Elucidating Synthesis-Structure-Property Correlations for Design of Improved Bifunctional Catalysts

Maciej G. Walerowski^[a], Stylianos Kyrimis^[b], Victoria Hewitt^[a] Lindsay-Marie Armstrong^[b] & Robert Raja^[a]

[a] School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK. [b] School of Engineering, University of Southampton, Southampton, SO17 1BJ, UK.

University of Southampton

Need for Sustainable Marine Fuels 1

Shipping responsible for **2-3% of global CO**, emissions¹ **Challenging to electrify** long haul maritime shipping

3 Controlling Cu⁰-ZnO Nanoparticle Size

- Initial formation of MeOH intermediate is the rate limiting step of the cascade reaction
- DME yields thus limited by the redox site activity
- Example 2 Decrease Cu⁰-ZnO nanoparticle size to increase redox site availability and DME yields

4 Impact of Synthesis on DME Yields

Use a 3D response surface to study the impact of modifying catalyst preparation on catalyst activity

DME Metal Time Yield (MTY)

Catalysts prepared using:

110 30 80 0.4 0.6 Solvent Volume (mL) Drying Temperature (°C) **Relative Solvent Polarity**

0.8

1.0

Can obtain smaller Cu⁰-ZnO nanoparticles by increasing solvent volume, drying temperature and solvent polarity during impregnation onto SiAlPO₄-34

Green, facile & precise nanoparticle size control

5 Synthesis-Structure-Property Correlations

- Differences in nanoparticle size alone could not rationalise differences in DME yields
- Modification of Cu⁰-ZnO nanoparticle size by tailoring solvent volume, drying temperature and solvent polarity must also impact other structural characteristics
- We developed correlation matrices to fully understand catalyst structural features which influence DME yields and selectivity and how strongly⁴

Structure-Performance Correlation Matrix

Parameter	Pore	Nanoparticle	Cu-Cu	Cu	DME	DME
	volume	Size	C.N	Loading	Yields	Selectivity
Pore volume	1.0	-0.3	-0.4	-0.2	0.1	0.1
Nanoparticle Size	-0.3	1.0	0.4	0.2	-0.3	0.2
Cu-Cu CN	-0.4	0.4	1.0	0.3	-0.2	-0.1
Cu Actual Loading	-0.2	0.2	0.3	1.0	0.1	-0.1
DME MTY	0.1	-0.3	-0.2	0.1	1.0	0.3
DME Selectivity	0.1	0.2	-0.1	-0.1	0.3	1.0

- Positive number indicates that as an input (structure) parameter increases so does the output (performance), whereas negative number indicates the output decreases
- Increasing pore volume and Cu loading and decreasing nanoparticle size and Cu-Cu coordination number gives catalysts with higher DME yields and selectivity
- Possible to *control Cu⁰-ZnO nanoparticle size* by tailoring solvent volume, drying temperature and solvent polarity
- Higher solvent volumes, drying temperature and solvent polarity creates more active Cu⁰-ZnO/SiAlPO₄-34 catalysts

A Synthesis-structure-property correlation matrices can be used to fully rationalise and optimise catalyst performance

References

15

- [1] International Energy Agency, https://www.iea.org/energy-system/transport, accessed June 2024
- [2] J. Sun *et al.*, *ACS Catal.*, **2014**, 4, 3346–3356.
- [4] M.G Walerowski et al., Catal. Sci. Technol., https://doi.org/10.1039/D4CY00020J.
- [4] M.G Walerowski *et al., ChemComm*, manuscript in preparation.
- I would like to thank the Southampton Marine and Maritime Institute and the University of Southampton for their funding.

Contact Details: Maciej Walerowski School of Chemistry University of Southampton, United Kingdom. M.G.Walerowski@soton.ac.uk https://uk.linkedin.com/in/mwalerowski