
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:24106–24137
https://doi.org/10.1007/s11227-024-06292-6

1 3

LATA: learning automata‑based task assignment
on heterogeneous cloud computing platform

Soulmaz Gheisari1 · Hamid ShokrZadeh2

Accepted: 7 June 2024 / Published online: 3 July 2024
© The Author(s) 2024

Abstract
A cloud computing environment is a distributed system where idle resources are acces-
sible across a wide area network, such as the Internet. Due to the diverse specifications
of these resources, computational clouds exhibit high heterogeneity. Task scheduling,
the process of dispatching cloud applications onto processing nodes, becomes a criti-
cal challenge in such environments. Ensuring high utilization in this heterogeneous
environment entails identifying suitable machines or virtual machines capable of effi-
ciently executing jobs, constituting a multi-objective optimization problem. This paper
proposes a dynamic Learning Automata-based Task Assignment algorithm, named
LATA, to address this challenge. In the algorithm, each application is represented as a
Directed Acyclic Graph, with tasks as nodes and data dependencies as edges. Initially,
tasks are grouped based on their data dependencies to consolidate independent tasks
into one group. Subsequently, a variable-structure learning automaton is assigned to
each group of tasks to identify appropriate task-machine combinations. The primary
objectives of LATA include minimizing makespan and energy consumption by facil-
itating efficient task placement to achieve load balance and maximize resource uti-
lization. Additionally, an enhancement is proposed, involving the use of a different
grouping policy prior to task assignment to further improve performance. Computer
simulation results demonstrate the superior performance of the proposed algorithms
in highly heterogeneous environments compared to state-of-the-art algorithms. Nota-
bly, total execution time and energy consumption decrease by up to 50% and 37%,
respectively.

Keywords Cloud computing · Directed acyclic graph · Learning automata · Task
scheduling

 * Soulmaz Gheisari
 S.Gheisari@soton.ac.uk

 Hamid ShokrZadeh
 Shokrzadeh@gmail.com

1 Electronics and Computer Science, University of Southampton, Southampton, UK
2 Department of Computer Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06292-6&domain=pdf

24107

1 3

LATA: learning automata‑based task assignment on heterogeneous…

1 Introduction

A cloud computing platform, typically operating under a "Pay for Use" policy, offers
global, on-demand availability to a shared pool of resources, including storage space
and computing servers with diverse specifications and high heterogeneity. Clients
submit their requests to cloud environments to access these resources reliably and
stress-free. In essence, the primary goal of a cloud infrastructure is to provide an
easy-to-use and dependable workspace for dynamic applications used by various
users. However, cloud computing exemplifies heterogeneous computing (HC)
environments, characterized by dynamically fluctuating delays, changing demands
for quality of service, and unpredictable behavior due to the high heterogeneity of
resources and user types. Consequently, task scheduling in the cloud environment,
involving the proper assignment of tasks to these highly heterogeneous servers, has
become a major focal point of numerous efforts in recent years. [1–4]

In HC environments, including cloud environments, task assignment definitions
vary based on the applications and platform characteristics. In such systems, users
strive to achieve efficient scheduling parameters by allocating all their tasks to the
available resources.

To begin with, a Directed Acyclic Graph (DAG) is used to illustrate the data
dependencies among various tasks within an application. It indicates which tasks
must be executed before others and the amount of data that needs to be transferred
to execute subsequent tasks. These tasks are then assigned to machines or virtual
machines (VMs). Each VM executes a single task at a time in a non-preemptive
manner. The number of machines or VMs and the application characteristics are
known in advance. Assigning tasks to the machines or VMs and scheduling their
execution constitutes a nondeterministic polynomial time (NP)-hard problem
[5]. This problem involves allocating tasks to machines or VMs in a manner that
maximizes resource utilization, minimizes response time and energy consumption,
and maintains system balance [5–10].

In this article, we propose a new Learning Automata-based algorithm for Task
Assignment in cloud environments, named LATA. LATA aims to optimize the
weighted sum of various metrics, including total execution time (makespan), the
load of each machine, and energy consumption. While previous approaches suffer
from shortcomings such as high latency, inefficient machine selection, and poor
resource management, our contributions can be summarized as follows:

• Low task assignment latency: By modeling applications as DAGs and using
learning automata (LATA) with time complexity O(1) for task assignment,
LATA achieves higher efficiency.

• Cost-effective resource provisioning: LATA reduces makespan and energy
consumption during task scheduling through reinforcement learning, facilitating
the discovery of optimal task-machine pairs.

• Efficient resource management: LATA ensures efficient resource utilization,
preventing both resource overloading and underloading.

24108 S. Gheisari, H. ShokrZadeh

1 3

Moreover, LATA offers benefits in real-world applications, such as executing
user requests faster and with sufficient energy consumption. Two significant
advantages are highlighted:

• Preventing global warming: By reducing energy consumption and enhancing
resource efficiency, LATA contributes to reducing electricity usage in servers,
thereby mitigating its impact on global warming.

• Boosting cloud provider throughput: LATA’s load balancing and energy-
efficient resource allocation make resource management easier for providers.

The remainder of the paper is structured as follows: Sect. 2 discusses related
works, while Sect. 3 covers preliminaries such as learning automata and cloud
platform models, along with definitions used in subsequent sections. Section 4
presents the proposed learning automata-based algorithm, followed by a
discussion of simulation results in Sect. 5. Finally, Sect. 6 provides a summary of
our work and conclusions.

2 Related works

In recent years of the survey, it has been noticed that many heuristics or meta-
heuristics task scheduling algorithms are introduced to optimize the performance
and efficiency of cloud computing systems. The main purpose of task scheduling
algorithms is assigning tasks to machines or VMs in a way that maximize the
resource utilization, minimize the total execution time and energy consumption,
while the whole system remains balanced. In the following some highlighted
algorithms are explained.

In [1], the authors provided a new variation of heuristic-based algorithm
called Heterogeneous Earliest Finish Time (HEFT) to carry out task scheduling
and resources allocation in cloud environments. The HEFT algorithm schedules
the DAG tasks into heterogeneous processors in two stages: the rank generation
(based on the average communication and computation cost) and the processor
selection stages (based on decreasing the schedule length of the task).

The authors in [11] proposed a new task priority strategy and applied task
duplication methods, for solving task scheduling problem for dependent tasks in
heterogeneous cloud computing systems. They use optimistic cost table downward
(OCTd) and optimistic cost table upward (OCTu) procedures to prioritize tasks in an
efficient ordered list; then, Heterogeneous Earliest Finish Time (HEFT)-duplication
method is used to perform task duplication method which pointedly decreases
makespan.

In [12], a Grouping Genetic Algorithm (GGA) with different mutation
operators (called 2-Items Reinsertion) designed to solve the Parallel-Machine
scheduling problem with unrelated machines and makespan minimization.
Experimental results indicate that makespan is considerably reduce by replacing
the original mutation operator with the new one.

24109

1 3

LATA: learning automata‑based task assignment on heterogeneous…

The authors in [13] provided a conceptual framework to achieve an effective job
scheduling technique. A new priority-based scheduling method to fair job scheduling
is presented in this paper.

In [14], the authors proposed a third-generation multi-objective optimization
method called Nondominated Sorting Genetic Algorithm (NSGA-III) to schedule a
set of user tasks on a set of available virtual machines (VMs) in cloud environments
based on a new multi-objective adaptation function to improve the energy
consumption and the cost.

An enhanced sunflower optimization (ESFO) meta-heuristic algorithm has
been proposed in [15] to improve the performance of the existing task scheduling
algorithms. The ESFO improves the pollination operator of the conventional SFO
algorithm to accurately explore the solution space. The Authors claim that ESFO
can find near-optimal scheduling in a polynomial time complexity.

The authors in [16] combine Genetic Algorithm and Electro Search algorithm
(HESGA) in order to consider the task scheduling parameters such as load balancing,
makespan, resources utilization, and the cost of multi-cloud environments. Proposed
method uses genetic algorithm advantages to provide the best local optimal solutions
and Electro search algorithm to provide the best global optima solutions. HESGA is
implemented in Cloudsim and is compared with other algorithms such as HPSOGA,
ES, GA, and ACO in terms of makespan, cost, and response time.

Another meta heuristic task scheduling algorithm has been proposed in [17]
based on using particle swarm optimization (PSO) in heterogeneous multi-cloud
environments. In the article, using the working mechanism of particle swarm
optimization (PSO) algorithm, a set of solutions or schedules is created. A solution
with the most efficient QoS parameters, i.e., makespan, cloud utilization, and energy
consumption is chosen for allocating the task into the heterogeneous multi-cloud
environment.

In [18], another heuristic model is presented based on mean grey wolf
optimization algorithm. The simulation results show that the proposed mean-GWO
algorithm improves the performance of task scheduling compared with the existing
PSO and standard GWO techniques.

The authors in [19] proposed a game theory-based approach for managing
dynamic cloud services, such as resource allocation and task assignment. Their main
contribution is to guarantee the reliability of cloud services, based on their claim.

In [20], the authors suggested an algorithm for scheduling the tasks. It uses the
standard deviation of the estimated task execution time on the resources available in
the computing environment. This approach considers the heterogeneity of the task.
The authors presented an improved version of the algorithm in [21]. It is used for
compilation of a scheduling list, where the priorities of the tasks are computed.

Two novel algorithms for heterogeneous processors have been proposed in
[10]. The main goal of the algorithm is achieving fast scheduling time and high
performance. The experimental results showed that they outperformed existing
algorithms in terms of the quality and the cost of schedules.

In [22], a state-of-the-art duplication-based algorithm was proposed to reduce the
delay and makespan of task assignment. The proposed algorithm schedules tasks
with the least redundant duplications.

24110 S. Gheisari, H. ShokrZadeh

1 3

Moreover, in [23] authors proposed a load balancing technique based on using
modified PSO task scheduling (LBMPSO) to schedule tasks over the available
cloud resources. They claimed that LBMPSO minimizes the makespan and
maximizes resource utilization by having proper information among the tasks and
resources.

A multi-objective genetic algorithm is proposed in [24]. The article proposed
an initialization scheduling sequence scheme, in which each task’s data size is
considered when initializing its virtual machine instance to achieve a proper trade-
off between the makespan and the energy consumption. In the early evolution stage,
traditional crossover and mutate operators are performed to keep the population’s
exploration and the Longest Common Subsequence (LCS) of multiple elite
individuals is saved during the later evolution stage. The integration of the LCS in
GA can satisfy different requirements in different evolution stages, and then to attain
a balance between the exploration and the exploitation.

In [25], a novel methodology for dynamic load balancing among the virtual
machines was proposed. The algorithm uses hybridization of modified Particle
swarm optimization (MPSO) and improved Q-learning algorithm. The hybridization
process is used to adjust the velocity of the MPSO through the gbest and pbest based
on the best action generated through the improved Q-learning. The aim of
hybridization is to enhance the performance of the machine by balancing the
load among the VMs, maximize the throughput of VMs and maintain the balance
between priorities of tasks by optimizing the waiting time of tasks.

Moreover, some learning automata-based task scheduling algorithms were
proposed in [26–30]. The learning process in [26] begins with an initial population
of randomly generated learning automata. Each automaton by itself represents a
stochastic scheduling, and the scheduling is optimized within a learning process.
The authors claimed that compared with genetic approaches to DAG scheduling,
it achieves better results because in their approach learning automata is applied
to find the most suitable position for the genes in addition to looking for the best
chromosomes, whilst genetic approaches look for the best chromosomes within
genetic populations.

In [27], three learning automata-based algorithms for mapping of a class of
independent tasks over highly heterogeneous grids were presented. The main
difference between the algorithms is related to the implementation of their
reinforcement signals.

The authors in [28] proposed a framework based on a learning automata model
for task assignment in heterogeneous computing systems. The proposed model can
be used for dynamic task assignment and scheduling and can adapt itself to changes
in the hardware or network environment.

A stochastic model for decentralized control of task scheduling in distributed
processing systems is presented in [29]. The main feature of the model is applying
learning automata on each host which causes low execution overhead as well as
potential reliability.

In [30], authors used learning algorithm to cope with the weakness of GA based
method. In fact, they used the Learning automata as local search in the memetic
algorithm.

24111

1 3

LATA: learning automata‑based task assignment on heterogeneous…

A hybrid algorithm that combined Gray Wolf Optimization (GWO) and
Genetic Algorithm (GA) for multi-objective task scheduling in cloud computing
was proposed in [31]. The authors claimed that the algorithm minimizes energy
consumption and makespan. However, load balancing was not considered.

In [32], a Chameleon and Remora Search Optimization Algorithm (CRSOA)
was proposed for task scheduling in cloud environments, exploring uncertain
factors such as millions of instructions per second (MIPS) and network bandwidth
during the scheduling process. However, the algorithm experienced degradation in
makespan and migration cost in real-world computing scenarios.

In [33], an Improved Coati Optimization Algorithm-based model for distribution
and scheduling of tasks was developed, considering factors such as VMs, cost, and
time. The model included a multi-objective fitness function aiming to minimize
makespan while maximizing resource utilization rate. However, it could only
handle task scheduling in homogeneous cloud computing environments and faced
challenges in heterogeneous environments. Additionally, the model’s performance
decreased with an increase in the number of tasks.

Table 1 provides a concise overview of the literature. Time complexity emerges
as a significant concern in many previous studies [1, 11, 12, 14, 19, 22–24, 26, 27,
31, and 33], representing a major challenge in dynamic environments like clouds.
This issue often arises from the high complexity of the optimization methods
employed and/or the initial scheduling states. Furthermore, several methods
encounter scalability challenges regarding workload size and/or type [1, 11, 16–23,
25, 26, 28, 30–31]. Dependency on optimization algorithm parameters presents
another hurdle in [15, 27–30].

In this paper, two grouping strategies are implemented to address scalability
concerns. By leveraging Learning Automata (LA), whose time complexity is
O(1), we aim to mitigate algorithmic complexity. While the performance of the
proposed algorithm is influenced by the learning parameter of LA, employing a
straightforward learning algorithm seeks to minimize its impact while preserving
performance.

3 Preliminaries

In this section, we provide the necessary fundamentals of the proposed solution.
Firstly, we introduce learning automata, a reinforcement learning technique pivotal
to our approach. Then, we describe the scheduling system model, laying the
foundation for the subsequent discussion.

3.1 Leaning automata

A learning automaton (LA) is an abstract machine learning model that falls under
the category of reinforcement learning. It randomly selects one action from its finite
action set and executes it within a random environment. The environment subse-
quently evaluates the action selected by the automaton and provides feedback in

24112 S. Gheisari, H. ShokrZadeh

1 3

Ta
bl

e
1

 S
um

m
ar

iz
in

g
th

e
af

or
em

en
tio

ne
d

re
la

te
d

w
or

ks

A
rti

cl
es

O
pt

im
iz

at
io

n
m

et
ho

ds
O

bj
ec

tiv
es

Li
m

ita
tio

ns

Ta
o

H
ai

 e
t a

l.
[1

]
H

et
er

og
en

eo
us

ea

rli
es

t fi
ni

sh
 ti

m
e

(H
EF

T)

Im
pr

ov
em

en
t o

f H
EF

T
A

lg
or

ith
m

Th
e

m
ak

es
pa

n
of

 th
e

V
M

s’
 w

or
kfl

ow

su
bm

is
si

on
s

Tr
ad

e-
off

 b
et

w
ee

n
tim

e
co

m
pl

ex
ity

 a
nd

 p
er

fo
rm

an
ce

D
ep

en
de

nc
y

on
 p

ro
bl

em
 c

ha
ra

ct
er

ist
ic

s
St

at
ic

 p
ro

bl
em

 se
tti

ng
s

Sc
op

e
of

 o
pt

im
iz

at
io

n
(r

es
ou

rc
e

al
lo

ca
tio

n,
 lo

ad

ba
la

nc
in

g,
 o

r f
au

lt
to

le
ra

nc
e

is
 m

is
si

ng
)

N
oo

ria
nT

al
ou

ki
 e

t a
l.

[1
1]

O
C

Td
 +

 O
C

Tu
H

EF
T

Ta
sk

 p
rio

rit
iz

at
io

n
&

 d
up

lic
at

io
n

M
ak

es
pa

n,
 sp

ee
du

p,
 S

LR
, a

nd
 e

ffi
ci

en
cy

Sp
ec

ifi
c

ap
pl

ic
at

io
n

do
m

ai
n

Sc
al

ab
ili

ty
 c

on
ce

rn
s

A
lg

or
ith

m
 c

om
pl

ex
ity

R
am

os
-F

ig
ue

ro
a

et
 a

l.
[1

2]
G

G
A

D

ec
re

as
e

M
ak

es
pa

n
A

lg
or

ith
m

 p
er

fo
rm

an
ce

Im
en

e
et

 a
l.

[1
4]

N
SG

A
-I

II
Th

e
en

er
gy

 c
on

su
m

pt
io

n
an

d
th

e
co

st
Re

la
tiv

el
y

hi
gh

 ru
nt

im
e

Lo
w

 sp
ee

d
co

nv
er

ge
nc

e
Em

am
i e

t a
l.

[1
5]

ES
FO

O
pt

im
al

 sc
he

du
lin

g
w

ith
 re

du
ce

d
co

m
pl

ex
ity

M
ak

es
pa

n
an

d
en

er
gy

 c
on

su
m

pt
io

n
Th

e
pe

rfo
rm

an
ce

 o
f E

SF
O

 a
nd

 A
lg

or
ith

m
 T

un
in

g
G

en
er

al
iz

at
io

n
of

 R
es

ul
ts

Ve
lli

an
gi

ri
et

 a
l.

[1
6]

H
ES

G
A

M
ak

es
pa

n,
 lo

ad
 b

al
an

ci
ng

, u
til

iz
at

io
n

of

re
so

ur
ce

s,
an

d
co

st
of

 th
e

m
ul

ti-
cl

ou
d

Si
m

pl
ifi

ca
tio

n
of

 re
al

-w
or

ld
 sc

en
ar

io
s

C
er

ta
in

 a
ss

um
pt

io
ns

 a
nd

 si
m

pl
ifi

ca
tio

ns
Pr

ad
ha

n
et

 a
l.

[1
7]

PS
O

Q
oS

 p
ar

am
et

er
s l

ik
e

m
ak

es
pa

n,
 c

lo
ud

 u
til

iz
at

io
n

an
d

en
er

gy
 c

on
su

m
pt

io
n

Sc
al

ab
ili

ty
: w

he
n

th
e

nu
m

be
r o

f t
as

ks
 a

nd
 c

lo
ud

s
in

cr
ea

se
s

N
at

es
an

 e
t a

l.
[1

8]
G

W
O

M
ak

es
pa

n
an

d
en

er
gy

 c
on

su
m

pt
io

n
Pe

rfo
rm

an
ce

 e
nh

an
ce

m
en

t
Si

m
pl

ifi
ca

tio
n:

 D
ep

en
di

ng
 so

le
ly

 o
n

si
m

ul
at

ed

ex
pe

rim
en

ts
 m

ig
ht

 li
m

it
th

e
ge

ne
ra

liz
ab

ili
ty

 o
f t

he

re
su

lts
 to

 re
al

-w
or

ld
 sc

en
ar

io
s

Sh
in

 e
t a

l.
[1

9]
G

am
e

th
eo

ry
D

yn
am

ic
 ta

sk
 a

ss
ig

nm
en

t
Re

so
ur

ce
 m

an
ag

em
en

t
Pe

rfo
rm

an
ce

 im
pr

ov
em

en
t

U
til

ity
 fu

nc
tio

n
as

su
m

pt
io

ns
Si

ng
le

 re
so

ur
ce

 ty
pe

 a
ss

um
pt

io
n

A
lg

or
ith

m
ic

 c
om

pl
ex

ity
M

un
ir

et
 a

l.[
20

] &
 R

ad
ul

es
cu

 e
t a

l.
[2

1]
FC

P,
 F

LB
Im

pr
ov

in
g

Pe
rfo

rm
an

ce
 a

nd
 c

os
t

Ta
sk

 m
od

el
 a

ss
um

pt
io

ns
Si

m
pl

ify
in

g
as

su
m

pt
io

ns
Th

e
al

go
rit

hm
s p

rio
rit

iz
e

ta
sk

s b
as

ed
 o

n
sp

ec
ifi

c
cr

ite
ria

, s
uc

h
as

 e
ar

lie
st

st
ar

t t
im

e
or

 fi
ni

sh
 ti

m
e,

w

hi
ch

 m
ay

 n
ot

 a
lw

ay
s o

pt
im

iz
e

ov
er

al
l s

ys
te

m

pe
rfo

rm
an

ce

24113

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Ta
bl

e
1

 (c
on

tin
ue

d)

A
rti

cl
es

O
pt

im
iz

at
io

n
m

et
ho

ds
O

bj
ec

tiv
es

Li
m

ita
tio

ns

To
pc

uo
ug

lu
 e

t a
l.

[1
0]

H
EF

T-
C

PO
P

To
ta

l e
xe

cu
tio

n
tim

e,
 q

ua
lit

y
an

d
co

st
Lo

w
 c

om
pl

ex
ity

A
ss

um
ed

 n
et

w
or

k
str

uc
tu

re
: T

he
 a

lg
or

ith
m

s a
ss

um
e

a
fu

lly
 c

on
ne

ct
ed

 n
et

w
or

k
D

yn
am

ic
 a

da
pt

at
io

n:
 T

he
 a

lg
or

ith
m

s d
o

no
t a

dd
re

ss

dy
na

m
ic

 c
ha

ng
es

 in
 sy

ste
m

 c
on

di
tio

ns
Jin

g
M

ei
 e

t a
l.

[2
2]

R
A

D
S

Re
so

ur
ce

-a
w

ar
e

sc
he

du
lin

g
Re

du
ce

d
ta

sk
 d

up
lic

at
io

n
Si

m
pl

ify
in

g
as

su
m

pt
io

ns
A

lg
or

ith
m

 c
om

pl
ex

ity
Sc

al
ab

ili
ty

Pr
ad

ha
n

et
 a

l.
[2

3]
LB

M
PS

O
O

pt
im

al
 ta

sk
 sc

he
du

lin
g

Lo
ad

 b
al

an
ci

ng
Re

so
ur

ce
 u

til
iz

at
io

n
an

d
m

ak
es

pa
n

C
om

pl
ex

ity
Sc

al
ab

ili
ty

Re
so

ur
ce

 c
on

str
ai

nt
s

D
ep

en
de

nc
y

ha
nd

lin
g

an
d

pe
rfo

rm
an

ce
 o

ve
rh

ea
d

X
ia

 e
t a

l.
[2

4]
M

O
G

A
M

ak
es

pa
n

A
nd

 E
ne

rg
y

C
on

su
m

pt
io

n
A

lg
or

ith
m

 p
er

fo
rm

an
ce

Je
na

 e
t a

l.
[2

5]
M

PS
O

, Q
M

PS
O

Re
so

ur
ce

 u
til

iz
at

io
n

Re
sp

on
se

 ti
m

e
En

er
gy

 c
on

su
m

pt
io

n
an

d
Q

oS

Si
m

pl
ifi

ed
 m

od
el

Sc
al

ab
ili

ty

M
ot

i e
t a

l.
[2

6]
D

A
G

,L
A

D
ist

rib
ut

ed
 h

et
er

og
en

eo
us

 sc
he

du
lin

g
O

pt
im

iz
in

g
Fi

ni
sh

 T
im

e
C

om
pl

ex
ity

Sc
al

ab
ili

ty
A

lg
or

ith
m

ic
 e

ffi
ci

en
cy

G
ha

nb
ar

i e
t a

l.
[2

7]
LA

O
pt

im
iz

at
io

n
of

 ta
sk

 a
ss

ig
nm

en
t

D
ep

en
de

nc
y

on
 p

ro
pe

r l
ea

rn
in

g
al

go
rit

hm
 se

le
ct

io
n

Se
ns

iti
vi

ty
 to

 p
ar

am
et

er
 tu

ni
ng

C
om

pu
ta

tio
na

l c
os

t
Ve

nk
at

ar
am

an
a

et
 a

l.
[2

8]
LA

O
pt

im
iz

in
g

m
ul

tip
le

 c
os

t c
rit

er
ia

 si
m

ul
ta

ne
ou

sly
Effi

ci
en

t t
as

k
as

si
gn

m
en

t
Se

ns
iti

vi
ty

 to
 re

w
ar

d
an

d
pe

na
lty

 p
ar

am
et

er
s

C
om

pl
ex

ity
 o

f c
os

t m
et

ric
s o

pt
im

iz
at

io
n

Pe
rfo

rm
an

ce
 a

nd
 sc

al
ab

ili
ty

M
irc

ha
nd

an
ey

 e
t a

l.
[2

9]
SL

A
D

ev
el

op
m

en
t o

f d
ec

en
tra

liz
ed

 jo
b

sc
he

du
lin

g
al

go
rit

hm
Im

pr
ov

em
en

t o
f S

LA
 m

od
el

 a
nd

 p
er

fo
rm

an
ce

Lo
w

 e
xe

cu
tio

n
ov

er
he

ad

C
om

m
un

ic
at

io
n

ov
er

he
ad

D
ep

en
de

nc
y

on
 fe

ed
ba

ck
Se

ns
iti

vi
ty

 to
 p

ar
am

et
er

 tu
ni

ng

24114 S. Gheisari, H. ShokrZadeh

1 3

Ta
bl

e
1

 (c
on

tin
ue

d)

A
rti

cl
es

O
pt

im
iz

at
io

n
m

et
ho

ds
O

bj
ec

tiv
es

Li
m

ita
tio

ns

Ja
ha

ns
ha

hi
 e

t a
l.

[3
0]

LA
C

om
m

un
ic

at
io

n
co

st
C

PU
 u

til
iz

at
io

n
an

d
m

ak
es

pa
n

Sc
al

ab
ili

ty
Si

m
pl

ifi
ca

tio
n

of
 e

nv
iro

nm
en

t
Se

ns
iti

vi
ty

 to
 re

w
ar

d
an

d
pe

na
lty

 p
ar

am
et

er
s

Ip
si

ta
 e

t a
l.

[3
1]

G
A

-G
W

O
C

os
t,

m
ak

es
pa

n,
 a

nd
 e

ne
rg

y
co

ns
um

pt
io

n
C

om
pl

ex
ity

Sc
al

ab
ili

ty
Pa

bi
th

a
et

 a
l.

[3
2]

C
R

SO
A

Ta
sk

 c
om

pl
et

io
n

ra
te

, l
oa

d
ba

la
nc

e,
 sc

he
du

lin
g

co
st

an
d

m
ak

es
pa

n
H

an
dl

in
g

th
e

lo
ad

 b
al

an
ci

ng

Sc
al

ab
ili

ty
Th

eo
re

tic
al

 a
ss

um
pt

io
ns

si
m

pl
ifi

ca
tio

ns
Ta

m
ila

ra
su

 e
t a

l.
[3

3]
IC

O
A

TS
C

os
t,

tim
e,

 m
ak

es
pa

n
En

ha
nc

es
 th

e
tu

rn
ar

ou
nd

 e
ffi

ci
en

cy
H

om
og

en
eo

us
 e

nv
iro

nm
en

t
C

om
pl

ex
ity

 h
an

dl
in

g
Li

m
ite

d
fa

ct
or

 c
on

si
de

ra
tio

n

24115

1 3

LATA: learning automata‑based task assignment on heterogeneous…

the form of a reinforcement signal. Using this feedback and the selected action, the
automaton updates its internal state and determines its next action. The interaction
between the learning automaton and the environment is depicted in Fig. 1 [34, 35].

The environment is defined by a triple, E = {α, β, c} where α = {α1, α2, …, αr}
represents a finite input set, β = {β1, β2, …, βn} depicts the output set and c = {c1, c2,
…, cr} shows a set of penalty probabilities, where each element ci of c corresponds
to one input action αi. Environments where β takes only binary values (0 or 1) are
referred to as P-models. If the output set comprises more than two elements, each
taking values in the interval [0, 1], the environment is known as a Q-model. Lastly,
when the output is a continuous random variable in the interval [0, 1], it is termed
an S-model environment. Additionally, learning automata are classified into fixed-
structure [34] and variable-structure types; here, the variable-structure learning
automata (VSLA) is considered in an S-model environment.

A variable-structure automaton is defined by the quadruple {α, β, p, T}, in which
α = {α1, α2, …, αr} represents the action set, β = {β1, β2, …, βn} denotes the input set,
p = {p1, p2, …, pr} represents the action probability set, and finally p(n + 1) = T[α(n),
β(n), p(n)] illustrates the learning algorithm. This automaton operates as follows:
based on the action probability set p, an action αi, is randomly selected to perform
on the environment. After receiving feedback from the environment in the form of
a reinforcement signal, the automaton updates its action probability set based on
Eq. (1) for favorable responses and Eq. (2) for unfavorable ones.

(1)pi(n + 1) = pi(n) + a
(
1 − pi(n)

)

pj(n + 1) = pj(n) + a
(
pj(n)

)
∀jj ≠ i

(2)pi(n + 1) = (1 − b)pi(n)

pj(n + 1) =
b

r − 1
+ (1 − b)pj(n)∀jj ≠ i

Fig. 1 Learning automata con-
nection with environment [34] Environment

Learning
Automata

β(n)

α(n)

24116 S. Gheisari, H. ShokrZadeh

1 3

In these two equations, a and b represent reward and penalty parameters, respec-
tively. If a = b, the learning algorithm is called LR_P

1; if a < < b, it is called LRεP
2;

and if b = 0, it is called LR-I.3 For more information about learning automata, refer
to [34].

A single automaton is generally sufficient for learning the optimal value of one
parameter. However, for multi-dimensional optimization problems, we need a
system consisting of as many automata as there are parameters [35]. Let A1,… ,An
be the automata involved in an N-player game. Each play of the game consists
of choosing an action by each learning automaton and then getting the receiving
payoffs or reinforcement signals from the environment for this choice of actions
by the group of learning automata. Let p1(k),… , pn(k) be the action probability
distributions of N automata; at each instant k, each automaton, Ai, chooses an action
an(k) independently and at random according to pi(k) , 1 ≤ i ≤ N . This set of N
actions is input to the environment, and the environment responds with N random
payoffs, which are supplied as reinforcement signals to the corresponding automata
[35]. In this paper, a game of � learning automata is applied to map � tasks to �
machines or VMs on them.

3.2 Scheduling system model

This section describes a scheduling system model in cloud computing environments,
consisting of heterogeneous servers. Figure 2 shows the schematic representation

Fig. 2 model of scheduling
system in the cloud computing
platform

1 Linear Reward-Penalty.
2 Linear Reward epsilon Penalty.
3 Linear Reward Inaction.

24117

1 3

LATA: learning automata‑based task assignment on heterogeneous…

of the environment. The model comprises a cloud environment, executable applica-
tions, and a central scheduling system. The scheduling system consists of learning
automata, a directed acyclic graph (DAG) representing various tasks of an appli-
cation and the data dependencies between them, and a server model illustrating
machines as well as communication costs between them (machine-to-machine data
transfer costs). The tasks of the DAG are assigned to the servers through a game of
learning automata. Then, cost metrics such as total execution time, average server
load, and energy consumption [14, 17, 24, 32] are applied to calculate the reinforce-
ment signals, which are fed back to the learning automata. Each automaton updates
its action probability set based on the received signal. This process repeats until the
scheduling system effectively assigns all tasks to the servers (VMs). This model
can adapt successfully to changes in applications, servers including VMs, or the
network.

3.2.1 Definitions

In the DAG, T = {t1, t2 … tτ} represents the set of tasks; the data dependency
between each pair of tasks is represented by a τ × τ matrix DD, where τ is the total
number of tasks in the DAG. DD(i, j) shows the amount of data that should be
transferred from task i to task j. In other words, it is the weight of the edge which
connects nodes (tasks) i and j.

The expected execution time for each task on each machine’s VMs is known prior
and is contained within a τ × μ matrix ET (execution time), where τ is the number
of tasks and μ is the number of machines. ET(i, j) depicts the execution time of
task i on the VMs of machine j (All VMs of a server are assumed to have the same
configuration and can be assigned tasks equally). The weight of each element in the
DAG wi is computed by Eq. (3).

The cost of communication between any two machines, as well as between VMs
on different machines, is also known as a priori and is represented by a μ × μ matrix
named CC.

Let �(i) = j be defined as the assignment of task i to machine j. Therefore,
transfer cost between two tasks i and j, denoted as �(i, j) , is computed as
�(i, j) = DD(i, j) × CC(�(i),�(j)) . If there is no certain assignment, it is calculated
using Eq. (4):

where pk and pl are the probabilities of choosing machine k and machine l,
respectively.

Transfer cost is zero if two tasks connected by an edge are executed on the same
machine, even if the VMs are different.

(3)wi =

∑�

j=1
ET(i, j)

�

(4)�(i, j) = DD(i, j) ×

�∑

k=1,l=1

pk × pl × CC(k, l)

24118 S. Gheisari, H. ShokrZadeh

1 3

3.2.2 Cost metrics

In order to evaluate task assignment performance, several metrics must be
considered, including total execution time (makespan), the load of each machine,
and energy consumption. The objective of task scheduling is to minimize makespan,
balance the load of machines, and minimize total energy consumption.

The load of a machine is defined as the time taken to execute all its assigned tasks;
in other words, it is the time when the last assigned task finishes. The maximum load
value among all μ machines is referred to as the makespan; therefore, to minimize
the makespan, the load on the most heavily loaded machine should be minimized,
indicating that the load of all machines should be balanced.

If the total load of a particular machine, such as j, at iteration n is represented as
Lj(n) , then we have Eq. (5).

where ti is the last task executed on machine j; FT
(
ti, j

)
 represents the finish time

when task ti on machine j terminates, and it is defined by Eq. (6).

where ST(ti, j) represents the time when ti can start executing on machine j.
Accordingly, Eq. (7) is used to calculate the makespan Tμ at iteration n.

To balance the servers’ load, the ideal average of load δideal is computed. Let η
illustrate the average of transfer cost for all tasks, it is calculated as follows:

Then,

where tidle
j

 represents the idle time between two adjacent VMs on machine j. Equa-
tion (10) calculates the average load of all machines at iteration n. The closer
AVGload(n) is to �ideal , the better the task scheduling of iteration n.

Eventually, an energy model is needed to estimate the total amount of energy
consumption used by the scheduling method. To define the energy model, power
and machine utilization are formulated [36], as the average of cloud utilization and

(5)Lj(n) = FT
(
ti, j

)

(6)FT
(
ti, j

)
= ET

(
ti, j

)
+max FT

((
ti−1, j

)
, ST

(
ti, j

))

(7)T�(n) = max
1≤j≤�

(
Lj(n)

)

(8)� =

∑�

i=1

∑
j∈s(i) �(i, j)

�

(9)�ideal =

∑�

i=1

�∑�

j=1
ET(i, j) + tidle

j
+ �

�

�2

(10)AVGload(n) =

∑�

j=1
Lj(n)

�

24119

1 3

LATA: learning automata‑based task assignment on heterogeneous…

energy consumption are linearly proportional. Energy consumption for machine j is
mathematically defined by Eq. (11).

where Uj depicts the utilization of machine j and is calculated using, Uj =

∑n

i=1
ET(i,j)

max
1≤j≤�

(Lj(n))
 ;

Pmax represents the maximum power consumption when the machine is fully loaded,
and Pmin is the minimum power consumption when the machine is idle state. It is
important to note that workload affects the power supply value over time. The
average energy consumption in iteration n is calculated using Eq. (12).

4 Research methodology

Our research methodology section offers insights into the innovative strategies
employed in LATA, including task grouping based on data dependencies and the
dynamic assignment of learning automata to optimize task placement and workload
distribution.

4.1 Learning automata‑based task assignment algorithm

In this section, we propose a new task scheduling algorithm based on learning
automata for cloud environments.

The scheduling process comprises three phases: task ranking, group creation
based on task dependencies, and scheduling independent tasks within each group
using a game of learning automata.

First phase, ranking: in this stage, for each node i, the rank value ri is recursively
defined using Eq. (13):

where Si represents the set of immediate successors of node i in the related DAG.
Second phase, group creation: in this step, the nodes are sorted in descending

order related to their rank value. The first node, which is the root of the DAG, is
added to group 0. Then a new group (group1) is created, and successive nodes are
placed in it as long as they do not depend on any other nodes in the same group. If
a dependency is found, a new group with a higher number is created, and the last
node is moved to it. The final outcome is a set of ordered groups, each containing

(11)Ej =
Δt

∫
t

[(
Pmax − Pmin

)
× Uj + Pmin

]
dt

(12)E(n) =

�∑�

j=1
Ej

�

�

(13)ri =

∑�

j=1
ET(i, j)

�
+max

∀l∈Si

�
DD(i, l) ×

��

k=1,m=1

pk,m × CC(k,m)

�
+ rl

24120 S. Gheisari, H. ShokrZadeh

1 3

a number of independent tasks, and having a predetermined priority based on the
original ranking (a lower group number indicates a higher priority).

Third phase, scheduling independent tasks in each group using a game of learning
automata: After the previous two phases, we have some groups of independent
tasks with different priorities. A straightforward approach to schedule these groups
is to use an algorithm like MLQ (Multi-Level Queue). In MLQ, a task in a lower-
priority queue cannot be scheduled until all the tasks in a higher-priority queue are
scheduled. This implies that the tasks of group ii will not be scheduled until all the
tasks of group i-1 are scheduled.

In contrast, the tasks in each group are scheduled using a game of learning autom-
ata. Each task ti in each group has a variable-structure learning automaton assigned
to it. The action set of each automaton corresponds to a server, and since any task
can be assigned to any server, the action sets of all learning automata are identical.

Fig. 3 The learning automata model

24121

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Therefore, for any automaton, αi is {m1, m2, …, mμ} and the input value, βi is a con-
tinuous value in the range [0,1]; a βi closer to 0 indicates that the action taken by
the automaton is favorable to the system, while closer to 1 indicates an unfavorable
response. Figure 3 illustrates the model.

The reinforce scheme used to update the action probabilities of learning automata
is LRI.

In each iteration, the learning automaton assigned to the root of the DAG (the
task in the first group) selects a server first. Then, each learning automaton in the
second group of tasks selects a server, and this process continues until all learning
automata in all groups select servers.4 Next, the weighted sum of makespan, load
of each machine, and total energy consumption is calculated using the equations
introduced in Sect. 4.2. Then, the results are provided to the learning automata as
reinforcement signals to update their action probabilities. This process is repeated
until a termination condition is met.

To evaluate the quality of the selected actions (servers) via βi, each automaton
uses a generalized formulation, given by Eq. (14). Since the problem is multi-
objective [15, 26, 33, and 35], it considers the difference between the makespan,
load and energy level of the chosen server in the current iteration and their values of
the server picked in the previous iteration.

where λT, λL and λE are the weights associated with makespan, load and energy
level of the server, respectively, and λT + λL + λE = 1. The greater the λT, the more
impact the variation in makespan has on the evaluation of the environment response.
This statement holds true for both λL and λE. Functions fT, fL and fE are given in
Eqs. (15–17). As mentioned before, we use S-model for learning automata.5

where � =
|||T

n−1
�

− Tn
�

|||

where Γ =
|||E

n−1
i

− En
i

|||

(14)�i(n) = fT

(
Tn
�
, Tn−1

�

)
�T + fL

(
Ln
�(i)

, Ln−1
�(i)

)
�L + fE

(
En
i
,En−1

i

)
�E

(15)fT

(
Tn
𝜇
, Tn−1

𝜇

)
=

{
1 − 𝜙 Tn

𝜇
≤ Tn−1

𝜇

1 + 𝜙 Tn
𝜇
> Tn−1

𝜇

(16)fL

(
Ln
�(i)

, Ln−1
�(i)

)
=

Ln
�(i)

− �ideal

Ln−1
�(i)

− �ideal

(17)fE
(
En
i
,En−1

i

)
=

{
1 − Γ En

i
≤ En−1

i

1 + Γ En
i
> En−1

i

4 Note that the game of learning automata is used to assign the tasks to the servers; then, the assigned
tasks can be easily dispatched among VMs on each server.
5 �

ideal
 is presented in Eq. (9).

24122 S. Gheisari, H. ShokrZadeh

1 3

Algorithm 1 LATA

Eventually, if the probability of an action in each automaton exceeds 95%,
makespan doesn’t change for more than 100 iterations, or the number of repetitions
reaches a maximum limit, the learning process will stop; in the first and the second
conditions, the automaton converges. Algorithm 1 describes the proposed method.
Since the task that is in group 0 is the root of the DAG and has the highest priority,
it can be scheduled individually and without using learning automata. At the
beginning of the algorithm, a VM with the minimum execution time for this task is
chosen, and then, in all iterations, its VM will not be changed. This will make the
algorithm better and faster in performance.

4.2 Improved LATA

To enhance the performance of the algorithm, the second and third phases are
modified as follows:

24123

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Second phase, group creation: unlike before, tasks are now grouped in a manner
that places tasks with the highest dependencies in the same sets. To accomplish this,
DAG is scanned in level order, and for each node, four values are saved:

(1) wi, which is the weight of node i and is calculated using Eq. (3).
(2) Ci as a successor or an ordered list of successors with the most transfer cost:

where S(i) is the set of immediate successors of node i and ∞ is considered for the
nodes in the last level (nodes with no successors). θ(i,j) is given in equation (4).

(3) Pi as a parent or an ordered list of parents with the most transfer cost:

where pr(j) is the set of the parents of node i; and for the first node (the root), Pi is
∞.

(4) Fi is a flag that indicates whether a task is a member of a group (Fi = 1) or not
(Fi = 0).

From the first node to the last one, if a node i does not belong to a group, a new
group is created, and i is placed into it. Then, other node j is checked and if Ci = j
and Pj = i, j is added to the group that i belongs to. After that, the weights of all
nodes j where Pj = i are updated using the following equations.

where,

For all other nodes, Pi is updated, and after reaching the last node, all nodes
are placed in their respective groups, and Fi = 1 for all of them. This creates some
groups of nodes with the highest dependencies.

4.2.1 An example

Figure 4 represents a sample DAG. The numbers written near the edges correspond
to the amount of data that must be passed from one task to its immediate successor.
The cost for executing each task on three different machines and the cost for trans-
ferring a data unit for any combination of machines are given in the tables. Figure 5
shows the grouping steps for the DAG.

Ci = max
∀j∈s(i)

{
wj + �(i, j)

}

Pi = max
∀i∈��(j)

{
wj + �(i, j)

}

if Ci = j & & Pj = i then

wj = wj + wi + max
∀k∈pr(j)

{
f
(
wk + �(k, j),wi

)}

else wj = wj + max
∀k∈pr(j)

{
wk + �(k, j)

}

f (x, y) =

{
x − y x > y

zero x ≤ y

24124 S. Gheisari, H. ShokrZadeh

1 3

It is assumed that the cost to transfer data between two tasks that are executed on
the same machine (even different VMs) is zero.

Third phase, scheduling each group by using a game of learning automata:
after grouping the tasks, each group should be scheduled for execution. To achieve
this, each group gi is associated with a variable-structure learning automaton. The
actions of an automaton are linked to machines, and since the groups of tasks can
be assigned to any of the μ machines, the action sets of all learning automata are
identical.

Therefore, for any automaton, the action set αi is {m1, m2, …, mμ}, and the input
value βi is a continuous value in [0,1], computed using Eq. (14). βi closer to 0 indi-
cates that the action taken by the automaton is favorable, while closer to 1 indicates
an unfavorable response. The learning automata model is depicted simply in Fig. 6.
The reinforcement scheme, used to update action probabilities of learning automata
is LRI, aimed at avoiding sticking in local optimum.

In each iteration, the game of learning automata selects machines, after which
makespan, load, and energy consumption of each machine are computed. These

A sample DAG

the execution time for each node on three machines
Node M0 M1 M2 Node M0 M1 M2

0
1
2
3
4

17
22
15
30
17

19
27
15
27
14

21
23
9
18
20

5
6
7
8
9

4
17
49
25
23

8
16
49
22
27

9
15
46
16
19

the communication cost table for interconnected machines
Machines Time for transfer a data unit
M0-M1
M1-M2
M0-M2

0.9
1.0
1.4

Fig. 4 An example of a DAG with computation and communication values

24125

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Step 1; after level order scanning the graph
Node wi ni pi fi

0
1
2
3
4
5
7
8
6
9

19
24
13
25
17
7
48
21
16
23

3
7
8
6
7
8
9
9
9
∞

∞
0
0
0
0
0

1,4
4,2,5

3
7

0
0
0
0
0
0
0
0
0
0

Group0: {0, 3}

Step 2: after putting 0, 3 in a group
Node wi ni pi fi

0
1
2
3
4
5
7
8
6
9

19
53.22
45.14

44
45.49
44.25

48
21
16
23

3
7
8
6
7
8
9
9
9
∞

-
-
-
-
-
-

1.4
2,4,5

3
7

1
0
0
1
0
0
0
0
0
0

Group0: {0, 3, 6}; Group1: {1, 7}; Group3: {2, 8}; Group4: {4}; Group5: {5}

Step 3: after grouping nodes in level 1, 2, and 3
Node wi ni pi fi

0
1
2
3
4
5
7
8
6
9

19
53.22
45.14

44
45.49
44.25
103.71
80.74

60
23

3
7
8
6
7
8
9
9
9
∞

-
-
-
-
-
-
-
-
-
7

1
1
1
1
1
1
1
1
1
0

Group0: {0, 3, 6}; Group1: {1, 7, 9}; Group3: {2, 8}; Group4: {4}; Group5: {5}

After grouping all nodes
Node wi ni pi fi

0
1
2
3
4
5
7
8
6
9

19
53.22
45.14

44
45.49
44.25
103.71
80.74

60
23

3
7
8
6
7
8
9
9
9
∞

-
-
-
-
-
-
-
-
-
-

1
1
1
1
1
1
1
1
1
1

Fig. 5 grouping steps for the sample DAG in Fig. 4

24126 S. Gheisari, H. ShokrZadeh

1 3

results are then passed to the learning automata to update their action probabili-
ties. This process is repeated until one of the termination conditions is fulfilled. To
determine the efficacy of an action taken by an automaton, Eq. (14) is applied. The
stopping criteria for the learning algorithm remain the same as before. Algorithm 2
clarifies the above steps.

4.3 Time complexity analysis

The algorithms’ complexity is estimated in three steps: ranking, group creation,
and tasks assignment. Let n be the number of iterations, � be the number of
tasks, and � be the number of machines. To calculate the ranking value, we have
O
(
n ×

(
� + �2

))
 , which can be rewritten as O(n × �2) . In the second phase, a sorting

algorithm is needed, which is O(n × �log�) . Then, all tasks will be scanned to add to
a group, so the total time complexity is O(n(�log� + �)) , simplified to O(n × �log�) .
Finally in the scheduling stage, a game of learning automata is applied, in which
the time complexity of each automaton is equal to O(1) ; therefore, for � learning
automata in n iterations, we have O(n × �) . Consequently, LATA’s time complexity
is considered as O(n × (�2 + �log�)).

Fig. 6 learning automata model

24127

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Algorithm 2 Improved‑LATA

24128 S. Gheisari, H. ShokrZadeh

1 3

4.4 Convergence analysis

While the game of learning automata is competitive, and each automaton receives
its own payoff and strives to improve it, it is expected that the algorithm reaches a
Nash equilibrium. For a comprehensive discussion on Nash equilibrium, please refer
to [37]. The m-tuple of actions

(
�1,… , �m

)
 is called a Nash equilibrium of this game

if for each j, 1 ≤ j ≤ m , dj
(
�1,… , �j−1, x, �j+1,… , �m

)
≤ dj

(
�1,… , �m

)
,∀x ∈ Si.

Here, dj is the payoff function for automaton Aj (dj
(
x1,… , xm

)
= E

[
�j(t)|�j(t) = xj,

1 ≤ j ≤ m
]
), and Si is the action set of Aj.

It is proven in [37] that if the learning algorithms of all the learning automata are
LR-I, this game would converge to a Nash equilibrium.

5 Performance evaluation

To evaluate the performance of the proposed algorithms, we conducted simulations
in various network scenarios using the CloudSim Plus toolkit. This toolkit offers
comprehensive analysis and simulation capabilities for research concepts in cloud
environments [38, 39]. It represents an advanced iteration of the CloudSim simulator
[40].

5.1 Simulation assumptions

The simulation model operates on several assumptions: the network comprises a
static number of nodes (servers) that remain constant throughout the simulation;
each pair of nodes incurs a communication cost, which, while small, is not negligible
given the connection within the cloud platform; however, the virtual machines
(VMs) hosted on the servers can be adjusted, and the communication cost among
them is considered negligible.

To generate the Directed Acyclic Graph (DAG) of an application, we initially
establish a root node (representing the entry point) and a leaf node (representing
the exit point). Subsequently, we partition the remaining nodes into distinct levels,
ensuring each level comprises a minimum of two nodes. The graph is constructed
incrementally, with up to half of the remaining nodes randomly selected for each
level. Additionally, we ensure that each node within a level is interconnected with
at least one node in the subsequent level, and vice versa. The number of tasks is
randomly allocated between 10 and a maximum value, max_τ, while there are
between 3 and a maximum of max_μ powerful servers available.

In consistent heterogeneity, machine i (or a VM on it) consistently outperforms
machine j for any task, indicating that it can execute a given task more quickly than
machine j.

The parameters maxτ and maxμ take values of 640 and 10, respectively. Thus,
a maximum of 10 powerful processing servers are considered, with each server
comprising 20 VMs. Total execution time (makespan), the load, and the energy

24129

1 3

LATA: learning automata‑based task assignment on heterogeneous…

consumption of each machine are used for evaluating the proposed scheme. Addi-
tionally, a utility function U is defined by Eq. (18).

where Tμ represents the total execution time calculated using Eq. (7) in each
iteration. AVGload and E are computed by Eqs. (10) and (12)), respectively.
Descriptions of Functions fT, fL and fE are given in Eqs. (15–17).

5.2 The state‑of‑the‑art algorithms

To quantitatively compare the performance of the proposed algorithms, we selected
three state-of-the-art metaheuristic algorithms: (1) load balancing technique by
using modified PSO task scheduling (LBMPSO) [23], (2) modified particle swarm
optimization and improved Q-learning algorithm (QMPSO) [25], and (3) multi-
objective genetic algorithms, (MOGA) and (GA-GWO) [24, 31]. Additionally, we
included the method proposed in [26] as LA-scheduling, which is one of the learning
automata-based DAG scheduling approaches for heterogeneous systems in [26–30].
These heuristics efficiently manage the application placement in heterogeneous
network environments.

5.3 Simulation results analysis

We conduct a sensitivity analysis on the learning parameter a to study its effect on
the performance of LATA and improved-LATA, and to find its optimal value. We
repeat the experiment 10 times with 10 different values for a, ranging from 0.1 to
0.9 (for readability, we convert them to 1–9). In each repetition, LATA runs until
the utility does not change for a pre-defined number of iterations. Figure 7 shows the
results. Utility is a continuous value in [0, 1], and a closer value to 0 indicates bet-
ter performance. The best results are obtained with a between 0.4 and 0.5; smaller
and larger values have worse utility values. Generally, we can say that increasing
the value of a makes the probability vectors change rapidly and continuously. Con-
versely, decreasing the value of the learning parameter slows down the learning
automata, and they reach the desired values very slowly.

In the remainder of this section, we evaluate the performance of LATA and
improved-LATA in comparison with the state-of-the-art algorithms mentioned
earlier.

Four aspects of the algorithms were examined: total execution time, degree of
load balance, energy consumption, and utility, with variations in the number of
tasks in the experiments. Figure 8 shows the results. Figure 8a displays the average
total execution time comparison of the algorithms as a function of workload size or
the number of tasks, ranging from 10 to 640 tasks. LATA consistently yields lower
completion times compared to LBMPSO, QMPSO, MOGA, and the LA-schedul-
ing method. The chart reveals that the differences between the algorithms become

(18)
U = f

T

(
T
n

�
, Tn−1

�

)
�
T
+ f

L

(
AVGload(n), AVGload(n − 1)

)
�
L

+ f
E

(
E
n,En−1

)
�
E

24130 S. Gheisari, H. ShokrZadeh

1 3

more pronounced as the workload increases; however, LATA consistently achieves
a lower makespan. This improvement can be attributed to the effective workload
balancing across servers facilitated by the algorithm. Moreover, the algorithm con-
tinuously recalculates the execution time in each iteration until a better total finish
time is achieved. Additionally, improved-LATA achieves even lower execution times
compared to LATA for almost all assigned tasks. For instance, in a workload with
640 tasks, improved-LATA achieves enhancements of 14%, 37%, 48%, and 53%
compared to LATA, LA-scheduling, LBMPSO, QMPSO, and MOGA, respectively.

To assess the degree of load balance, the degree of load imbalance is measured as
follows:

where Lmax and Lmin indicate maximum and minimum load, respectively and
AVGload denotes the average load among allocated servers. Figure 8b compares the
algorithms based on the DoLI metric; Both LATA and improved-LATA distribute
work more evenly than the others. LATA performs better here because improved-
LATA assigns groups of dependent tasks to servers instead of assigning individual
tasks, and the group lengths may vary a lot. However, improved-LATA balances the
load better in larger workloads but not as well as LATA. Overall, LATA reduces the
degree of load imbalance by 18.5% to 30.30%.

In addition to total execution time and the degree of load balancing, energy con-
sumption is regarded as the main meter of task scheduling. Generally, energy con-
sumption increases significantly as the number of tasks increases. Figure 8c shows
how the proposed algorithms have advanced energy conservation performance anal-
ysis when tasks are assigned to machines (VMs on them). Simulation studies have

(19)DoLI =
Lmax − Lmin

AVGload

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9

u�
lit

y

learning parameter (*10)

Fig. 7 Analysis the effect of learning parameter a on LATA

24131

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Fig. 8 Analysis the performance
of the algorithms -regarding
to total execution time, degree
of load imbalance, energy
consumption, and utility via
workload size

(a) total finish time (makespan) vs. number of tasks

(b) degree of load imbalance vs. number of tasks

(c) energy consumption vs. number of tasks

(d) energy consumption vs. number of tasks

0

10

20

30

40

50

60

70

80

10 20 40 80 160 320 640

TO
TA

L
EX

EC
U

TI
O

N
 T

IM
E

NUMBER OF TASKS

LATA improved-LATA LA-scheduling LBMPSO QMPSO MOGA GA-GWO

0

0.2

0.4

0.6

0.8

1

1.2

10 20 40 80 160 320 640DE
GR

EE
 O

F
LO

AD
 IM

BA
LA

N
CE

NUMBER OF TASKS

LATA improved-LATA LA-scheduling LBMPSO QMPSO MOGA GA-GWO

0
10
20
30
40
50
60
70

10 20 40 80 160 320 640

EN
ER

GY
 C

O
N

SU
M

PT
IO

N

NUMBER OF TASKS

LATA improved-LATA LA-scheduling LBMPSO QMPSO MOGA GA-GWO

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

10 20 40 80 160 320 640

U
TI

LI
TY

NUMBER OF TASKS

LATA improved-LATA LA-scheduling LBMPSO QMPSO MOGA GA-GWO

24132 S. Gheisari, H. ShokrZadeh

1 3

shown that the energy consumption of LATA and improved-LATA is lower than that
of other alternative algorithms. Overall, LATA and improved-LATA reduce energy
utilization by 31.2% and 37.5%, respectively.

Eventually, Fig. 8d shows the utility value, calculated using Eq. (18) as a function
of total execution time, average load and average energy consumption for the
algorithms. Utility is a continuous value in the range [0, 1], with values closer to 0
indicating better performance. As expected, once again LATA and improved-LATA
achieve the best results.

In the subsequence studies, the impact of the number of iterations on total
execution time, degree of load balance, energy consumption, and the utility has been
investigated. The number of tasks and the number of available servers remained
unchanged during the experiments, both of them took the maximum values; 640 for
workload size and 10 for servers. The number of iterations varied from 10 to 100.

At the beginning, the total execution time is examined. Figure 9a illustrate
the superiority of the proposed algorithms compared to other approaches across
different numbers of iterations.

Another significant metric which is used to evaluate the efficiency of task
scheduling algorithms is degree of load balance. Figure 9b depicts the degree of
load imbalance, its opposite measurement. The results illustrate that the proposed
algorithms perform better compared with other algorithms.

Figure 9c represents energy consumption via the number of iterations. LADA
and improved-LADA perform superior in both energy consumption level and
convergence speed.

In the end, utility is assessed in Fig. 9d; as a function of three previous metrics,
it shows the same outcome. The proposed algorithms achieve lower utility values,
which indicates better performance.

In conclusion, almost all learning automata-based algorithms converge faster than
the other algorithms. LADA and improved-LADA often meet their best outcomes
after 40 iterations; it is 50 and even 60 for LA-scheduling. The other algorithms
converge after 70 repetitions.

Although cloud utilization and energy consumption are linearly proportional,
since servers’ (VMs’) idle times, which is considered in resource utilization, directly
impact the cloud’s efficiency and throughput, we have decided to measure cloud
utilization here, unlike the most existing works. The servers’ (VMs’) idle times are
regarded as their startup time, their shutdown time and the idle time consuming
between two adjacent servers (VMs). Resource utilization is determined by equation
(20)

 Where,

(20)Uj =

∑n

i=1
ET(i, j)

max
1≤j≤�

�
Lj(n)

�

max
1≤j≤�

(
Lj(n)

)
=

n∑

i=1

ET(i, j) + t
startup

j
+ tshutdown

j
+ tidle

j

24133

1 3

LATA: learning automata‑based task assignment on heterogeneous…

Fig. 9 Impact of the number of
iterations on the performance of
the algorithms

(a) total execution time (makespan) vs. number of iterations

(b) degree of load imbalance vs. number of iterations

(c) energy consumption vs. number of iterations

(d) utility vs. number of iterations

0

20

40

60

80

100

120

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

TO
TA

L
FI

N
IS

H
TI

M
E

NUMBER OF ITERATIONS

LATA improved-LATA LA-scheduling
LBMPSO QMPSO MOGA
GA-GWO

0

0.5

1

1.5

2

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

DE
GR

EE
 O

F
LO

AD
 IM

BA
LA

N
CE

NUMBER OF ITERATIONS

LATA improved-LATA LA-scheduling
LBMPSO QMPSO MOGA
GA-GWO

0

50

100

150

200

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

EN
ER

GY
 C

O
N

SU
M

PT
IO

N

NUMBER OF ITERATIONS

LATA improved-LATA LA-scheduling
LBMPSO QMPSO MOGA
GA-GWO

0

0.2

0.4

0.6

0.8

1

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

U
TI

LI
TY

NUMBER OF ITERATIONS

LATA improved-LATA LA-scheduling
LBMPSO QMPSO MOGA
GA-GWO

24134 S. Gheisari, H. ShokrZadeh

1 3

In later experiments, resource utilization for different algorithms is evaluated.
Resource utilization via workload size and via the number of iterations are shown in
Fig. 10 and Fig. 11, respectively.

6 Conclusion and future works

In this paper, we propose a new machine learning-based algorithm for task
scheduling in heterogeneous cloud environments, named LATA. This algorithm
utilizes a game of learning automata to find the best pairs of tasks and servers
(VMs). Initially, each application is represented as a Directed Acyclic Graph
(DAG), where nodes represent tasks and edges depict data dependencies. Tasks
are then assigned rank values based on their execution times and data dependency
costs across all possible servers. Independent tasks are grouped based on these
rank values, and each task within the groups is associated with a variable action-set
structure learning automaton. The game of learning automata iteratively refines the
task-server mapping until optimal solutions are found, considering QoS parameters
such as total execution time (makespan), load balancing, energy consumption, and
cloud utilization.

Fig. 10 resource utilization via
workload size

0.5

0.6

0.7

0.8

0.9

1

1.1

10 20 40 80 160 320 640

RE
SO

U
RC

E
U

TI
LI

ZA
TI

O
N

NUMBER OF TASKS

LATA improved-LATA LA-scheduling LBMPSO QMPSO MOGA GA-GWO

0.55

0.65

0.75

0.85

0.95

1.05

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

RE
SO

U
RC

E
U

TI
LI

ZA
TI

O
N

NUMBER OF ITERATIONS

LATA improved-LATA LA-scheduling
LBMPSO QMPSO MOGA

Fig. 11 resource utilization via the number of iterations

24135

1 3

LATA: learning automata‑based task assignment on heterogeneous…

An improvement to LATA is also proposed, wherein the most dependent tasks are
grouped together, and each group is assigned a learning automaton. This modified
approach aims to enhance the efficiency of task assignment by focusing on highly
dependent tasks within each group.

Experimental evaluations were conducted to assess the performance of the
proposed algorithms. Results indicate that both LATA and its improved version
significantly reduce total execution time (up to 53%) and energy consumption (up
to 37.5%), while also improving resource utilization (up to 28%) and load balancing
across servers. Additionally, these algorithms converge to satisfactory solutions
faster than existing methods.

For future research directions, we aim to further enhance the proposed algorithms
by investigating the distribution of tasks among VMs within a server to optimize
resource allocation. Additionally, dynamic limitations on maximum server load
could be incorporated without compromising total execution time. Furthermore,
with the rising popularity of platforms like the Internet of Things and cyber-physical
systems, task scheduling in heterogeneous environments will continue to be a key
research area, requiring comprehensive investigations for tailored task scheduling
based on specific application requirements.

Author contributions Both authors conceived the presented idea. Soulmaz Gheisari developed the theory,
conducted the implementation and computations, and prepared the initial manuscript. Hamid Shokrzadeh
contributed to the study by summarizing and discussing related works. Both authors verified the proposed
solution and evaluation method, discussed the results, and contributed to the final manuscript.

Funding This research received no specific grant from any funding agency in the public, commercial, or
not-for-profit sectors.

Declarations

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Tao H, Zhou J, Jawawi D, Wang D, Oduah U, Biamba C, Kumar Jain S (2023) Task scheduling in
cloud environment: optimization, security prioritization and processor selection schemes. J Cloud
Comput 12(1):15

 2. Zomaya AY (1996) Parallel and distributed computing handbook.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

24136 S. Gheisari, H. ShokrZadeh

1 3

 3. Rajkumar B, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging IT
platforms: vision, hype, and reality for delivering computing as the 5th utility. Future Gener Comput
Syst 25(6):599–616

 4. Nikos T, Khan SU, Xu CZ, and Hong J (2012) An optimal fully distributed algorithm to minimize
the resource consumption of cloud applications. In: 2012 IEEE 18th International Conference on
Parallel and Distributed Systems, pp 61–68. IEEE

 5. Ibarra OH, Kim CE (1977) Heuristic algorithms for scheduling independent tasks on nonidentical
processors. J ACM (JACM) 24(2):280–289

 6. Roshni P, Panda SK, Sathua SK (2015) K-means min-min scheduling algorithm for heterogeneous
grids or clouds. Int J Inf Process 9(4):89–99

 7. Zhou X, Zhang G, Sun J, Zhou J, Wei T, Shiyan Hu (2019) Minimizing cost and makespan for
workflow scheduling in cloud using fuzzy dominance sort based HEFT. Future Gener Comput Syst
93:278–289

 8. Casavant TL, Kuhl JG (1988) A taxonomy of scheduling in general-purpose distributed computing
systems. IEEE Trans Software Eng 14(2):141–154

 9. Lee W, Siegel HJ, Roychowdhury VP, Maciejewski AA (1997) Task matching and scheduling in
heterogeneous computing environments using a genetic-algorithm-based approach. J Parallel Distrib
Comput 47(1):8–22

 10. Topcuoglu H, Hariri S, Min-You Wu (2002) Performance-effective and low-complexity task sched-
uling for heterogeneous computing. IEEE Trans Parallel Distrib Syst 13(3):260–274

 11. Reza NT, Shirvani MH, Motameni H (2022) A heuristic-based task scheduling algorithm for sci-
entific workflows in heterogeneous cloud computing platforms. J King Saud Univ Comput Info Sci
34(8):4902–4913

 12. Ramos-Figueroa O, Quiroz-Castellanos M, Mezura-Montes E, Cruz-Ramírez N (2023) An experi-
mental study of grouping mutation operators for the unrelated parallel-machine scheduling problem.
Mathe Comput Appl 28(1):6

 13. Akbar MS, Muzahid AJM, Hoque AMI, Kowsher M (2022) A review on job scheduling technique
in cloud computing and priority rule based intelligent framework. J King Saud Univ Comput Sci
34:2309

 14. Imene L, Sihem S, Okba K, Mohamed B (2022) A third generation genetic algorithm NSGAIII for
task scheduling in cloud computing. J King Saud Univ-Comput Info Sci 34(9):7515–7529

 15. Emami H (2022) Cloud task scheduling using enhanced sunflower optimization algorithm. Ict
Express 8(1):97–100

 16. Velliangiri S, Karthikeyan P, Arul Xavier VM, Baswaraj D (2021) Hybrid electro search with
genetic algorithm for task scheduling in cloud computing. Ain Shams Eng J 12(1):631–639

 17. Roshni P, and Satapathy SC (2022) Particle swarm optimization-based energy-aware task schedul-
ing algorithm in heterogeneous cloud. In: communication, software and networks: Proceedings of
India 2022. Springer Nature, Singapore, pp 439–450

 18. Natesan G, Chokkalingam A (2019) Task scheduling in heterogeneous cloud environment using
mean grey wolf optimization algorithm. ICT Express 5(2):110–114

 19. Shin KS, Park M-J, Jung J-Y (2014) Dynamic task assignment and resource management in cloud
services by using bargaining solution. Concurr Comput Pract Exp 26(7):1432–1452

 20. Munir EU, Mohsin S, Hussain A, Nisar MW, and Ali S (2013) SDBATS: a novel algorithm for
task scheduling in heterogeneous computing systems. In: Proceedings IEEE IPDPS workshops
(IPDPSW)

 21. Radulescu A and van Gemund AJC (2000) Fast and effective task scheduling in heterogeneous sys-
tem. In: Proceedings of the 9th heterogeneous computing workshop

 22. Jing Mei KL, Li K (2014) A resource-aware scheduling algorithm with reduced task duplication on
heterogeneous computing systems. J Super Comput 68(3):1347–1377

 23. Arabinda P, Bisoy SK (2022) A novel load balancing technique for cloud computing platform based
on PSO. J King Saud Univ Comput Inf Sci 34(7):3988–3995

 24. Xia X, Qiu H, Xing Xu, Zhang Y (2022) Multi-objective workflow scheduling based on genetic
algorithm in cloud environment. Inf Sci 606:38–59

 25. Jena UK, Das PK, Kabat MR (2022) Hybridization of meta-heuristic algorithm for load balancing
in cloud computing environment. J King Saud Univ Comput Inf Sci 34(6):2332–2342

 26. Habib MG, KeyKhosravi D, and Hosseinalipour A (2010) DAG scheduling on heterogeneous dis-
tributed systems using learning automata. In: Intelligent Information and Database Systems: Second

24137

1 3

LATA: learning automata‑based task assignment on heterogeneous…

International Conference, ACIIDS, Hue City, Vietnam, March 24–26, 2010. Proceedings, Part II 2.
Springer, Berlin Heidelberg, pp 247–257

 27. Ghanbari S, and Meybodi MR (2005) Learning automata based algorithms for mapping of a class
of independent tasks over highly heterogeneous grids. In: Advances in Grid Computing-EGC 2005:
European Grid Conference, Amsterdam, The Netherlands, February 14–16, 2005, Revised Selected
Papers. Springer, Berlin Heidelberg, pp 681–690

 28. Venkataramana RD, and Ranganathan N (1999) Multiple cost optimization for task assignment in
heterogeneous computing systems using learning automata. In: Proceedings. Eighth Heterogeneous
Computing Workshop (HCW’99). IEEE, pp 137–145

 29. Mirchandaney R, Stankovic JA (1986) Using stochastic learning automata for job scheduling in dis-
tributed processing systems. J Parallel Distrib Comput 3(4):527–552

 30. Jahanshahi M, Meybodi MR, and Dehghan M (2009) A new approach for task scheduling in distrib-
uted systems using learning automata. In: 2009 IEEE International Conference on Automation and
Logistics. IEEE, pp 62–672009

 31. Behera I, Sobhanayak S (2024) Task scheduling optimization in heterogeneous cloud computing
environments: a hybrid GA-GWO approach. J Parallel Distrib Comput 183:104766

 32. Pabitha P, Nivitha K, Gunavathi C, Panjavarnam B (2024) A chameleon and remora search opti-
mization algorithm for handling task scheduling uncertainty problem in cloud computing. Sustain
Comput Inf Syst 41:100944

 33. Tamilarasu P, Singaravel G (2023) Quality of service aware improved coati optimization algorithm
for efficient task scheduling in cloud computing environment. J Eng Res. https:// doi. org/ 10. 1016/j.
jer. 2023. 09. 024

 34. Narendra K, Thathachar MAL (1989) Learning automata: an introduction. Prentice Hall, Engle-
wood Cliffs, New Jersey

 35. Thathachar MAL, Sastry PS (2002) Varieties of learning automata: an overview. IEEE Trans Syst
Man Cybern Part B (Cybernetics) 32(6):711–722

 36. Zhabelova G, Vesterlund M, Eschmann S, Berezovskaya Y, Vyatkin V, Flieller D (2018) A compre-
hensive model of data center: from CPU to cooling tower. IEEE Access 6:61254–61266

 37. Sastry PS, Phansalkar VV, Thathachar MAL (1994) Decentralized learning of nash equilib-
ria in multi-person stochastic games with incomplete information. IEEE Trans Syst man Cybern
24(5):769–777

 38. Filho S, Manoel C, Oliveira RL, Monteiro CC, Inácio PRM, and Freire MM (2017) CloudSim plus:
a cloud computing simulation framework pursuing software engineering principles for improved
modularity, extensibility and correctness. In: 2017 IFIP/IEEE symposium on integrated network and
service management (IM). IEEE, pp 400–406

 39. Andrade E, Nogueira B (2019) Performability evaluation of a cloud-based disaster recovery solution
for IT environments. J Grid Comput 17:603–621

 40. Tarun G, Singh A, and Agrawal A (2012) Cloudsim: simulator for cloud computing infrastructure
and modeling. In: Procedia engineering, 38: 3566-3572

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.jer.2023.09.024
https://doi.org/10.1016/j.jer.2023.09.024

	LATA: learning automata-based task assignment on heterogeneous cloud computing platform
	Abstract
	1 Introduction
	2 Related works
	3 Preliminaries
	3.1 Leaning automata
	3.2 Scheduling system model
	3.2.1 Definitions
	3.2.2 Cost metrics

	4 Research methodology
	4.1 Learning automata-based task assignment algorithm
	4.2 Improved LATA
	4.2.1 An example

	4.3 Time complexity analysis
	4.4 Convergence analysis

	5 Performance evaluation
	5.1 Simulation assumptions
	5.2 The state-of-the-art algorithms
	5.3 Simulation results analysis

	6 Conclusion and future works
	References

