The University of Southampton
University of Southampton Institutional Repository

A new reasoning and learning model for cognitive Wireless Sensor Networks based on Bayesian networks and learning automata cooperation

A new reasoning and learning model for cognitive Wireless Sensor Networks based on Bayesian networks and learning automata cooperation
A new reasoning and learning model for cognitive Wireless Sensor Networks based on Bayesian networks and learning automata cooperation
Adding cognition to existing Wireless Sensor Networks (WSNs) with a cognitive networking approach, which deals with using cognition to the entire network protocol stack to achieve end-to-end goals, brings about many benefits. However cognitive networking may be confused with cognitive radio or cross-layer design, it is a different concept; cognitive radios applies cognition only at the physical layer to overcome the problem of spectrum scarcity, and cross layer design usually focuses on linking at least two non-consecutive specific layers, to achieve a particular goal. Indeed, it can be said that the cognitive radio and the cross layer design are two effective methods in cognitive networking. To the best of our knowledge, almost all of the existing researches on the Cognitive Wireless Sensor Networks (CWSNs) have focused on spectrum allocation and interference reduction in the physical layer. In this paper, we propose a new reasoning and learning model for CWSNs, in which firstly, a team of learning automata is employed to construct a Bayesian Network (BN) model of the parameters of the network protocol stack, and then the constructed BN is used to tune the controllable parameters. The BN represents the dependency relationships between the parameters of the network protocol stack, and the BN-based reasoning is an efficient tool for cross-layer optimization, in order to maximize the perceived network performance. Simulations have been done to evaluate the performance of the proposed model. The results of the simulations show that the proposed model successively adds cognition to a WSN and improves the performance of the communication network.
1389-1286
11-26
Gheisari, S.
ec5925da-f424-4f49-8b72-d4d045ee7ba6
Meybodi, M.R.
38d27d0a-c6d5-4cfc-89b7-b7a79d1b3351
Gheisari, S.
ec5925da-f424-4f49-8b72-d4d045ee7ba6
Meybodi, M.R.
38d27d0a-c6d5-4cfc-89b7-b7a79d1b3351

Gheisari, S. and Meybodi, M.R. (2017) A new reasoning and learning model for cognitive Wireless Sensor Networks based on Bayesian networks and learning automata cooperation. Computer Networks, 124, 11-26. (doi:10.1016/j.comnet.2017.05.031).

Record type: Article

Abstract

Adding cognition to existing Wireless Sensor Networks (WSNs) with a cognitive networking approach, which deals with using cognition to the entire network protocol stack to achieve end-to-end goals, brings about many benefits. However cognitive networking may be confused with cognitive radio or cross-layer design, it is a different concept; cognitive radios applies cognition only at the physical layer to overcome the problem of spectrum scarcity, and cross layer design usually focuses on linking at least two non-consecutive specific layers, to achieve a particular goal. Indeed, it can be said that the cognitive radio and the cross layer design are two effective methods in cognitive networking. To the best of our knowledge, almost all of the existing researches on the Cognitive Wireless Sensor Networks (CWSNs) have focused on spectrum allocation and interference reduction in the physical layer. In this paper, we propose a new reasoning and learning model for CWSNs, in which firstly, a team of learning automata is employed to construct a Bayesian Network (BN) model of the parameters of the network protocol stack, and then the constructed BN is used to tune the controllable parameters. The BN represents the dependency relationships between the parameters of the network protocol stack, and the BN-based reasoning is an efficient tool for cross-layer optimization, in order to maximize the perceived network performance. Simulations have been done to evaluate the performance of the proposed model. The results of the simulations show that the proposed model successively adds cognition to a WSN and improves the performance of the communication network.

This record has no associated files available for download.

More information

Accepted/In Press date: 30 May 2017
e-pub ahead of print date: 1 June 2017
Published date: 5 June 2017

Identifiers

Local EPrints ID: 494346
URI: http://eprints.soton.ac.uk/id/eprint/494346
ISSN: 1389-1286
PURE UUID: 03f09b6a-3ce9-494d-af31-cb31e3e18823
ORCID for S. Gheisari: ORCID iD orcid.org/0000-0001-8974-2841

Catalogue record

Date deposited: 04 Oct 2024 16:59
Last modified: 05 Oct 2024 02:17

Export record

Altmetrics

Contributors

Author: S. Gheisari ORCID iD
Author: M.R. Meybodi

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×