even stronger but are relatively unexplored
compared to PN-SF interactions. The potential for self-
force theory to inform PM theory was highlighted in [59],
where it was shown that linear-order self-force informa-
tion can fully determine the PM Hamiltonian at 4PM
precision, and second-order self-force information can
fully determine the PM Hamiltonian through to 6PM.
Even more recently, it was shown how reformulating scat-
tering amplitudes approaches in a way analogous to the
self-force picture could be a powerful new approach [60–
62]. Motivated by this, and in the wake of progress in
PM theory, the self-force community has also begun to
tackle the scattering problem; see [63–65] and [49, 66–
68]. Notably, the recent work [69] showed fruitful direct
comparison between a numerical self-force computation
and an analytical PM Amplitudes derivation of the scat-
tering angle in the context of a scalar toy model. Even
more recently, Ref. [68] showed how analytical PM ex-
pressions can be accurately resummed in the strong field
using only a single data point from numerical self-force
calculations.

A key problem in dealing with scattering orbits is that
self-force calculations often rely on frequency-domain ap-
proaches. These are useful because bound geodesic orbits
in Kerr are at most tri-periodic, leading to fields with
discrete Fourier spectra. However, for unbound orbits,
the Fourier spectrum is continuous and integrals (inverse
Fourier transforms) must be performed in order to return
to the time domain.

In this paper, we give the first analytical self-force cal-
culations for scattering orbits, providing a systematic ap-
proach that could be applied, in principle, at any PM or-
der. Our method relies on a low-velocity PN expansion
to exploit MST methods and to simplify the evaluation
of integrals; this PN expansion can readily be taken to
high order. To demonstrate our method we work to 5PM
order and relative 4.5PN accuracy in the scalar model of
Ref. [69]. Comparing our results against the ones ob-
tained in Refs. [69] and [70], we find, where applicable,
complete agreement up to the PN order we compute. We
also provide new information at 5PM order, specifically
determining unknown coefficients in the tidal action of
Ref. [69].

Our discussion is organized as follows. In Sec. II we
describe geodesic scattering, giving explicit PN and PN-
PM expansions for relevant geodesic quantities, and we
then recall the Barack-Long formulation of self-force–
corrected scattering. In Sec. III we present our com-
putational methods for generic spin s, highlighting how
the solutions for the Teukolsky equation split into two
contributions: local and non-local. The local terms, in
PN theory, are associated with instantaneous effects in
the gravitational potential, while the non-local terms are
associated with hereditary effects such as tails and tails-
of-tails. Notably, all our integrals are finite, but interme-
diate steps in the calculation of hereditary effects require
a careful distributional treatment, which we compare to
a Hadamard “finite part” regularization procedure, as

described in Appendices A and B. In Secs. IV and V,
after a brief review of the scalar problem, we apply our
methods to a scalar charge in a hyperbolic orbit around
a Schwarzschild black hole, obtaining (i) the Detweiler-
Whiting regular field [71] from the solution of the Klein-
Gordon equation, and (ii) the components of the self-
force computed from that solution. Finally in Sec. VI we
present and discuss our results, comparing them with the
known PM expressions obtained up to 4PM.
Conventions. We use G = c = 1, but we also use a

placeholder η = 1/c to clarify for the reader the nature
of some PN series. The signature for the Schwarzschild
metric is (−,+,+,+). We will refer throughout our pa-
per to a PN expansion when it is valid at any PM order,
while a PN-PM expansion will be valid only up to a cer-
tain PM order.

II. EQUATIONS OF MOTION

A. Geodesic motion

Consider the Schwarzschild spacetime with line
element ds2 = gαβdx

αdxβ written in standard
Schwarzschild coordinates (t, r, θ, ϕ) as

ds2 = −f(r)dt2 + 1

f(r)
dr2 + r2(dθ2 + sin2 θdϕ2) , (2.1)

where f = 1− 2M/r . A generic timelike geodesic orbit
on the equatorial plane (θ = π/2) is written in parametric
form as xµ = xµp (τ), with proper time τ and 4-velocity
û = ûα∂α = ẋαp∂α, such that

ṫp =
E

f(rp)
, ϕ̇p =

L

r2p
, ṙ2p = E2 − V (rp;L), (2.2)

where the overdot indicates d/dτ . E and L are respec-
tively the orbit’s (specific) energy and angular momen-
tum, and the radial potential is

V (r;L) = f(r)

(
1 +

L2

r2

)
. (2.3)

The equation for ṙp is quadratic, and we can write

ṙp = ϵr

√
E2 − V (rp;L), (2.4)

where ϵr = ±1 is a sign indicator keeping track of increas-
ing/decreasing radial coordinate. We note that Eq. (2.2)
follows solely from the normalization ûαû

α = −1 and
the definitions E = −ût and L = ûϕ; this implies that
the same equations will hold for self-forced orbits if we
adopt analogous definitions of E and L in terms of the
perturbed 4-velocity.
Hyperbolic orbits are characterized by E > 1 and L >

Lcrit(E), with

Lcrit(E) =
M

vE

√
27E4 + 9βE3 − 36E2 − 8βE + 8

2
,

(2.5)
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where β :=
√
9E2 − 8; see [66, 67]. Alternatively, rather

than using E and L, we can characterize hyperbolic or-
bits using the impact parameter b and initial velocity at
infinity v. These are related to E and L by

E =
1√

1− v2
, L = bvE, (2.6)

and they range over 0 < v < 1 and b > bcrit, where
bcrit = Lcrit/(vE). 1

The solution to the radial equation is also often given
in terms of the relativistic anomaly ξ:

rp(ξ) =
Mp

1 + e cos ξ
, (2.7)

where p is the semi-latus rectum and e the eccentricity.
The sign difference between the ingoing and outgoing di-
rections is then encoded in ξ, which takes values in the
interval (−ξ∞, ξ∞), where ξ∞ = arccos(−1/e). The pa-
rameters p and e are related to E and L by

E2 =
(p− 2)2 − 4e2

p(p− 3− e2)
, L2 =

p2M2

p− 3− e2
, (2.8)

and for hyperbolic orbits they range over e > 1 and p >
6 + 2e. The complete treatment of hyperbolic orbits in
terms of all these different orbital parameters is discussed
in Ref. [66].

There are several ways to solve the geodesic equation
exactly. For instance by using the inverse radial distance
u =M/r and combining the equation for ϕp and rp, one
finds (

du

dϕ

)2

= 2(u− u1)(u− u2)(u− u3) , (2.9)

where u1, u2 and u3 are the ordered roots of the equation

2u3 − u2 +
2M2u

L2
+
M2(E2 − 1)

L2
= 0 , (2.10)

and we have omitted subscript p’s to avoid confusion
with the subscripts 1,2,3. For scattering orbits one has
u1 < 0 < u ≤ u2 < u3, with u2 corresponding to the
closest-approach distance rmin = Mu2. The condition
u2 = u3 gives the critical value of the angular momen-
tum corresponding to capture by the black hole for fixed
energy value.

By asking that

ϕ(u2) = 0 (2.11)

(i.e., vanishing ϕ at periastron), one can express the so-
lution to Eq. (2.9) in terms of elliptic integrals as follows:

ϕ(u) =

√
2√

u3 − u1
[K(n)− F (ψ, n)] , (2.12)

1 Other authors instead denote the velocity v∞, since it is the
relative velocity of the small body as rp → ∞. We will drop the
subscript here for simplicity.

with

n =

√
u2 − u1
u3 − u1

, ψ =

√
u− u1
u2 − u1

, (2.13)

where F (φ, k) andK(k) are the incomplete and complete
elliptic integrals of the first kind, respectively, defined by

F (φ, k) =

∫ φ

0

dz√
1− k2 sin2 z

, K(k) = F (π/2, k) .

(2.14)
We are then able to formally define the so-called scat-

tering angle χ as the total change of ϕ during the scat-
tering process:

χ = 2

∫ u2

0

du
dϕp
du

− π , (2.15)

where we have restored the subscript p for clarity.
Despite the simplicity of the analytical solutions for the

geodesic motion, we are actually interested in solving it
perturbatively. In particular, we will propose two equiv-
alent methods to get approximate solutions: in the first,
one chooses u as the independent variable and a rescaled
version of (E,L) as orbital parameters; in the second,
one uses a rescaled time as the independent variable and
uses (b, v) as orbital parameters.
More importantly, the key difference between these two

methods is that they rely on different expansions: the
first method follows a pure PN approximation for the or-
bit, while the second uses a large-b, PM expansion. We
have checked that, if one applies to one of the two solu-
tions the expansion done for the other, the two solutions
are equivalent.

1. PN expansion of the geodesic orbit

Using u as the parameter along the geodesic, we write
Eq. (2.2) as

dtp
du

= −ϵr
M

√
1 + 2Ē

ju2(1− 2u)

(
2u3 − u2 +

2u

j2
+

2Ē

j2

)−1/2

,

dϕp
du

= −ϵr
(
2u3 − u2 +

2u

j2
+

2Ē

j2

)−1/2

, (2.16)

where we have introduced the dimensionless energy and
angular momentum parameters Ē and j defined by

E =
√
1 + 2Ē, L =Mj, (2.17)

respectively.
We now wish to solve the geodesic equation in a low-

velocity limit i.e. with a PN-like expansion. To do this
we require scaling estimates for Ē, j and u. From their
definitions and from Eq. (2.6), we clearly have Ē ∼ v2

and j ∼ 1
v . On the other hand, u is constrained as u <

1/bcrit ∼ v2. To track these scalings we will introduce
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the standard PN small parameter η = 1/c (essentially
restoring powers of c and using it to track small velocities
with respect to c) and make the replacements

u→ uη2, j → j/η, Ē → Ēη2 . (2.18)

Interestingly, these are the same scalings one uses in the
PN description of bound orbits.

Solving Eq. (2.16) for small η, we obtain

tp(u) = ϵrM

{
αj

u
S(α, j;u)− α3j3L(α, j;u)

+η2
[
1 + α2 + 2α2j2(α2 + 2)u+ j4α2(α2 − 1)u2

2uαj(α2 + 1)S(α, j;u)

+
3

2
αjL(α, j;u)

]
+O(η4)

}
, (2.19)

ϕp(u) = ϵr

{
B(α, j;u) +

η2

j2

[
3B(α, j;u)

+
2 + 3α2 + uα2(6α2 + 5)j2 − u2α2(α2 + 1)j4

α(α2 + 1)S(α, j;u)

]
+O(η4)

}
, (2.20)

where initial conditions have been chosen as tp(u2) = 0 =
ϕp(u2) at the closest approach, with

u2(Ē, j) =

(
1+

√
1 + 2Ēj2

)
/j2 ≡

(
1+
√
1 + 1/α2

)
/j2

(2.21)
at the lowest order, and

S(α, j;u) =
√

1 + 2uj2α2 − u2j4α2 ,

L(α, j;u) = ln

(
1 + uj2α2 + S(α, j;u)

j2uα
√
α2 + 1

)
,

B(α, j;u) =
π

2
+ arctan

(
(1− uj2)α

S(α, j;u)

)
. (2.22)

Note that in the above expressions αj and uj2 are New-
tonian quantities, with

α ≡ 1/

√
2Ēj2 = 1/(p∞j), (2.23)

where we defined p∞ =
√
2Ē.

The first few terms of the PN expansion of the geodesic
scattering angle (2.15) are given by

χ

2
= B(α)− π

2
+
η2

j2

[
3B(α) +

2 + 3α2

α(α2 + 1)

]
+O(η4) ,

(2.24)

where B(α) = B(α, j; 0) = π
2 +arctan(α). Taking the se-

ries expansion for large values of the angular momentum
parameter j gives the PM expansion at each PN order,

χ =
2

j

(
1

p∞
+ 2p∞η

2

)
+

3πη2

j2

(
1 +

5

4
p2∞η

2

)
+O

(
1

j3

)
. (2.25)

2. PM expansion of the geodesic orbit

To obtain the PM expansion, without a PN expan-
sion, we restart our discussion by recalling Eq. (2.7) and
rewriting Eq. (2.2) in terms of the relativistic anomaly,
keeping (p, e) as parameters that specify the orbit:

dtp
dξ

=
Mp2

(p− 2− 2e cos ξ)(1 + e cos ξ)2

√
(p− 2)2 − 4e2

p− 6− 2e cos ξ
,

(2.26)

dϕp
dξ

=

√
p

p− 6− 2e cos ξ
. (2.27)

We change the parametrization from (p, e) to (b, v) by
recalling the relations (2.8), which can be inverted and
then combined with Eq. (2.6).

Expanding Eq. (2.26) for large b, we get

ξ(t̄) = arctan t̄+
M

bv2

[
t̄√

1 + t̄2
+

(
1− 3v2

)
arcsinh t̄

1 + t̄2

]

+
M2

(1 + t̄2)b2v4

[
2t̄v2 +

(
2− 9v2 + 9v4

)
arcsinh t̄

√
1 + t̄2

−
t̄
(
1− 3v2

)2
arcsinh2 t̄

1 + t̄2
− 15

2
v4 arctan t̄

]
+O(b−3), (2.28)

where

t̄ = vt/b (2.29)

is a rescaled time.

By substituting this into Eqs. (2.7) and (2.27), we find

rp(t̄) = b
√
1 + t̄2 − M

v2
+
M
(
t̄− 3t̄v2

)
arcsinh t̄

√
1 + t̄2v2

+
M2

b

[
1− 4v2

2
√
1 + t̄2v4

+
t̄
(
1− 3v2

)2
arcsinh t̄

(1 + t̄2) v4

+

(
1− 3v2

)2
arcsinh2 t̄

2 (1 + t̄2)
3/2

v4
− 15t̄ arctan t̄

2
√
1 + t̄2

]
+O(b−2), (2.30)
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ϕp(t̄) = arctan t̄+
M

bv2
√
1 + t̄2

[
t̄
(
1 + v2

)
+

(
1− 3v2

)
arcsinh t̄

√
1 + t̄2

]

+
M2

4b2v4 (1 + t̄2)

{
3t̄v2

(
4 + v2

)
+ 3v2

[
4− 9v2 + t̄2

(
4 + v2

)]
+

8
(
1− 4v2 + 3v4

)
arcsinh t̄

√
1 + t̄2

−
4t̄
(
1− 3v2

)2
arcsinh2 t̄

1 + t̄2

}
+O(b−3). (2.31)

We can compare this expression for ϕp with the analogous
result (2.20). We find that they are in agreement.

Finally, using our result for ϕp, we find the PM expan-
sion of the geodesic scattering angle (2.15) reads

χ =
2M

bv2
(1 + v2) +

3M2π

4b2v4
(4 + v2)

− 2M3

3b3v6
[
1− 5v2

(
3 + 9v2 + v4

)]
+O(b−4), (2.32)

which can be shown to agree with Eq. (2.25).

B. Self-forced motion

A detailed discussion of how self-forces correct the
geodesic scattering motion can be found in Ref. [66]. Here
we present an alternative formulation that will be partic-
ularly useful in our later calculations.

A point particle that scatters off the Schwarzschild
black hole feels an acceleration due to its self-force, obey-
ing the equation of motion

uβ∇βuα = Fα. (2.33)

Here uα is the particle’s four-velocity, Fα is the self-
force per unit mass, and ∇β is the covariant derivative
compatible with the Schwarzschild metric gαβ .For the
case of a scalar charged particle that we consider in later
sections, the scalar self-force scales as Fα ∝ q2/(µM2),
where q and µ are the particle’s charge and mass, respec-
tively. For a gravitating point mass, the gravitational
self-force scales as Fα ∝ µ/M2. In this section we leave
the force unspecified; we only assume it is small. Con-
cretely, we write

Fα = O(ε/M), (2.34)

with

ε = q2/(µM) ≪ 1 (2.35)

or ε = µ/M ≪ 1, as appropriate. We then expand all
quantities to linear order in ε. From Section V onwards
we will explicitly use the definition (2.35).

When expanding for small ε, we must specify what
quantities are being held fixed. We specifically expand
for small ε at fixed values of the initial energy E− and
angular momentum L− that the particle has when it be-
gins its orbit from infinite distance; we use a minus sign
to indicate that these are the values in the infinite past.
Put another way, we expand the perturbed orbit around
a geodesic that has the same initial energy and angu-
lar momentum. The self-force correction to the scatter-
ing angle is then obtained as a function of E− and L−.
Equivalently, we can write the self-force correction as a
function of b and v, defining those quantities from E−
and L− using Eq. (2.6).
From the t and ϕ components of the force, we can

obtain this linear correction to the scattering angle via a
formula of the form

δχ =

∫ ∞

−∞
dτ {GE(τ)Ft(τ) + GL(τ)Fϕ(τ)} , (2.36)

where GE/L are two functions of geodesic quantities, de-
rived in [66]. However, we will derive an alternative,
equivalent expression that we find more convenient. In
the following, we use hats to denote zeroth-order, back-
ground quantities and δ to denote corrections that are
linear in ε.
We start by defining the accelerated orbit’s energy and

angular momentum as E = −ut and L = uϕ, which
evolve according to

dE

dτ
= −Ft,

dL

dτ
= Fϕ. (2.37)

These E and L are not the conserved energy and angu-
lar momentum that would be defined in the conserva-
tive sector of the self-forced dynamics. However, they
are convenient because (i) as mentioned below Eq. (2.4),
they allow us to still make use of Eq. (2.2) for ẋαp , and
(ii) they can be immediately expressed in terms of the
self-force. We express them as functions of τ as

E(τ) = E− −
∫ 0

−∞
Ftdτ −

∫ τ

0

Ftdτ

≡ E− + δE0 + δẼ(τ) ,

L(τ) = L− +

∫ 0

−∞
Fϕdτ +

∫ τ

0

Fϕdτ

≡ L− + δL0 + δL̃(τ) . (2.38)

The reason for splitting each correction into two terms
will become clear below.
At this point, it is convenient to use r as a parame-

ter along the orbit. In order to compute integrals along
the perturbed orbit one has then to consider the incoming
(ûr < 0) and outgoing (ûr > 0) branches separately, with
r decreasing from infinity (τ → −∞) up to a minimum
value rmin = r̂min + δrmin (τ = τ0 = 0), then increasing
again to infinity (τ → ∞). Let us denote by a label ±
the values of the various quantities corresponding to the
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incoming (−) and outgoing (+) branch, respectively, so
that we formally have a slight redefinition of the scatter-
ing of Eq. (2.15) as

χ =
∑
±

∫ ∞

rmin

dr

(
dϕp
dr

)±

− π . (2.39)

The lower limit of integration is expanded at fixed
(E−, L−), while the integrand is expanded to linear or-
der in ε at fixed r (as well as fixed E− and L−), meaning

ϕp(r, ε) = ϕ̂(r) + δϕ(r, ε). Explicitly,

χ =
∑
±

∫ ∞

r̂min+δrmin

dr

(
dϕ̂

dr
+
dδϕ

dr

)±

− π , (2.40)

which can be written to linear order as

χ = χ̂+ δχ̂+ δχ̃ , (2.41)

where

δχ̂ = δrmin
∂

∂r̂min

∑
±

∫ ∞

r̂min

dr

(
dϕ̂

dr

)±

= δrmin
∂χ̂

∂r̂min
(2.42)

is the O(ε) correction due to the shift δrmin, and

δχ̃ =
∑
±

∫ ∞

r̂min

dr

(
dδϕ

dr

)±

. (2.43)

To evaluate Eq. (2.42), we recall that Eq. (2.4) remains
valid for the self-forced motion. The closest approach of
the self-forced orbit, which we have defined to occur at
τ = 0, therefore satisfies

(E− + δE0)
2 = V (r̂min + δrmin;L− + δL0); (2.44)

this was one reason for isolating the corrections to E−
and L− at periastron in Eq. (2.38). Equation (2.44) is
identical to the equation for the closest approach of a
geodesic with energy E− + δE0 and angular momentum
L− + δL0. Therefore

δrmin =
∂r̂min

∂E−
δE0 +

∂r̂min

∂L−
δL0. (2.45)

Substituting this into Eq. (2.42) and appealing to the
chain rule, we obtain the simple result

δχ̂ =
∂χ̂

∂E−
δE0 +

∂χ̂

∂L−
δL0 . (2.46)

We next turn to the correction δχ̃ in Eq. (2.43). To
express the integrand in terms of energy and angular mo-

mentum, we write
dϕp

dr =
dϕp/dτ
drp/dτ

. Expanded to linear

order in ε at fixed r, this becomes

dϕp
dr

=
ûϕ + δuϕ

ûr + δur

=
ûϕ

ûr

(
1 +

δuϕ

ûϕ
− δur

ûr

)
. (2.47)

Comparing to
dϕp

dr = dϕ̂
dr + d δϕ

dr , we see

d δϕ

dr
=
ûϕ

ûr

(
δuϕ

ûϕ
− δur

ûr

)
. (2.48)

We next express the right-hand side in terms of δE and
δL. All perturbations to the 4-velocity can be obtained
from δut = −δE(r) and δuϕ = δL(r) together with the
normalization gµνu

µuν = −1, where

δE = δE0 + δẼ, (2.49)

and analogously for δL. Since we are linearizing in ε at
fixed r, and since gµν is a function of r only, the linear
term in the normalization condition becomes gµνδu

µûν =
0, which we use to obtain δur in terms of δE and δL.
Substituting these results into Eq. (2.48), we get

d δϕ

dr
= aE(r)δE(r) + aL(r)δL(r) , (2.50)

with

aE(r) = − L−E−

r2(ûr)3
, aL(r) =

E2
− − f(r)

r2(ûr)3
. (2.51)

Equation (2.43) is then

δχ̃ =
∑
±

∫ ∞

r̂min

dr
[
a±E(r)δE

±(r) + a±L (r)δL
±(r)

]
.

(2.52)
By noting that

a−E(r) = −a+E(r) , a−L (r) = −a+L(r) , (2.53)

we see that δE0 and δL0 vanish from the integral; this
was another reason for isolating these terms in Eq. (2.38).
We are then left with

δχ̃ =

∫ ∞

r̂min

dr
{
a+E(r)

[
δẼ+(r)− δẼ−(r)

]
+a+L(r)

[
δL̃+(r)− δL̃−(r)

]}
=

∫ ∞

r̂min

dr

{
−a+E(r)

∫ r

r̂min

dr

ûr
[
F+
t (r)− F−

t (r)
]

+a+L(r)

∫ r

r̂min

dr

ûr

[
F+
ϕ (r)− F−

ϕ (r)
]}

,

(2.54)

having used

δẼ±(r) = −
∫ r

r̂min

dr

ûr
F±
t (r) , δL̃±(r) =

∫ r

r̂min

dr

ûr
F±
ϕ (r) .

(2.55)
At this point we can split both δχ̂ and δχ̃ into their

conservative and dissipative parts by firstly splitting the
components of the forces as follows:

F cons+
α (r) =

1

2
[F+

α (r)− F−
α (r)] = −F cons−

α (r) ,
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F diss+
α (r) =

1

2
[F+

α (r) + F−
α (r)] = F diss−

α (r) , (2.56)

for α = t, ϕ, so that

δχ̃cons = −2

∫ ∞

r̂min

dr

[
a+E(r)

∫ r

r̂min

dr

ûr
F cons+
t

−a+L(r)
∫ r

r̂min

dr

ûr
F cons+
ϕ

]
. (2.57)

Interestingly, δχ̃diss = 0 because of the symmetries of
F diss
α . As a consequence, the dissipative correction to the

scattering angle is simply given by

δχdiss = δχ̂diss = −1

2

(
∂χ̂

∂E−
Erad +

∂χ̂

∂L−
Lrad

)
, (2.58)

(a reminder of the linear response formula, [72, 73]). Here
Erad and Lrad are the total radiated energy and angular
momentum, which are related to the integrated dissipa-
tive self-force by

Erad = −2δEdiss
0 , Lrad = −2δLdiss

0 , (2.59)

respectively. Recall that our local definitions of orbital
E and L are not the conserved energy and angular mo-
mentum of the perturbed orbit in the conservative sec-
tor, as emphasized below Eq. (2.37). As a consequence,
the conservative self-force does cause E and L to change
with time. However, this change averages to zero over
the complete orbit, and only the dissipative self-force is
related to the emitted fluxes of energy and angular mo-
mentum in scalar radiation.

It is also worthwhile to mention that we can equiva-
lently compute the scattering angle through a time pa-
rameterization in Eq. (2.40).

III. FIELD EQUATIONS AND PM EXPANSION:
GENERAL SET UP

We wish to describe our system in a weak-field (PM)
and low-velocity (PN) limit. Specifically, we will impose

b≫M, v ≪ 1. (3.1)

Our ultimate goal will be to calculate the scattering an-
gle (2.41) in this limit. Doing so requires computing the
self-force, which in turn requires knowledge of the field
near the particle’s worldline. We thus introduce rescaled
variables to parameterise both the worldline coordinates
and field points as follows:

t̄ =
vt

b
, (3.2a)

r̄ =
r

b
, (3.2b)

r̄p(t̄) =
rp(t(t̄))

b
. (3.2c)

Following the rescaling of the time variable, it is also nat-
ural to introduce a rescaled frequency variable for the
Fourier transform of the field ω̄ = bω/v. All of the
barred variables will henceforth be formally treated as
O(1) quantities.

A. PM+PN field modes: Generic treatment

Perturbations to astrophysical black hole spacetimes
are generically treated using the spin-s Teukolsky equa-
tion, written schematically as sO sψ = sT , where sO
is a second-order partial differential operator [10]. For
example, s = 0 gives the massless Klein-Gordon (KG)
equation with a scalar charge distribution source:

2 0ψ = −4πρ, (3.3)

where 2 = gαβ∇α∇β is the d’Alembertian and 0T =
−4πr2ρ. In our case ρ will be a point-particle (scalar)
charge density,

ρ(xµ) = q

∫
(−g)−1/2δ4(xµ − xµp (τ))dτ

=
q

utr2
δ(r − rp(t))δ(θ − π/2)δ(ϕ− ϕp(t)), (3.4)

where g = −r4 sin2 θ is the determinant of the metric.
In the gravitational case, one would instead solve the
|s| = 2 Teukolsky equation for the maximal spin-weight
Weyl scalars. In that case, the source sT is constructed
from a second-order linear operator acting on a point-
mass stress-energy tensor Tαβ .
Our discussion in this section will remain agnostic

about the spin weight, meaning it applies to both the
scalar and the gravitational case. In either case, we seek
solutions to the spin-s Teukolsky equation in the PN-PM
limit after the rescalings (3.2).
Restricting to Schwarzschild spacetime, we write the

Teukolsky solution in the time domain as

sψ(t, r, θ, ϕ) =
∞∑

l=|s|

l∑
m=−l

sψℓm(t, r)sYlm(θ, ϕ), (3.5)

where the modes are expressed as an integral over a re-
tarded Green function sGℓmω:

sψℓm(t, r) =

1

2π

∫ ∞

−∞
dω e−iωt

∫
dr′ sGℓmω(r, r

′) sTℓmω(r
′).

(3.6)

This formula is standard but will be developed from
scratch in the s = 0 case in Sec. IV. Using

sTℓmω(r
′) =

∫ ∞

−∞
dt′eiωt′

sTℓm(t′, r′) (3.7)
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we rearrange Eq. (3.6) as

sψℓm =
1

2π

∫
dr′
∫ ∞

−∞
dω sGℓmω(r, r

′)

×
∫ ∞

−∞
dt′eiω(t′−t)

sTℓm(t′, r′). (3.8)

Using our PM-PN scalings, we can rewrite this with all
variables changed to their barred counterparts.

In the next section we will explicitly give the form of
the retarded Green function modes appearing here, but
for now we will focus on its structure as a function of the
Fourier frequency. In the PM-PN expansion, the Green
function has the structure

sGℓmω(r̄, r̄
′) =

1

b

∞∑
j=0

1∑
k=0

sG
(j,k)
ℓm (r̄, r̄′)vjω̄j logk(−iω̄),

(3.9)

where the coefficients sG
(j,k)
ℓm (r̄, r̄′) are dimensionless.

As a consequence of our use of scaled coordinates,

sGℓmω(r̄, r̄
′) depends on b starting at 1PM, and the coef-

ficients sG
(j,k)
ℓm (r̄, r̄′) here are expansions in 1/b. For the

non-logarithmic contributions (i.e., k = 0), sG
(j,0)
ℓm (r̄, r̄′)

starts at order 1/b0 for all values of j, l, and m. Mean-
while, for k ̸= 0, the first logarithm appears at j = 2
for s = l = 0, for example, and at j = 4 for s = l = 1.
If we had not adopted scaled coordinates, this behavior
would instead arise after integrating against the source
and evaluating the field near the particle, such that the
arguments of the Green function would inherit the be-
havior of the orbit.

In the pure PN expansion one finds the same structure
in ω for the Green function (with no associated expansion
in 1/b). So we will omit the details here and continue
the discussion for the remainder of this formalism sec-
tion. We will return to the PN approach when explicitly
solving the field equations in Sec. IV.

In the following, we will refer to the non-logarithmic
contributions as local terms and the logarithmic terms as
the non-local pieces.

B. Local field contributions

The non-logarithmic contribution to the field modes is
given as

sψ
L
ℓm =

∑
j

vj

2π

∫
dr̄′
∫ ∞

−∞
dt̄′ sG

(j,0)
ℓm (r̄, r̄′)sTℓm(t̄′, r̄′)

×
∫ ∞

−∞
dω̄eiω̄(t̄′−t̄)ω̄j . (3.10)

Using the identity∫ ∞

−∞
dω eiωyωj =

2π

ij
δ(j)(y), (3.11)

we find

sψ
L
ℓm =

∑
j

ijvj
∂j

∂t̄j

∫
dr̄′ sG

(j,0)
ℓm (r̄, r̄′)sTℓm(t̄, r̄′).

(3.12)

Equation (3.12) applies for any source that scales suit-
ably with b (in congruence with our use of scaled co-
ordinates). But we have a final simplification because
for a point-particle source, sTℓm(t̄, r̄′) is a sum of terms
proportional to δ[r̄′ − r̄p(t̄)] and its derivatives. These
delta functions allow us to evaluate the integral over
r′, reducing sψℓm(t, r) to a simple sum of analytically
known terms. For example, for s = 0 we can expand the
source (3.4) in spherical harmonics as

ρ(xµ) =
q

utr̄2b3
δ(r̄ − r̄p(t̄))

×
∑
lm

Y ∗
lm(π/2, 0)Ylm(θ, ϕ)e−imϕp(t̄), (3.13)

where we used the identity

δ(θ − π/2)δ(ϕ− ϕ(t)) =
∑
l,m

Ylm(θ, ϕ)Y ∗
lm(π/2, ϕ(t)).

(3.14)
Equation (3.12) then becomes2

0ψ
L
ℓm =

q

b

∑
j≥0

ijvj
∂j

∂t̄j

{
0G

(j,0)
ℓm [r̄, r̄p(t̄)]

e−imϕp(t̄)

ut(t̄)

}
× Y ∗

ℓm(π/2, 0). (3.15)

C. Non-local contribution

The first logarithmic-in-frequency term we encounter
is

sψ
NL
ℓm =

∑
j

vj

2π

∫
dr̄′G

(j,1)
ℓm (r̄, r̄′)

×
∫ ∞

−∞
dysTℓm(t̄+ y, r̄′)

∫ ∞

−∞
dω̄ ω̄j log(−iω̄)eiω̄y,

(3.16)

where y = t̄′ − t̄. The logarithmic inverse Fourier trans-
form (IFT) here must be treated delicately. Firstly, care
must be taken with the branch choice of the logarithm
for positive and negative frequencies. Secondly, the IFT
must be handled as a distribution in order to obtain a
finite value for the field after the integral in y; if treated

2 The apparent conflict between the powers of r̄ and b in Eqs. (3.13)
and (3.15) comes from the fact that 0T = −4πr2ρ = −4πb2r̄2ρ.
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as an ordinary function, the integral over ω̄ diverges. As
a distribution, it is given by∫ ∞

−∞
dω̄ eiω̄y log(−iω̄) =

− π

[
2γEδ(y) +

(
1

|y|

)
1

− p.v.

(
1

y

)]
,

(3.17)

where the latter two terms are defined distributionally
by ∫ ∞

−∞
dy

(
1

|y|

)
1

ϕ(y) =

∫
|y|≤1

dy
ϕ(y)− ϕ(0)

|y|

+

∫
|y|≥1

dy
ϕ(y)

|y|
, (3.18)∫ ∞

−∞
dy p.v.

(
1

y

)
ϕ(y) =

∫ ∞

0

dy
ϕ(y)− ϕ(−y)

y
(3.19)

for any test function ϕ. We review the derivation of
Eq. (3.17) in Appendix A.

It is important to point out that the distributional def-
inition of the IFT inherently yields finite results. An al-
ternative approach, common in PN calculations, is to ap-
ply the Hadamard partie finie (Pf) regularization, which
is often computationally simpler than our distributional
treatment. However, for the integrals in question, we
find that the Pf operation introduces an arbitrary scale
in the final result. In Appendix B, we provide a detailed
discussion of these two procedures.

In brief, by using the distributional definition of the
IFT we obtain a finite integral of the form

sψ
NL
ℓm = −

∑
j≥0

ijvj

×
∫
dr̄′G

(j,1)
ℓm (r̄, r̄′)

[
γE sT

(j)
lm (t̄, r̄′) + Flm(t̄, r̄′)

]
,

(3.20)

where

Flm(t̄, r̄) =

∫ ∞

0

log(y)sT
(j+1)
lm (t̄− y, r̄)dy. (3.21)

We could use an equivalent expression for sψ
NL
lm by inte-

grating first with respect to r̄′ and get

sψ
NL
lm = − lim

ϵ→0

∑
j≥0

ijvj
∫
dr̄′
{
(γE + log ϵ)

× dj

dt̄j

[
G

(j,1)
lm (r̄, r̄′)sTlm(t̄, r̄′)

]
+

∫ +∞

ϵ

dy

y

dj

dt̄′
j

[
G

(j,1)
lm (r̄, r̄′)sTlm(t̄′, r̄′)

]∣∣∣∣
t̄′=t̄−y

}
,

(3.22)

which is again finite, but now due to the log ϵ countert-
erm that cancels the divergence arising from the integral.

Using both methods independently we obtain the same
results, providing internal consistency checks.
For s = 0, we can write a direct analog of the local

term (3.15):

0ψ
NL
lm = −q

b
lim
ϵ→0

∑
j≥0

ijvjY ∗
lm(π/2, 0)

{
(γE + log ϵ)

× dj

dt̄j

[
G

(j,1)
lm (r̄, r̄p(t̄))

e−imϕ(t̄)

ut(t̄)

]
+

∫ +∞

ϵ

dy

y

dj

dt̄′
j

[
G

(j,1)
lm (r̄, r̄p(t̄′))

e−imϕp(t̄′)

ut(t̄′)

] ∣∣∣∣
t̄′=t̄−y

}
.

(3.23)

IV. SCALAR-FIELD RESULTS

We now restrict our attention to the scalar case, with
s = 0, where the equation we have to solve is the massless
KG equation (3.3). For the sake of brevity, from now on
we will drop the subscript zero on the scalar field 0ψ,
and we will write the spherical-harmonic expansion of
the charge distribution, given in Eq. (3.13), as

ρ(xµ) =
∑
l,m

ρlm(t, r(t))Ylm(θ, ϕ).

To express the retarded solution to the time-domain
KG equation in the form (3.8), we first write it as

ψ(t, r, θ, ϕ) =
∑
l,m

∫
dω

2π
ψlmω(r)e

−iωtYlm(θ, ϕ), (4.1)

separating the time, radial, and angular dependence.
The radial functions ψlmω(r) then satisfy

Lr(ψlmω(r)) = − 4π

f(r)
ρlmω(r), (4.2)

where the differential operator is

Lr ≡ d2

dr2
+

2

r

d

dr
+

[
ω2

f2(r)
− l(l + 1)

r2f(r)

]
, (4.3)

and the Fourier transform of the l,m coefficients of the
scalar charge density is

ρlmω(r) =

∫
dt eiωtρlm(t, r(t))

=
q

r2
Y ∗
lm(π/2, 0)

∫
dt δ(r − r(t))

ei(ωt−mϕ(t))

ut(r)
.

(4.4)

The solution to Eq. (4.2) can be obtained via the Green
function method as

ψlmω(r) = −4π

∫
dr′Glmω(r, r

′)r′2ρlmω(r
′), (4.5)
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which becomes

ψlmω(r) = −4πqY ∗
lm(π/2, 0)

×
∫
dt

∫
dr′Glmω(r, r

′)δ(r′ − r(t))
ei(ωt−mϕ(t))

ut(r)
,

(4.6)

leading to a trivial r′-integration. Inserting this in
Eq. (4.1), we find the more explicit form of Eq. (3.8):

ψ(t, r, θ, ϕ) = −4πq
∑
l,m

Y ∗
lm(π/2, 0)Ylm(θ, ϕ)

×
∫
dt′
e−imϕ(t′)

ut(t′)

∫
dω

2π
ei(t

′−t)ωGlmω(r, r(t
′)).

(4.7)

The physically relevant, retarded solution uses the re-
tarded Green function, which is given by

Glmω(r, r
′) =

1

r2f(r)Wlmω

{
Rlmω

in (r)Rlmω
up (r′)H(r′ − r)

+Rlmω
in (r′)Rlmω

up (r)H(r − r′)
}
. (4.8)

Here Wlmω is the Wronskian, H(·) is the Heaviside step
function, and the two functions Rlmω

in (r) and Rlmω
up (r)

are two independent solutions of the homogeneous radial
equation which satisfy retarded boundary conditions at
the horizon and radial infinity, respectively.

The retarded solution (4.7) naturally diverges (as a
Coulomb field) when we evaluate it at the particle’s po-
sition, i.e. by sending (r, θ, ϕ) → (r(t), π/2, ϕ(t)). At the
particle’s position, the physically relevant field is instead
the Detweiler-Whiting regular field ψR; this is the field
that exerts the self-force on the particle.

We will compute the regular field at the particle using
the standard method of mode-sum regularization [74, 75].
This method takes advantage of the fact that, while the
full retarded field diverges at the particle, the individual
spherical-harmonic modes do not. ψR can then calcu-
lated on the particle by subtracting from each harmonic
mode a ‘regularization parameter’. We first define the l
modes of the retarded field at the particle as

ψret
l (t) =

l∑
m=−l

ψlm(t, r)Ylm (θ, ϕ)

∣∣∣∣
(r,θ,ϕ)→(r(t),π/2,ϕ(t))

.

(4.9)
The regular field is then computed by subtracting an l-
independent function B(t) before summing over l:

ψR(t) =
∑
l

[ψret
l (t)−B(t)]. (4.10)

The regularization parameter B(t̄) has been computed in

Ref. [66, 75]3 as

B(t) =
2

π

q

L
k(t)K[k(t)] , k(t) =

√
L2

L2 + rp(t̄)2
,

(4.11)
where K(k) denotes the complete elliptic integral of the
first kind.

A. Scalar Green function in the PN/PM limits

Obtaining analytic expressions for the time-domain
field using (4.7) (and correspondingly for the self-force,
energy and angular momentum losses, and scattering an-
gle) will require the spherical harmonic modes of the
frequency-domain Green function (4.8) for all values of l
and m and as a function of ω. As in previous weak-field
analytic self-force treatments in the bound-orbit case,
e.g. [52, 54, 76], calculating the modes of the Green func-
tion can be split into two sectors: low-l modes and large-l
modes. We will overview the strategy here.
For a small set of modes l ≤ lmax we will use the ex-

act expression for the retarded Green function using the
homogeneous MST solutions [50], which fully satisfy the
physical retarded boundary conditions. Here, the value
of lmax will depend on the order in the expansion of in-
terest: higher PN/PM order requires higher lmax.
For all values l > lmax we can treat our homogeneous

solutions using an ansatz with both l and m as param-
eters. This ansatz will only approximately satisfy the
retarded boundary conditions. However the violation of
the boundary conditions by the ansatz will only appear
beyond the order of interest when l > lmax. This re-
flects the fact that in constructing weak-field solutions
to the field equation, low multipoles require matching to,
e.g., far-field expansions, whereas higher multipoles do
not require such matching. The MST solutions have this
matching built in, which makes them ideal for low-l, but
too cumbersome for large generic l values.
We apply the above strategy to solve the field equa-

tions in two ways. Method one uses a standard PN scal-
ing, which will later in the computation of the inhomoge-
neous field introduce the further PM expansion. Method
two uses the PM-PN limit given in (3.1) from the start.
Ultimately, having two independent methods was useful
for cross validation.
The generic-l ansatz for the PN method corresponds to

writing the solutions to the KG equation as a PN series

Rlmω
in(PN)(r) = (r/M)l

[
1 +

n∑
k=1

Almω
2k (r/M)η2k

]
,

Rlmω
up(PN)(r) = R

in(PN)
−l−1mω(r) , (4.12)

3 Note that here L is the specific orbital angular momentum, while
in Ref. [75] it denotes l + 1/2.
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where we recall the PN rescalings of Eq. (2.18) together
with the rescaling of ω → ωη and the coefficients Almω

2k (r)
have a polynomial structure in ω, hence the Green func-
tions constructed from these homogeneous solutions will
inherit this property. On the other hand, the MST solu-
tions have the structure depicted in Eq. (3.9).

In method two, the direct PM-PN approach, the radial
equation (4.2) is solved in the generic-l case by applying
the PN/PM scaling (3.2) and by employing the ansatz

Rlmω
in(PM)(r) = r̄ν

imax∑
i=0

jmax∑
j=0

Bij

(
M

br̄

)i

(r̄ω̄v)j , (4.13)

Rlmω
up(PM)(r) = r̄−ν−1

imax∑
i=0

jmax∑
j=0

Cij

(
M

br̄

)i

(r̄ω̄v)j , (4.14)

where ν is the ‘renormalized angular momentum’ of
MST [77], (see also the discussion in Sec. IIB of [54]),
imax and jmax are the desired PM and PN orders, respec-
tively, and the coefficients Bij , Cij are purely functions
of l. Once again, it is clear that for large values of l
the field will be a pure polynomial in the frequency, and
will therefore only contribute to our local field as defined
above.

The low-l modes are again treated with the MST ex-
pressions for the homogeneous solutions, which are stan-
dardly written as infinite sums of hypergeometric func-
tions of varying forms; see, e.g., Chapter 4 of [77] for a
detailed review. Their weak-field expansion follows stan-
dard methodology which we will omit from our discus-
sion. The main point of note is for our 5PM, 4.5PN
accuracy, we require the MST expressions for l ≤ 4. Ul-
timately the solutions follow a similar form to (4.13) with
the addition of the logarithmic-in-frequency dependence
discussed previously.

In the following subsections we will provide the ex-
plicit expressions for the regular scalar field ψR. We
will separate our results in two sectors: the local (non-
logarithmic) and non-local (logarithmic) part. While the
local terms can be obtained in two different parameteri-
zations, as has been done for the solutions of the geodesic
equations, the logarithmic contributions can be evaluated

only with the time parameterization. The reason is that
the first approach relies on a single PN expansion, while
the second relies on a double PN and PM expansion.

B. Local terms

1. PN regular scalar field

We maintain the same conventions we used for the PN
solution of the geodesic equation. We find for the regu-
larization parameter

B(t) =
qup(t)

M

{
1− 1

4
[jup(t)]

2η2 +
9

64
[jup(t)]

4η4

− 25

256
[jup(t)]

6η6 +
1225

16384
[jup(t)]

8η8 +O(η10)

}
,

(4.15)

where we recall up =M/rp. This corresponds to the PN
expansion of Eq. (4.11).
Using this regularization parameter together with the

retarded field modes, we find the local piece of the PN
expansion of ψR is given by

ψR,L(t) = −
qα2j2u2p(t)

M

{
ϵrη

3

α3j3

√
1 + 2up(t)j2α2 − u2p(t)j

4α2

+
[
2− 3α2j2up(t)(up(t)j

2 − 2)
] η4

α4j4

+
ϵr√

1 + 2up(t)j2α2 − u2p(t)j
4α2

[
2 + 6α4j8u4p(t)

−19α4j6u3p(t) + 8j4α2(−1 + 2α2)u2p(t)

+12up(t)j
2α2
] η5

α5j5
+O(η6)

}
. (4.16)

2. PN-PM regular scalar field

As in the previous subsection, we firstly compute B(t̄)
and get

B(t̄) =
q

b

{
v2√
1 + t̄2

− v4

4 (1 + t̄2)
3/2

−
v6
(
7 + 16t̄2

)
64 (1 + t̄2)

5/2
+O(v8)

}
− qM

b2

{
v2
(
arcsinh (t̄) t̄−

√
1 + t̄2

)
(1 + t̄2)

3/2

+
3v4

[√
1 + t̄2 − arcsinh (t̄) t̄

(
5 + 4t̄2

)]
4 (1 + t̄2)

5/2
+

3v6
[√

1 + t̄2
(
1 + 16t̄2

)
+ arcsinh (t̄) t̄

(
47 + 32t̄2

)]
64 (1 + t̄2)

7/2
+O(v8)

}
+O(b−3),

(4.17)

which corresponds to the PN-PM expansion of Eq. (4.11).

From B and the retarded field modes, we can finally

obtain the local contribution to the regular scalar field in
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PN-PM expanded form:

ψR,L(t̄) = −qvM
b2

{
t̄

(1 + t̄2)
3/2

−
v
(
1− 2t̄2

)
(1 + t̄2)

2

−
v2t̄
(
7− 5t̄2

)
2 (1 + t̄2)

5/2
+O(v3)

}

− 3qM2

b3v

{
arcsinh (t̄)

(
1− 2t̄2

)
3 (1 + t̄2)

5/2
+

t̄

(1 + t̄2)
2

+ v

[
4arcsinh (t̄) t̄

(
2− t̄2

)
3 (1 + t̄2)

3 −
2
(
1− 5t̄2

)
3 (1 + t̄2)

5/2

]

− v2

[
t̄
(
31− 29t̄2

)
6 (1 + t̄2)

3 +
arcsinh (t̄)

(
13− 49t̄2 − 2t̄4

)
6 (1 + t̄2)

7/2

]

+O(v3)

}
+O(b−4). (4.18)

C. Non-local terms

The logarithmic contribution could be again computed
both with a single PN or with the double PN-PM expan-
sion. However, when the problem is approached with
the first method one must compute integrals that, to
the best of our knowledge, do not have a closed ana-
lytical form. For this reason, from now on the non-local
sector will be approached only with a double PN-PM
expansion. We recall Eq. (3.23), and we divide in two
sectors the logarithmic contributions to the field: one
contribution does not require any integration and is pro-
portional to γE , while the second needs both an inte-
gration and a distributional treatment. From the inte-
grals we get the PolyLog structure previously observed
in unbound-motion calculations using scattering ampli-
tudes techniques [78]. We will call these integrals tail
integrals.

1. γE

For the first group of terms, we find

ψR,NL,1(t̄) = − q

M
γE

{
8v2M3

3b3

[ (
1− 2t̄2

)
(1 + t̄2)

5/2
−
v2
(
7− 61t̄2 + 22t̄4

)
2 (1 + t̄2)

7/2
+O(v3)

]
+
M4

b4

[
4

3 (1 + t̄2)
7/2

×
(√

1 + t̄2
(
7− 23t̄2

)
− 6 arcsinh (t̄) t̄

(
3− 2t̄2

))
+

2v2

(1 + t̄2)
9/2

(
10 arcsinh (t̄) t̄

(
15− 25t̄2 + 2t̄4

)
−
√
1 + t̄2

(
19− 240t̄2 + 161t̄4

))
+

76v3t̄
(
3− 2t̄2

)
15 (1 + t̄2)

7/2
+O(v4)

]
+O(b−5)

}
. (4.19)

2. Tail integrals

For the second group of terms, we find

ψR,NL,2(t̄) =
qM2

b3

{
4v2

3 (1 + t̄2)
5/2

[
−3 + 10t̄2 + 6t̄

√
1 + t̄2 +

(
2− 4t̄2

) (
arcsinh (t̄) + log

(
1 + t̄2

)
+ log 2

)]
+O(v4)

}

+
qM3

b4

{
2

3 (1 + t̄2)
7/2

[(
26 + 3π2

)
t̄+ 2

(
11− π2

)
t̄3 − 4t̄5 − 2

√
1 + t̄2

(
7− 38t̄2 + 2t̄4

)
+6
(
1− 4t̄2

)√
1 + t̄2 log

(
1 + t̄2

)
− 2 log(2)

(
1 + t̄2

)3/2 − 12arcsinh2 (t̄) t̄
(
3− 2t̄2

)
+2arcsinh(t̄)

((
7− 23t̄2

)√
1 + t̄2 + t̄(39− 38t̄2)− 6 log(2)t̄

(
3− 2t̄2

)
− 6 log

(
1 + t̄2

)
t̄
(
3− 2t̄2

))
−
(
9t̄− 6t̄3

)
Li2

(
t̄+

√
1 + t̄2

t̄−
√
1 + t̄2

)
+O(v2)

]}
+O(b−5). (4.20)

Here we have only presented the leading PN terms at each
PM order due to the complexity of the complete result.

However, the full expression for this group of terms is in
the attached Mathematica ancillary file.
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V. SCALAR SELF-FORCE

We recall that the scalar self-force (per unit mass) act-
ing on a particle with scalar charge q and mass µ is given
by [9]

Fα =
q

µ
Pα

β∇βψ
R, (5.1)

where ψR is the Detweiler-Whiting regular field, ex-
tracted from the solution of the KG equation, and Pα

β =
δβα + uαu

β projects orthogonally to the particle’s world-
line. Because we are only interested in the leading-order,
linear corrections due to the force, we can approximate
Pα

β by P̂α
β = δβα + ûαû

β . Similarly, although µ is not
constant [9], we can treat it as constant in our leading-
order analysis.

As we are discussing equatorial scattering, the non-
vanishing components of Fα are

Ft =
q

µ

(
1− û2tf(r)

)
∂tψ

R

− q

µ
f(r)ût

(
ûr∂rψ

R + ûϕ∂ϕψ
R
)
, (5.2)

Fr =
q

µ
(1 + û2rf

−1(r))∂rψ
R

+
q

µ
ûrf

−1(r)
(
ût∂tψ

R + ûϕ∂ϕψ
R
)
, (5.3)

Fϕ =
q

µ
(1 + r2û2ϕ)∂ϕψ

R

+
q

µ
ûϕr

2
(
ût∂tψ

R + ûr∂rψ
R
)
. (5.4)

Practically speaking, only the t and ϕ components will
be used for the computation of the conservative and dis-
sipative dynamics, as already discussed in Sec. II B.

To compute Fα from the retarded field modes ψlm, we
again use the method of mode-sum regularization, as ex-
plained above Eq. (4.10). The derivatives of the retarded
field possess a linear-in-l divergence on the particle, and
the mode-sum formula for the force is

Fα(t) =
∑
l

{
F l±
α (t)− (l + 1/2)Al±

α (t)−Bα(t)
}
, (5.5)

where F l±
α denotes the result of substituting a retarded-

field mode ψlmYlm into Eqs. (5.2)–(5.4), evaluating on
the particle, and summing over m. The ± indicates4

whether the particle is approached from the right or left,
i.e. r+p (t) or r−p (t), when we send r → rp(t). It is well
known [75] that if we compute the average mode contri-
bution from the two directions, as in

F l
α(t) =

1

2

[
F l+
α (t) + F l−

α (t)
]
, (5.6)

4 It is important to remind that this ± is different from the one
used in Section II B.

then the contribution from Al±
α (t) vanish and only the

Bα(t) terms are required in the mode-sum formula. For
this reason we will always compute the averaged compo-
nents of the force.
These calculations require us to compute derivatives

of the retarded field modes. The derivatives that come
from the local sector are trivial to compute. However,
the ones that comes from the non-local sector could be
problematic, in particular the derivative with respect to
t when the field is written in the form of (superficially)
divergent integrals. However, it is easy to realize that for
an integral of the form

∂I

∂t
=

∂

∂t

∫
dt′f(r, t′)

∫
dω

2π
eiω(t′−t)ωj logω, (5.7)

where f(r, t′) = 0G
(j,1)
ℓm (r, r(t′))e−imϕ(t′), we have

∂tI = −i
∫
dt′f(r, t′)

∫
dω

2π
eiω(t′−t)ωj+1 logω. (5.8)

Hence, for derivatives of the field we can employ the same
distributional method we used for the field itself.
We will present here the expressions for Ft and Fϕ by

splitting the contributions from the local and non-local
sectors, as we did for the field. But we will directly focus
on the results obtained with a double PN-PM expansion.

A. Local terms

We present the result in a similar fashion as we did
for the field: we will present firstly the regularization
parameter Bα(t) and then the components of the force.
In the case of the forces we have two different regular-

ization parameters: Bt and Bϕ for the two components of
the force we are interested in. Starting from the generic
formulas in Ref. [66, 75], we find

Bt =
εvM

2b2

{
t̄

(1 + t̄2)
3/2

+
v2t̄
(
7 + 4t̄2

)
4 (1 + t̄2)

5/2
+O(v4)

}
+
εM2

2b3v

{
3t̄

(1 + t̄2)
2 +

arcsinh (t̄)
(
1− 2t̄2

)
(1 + t̄2)

5/2

+ v2

[
t̄
(
23 + 8t̄2

)
4 (1 + t̄2)

3 −
arcsinh (t̄)

(
5 + 4t̄2 − 16t̄4

)
4 (1 + t̄2)

7/2

]

+O(v4)

}
+O(b−4), (5.9)

and

Bϕ = −3εv2M

4b

{
t̄

(1 + t̄2)
3/2

+
v2t̄
(
3 + 8t̄2

)
8 (1 + t̄2)

5/2
+O(v4)

}
− 9εM2

4b2

{
arcsinh (t̄)

(
1− 2t̄2

)
3 (1 + t̄2)

5/2
+

t̄

(1 + t̄2)
2

+ v2

[
t̄
(
−9 + 16t̄2

)
24 (1 + t̄2)

3 +
arcsinh (t̄)

(
−21 + 36t̄2 + 32t̄4

)
24 (1 + t̄2)

7/2

]
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+O(v4)

}
+O(b−3). (5.10)

The local terms in the force, as computed with mode-
sum regularization, are then

FL
t (t̄) =

εv2M2

3b3

{
1− 2t̄2

(1 + t̄2)
5/2

+
6vt̄

(1 + t̄2)
3 −

v2
(
1− 2t̄2

)
2 (1 + t̄2)

5/2

+O(v3)

}
+

5εM3

3b4

{
1− 2t̄2

(1 + t̄2)
3

−
3t̄ arcsinh (t̄)

(
3− 2t̄2

)
5 (1 + t̄2)

7/2

+ v

[
36t̄

5 (1 + t̄2)
7/2

+
6arcsinh (t̄)

(
1− 5t̄2

)
5 (1 + t̄2)

4

]

− v2

[
3
(
1− 6t̄2

)
2 (1 + t̄2)

3 −
21t̄ arcsinh (t̄)

(
3− 2t̄2

)
10 (1 + t̄2)

7/2

]

+O(v3)

}
+O(b−5), (5.11)

and

FL
ϕ (t̄) = −εvM

2

3b2

{
1

(1 + t̄2)
3/2

+
6vt̄

(1 + t̄2)
2 +

v2
(
−1 + 17t̄2

)
2 (1 + t̄2)

5/2

+O(v3)

}
− εM3

b3v

{
1

(1 + t̄2)
2 − t̄ arcsinh (t̄)

(1 + t̄2)
5/2

+ v

[
8t̄

(1 + t̄2)
5/2

+
arcsinh (t̄)

(
2− 6t̄2

)
(1 + t̄2)

3

]

− v2

[
3
(
1− 9t̄2

)
2 (1 + t̄2)

3 −
t̄ arcsinh (t̄)

(
19− 11t̄2

)
2 (1 + t̄2)

7/2

]

+O(v3)

}
+O(b−4). (5.12)

It is important to mention that these two components
of the force have different leading orders in 1/b.

B. Non-local terms

As we did for the regular field on the particle, we divide
the non-local terms in the force into γE terms and tail-
integral terms.

1. γE

We find the coefficients of γE to be

FNL,1
t (t̄) =

4γEεt̄v
3M3

b4

{
2t̄2 − 3

(t̄2 + 1)
7/2

−
(
2t̄2 − 3

)
v2

2 (t̄2 + 1)
7/2

+O(v3)

}
+

4εt̄vM4

3b5

{
44t̄2 − 61

(t̄2 + 1)
4 −

3
(
8t̄4 − 24t̄2 + 3

)
arcsinh(t̄)

t̄ (t2 + 1)
9/2

+ v2
[
235− 308t̄2

2 (t̄2 + 1)
4 +

21
(
8t̄4 − 24t̄2 + 3

)
arcsinh(t̄)

2t̄ (t̄2 + 1)
9/2

]
+O(v3)

}
+O(b−6), (5.13)

and

FNL,1
ϕ (t̄) =

8γEεt̄v
2M3

b3

{
5
(
3t̄2 − 1

)
v2

2 (t̄2 + 1)
7/2

+
1

(t̄2 + 1)
5/2

+O(v3)

}
+

40εt̄M4

b4

{
1

(t̄2 + 1)
3 +

(
1− 4t̄2

)
arcsinh(t̄)

5t̄ (t̄2 + 1)
7/2

+ v2
[
299t̄2 − 121

30 (t̄2 + 1)
4 +

(
−36t̄4 + 93t̄2 − 11

)
arcsinh(t̄)

10t̄ (t̄2 + 1)
9/2

]
+O(v3)

}
+O(b−5). (5.14)

2. Tail integrals

The explicit expressions for the forces arising from
the tail integrals are much lengthier than previous ex-
pressions. As such we only display the leading-order-in-
velocity terms for each of the t and ϕ components of the
force:
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FNL,2
t (t̄) = − 8εv3M3

3 (t̄2 + 1)
7/2

b4

{
t̄
(
11t̄2 − 12

)
+

1

2

√
t̄2 + 1

(
11t̄2 − 4

)
+

(
9t̄

2
− 3t̄3

)[
log
(
2
(
t̄2 + 1

))
+ arcsinh (t̄)

]
+O(v)

}

− 4εvM4

3 (t̄2 + 1)
5/2

b5

{(
2t̄4 + 55t̄2 − 89

)
t̄(

t̄2 + 1
)3/2 + 2

(
t̄2 − 2

)
+

7 log(2)
(
8t̄2 − 7

)
t̄(

t̄2 + 1
)3/2 +

6t̄√
t̄2 + 1

[
log
(
t̄2 + 1

)
+ arcsinh

(
t̄
)]

−
4
(
25t̄4 − 57t̄2 + 6

)
arcsinh

(
t̄
)(

t̄2 + 1
)2 +O(v)

}
+O(b−6), (5.15)

and

FNL,2
ϕ (t̄) = − 4εv2M3

3 (t̄2 + 1)
5/2

b3

{
17t̄− 2t̄3 − 2

(
t̄2 − 2

)√
t̄2 + 1− 6t̄

[
log
(
2
(
t̄2 + 1

))
+ arcsinh (t̄)

]
+O(v)

}
− 2εM4

3 (t̄2 + 1)
7/2

b4

{
− 8 + 2t̄

√
t̄2 + 1

(
11t̄2 + 28

)
+
[
8t̄4 − 172t̄2 + 4

(
11− 4t̄2

)√
t̄2 + 1t̄+ 34

]
arcsinh (t̄)

+ 22t̄4 + 14t̄2 − 6t̄
√
t̄2 + 1

[
4 log(2)

(
t̄2 − 4

)
+
(
2t̄2 − 3

)
log
(
t̄2 + 1

)]
− 3

(
4t̄2 − 1

) [
π2 − 4 log

(
2
(
t̄2 + 1

))
arcsinh (t̄)− 4arcsinh (t̄)

2 − 6Li2

(
t̄+

√
t̄2 + 1

t̄−
√
t̄2 + 1

)]
+O(v)

}
+O(b−5).

(5.16)

VI. RESULTS AND DISCUSSIONS

Once the self-force is computed, we can investigate ob-
servables of interest, in particular the loss of energy and
angular momentum and the self-force correction to the
scattering angle. The first two quantities are purely dis-
sipative effects, hence associated with radiation. The
scattering angle contains also a contribution from the
conservative sector, as discussed in Sec. II B.

Given our results for the self-force and the formal ex-
pressions derived in Sec. II B, the procedure for extract-
ing the observables we are interested in is then conceptu-
ally easy, though it can be technically challenging when
evaluating integrals from the non-local sector.

We will present our results at 5PM-4.5PN firstly for the
dissipative dynamics and then for the conservative sector.
We have also restored the mass M of the Schwarzschild
black hole.

A. Dissipative sector

Firstly we show the total radiated energy and angular
momentum, as computed by integrating the dissipative
piece of the self-force along the worldline according to
Eq. (2.59) with Eqs. (2.38) and (2.56):

Erad
1PM = Erad

2PM = 0, (6.1)

Erad
3PM =

πεM3

b3v

[
1

6
+

11v2

12
+

25v4

24
+

311v6

240
+O(v7)

]
,

(6.2)

Erad
4PM =

εM4

b4
4

3v3

[
1 +

23v2

3
− 2v3 +

28v4

5

− 16v5

3
+

4324v6

525
+O(v7)

]
, (6.3)

Erad
5PM =

πεM5

b5
1

2v5

{
1 + 14v2 − 3π2v3

4
+

89v4

8

+

(
−96

5
− 9π2

40

)
v5 +

[
20033

600
+
π2

2

− 19 log(2)

2
− 19 log(b/M)

5
+

19 log(v)

10

]
v6

+O(v7)

}
, (6.4)

and

Lrad
1PM = 0, (6.5)

Lrad
2PM =

εM2

b

[
2

3
+

4v2

3
+

4v4

3
+

4v6

3
+O(v7)

]
, (6.6)

Lrad
3PM =

πεM3

b2v2

[
1

3
+

5v2

6
+
v4

12
− 31v6

120
+O(v7)

]
,

(6.7)

Lrad
4PM =

εM4

b3
2

3v4

[
1 + 8v2 − 4v3 − 23v4

3
− 16v5

5

−1304v6

75
+O(v7)

]
, (6.8)
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Lrad
5PM =

πεM5

b4
5

2v4

{
1− π2v

10
− 11v2

10
−
(
16

5
− π2

100

)
v3

−
[
9883

3000
− π2

15
+

152 log(2)

75
+

19 log(b/M)

25

−38 log(v)

75

]
v4 +O(v5)

}
, (6.9)

where we recall that ε = q2/(µM) ≪ 1 as defined in
(2.35), and note the leading PN order is 1.5 for both
δEdiss and δLdiss, except for the 5PM radiated angular
momentum, which has its first contribution at 2.5PN.

In order to complete the radiative sector, we compute
the dissipative scattering angle. From Eq. (2.58), we find

δχdiss
1PM = δχdiss

2PM = 0, (6.10)

δχdiss
3PM =

εM3

b3v3

[
2

3
+

5v2

3
+

19v4

12
+

25v6

24
+O(v7)

]
,

(6.11)

δχdiss
4PM =

πεM4

b4v5

[
1

2
+

10v2

3
+

89v4

48
+

53v6

80
+O(v7)

]
,

(6.12)

δχdiss
5PM =

4εM5

3b5v7

[
1 +

(
91

6
+

3π2

4

)
v2 − 4v3

+

(
1357

120
+

39π2

32

)
v4 − 14v5

15

+

(
16103

560
− 45π2

16

)
v6 +O(v7)

]
. (6.13)

We see that the 3PM energy and angular momentum
loss and the 4PM scattering angle present only (relative)
integer PN orders (corresponding to even powers of v).
This is because only the local sector contributes at this
PM order. However, at the next PM order, we start to
see half-integer PN terms (odd powers of v), which are
usually related to tail effects in classical PN theory. This
structure between local and non-local terms become ap-
parent after the final integration over the orbit, and not,
for instance in the self-force or in the regular field. An-
other smoking gun for tail contributions is the presence
of log(b/M) and log v, which are related to the physical
scales of the problem.

It is also worth commenting on the absence of the
Euler-Mascheroni constant γE in the final results. The
presence of γE is usually tied up, in PN theory, to the
presence of logarithms in the observables. It is then sur-
prising that, for the scattering motion, the PN expan-
sions of these quantities do contain logarithms but not
γE . It is possible, however, that at higher orders γE will
appear.

Comparing our results against those obtained with am-
plitudes methods in Ref. [69], we find a mismatch begin-
ning at 3PM-2.5PN,

Erad
3PM − E

rad,Ref.[69]
3PM =

εM3

b3
π

2
v

[
1 +

v2

2
+O(v5)

]
,

(6.14)

which propagates to the comparison between the scatter-
ing angle. This can be attributed to the fact that it is
purely the loss of energy away from the binary system
that is being computed in [69], whereas the results here,
coming from the local dissipative force, also include en-
ergy loss into the black hole horizon. In this sense, we
generalize their result by computing the full dissipative
scattering angle at each PM order.
Nonetheless, we can still provide some verification of

our results. In a recent work [70], the 3PM mass shift of
the Schwarzschild black hole in the case of scalar absorp-
tion was computed. The horizon flux that they obtained
is

EH =
εM3

b3
π

2

v√
1− v2

, (6.15)

which is precisely the resummation of Eq. (6.14).

B. Conservative sector

The conservative dynamics affects the shape of the hy-
perbolic orbit, by changing the relationships between or-
bital parameters and, more importantly, the scattering
angle. Recalling the results in Sec. II B, in the conserva-
tive sector we have that δχcons takes the form

δχcons =
∂χ̄

∂E−
δEcons

0 +
∂χ̄

∂L−
δLcons

0

− 2

∫ ∞

r̄min

dr

[
a+E(r)

∫ r

r̄min

dr

ūr
F cons+
t

−a+L(r)
∫ r

r̄min

dr

ūr
F cons+
ϕ

]
, (6.16)

where we used

δEcons
0 = −

∫ 0

−∞
dτF cons

t , δLcons
0 =

∫ 0

−∞
dτF cons

ϕ ,

(6.17)
and because we are dealing with conservative dynamics
we have ∫ +∞

−∞
dτF cons

t/ϕ = 0. (6.18)

Evaluating these formulas, we find

δχcons
2PM = −πεM

2

4b2
, (6.19)

δχcons
3PM = −εM

3

b3v2

[
4 +

2v2

3
+

5v4

6
+O(v5)

]
, (6.20)

δχcons
4PM = −πεM

4

b4v4

{
9

4
+ v2

[
91

24
+

21π2

128
+ log(v/2)

]
+v4

[
493

480
+

4335π2

8192
− 3 log(b/M)

2
+ 2 log

(v
2

)]
+O(v5)

}
, (6.21)
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δχcons
5PM = −16εM5

3b5v6

{
1 + v2

[
47

6
+

21π2

64
+ 2 log(2v)

]
− v4

[
797

72
− 205π2

128
− 43 log(2)

3
+ 4 log

( b

M

)
− 19 log(v)

3

]
+

19v5

15
+O(v6)

}
, (6.22)

where the leading term is at 2PN. Consistent with the
dissipative sector, in the conservative case we do not see
γE appearing in these final results.

Another interesting feature is that in our results both
the energy and the angular momentum contribute to the
leading 2PM term of the conservative scattering angle,
displayed in Eq. (6.19), and this leading term is totally
determined by the local sector of the forces.

The non-local sector starts to contribute at 4PM, in
Eq. (6.21), introducing a transcendental structure to the
result. In this case, we get first the logarithmic contri-
butions and then at 5PM the odd powers of the velocity.
However, by looking at our non-local expressions for the
forces in Eqs. (5.13)-(5.16), we see that the leading terms
are at lower powers in 1/b. It is a non-trivial statement
that these leading terms in the non-local components of
the force are integrated to zero once they are multiplied
by a+E/L.

We now compare our results with the conservative
scattering angle computed using amplitudes methods in
Ref. [69]. In their framework, the scattering angle up to
4PM was obtained to all orders in v, but with the pres-
ence of two free parameters, namely c1 and c2(µ̄), that
appear precisely at 4PM. Finding immediate agreement
at 2PM and 3PM (to our precision in the velocity expan-
sion), we now focus our attention on the 4PM scattering
angle, which is [69]

χ4PM
cons =

3πεM4

8b4
1

σ2 − 1

{
−

[
4Mt

4 log

(√
σ2 − 1

2

)
+Mπ2

4

−Mrem
4

]
+ (σ2 − 5)c1 +

[
c2(µ̄)−

31

3

+ 2 log
(
2b2e2γE µ̄2

)]
(σ2 − 1)

}
, (6.23)

where σ = (1− v2)−1/2 and the functions Mt
4, Mπ2

4 and
Mrem

4 are complicated functions of σ given in Eqs. (5.7)–
(5.8) of Ref. [69].

The low-velocity expansion of the 4PM scattering an-
gle (6.23) gives

χ4PM
cons = −9πεM4

4b4v4

{
1 + v2

[
85

54
+

2c1
3

+
7π2

96
− 4 log 2

9

+
4 log v

9

]
+ v4

[
313

1080
− 5c1

6
− c2(µ̄)

6
− 2γE

3

+
1445π2

6144
− 8 log 2

9
+

8 log v

9
− 1

3
log
(
2b2µ̄2

)]

+O(v5)

}
. (6.24)

An important feature of this expression is that c1 and
c2(µ̄) appear independently and at successive PN orders.
It is thus clear from this expression that by matching the
powers of v with our 4PM scattering angle (6.21), we will
have sufficient conditions to uniquely determine the two
coefficients. In particular we find

c1 =
1

6
, c2(µ̄) = −11

6
− 4γE − 2 log(2)− 4 log(µ̄M).

(6.25)

It was suggested at the end of Sec. 3.2 of Ref. [69] that
c1 could be associated with a static Love number, which
vanishes for a black hole in general relativity, whereas
c2(µ̄) arises from a regularization procedure. In Ref. [69]
some constraints on these parameters were found by com-
paring the analytical PM scattering angle to fully rela-
tivistic, numerical self-force calculations, with the scale
fixed to µ̄ = (2M)−1. Specifically they found for the
first coefficient c1 = 0.31 ± 0.38, whereas for the sec-
ond an interval was presented in the approximate range
(−25,−35). Clearly our value for c1 is compatible with
the numerical values they find inside their error bars. If
c1 is proportional to a static Love number it must be zero,
but the case of a non-vanishing c1 was already considered
to be possible in Ref. [69] because of the field redefini-
tions used in the construction of the leading tidal action.
For c2 there is no particular theoretical value one might
expect. Our c2, with µ̄ = (2M)−1, has a numerical value
c2 ≈ −2.76, in disagreement with the numerically ob-
tained range, but as we discuss further below, we do not
believe this implies an inconsistency between our analyti-
cal calculation and the numerical calculation of Ref. [69].

VII. CONCLUSION

In this work we have given, for the first time, a
methodology for obtaining analytical, high-order post-
Minkowskian results for hyperbolic scattering of two
black holes within the self-force framework. Working at
linear order in the mass ratio, we followed the traditional,
MST-based methods of analytical self-force but extended
their validity to continuous Fourier spectra. Our frame-
work, while valid also for gravitational perturbations, was
explicitly implemented in a scalar self-force model, where
we solved the massless Klein-Gordon equation and, by
following the procedure first described in [66], computed
the self-force correction to the scattering angle at 4.5PN
and 5PM accuracy.
Comparing with results in the literature obtained us-

ing scattering amplitudes methods, we were able to com-
pletely fix the two unknown parameters c1 and c2(µ̄) that
appeared in the analytical results of Ref. [69]. Our result
for c1 is consistent with the range of possible values that
Ref. [69] obtained by fitting to numerical self-force data.
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Our result for c2(µ̄) disagrees with their best-fit value(s),
but we emphasise that in Ref. [69], the authors “conclude
that [they] have insufficient data to extract the two un-
known coefficients c1 and c2 individually.” We therefore
do not have cause to doubt our values (which, we note,
were confirmed using three independent codes). A valu-
able complementary approach would be to obtain values
of these constants following Ref. [79]. In the meantime,
we highlight that our values have recently been used di-
rectly in Ref. [68].

Although our calculations are limited to a linear scalar
problem, our methods should open a new path to self-
force calculations for the unbound problem more gener-
ally, complementing the numerical approach in Refs. [49,
66, 67, 69]. In particular, we have shown how to general-
ize analytical self-force theory to the case of a continuous
Fourier spectrum.

In a subsequent paper we will calculate the gravita-
tional fluxes produced by hyperbolic scattering of a mas-
sive particle. Future calculations will be devoted to re-
constructing the perturbed metric and hence calculate
the gravitational self-force correction to the scattering
angle. Ultimately, we expect analytical self-force calcu-
lations such as these to be a starting point for the types
of resummations explored in Ref. [68], extending the ac-
curacy of the analytical results into the regime of strong
fields and large velocities.
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Appendix A: Distributional Fourier transform of a
logarithm

In this appendix we review the derivation of Eq. (3.17).
For simplicity, we consider the Fourier integral

ĝ(s) =

∫ +∞

−∞

dω

2π
eisω logω,

with ω, s ∈ R. The integral in Eq. (3.17) is obtained
straightforwardly from this one.

We define the integral as a distribution in the usual
way. We denote g(ω) = logω and ĝ its Fourier transform,
written as

ĝ(s) = F {g} (s). (A1)

For any test function ϕ ∈ S, the Fourier transform of a
distribution g is defined to act as

⟨F {g} , ϕ⟩ = ⟨g,F {ϕ}⟩, (A2)

where S is the Schwartz space,

S =
{
ϕ : R → C

∣∣∣
ϕ isC∞, sup

x∈R
|xnϕ(m)(x)| <∞,∀n,m ∈ N

}
. (A3)

We now define

ĝϵ(s) =

∫ +∞

−∞

dω

2π
e−ϵ|ω|eisω logω. (A4)

It is easy to see from the definition (A2) that

ĝ(s) = lim
ϵ→0+

ĝϵ(s). (A5)

Here the limit is defined in the distributional sense,
⟨limϵ→0+ ĝϵ, ϕ⟩ = limϵ→0+⟨ĝϵ, ϕ⟩.
ĝϵ is an ordinary integral which can be readily eval-

uated. Explicitly splitting the result into its real and
imaginary parts gives

ĝϵ =
1

2π

(
ĝ(1)ϵ (s) + ĝ(2)ϵ (s) + ĝ(3)ϵ (s) + ĝ(4)ϵ (s)

)
, (A6)

with

ĝ(1)ϵ (s) =
πs

s2 + ϵ2
, ĝ(2)ϵ (s) = (iπ − 2γE)

ϵ

s2 + ϵ2
,

ĝ(3)ϵ (s) = −2s arctan s/ϵ

s2 + ϵ2
, ĝ(4)ϵ (s) = −ϵ log(s

2 + ϵ2)

s2 + ϵ2
.

(A7)

Here γE is the Euler constant. We next study the action

of each ĝ
(i)
ϵ on a test function ϕ.
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1. ĝ
(1)
ϵ (s)

We have to compute

lim
ϵ→0+

⟨ĝ(1)ϵ , ϕ⟩ = π lim
ϵ→0+

∫ +∞

−∞
ds

s

s2 + ϵ2
ϕ(s) =

= π p.v.

∫ +∞

−∞
ds
ϕ(s)

s
= π

∫ +∞

0

ds
ϕ(s)− ϕ(−s)

s
, (A8)

where p.v. denotes the principal value. Hence in the
distributional sense we have

ĝ(1)(s) = lim
ϵ→0+

ĝ(1)ϵ (s) = π p.v.

(
1

s

)
(A9)

where we define p.v.

(
1

s

)
through its action on ϕ as in

Eq. (A8).

2. ĝ
(2)
ϵ (s)

We continue by computing

lim
ϵ→0+

⟨ĝ(2)ϵ , ϕ⟩ = (iπ − 2γE) lim
ϵ→0+

∫ +∞

−∞
ds

ϵ

s2 + ϵ2
ϕ(s)

= (iπ − 2γE) lim
ϵ→0+

∫ +∞

−∞
dx

1

1 + x2
ϕ(ϵx)

= (iπ − 2γE)πϕ(0), (A10)

and in the distributional sense we have

ĝ(2)(s) = lim
ϵ→0+

ĝ(2)ϵ (s) = (iπ − 2γE)πδ(s). (A11)

3. ĝ
(3)
ϵ (s)

The action of ĝ
(3)
ϵ (s) on a test function is the most com-

plicated because of the arctan(s/ϵ) and must be handled
carefully. This term does not have a well-defined limit at
ϵ → 0+, implying we must work at finite (small) ϵ. We
find

⟨ĝ(3)ϵ , ϕ⟩ = −2

{∫
|s|≤1

ds
s arctan s/ϵ

s2 + ϵ2
ϕ(s) +

∫
|s|≥1

ds
s arctan s/ϵ

s2 + ϵ2
ϕ(s)

}

= −2

{∫
|s|≤1

ds
s arctan s/ϵ

s2 + ϵ2
ϕ(0) +

∫
|s|≤1

ds
s arctan s/ϵ

s2 + ϵ2
(ϕ(s)− ϕ(0)) +

∫
|s|≥1

ds
s arctan s/ϵ

s2 + ϵ2
ϕ(s)

}

= −2

{
ϕ(0)

∫
|s|≤1

ds
s arctan s/ϵ

s2 + ϵ2
+
π

2

∫
|s|≤1

ds
ϕ(s)− ϕ(0)

|s|
+
π

2

∫
|s|≥1

ds
ϕ(s)

|s|

}

= (2π log ϵ+ 2π log 2)ϕ(0) +O(ϵ)− π

{∫
|s|≤1

ds
ϕ(s)− ϕ(0)

|s|
+

∫
|s|≥1

ds
ϕ(s)

|s|

}
, (A12)

where we have immediately split the integration domain
between |s| ≤ 1 and |s| ≥ 1: the first one contains a
divergence at s = 0, while the second is finite. In order
to isolate the divergence we add and remove the same
integral with the test function ϕ(s) evaluated at s = 0.

Hence, for small ϵ, ĝ
(3)
ϵ can be written in the distribu-

tional sense as

ĝ(3)ϵ (s) = 2π {(log ϵ+ log 2) +O(ϵ)} δ(s)− π

(
1

|s|

)
1

,

(A13)
where we have defined

(
1

|s|

)
1

=

∫
|s|≤1

ds
ϕ(s)− ϕ(0)

|s|
+

∫
|s|≥1

ds
ϕ(s)

|s|
. (A14)

4. ĝ
(4)
ϵ (s)

The last piece is again non-trivial and can only be eval-
uated for finite ϵ:

⟨ĝ(4), ϕ⟩ = −
∫ +∞

−∞
ds
ϵ log(s2 + ϵ2)

s2 + ϵ2
ϕ(s)

= −
{
2 log ϵ

∫ ∞

−∞
dx

ϕ(ϵx)

1 + x2

+

∫ ∞

−∞
dx

log(1 + x2)

1 + x2
ϕ(ϵx)

}
= −(2π log ϵ+ 2π log 2)ϕ(0) +O(ϵ), (A15)

Hence ĝ
(4)
ϵ can be written in the distributional sense
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as

ĝ(4)ϵ (s) = −{(2π log ϵ+ 2π log 2) +O(ϵ)} δ(s). (A16)

5. Final result

At this point we can combine the above results to ob-
tain F {logω} (s) = ĝ(s):

F {logω} =
1

2π
lim
ϵ→0

{
ĝ(1)ϵ + ĝ(2)ϵ + ĝ(3)ϵ + ĝ(4)ϵ

}
, (A17)

which evaluates to

F {logω} (s)

= p.v.

(
1

2s

)
−
(

1

2|s|

)
1

−
(
γE − iπ

2

)
δ(s). (A18)

We see that the terms involving log ϵ have cancelled, as
they must given the definition (A2). By following the
same steps, it is easy to prove that

F {log(−iω)} (s) = p.v.

(
1

2s

)
−
(

1

2|s|

)
1

− γEδ(s).

(A19)

As a final remark we emphasize that we split the inte-
gration domain between |s| ≤ 1 and |s| ≥ 1 for simplicity.
One could redo all the computations with a generic par-
tition of the integration domain, for instance(

1

|s|

)
α

=

∫
|s|≤α

ds
ϕ(s)− ϕ(0)

|s|
+

∫
|s|≥α

ds
ϕ(s)

|s|
. (A20)

Different choices of α will move terms between these con-
tributions and the Dirac delta contributions, leaving the
total distribution F {log(−iω)} unaltered. Concretely,

F {log(−iω)} (s)

= p.v.

(
1

2s

)
−
(

1

2|s|

)
α

− (γE + logα)δ(s). (A21)

Appendix B: Derivation of the logarithmic terms in
the scalar field

Here we give the full derivation of the logarithmic con-
tributions to the field described in Sec. III C, specialising
to s = 0. The discussion will be for a generic (l,m) mode
and k = 1.
We have to compute integrals of the form

I =

∫ ∞

−∞
dt′0G

(j,1)
ℓm (r, r(t′))e−imϕ(t′)

×
∫ ∞

−∞

dω

2π
eiω(t′−t)ωj logω, (B1)

where t, t′, and ω are coordinate times and frequency,
i.e. not yet rescaled with b, v.
There are several ways to deal with this integral. Here

we work with the convolution theorem, which states∫
dω

2π
eiωξf(ω)g(ω) =

∫
dy ĝ(y)f̂(ξ − y)

=

∫
dyf̂(y)ĝ(ξ − y) , (B2)

where hatted quantities denote inverse Fourier trans-
forms (IFTs), and we have f(ω) = ωj , g(ω) = logω.

Knowing that f̂(t) = i−jδ(j)(t), we can write

I =

∫
dt′0G

(j,1)
ℓm (r, r(t′))e−imϕ(t′)

∫
dω

2π
eiω(t′−t)ωj logω

= i−j

∫
dy ĝ(y)

×
∫
dt′ 0G

(j,1)
ℓm (r, r(t′))e−imϕ(t′)δ(j)(t′ − t− y)

= i−j(−1)j

×
∫
dy ĝ(y)

dj

dt′j

[
0G

(j,1)
ℓm (r, r(t′))e−imϕ(t′)

] ∣∣∣∣
t′=t+y

= ij
∫ ∞

−∞
dy clm(r, t+ y)ĝ(y) , (B3)

with

clm(r, t+y) =
dj

dtj

[
0G

(j,1)
ℓm (r, r(t+ y))e−imϕ(t+y)

]
. (B4)

The remaining integral can be handled using the distri-
butional definition of ĝ (the IFT of logω), as calculated
in Appendix A. We describe this approach in the first
subsection below.
An alternative approach is to use the Hadamard partie

finie procedure to evaluate both the IFT and the remain-
ing integral (B3). We describe that approach at the end
of this appendix. While the partie finie usually leads to
simpler results in PN theory, we show that here it leads
to a result involving an arbitrary length scale. We fix the
length scale by comparing to the distributional definition.

1. Distributional inverse Fourier transform

The distributional IFT of logω, denoted ĝ in Eq. (B3),
is computed in detail in Appendix A. It is given by
Eq. (A18) with the definitions Eq. (3.18) and (3.19). We
now plug this expression into Eq. (B3), and we find
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I = ij
{
−
∫
dy clm(r, t+ y)

(
γE − iπ

2

)
δ(y) +

1

2

∫
dy

[
p.v.

(
1

y

)
−
(

1

|y|

)
1

]
clm(r, t+ y)

}
= −ij

{(
γE − iπ

2

)
clm(r, t) +

[∫ 1

0

dy
clm(r, t− y)− clm(r, t)

y
+

∫ ∞

1

dy
clm(r, t− y)

y

]}
. (B5)

We observe that the terms in square brackets can equivalently be written in the form we use in Eq. (3.22), as

lim
ϵ→0

[
clm(r, t) log ϵ+

∫ ∞

ϵ

dy
clm(r, t− y)

y

]
.

By following the same steps it is possible to compute the analogous result with ĝ now the IFT of log(−iω). In this
case we find

I = −ij
{
γE clm(r, t) +

∫ ∞

1

clm(r, t− y)

y
dy +

∫ 1

0

clm(r, t− y)− clm(r, t)

y
dy

}
. (B6)

2. Hadamard partie finie regularization

We now consider the alternative of adopting a partie
finie (Pf) regularization of the IFT and of Eq. (B3). The
Pf of a divergent integral can be defined in several equiv-
alent ways. We write it as

Pf
y0

∫
f(y)dy = FP

B→0

∫
(y/y0)

Bf(y)dy, (B7)

where y0 is an arbitrary length scale, B is a complex
number, and the ‘finite part’ operation FPB→0 picks out
the coefficient of B0 in a Laurent series around B = 0.

In the case of the IFT of logω, we can write

Pf
ω0

∫ ∞

−∞
eiωt logω dω

= FP
B→0

FP
ϵ→0

∫ ∞

−∞
eiωt(ω/ω0)

B ω
ϵ

ϵ
dω, (B8)

where we have used FPϵ→0
ωϵ

ϵ
= logω together with the

fact that Pf applied to a convergent integral returns the
integral itself, and we work in the region−1 < ReB < 0.5

Since the integrand no longer involves logarithms, it can
be straightforwardly evaluated to find

ĝPf ≡
1

2π
Pf
ω0

∫ ∞

−∞
eiωt logω dω =

1

2y
− 1

2|y|
, (B9)

which is to be compared to Eq. (A18). This result is
independent of the arbitrary scale ω0.
To obtain the Pf-regularized Eq. (B3), we first consider

5 Note any arbitrary scale ω1 inserted into this second finite part
cannot contribute to the IFT because Pfω1

∫∞
−∞ eiωtdω = 0 for

all ω1.

a generic version of the integral,

Pf
y0

∫ ∞

−∞
ϕ(y)ĝPf(y)dy

= FP
B→0

∫ ∞

−∞

yB

2yB0

(
1

y
− 1

|y|

)
ϕ(y)dy (B10)

for an arbitrary test function ϕ. The first term immedi-
ately yields

FP
B→0

∫ ∞

−∞

yB−1

2yB0
ϕ(y)dy = p.v.

∫ ∞

−∞

ϕ(y)

2y
dy, (B11)

where p.v. denotes the principal value, defined in
Eq. (3.19). The second term in Eq. (B10) yields

Pf
y0

∫ ∞

−∞

ϕ(y)

2|y|
dy

= FP
B→0

∫ ∞

0

(y/y0)
Bϕ(y) + (−y/y0)Bϕ(−y)

2y
dy

= FP
B→0

∫ α

0

(y/y0)
Bϕ(y) + (−y/y0)Bϕ(−y)

2y
dy

+

∫ ∞

α

ϕ(s) + ϕ(−s)
2y

dy, (B12)

where α > 0 is arbitrary and we have immediately
set B = 0 in the integral from α to ∞ because
the integral is convergent. We now subtract and add

ϕ(0) FPB→0

∫ α

0
(y/y0)

B+(−y/y0)
B

2y dy to obtain

Pf
y0

∫ ∞

−∞

ϕ(y)

2|y|
dy

=

∫ α

0

ϕ(y) + ϕ(−y)− 2ϕ(0)

2y
dy

+ ϕ(0) FP
B→0

∫ α

0

(y/y0)
B + (−y/y0)B

2y
dy

+

∫ ∞

α

ϕ(s) + ϕ(−s)
2y

dy. (B13)
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Here we have removed the FP operation on the first term
because it is now convergent. The remaining Pf integral
immediately evaluates to

ϕ(0) FP
B→0

∫ α

0

(y/y0)
B + (−y/y0)B

2y
dy

=

[
iπ

2
+ log(α/y0)

]
ϕ(0). (B14)

Given these results, we can rewrite Eq. (B12) as the ac-

tion of a distribution Pfy0

(
1

2|y|

)
on a test function ϕ,

where

Pf
y0

(
1

2|y|

)
=

(
1

2|y|

)
α

+

[
iπ

2
+ log(α/y0)

]
δ(y) (B15)

with
(

1
|y|

)
α

defined in Eq. (A20). Equation (B15)

is independent of α, for the reason explained below
Eq. (A20). However, it depends on the arbitrary reg-
ularization scale y0.
Combining Eqs. (B11) and (B14), we can write the

partie finie integral (B10) as the action of a distribution,

Pf
y0

ĝPf(y)

= p.v.

(
1

2y

)
−
(

1

2|y|

)
1

+

(
log y0 −

iπ

2

)
δ(y), (B16)

on ϕ. Here we have chosen α = 1 (without loss of gener-
ality).
From this calculation, we observe that the partie finie

introduces an arbitrary constant y0 into the calculation.
We can fix this constant by comparing to the unambigu-
ous result (A18). The result is6

y0 = −e−γE . (B17)

An alternative method of determining y0 would be via
a matching calculation in which an observable is calcu-
lated in our PM-PN limit and compared to a calcula-
tion of the same observable from a separate regime that
does not suffer from the same divergent integrals. How-
ever, we make two comments: First, y0 does not depend
on any physical scale in the problem. Second, the solu-
tion for our scalar field is manifestly finite in the PM-PN
limit when formulated as an integral of a time-domain
retarded Green function against the time-domain charge
density; any superficial divergence that appears is then a
consequence of the treatment of the forward and inverse
Fourier transforms, and our distributional treatment of
the inverse Fourier transform should automatically en-
sure we recover the same finite result we would if we
worked entirely in the time domain. We therefore con-
clude that the appearance of an arbitrary constant must
be a failure of the partie finie method rather than a break-
down of our perturbative expansions.
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