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A B S T R A C T

Leakages in water distribution networks are a common issue encountered in the water industry.
The acoustic cross-correlation method is generally employed for detecting and locating leaks
in water pipes. One important factor that determines the effectiveness of this method is the
accuracy of the time delay estimate which is usually obtained from the cross-correlation function
(CCF) of two signals measured on the pipe. However, in some practical situations, accurate
time delay estimate cannot be obtained using existing correlation-based time delay estimation
(TDE) methods without first filtering the signals prior to calculating the CCF. Incorrect choice
of filter cut-off frequencies limits the effectiveness of these methods. To deal with this issue, this
paper proposes a scheme based on multi-resolution decomposition for accurately estimating time
delays between leak signals. The proposed scheme first decomposes the signals at different scales
using a shift-invariant wavelet transform or data-adaptive decomposition and then determines
the time delay from the decomposed signals. Simulation and experimental results demonstrate
the higher effectiveness of the proposed method compared to the commonly used basic and
generalised cross-correlation TDE methods.

. Introduction

High prevalence of leakages in water distribution networks due to pipe ageing and deterioration, poor network design and
onstruction, inadequate corrosion protection, and mechanical damage represents a major challenge facing water companies all
ver the world. Water leakages have serious social, economic, and ecological consequences, including lost revenue, increased
ost to consumers, and inability to meet water demand [1]. Timely detection and repair of leakages are of primal importance.
comprehensive review of different leak detection and localisation methods, including acoustic methods, infra-red thermography,

round penetration radar, and transient-based methods, can be found in [2]. Among existing methods, acoustic cross-correlation
sing leak noise correlators is the most commonly used method for locating leaks in water distribution networks [3]. In this method,
he leak location is determined from the time delay between acoustic/vibration signals measured on either side of the suspected leak.
eak noise correlators usually estimate this time delay from the cross-correlation function (CCF) of the signals. The effectiveness of
stimating the time delay from the CCF is strongly affected by the frequency region over which cross-correlation processing is carried
ut [4]. In most correlators, the signals are usually passed through filters to attenuate the signals in the frequency region dominated
y background noise prior to computing the CCF. Incorrect choice of filter bandwidth may result in inaccurate time delay estimates,
nd this represents a major issue affecting the performance of correlators [5]. To address this issue, this paper presents a time delay
stimation (TDE) scheme that employs a multi-resolution decomposition framework implemented with wavelet transform (WT) or
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data-adaptive decomposition. This scheme avoids explicit filtering of the signals by executing the cross-correlation processing on
the signals at different scales or resolutions. Numerical simulation and test data from a real water pipe are used to evaluate the
performance of the TDE scheme for leak localisation. The rest of this paper is organised as follows. Section 2 describes the acoustic
cross-correlation method and introduces the methods commonly used for estimating delays between leak signals. The mean square
error (MSE) of the time delay estimate is derived in terms of signal and pipe properties. The principles of the TDE scheme based on
multi-resolution analysis are outlined in Section 3, while the wavelet-based and the data-adaptive implementations of the scheme
are discussed in Sections 4 and 5, respectively. Section 6 presents and discusses the results obtained for simulated and experimental
leak signals. Finally, the main conclusions are outlined in Section 7.

2. Overview of acoustic cross-correlation

A leak in a water pipe generates low-frequency acoustic/vibration signals that propagate along the pipe. To locate the leak,
these signals can be acquired at two access points on either side of the location of the leak, as shown in Fig. 1. The leak location is
calculated as

𝑑1 =
𝑑 − 𝑐 ⋅ 𝜏peak

2
(1)

where 𝑑𝑘, 𝑘 = 1, 2, is the distance between the leak location and the 𝑘th measurement point, 𝜏peak = (𝑑2 − 𝑑1)∕𝑐 is the time delay
between the two acquired signals 𝑥1(𝑡) and 𝑥2(𝑡), 𝑐 is the propagation speed of the leak signal in the pipe, and 𝑑 = 𝑑1 + 𝑑2 is the
distance between the measurement points. It can be seen that accurate TDE is necessary for accurate leak localisation. The most
commonly used TDE method in leak noise correlators is basic cross-correlation (BCC), in which the time delay is determined as the
time lag that maximises the CCF. The CCF 𝑅𝑥1𝑥2 (𝜏) of 𝑥1(𝑡) and 𝑥2(𝑡) is given by

𝑅𝑥1𝑥2 (𝜏) =
1
𝑇 ∫

𝑇

0

𝑥1(𝑡 − 𝜏)𝑥2(𝑡)𝑑𝑡 = −1
{

𝐺𝑥1𝑥2 (𝜔)
}

= −1 {𝑋∗
1 (𝜔)𝑋2(𝜔)

}

(2)

where 𝑋𝑘 (𝜔) = 
{

𝑥𝑘(𝑡)
}

; 𝐺𝑥1𝑥2 (𝜔) is the cross-power spectrum (CPS) of 𝑥1(𝑡) and 𝑥2(𝑡); 𝑇 is the measurement duration; ∗ denotes
the complex conjugate;  {⋅} and −1 {⋅} denote the Fourier transform (FT) and inverse Fourier transform (IFT), respectively. An
alternative to BCC is generalised cross-correlation (GCC), in which the CPS is multiplied by a weighting function prior to performing
the IFT to obtain the CCF [6]. Examples of GCC methods are phase transform (GCC-PHAT), smoothed coherence transform (GCC-
SCOT), maximum likelihood (GCC-ML), and Wiener estimator. The performance of these BCC and GCC methods for acoustic leak
signals was investigated in [4,7].

Fig. 1. Typical measurement set-up for the acoustic cross-correlation method.
In addition to the signals generated by the leak, acoustic/vibration signals measured on water pipes contain ambient noise and

possibly interferences resulting from pipe system dynamics (for example, resonances). As noise and interferences introduce errors in
the time delay estimate [8], accurate leak localisation via cross-correlation demands mitigating their effects. In leak noise correlators,
this is achieved by filtering the signals prior to calculating their CCF. The aim of this filtering is to ensure that the cross-correlation
processing is carried out only in the frequency region where the leak signal is significant relative to the background noise and other
interferences [4,9]. As has been observed in a survey of commercial leak noise correlators [5], incorrect selection of filter bandwidth
is one of the factors responsible for poor leak localisation performance. The effects of filter bandwidth, noise, and other factors on
TDE accuracy can be assessed by evaluating the MSE of the time delay estimate in terms of pipe and signal properties. Referring to
Fig. 1, the measured signals 𝑥1(𝑡) and 𝑥2(𝑡) can be represented as

𝑥1(𝑡) = 𝑙(𝑡)⊗ ℎ1(𝑡) + 𝑛1(𝑡) = 𝑙1(𝑡) + 𝑛1(𝑡) (3a)

𝑥2(𝑡) = 𝑙(𝑡)⊗ ℎ2(𝑡) + 𝑛2(𝑡) = 𝑙2(𝑡) + 𝑛2(𝑡) (3b)

where 𝑙(𝑡) is the signal generated at the leak location (i.e., the leak noise), ℎ𝑘 is the impulse response function (IRF) that expresses
the relationship between 𝑙(𝑡) and the signal at the 𝑘th measurement point, 𝑙 = 𝑙(𝑡) ⊗ ℎ is the noise-free component of 𝑥 (𝑡), ⊗
2

𝑘 𝑘 𝑘
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denotes linear convolution, and 𝑛𝑘(𝑡) is the background noise signal at the 𝑘th measurement point. The background noise signals
are assumed to be mutually uncorrelated with each other and the leak noise. Based on an analytical model of wave propagation
established in [10] for an infinitely long water pipe with no discontinuities, the frequency response function (FRF) 𝐻(𝜔, 𝑑𝑘) = 

{

ℎ𝑘
}

can be expressed as

𝐻(𝜔, 𝑑𝑘) = 𝑒−|𝜔|𝛽𝑑𝑘𝑒−𝑖|𝜔|𝑑𝑘∕𝑐 (4)

where 𝜔 is radial frequency, 𝑖 =
√

−1, and 𝛽 is the attenuation factor (a measure of the loss experienced by acoustic waves within the
ipe wall). This model shows that a water pipe acts as a low-pass filter that attenuates relatively high frequencies. As stated above,
eak noise correlators determine the time delay between 𝑥1(𝑡) and 𝑥2(𝑡) from the CCF 𝑅𝑥̃1 𝑥̃2 (𝜏) of the filtered signals 𝑥̃1(𝑡) = 𝑥1(𝑡)⊗𝑤1(𝑡)
nd 𝑥̃2(𝑡) = 𝑥2(𝑡) ⊗ 𝑤2(𝑡), where 𝑤1(𝑡) and 𝑤2(𝑡) are weighting functions corresponding to the filters applied to 𝑥1(𝑡) and 𝑥2(𝑡),
espectively. If the applied filters are linear, then the MSE E

{

(

𝜏peak − 𝜏peak
)2
}

(denoted as MSE
(

𝜏peak
)

) of the unbiased time delay
stimate 𝜏peak (assumed to lie in the neighbourhood of the true delay 𝜏peak) can be derived using the procedures in [11] as

MSE
(

𝜏peak
)

= 𝜋
𝑇

∫ ∞

0
𝜔2𝑊 2(𝜔)

[

𝐺𝑛1𝑛1 (𝜔)𝐺𝑙2𝑙2 (𝜔) + 𝐺𝑛2𝑛2 (𝜔)𝐺𝑙1𝑙1 (𝜔)

+𝐺𝑛1𝑛1 (𝜔)𝐺𝑛2𝑛2 (𝜔)

]

𝑑𝜔

[

∫ ∞

0
𝜔2𝑊 (𝜔) ||

|

𝐺𝑙1𝑙2 (𝜔)
|

|

|

𝑑𝜔
]2

(5)

where 𝑊 (𝜔) = 
{

𝑤1(𝑡)
}∗ 

{

𝑤2(𝑡)
}

, and E{⋅} denotes the expectation. If the same filter is applied to both signals, then 𝑤1(𝑡) = 𝑤2(𝑡)
nd 𝑊 (𝜔) = |

{

𝑤1(𝑡)
}

|

2. To simplify the MSE expression, 𝑊 (𝜔) is taken as an ideal bandpass filter, i.e., 𝑊 (𝜔) = 1 in the frequency
nterval 𝜔1 ≤ 𝜔 ≤ 𝜔2 and zero elsewhere. Also, the leak noise and the background noise signals are assumed to have flat spectra
ith 𝐺𝑙𝑙(𝜔) = 𝑆0 and 𝐺𝑛1𝑛1 (𝜔) = 𝐺𝑛2𝑛2 (𝜔) = 𝑁0. Rewriting Eq. (5) in terms of the FRFs 𝐻(𝜔, 𝑑1) and 𝐻(𝜔, 𝑑2) and evaluating the

ntegrals using the relation [12]

∫

𝑏

0

𝜔𝑛𝑒−𝑎𝜔𝑑𝜔 = 𝑛!
𝑎𝑛+1

[

1 − 𝑒−𝑎𝑏
𝑛
∑

𝑘=0

(𝑎𝑏)𝑘

𝑘!

]

, 𝑎 > 0 (6)

gives the MSE as

MSE
(

𝜏peak
)

= 𝜋
16𝑇

1
𝜉

(𝛽𝑑)6
(

𝑒−𝜔1𝛽𝑑
∑2
𝑚=0

(𝜔1𝛽𝑑)𝑚
𝑚! − 𝑒−𝜔2𝛽𝑑

∑2
𝑚=0

(𝜔1𝛽𝑑)𝑚
𝑚!

)2
⋅

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

𝑒−2𝜔1𝛽𝑑1
∑2
𝑚=0

(2𝜔1𝛽𝑑1)𝑚

𝑚! − 𝑒−2𝜔2𝛽𝑑1
∑2
𝑚=0

(2𝜔2𝛽𝑑1)𝑚

𝑚!

)

(

𝛽𝑑1
)3

+

(

𝑒−2𝜔1𝛽𝑑2
∑2
𝑚=0

(2𝜔1𝛽𝑑2)𝑚

𝑚! − 𝑒−2𝜔2𝛽𝑑2
∑2
𝑚=0

(2𝜔2𝛽𝑑2)𝑚

𝑚!

)

(

𝛽𝑑2
)3

+4
3
1
𝜉
(

𝜔3
2 − 𝜔

3
1
)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(7)

where 𝜉 =
𝑆0
𝑁0

. If 𝑊 (𝜔) has a wide bandwidth such that 𝜔2 ≫ 𝜔1 and 𝜔1 is small (close to zero), then the MSE can be approximated
s

MSE
(

𝜏peak
)

≈ 𝜋
16𝑇

1
𝜉
𝛽3𝑑6 ⋅

[

1
𝑑31
𝑒2𝜔1𝛽𝑑2 + 1

𝑑32
𝑒2𝜔1𝛽𝑑1 + 4

3
1
𝜉
𝜔3
2𝛽

3𝑒2𝜔1𝛽𝑑
]

. (8)

By applying the Cauchy–Schwarz inequality [13] to the denominator of Eq. (5), the minimum value of the MSE, i.e, the Cramer–Rao
lower bound (CRLB) 𝜏CRLB, is obtained as

MSE
(

𝜏peak
)

≥ 𝜏CRLB = 𝜋
𝑇

1
𝜉

⎡

⎢

⎢

⎣

∫

∞

0

𝜔2 𝑒−2𝜔𝛽𝑑

𝑒−2𝜔𝛽𝑑1 + 𝑒−2𝜔𝛽𝑑2 + 1∕𝜉
𝑑𝜔

⎤

⎥

⎥

⎦

−1

(9)

with equality if and only if 𝑊 (𝜔) = 𝐾
𝜉𝑒−2𝜔𝛽𝑑

𝑒−2𝜔𝛽𝑑1 + 𝑒−2𝜔𝛽𝑑2 + 1∕𝜉
, where 𝐾 is an arbitrary real constant.

From the expressions in Eqs. (7)–(9), it can be observed that in addition to the cut-off frequencies of the applied filter 𝜔1
and 𝜔2 and the signal-to-noise ratio (SNR) of the leak noise 𝜉, the accuracy of TDE results is affected by the measurement time
𝑇 , pipe attenuation 𝛽, inter-sensor distance 𝑑, and actual leak location. Large values of the attenuation factor and inter-sensor
distance decrease the accuracy of the time delay estimate. The MSE is minimised when the leak is equidistant from both sensors
(i.e., 𝑑1∕𝑑2 = 1) and becomes larger as the leak gets closer to any one end of the pipe. The CRLB is limited by pipe properties,
measurement time, and the SNR of the leak noise. Among the factors that affect the MSE, only the measurement time and cut-off
frequencies can be adjusted by the operator, so the possible measures for improving the quality of the time delay estimate in a
given pipe and measurement set-up are increasing the measurement time and properly selecting 𝜔1 and 𝜔2 to mitigate or exclude
the effects of noise and other interferences [8]. As suggested in [14], the filter bandwidth can be set as the frequency region where
3
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the coherence of the measured signals exceeds some threshold. Proper selection of cut-off frequencies is thus difficult in situations
where the spectral properties of the signals are not available a priori or cannot be reliably estimated. Furthermore, the coherence-
based criterion is not effective when resonances are present in the signals [9]. A survey of experimental leak signals shows that
background noise generally dominates at low frequencies (<5 Hz), while relatively high frequencies are severely attenuated [10].
Hence, in practice, the bandwidth of the applied filter are usually pre-set to exclude the low-frequency and the high-frequency
regions [4]. Setting the cut-off frequencies in this manner without considering the pipe and signal properties may lead to inaccurate
TDE results, and consequently, inaccurate leak localisation. Due to difficulties associated with properly selecting analysis frequency
interval, development of approaches for estimating time delays without requiring knowledge of signal spectral properties is of
practical importance. One such method proposed in the literature is the cross-cross-correlation method [15], in which the time
delay is obtained as the least-squares solution of an overdetermined system of equations built from the CCF of the CCFs of each pair
of measured signals. This method implicitly performs a filtering operation on the signals, approximating GCC but without requiring
information about the signal spectra. However, it requires presence of at least three non-collocated sensors in the measurement
set-up, thereby making it inapplicable to the acoustic leak localisation problem under consideration.

An alternative approach for estimating time delay without explicit spectral analysis or knowledge of signal and pipe properties
is to carry out the cross-correlation processing in a subspace where leak signal can be separated from noise and interferences.
This can be achieved via multi-resolution decomposition, which allows the separation of signals into components corresponding to
different levels of details. By executing the cross-correlation processing on the multi-resolution components, it becomes possible to
estimate the time delay while excluding the effects of noise and interferences. The rest of this paper concerns the principles and
implementations of this TDE scheme.

3. Time delay estimation based on multi-resolution decomposition

Multi-resolution decomposition of a signal results in a hierarchical representation of the signal at different scales or resolutions,
each of which corresponds to a frequency band [16]. The signal is separated into a series of low-frequency contents (approximations)
and high-frequency contents (details) typically using a time-scale transform. By combining the approximations and details at different
scales, the original signal can be recovered without loss. Multi-resolution decomposition is useful for identification and separation of
signal from noise. A band-limited signal (for example, leak signals, bandwidth of which is limited by pipe attenuation properties [17])
is typically resolved at a few scales, whereas the background noise (assumed to have a wider bandwidth than the signal) often
contributes to all scales. Therefore, only few resolution levels will be localised in significant part of the leak signal spectrum, while
the rest of the levels will be localised in major frequency components of noise and other inferences. This leads to the idea of carrying
out cross-correlation analysis on the multi-resolution components instead of the whole signals. A TDE scheme realising this idea is
shown in Fig. 2. Once the leak signals are decomposed with a suitable time-scale transform, the time delay is estimated at each
resolution (decomposition) level, and then the most accurate time delay estimate is selected using an appropriate criterion. In this
paper, the terms ‘resolution level(s)’ and ‘decomposition level(s)’ will be used interchangeably.

Fig. 2. Proposed TDE scheme. 𝜏𝑗 denotes the time delay estimate obtained from the 𝑗th level multi-resolution components.

Suitable multi-resolution decomposition methods to be employed in the proposed TDE scheme must satisfy desirable requirements
of shift invariance, low redundancy, and computational efficiency. Shift-invariance implies that any delay present in the original
signal is preserved in the resolved components. In other words, a shift in the original signal manifests as an equivalent shift in
the multi-resolution components at all scales. Low redundancy implies that there is very little overlap in the resolved components
across scales. A non-redundant decomposition presents a compact representation of signals, which is desirable for computational
efficiency in terms of time and memory requirements. Considering these requirements, two possible choices of decomposition
methods for implementing the proposed TDE scheme are shift-invariant WT and data-adaptive decompositions. The former is a
time-scale transform that dilates or expands a basic signal shape element (wavelet) and considers how well different regions of
a signal match this prototype. The latter are methods that resolve signals into multi-resolution components without using a fixed
basis function. Implementation of the TDE scheme using these decomposition methods are described in the next two sections. Also
discussed are the criteria for selecting the best decomposition levels in each implementation.
4
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4. Wavelet transform-based time delay estimator

Wavelet analysis relies on the characterisation of a signal by the distribution of the signal amplitude in a basis consisting of
ilations and translations of a wavelet, i.e., a quickly vanishing oscillating function with good localisation in both frequency and
ime domains. The continuous wavelet transform (CWT) 𝑊𝜓𝑥 of a signal 𝑥(𝑡) ∈ 𝐿2(R) (the space of all finite-energy signals) with
espect to a wavelet 𝜓(𝑡) is defined as the correlation

⟨

𝑥, 𝜓𝑠,𝑏
⟩

between 𝑥(𝑡) and 𝜓𝑠,𝑏(𝑡) [18]

𝑊𝜓𝑥(𝑠, 𝑏) =
⟨

𝑥, 𝜓𝑠,𝑏
⟩

= ∫

∞

−∞
𝑥(𝑡)𝜓∗

𝑠,𝑏(𝑡)𝑑𝑡. (10)

where 𝜓𝑠,𝑏(𝑡) = |𝑠|−1∕2𝜓
( 𝑡 − 𝑏

𝑠

)

corresponds to continuous scaling 𝑠 ≠ 0 and translation 𝑏 of 𝜓(𝑡). If discrete values of scaling and
ranslation are used, then a discrete wavelet transform (DWT) is obtained [18]. Of particular interest in multi-resolution applications
re orthogonal wavelets owing to their suitability for efficient decomposition and reconstruction of signals with minimal loss of
nformation [19]. If 𝜓(𝑡) is an orthogonal wavelet, then for the discrete set of parameters 𝑠𝑗 = 2−𝑗 and 𝑏 = 𝑛 with 𝑗, 𝑛 ∈ Z (the set
f integers), the set

{

𝜓𝑗,𝑛(𝑡)
}

=
{

2𝑗∕2𝜓
(

2𝑗 (𝑡 − 𝑛)
)}

constitutes an orthonormal basis of 𝐿2(R) [20]. The resulting WT is known as a
on-decimated dyadic DWT or maximal overlap discrete wavelet transform (MODWT). Setting 𝑏 = 2−𝑗𝑘 (instead of 𝑏 = 𝑛) yields the
onventional (decimated) DWT. In contrast with decimated DWT, MODWT is redundant (albeit significantly less so than CWT) and
hift-invariant [21]. Hence, the MODWT represents the best choice of WT for implementing the TDE scheme.

Through the MODWT, a discrete signal 𝑥(𝑛) can be expanded as a linear combination of an orthogonal wavelet 𝜓(𝑛) at varying
cales and translations [18]:

𝑥(𝑛) =
𝐽0
∑

𝑗=1
𝑦𝑗 (𝑛) + 𝑅(𝑛) =

𝐽0
∑

𝑗=1

𝑁
∑

𝑘=1
𝐶𝑗 (𝑘)2−𝑗∕2𝜓

(

2𝑗 (𝑛 − 𝑘)
)

+
𝑁
∑

𝑘=1
𝐷𝐽0 (𝑘)2

−𝑗∕2𝜙
(

2𝑗 (𝑛 − 𝑘)
)

(11)

here 𝐽0 is the number of resolution levels, 𝑁 is the signal length, 𝐶𝑗 =
⟨

𝑥, 𝜓𝑗,𝑛
⟩

are the wavelet coefficients at the 𝑗th resolution
evel, 𝑦𝑗 (𝑛) =

∑𝑁
𝑘=1 𝐶𝑗 (𝑘)𝜓𝑗,𝑛 is the detail of 𝑥(𝑛) at the 𝑗th level, 𝑅(𝑛) = ∑𝑁

𝑘=1𝐷𝐽0 (𝑘)2
−𝑗∕2𝜙

(

2𝑗 (𝑛 − 𝑘)
)

is the approximation of 𝑥(𝑛)
t the 𝐽0th resolution level, 𝐷𝐽0 are the final-level scaling coefficients, and 𝜙 is the so-called scaling function (usually selected to
atisfy a quadrature mirror filter relationship with 𝜓). The wavelet coefficients 𝐶𝑗 can be interpreted as the local residual errors
etween successive signal approximations at resolution levels 𝑗 and 𝑗+1. The frequency spectrum of 𝑥(𝑛) is successively divided into
high-frequency sub-band and low-frequency sub-band as the decomposition scale increases. If 𝐹𝑠 is the sampling frequency, 𝐶𝑗 and

he detail 𝑦𝑗 contain the information of the signal corresponding to the frequencies in the interval
[

2𝑗−1𝐹𝑠, 2𝑗𝐹𝑠
]

. Thus, the MODWT
esolution levels represent a set of bandpass filters. Since it is implemented using an orthogonal wavelet, MODWT preserves signal
nergy [20], i.e., ‖𝑥‖2 = ∑𝐽0

𝑗=1 ‖𝐶𝑗‖
2 + ‖𝐷𝐽0‖

2, where ‖ ⋅ ‖ denotes the 𝓁2-norm.
In the WT-based implementation of the TDE scheme, the CCF 𝑅𝜓𝑥1𝑥2 (𝜏, 𝑗) = 𝑅𝑥̃1 𝑥̃2 (𝜏) for each decomposition level 𝑗 is calculated

s

𝑅𝜓𝑥1𝑥2 (𝜏, 𝑗) =
𝑁
∑

𝑛=1
𝐶𝑗,1 (𝑛 − 𝜏)𝐶𝑗,2 (𝑛) (12)

here 𝐶𝑗,𝑘 =
⟨

𝑥𝑘, 𝜓𝑗,𝑛
⟩

are the 𝑗th level MODWT coefficients of the measured signal 𝑥𝑘(𝑛) with respect to an orthogonal wavelet
. This method of estimating the time delay from the location of the peak of 𝑅𝜓𝑥1𝑥2 (𝜏, 𝑗) in Eq. (12) will be termed wavelet

ransform cross-correlation (WTCC), and when necessary, denoted as WTCC-wav, where ‘wav’ indicates the wavelet used. For the
th decomposition level, the weighting function 𝑊 (𝜔) in Eq. (5) is given by

𝑊 (𝜔) = |

|

|


{

𝜓𝑗,𝑛(𝑡)
}

|

|

|

2
= 2𝑗 |

|

𝛹 (2−𝑗𝜔)|
|

2 (13)

here 𝛹 (𝜔) =  {𝜓(𝑡)}. The bandwidth of 𝑊 (𝜔), and consequently, the accuracy of WTCC time delay estimate will depend on the
ecomposition level 𝑗 and the wavelet 𝜓(𝑡). Selection of these two parameters is discussed in the next subsection.

.1. Selection of wavelet function and decomposition level

In the proposed TDE scheme, the objective of multi-resolution decomposition is to separate components corresponding to
requency bands with significant leak signal content from those dominated by background noise and other interferences. As already
tated, leak signals are generally characterised by low frequencies, so suitable wavelets for analysing leak signals should allow
ore low-frequency contents to pass. Among available choices, four well-known and readily available orthogonal wavelet families:
aubechies (‘db𝑀 ’), symlet (‘sym𝑀 ’), coiflet (‘coif𝑀 ’), and Fejer-Korovkin (‘fk𝑀 ’) wavelets are considered in this paper. These
avelet families are popular and recommendable tools for analysing signals in many applications. Details about the first three
avelet families can be found in [22], while Fejer-Korovkin wavelets are described in [23]. Note that except Haar wavelet (denoted
s ‘haar’ or ‘db1’), these orthogonal wavelets cannot be expressed in closed form. In the wavelet notation, 𝑀 refers to the number
f vanishing moments. A wavelet with 𝑀 vanishing moments is orthogonal to polynomials of degree 𝑀 − 1. As the number of
anishing moments grows, the greater the wavelet oscillates, and the larger its support length in the time domain and the better
ts frequency localisation capability [19]. Fig. 3 shows the frequency responses of different wavelets from each family at various
ecomposition levels. It is clear from the plot that the frequency responses are determined primarily by the complexity of the
5

avelets, i.e., number of vanishing moments. Wavelets with comparable level of complexity exhibit similar frequency characteristics
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at the same decomposition levels. Simpler wavelets, i.e., those with smaller number of vanishing moments, are less computationally
expensive and allow more low-frequency contents to pass at each decomposition level, making them more suitable for analysing
leak signals.

Fig. 3. Frequency responses of wavelet families at different decomposition levels: (a) Daubechies wavelets; (b) symlets; (c) coiflets; (d) Fejer-Korovkin wavelets.
𝑓 is frequency in Hertz.

Wavelet coefficients of a signal are closely related to the signal characteristics. As an energy-preserving transform, MODWT
partitions signal energy by scale (or decomposition level) [20]. As already stated, the leak signal will contribute significantly to
the wavelet coefficients in a few levels, while the background noise will tend to contribute to all levels. The signal energy will
therefore be high at levels encompassing frequency bands where the leak signal spectrum is significant and low in the others. The
best decomposition levels can be selected by employing the relative wavelet energy (RWE) criterion defined as [24]

RWE𝑗 =
𝐸𝑗,1
𝐸tot,1

+
𝐸𝑗,2
𝐸tot,2

(14)

where 𝐸𝑗,𝑘 =
∑𝑁
𝑛=1

|

|

|

𝐶𝑗,𝑘(𝑛)
|

|

|

2
is the energy in the 𝑗th decomposition level of 𝑥𝑘, and 𝐸tot,k =

∑𝑁
𝑛=1

|

|

𝑥𝑘(𝑛)||
2 is the total energy in 𝑥𝑘.

The best decomposition levels are those with the highest RWE. An alternative criterion can be based on the properties of the CCF
at each decomposition level. The CCF resulting from a suitable decomposition level should allow for unambiguous determination
of the time delay estimate. Suitability of a decomposition level can therefore be assessed using a measure of the SNR of the CCF
termed peak-to-side lobe ratio (PSR), which is defined as [25]

PSR𝑗 =

(

𝑅𝜓𝑥1𝑥2 (𝜏peak , 𝑗)
)2

var
{

𝑅𝜓𝑥1𝑥2 (𝜏far , 𝑗)
} (15)

where var
{

𝑅𝜓𝑥1𝑥2 (𝜏far , 𝑗)
}

denotes the variance of correlation values at far points, i.e., at lags 𝜏far far from the CCF peak. If the CCF
is computed in the lag interval −𝑛𝑐 ≤ 𝜏 ≤ 𝑛𝑐 , then the far points are selected to be at least 𝑛𝑐∕2 samples away from 𝜏peak . A large PSR
value implies that the CCF has a prominent main peak and low values away from this peak. Such a CCF is more likely to give an
accurate time delay estimate compared to a CCF in which the main peak is of comparable height with other peaks. The PSR defined
in Eq. (15) will be normalised by dividing its value by the sum of all the PSR values (∑𝐽0

𝑗=1 PSR𝑗). Combining RWE and PSR yields
the single criterion

CR𝑗 = RWE𝑗 ⋅ PSR𝑗 . (16)

for selecting the best decomposition levels. The bigger the value of CR𝑗 , the more suitable the 𝑗th decomposition level will be for
TDE. By combining RWE and PSR, an appropriate decomposition level should extract high amount of energy from the leak signals
being analysed, while ensuring that the output CCF gives an accurate time delay estimate. An approach that may be useful for
improving TDE accuracy is to estimate the time delay from the sum of wavelet coefficients at the decomposition levels with high
CR𝑗 values. As the very low frequencies in leak signals are usually dominated by background noise, it is suggested to consider only
decomposition levels whose lower cut-off frequencies are above 5 Hz. In other words, the maximum decomposition level considered
in WTCC is set to 𝐽 =

⌊

log
(

𝐹𝑠
)

− 1
⌋

, where ⌊⋅⌋ denotes the floor function. For example, 𝐽 = 6 for signals sampled at 1 kHz.
6
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4.2. Computational complexity of WTCC

The computational costs of the steps involved in WTCC are summarised in Table 1. Counted are all basic arithmetic operations
nvolved: addition, multiplication, and division. Each basic operation is assumed to incur the same unit cost (number of flops). The
ost associated with computing orthogonal wavelet filters is assumed to be negligible. However, it should be noted that this cost could
e quite significant for wavelets with high number of vanishing moments [26]. It is also assumed that all possible lags are considered
n the CCF, i.e., 𝑛𝑐 = 𝑁−1. Efficient CCF computation involves two fast Fourier transform (FFT) and one inverse FFT operations, each
f which has cost 𝑘𝐹𝑁 log2𝑁 . Computational cost of a 𝐽0-level MODWT is 𝐽0𝑘𝑀𝑁 [20]. The real constants 𝑘𝐹 and 𝑘𝑀 depend on the
pecific FFT and MODWT algorithms used. The total cost of WTCC is approximately

[(

3𝑘𝐹 log2𝑁 + 2𝑘𝑀 + 8
)

𝑁 + 2
]

𝐽0+4𝑁 . If WTCC
s implemented for all possible levels, i.e., 𝐽0 = ⌊log2𝑁⌋, then the time complexity of WTCC in big-O notation is 

(

𝑁(log2𝑁)2
)

.
his is higher than the time complexity of 

(

𝑁 log2𝑁
)

for BCC and GCC.
Table 1
Computational cost of WTCC operations.
Step MODWT RWE PSR CR CCF

Cost 2𝐽0𝑘𝑀𝑁 𝐽0(4𝑁 + 3) + 4𝑁 𝐽0(4𝑁 − 2) 𝐽0 3𝐽0𝑘𝐹𝑁 log2𝑁

5. Data-adaptive time delay estimator

Data-adaptive decompositions separate a signal 𝑥(𝑡) into a set of multi-resolution components 𝑚𝑗 (𝑡) known as intrinsic mode
unctions (IMFs) and a residual 𝑟(𝑡), i.e.,

𝑥(𝑡) =
𝐽0
∑

𝑗=1
𝑚𝑗 (𝑡) + 𝑟(𝑡) (17)

here 𝐽0 is the number of extracted IMFs. Examples of data-adaptive decompositions are empirical mode decomposition (EMD) [27],
ariational mode decomposition (VMD) [28], and empirical wavelet transform (EWT) [29]. These execute signal decomposition
n very different ways. Empirical mode decomposition works recursively on the time-domain signal to extract progressively lower
requency IMFs via a sifting operation, which involves the calculation of the moving average of the envelopes connecting the extrema
f the signal [27]. Variational mode decomposition formulates the problem of extracting IMFs as an optimisation problem, which is
olved using the alternating direction method of multipliers [30]. Empirical wavelet decomposition extracts IMFs using an adaptive
avelet filter bank constructed based on frequency content of the signal [29]. In VMD and EWT, all IMFs are extracted concurrently,
nd the number of IMFs has to be chosen in advance. Each VMD and EWT IMF has a compact frequency support around a central
requency, which is identified from local maxima in the signal spectrum. It should be noted that EMD is purely algorithmic and not
eadily amenable to mathematical analysis in contrast with VMD and EWT. All three data-adaptive decompositions can be viewed
s a set of bandpass filters [31]. The centre frequencies of the filters in EMD decrease on a dyadic scale just like in MODWT [32,33].
nly EWT possesses the energy-preserving property of MODWT [34]. The data-adaptive decompositions differ in their computational
fficiency. Results of empirical studies show that VMD is significantly more computationally expensive than EMD and EWT [35].
n fact, VMD takes 6 times longer than EMD to decompose the same signal in [36].

In the data-adaptive implementation of the TDE scheme, the CCF 𝑅𝐷𝐷𝑥1𝑥2 (𝜏, 𝑗) = 𝑅𝑥̃1 𝑥̃2 (𝜏) for each decomposition level 𝑗 is calculated
s the discrete CCF of the IMFs 𝑚𝑗,1(𝑡) and 𝑚𝑗,2(𝑡):

𝑅𝐷𝐷𝑥1𝑥2 (𝜏, 𝑗) =
𝑁
∑

𝑛=1
𝑚𝑗,1(𝑛 − 𝜏)𝑚𝑗,2(𝑛) (18)

here 𝑚𝑗,2 denotes the IMF of 𝑥2(𝑡) that encompasses the same frequency interval as the 𝑗th IMF 𝑚𝑗,1 of 𝑥1(𝑡). This method
f estimating the time delay from 𝑅𝐷𝐷𝑥1𝑥2 (𝜏, 𝑗) will be denoted in this work as ‘DD-CC’, where ‘DD’ denotes the data-adaptive
ecomposition employed. Due to the dyadic nature of EMD, the IMFs used in EMD-CC correspond to the same decomposition level,
.e, 𝑚𝑗,2 = 𝑚𝑗,2. In the case of VMD-CC and EWT-CC, 𝑚𝑗,2 has to be selected as the IMF whose centre frequency is closest to that of
𝑗,1. This presents no difficulty in practice as VMD and EWT centre frequencies are readily available to the user.

As in WTCC, choice of data-adaptive decomposition method can be based on computational efficiency, while selection of best
ecomposition level can be accomplished using PSR (or an energy-based criterion if the decomposition method preserves energy).
ased on computational efficiency, EMD and EWT are better choices than VMD. For EMD-CC and VMD-CC, the criterion CR𝑗 is
qual to PSR𝑗 , whereas for EWT-CC, it is as defined in Eq. (16) with RWE𝑗 given in terms of the analysis coefficients of the EWT
avelets corresponding to IMFs 𝑚𝑗,1 and 𝑚𝑗,2. As in WTCC, the search for the best IMF in EMD-CC may be restricted to the first few
ecomposition levels. The TDE process can be improved by calculating the CCF from the sum of IMFs with high CR𝑗 values.

The DD-CC differs from WTCC only in the decomposition step and possible absence of RWE calculation. The time cost for
xtracting 𝐽0 IMFs using EMD is approximately 41𝑁𝑠𝐽0𝑁 , where 𝑁𝑠 denotes the number of sifting operations performed in each
MD iteration [37]. Setting 𝑁𝑠 to be constant (≈ 10) generally produces better results than using other stoppage criteria in the EMD
lgorithm [38,39]. The total computational cost of EMD-CC is therefore approximately

[(

3𝑘𝐹 log2𝑁 + 414
)

𝑁 − 1
]

𝐽0. Assuming the
aximum number of possible IMFs, i.e., 𝐽0 = ⌊log2𝑁⌋, EMD-CC has the same computational complexity 

(

𝑁(log2𝑁)2
)

as WTCC. No
explicit expression for the time complexity of VMD and EWT was found in the literature. However, since EWT-CC uses a wavelet filter
bank and involves RWE computation, EWT-CC will have a similar computational cost as WTCC. The relatively higher computational
cost of VMD implies that VMD-CC will incur higher cost than EMD-CC and EWT-CC.
7
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6. Results and discussion

In this section, the performances of the proposed WTCC and DD-CC are investigated using simulated and experimental leak
signals.

6.1. Simulation results

Simulated leak signals were generated by filtering a white noise signal (representing the leak noise) with the FRFs 𝐻(𝜔, 𝑑1) and
𝐻(𝜔, 𝑑2) of a plastic pipe whose wave speed and attenuation factor are 𝑐 = 484 m∕s and 𝛽 = 3.6⋅10−5 s/m, respectively. The distances
between the leak and the sensor locations were set to 𝑑1 = 32.8 m and 𝑑2 = 76.7 m. These values correspond to the properties of
the pipe and measurement set-up used for experimental investigation in the next subsection. The sampling rate and signal duration
were set to 𝐹𝑠 = 1 kHz and 𝑇 = 30 s. Two tests were performed. In the first test, the effects of decomposition method and level on
the accuracy of the time delay estimate were investigated. Gaussian noise was added to the simulated leak signals so that the SNR
was 0 dB. Fig. 4 shows the theoretical root mean square error (RMSE), i.e., square root of the MSE in Eqs. (5) and (7) for the first 10
decomposition levels of wavelets from different families. Also shown are the square root of the CRLB (Eq. (9)) and the experimental
RMSE calculated over 𝑁𝑟 = 500 Monte Carlo simulation runs using the formula

RMSE(𝜏peak ) =

√

√

√

√
1
𝑁𝑟

𝑁𝑟
∑

𝑘=1

(

𝜏peak,k − 𝜏peak
)2 (19)

where 𝜏peak,k is the time delay estimate from the 𝑘th run. For each run, different realisations of the leak noise and the added
background noise were used. To achieve sub-sample accuracy, parabolic interpolation was used to calculate the time delay as [40]

𝜏peak = 1
𝐹𝑠

(

𝐷peak +
𝜃1 − 𝜃3

2
(

𝜃1 − 2𝜃2 + 𝜃3
)

)

(20)

where 𝐷peak denotes the lag corresponding to the CCF peak, while 𝜃1, 𝜃2, and 𝜃3 are the CCF values at lags 𝐷peak − 1, 𝐷peak , and
𝐷peak + 1, respectively. As anticipated in Section 4.1, the simpler the wavelet, the lower the RMSE at any decomposition level. This

Fig. 4. Theoretical RMSE (indicated with ‘theor’) and simulation RMSE (indicated with ‘simul’) of the time delay estimate for different wavelet families: (a)
Daubechies wavelets; (b) symlets; (c) coiflets; (d) Fejer-Korovkin wavelets.
confirms the suitability of simpler wavelets for implementing WTCC. Since more complex wavelets are characterised by ‘flatter’
frequency responses (see Fig. 3), which are closer to the ideal bandpass filter assumed for 𝑊 (𝜔), the MSE expression in Eq. (7)
becomes more accurate as the number of vanishing moments increases. This expression overestimates the RMSE for the simpler
wavelets. The experimental RMSE agrees well with the theoretical RMSE in the decomposition levels with low RMSE. There is a
large discrepancy between the theoretical and experimental RMSE at the lowest decomposition levels. One possible reason for this is
that these levels encompass high-frequency regions where leak noise is severely attenuated by the pipe. An interesting observation
is that all wavelets achieve smallest RMSE and gets closest to the CRLB at the exact same decomposition level. This implies that
the choice of decomposition level is more critical for TDE accuracy than the type of wavelet used. The highest values of RWE ,
8
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Fig. 5. Average values of RWE𝑗 , PSR𝑗 , and CR𝑗 : (a) Daubechies wavelets; (b) Fejer-Korovkin wavelets.

PSR𝑗 , and CR𝑗 for each wavelet occur at the decomposition levels with the lowest RMSE, as shown in Fig. 5 for Daubechies and
Fejer-Korovkin wavelets. This confirms suitability of these criteria for selecting best decomposition levels.

The same observations can be made about DD-CC. Due to nonlinearity of data-adaptive decompositions, the expression for the
theoretical MSE in Eq. (5) is not valid for DD-CC and thus, only the experimental RMSE is presented here. Fig. 6(a) shows the RMSE
of EMD-CC, VMD-CC, and EWT-CC time delay estimates for the first 8 IMFs of the simulated leak signals. As in WTCC, the lowest
RMSE is achieved by the IMFs with the highest RWE𝑗 and CR𝑗 values (Fig. 6(b)).

Fig. 6. DD-CC simulation results: (a) RMSE of the time delay estimate; (b) PSR𝑗 and CR𝑗 .
The second test compares the performances of WTCC and DD-CC with those of BCC, GCC-PHAT, and GCC-ML using Monte Carlo

simulations. In this case, realisations of Gaussian noise were added to the simulated leak signals to achieve SNR between −10 and
6 dB. For each SNR, 500 Monte Carlo simulations were run. The decomposition levels in WTCC and DD-CC were set to the best
performing levels as determined from the results of the first test above. Fig. 7 shows the RMSE of the time delay estimate at each
SNR. Regardless of the wavelet and data-adaptive decomposition used, WTCC and DD-CC achieve lower RMSE in general than BCC
and GCC at low SNR. All the methods achieve similar performance when the SNR is high. These results demonstrate the superiority
of the proposed multi-resolution methods for acoustic leak signals.

Fig. 7. RMSE of time delay estimates over 500 simulation runs: (a) WTCC vs GCC; (b) DD-CC vs GCC.

6.2. Experimental results

Signals measured on a polyvinyl chloride (PVC) pipe at a leak detection facility in Canada were used to experimentally evaluate
the performance of WTCC and DD-CC. Fig. 8 shows the schematic of the test site. Detailed description of the test site and
measurement procedures can be found in [41]. Leak signals generated by a leaky joint were measured using hydrophones and
accelerometers installed on risers connected to two hydrants, one upstream and the other downstream of the joint. Inclusive of the
9
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Fig. 8. Schematic of the experimental test site.

lengths of the downstream and upstream risers (3.7 m and 3.2 m, respectively), the distances between the leak and the measurement
points are 𝑑1 = 32.8 m and 𝑑2 = 76.7 m, respectively. The hydrophone and accelerometer leak signals were measured for 60 and 66 s,
respectively, at a sampling rate of 𝐹𝑠 = 500 Hz. In previous research, the acoustic wave speed for hydrophone and accelerometer
signals in the pipe was experimentally estimated to be 484 m/s and 479 m/s, respectively [42]. This gives the true delay as 90.7 ms
and 91.6 ms, respectively, for the hydrophone and accelerometer signals. The time-domain resolution of the time delay estimate is
1∕𝐹𝑠 = 2 ms. An error of 2 ms in the time delay estimate corresponds to an absolute leak localisation error of 0.48 m.

In order to reveal the leak characteristics, spectral analysis was conducted on the signals using a 1024-point FFT, a Hann
window (with 50% overlap between segments) and spectral averaging. Fig. 9 shows the CPS (magnitude and unwrapped phase)
and coherence. As can be observed, the leak signals measured by the hydrophones dominate mostly in the frequency range between
10 Hz and 100 Hz, over which the CPS magnitude decreases with increasing frequency and the unwrapped phase is approximately
linear. This region is also characterised by high coherence between the signals. Two resonant peaks in the CPS magnitude are
observed at 56 Hz and 83 Hz, where phase shifts occur as marked by red circles. Oscillatory behaviour evident in the CPS magnitude
at lower frequencies of 10–30 Hz is likely indicative of acoustic reflections in the pipe system [43]. Below 10 Hz, the CPS is erratic
due to effects of noise. Signals at higher frequencies above 100 Hz become very small due to the low-pass filtering effect of the pipe.
The presence of resonance and noise interference represents a situation often encountered in practice. The CPS of the accelerometer
signals exhibits band-pass filtering behaviour, and the useful frequency band of the leak signals is 40–110 Hz, characterised by
linear unwrapped CPS phase. In this case, there are no resonance effects.

As stated in Section 2, BCC and GCC may give inaccurate time delay estimates if the interfering noise in the leak signals is included
in cross-correlation processing. Indeed, BCC, GCC-PHAT, and GCC-ML provide time delay estimates of 448, 87.6 and 87.8 ms,
respectively, for the raw hydrophone signals. These estimates differ from the true delay by more than 2 ms. As in the simulation
tests, sub-sample accuracy was achieved using parabolic interpolation (Eq. (20)). In the case of raw accelerometer signals, BCC, GCC-
PHAT, and GCC-ML estimates are 90.9, 91.5, and 91.2 ms, respectively, which are all within 2 ms of the true delay. The proposed
WTCC and DD-CC were implemented for the first 5 decomposition levels of the raw signals. Based on the values of the criterion CR𝑗
shown in Fig. 10, WTCC, EMD-CC, VMD-CC, and EWT-CC will provide most accurate time delay estimates at decomposition levels
3, 1, 1, and 2, respectively, for the hydrophone signals. In the case of the accelerometer signals, the best WTCC, EMD-CC, VMD-CC,
and EWT-CC levels are 2, 1, 4, and 4, respectively. The WTCC and DD-CC time delay estimates are shown in Table 2. All estimates
provided by levels where CR𝑗 is highest are within 2 ms of the true time delay. Simpler wavelets provide accurate estimates at more
decomposition levels than more complex wavelets. Haar wavelet yield accurate time delay estimates even at levels 1 and 2 of the
hydrophone signals, and accurate estimates at all levels of the accelerometer signals.

In order to improve the accuracy of the BCC and the GCC time delay estimates, there is need to first filter the hydrophone
signals before cross-correlating the signals. Two 4th order Butterworth bandpass filters with passbands 10–50 Hz and 10–100 Hz
were considered to illustrate the importance of proper filter bandwidth selection. The passband of the first filter was selected to
exclude the two resonance peaks, while the passband of the second filter was selected using the coherence-based criterion proposed
in [14] to encompass frequency interval where the coherence exceeds a threshold of 10−3. Comparing the CCFs obtained for the
raw and filtered hydrophone signals in Fig. 11 shows that application of the filters improves the effectiveness of unambiguously
estimating the time delay from the CCF. Table 3 summarises the time delay estimates obtained for raw and filtered signals using
all the time delay estimators. Also shown is the absolute leak localisation error 𝛥𝑑1 associated with each estimate. The WTCC and
DD-CC estimates correspond to those obtained at the best levels as determined from Fig. 10. Filtering the hydrophone signals in
the frequency range 10–50 Hz improves the BCC, GCC-PHAT, and GCC-ML estimates to 92.8, 91.7, and 90.1 ms, respectively. If
the signals are filtered without removing the resonance peaks, BCC and GCC-ML give time delay estimates of 93.3 and 90.3 ms,
respectively, while the GCC-PHAT provides an inaccurate estimate of 112 ms. Since GCC-PHAT gives equal weight to the frequency
components within the whole bandwidth [4], it does not compensate for resonance effects in the cross-correlation process. All WTCC
and DD-CC estimates for raw and filtered signals are accurate with small discrepancy less than the time-domain resolution of 2 ms.
Although not necessary, the accelerometer signals were also passed through a 4th order Butterworth filter with passband 40–110 Hz.
In this case, without and with filtering, all estimators give accurate estimates within 2 ms of the true delay.
10
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Fig. 9. Spectral properties of experimental signals. Hydrophone signals: (a) CPS magnitude; (c) unwrapped CPS phase; (e) coherence. Accelerometer signals: (b)
CPS magnitude; (d) unwrapped CPS phase; (f) coherence.

6.3. Discussion

The results above demonstrate that BCC and GCC may give incorrect time delay estimates in some practical situations if leak
signals are not first passed through a filter with properly selected cut-off frequencies prior to performing cross-correlation analysis.
In contrast, the proposed WTCC and DD-CC are capable of accurately extracting the time delay without any pre-processing. The
ability of these methods to achieve good performance when BCC and GCC fail is due to the inherent filtering associated with the
multi-resolution decomposition methods employed in the TDE scheme. Accurate TDE results are achieved irrespective of the type of
wavelet or data-adaptive decomposition employed as long as the decomposition level is appropriately selected using the proposed
CR𝑗 criterion. Because simpler wavelets allow more useful low-frequency contents to pass, they achieve better results over more
decomposition levels. One can, therefore, implement WTCC using the simplest orthogonal wavelet, Haar wavelet. Also, DD-CC can
be implemented with EMD for computational efficiency.

The proposed TDE scheme has some practical benefits. The time delay can be determined directly from the measured signals
without requiring spectral information of the noise and leak signals. Filtering operations are no longer required unlike in the
methods currently employed in leak noise correlators. This makes the proposed scheme attractive in cases when the statistical
characteristics of the signals cannot be known a priori. Since WTCC and DD-CC can be employed without need for any user input,
11
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Table 2
WTCC and DD-CC time delay estimates for raw leak signals. Estimates that are within the time
domain resolution (2 ms) of the true delay are highlighted in yellow.

Decomposition function/method

𝑗 haar sym2 coif6 sym11 db14 fk18 EMD EWT VMD

𝜏peak [ms]

Hydrophone signals

1 89.3 67.3 67.4 54.0 −382 87.0 89.5 90.6 49.9

2 89.7 88.0 67.6 49.8 49.8 67.2 98.5 239 90.5

3 90.9 90.2 89.7 89.6 89.6 89.5 576 0.2 239

4 −233 94.4 94.3 94.2 94.2 94.1 468 −1900 −584

5 −236 −233 104 105 105 105 1258 459 460

Accelerometer signals

1 91.2 91.4 252 252 252 252 91.2 1528 −292

2 91.0 91.1 91.2 91.2 91.2 91.2 90.3 −864 −850

3 90.4 90.3 90.2 90.2 90.2 90.2 −308 90.0 90.2

4 90.9 91.1 92.3 93.1 57.1 56.8 −963 91.6 91.4

5 90.7 −1658 −856 −856 −856 −856 1408 90.3 −232

Fig. 10. Criterion CR𝑗 . Hydrophone signals: (a) WTCC; (c) DD-CC. Accelerometer signals: (b) WTCC; (d) DD-CC.

they are suitable for use by people who lack the technical expertise required to properly set filter bandwidths. One disadvantage that
can be highlighted for the proposed TDE scheme is higher computational cost compared to BCC and GCC. The computational cost of
the scheme can be reduced by using simple wavelets and computationally efficient decomposition algorithms, such as the fast EMD
algorithm [44,45] and successive VMD [46]. Incorporating the proposed WTCC and DD-CC into existing leak detection equipment
is, therefore, worthwhile and recommended. Further experimental validation of the methods using leak signals from different water
distribution networks will be considered in future works.
12
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Fig. 11. CCFs of experimental signals. (a) Raw hydrophone signals; (b) raw accelerometer signals; (c) hydrophone signals filtered in the frequency range
10–50 Hz; (d) hydrophone signals filtered in the frequency range 10–100 Hz. Each CCF is normalised by its peak value.

Table 3
Time delay estimates (in ms) for raw and filtered leak signals. Values highlighted in yellow indicate estimates that differ from
the true delay by less then one sample (2 ms).

TDE method

GCC WTCC DD-CC

BCC PHAT ML haar sym2 coif6 sym11 db14 fk18 EMD EWT VMD

[𝑓1 , 𝑓2] Hz 𝜏peak [ms] 𝛥𝑑1 [m]

Hydrophone signals

raw 448 87.6 87.8 90.8 90.2 89.7 89.6 89.6 89.5 89.5 90.6 90.5
86.5 0.75 0.70 0.02 0.12 0.24 0.27 0.27 0.29 0.29 0.02 0.05

[10, 50] 92.7 91.7 90.1 91.7 91.1 90.6 90.6 90.6 90.5 91.8 91.8 91.2
0.48 0.24 0.15 0.24 0.10 0.02 0.02 0.02 0.05 0.27 0.27 0.12

[5, 100] 93.3 112 89.3 90.9 90.2 89.7 89.6 89.6 89.5 89.7 89.5 91.0
0.63 5.15 0.34 0.05 0.12 0.24 0.27 0.27 0.29 0.24 0.29 0.07

Accelerometer signals

raw 90.9 91.5 91.2 91.0 91.1 91.2 91.2 91.2 91.2 91.2 91.6 91.4
0.18 0.04 0.11 0.16 0.13 0.11 0.11 0.11 0.11 0.11 0.01 0.07

[40, 110] 90.7 91.4 90.9 90.9 91.0 91.1 91.1 91.1 91.2 90.8 91.3 91.9
0.23 0.06 0.18 0.18 0.16 0.13 0.13 0.13 0.11 0.20 0.08 0.06

7. Conclusion

This paper introduces a time delay estimation (TDE) scheme based on multi-resolution decomposition of acoustic/vibration leak
signals. In the scheme, a shift-invariant wavelet transform or data-adaptive decomposition method is used to separate the signals
into components corresponding to different frequency bands, and then the time delay is estimated from the components. Numerical
simulations and experimental results show that the proposed scheme is capable of accurately determining time delays in situations
where the basic cross-correlation (BCC) and the generalised cross-correlation (GCC) methods fail, for example, when resonances are
present in the leak signals. The effectiveness of the scheme is determined primarily by the decomposition level rather than the type
of multi-resolution decomposition method employed. Selection of best decomposition levels for accurate TDE results is facilitated
13
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using a simple criterion consisting of the relative wavelet energy (RWE) and peak-to-side lobe ratio (PSR). This criterion attain a
high value in decomposition levels that encompass frequency bands in which the leak signal spectrum is significant relative to the
background noise and other interferences. By eliminating the need for explicit filtering of leak signals, the proposed scheme provides
an attractive alternative for robust TDE in acoustic leak detection without the limitations of BCC and GCC methods.
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