Autonomous Droplet Microfluidic Sensor for Highly Variable Ocean Alkalinity **University of**

Molly Phillips^{a,b}, Liam Carter^a, Allison Schaap^b, Rachael James^a, Adrian Nightingale^a

Southampton

molly.phillips@soton.ac.uk

Ocean alkalinity is the capacity of seawater to resist changes in pH

Application Fast-changing environments

Titration frequency in continuous microfluidics is limited by mixing

Diffusion mixing in laminar flow

This droplet sensor aims to improve on shortcomings of current continuous microfluidic alkalinity sensors

REDUCED

INCREASED RANGE

Single-Point Measurement

Pump

The droplet passes through the flow cells, measuring at the peak absorbing wavelengths of the dye

LED₁ LED2 Waste **Droplet sensor** set **Photodiode Photodiode** up [1]

Results

Sample

Titrant

Hydrophobic Oil

Discrete, single-point total alkalinity (TA) titrations are performed in microfluidic droplets.

Seawater is combined with titrant (acid and a pH-sensitive, colourchanging dye) and measured spectrophotometrically

2500 0000 mol/kg) → ¥ 1500 Benchtop Spectrophotometer Droplet Sensor **Expected Concentration** 1000 80 90 70 100 % Seawater

Chip

Error bars on benchtop are too small to visualise

Droplet sensor gives equivalent TA measurements to benchtop spectrophotometer

Current continuous microfluidic TA sensors measure a limited range, using one acid strength.

The droplet system will measure over the entire TA range by increasing acid strength in consecutive droplets

Future Work: Multi-Point Measurement

Each line represents an acid concentration in mmol/kg

References