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ABSTRACT
FACULTY OF SCIENCE
CHEMISTRY

Doctor of Philosophy

THE THEORY AND E.P.R. SPSCTRA OF LINZAR FREL RADICALS

by Brian John Howard.

This dissertation is concerned mainly with the théory
needed to explain the gas-phase electron paramagnetic resonance spectra
of linear free radicals.

The Hamiltonian operator describing the system is obtained
by transforming the Pauli«Schiodinger form of the Breit equation
from a space-fixed to a molecule-fixed axié system. From this an
effective Hamiltonian, operating in just the ground vibronic state,
is derived. This is then used to interpret the e.p.r. spectra of
NS and CF. We obtain the electric dipole moment and information on
the hyperfine parameters of these radicals. |

The theory applicable to the energy levels of linear
triatomic molecules is derived and the effects of the bending
vibration on the e.p.r. spectra are obtained. Finally, the effects
of case (¢) coupling on the spectra of diatomic molecules are
discussed; it is proposed that these are the cause of the discrepancies

observed in the spectra of certain heavy molecules.
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Chapter 1
INTRODUCTION

The study of free radicals by the method of electron
paramagnetic resonance started in the mid-1940's., Amoeng the first

radicals to be studied were the stable gases O ! and NO 2, whose spectra

2
have been analysed by many authqrs.3“9.

Until gquite recently; further work has been mainly
restricted to liquids and solids, 1In the condensed phases, quantised
rotational motion is completely quenched and we are consequently left
with just the interaction of the electron spin with the applied magnetic
field 10. In the case of doublet states, the spectrum is approximately
that of a free electron, centred on g=2, split by the hyperfine —
interaction with any magnetic nuclei pregent in the molecule, In solids,
particularly single crystals, and also in liguid crystals it is possible
to detefmine the anisctropy of the interactions, namely the g~ and
hyperfine tensors, In liquids the random tumbling motion averages all
the anisotropic interactions. The spectrum then gives only the isotropic
interaction parameters. The "rotational™ motion only reveals itself |
in the linewidths; it is a possible mechanism for relaxation. In’the
case of molecules in triplet or higher multiplet states, or with
appreciable orbital angular momentum, the spectrum may differ

congiderably from g=2, but we can always neglect rotation.
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For gases at pressures of only a few torr, the
rotational motion is quantised. 1In bent molecules (e.g. NOQ, ClO2
and NFQ) the only interaction of the electron spin with the molecular
framework is the spin-rotation coupling. The magnitude of this is
typically a few hundred MHz, and at fields of the order of kilogauss
this produces just a small perturbation on the basic =2 spectrum.
The same is true for linear paramagnetic species in 22 electronic
states., Other limear molecules show a strong interaction between the
spin and the molecular framework, In doubly-degenerate electronic
states, i.e. states with orbital angular momentum, the spin-orbit
coupling interaction provides a strong coupling of the spin to the
internuclear axig. In triplet and higher multiplet states, the
spin~spin dipolar interaction provides a similar coﬁpliﬁg; it is
particularly impertant for molecules with heavy atoms because of
their large second order spin-orbit effects, These interactions tend
to modify the g-value and if the molecule is polar give some of the
transitions tunable with a magnetic field electric dipole intensity.
These transition intensities are about 104 times greater than the
magnetic dipole transitions observed in the condensed phases and in
molecules with decoupled spin; consequently it is mainly radicals of
this category that have been observed,

Following the work on the stable O

radicals OH 11,SH 12, SeH 13, TeH 13 and 30

5 and NO, the unstable

14515 have been observed;

.,



the first four have a QTTand the last a 3Sf_ground state. Since then
members of this laboratory have more than doubled the number of radicals.
They have observed SO in its 1&316 state as well as 32:17’18, Se0 (32.
and 'a)",c10 2,8r0 27,10 21,57 22 5er 2,05 23, and cr 24 (all in
their 2TT ground state). Recently the field has been enlarged by the
detection of the linear triatomic radicals NCO and NCS (voth with ZTT
ground electronic states) 25’26, They show novel features, not
previously observed, because of the interaction of the doubly degenerate
vibration with the doubly degenerate electronic wavefunction, The
theory of the resulting Renner interaction is described later in this
work 27.

Most of these radicals have been previously observed by
electronic spectroscopy where the rotational constant and the spin-ofbit
or the dipolar spin~spin coupling constant have been obtained. The
e.p.r. spectra give these constants and in addition the masnetic
hyperfine and electric quadrupole constants for magnetic nuclei, a
measure of the rotational Zeeman interaction, small relativistic
correotiqns to the electron spin and orbital g-factors, and in certain
cases the spin-rotation interaction (in molecules which do not closely
approximate to Hund's coupling case (a) ). Also by means of a Stérkl
cavity developed in this group, it is possible to measure the dipole

moment.

Recently pure microwave spectroscopy has been used to study

B



unstable paramagnetic molecules., The microwave spectra yield accurate
values of the rotational constant, together with the other non-Zeeman
parameters (with comparable accuracy to e.p.r.). Also one can look

at the essentially dismagnetic Zﬂ; state of radicals and obtain
complementary data on the hyperfine interaction; it is then possible
to seperate the various contributions, namely, the Fermi-contact term,
the electron-nuclear spin-spin dipolar interaction and the orbit-spin
interaction,

As yet pure microwave spectroscony is confined to OH 28,

30, BrO 51, and §S 02 (all fairly long lived radicals) and

50 27, c1o
appears to be less sensitive than e,p.r. . This is reasonable since
it is easier to obtain a high concentration of short-lived radicals in
the small resonant cavity of e.p.r. than in the long non-resonant ~
wave-guide of a microwave spectrometer, Also the high 'Q' resonant
cavity gives better signal-to-noise characteristics and hence gre;ter
sensitivity.

A great number of molecular constants are obtained from
the electron resonance spectra and these can be used as sensitive tests
of the accuracy of recent wavefunctions of open shell molecules. For
example Carrington and Lucas compare the calculated and experimenfal
hyperfine parameters of the isotopic forms of OH 33. Another application
of the techigque of e.p.r. of gases is in kinetic studies. At present

there is great interest in the radical intermediates in chemical

]



reactions and guantitative determinations of their concentrations

have been used in the stuly of the mechanism of several reactions (s

g
j¢i
@

34

@

S

for example Vestenberg and de Haag

In tnis thesis, we start by first describing the experimental

techniques for the study of radical spectra. WThen in chapter 3, the

Paramagnetic molecules contain many different kinds of angular momenta
coupled together, and the eveluation of the matrix elements of the
Hamiltonian is made far simpler by usisg irreducible sﬁ%rical tensor
techniques. The essential poiﬁts of these Racah methods are discussed
in chapter 4. Chapter 5 is concerned with calculating the energy levels.

o

An effective Hemiltonian operating in only the ground vibronic state

is derived and ite matrix elements are evaluated. In chapbters 6 and 7T,
we discusg the fofmaﬁion of 1S and CF and the detailed analysis of theixr
spectra. Chapter 8 is confined to the Renner effect. This is derived in
a novel manner using degenerate perturbation theory. The important
gsecond and third order contributions have not been previously discussed
but they have significant effects on the g-factor of the spectrum.

In chapter 9, the effects of the spin-orbit coupling is described; this

is believed to give the solution to the anomalies observed in the

g-values of heavy radicals.



At certain points in the text it ig necesgsary to obtain

some fairly complicated mathematical results, and in .order to preserve

the logical developement of the theory, will be included in the appendices

at the end of their respective chapters,
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Chapter 2

BAPERINENTAL

2.1 Introduction

The gas-phase free radicals described in this thesis are
prepared by reacting the active species formed by passing a primary
zas through a microwave discharge with a secondary gas inside the
resonant microwave cavity. The cavity is positioned in a static
masrnetic field and the paramagnetic species are detected by standard
e.p.r. technicues (except that electric field modulation is normally
used)., The radicals are usually very short lived, being quickly
decomposed by coliisions with other molecules present. It is thus
necessary to use as low a pressure of reacting gases as possible,
with the restriction that a high enoush concentraticon of radicals is
required in the microwave cavity to permit detection. Together with
the problem of lime-widths, a pressure in the region of 1 torr has

been found optimum.

2.2 Spectrometer System.

Two spectrometers have been used in the study of the
radicals described in this thesis. The HS spectrum was observed
using a Varian V-4502 spectrometer in conjunction with a Varian

12 inch magnet (with a maximum field of 14 kilogauss) and a V-fr2503

T



"Fieldial" magnetic field regulator. Microwave power was supplied

by an X~band klystron which operates in the region of 9 GHz and

could be tuned to the frequency of the cavity. Simple A.F.C. locking
to the cavity resonant frequency is used.

The CF radicai was detected using a Decca X-3 spectrometer
which has better inherent sensitivity. The spectrometer works at an
essentially fixed frequency of 9270 Iizs; the resonant frequency of
the cavity has to be tuned to this. Small frequency drifts (about
1 MHz) are accommodated by a Cavity Lock system. The magnetic field
was produced with a Varian 15 inch masnet with a Mark II "Fieldial™,
it gives a maximuh field of 15.5 kilogauss with a 4 inch magnet gap
and around 22 kilogauss with a 2% inch gap.

Both spectrometers incorporate 100 kHz modulation together
with phase sensitive detection., The output of the Varian modulation
unit has been modified to give high impedance sinusoidal voltage
(Stark) modulation. Facilities are also available to apply a D.C.
voltage on top of the A.C. modulation; this is essential in order to
observe a signal with Stark modulation. The Decca instrument
however has sine- and square-wave modulation capability. The latter
has a constant amplitude of modulation of approximately 300 volts
peak~to~peak, It has the great advantage of ﬁiving a greater siznal
to noise ratio- because one can modulate through the complete height

of the absorption signal without fear of broadening the line. If a

-11=
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D.C., voltage of 150 volts is applied, the modulation is from zero to
300 volts and the spectrum consists of the straight absorption line
plus a Stark shifted line of opposite phase which are usually overlapped
and give the appearance of a first derivative.

A block diagfam of the basic spectrometer system is given
in Figure 2.1, Microwave power from the klystron is supplied to
the high "Q" resonant cavity and the reflected power is detected by
the crystal detectors, A slowl& changing magnetic field is applied
to the sample in the cavity using a "Fieldial! which controls the
current passing through the magnet coils. 100 kiz modulation (electric
or magnetic field) is applied across the cavity and at an absorption
line, the reflected power to the crystals is also modulated at 100
kliz. The crystal current is amplified in a pre-amplifier and then
demodulated by passing throuzgh a phase sensitive detector and time-
constant. The resulting signal is further amplified and then displayed

on chart paper or on an oscilloscope.

2.3 ilicrowave Cavity

The cavity used in the detection of NS and CF is

cylindrical and operates in the TE mode, In this the microwave

011
standing wave has the electric and magnetic field pattern shown
in Figure 2.2.

If the cavity is placed with its axis parallel to the

] Do
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gtatic magnetic field, the microwave electric field is ever&where
perpendicular to the applied magnetic field and gives a maximum
filling factor for electric dipole transitions. (N.B. the electric
vector is a maximum about half-way between the centre and the
cylindrical walls).

The great advantage of this mode is that no currents
flow between the flat end~walls and the side-walls. This allows
us to create a gap here without‘lowering the "Q' of the cavity
significantly; in fact it actually helps to suppress modes other
than those of the form TE01P. We can then insulate the end-plates
from the main cavity body and apply the Stark modulation and D.C.
electric field across the end-plates.

The cavity for use on the Varian spectrometer was designed
and built by Carrington, Levy and Miller 1. 1t is designed to form
an integral part of the vacuum system; this does away with the quartz
inserts of earlier cavities and their deterioratory effect on the
nQr,  The cavity body and end-plates are machined from brass and
gold-plated to help prevent chemical attack. The cyvlinder walls
have two inlet ports to allow mixing of the reacting gases inside
the cavity and an outlet hole on the far side; this cavity is
illustrated in Figure 2.3,

The Decca cavity, built by Mr. Butcher and Mrs Cook

of Decca Radar, is similar but contains a Teflon tuning stub to

-1 3



alter the frequency over a small range and permit exact tuning to
9270 MHz. It possesses a set of end-plates made from ceramic and
covered with a thin layer of gold; this permits Zeeman modulation

by means of coils affixed to the outside.

2.4 Vacuum System

The vacuum system i; fairly simple. It consists of two
gas manifolds mounted on a trolley. Each is connected to one of the
entry ports or the cavity via pyrex glass tubing, employing ball and
socket joints to make it flexible, At the rear of the cavity, an
Edwards double~stage rotary pump, protected by a liquid nitrogen
trap, maintaing the flow 6f gas.

The primary gas (Nz‘or CF4) is admittedrto éne manifold
from a gas storage cylinder throusgh an Edwards needle valve, to
regulate the flow, About 30 cm. upstream of the cavity, the gas
passes through a microwave discharge cavity (Electro-Medical éupplies
Ltd.) operating at 2450 MHz. and at a power of around 100 watts.

The gas is dissociated into active species (nitrogen atoms or fluorine
atoms+CF2). The tubing between the discharge cavity and the

microwave cavity is lined with P,T.F.E. tubing to prevent wall
recombinations of atoms., It was also found desirable to have a

bend in the tube between the two cavities to prevent direct

photoionisation of the gas in the microwave cavity; the free electrons

14



so formed would affect the effective magnetic and electric fields
seen by the radicals and consequently render inaccurate measﬁred
field positions and dipole moments. This was found to be particularly
true in the case of NS,

The secondary gas is stored in a trap at a temperature
at which its vapour pressure is about 100 mm. of Hg., It is admitted
to the second manifold via a needle~valve and reacts with the primary
gas discharge products inside the Stark cavity.

The flows of the two gases are modified to optimise the
spectrum; the total pressure as measured by an Zdwards' Pirani
gauge, was usually near one torr.

2.5 Measurement of Spectrum

Throughout the operation of the spectrométer, the
klystron frequency was monitored freguently. For the Varian
instrument, the microwave frequency (in the region of 9 GHZ.) was
measured direct using a Hewlett-Packard H.P.5245L frequency counter
with an H.P.52554 frequency converter., TFor the Decca spectrometer,
the beat frquency {about 30 [Hz.) between the microwave frequency and
a known harmonic of a crystal oscillator was measured using the
H.P.5245L.

The magnetic field meagurements were made using n.m.r,

probes in the magnet gap adjacent to the cavity. TFor NS, a Varian

~15-



P-8 fluxmeter with deuterium probes was used, but with considerable
difficulty. The CF was measured using an AEG fluxmeter with proton
probes. The spectrum was first displayed on chart paper using a
Hewlett~Packard 7001A X-Y chart recorder. Then the magnetic field
scan was callibrated by placing vertical pen marks when the proton
or deuteron came imito resonance. The resonance frequencies of the
probes were measured with the H.P.5245L frequency counter.

Since the probe cannot be placed inside the cavity, a
small correction %to the measured magnetic field has to be made to
allow for the small inhomogeneity of the field across the magnet
gap and the possible distortion of the field by magnetic impurities
in the cavity body. These were estimated by measuring the NO spectrum
and comparing it with the calculated spectrum at the particular
microwave frequency, using the experimental parameters of Brown and

Radford 2,

2.6 Chemicals

Nitrogen (”oxygenmfree") and tetrafluoromethane were
supplied by the British Oxygen Co. Ltd. and WMatheson Co. Ltd. They
were used direct from cylinders with no further purification.

52012 and 8012 were B.D.H. Laboratory grade reagents;
they were used after out-gassing by freezing down to the solid and

pumping hard,

-6



Ketene was prepared by passing acetic anhydride through
a furnace at 600°C under its own vapour pressure at BOOC . The
products were collected in a liguid nitrogen trap, but with
continual pumping to remove volatile products like hydrogen and
methane that are formed. The ketene is then purified by repeated
vacuum distillation from an acetone/dry-ice trap to a liquid
nitrogen trap. It was stored a? liguid nitrogen temperatures to

help prevent polymerisation.
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And Eternity in an hour.
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Chapter 3

THE COMPLETE MOLECULAR HAMILTONIAN

3.1 Introduction

The increased interest in the radio-freguency and
microwave spectra of open-shell molecules (for example, the CoPele
spectra described in this thesi;) makes it necessary to obtain as
complete a molecular Hamiltonian as possible in order to properly
interpret the spectra and to correlate experimentally determinéd
parameters with those calculated from electronic wavefunctions. It
has been pointed out by Gerratt ! that the most complete derivation
to date is that of Curl 2,MWhO limits himself to only those terms
which are important in relating. the spin-rotation aﬁd electronic
g=tensors of paramagnetic molecules. As far as the ‘author is aware,
all "complete'" Hamiltonians have been obtained by adding together
the various interaction terms, which have been obtained separately,
and assuming that the resultant is correct. In the following
sections the Hamiltonian is derived as rigorously as possible within
the limitations of relativistic quantum mechanics., The method of
approach is outlined bélow.

Initially we obtain a molecular Hamiltonian expressed in
space~fixed coordinates by taking the Breit equation (the two-particle

form of the Dirac equation) and reducing it to non-relativistic form
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by a Foldy-Wouthuysen type transformation. Certain important radiative
corrections, which could be obtained from quantum field theory ( e.gs
that to the electron g-factor ), are introduced phenomenologically.
The classical Hamiltonian, expressed in molecular coordinates, is
obtained via the classicai Langrangian., This is then transformed to
the quantum mechanical Hamiltonian by means of a Podol sky-type
transformation,

To begin with we obtain the Hamiltonian appropriate to
a general non~linear molecule. This is then followed by a paiallel
developement for the linear molecule with all its incipient
difficulties (becéuse it has only two rotational degrees of freedom),
Throughout this work all external electromagnetic fields are assumed

to be constant.

3.2 Space~fixed Hamiltonian

The energy of a single electron in an external

o . . 43 . . 544,45
electromagnetic field is well described by the Dirac equation
which is the simplest first order operator that is Lorentz invariant

(i.e. is unchanged in form by any orthogonal space-time transformation)
and satisfies the Klein-Gordon equation, Such a Hamiltonian isg
2
= 1
jﬁb = COLIT + ¢ + fme (3.1)
where TT=p + &
H=Dp+-p

is the mechanical momentum, p is the

o DO



conjugate (canonical} momentum, ¢ is the scalar potential and A l
is the vector potential of the electromagnetic field ( VA A =1H, the
static magnetic field). 1In the simplest representation & and ﬁ

are 4x4 matrices related to the Pauli spin matrices o

0o o I 0
*® = 3 ‘6=Q ) (3.2)

(1 0\ (O 1
o = : oo =
z 0 -1) ’ * 1 0
Cj0 i
o, = o (3.3)
v (-—i. 0

I is the 2~-dimensional unit matrix, The wavefunction is a 4~dimensional
spinor, To first order, two solutions have energy m02 and the other
two ~m02. These are mixed by o (a so-called odd operator). In any

physical problem, it is desirable to reduce the Dirac equation to a

1 H

non~relativistic form, by a Foldy-Wouthuysen 6 unitary transformation,
where the odd terms are made negligible. This gives the energy in

a descending pdwer series in ¢ (the velocity of light), with leading
term mcz.

In the case of two electrong, it is not possible to
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7

write an exact relativistic equation; however the Breit equation

. ‘ . . . A
for two electrons is correct (i.e. Lorentz invariant) to order c R

2 2
= COGIT, + CouLTT, + e1¢ te,p + me” + myC

L o1 { &%y (D)) (5.4)
T 2 2r?

8
This has been reduced to a non-relativistic form by Chraplyvy and

9

Barker and Glover “, The resulting Hamiltonian correct to order

-2 .
18 3

# -3 mic’2+~——— 2 - e, Z ________"}_ (3.52)
i

+fﬁff_3; (s;-H;) | (3.5b)

- ig...g Ay - BT (3.5¢)

+§%_.i, (V.E.) (3.54)

(3.56)

=00



+Z - %% .G +rl BT (3.5f)
2 Tt R '
J#L dm.m,¢C
g.e.eh
S A NP ¢ I () (3.5¢)
4m?02R
1
+ 51%%0 s (R LTI (3.5n)
5 3t ‘3
2m.m.c R
42
. &;¢ ;ﬂg(R) (3.51)

2
+ 858505048 ( 1 (g;-85) - 3 (g;-R)(s;-R)
8m.m ., C R5 R5
i
- %r_r 6(12)(_%1@3))} (3.53)
+ O(CmE) 9

where i and j are electron subscripts (in the case of two electrons

Tor2), m, -e., s., g., R. and T, are the mass, charge, spin angular
i i’ ~i i’ =i ~i -

momentum, g-factor, position vector and mechanical momentum of

electron i, Also :
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and §(R) is the Dirac delta function. Throughout this work the
fields are assumed to be homogeneous and constant in time; therefore
the subscripts to A and ¢ may be dropped.

The significance of the various terms in equation (3.5)
is as follows : (5a) repiesents the classical interaction terms
for electrons in an electromagnetic field, namely their rest mass,
kinetic energy, interaction Witb an external electric potential and
the Coulomb interaction between two electrons. (5b) gives the
interaction of the spin magnetic moment with the external magnetic
field., Relativistically a moving spin magnetic moment has an electric
moment perpendicular to it and its velocity and the interaction of
this with the external electric field is represented by (5¢);
alternatively, to a moving charge, the electric field appears to have
some magnetic character which can then interact with the electron
spin., This term has been considered by Thomas 11, For homogeneous

electric fields (5¢) simplifies to :

& h . £
+ 8% 5 (& 1) (3.5¢ )
2 2 1 Al
4mic

: 15 . o
For the same reason (5d) vanishes; thlsAthe Darwin term which
represents the interaction due to the szpreading out of the charge of

Y

the electron or so-called Zitterbewegung (see for example ref. 4).

(5e) gives the relativistic corrections to the electron kinetic

energy and the Zeeman interaction. The latter term has been included

24



even though formally of order 0"3 because it mrises in the reduction
of the Dirac equation for one electron in the same way that corrections
to the orbital Zeeman are obtained from the former term, and also it
has been shown to be important spectroscopically 11’12. The

retarded interaction (5f) of the charge of one electron with the
electromagnetic field due to the other electron (orbit-orbit
interaction) has been derived classically by Darwin 15. The spin-
orbit and spin-other-orbit interactions are given by (5z) and (5h).
(5i) is similar to the Darwin term (54) but is a correction due to

the electric field of the other electrons. It can be interpreted as

a spread of the electron charge and to a first aporoximation is the
modification to the Coulom% interaction (5a) provided by a spherically
charge distribution of mean square radius <r2> = .%(h/hc)z. The
final term (5j) is the spin-spin interaction, The former represents
the classical dipcle-dipole interaction and the latter expresses the
mutual interaction between two mutually penetrating magnetic moments
(the Permi-contact term). Asimilar Hamiltonian has been obtained by

Tton 4

using quantum electrodynamics,

We nOW‘ﬁish to extend this Hamiltonian to a molecule
but before this camn be done a number of modifications and assumptions
have to be made, First, it is assumed that there are no three particle

interactions; this has been confirmed to order cm2 by Itoh 4 for

a system of many electrons, Secondly, the value of the electron

25



g~factor in equation (3.5) is exactly 2, whereas the experimental
value is 2.0023%19; this discrepancy can be accounted for if we use
quantum electrodymamics. In this work the experimental value will
be used; other radiative corrections will be neglected even though
the Lamb shift 5 may be important in the observation of electronic
transitions. Thirdly, the Hamiltonian must be extended to include
nuclei, which are not Dirac particles and have anomalous magnetic
moments. These particles are included by assuming that £hey behave
like Dirac particles, but having the magnetic moments given by
experiment, Bethe and Salpeter o (page 194) have shown that this
agsumpwtion is allowed provided that terms involving only
(nuclear mass)‘1 are retained. The terms of higher order in nuclear
mass are all formally of order 0“2 and are negligible. Finaily, the
possibility of nuclear quadrupole interactions may be included
phenomenologically by adding 5+Q; its form will not concern us here,
but is given by many authors,

From now on we shall use the subscripts ot and B to

distinguish the nuclei., 7, will be the atomic number of nucleus o,

eh . _ e ) . .
@==§Hc the Bohr magneton and_@N = EH;E the nuclear magneton; mp is

the proton mass. Dropping the subscripts from electron mass, charge
and g~factor the complete molecular Hamiltonian in the space-fixed

coordinate system is 3

—Dben



om "i
: Y gne ome?
e2 1
+.Z i e "IQ(Rij PRy s By U
J#i iJ
agae 1 .
2me 3 =iij ~(2 Wu - --i)
ij
2
o M .(=+Rr ——g ).
+ e \ T —— ®
2mm 02 ~1 R, ’ s RB “M> =
oL - Lot 1o
- "B " 2T 1'1‘]")
2¢c RB =it =ie A mog“&* m —i
o
o o
EuPi® R
+ - 1 ;-w'miocAI—Tijl ) -
me .3
R?
1ok
Z -éi_ + V o+ 0(0”3). (3.6)
o
In this Hamiltonian 3
Zr‘e
Irol_ = Py - o A (3.7)

and V which contains all fterms not involving Tf:i or ‘__0( is given by :

:Z{mczme¢i+g@§i.§ +Z{; “@?S(R )

i
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1 220 1 3 8rr
tEEp [‘*’* 8.8, 35 . J)(s..R..) - S(DIJ) gi.gaj

RO, J st
ij ij
Zo(e2 Z«gzﬁz
+Z - v =53 3(R..)
ol 1< me
1 R
- 88 f —— 5.1 (5,2, )(Z )~
ﬁpn [Rfo( Hee 5@( : i 3 S(T{J.oc) 8; Lo
N 2
2
+Z{m“c + Zed, - boqﬂr»%_‘ Z 2,{ } +5‘+Q (3.8)
oL

Bfw

The transformation of V to molecular coordinates is trivial, Since
ﬂ; and'ﬂ;_both contain magnetic vector potential terms of order cﬁﬁ,
the Hamiltonian (3.6) contains terms of high order in ¢ which are
formally negligible, but we retain them to maintain the gauge
invariance of the Hamiltonian (see for example ref, 4) ;3 in any
application these terms may be dropped after the choice of a suitable
gauge. In the derivation of this Hamiltonian the anomalous magnetic
moments of the electrons and nuclei have been introduced after a
Foldy-Wouthuysen type transformation. Hegstrom 16, who considered
the hydrogen atom, introduced these effects before the Foldy-
Wouthuysen type reduction and has obtained slightly different resulis

for the spin-orbit coupling terms., If the g-factor of an electron

is written as g = 2(1 + a) his spin~orbit coupling terms are

w2 B



proportional to (1 + 2a) in contrast to ours which is proportional
to (1 + a). An appeal to quantum electrodynamics is necessary to
decide which is correct, but the author is not aware of such a
study.

Since the difficulties that arise in transforming the
Hamiltonian to a molecular coordinate system involve only the

momenta, we may write equation (3.6) in the simpler form :

3“'22m.+BW‘.‘+CW Z'TD..TTZTT— .Ti”

—~ ok
J

1 ~%). (3.9)
* Z{?ﬁ; = EM-I&} + 7V o+ 0e .
ol

The expressions B, C and D (a tensor) are all of order 0"2 and are

given by :

i

Ay féng[ R 4
.I.S.i ch (S Aﬁ*) Z ome RB 2<§~in:5_3) + ("S*l’\'}zi‘j)]

J#L
Z,8pe £ Bae
o 1 =N
* 2me 3 <~S~i"‘ Eioi) * The (—:»[»-o(/\-'lofi) » (3.10)
R, R.
o 1ot 1%
2P
= - el X %,
D= Z m,cC 'RB ("3'."‘ B-lot) ! (3.11)
i i
C= - ,;2’ (3.12)
8m e .
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cr . 1 1

D.. =~ 9,. 8. H=(1-8,.) —5= (= + R, — R..)

=i] i 5 c2 1 ij 4m202 Rij =ij Rij —-ij’ ?
(3.13)

and 5
%8 4 1 »
Dipe = 5 (T * By 57 Ry - (3.14)
2mm ¢ i R

ist
Bquation (3.5) is the quantum mechanical Hamiltonian, but the classical

Hamiltonian is given by the same expression,

3.3 Transformation of Classical Hamiltonian from Space-fixed o

Molecule~fixed Axes.

The classical Hamiltonian (3.6) is difficult to transform
directly because it is expressed in terms of momenta. We shall
.. o 2 : .
follow a method similar to that of Curl and use a classical
Langrangian as an imtermediary; the advantage of the Lagrangian is
that 1t is a function of velocities, which are easier to transform,
Classically the Lagrangisn,{ , and the velocities, 5@, of a system

of particles are melated to the Hamiltonian,f+, and the conjugate

monenta, P, , by :

P = 2L s (3-15)

# =) BR -4 . (3.16)
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For the Lagrangian :

1 22 e b 4.4 2
= i - «R, - mB,.R, - -
4 Ei {fﬂRi c AR - mB m'CR; j{ m™R
1 J
Z e
- ; : I L.
j{ﬁquR .Q(x.R;}ﬁ‘>L MR+ Adﬁﬁu
oL ol

-

- m,B R}w v o+ o(c"3)

ocr—-o(g(

we obtain the conjugate momenta ;

- -2 : I PN
B, = mR, -~ A, - @B, - 4n CHR, - Lzmgij.gj
«‘j;xmn D, R+ 0(0"3)
£ ki o
ol
and
_ 4 Zm? , ‘ -3
P, =m A, - mBy - EE mmD. R, + oe™ ) .

i

Substitution into equations (3.17) and (3.16) gives the same

(3.17)

(3.18)

(3.19)

Hamiltonian as (3.19) and we are thus justified in using (3.17)

as our Lagrangian.

The Lagrangian includes relativistic corrections and it

might be thought that we should use a Lorentz transformation when

transforming to molecular coordinates. This would be true if we

were performing our physical measurements while moving with the



molecule. Instead we measure quantities like energy differences
and electric or magnetic fields in a laboratory fixed frame. The
Lagrangian should be approPriate to the laboratory frame, whether
space or molecular coordinates are used, and a classical or
Galilean transformation should be used; that is to say we only
perform a transformation of variables within the space-fixed frame
of reference.

In performing the transformation, it is necessary to
seporate translational, rotational, vibrational and electronic
motion as completely as possible. This is done in three stages :

(a) change the origin of coordinates from a space-fixed one to the
molecular centre of mass, R, keeping the axes parallel to the original
space~fixed axes; this separates off the translational motion,

(v) without changing the origin,allow the axes to rotate with the
molecule with velocity w ; this seporates off rotation.

(¢) move the origin to the centre of mass of the nuclei without
changing the orientation of the axes.

This is analogous to the method of Wilson and Howard 17, or as
detailed in chapter 11 of Wilson, Decius and Cross 18.

If the subscript A is used to denote & or i, the old

coordinates, Ry s con be written in terms of the new coordinates T,

as ¢

=R+ 7, + O (%.20)



where R is the position of the centre of mass of the molecule :

1 1
R = T )\mkg}‘ = E[Zmﬁx + z mﬁi} (3.21)
L

b

where M is the total mass of the molecule ( = o M.y, l and where § is
the position of the centre of mass of the nuclei relative to the centre

of mass of the complete molecule,
s = -2 '
= W2 % (3.22)
i
It should also be noted that because of condition (c) ¢

mr, = O (3.23)

Since & is the angular velocity of the molecular axes with respect

to the space~-fixed axes, the time derivative of (3.21) is :

L3

- + § + (gAgx) + (W 5) (3.24)

e oo

I
+
g,

3N >

where the components of EN (and é_) are measured in the moving
axis system.

Before we consider the transformation of the Lagrangian
(3.17) to molecule-fixed axes, we perform the transformation in the
absence of externsl fields and magnetic effects between particles.

Then the space-fixed Lagrangian becomes :
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o
L

)

4 = :{ ImRS 4+ §Z “mxﬁi -7 (3.25)
i o

Rewriting Ry in terms of molecular velocities, equation {3.25)

becomes :
-2 X ~ . : 2
L= 4 ) 2,2+ 8 ) (@a(z 8 ) 45 m(Be+ 8)
" L.
o
+ z mi(@.A(Ei + _.S. ))'(Q/\in + § )> +Z mi(ii + _5. )2
i i~

+ 2('9»' [S’m\?&(}zo‘(+§ )/\ <§‘:G(+ §. ) +

-4

+zm(£i+§‘) (él+§>] - 2V
i

(3.26)
or expanding in terms of molecular coordinates :
R~ 2 2 2
L = K + Ixxu)x + Iyy wy + Izz"‘}z + ZIwaXcoy

-2 «2 ‘82

21 + 21w o+ m.r., -+ mr, -~ il

vz Yy Yy > Fechoc i
ol

+ 233*,{5}11&(5&}\_{:“) +Z m(g;i,\ggi) - §’A§_J -2V

* i (3.27)
where 3
2 ' 2 2 1 2 2
I, = Z ma((yi + oz, )+ Z m(yi + zi) - TI[(Z myi) + (Z mzi)J
o i i i
and similarly T and I (3.28)
yy 27

i

T S me v meyy - % (o JQwy)  (3.29)
& i i
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I, and I _ are similarly defined.
¥z zZX

So far the orientation of the molecule fixed axes has-
been left undetermimed. The method used by Wilson and Howard and

. . . 20
used here is the Eckart condition .

; o
Z mM}:MAEx = O (3‘30)
(>4
o R s s .
where r =~ is the equilibrium value of r . This condition gives
o "= . , e .
50“\2053 0, which is almost equivalent to there being no angular

oC
momentum of the nuclei relative to the rotating axis system,

. 0o . .
The nuclear displacements, r -~ T » are now written in

terms of the normal coordinates Qr’
o}
TR (Zpm To) = ) 2 Q o (3.31)
T

The elements 2 obey a number of orthogonality relationships :
ol '

}Z.gkafégas - grs (5.32)
o

Y m L, = 0 (3.33)
o

T (2 2,,) = 0 (3.34)
oL

These represent respectively the orthogonality between the vibrational

modes, between vibrations and translation, and between vibrations and



rotation. In terms of normal coordinates, the nuclear Coriolis

coupling in (3.27) can be written as :

o . . ) ‘
Y Ge- ), E, = 500 (3.35)
(summation over r and s assumed)

where er is the Coriolis coupling constant :

grs = -£~ocr/\~j¢ois (3.36)

oL

Then the total Lagrangian is given by :

=2 2 2 2
24 = + IX)CLQX vy Py ZZwZ
+ QIX;Y <Yy r QI;YZU,‘,’LU‘Z + 'sz W, W
1 i,J
Y 00 4N mlo v er ) - 25X (2 v -x. 5
* 2‘”y -frs R L e L D A e j)ﬂ
1 iy
r A ® o a ’ s R— @ @ 7
4 . - L)oo L. =Y.
+2 s g3:'s'lrQs +Lm(yiyi inl> 3! >..(y1 J yl J)J
- 1 i,,j
?Z.z n2 n‘lz " 2 2,‘[ (7 57)
MRS Z KT i 2.}:3‘_) - ’
r i i

It is now necessary to express the Lagranglan and then the Hamiltonian

in terms of momenta ianstead of velocities.
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The components of translational momenta are given by :

AL .
RN (3.38)
R
The angular momentum conjugate to @_ is J_ = B_};
* o Jdwg
X
Tx - Ixxwx B I:th'y - Ixzwz + ZZI‘SQI}QS

+§: m(ylii ")Ziy ) T ;( Y Z’ - Zi.j )(3'39)

Exactly analogous expressions are obtained for EJJ and MZ. Similarly

the momentum conjugate to QS is 3
T
Py = 3 = Q7 Z Lv:)*"%g':ch:c (3.20)

and the electron momenta 2; conjugate to Ei are :

2
== y bl \ : mr - m l ®
By = oMy - ppfy v Qu(mmo- g2z (5.41)
J J

Substituting (3.40) and (3.41) into (3.39) gives :

13

=

oM
i
d
>
£
e
§
)H
4
&
¢<:
§
S

X
erQ‘r(Ps - Ziﬁ'g-tth)
%
= 2 2 N fe— 2 e \2
+ Z-(rl’\“"l . wx{z.m(yi + Zi) - 23[;( yi) * (in) }

i i i
2y [s

D DAt T M(L., i}(.zyi
i i Vi

e R o



2
+ wZ{ZmXiZi - —E (in) (Zzl)} (5.42)
i i

i
X
Now ersQ‘rPs corresponds to a component of angular momentum of the
T8

nuclei, Gx’ and Zi(gi,\p_i) is the x~component of the total orbital

*
angul ar momentum, Lx :

L] t £

Jo o= I_w o+ Imgy I ,w, + G+ L (3.43)

where the moments of inertia have been redefined as :

' 2 2 < 3
I, = Zmﬁ(yx + 2z ) - Z_ chcs —?*ﬁthQs (3-44)
= r,s,t
! — < - X y
IXG’ B Z:mcx(xx Y )t E: tgts grsQ‘th (5.45)
Iy 5y

1
and similarly Ixz' Analogous expressions for the other components

of J are obtained, giving in matrix notation :
d - L - & = L. (3.46)

For a non-linear molecules I 1is non~singular, so that inversion

is permitted.

-

e o we= m(J - L - G) (3.47)

. §
where Y is the inverse matrix of T .

However from (3.37) :

0P = 5+ w.J o+ ZPrQr + Z;p_i.n?, - 27 (3.48)



Then using equatiom (3.16) and replacing (i - L - G) by N, the

rotational angular momentum, we obtain :

H . E 1, 15 p2 152 1 2
TR -3 R DR S +2T~,L\T§:Ei v
r i RN
*(3.49)

whare MN is the total nuclear mass.
In passing, it is useful to note that the new momenta

are related to the momenta in the space-~fixed coordinates by :

>R+ DR (3.50)
i o

i
i

i

1
Eo= ) )t LBl (3.51)
o< oL

(3.52)

s}
t

1
r Zﬁ;io(r'zoc
ot

m . ,
P, - ﬁ( B+ E;gm> (3.53)
J o

The above section is equivalent to starting with a Lagrangian of

i

2y

the form :

)\ - -
£ = Z%{; quqp - v (3.54)

NP

where Ay is a generalised molecular coordinate, and obtaining the

corresponding Hamiltonian :
H’“Eiﬁkpp + v | (3.55)
A, P v
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where pr is an element of the matrix inverse to that with elements

M.

The complete Lagrangian (3.17) can be written in terms
of these generalised molecular coordinates as :

CoEig, - T i Lo - T
< 933, 33w dkw \q Pya

N,V 5 AP

- 2 cxwﬁ‘é)\épéulég - Vot O(C”B) (3~56)
AV ,S

. . . -1

where gy 1s the external magnetic potential term of order ¢ ', and
L. - -2

the remaining coefficients are all of order ¢ ;3 the terms 4 and ¢

are symmetrical with respect to interchange of subscripts, The

conjugate momentum is g;ivez;x by :
Ap . .
ZG G, = a, = by - Y 24y
v v

L CM o Qq + 0(c™?) (3.57)
v, §

This is equivalent to :

qy = ngw{p” + a, + Db, + ZZd’J’LO‘*L
Y ¢

D IRENCRNN M S CIORN CRD
%5,

The Hamiltonian is then given by :
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(o, + 23 a4, +Z~%—b;q) - Z cmlg&)é’,q,lqg +V
PN )\,V,"l,g

+ 0(c™?) (5.59)

»M M

which on substitution of (3.58) gives :
1 y T L3 < . o -
j:';' = Z E‘pr(px + a)\)(p)) + a)—‘) + }_‘b)‘q)\ + Z d—}\yQ)\QQ
N, A R R%

LI I -
+ Z ozl 0y + TV o+ o(e ) (3.60)
}\,V,’l,g

A1l the latter terms in q, are of order c~2 and we can replace

entirely by p, by substituting :

=S oy (pp v )+ 0(eT) (3.61)
=

The elements Gy | that appear above are exactly identical to those
obtained in the absence of external field effects, inter-particle
interactions and relativistic corrections., Thus the complete

Lacrangian (3.17) yields a molecular Hamiltonian :

- 12 1 il LN ATl s ST
Ho= T o+ gpdl +> =1 2,_ A 2L 2.0
r i

: dosh 2: :
1B.b . e 1
* Eglxz*l‘ﬁl 4_jillﬂ CRi +':E;Yn R D =ij" 3
i
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+ me j‘gl:{gw(é + z My B Ry v +0(c™?)
i, s 4 (3»62)
where ,
mT= 27 + A (3.63)
17, = g“g + "A‘TI (3'64)
T, = P. + A, (3.65)

The A's are covariant quantities 21 and transform in the same way
as the momenta. Thus TI, IETQ and T, are related to Iri and Iﬁx
in the same way as P, N, P ond p; are related to P, and P (see
equations (3.50) to (3.53) ). In‘(3.62), we have chosen to write
the interaction terms of oxder é~2 in terms of spacg—fixed velocities.
This will aid the transformation to a quantum mechanical Hamiltonian.

® el
It remaing to express Bi and 2 in terms of the new

mechanical momenta :

] 1 -2

R, = aiji + 0(c %) (3.67)
@ 1 Ewad "'2

R = ;%Liiﬁ + 0(c %) (3.68)

Then using the inverse of (3.50) to (%.53)

w4 2T 4 o(e™?) (3.69)

1
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1 1 1
R, = =II - = 5 -~
=% M~ My L ~i EJ‘;

o (1

- r L Lo+ o(c” ) (3.70)
"o 26 .. +0 . .
where I is related to the tensor M and I, the inertia

tensor evaluated at the equilibrium positions of the nuclei, by 3

H"’] o 30_1 .

(3.71)

RS
i
i
I
HES

Strictly speaking, these small terms are the exact
transform of the analogous small terms in (3.4). Also the kinetic
energy terms are the exact transform of the space-fixed kinetic
energy terﬁs in a classical form.

3,4 Transformation to the Quantum lfechanical Hamiltonian

In the previous section, it was shown that the guantum

mechanical Hamiltonian :
) 1
o= 22mT€ > ?’M v (3.72)
i
transforms into a molecule-fixed Hamiltonian with a classical form :

1 2 1T 2
= oll0 o+ FLo L Eg *%i%
. Z%—(}”gi)z sy (3.73)
vl T

) B



The remaining terms of the total Hamiltonian can be obtained by
direct substitution of momenta in a space system by those in the
molecular system according to equations analogous to (3.70) and

(3.71). It is thus necessary to find a way of transforming (3.73)

to a gquantum mechanical form.

An analogous problem has been considered by Wilson et

a1.17-19. They start off with a space~fixed Hamiltonian :
1 2
H o= Z-é’;n:Pi + V (3.74)
o

This transforms to a classical molecular Hamiltonian of the form :

# =) Lgopy, +V (3.75)
Ayw

2,19

. . 2 3 \
Using the Podolsky transformation for SE s the quantum
mechanical form is :

1

H = Zg%kgm%\pppg‘f + v (3.76)
A,V

where g is the determinant of the matrix with elements g, . (&
proof of this is given in Appendix A).‘ An exactly equivalent
equation is obtained on the addition of electronic momenta. Let

us first consider the field-free case, i.e. equation (3.48)}. The
above manipulation cannot be performed directly on (3.48), since it

involves N which is not a momentum conjusate to any given coordinates.

Instead it has to be expressed first in terms of py, Pgs px‘(conjugate

.



to the Euler angle &, 43, %) and the other conjugate momenta Pr
and Dy
The basic argument has been given by Wilson, Decius

19

and Cross but will be included here for completeness. Initially

we require the components of angular velocity in terms of 8, ¢ and

X . These latter are true vector quantities and on compounding

along the molecule x, y, 2 axes gives :

BsinX - %singcosx

£
i

x
w, = BcosX + %sine sin X (3.77)
w, = - J)cos@ + %

The inverse transformation is : -

-

()
i

stinX + wycos}(

©-
]

~wxcscﬁcosx + wycscﬁ sin X (3.78)

5 -
i

weotBeosX -~ wocotbsinX o+ W
X Ng Z

The components of total angular momentum are given by :

M = or = _B;Q})E_ + 1 E}-}* + 2X '6"2 (5.79)
x 3oy duwy, 36 Qo dp dw, DX
= sinX p, =~ cscb cosX Py cotf cosX py

(3.80)

WL



Then :

= sinXp, - csch cosX Pyt cot B cosX P

— <
- mar), - Y 8Lk, (3.81)
i r,s
Similarly,
Ny = cosXp, + cscbsinXpy - cotB sin¥X Py
- Z (£ ‘*1y > sr.s (3.82)
i r,
W2
N,o= vy -y (mang), - S sar, (5.85)
i r,s

By a manipulation of the elements of the determinant of the g-matrix
it is possible to remove all elements connecting rotation and
vibration, rotation and electronic motion, and vibration and

electronic motion on one side of the diagonal. fhen :

g = det gy,

]

(det/u ) cosec B x (mass dependent terms)

(3.84)

n
The ‘mass dependent terms arise from the 1/m and 1/1“ terms in the

electronic-electronic sub-matrix and is completely independent of

all the coordinates. They all disappear on substitution into (3.76).
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Thus writing a as det;&uv

£33

L.k - L -3
%/U»‘*sin “0 py pm “sinf By Dp 810 20 + v

A (3-85)

il

This is appropriate for an integration volume element dqidqzz*“dqn,
but it is customary to use a volume element  sin@ d@dédXdQ1”‘.
1
This modifies the wave-function by a factor of sin~B

and the wave equation :

Hy= B9
corresponding to the Hamiltonian (3.85) should be replaced by :

t

5 3

i

ﬂl 1}"

where

it

' -
A sin 2@ Y
(3.86)
' 1 1 -1 ”"% %
o= ZE: 5 pigin” 0 oy p “sind ExPp 5+ ¥
AP

Then VWilson, Decius and Cross

19

show that after non-commutation
properties heve been taken into account, the Hamiltonian be written

in terms of the original momenta (see (3.81) to (3%.83) ) as :

5 1 2 %. AR o m% i %
oo o B+ EEL%f**(Mu - L, - Gu)fL /AUV(MV - L, - Gv)fL*

Logh E S 2 L >
+ z- F Pr,}'L PI’ i + "é'.a Pi + 2;-\;\)_ (2}21) + v
™ . I N
| * * (3.87)

- =



This depends upon the fact that if the true momenta p, are related
i

enta ¥, by @

to the ficticious mom
§

p& = 2 S)\FMV
(3.88)
! N
M, = >m SN
2
we Tequire :
det sy, = s = sin 3}
-1 -1 A N
and z (p}\s ) o+ z s s (p, >~ spx) = 0 (3.89)
)\ >\,V P

P

In the presence of fields the classical lamiltonian becomes :

: x,u
i serties , ( they

Put since TTX has the same transformation properties as p,
the Podoleky btransformation yields

(3.90)

are bofh covariant quantities),

an equation similar to (3.86) i.e.

5’ /-’w.:zn &f /»‘- sz.n@ €3 wu, + vV (3.91)
This time we require :

g =] -1 . .

( { Mys ') + }: s g (7, XSM\ ) = 0 (3.92)
AP
But . -1 -1 i
s L.H.8. = j{;(pxs )+ j{;s s pg( }:SP) )
by A, P
= 0 Q.E.0.

-l B



Hence :

. L 1dn i 12
U L Z T (W By on g

U,V i
b IT 2 % %TT “%Tr G
EMK‘J Z i ZZ}L el (3.93)
T

To this should be added the remaining terms from (3.9) :

i -k .
H = #4[2 {gi._‘[g * CTmh 4 Zﬂl'ﬁij'ﬁj
i J
DIENS. D SN
o o (3.94)

where B, C and D are given in (3.10) to (3.14) and 'B£ and 1T are

written in terms of molecular momenta as :

n : :
0 = m + 5 (3.95)
\ m“T" 0, .
Te = 00 - 'ﬁ; j{}ji * EZ:JE;-ggr!Tr
T T
L
B Zﬁ"‘@xgarf\; 1L (3.96)
T

3,5 Simplification of the Hamiltonian

In order to make use of the complete Hamiltonian (3.93)
and (%.94) in physical problems, it is expedient to perform some
further manipulations so that terms appear in a more familiar form.

In doing this we shall frequently omit terms without comment if they

. 9en



make a negligible contribution to the energy; these terms are typically

=3 or (I )2c 2 or higher.

of order ¢
Initially the space-fixed vector potentials are written

in a form which satisfies a Coulomb gauge :

A = BEAR) An = 3(HEARS (3.97)

Thus the molecule-fixed potentials, which are given by relationships

similar to (3.52) to (3.53%), are :
o= %[7 5 m]

,\[q}j + ;_ Zur, - (1 + ;-9‘)5' Ei] (3.98)

\ Lo i _;

£
2¢

IT;

b
i
olo

-N

2
F s - c(
2..[' 2 (Zy Ahod H Z IFF“; §rsQr.(g—as'~é"°‘)]
ol r,s

e L 7 s 1 F - ’Tﬂ
= 502_ uo(_{:_.w/\ ﬁi[»\(ﬁ‘ + —3’:9( M - El)] (5.99)

o
L m
m‘m‘;zirsr SN AB I - ZI )}
r,s
7
e (4
A = - m,,e QA
r c LAm, Sar e
e
m
= - - z
Zm LB B I -5 2z) (3.100)
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and

{p
[N

i
olo
e
e
g i
g
P
[}

wha

i
N
H
b=
>
+
{
mE
i

S .._;.Iﬁ Jrmem . o AR
1,’,””2 = * T }, A“‘””{[

and Ei and Ea«. have been written in terms of molecular coordinates
using egquations (3.20) and (3.22). These potentials could be
substituted directly into (§a87}, but the presence of translstional
and vibrational coordinates in a. is vndesirable, since they lead
to large second order effects in most revresentations of +the tolal
wave-~function. However, these terms may be removed by a change of

gauge ; a suitable scalar

m
nl o iU & iy
E 55 w0 %

The total wave-function is multiplied

and each potential A, is replaced by (4

e 7, Ly had
A E Se f:,\ [’L&z ""zz&mm

" readl "
T, Pt A
oL




(3.106)

and e gy M
> T n
a, —» = 1 r., = (2 4+ —*) M»Eizx 10
~i 2¢ ~d\[}1 ( M ML (5.107)
J
so that the latter containg only electron coordinates. Tdeally

one would like to obtain all potentials in forms involving only

D

their «corresponding coordinates, but this has not proved possibvle,
However, the unwanted terms all give negligivle contributions to
the energy and will be omitted below; the Hamilitonian will then
no longer be strictly gavge invariant, but this is pesrmissidle,
since a definite gauvge has now been chosen.

We shall now consider each term of (3.93,%.94) in turn,
omitfing all those contributions that are negligible in a separable

representation of the form

€E = ‘wtrans‘¢rotwpvib'451 ’ (5.108)

where 1Pt*a S is the translational wave-function and depends only
e
on R, the rotational wave»funhtion,zpro+, devends only on the Buler

1S

angles associated with the orientation of the molecule,ipvjb i

a function of the normal coordinates, Qr’ and the elecltronic

wave-function depends on r., and possibly Qla
L3 .
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The translational part,i*T, of the Hamiltonian (3.93)
. 1 2
is o7 (g + é) . Only those parts of A involving R give diagonal
contributions, and the second order contributions of the other terms
only connect different electronic and vibrational states and are

therefore negligible except at very high fields. Thus :

1 2 ge a2 2 '
M, = P o- o, E(BLP) t (. R (5.109)

and only adds to the energy a constant term that cannot be detected

spectroscopically.

The rotational Hamiltonian can be expanded as :

U,V u,v
1 1 "
o " . 5 j).r
PR TE Sy P Z@"‘m wry (3.110)
v u v
u,v U, v
Making use of the fact that :
ey i ST
AL ) - ] (3.111)
the second and third terms of (3.110) become :
% .1
ji.z Aﬁfkuv u T 2; ! (3.112)

U,V u,v

In a similar way the vibrational part of the Hamiltonian is :
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o
eSS
BN

1,5 - 1 ”% :
Y et o 5 e d G

where the last two terms gimplify to

X
3 AP+ % Pr,Agj (3.114)

The second term in (3.114) can be shown to vanish by direct

: ‘ 2
substitution (3.105) and (3.52). XNow Watson 5 has shown that :

2 /"“"“u# T Z e e

U,V
E . z 2 1 p2 ; '
= Y T %, I 7 1
- L Py 8’E £ Fau (3.115)

U,V T u
In addition it can be shown
Z.e
e o .1
e i .116
Z/Awfsh Z T (Zeat), (T )y (3.116)
L,V
where_l" ig defined by (3.71). In addition A is to be evaluated

after the gauge transformation :

A, = #H,(R+zx, - 21 z;) (3.117)

i
Addition of equations (3.110) and (3,113) and substitution of (3.105)

(3.112) and (3.114) to (3.116) yields :
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o v ¥y = Z‘}up‘w * Z%Pi"%)ﬁ2z,’*u Z%
u

u,v T r

)3 ~3"5[‘ Cah) (1w (0 -1
+ S _LI_“,LA Ay - )uVHu + i‘u(}:“,\ _A.)V(I )m,]

y U,V

E: Jm c -«r ~4)P + EZ “qrfkuv N, (3.118)

UV

In substituting (3.117) forléc(, terms involving translational and

4

electronic coordinates may be omitted since the

{0

re negligible.
In equation (3.119) the first three terms are, respectively, the
rotational kinetic energy, the vibrational kinetic enerzy and the
mags~dependent contribution to the potentisl energy that has been

. . 26 Lo . R
discussed by Watson . The next and last terms are responsible for
rotational and vibrational contributions to diamagnetism., The

remaining two terms are linear in external magnetic field and

represent rotational and vibrational Zeeman effect

o

@

The electronic part of the Hamiltonian is :

e Z

1

— — .
H = é—% (2; +§i)2 + ”L”DJE* + 3, )] QZU{ (3.119)
i i

Substituting equation (3.107) for a, and neglecting small terms

this becomes :

i1s 2 1<y <.
‘34‘8 B szpi + 2 E‘?‘i) - BI’IB 2 Zpi
i ‘ i
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+ sy Bz (1 -5 - %Z%]/xl’-i
i

v p.

e 2 e 2
- == > Ho(z. A p.)D, +——% > A 3,120
4m305§ iA=L/ mCZE i ( )

The first three terms are the kinebic energy of the electrons
together with the mass-polarization and relativistic corrections;
the next terms represent the el;ctronic orbital Zeeman interaction
also with its mass-polarization and relativistic corrections, while

£

the final term is responsible for electron diama

snetism,

The remaining terms of the Hamiltonian (3.94) may be

considered in four parts, the first being :

$#, = > 3.
1 s Bl
by
51}9{3 Ay im ! o Dy 5—
= b a2z, N S 7= 8,0 (Z;
2me YA il('ﬂJABJ *ﬂJAQJ +~ﬂé £ <3mA3
i #1741 o Tig
S
iy
J’Z e 3 Lo lZipans) ?nw 5; (2, 2;)
i X Ti i

(3.121)

The first two terms give the spin-orbit and spine-other~orbit
interactions, while the third term represents the intersction of
the nuclear spins with the electronic orbital angular momentum,

The last term gives the interaction of the moving electrons with

the static electric field, and is usually negligible as are the
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magnetic field (gauge invariance) terms which have been omitted.

Using equation (3.96) we have :

1. 1
- 4 z
44‘2 - Z/I" EM’H‘,(/U'
o
= z W g s, «(z
IkiNC 1?5 — N E,])
Oﬂ,i,j ok
Z gpe 1 )
IR S ol
+ Z "_@c r3 I éi’(gicxﬂ'-gar) PrI
o i,r b4
Z gse N
-4} 1 "»é‘ ~ Q ",_1 . ”“_% )
¥ Z ¢ L5 - TLEEON @w«% ) T (3.122)
o, 1 X

where the three terms represent, respectively, the mass polarization
correction to the spin-orbit and spin~other~orbit coupling, the
spin~vibration interaction and fthe spin-rotation interaction.

The third of the remaining terms is :

1,53
2
e 1 1
= "z dezcz El‘<r MY 0 ”'13)'33
i J#4 ij
S 2 2
- s (s, 00 G129
i Zm ¢ :

and gives the retarded interaction between moving electrons

(orbit-orbit interaction) and the relativistic correction 4o

~5T~



the electron spin Zeeman term which appears in V (see equation

(3.8) )» Finally =

A
4 Tatna
4 LI Ttfo
— Z e2
d,f:b QmMNC i rix
— D e 1
X it 1 (1
* 2_"~?:m§ I E (*~*+r ””'Qm)(jifxfr)I =
o1 2m4qxc LM ix
2
o e 1 1
ot {2 ”-l‘. ,..1._. 0 1., u__.§
- ZE: 2me? I ﬁi‘(r =i 3 £ ) (Egnl WH) T
o, i ;
- 1 (3.124)

These are respectively the mass polarization correction to the
orbit-orbit interaction of (3%.123), the orbit-vibration and the

orbit-rotation interactions.

The expression for the potential energy, V, is the
same as that given in equation (3.8), but with each interparticle

distance R, replaced by I, .

Ay
Bquations (3.109), (3.118), (3.120 to 124) and (3.8)

together give a complete Hamiltonian (correct to order 0"2) for

a non-linear molecule in the presence of constant electromagnetic

fields. In this Hamiltonian are several new terms which have only

been investigated in simple systems like atoms. these new terms
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include mass-polarization corrections to the orbital Zeeman
interaction {3.120), the spin-orbit coupling (3.122), and the
orbit-orbit interaction (3.124). The first of these has been
considered by aAbragam and Van Vlieck N in the case of the oxygen
atom. They may be important in considering the effects of isotopic
substitution on spectra and,since they are proportional to (m/M),
their relative importance will be greatest for lizht species;
however, the spin-orbit correction will have the largest magnitude
for molecules with heavy nuclei.

Other movel terms are the spin-vibration interaction
(3.122) and the orbit-vibration interaction (3.124), which however
only give diagonall contributions if the molecule has sufficient
symmetry for some «of the vibrational modes to be decenerate; this
is related to the fact that érsQrPs only contributes in first
order if r and s are two components of a degenerate mode.

Equation (3.118) includes a vibration as well as a
rotational Zeeman ‘term. “This would modify the g-factor of a
molecule (whether c¢losed- or open~ shell), when it is in a
degenerate vibrational state (a degenerate mode has been excited),
but to the author®s knowledge such an effect has not yet been

observed,



3,6 Quantum lMechanical Hamiltonian for a Linear Molecule

The Hamiltonian derived so far is only strictly valid
for non~linear molecules. The modificationg that have to be made
for linear molecules will be outlined in the following section.

The derivatioﬂ of the classical Hamiltonian is exactly
analogous to that given for a general non-linear molecule in Section
3.3, except that the Eckart equation (3.30) only gives two conditions
specifying the molecule~fixed axis gystem. This is equivalent to
the idea that a linear molecule has only two degrees of rotational
freedom, i.e. its orientation is specified by just two Euler angles
6 ami¢, For an n;atom molecule, there are comsequently (3n-5)
instead of (3n-6) vibrational degrees of freedom. ‘“hroughout,
we shall take the figure axis of the linear molecule to be the
z axis. The equilibrium positions of the nuclei are a, {situated

on the z axis). Then the Eckart conditions are :

Z ma. L, = 0 (3.125)

and the vibrational normal coordinates are defined by :

Flz,- 20 = ) L (3.126)

r
The new orthogonalify relationships for the components of 2 are

given by Amat and Henry 29.
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The derivation of conjugate

same as in (3.38) to (3.43) except now

momenta is exactly the

-
®

L]
IXY = Ixz = Fyz = Izz = 0 (3.127)
t t % . .
where,
! 1 1 2
I = Ie( T+ oy 3Ea) (3.129)
T
L 29 - 30
The proof of these is given by Amat and Henry and also Watson .
Also , Ie ig the valve of I* at the equilibrium configuration.
< 2
oL
= Z .
a, = :E;ZIﬁg_a&_gir {3.131)
o
2
) .
I = = (3.132)
I
e
with
T o= ) om 7% (3.133)
ot
Therefore :
t
" “x
(3.134)
t
J - L - & = T w
¥ Y ¥ “y
- - = 0 3.135)
I, L, ¢ (
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Inverting (3.134), we obtain :

1 1
W = =1 -6)5 o = ~35-7(.13, - L, - G)  (3.136)

The Lagrangian equivalent to (3.48) is :

2L = wdo o+ way + ZPrQr + Zﬁi'?-i
r i

PP |
tyo-e (3.137)

Then if we replace 1 by B, the classical molecular Hamiltonian

21!
becomesg :

2
P 2 _ 2 Z'l“z
& =t B(JK G ~L_) +(Jy G, Ly) + i
r

1 2 1T V2
LA “2””"(22) v (3.138)
i R
It is now necessary to transform to guantum mechanical form; the
19

method of Wilson, Decius and Cross canmot be used without
modification because of the lack of the third Buler angle. I%
is still, however, necessary to write the components of N (=J-G~L)

in terms of pg, pﬁb, Pr and R;- The angular velocities are given by:

W = ~¢sinb

X
w, = 6 (3.139)
w = cf)cos. b

Z

b2



The inverse transformation, however, is not unigue :
9 = [ 1]
y

¢ = ~wxcose09 or wzsecB or combinations. (3.140)

From (3.8139) :

8 3 aux kY] awy 38 dw, 30
= . 141
. (3.141)

Here J has been replaced by 3_ to emphasise the point that its
components do not obey commutation relations for angular momenta.
Similarly :

Py = -ﬁxsing + §20039 (3.142) 3

It is not possible to write ix in terms of D> but using (3.135) :

H

{2 Y (xan ), + z 57 QP (3.143)
i

and

3:5 = mpécosecﬁ + cot & Z(l’ ,\,P.l P + Z rs r 8
Ts3 (3.144)

The classical Hamiltonian has the form :

. . t
d"" = ; zz&I /&p Zx‘I)_; + ¥ (3‘ 145)
?

H
where the M,.,. are related to the conjugate momenta by @

-63-



M;,L = z s/"”pp

W
v the
where s*' is Asymme’cric matrix defining the transformation. This
yields :
oo D dpigwm, 4V (3.146)
Iatid

After the rodolsky transformation 22,23 (also appendix A), the

guantum mechanical form is :

A & o
#t = :{j%g4;ﬁg “gubug® + T
falle
3 PR (N )
- jgjgg%mfg 6087 + ¥ (3.147)
i
where the gquantum mechanical operator : : ,
~f .
i, = Eipysﬁ“ (3.148)
v .

- . w3 2
However, for linear molecules p, and st comnute; therefore E%I/J_ can
t

be replaced by Muin (3.147).

The determinant g of guw is :

§
g = Klz cose028 = KB2c03e029 (3.149)

Il
1
where X and K are functions of only the masgses of the particles.
Equation (3.147) applies when one has a weight factor of unity in

the normalisation of the wave-~-function. Using the more usual
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weight factor of sinf , the Hamiltonian should be pre-multiplied

i X
by sin 28 and post-multiplied by sin®6 ; yielding s

2 1
$# = ‘gﬁ + B(Ni + cosecd gysine.gy) + iij ~B “P.B P B?
r
1 -
P ) LR (ZE) . (3.150)

i
Expanding the rotational terms and putting the total internal

angular momentum, W = G+ L, we obtain :
B( W2 4+ cosecd N _sinB N )
X y ¥

B[@i + cosecl gysz.né 5};{ - W4, - 4.,

- cogecég smnBW - Wyg + “’ W 1

This is equal to the expression given by Hougan for the case of

. . . 1 . o .
the linear triatomic molecule 5 after making use of the non-commutation

properties of i with ¥ and sinb.

{HR = B(g +cose08} smééi «»2#@ mzwyg +w +”2)

(3.152)

The same author has shown that the above Hamiltonian (3.152) is

igsomorphic with a gymmetric-top Hamiltonian, where the third wuler

angle X is introduced. This form is more suitable, since then the
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techniques of spherical tensor operators (to be described in the
next chapter) can be used in evaluating matrix elements., Here we

obtain the game result by means of a similarity transformation.
. H — ~1 |
i.e. > séts and ¥ —> sP (3.153)

If S is taken to be exp (iWZx/ﬁ), the rotational wave-function
automatically takes on the form.of a gymmeiric top wave~function.
It is also an eigenfunction of the operator p, = ~ih§i, with
eigenvalues equal to those of WZ. Therefore it.is possible to
replace Wz by py whenever it acts directly on the wave-function.
Elsewhere Wz can be replaced by py if the commutation properties
with other terms in the expression are taken into account.

now the effect of the similarity transformation on the

various terms in the Hamiltonian is as follows.

exp (i‘\ilz){/ﬁ) G exp (-1, % /)

i

exp (i6,%/H) G_exp (16 X /)

i

Z £~i2’;§SE[[[GX,G;1,G;!,G;o-....} (3.154)
gl

8=0

26,30
where there are s commutators. Also Watson has shown »3 that s

[Gx N G Z] = - l‘hGy
(3.155)



Therefore,

i

3%54-2(1fﬂx c, +Z~GUWHMQ§G

v
s even s odd
= chos7( - Gysinjﬂ (3.156)
Similarly
3 %y S‘."1 = gycos7( + GXsin)( (3.157)

The physical interpretation of the operator 5 is a rotation of the
physical system by an angle -X about the molecule-fixed z-axis or

a positive rotation of the axes by X about the same axis. Ve shall
use the latter definition because it leaves the Euler anzleSspecifying
the molecular axis systenm és (¢,9;K) as required. The effect of the
similarity transformation on an .operator F(«) where;x reéresents

the point at which it is operating,
Cofoy o v q
s Flx) 57 = F{x) = F(x') (3.158)

can be interpretated as follows. Initially we have F operating at
point o« in the original axis system. After the rotation, at the
point % in the new axis system the operator ig a different function F'
of the position coordinates. However this is identical to the original
operator with different arguenments o'y these correspond to the

coordinates of the new point (in the original axis system) which

have coordinates « in the new axis system.
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The same is true with differential operators,

56,5 = g = GoosX - GainX (3.156 )

GX and gy have definite operator forms in whichever system they

are measured and the effect of the gimilarity transformation is

to alter the point of operation of GX to a new point where the
operator becomes S; {i.e. the same operator except that the original
coordinates are replaced by the new coordinates obtained after

a rotation by X about the molecular z-axis). It can be rewritten
in terms of the original arguements or coordinates, which may be
considered as those in the new axis system; Gx and G‘Y on the right_

hand side of {3.156) are operators in the new axis system.

Similarly,
-1 .
SL,S = LXcos)C - LySLnT( (3.159)
-1 X .
= ) L sin X 160
S Ly S Lycos + L (3 )

gimilar results are obtained for the position coordinates:

[

5 xy 57 xkcosx - yxsinx (3.161)

i

S ¥y Sm1 ¥,\C08 X o+ x\gin K (3.162)

for A = o OT i.

The problem with vibrational coordinates and momenta is more
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complicated. If a vibration is non~degenerate, that ig, it is one
along the z-axis, its normal coordinates and momenta are left
unchanged by the similarity transformation. The remaining doubly-
degenerate modes, in the x,y plane can be expressed in terms of

their x and y components, P§ or Q}; etc.

SP.S = PeosX - PsinX (3.163)
5 P - ?icoévc + PlsinX (3.164)
s s = QQeosX - sinX (3.165)
s &, s Jeos X + Qsin X (3.166)

It is found convenient to rewritve ﬁx and gy in terms of the components

along the new x and y axes.

f]x = J;{ cos X - J:; sin X (3.167)

gy = JB:' cos X + J;{ sin X (3.168)
where the components of g’_' are defined Yy :

J;C = cosX (cotl W - cosecH P¢) + sinX pg (3.169)

J:;r = -ginX (cot€ W, - cosec pé) + cosX P, (3.170)

J; = W, (3.171)

~69-



These are readily related to the true rotational angular momentum
Jx’{y and JZ given in (3.79) to (3.83) by replacing WZ by Dye

The rotational Hamiltonian (3.151) then becomes :

§ H
#, = B cosech (Jx - W) sind (Jx - W)
(3.172)
$ ¥
+ B cosech (Jy_ - Wy) sinf (Jy - Wy)
- H . 2 § \ 2
= B UJX - W )T+ (Jy - wy) ]
" t ]
- B i -7 -
ik B oot ® [sinX(J_- W) + cosX(Jy wy)]
But, '
]
WZ(JX W) o= W (I -W)
= (JX -W )W, - ik wy
= p (0 =)+ (0 -] (3.173)
Similarly,
' - k 3 ‘gr -
Wéﬁ%.»x%) = px(Jy-»w&) - IE(JX dx) (3.174)

£
Using these above relationships and replacing J by J in (3.172)

gives :
2 L2 e
s = 3 (o, -e -1 )% + (, - &, - L)% ] (3.175)
= B(JI-&-1)P (3.176)
gince, )
2 H
(JZ -G, -L)" = (J,-6G, - LZ) = 0 (3.177)
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All the remaining terms in the Hamiltonian are unchanged in form
after the similarity transformation.
Now in the presence of external fields, the quantum

mechanical Hamiltonian equivalent to (3.150) is :

H = T-ﬁ + B le + BeosecB M sinb N+ Z;B% 5! T‘B%
b y oy B . 'z
r

2
1.2 1 2 r
* Z'ﬁﬁi * d»(}’_ia) + v (3.178)

e shall now perform the similarity transformation on
the complete Hamiltonian, but the effect on the vector potential
terms is slightly different. rirst, it will be assumed that all
the potentials have been gauge transformed as in equations (3.104)
to (3.107). Also it will be assumed that only those coordinates
wnich appear in their corresponding vector potentials give
non-negligible contributions; this is the same assumption as that
made for the general molecule and which iz found to be true for

fields up to tens of kilogauss. Then we obtain :

A o= - I (3.179)
e " o~ . 0 , )
Ay = =551 1 z 2z (8, ) (%.180)
"8

yielding (AN)le 0, as expected by analogy with HZ = 0,

e



e o
b5 ) R A G-151)

|
i

[ - ngy m
—i 2o Halz - ) g z-lij] (3.182)
J

The masnetic field, H, is unchanged by the similarity transformation;
this is because it is assumed to be a constant, independent of

coordinates and momenta,

i.e. SH_S = H (3.18%)

The subseripts are somewnat misleading, because here the result is
a field component along the original axes (but acting at the new

. H $ .
point x ,y ). If we want the components along the new axes, we have
to perform a transformation of axes along which the field is

regolved., Thereflore :

#* +*
= - - i 3,18
EX Hx cos X Hy sin X (3.184)
* ) W i
B,o= K cosX + H sin X (%.185)

where asterisks have been added to the components in the new axis
system for clarityj but they will be dropped later when no confusion

can arise. Thus the rotational vector potentials transform as:
-1 * Lo
( = - 0186
s (&), 8 (a), cosX (b, sinX (3.186)

5 () s (Ag)y cos X+ (A;;)x sin X (3.187)
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*
where the resulting vector potentials A are weasured at point

x,y 1in the rotated axis system.

The cross terms between rotational angular momentum

®

and field transform to : .

ﬂ’RZ = B'[cosﬁ (J:c - WX) - sinX(J;r - Wyﬂ[(%)xcosx - (gL:_)ysinX]

t ¢ R
+ B cosec@[(JX - W )sinX + (Jy - 'vé’y)cosX] sinb

x [(Ag)xsinx + (A;:,)yCOSX] + B _SA;,(_{' - W)
(3.188)

®
e

Bringing the sin& to the front, the above expression becomes

* * ]
ﬁﬁz“ BL_~W Ay +B%PQ:»E
- ih cot® {(A.;;)Xsinx + (A;)ycosX} (3.189)

It is now desirable to replace the operator ‘HZ in J by Py The

relevant part of (3.189) is :

cot & W {_(A;)XCOSX - (%)ySinX }

* , *
= cot® cosipy (AN)X - sinXpy (a)y

cotQEI ) (Al\) s (A \z) bll’lX] (3.190)

- cotBt\zosX Pys (A”\) ] + cot8]sin X Dy s (4, )]

T B



*
Now taking the full form for __A;N , we obtain :

*
(AN)X = FZ Zex o(z - HzRotx) (3.191)
- z.x. | H HR )
(L), - FZ g | HR - B R (3.192)
i
where F o= = el , and all components of vectors refer to

2¢ck

the new set of axes (after rotation by X ).

i

[wz, (;{;)X] - if r? B o (z, g Zriy) (3.193)

[Wz’ <A;) ;y:]

Now H and R, being space-fixed gquantities, have implied "X dependence

[

ik FZ Z"Cr«sz(r«x - Zriy) (3.194)
o

so that

{

[PX’ ( 14 X] = -7 Zx a(Z(H R - HzRy)
oL

- if (A:)y " [Wz’ (‘%)y] (5.195)

i

- ik Fyz}, %Z( ~H R, +HZRX)

i

[:px’ (AITI) y:}

]

#p () - [, (] (3.19)
Hence (3%.190) becomes :
cotB‘JJZ{_(A;)XcosX - (ATE)ysinX} - i-ﬁggt@{(A;)Xsin)( - <AI);)y cos )

+ cotl vosXp, (A;)x - coté sinX py (A:“)y
‘ (3.197)
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Therefore :

H]

" A * * s
Hay B (I-W.a + A (J-1 (3.198)

The susceptibility term A% remaing essentially unchanged; it is a
scalar product, independent of momenta, and is left unaffected on
rotation., The same is true of all the remaining terms in (3.178)
gince all these remaining momenta commute with X .

To all these terms should be added those representing
magnetic and other small interactions between particles; these are
essentially the same as those for a general molecule, given in

(3.94). After the unitary transformation 3

&' [Z{Bﬁ +cﬂ-+§jg%ﬂ%
+ Y Th.Dy T «} z B TT-J 2 (3.199)
-4

where we have taken into account the renormalization of the
-k
wave-function by pre-multiplying by B 2 and post-multiplying by
1
B%, Also the space-fixed momenta are replaced by the slightly

medified functions of molecular moments :

M = o + =T (3.200)
-1 —-1 it
—t T - ﬁ} i + mo((moa;'rrr - My I E’.M,\n
T
(3.201)
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3,7 Simplification of the Hamiltonian for a Linear Molecule

In this section it is proposed that the Hamiltonian
will be simplified in a similar manner to that for the general
molecule given in section 3.5 . As before, those terms which give
a negligible contribution in a product representation of the
wave-function will be neglected. With this in mind, we take the
expressions (3.179) to (3.182) for the vector potentials.

The translational Hamiltonian is exactly the same asg
before :

)2

1
H, = o (P + A

p P (3.202)

This term is usually neglected.
The rotational Hamiltonian (in its isomorphic form) is
given by :

R ,
Hy = B o+ 4 (3.203)

Thig has the same form as for a spherical-top molecule, but it
should be remembered that the z-components of both N and A, are
identically zero. Expanding (3.20%) gives respectively, the normal
rotational kinetic emnergy, the rotational Zeeman effect and the
rotational contribution to the molecular diamagnetism.

The vibrational Hamiltonian can be significantly

gimplified .
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i

EE_B%P 5o B% Ei P2 EE'B% ( 2 B“%
r r r PI' )
r

r T

}: P2 (3.204)

r

-i '
since B ° is only first order in Q.. Also P, commutes with A

so that :

S{aF 5 + B R sy= Doz (3.205)
r r

Collecting all these terms together :

$+v = EZ £ ( pi + 24P+ Ai ) (3.206)

r

These are respectively, the vibrational kinetic energy, the
vibrational Zeeman term and the vibrational contribubtion to the
molecular diamegnetism. The vibrational Zeeman term can be

re-written as :
7 e

ol Loy
$o, = - D S EIAEEP, (5.207)
<,

This only gives non-zero diagonal contributions if r belongs to a
degenerate (i.é. bending) mode of vibration. Then if second order
‘effects can be neglected and Zm/hd can be replaced by Zeff/M, the

above approximates to :

| 7 pp8
Hog = - He E-E (3.208)
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the form one might intuitively have expected.
The electronic Hamiltonian is unchanged for a linear

molecule :

H, = Z%}Hpi * 2;%1(233:)2 - =53 )R

N " 8m30 A
i i i
e
+ ?rﬂ”é_ ZE'E:EJ:(T - TI) Iu Z"‘]/\ l (3 209)
i L '
2
e :E: e 2
- H(z, . )p $ oy AL
zILch5 7 A 2m02 g +

The remaining terms follow the same form as those for the general

molecule.

2[7 2me 3 Ei'(ZEij/\Ej - ~]3ij/in)

i J#i
Bafy® 4
;:\%ﬁm- ER '(Eﬁx/\gi) e 5 ldf(gix,\ﬁi)
2me r Tix
+ Z omo 24 (mAE ) (3.210)
i

These are, respectively, the spin-orbit interactionsg, the nuclear
spin orbit hyperfine interaction and the interaction of the magnetic

moment of a moving electron with a static electric field.



Z g@e 1 1
- oL - X
E: me 3 B xi'(ELXAiﬁar> Pr B

% i,z i
Z gﬁe
o 1 5 et o .\ ~%
I aE AT S SN CE I S EXIT
o i i

These are the mass-polarization correction to the spin-orbit
coupling, the spin-vibration interaction which manifests itself
in degenerate vibrational states with a form EPRER and the spin-
rotation interaction, which differs slizhtly from the expression

for the general molecule,

-2 2 -

E.'(;lw + .. ~%~ r..).p.
i i#] 4m c * ij 1d rij ot J
- L,. pf‘“ (s «‘F)p (3.212) ~—
7 2m o

These terms are respectively the orbit-orbit interaction and the
relativistic correction to the electron-gpin Zeeman interaction.

These are identical to the corresponding terms for a non-linear

molecule.
2“92
IR R R P (RS
2 d TN jex
2
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28 1 1 o " q
T s oo
® 1 1o<

These give the mass-polarization correction to the orbit-orbit
interaction, the orbvit-vibration and the orbit-rotation interaction.

To these should be added the potential enerszy term, V.

vV = Z[mcz~e¢i+g§i.§ + Z{Ziz - 2,h2 g(r )

T 344 ij 2m c
122 1 -2 (4 (o S
trep - S1055 5] (s 513)\33 :iJ') 3 J la) Sl'sa}
ij ij
Z e Zp(ez'ﬁ2
+Z -t 22 (= o()
< iet 2m

- gng‘GN ;%M;J,'l;o( —%( =i “:uxxl Ly ) " ——ng(r ) 2 'IH
i ik
2

5 2o a°
+z{mo(c + 7.2 ¢ - goéfsh&o(‘ﬁ + sl o :HQ
o

- 2Tup
P (3.214)

Thege terms have been discussed in section 3.2; they are the same

except that the space-fixed coordinates R, , have been replaced by

their corresponding distances r,,,in the molecule~fixed axis gyatem
The above Hamiltonian, given in (3.202) to (3.214),is

appropriate to any linear molecule but in certain special cases can
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be substantially simplified.
For example, in the diatomic molecule, the vibrational
angular momentum goes t6 zero and the intermediate moment of

inertia becomes :
i1 2 2 2
o= :EjIQKEx A T (3.215)
[>4

where r is the internuclear distance.

Making these modifications givesg a total Hamiltonian
that is in agreemant with that by other authors (e.g. ref. 33)
except that here all the mags-polarization corrections have been

included.

If we have a spin wave-function quantised in the -molecular
frame, it automatically has implicit Buler angle dependence and thus
can be operated on by the rotational operators, J. Ideally, one
would like J to act only on the rotational wave-functions and this
can be done if J is replaced by J-S5 everywhere it appears in the
Hamiltonian; 35 is the total electron spin operator (see Appendix B).
The rotational Hamiltonian is thus obtained by replacing N by

J=G~L~5 instead of J-G~L.
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Apvendix A

Transformation of Tengor Quantities in Curvilinear Coordinates

Let us consider a v -dimensional Cartesian space, x/
which transforms into the curvilinear coordinates qi. They are
contravariant vectors since they transform like :

=m
X i » s .
= -~ A (repeated suffix convention)

i
ox (4.1)

where the bar implies a new coordinate system. Similarly covariant

components (with suffices instead of superfixes) are defined

according %o

B - é_}_ciB. ' (a.2)
m 7 i . °

The distance between two points in the curvilinear coordinate

syatem is given by :

i = P dq* qu (A.3)
where, PN o
g, - LN L (8.4)
°ij iy 3 Ji
39" 3q

The Jacobian for the transformation (which relates the volume elements

in the two axis systems) is given by :



dxl
J = (4.5)
dg
2 . bl
3 ¥q?
= [gijf = g say (4.6)
The volume element in the v -dimensional phase space is :
T = »-cemdx dx-rrs = JE --ccdqidgeees (A7)

Any infinitegimal change in the position vector in phase space 1is :

dr = 2 dqi

i

1 23 dq" ' (A.8)
dq , _

where e, is a basis vector in the new space (but not normalised)

If no two e, are parallel, it is possible to define a veciprocal

set of vectors M? such that :
e o) = S . (A.9)
e M ij
and dir = &’ da; (4.10)

For any general vector, A

A = ate. = a.e (4.11)

where a* and a. are respectively the contravariant and covariant

components of A . The distance element in (A.3) can be re-written



- . - i J
ds = drdr = e, e dq” dq (4.12)
- i J
e, e dg; dqj (A.13)
Therefore,
85 T ;.8 (4.14)
and also the inverse matrix,
g7 = el e (4.15)
Post-multiplying (A.14) bylg’J and summing over j gives
- J. i _ ij
e 8558 5 also e = g ey (4.16)

In terms of these, the gradient of a scalar will transform as @

V¢

3 ¥ Y

dx \c)ql - 'Bql

b . j.éjt (4.17)
3q

The divergence of a vector V will be taken to be the covariant

derivative. Thus

v.y

-
E

wh mw,,.z..{vuu} (1.19)
Yyt P AR dg?
wlo g P
iz i ¥ 2 3
dq Aq
o B owt o+ Do

g 3

Z’xqi



Therefore,

1f,

1=y
bl

<

~5-

Then, 5

[

i}

ANIEYD
T3 3¢
;v = gij%
¥.(v¢)

(a4.19)

(4.20)

(a.21)



Appendix B

Effect of Rotation Operators on Case (a) Spin Wave-functiong

The molecule fixed (case a) wave-function XSE:7ha8
implicit Buler angle dependence and thus can be operated on by the
rotation operators. TFor a single electron spin (s=%), we can write

the Euler angle dependence as

$(s0) = > BE0) W(en) (5.1)

where L signifies the three Euler angles (d,ﬁ,wﬁ and §5§OQA) is
s rotation matrix, to be defined in the next chapter, but can be
written explicitly as a 2xé matrix as below.

. exp ~i(x+7)/2 cos B/2  =exp i(x-v)/2 sin /2

nol) = " (B.2)
exp i(y-0)/2 sin f/2 exp i{w+7Y)/2 cos [/2
where m=i% iabels the columns and U=f% labels the rows. HN.B. Ve
chall from now on use the symbols (x,8,Y) instead of (9,0,%) to
express the orientation of the molecular axis system.
The differential operators appearing in the rotational

operator J will be written as <§$)s ete. to signify that it operates
on the complete Buler angle dependence of the wave-function, and as

(%?)m etc. when the electron spins are molecule-quantised and only



the rotational wave-function is operated on. Now consider a
wave~functior that is the product of a rotational wave-function and
a single electron spin wave-function, R(e«,g,y) ¥ (o).

Then,

(%)3 Rpr0) W) = (3, 2ep )Y (@) + Retp )3 4 (0)
(B.3)
D (%)Si}/(o’) - Z(%)s 3% (&) (n)
=i (1) (o)
= ~-is_ (o) (B.4)

where s, is the molecular z~component of the electron-spin operator

in dimensionless wnits (#i=1). Similarly,

(&) v = D (), w0

?sp -

i

i
o

J—‘w—
(=1)7 7 ’1(’(”"6‘) exp =210y (using B.2)

- 3¥(-0) (-1)TC [eosy + i(-1 )’%‘*O"sinﬂ

(B.5

Now s (o) = H(ss )Y(0) = Z%(-0) (B.6)
and s (o) = s, -8 )¥(0) = H-DTTy0)  (2.7)

Therefore : (%\> ,.L‘}(o") - mi(sx siny + 5 cosy (o) (B.§)
» S :



m

EZ@QB 92 @)y

fur
o/
21/
(621
<
—~
a
e
i

m
iim
- > MR () p(n)
m
b o ) 2 2
ut, since 1 = 2cos’g/2 - cosg = 2sin"g/2 + cos @

i

if2 (- 1\’+“{};(m)§5% (w) (2sin2ﬁyz + cosga)
rp(em) 57 () (2cos’/2 - cosp )]

with m=o

i/2 Z( T)’JFG: %‘ () (n) cosp

(3'&;)8 ¥(o)

4

+ i/2 E vad () L}/(m) sing exp ~2ioy

i/2 (”1)-;;;«3* cosf q‘/(@‘)

i

+ isin F,{oos‘r + i(-a:)é_*o"siny} y (=0)

. {»iszcosfg + i sing (SXCOSy - sysiny )} P (o)
(B.11)
Now if the spin-wave-function of each electron, in turn, is operated
on by 3%:’ %5" and E...’ then the components of spin of one electron
i

must be replaced by the sum of the components of the individual

electrons. Thus if § is the total spin operator (in units of H=1),



d . . .
(3§3m + 1 Slnf3(SXCOS}' - Sy51n"y) -1iS cosf

>4
¥l
0

i

(B.12)
(%”)s - {%)m ~is, (2.14)

These can now be substitubted into the expressions for the rotational

angular momentum, (3.79) to (3.83). Thus

I, —» J. - S, (B.15)
Jy — Jy - sy (B.16)
J — J, -5, . , (B.17)

where the rotational operators on the right hand side of the above
expressions act only on the explicit rotational dependence of the

wave-function, i.e. only on the rotational wave-function.
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Chapter 4

ANGULAR MOU:H

4.1 Introduction

The concept of rotational invarisance plays an important
part in the analysis of physical systems; for example in the absence
of external fields and considering a moleéule to be an indepedent
entity, its Hamiltonian remains unchanged after a rotation, i.e. the
Hamiltonian commutes with the infinitesgimal rotation operator. This
leads to the concept of ansular momentum and irreducible spherical

N

tensor operators, in terms of which the Hamiltonian can be written.

ot

The uge of these techniques simplifies the evaluation of matrix
elements and the basic princinles involved are given below. Also

we attempt to clear up some misconceptions of other authors. Finally

important matrix elements are evaluated.

4.2 TRotation Cverators

A rotation can be considered in either an active or a
passive sense. In an exanple where we are transforming from one
axis system to another, it might seem preferable to have an operator
which rotates the axis system from one position to the second. This

- o1 . 2-4
is essentially the passive operator of Edmonds and others .

Although this is easy to define, it is found rather difficult to use.

-84



Instead we shall follow the method of Brink and Satchler 5 and other

6,7

authors who define their rotation operators as those which rotate

the physical system from one position to another. For the two-
dimensional case, consider a function 41 which depends upon the polar
coordinate ¢ . Then rotation of the system by an angle o transforms
the wavefunction in such a way that the new wavefunction at point

¢ + x is equal to the old function at ¢ .

-

o) = RE)YE) = Pl ) (&1

or for small rotations :

. d
Linm Rlx) = 1 - o«
N 3

L

il

where L¢ is the angular momentum operator. For any general rotation

D

of the system through a small angle o about an axis n 3

R{x) = 1 - iad.n (4.3)

where J is the total angular momentum operator (in units of H). A

finite rotation is a succession of infinitesimal rotations so that :
Ran) = expﬂé(g.g)m] (4.4)

gince two rotations do not in general commute, it is found that :
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or the commutator, [JX,Jy] = iJZ and cyclic order g4.5)

These commutation relations are the definitions of true angular

momentum operators.

4.3 TIrreducible Representations of the Rotation Group

Consider a finite manifeold that is an irreducible
representation A of the rotation group. Any finite rotation can
be produced by a succession of infinitesimal rotations, so that a
necessary and sufficient condition that A is irreducible is that
it is irreducible to the oéerators Jx’ Jy’ and JZ.

Now let the ket Ijﬁ>'be an eigenvector of JZ with

eigenvalue m, which has a maximum value of j. Then

J, Vjmy = mlim) (4.6)

The opsrators defined by : Ji = J 4 1J_ have the commutation
-relations :

J J = FJ (4.7)
[ + 7 7z +

and are found to be the raisins and lowering overators, changing

m by 1.

J lim> = [3+1) - m(mtﬁ}]%jj,mij> (4.8)

L1
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Here the arbitrary phase factor is chosen according to the convention
of Condon and Shortley? This representation, Jﬁj, has a degeneracy
of 2j#1 (m = j,j=1,3=2,-+«--+,=3). Also 23 must be an integer;
therefore half-integral j is allowed.

For integral j (=1), the eigenfunctions are the spherical

harmonics.
- im .
v, 6.9) - ® (6) M"Y (4.9)
_ mo (2141)(Q-m)! m .
where C]lmgé) = (-1) 500 ) ! Pl(é), if m>0

i

(»Qm@lm;(e), if m<0 (4.10)

and P?(@) is the associated Legendre polynomial 2,

4.4 Robation Watrices

Using the rotation opsrators defined in section 4.2, it
is possible to specify the effect of any general rotation. If a
set of orthogonal axes (x,y,z) are rotated to new positions (x',y',2'),
their relative orientation can be specified by the Buler angles
(aﬂp,yﬂ which are defined by the following ri&htmhand serew rotations.
Pirst the axes are rotated about the z axis by an angle o«

to new positions (X1,y1,z). Then thev are rotated by {3 around

the ¥y axis to give (xzyy1;z*), and finally throush an angle Y about

Sy



the z' axis.
If the system is rotated by (m,?,]?, the rotation

operator corresponding to this rotation (cf. section 4.2) is:

D(d,P,Y? = exp(~iyJZz)exp(wiprﬁ)exp(wiaJZ) (4.11)

Alternatively this rotation can be obtzined in terms of rotations

about the original axes. Then :
D{ec,8,7) = exp(~imJZ)exp(mi@Jy)expiniTJZ) (4.12)

Prom here on we shall use & as a short-hand for Qx,@,}?.
In a manner similar to that in esuation (4.1), the

operation of D(w) on a functionéﬁ, (8,¢), with angular dependence

i

like a spherical harmonic, gives a new funcition of & and ¢ ’
equal to éﬁjm at (6',4"'), the points rotated into (8,$) by this

operation.

T'@,8) = 2P, (0,4) = & (0,4 (4.13)

Jm am

and using the closure relationship :

§'(e,4)

i

E: @dn@%¢) <ﬁﬂD0ﬁﬂjﬁ>

it

PR IMGROESIR ) (4.14)

iiim@») is the matrix representing the rotation (m,ﬁ,)ﬁ in the
1
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(2j+1) dimensional irreducible representation of the rotation
group (corresponding to angular momentum j).

An alternative interpretation of (4.14), which will be
much used later, is to consider (6',@’) as the coordinates of the
old point (9,¢) measured in the new set of axes obtained by rotating
the old axes with the system. Hence we have a relationship between
spherical hammonic type functions in different axis systems at any
general point in space.

since D(w) is an unitary operator

i.e.

Df(d\*(gair) = D (’7'3",87"’5\) (4-15)

i

Cimfo™ (w)] " on' | o() | 3my *

T (4.16
- (ix%m) ( | )
This yields :
Y ol (216)" - s (617
n
and . . %
5 ol (el @] = &, (4.19)
— ‘
Also it should be noted that :
B (©) = exp(-ime -iny) 47 (P) (4.19)
where j . . .
aJ (p) = <Jmlexp(~1pr)fJn> (4.20)
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The dependence of the rotation matrices on & and Yy
svuggests that they are also related to the symmetric top wave-

functions. If (4.14) and (4.13) are inverted and using (4.17) :

i

$;,(64) Z <®fm(w)) * @J.m(a' 4 (4.21)

o

and chosing 8" = ¢' =0, so that ¢=u, B=0p :

o *
—éjn(?’m) = Z(«bnm(o‘;?,’r)) zﬁimkoio) (4.22)
m
g %
Any further rotation Yo about z' changes each b by a phase

TR

factor, and provi&ed all Q%m(0,0) except one are zero

¢l = ( 3 wopn)” (4.23)

N j 'x‘ - -
is an eigenfunction of L 1. Hence (&3§m(uﬂ) is proportional to
Z DiHL

the symmetric top wavefunction.

4.5 Coupling of Anrular liomenta

In a system of two independent angular momenta_{1 and
2 2 .
, J, 3 d, and J are a1l commuting operators
-1 12’ —2 2% coF

and that the corresponding eigenfunctions can be written as the

J2, it is found that J

product :

‘Y%jzmmz - L Vi m 7 [voion,y (4.24)
Y17Y2
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where the ‘Y's are all other quantum numbers necessary to specify
the states. Altermatively, another set of commuting operators is
2 .2

375 I5»

I35 g2 = (J, +.£2)2 and J = (3,,+ J,,) » with corresponding

eigenfunctions ryj1j2JM> . These are irreducible representations;
however the product wave-functions are reducible representations of
the complete rotation group.

The unitary transformation connecting these two

representations is :

343,50 3 [543, (3ydgngngl3apmy  (4.25)
My sty
and ligdommy = D 1343,91) $3y3,T )5, 3,mym00 (4.26)
Ju
where <§132Jmlj?jzm1m£> = <ﬁijgm1m2[j1szM> are the vector-

coupling or Clebsch-Gordon cocefficients. They have non-zero values
. . N
if all the j's can form a triangle (i.e. J, + J, % Z,h - \ )

and if M = m, + m, (since JZ = J, +J Their values are

1 2 1z 22)'

tabulated by many authors (see for example references 7 and 8).
The Clebsch Gordon coefficients are somewhat asymmetric

to interchange of momenta and the more symmetrical Wigner 3-3 symbols

i

will be used here and in later chapters. They are defined by :

,j j J J 1= J 9+M ,,.—-l-.

1 2 -~ 2
= »-1 " / LT

0w M (-1) (27+1) \D132m m?' 3,3 2u|:>

(4.27)



The values of certain 3-j symbolsare tabulated in Edmonds L and
in Brink and Satchler > D36 .

Any even permutation of columns of a 3-j symbol leaves
its numerical value unchanged, while an odd permutation is equivalent
to multiplication by (w?jjT+j?+J. Thus the order of vector-coupling
can change the result by a phase factor.

When three ansular momenta are coupled together, the

€.
result is no longer unicue even to{phase factor; it depends upon
~

tne order of coupling of the orizinal momenta. For example, j, and

1
QZ can be coupled to give QT? and this with QB to give the resultant
d. Alternatively the resultant 123 from adding j, dﬂd_QB can be

added to 21 to also give J.

=

Then,if we use the notation of writing momenta that are

i

coupled in brackets in front of the resultant, the unitary transformation

between the two schemes above is ;

1(3132)312,:33;Jhi> = Z ‘317(3233)323§JM>

023

Ty

[ (333,03, 35350
(4.28)

The coefficients are independent of 11, and are used to define the

Wigner 6-J symbols.
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12 e Jgtdotiatd %

- 2Ty i 3 e

‘ (~1) 5 [K2312+1)(2323+12]
(4.29)

Higher %n-j symbols have been defined, but it is sufficient to

define only the 9-j symbol which is used in the coupling of four

momenta, Using the above notation to distinsuish the order of

coupling of momenta, the 9-3j symbol is defined by :

T T T B (CIERERRC R PE L (ER N CA R ARy
. )
° % [(23,5+1)(235,+1)(25, 511023, +1)] 7
(4.30)7

The properties of the 3n-j symbols are given in chapter 6 of

-
N . ot ey D
Edmonds L and chapter 3 and appendices of Brink and Satchler 7.

4.6 TIrreducible Spherical Tensor Cpevators

In three-dimensional space, the Cartesian tensors of a
given rank aré in general reducible under the operation of the full
rotation group. For example, a general second rank tensor Tij can

. L

be split into the following :



= A - Am
and sij = wll + Tji) A7 (4.31)

These have respectively one, three and five independent components
which transform amoung themselves on rotation and are irreducible
components of the general second rank tensor and belongs to the JBO,
$, and 552 representations of the rotation group.

It is thus natural to define general spherical tensors
Tg of rank k which transform amoungst themselves like spherical

harmonics if k is integral and form an irreducible representation

33k of the complete rotation group.

-y T?@iq(w) (4.32)
P

kit th k.
where Tg expresses the q = component of T in new axes (those
‘ 4
rotated by («,B,¥) ) in terms of the old components Tp'
This is immedisztely extended to tensor operators, so that

for operator A we obtain {just as in (4.13) and (4.14) ) :

' B Wy 5y T,
Ty (4) = I( )Tq(_zg) D (W)
- Y Twek (4.33)
S oo}
D
or the inverse

lk = F{.\-‘.rrk' A k *

Told) = p v (&) B (4.34)
q
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An equivalent definition of spherical tensor operators is in terms

of commutation relations. For an infinitesimal rotation (1 - iaJx),

qu@») SRR N [
JXTE - Tijk = ‘1‘1;<kp‘3x\kq>
P
[, » Tl;l = QT}Q (4.35)
[, 2] = [e0est) - al@n)]® o, (4-36)

A.7 Matrix Elements of Spherical Tensors

1
. . I PN . | I
Consider the matrix element <§unxfqum.J M > . The
Ky vt .
state vector Tq[m~J M) transforms according to the ﬁikX iBJ
representation, which is in general reducible and can be written as

a sum of vectors with angular momentum K{.
(o

/

: ¥ x J'
k i K*Q« e m,ﬁj; -
T, lot's''y = Z (-1)7(2x+1) Q*Q q loxay
K,Q
(4.37)
1
. ¢k J 1
@@.zlfr)é[ab'm'> _— (-1 ¢ RN
. A AT
K,0 a a M
% Lot |pra)y (4.38)

<dJM!@KQ> is non-zero only if J=K and M=Q and is also independent
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of M. Therefore we can rewrite (4.3%8) as :

e J
ey lotJm> = (07 <°‘J“ (B
Mo (4.39)
where <3*Jtlzk ”det> is a reduced matrix element. The above result

is known as the Wismer-ickart Theorem, and basically states that

a matrix element of a spherical tensor operator can be written as the
product of a 3-j symbol and a term independent of the projection
guantum numbers.
Thig can be extended %o matrix elements in a coupled
representation. Let two independent momenta 11 and QQ be coupled
. - Ne K . :
to give J. TFor a tensor operator Qq(i} or gq(2), which acts only

on part 1 or part 2, we obtain :

‘ o x
s K - Fa+iotkq+d . =
<<J;J2J'}]i (1) n3132J>’ = (-1 BZJ+1)(23 T1{]2

NI ESOY
b lhl/ (4.40)

| li%(2) Hj1sz> = (- T)J*ﬂaszg*J E2J+1)(?J +1)]

'<§13é3
[z |52

(4.41)

- ' .
B ¢
X <<J 2
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k
In certain circumstances, the tensor operator T is formed by the
reduction of the product of two other tensor operators 2#1 and zkz.

That is :

K %, k

K X1 k K=0 - )

Pk, ,k,) = ; Pl 2 (1)t 2Kt ) (4.42)
Q172 L. g TQq Q

N ~ q Q-q

e

{

Then with the above coupled wavefunctions, the matrix elements can

be re-written as :

3y 3
<§;jéJ‘ll2¥(k1’k2)t]j132J> = E2J+1)(2J’+1)(ZK+1j]% jé i, X,
VAP
R Eal ERXE [
(4.43)

A special example of this is the scalar product of two tensor

operators; this may be obtained by K=0 and k1=k?=k.. Then 3

.t .
<J';35J'T’E'lik(?).2k(2)13132‘7@ = “”jﬂjé” 3_2 ().1 85 S’
< d4 2
x iy | (1) "j1><32” »T:K(Q)“ ip)
| (4.44)
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Chapter 5

AN EFFECTIVE HANMILTONIAW AND ITS MATRIX ELEMENTS

FOR A LINEAR HOLECULE -

5.1 Introduction

In this chapter, we shall formulate a scheme for the
calculation of the energy levels of open-shell molecules. The
method of approach is that for diatomic molecules,; but can be
readily modified to account for more complicated systems, for

example linear triatomic molecules which will be considered later.

5.2 Born-Oppenheimer Approximation

The exact wave-function to describe a molecule is
difficult to obtain; instead approximate methods can be used to -
calculate the energy levels.

Pirst of all, it is necessary to adopt a basis, for
caleunlating the matrix elements, which most closely approximates

to the exact wave~function of the physical system.

The vast difference in velocities of nuclei and electrons

(a factor of about 104) allows a separation of their motions. This

. . 1,2
was performed in a classic paper by Born and Oppenheimer ’

who
showed that to a good approximation the total wave-function for a

diatomic molecule can be written as the product of a rotational

=G0



part, a vibrational part, and an electronic part. Thus,

kI Vel ¥vib Yrot (5.1)

Let us now consider the gimple field free case in the absence of

magnetic interactions between particles, where the Hamiltonian is:

)
» . 2
‘”"ZM*"B(J-'-H)*E 22m1+
2 2
e Zﬁzﬁe Zme
=y v o 2w, 62
“p - Tix

The translational motion is completely sepaorable and will not be
congidered further; it just shifts the energy zero by an amount

not detectable spectroscopically. By expanding both the wavewfunctlon
and the Hamiltonian in a power series of (m/ﬁ)z, Born and
Oppenheimer ! showed that the best electronic wave~function is
obtained by solving the Hamiltonian for electronic motion at each
internuclear distance. This assumes the previously stated fact
that the electronic motion is much fasier than the nuclear motion
and that consequently the electronic motion and hence wavemfuhction
responds instantaneously to the change in nuclear configuration.
Hence the electronic wave-function, which is aleo a function of

vibrational coordinates, is obtained by golving :

~100-



(5.3)

where Ei and Qr_age electronic and vibrational normal coordinabes
reépectively.

In the case of a diatomic or a linear polyatomic
molecule in its linear equilibrium configuration, rotation of the
electrons about the molecule~fixed z axis leaves the Hamiltonian
wnchanged. Hehce the z combonent of the total orbital angular
momentum operator commutes Wiﬁh.ﬁ% and the electronic wave~-function
is an eigenfunction of LZ with eigenvalue /A. This is not true
when the molecule leaves its linear configuration; since couvling
between electronic and vibrational motion destroys /A as a good
guantum number. The problem of the linear triatomic molecule is
considered in chapier 8. Here we shall limit ourselves to the
easier diatomic species although much of the reasoning is easily
extended to other systems.

The electron spin will élso te considered to be guantised
along the molecular z-axis. This yields Hund's coupling case a,

which closely approximates the truth in the molecules considered
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in this dissertation (all 2TT); their spin-orbit coupling constants

are many times the rotational constants. See,for example, Herzberg 5

for details of the coupling schemes. The component of total spin

angular momentum, Sz’ along the molecular z-axis is thus a good

guantun number. The totai electronic wave-function will now be

written in the fozwx’%i(lgiz;gi,Qr) to emphasise it is an eigenfunction

of LZ and SZ; it is also an eigenfunction of PZ (with eigenvalue fL )

the z component of the total electronic aangular momentum, P = L + S.

Since these electronic wave-functions form a complete

set, the total wave»function,ﬁ?, can be written as a sum of

products of'4§ wiﬁh a nuclear wave~function Fi(QT,9,¢;K); the rotational
and vibrational motions have not yet been seperated but are

congidered together ag nuclear motions (all the arguements of Fi

are specified by the muclear coordinates). Then :

T = D ATz F0,04%) (5.4)
and

HY = BT (5.5)

-}(‘ »
Premultiplying by ﬂ%: and integrating over all electronic

coordinates dT (including spin) yields :
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{B(J2 Z Z—»—ﬁ +oudq) ¢+ oo - E} ¥’

UL)P
= "'Z Cst Ft(Qr!Ga?I”X) (5.6)

tEs

where
g% 2 sy %, 0 2
o =\ Z‘E(Pr ) ar o+ \yTBE2 + 2) ySac (5.7)
r

¢, = - h@“ 2x(2. 3, + 7)) y] ac (5.8)

In the Born-Oppenheimer approximation, all the C's were neglected
(they contributed in the next order of (m M)é ). The Born
adisbatic approximation 2, however, ig more precise and includes
the diagonal matrix elements Css’ while still neglecting Cst'
The wave-functions are still simple products of nuclear and
electronic functions and it can be shown using the Variational
Principle (see, for example, Longuet~Higgin ) that thig ig the
best product wavewfuﬂctionkwiﬁh.upe obeying (5.3), i.e. the best
approximation in which the electrons follow the nuclear motion
adiabatically.

In (5.6), the rotationsl and vibrational variables are
readily separable (on division by B), so thatb F can be written
exactly as the product of a vibrational and a rotational

5
wave-{unction.
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Fn(eray¢1X) = V(Q'I’) R<9 7¢’X) (5‘9)

where,
(J2~ﬂ2) r(6,$,X) = Emt/B R(8,$,X) (5.10)
and
1.2 %42p s
Q8L D Sl ) Oy ¢ B, V()
by %8
= Ev(a,) (5.11)

The rotational eigen-equation is that for a symmetric top, with

solutions

wf

26 ,4,% = (?ﬁ%) 39;R(9,¢,X)* (5.12)

it

where iaiﬂpd) 6,7 is the rotation matrix defired in (4.14). It is
an eigenfunction of 12, JZ’ and JZ (where we use upper and lower
case letters for respectively space and molecule~fixed comvonents)
with eigenvalues J(J+1), M and fL,respectively.

The vibrational eguation can be written as a power series
in nuclear displacements from the equilibrium configuration (at the
potential minimum). All first power terms are zero and the
gquadratic terms are written in terms of the normal coordinates, Qr’
which are chosen such that no cross terms exist. One usually
chooses basis vibrational wave-functions as those that satisfy the
quadratic potential. Bach normal mode is now seporable ylelding

a product wave-function, with each individual comporent obeying
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(822 + 3,02 )X () = B.X_(2) (5.13)

The solutions are 3

1
X(a) = @2 ) Foxp(-5 K ) E 1 (ka,) (5.14)
where, Hn(x) is a Hermite polynomial,
n
Hn(x) = (=1)exp o~ g~'=-'1,1ezscp(»x2) (5.15)
dx

ne total wave~function is then wvluten as s

P o= ¢ A%z,0) (92*;) D () TTXr(ﬂ (5.16)

This type of wave-function will be used as the "best" approximate _
solution to the commlete wave~function, even vwhen external fields
and magnetic interactions between particles are included. If
nuclear spins are also considered, the above wave-function must

be multiplied by the aprvropriate nuclear spin functions (spins
assumed space-quantised). If coupling to the nuclear frame is
sufficiently great to give a molecule quantised spin, in the
rotational wave-~function must be considered to alszo contain the
nuclear spin momentum as must W in the rotational Hamiltonian

(cf electron spin)



5.3 Effective Hamiltonian for a Diatonmic iolecule

In the following chapters, we shall be studying the
spectra of molecules in their ground electronic and usually ground
vibrational state. iany terms in the Hamiltonian mix in excited
vibrational and electronic.states, but they are of a sufficiently
small magnitude that their effects can be adequately treated by
second order perturbation theory. This approach has been used by
Tinkham and Strandberg Sand Rosenblum, Nethercot and Townes 9. A
more pleasing approach is to modify the Hamiltonian in such a way
that when it acts in just the grouvnd vibronic state it gives the
gsame energies ag tﬁe complete Hamiltonian acting in the complete
manifold of states, i.e. an effective Hamiltonian is formedf

From now on, the translational motion of the molecule
as a whole will be neglected. The initial 'basig! wave-~functions
are determined according to the method of Born and Oppenheimer
or Born and Huang 2. Let us now allow the electronic Hamiltonian
(5.1) to also include the orbit-orbit interactions (%.212) and
(3.213); it can then be solved to give the electronic wave-function
¢:(A,E;£i,Qr). The enersy, Ez, essentially fixes the energy of
each electronic state.

Most of the important terms in the total molecular

Hamiltonian are diagonal in the electronic state. The remaining

non-adiabatic terms like CSt in (5.8) are the ones which will be
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included in our effective Iamiltonian by second order perturbation
theoxry.

If the potential energy is expressed as a power series
in Q, the total Hamiltonian (after letting Ez(O) be the electronic
energy at an 0 for a given electronic state) is given by :

# = B0) + > 2+ V() + BI-L-9°

r
T .

+ &t t g pHS + g pHL + H" (5.17)

80

where :Héo is the spin-orbit interaction and ' contains the

following small terms 3

St = H

s * $*hyp M + ¥ + ¥

quad A RZ -

+  $t +  F

sm e T ¥ (5.18)

These are, respectively, the electron spin-spin, hyperfine,
guadrupole, nuclear Zeeman, rotational Zeeman, spin-rotation,
orbit-rotation and electric field (Stark) interactions.

The spin-orbit interaction is often written
phenomenologically as AL.S 1O; this is uwsually sufficiently
accurate to describe electronic spectra, but more care must be
taken here about its form. The true spin-orbit Hamiltonian (3.210)

and (3.211) can be written as a tensor coupling between the orbital

1O



angular momentum of electron i and the electron spin of electron 3.
As was demonstrated by Kayama and Baird 11, AL.S allows mixing of
states with AA=31, AZ=T1, but omits all interactions in which the
total spin can be changedvhy 1. Here we shall use the short-hand
form z: (aili).gi which gives the correct selection rules on matrix
elemen;s between electronic states; it cannot, however, be used in
the calculation of spin-orbit coupling constants from wave~functions
where the more precise Hamiltonian (3.210) and (%.211) must be used.
A different treatment of the matrix elements of the exact spin-orbit
term (without mass-polarization corrections) has been given by
Fontana and Meath 12.

The terms " are sufficiently‘small or have small
enough matrix elements between electronic states that their second
order mixing of excited states may be neglected. The remaining terms,

égzé%*5+n, yield significant mixing. Then, including the second
1314 e

order contributions by degenerate perturbation theory

effective Hamiltonian is given by 3

’QO t
Hoer - PHU = P NP+ ro;H-érﬁ‘*PO (5.19)

where Po is the projection operator onto the ground electronic

state éo :

Fo = zz:leog><?ﬁkf (5.20)
k.
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where k represents all other relevant quantum numbers necessary to
specify the state. Qo is the projection operator onto all other

electronic states ﬁn such that :

ER(RY
Z Z (5.21)
e, ¥ G
EnfEO is the difference in electronic energies between the ground and
excited states. |
If 56 is now expanded in terms of spherical tensor

15,16

operators measured with respect to the molecule-fixed axis

system 3

#' =z%;?i R (CHI s[z" ).z - 20'(2).2"(8)]

r

+ Bl(9).2'(® v 2 @' - or)(1)?]
(5.22)

© > g gnie) ¢ > (0riw [zl
q

i
1 E ; 1 1
- 28 T"q(i) + gf)ﬁq’__q<_&j qu(a‘i"]:.i> Tq(,_‘f_’,:[)}
i

with q = 1.
The most important contributions in second order are
those between electronic states in which . has boen changed by 1,

and the perturbation originates and ends in the same component of
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the ground electronic state (for A #£0, the electronic state is doubly
degenerate). Then taking all combinations of terms from (5.22) one

obtains

Hope = B{NTE + 2|01 - wiwnd] « LW

e

£ > 0t [aG" - 3)el@ (2) + e pry(mel (9
a

+ gi @T;(E)qu(”{»_s_)} + const}Po (5.23)

where, " s -] 1 1
= e = B -5 § A+2F £ T I
N e SO ()7 g Jaznyr @) 0y, | (a028) 1 )ey
“n 4 (5.24)
Here, since S has not been changed, we are azllowed to replace

1 1 1,01 o
T T t table cho of A
%—_Tq(ai_l_.iﬁ_q(gi) by A;q(_I_{)qu(__S‘), after a suitable choice
it
(ef. Y and Ag).

3 = -2(E_~B )"1(QOIBT1(}_)[21><£n{Bqu(§,){£o> (5.25)
Zn% n oo q 1 |

- -(6)"%2Z(Enwzo)’1<eo{gLT;(Ii)lQHX/:H!é’LTZq(Q){£0>

n q (5.26)

& - o Y ) Gl wle
n q ‘

W g Xl @O Gan)
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' - Zn 2»%—(131;%)”{(@0 |(e2m)m (1)) g X, 5! (L] 2>

+ (ecjm;(;, e > (A+2B)qu(§i)’ go>}
(5.28)

Agg =i§: Zi‘j:fgL(En.”Eo)»1 {.@OIAT;@*) e Xel qu@‘) |2
q

n

+ 420 l‘l’;(_&) I/cn)Qn}Aqu(g) l&’o)} (5.29)

Note that all the corresponding terms given in the work of
Carrington, Currie, Levy and ililler 17,18 are a factor of two too
large.

The parts of (5.23%) give, respectively, the second
order corrections : )y to the electron spin-spin interaction, B" to
the rotational constant, ‘f” to the high frequency paramagnetism,
gi is the electronic contribution to the rotational Zeeman effect,
yﬁ %0 the gpin-rotation interaction and Z&gs is an anisotropic
contribution to the electron g~value.

In a doublet state, such as 2Tf which we shall mainly be
considering, the spin-gspin interaction term disappears, since a
second rank bensor operator cannot give non~zero matrix elements
between S=% states (i.e. vectors of length 4,5 and 2 cannot form a
triangle).

Further second order contributions from excited states
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with the same value of /A and diagonal in _§2 yvield s

2 _ it 2 s} 2 1] 4 1)
'ﬂeff - Po{ >\To(§-) + B (J-L-8)° + D (J-L-8)" + V (Qr)

o § 1 1 1 N | 2 1 1
+ AT (L)T(8) + = (I-L-8) "1 (L)T,(8)r B,

(5.30)

where @

o= Y @ m)7 G ] o] 4y (551

5" = 5 - 60 {1, T | 4,

A CRIER NIV BENCEE)

i

3 Z- (8,57 deo B lepley 212 (5.33)

[

T S - em) L b T |20

SR COIEAZ N PR SR CRZ

i

I

S Gy {1204 13 12,

+ g, | B 1o <z, | 4 leo>} (5.35)

[

V() = > -(eE) e [ o), [F(Q)l)  (539)
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with V (Qr> used to represent the vibrational Hamiltonian ~¥éPi + V(Qr)
r

1]

s

¥, B

n -t ’
and A are small contributions to the spin-gpin diporar

interaction, the rotational constant and the spin-orbit coupling

j— |

constant. — is an unususl term which tends to give different
rotational constants in the different fine-structure components of
a particular electronic (or vibronic) state. This might invalidate
some of the work on the determination of spin-orbit coupling constants
. . o 19,20
from the measurements of effective rotational constants . For
. 2TT .
example, in molecules use is made of Beff = B(I B/A).
The parts of the spin-orbit coupling which can connect
electronic states of different multiplicity give a second order
contribution

ﬂsz - Z Z (En”Eorj Z <£O‘T;(ai-l~i)lfgﬁ><ﬁnqu(a3}"j)t'go>
q 153

n

a0

!

N 1
w1 (sy) T (sy) (5.36)

which when operating in a state of given multiplicity can be

replaced by :

= 2
.. = N 18 (5.37)

This will not affect the spectrum of a molecule in a doublet state
and together with the remaining terms of the same form will be

omitted from the Hamiltonian for the study of 2fT moleculeg. This
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term, however, has been found to be important in the interpretation
of triplet state molecules like 32: oxygen 21.

The resulting Hamiltonian acts only within the ground
electronic state. It is desirable to further reduce the Hamiltonian
to one acting only in the ground vibrational state,

The non-diagonal part of the vibrational energy (E;ﬁ?i
+ V(Qr) ) strongly mixes the various vibrational states. Its sgcond
order contribution modifies slightly the energy of a particular
- yibrational level. Its cross~terms with all the other quantities in
the effective Hamiltonian which can mix vibrational levels slightly
modifies these terms but keeps them of the same form. Thus from a
typical term of the form 8jé1Q§).21(g) one obtains an additional

term 3 ﬂ"f@).gj(;‘i) where
8" = > - (5,207 {<p, 1812, %, 170 | 2
- v o o vIy v’ 1 To
v

R CRIVIN NIV SECED

The cross-terms between these latter quantities will in general be
neglected. Their coefficients normally have only weak vibrational
dependence, so mixing of excited vibrational states will be slight.
Amoung these is the rotational term quadratic in rotational gquantum

number J (rotational distortion term); it is typically of the oxder

of 1073 om ] and has a completely negligible effect on gas-phase e.D.T.
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spectra. All the major Zeeman terms have negligible vibrational
dependence, so that the Hamiltonian in a particular vibronic level

can be written as :

_ : 2 L oax e .
H = PO{B (I-L-8)" + g BL.S + g BT (LT (D) + a7,(L)T,(8)

> Entfagpri@l o) ¢ yriesnl (e

1 f
+ grgw;@i)ff,o(g}-ﬁ)] s NTAS) + L)
oy T Hguaa ¥y HE}PO (5.39)

s ' -1 it 1y
with B = B 4+ B + B + B (5.40)

where the term with triple dashes signifies that obtained by second
order nixing of vibrational gtates in an analogous manner to the
mixing of electronic states in (5.24) to (5.29).

Also :

]

)\' = A+ N+ BN ’3’\” + A (5.41)

where A includes the diagonal contribution of the electron-electron

dipolar spin~spin interaction from (3.214),

e e - Ik r‘
g, = &, g, (5.42)

with the nuclear contribution, gg, obtained by expanding (3%.203),

Axgs is essentially that given in (5.29) ,
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! 4 P} 4

A = A+ A + A (5,43)

t

Y

H

o

Y+ Y" + Y : (5.44)

i

where Y 1is the expectation value of the coefficient of N.S in
(3.211). The analogous orbit-rotation term from (3.213) has a
zero coefficient.

’:’;"Té(g)wg(g) (_{-£-—§)2 can be neglected since we shall
be working in just one fine struéture state and we shall use the
rotational constant appropriate to that state.

In a Il electronic state with A= f1, it is possible to
mix the two components in second order perturbation theory. This
will remove the degeneracy of the two components giving rise to

3

what is known as A-doubling ” or in the case of good Hund's case (a) _
molecules,L-type doubling. This results from the fact that, in the
absence of external electric fields, the complete Hamiltonian is
invariant to space-inversion (i.e. H commutes with the inversion
operator § ). Therefore the eigenfunctions of the Hamiltonian can
correspondingly be written as eigenfunctions of é s

Now as demonstrated by Hougan 21 and Chiu 22, upon
inversion of all particles in the space~-fixed axes, the Kuler angles
(ugpgy) specifying the orientation of the molecular axis system change

as follows :

Xy Mo 3 B = T=g 5 Y -7 (5.45)
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Therefore making use of the properties of the rotation matrices

Ebfm("‘ £ Y)] ’

and Eié”‘ﬁﬂ*

the rotational wave~functions transforms as :

k
ﬁquQu), namely :

[

o 1Mot dg{é@j*elny (5.46)

O RO (5.47)

[

$ oLyt = (0 B ar) T (5.09)

The spin wave-functions can be treated similarly :

lss)> = ZSSMQ %:Z("‘M) (5.49)
s

d1sz>

i

(-"1>"SZ Isig> 3558"2(&??) - (5.50)
Hs
(-7 Is -2 " (5.51)

i

Upon inversion, the electronic coordinates transform as 3

Xi ""} - Xi 1 yi "') :Yi H Zi m) Zi (5“52)

Therefore, the angular ccordinate of an electron 81 in cylindrical

polar coordinates goes t0o - @i. Thus representing the vibronic
-~ wave-function by hlo/q>,
§ Iy = e =AY ‘(5»55)

Hence,

§ |qATnSSI) = (-1)7 5 noasz ) (5.54)

11



-

. 2
The phase here differs from that of Hougan =2 becauge of his
unusual definition of the phase of his wave-functions. However

24,25

the phase obtained by many other suthors who use the phase

. . 2
convention of Condon and Shortley 6 and rotational wave-functions
with the same phase as the rotation matrices 6 should be modified.

The true wave-functions are then :

Y, = I nASTINRMY & («1)5‘"51%*/\5—23&}%) (5.55)

where we take the + or - sign, according to whether we want the +
or - parity state.
The SL-doubling properties between these states has

. 2
been considered by Lucas ?

, but does not affect us here since in
the molecules to be considered, the SL-doubling hasvnot been
observed., In the absence of the St-doubling terms,}the matrix
elements of the effective Hamiltonian are necessarily the same for
both components of the fl-doublet. These in turn are equal to the
matrix elements in the representation MOAS‘ZJSU;IJ> which does
not possess inversion symmetry. Ve shall, however, find it

convenient to use this last representation for the calculation of

matrix elements.
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5.4 Hatrix Elements

Since the basis functions involve the coupling of many
momenta, it is desirable to use the techniques of spherical tensor

operators 6,27

, which simplifies the evaluation of matrix elements.
The case (a) basis set lqO/\SEZJSLMJIM£> with a
decoupled nuclear spin, very closely approximates to the true
physical situation. However, Mj and hI are not completely good
gquantum numbers and it is often found convenient in matrix
diagonalization to use a coupled representation Iqoﬁ\SEZIJSIFMF>
with I and J coupled to give a total angular momentum F, and where
MF, the space z-component of F, is a good gquantum number. Below the

matrix elements of the complete effective Hamiltonian will be

evaluated in both the coupled and deccupled representations.'

5.4.1 Anomalous Gommutabtion Relationships of J

If the rotational angular momentum is referred to the
molecule~fixed axes, it is found that its components do not obey

normal commutation relations 28 but have the sign of i reversed.
= -1 i .56
{%X ) J?] i, and cyclic (5.56)

This results from the fact that the components of J do not comnute

. 28
with the direction cosines, relating one axis system to the othex .
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It is thus not readily possible to expand a scalar product of J

with some other vector in terms of spherical tensor operators in the‘
molecule~fixed axis system. This is related to the fact that true
spherical tensors awe defined via normal commutation relationships.
Van Vleck got aroumd thié‘problem4by devising the method of reversed
angular momentum. He could have reversed J so that §'= -J obeys
normal commutation melations. Instead he reversed all normal

nomenta so that they commuted with an anomalous sign.

ms ~J ~t .N
i.e. P =~P gives [Px , Py] = -iP (5.57)

The arbitrary phase in the matrix elements was chosen so that
3& gave real and positive (and consequently 3; gave real and negative)
matrix elements. This is in disagreement with the phase coavention
of Condon and Shortley 26 which is almost universally used.

with the definition of rotation matrices, it is possibdble
4o write the Hamiltonian in terms of space-fixed components and then
relate these to the molecular system. Thus if we use a notation

where subscripts p and q refer to components respectively in space

and molecular axis systems, the scalar product of J and P can be

expanded as

#

£, 2

°

> P 2ie) 2l @)
P

Z_ (-1)® 24(2) [@;q(wﬂ* v! () (5.58)

P:q

i
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Remembering that [%%q@ui]* does not commute with ij(g), it might
seem that the above expansion is not Hermitian, but luckily, on
suming over p, all the non-commutation terms disappear. The matrix
element of (5.58) is readily obtained by introducing the projection
operator onto the ccmpleﬁé manifold of rotational states (eguals
unity) between the rotation mairix and Tjn(g). The matrix elements
with g#0 have the opposite sign to those.given by reversed angular
momentum methods. Thus the method of Freed 29, who mixed the two

approaches, is not legitimate for the evaluation of matrix elements.

5.4,2 Rotational and Fine~structure Hamiltonian

The Hamiltonian appropriate to the ground vibronic state

can be written in the form :
1 2 t
Hego = BU-L-8" + A LS,

tf2 2 2 R I
24+ 5 12 - ')l

i

(5.59)

§ H §
- 28''(2).2'(s) + (a'+28))zi(w)ei(s)

L]
where the term B (Li+y;), which affects all states equally, has been
neglected. In a decoupled representation, its matrix elements may

summarized ag follows :

) U N |
SroASTIMH S Iy SAT TN
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= §s¢b6nad BO{J(JH) + S(5+1) +ﬂ_2}
J 1 J

- 28,85 (-1 , {J(m)(zm)}%’
- 0 5

zg: J b J S 1 S
JH+ S e

- ZBO ("1) 542 1 t

: q “fLoa S \-Z a Z

x{s<s+1)(28+1>J(J+1>(2J+1>}% (5.60)

s 1 S

+ 8s¢ (ay+ 2B,) <~1)S“z . {s(sm)(z:;m)}é

t t
where <%Oj\’A.fhojq>,and <nékﬁ [hofg> have been replaced by AO
and BO’ the spin-orbit coupling constant and the rotational constant
in the ground vibronic state. Since the matrix element is independent
of nuclear spin and algo of Mj, the game matrix elements are.

obtained in the coupled representation.

5.4.3 Bxternal Hagnetic Field Interactions

The total effective Hamiltonian representing the
interaction of the magnetic moments of the molecule with a magnetic

field applied along the space-~fixed z-axis is 3

Hy = @HZ [ﬁéq(wﬂ %{(31', * 83_;)'1’;(&) + (g e +ls (- 807)
q
x T;(ﬁ)} - & LU (DH - Zg&(g HT(L,)
* (5.61)



In the decoupled representation, the matrix elements are given by
t & 1 1 1 -
oasTanpmnl ol A sy nung )

1 2 /dJd 1 Jt
= pH g (=15 {(2J+1)(2J'+1)}2
3 - -MJ 0] M"I
J 13

0 . kﬂ' [(gli + g )b+ (g;+gr+ gs(1-6‘qo))

X

: 3 1 5
x (—-1)sz s(s+1)(25+1 )}_12—
...z q 2!

",(gr B, + Zgaﬁwﬁﬁz) By 858 gy (5+62)

Using the coupled representation, the matrix elements become

<?30A SZ IJQFE‘JF} j—%H hoA Sztlgtﬂrpa}%‘)

= BHZ(~1)I+J'—{'2F’"IV +1 Jgor 1 o
f - "y

geof\-, 0

J 1 Jt
5 J-Q !
[ <gL+gr>A(__

Qg su)lTE

o

x {(2}?+1 Y(2rt+1 )}

x {(2J+1‘)(2J'+1 )}%

" )
+ (__,ULH-S S Z(gs+gr+Ags(1_8qo))

. {3 1 an[fs 1 s
X {S(S+1)(25+1)(2J+1)(2J‘+1 )}2
ma.Q q __('U ,_.2: q 'zf

N gr{J(JH)@JH )}%%v]
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o gupd (=) TG {I(I+1)(21+1)(2F+1)(2F'+1 )}%

I » J S A
X

5.6 6 (5.63)
e\ o ou I ad 55t

5.4.4 Yagnetic Hyperfine Interactions

The magnetic interaction between the nuclear spin and
an unpaired electron can be expressed as the sum of three terms
representing the electron orbital-nuclear spin dipolar interaction,
the Permi contact interaction and the electron spin-nuclear spin
dipolar interaction. This can be written in terms of spherical

tensor operators as
H, = > —-2pe %! (2 (] @] i@
1 r} U(‘pN‘ ’ wp paded pq q ]
1,6 TixK Pyq (5.64)
where i; ig closely related to the orbital angular momentum li and

has an identical molecular z component (see (3.210) ).

T . \ >
$p - Z %‘“ 8P &x Py é(rim)z (-»1)1’@11}(”3;0{) [@;q(w)] *J.q(_sii)
1, ,q (5.65)

5 1 2
H o= Z (30)%6f e Py Z (-1)"2] (1) [$;q(w)] "1y(85,¢°)

1,% P,q |
where T1(§i!§?) - Z{: (”1)qT1 (s.) C2 (9'¢i) 1 2 1 rfz
q , q1 i q2 i . i

a, 9
4,9, 1 %2
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C§(8¢) is related to the spherical harmonic qu((%)?) by s

C];(eé) - [gkﬁ kq(e‘;’) (5.67)

In the decoupled representation, the matrix elements are given by :

noh STIQTL | My | asT 3 ng

= Z Z(””pﬂm&&h% {I(IM)(21+1)(2J+1)(2J'+1)}%

i pyq
I 1 I Jd 1 J! J 1 J?
X ?’go( ﬁm
..wI -p M':'[ --MJ P 13 - q 8
. -3 1 ' _43\S~% 8,
x ZSEZ!SQN <§Ozx)ri TO(£i>i q0[€> + (=1)7 58
3 1 S
. | Gl el ) al S ey
- a z

1 s 1 8

Goye (s
+304g—-1*”~
g O ~q/\-2 a T

x Gl (sl G 225 L |ty (5:68)
3:1“

The corresponding matrix elements in the coupled representation are :

(nyASITINPL | # |0 ASTTINTE L

L
P4

Z (,1}+2J+F-ﬁ{3g‘x% {I(IH)(ZIM)(2J+1)(2J'+1)}7
bl
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F J I J 1 J

1 1 3 \-a q s

[2 <7}0Atr;‘3 Tg(_]___l)i nOA> &Z.YJ gﬂm + (__1)S~2 %ﬂ: o

S

18
S R R LUCH) DXRACITY

i . -
+ (30/4)% (-1)3H52
g O ~g/\-% q ¢

2
x {she'(s) |l s) (qu{i@i-BM oAy (5.69)
i
where Cg(6¢) has been written explicitly as ?(3003 8 -1). Also we
have only considered one nuclea; gpin present in the molecule. The
matrix element <G10[L‘8(rix)’ h01€> is the electron -density of electron
i at nucleus X.

In the approximation that the electronic wave-function
can be written as a single configuration with all paired electrons
in identical orbitals, the summation over i need only be over
- unpaired electrons. In the case of a single unpaired electron 21(§i)
is replaced by 21(§), with the consequence that <S2!T1(§i)ﬂ S>» can

1
be Teplaced by {S(S+1)(ZS+1%'2. Analogously, the matrix element

410[3 r -3 TO(I )I h A> can be replaced by A< > where <>means

the expectation value.
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25 30

Lucas s following the method of icWeeny , has used reduced
density matrices to show that the term we have replaced by <i.

it/
and often used ag a parvameter is not equal o the corresponding
term in the spin=-spin dipolar interaction. This is often implied in
the statement that the expectation of rli is gifferent for spin and

orbital angular momentum. They are only expected to be the same

wvhen the single configuration approximation is very good.

5.4.5 Electric Quadrupole Interaction

The electric quadrupole terxm represents the interaction
of the nuclear electric quadrupole with the field gradient dve to an
external distribution of electrons. If we treat the nucleus
classically)as a number of point charges Zp atigp with respecﬁ to
the centre of mass, the Coulomb interaction -Zpge ( ) mey be
%1

expanded as a power series in rﬁ/i.. Then the rultlpole expansgion

in terms of spherical harmonics yields :

oo Al rl
(E__— Ao Loy (6.4.) 1, (8,45 (5.70)
517£P Pl rl+1 lem* 174/ “Im PP ¢
1=0 m=-1 i

where (r@¢) ére the spherical polar coordinates of a particle. The
1=0 term has‘alreaiy been considered in the normal Coulomb interaction.
The 1=1 terms disappear since the nucleug has no eleckric dipole
moment. Tt is the 1=2 term that will be considered here (higher

order terms are negligible); they give the quadrupole interaction.
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Making the substitution :

I

Z“pr CE(%ptp) (5.71)
Z 90(999), (5.72)

the quadrupole Hamiltonian becomes :

e @ Rle)] w6

7°(g)

i

and Ti(@ )

Bbsq
If the quadrupole moment of the nucleus is defined by 52 :
d 2
2 = 24| m) (5.74)

the matrix elements in the decoupled representation become 3

(950 8T 3T 3 [ AST S i)

- .,.&%Z“)D"I“ e {(2J+1)(2Jf+1)}

J 2 J¢ J 2 J¢ I 2 I
b
csLoq U/ \~My P i) ~i -D My
I 2 I 5
x el T (8) [q, 4D (5.75)
- 0 I »

In the coupled representation, the corresponding results are -:
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(N, ASE TILri ﬁQ} Mo AST IJ'ﬂ*FmF}

2 T4 Tm 1P T I
= %QZ(-UI*“LZJﬂ{(z.m)(z;rm)}z
I
q
3 2 a\/[/1 2 1\ )
x (Al T (E) oty
S A (5.76)

The q=+2 component of the quadrupole interaction.can contribute to
the A-doubling, but as before this will be neglected. The matrix
element of 2T§(K§) in the above equations is conventially written as
SRy the axial component of the electric field gradient. The gquantity

equQ which then results is called the quadrupole coupling constant.

5.4.6 Electric Field (Stark) Interaction

The Hamiltonian for a molecule in a uniforn electric
field, E, can be obtained from (3.214) by replacing ¢ vy

-B.(R fzxﬁ§). Then for a non-charged molecule :

- - 5
$, = -pB (5.77)
where ﬁf- = jiezdgx - E}@gi is the dipole moment operator. In

‘ X i

termg of spherical tensor operators, this becomes :

Hy - -pZ(w)PT;(:ﬂ,) [®15409)] "l (5.79)
9Q
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Its matrix elements in the decoupled representation are :

(N ST IR M| q s s o)

¥
- - f&)zgz:(~1fl"MJ+E%2J+1)(2J'+1?}%' T
5 -MJ «-P M"I
SIS AN
x g 0 s Tp@_) Sf_i' (5.79)

In the coupled representation, the matrix elements are given by 3

(L, ASTITAFL| $ | q ASEITAFIL)

H - ;‘L‘
i }%’ZE:(’1)I+Jt+2F~JF+Jjhﬁ¥2ﬁ+1)(2y'+1)(2J+1)(2Jv+1%:3
D

J ¥ I o1 B J 1 Ji

. - .
X T ({{)8 [
. " P p23
YOI -ei.‘iF -p “};‘ - 0 ! :
(5.80)
where Po is the dipole moment of the ground vibronic state.
5.4.7 Spin-rotation Interaction
The spin-rotation Hamiltonian is :
= 1 - %1 g ‘,1 o) m1 J 5.81
ﬁSR s é ( 1) lq(__,) Cbp’-q( ) Lp(*m) t ( )
q=+1
Y

where certain constant terms, which affect all levels equally, have
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been omitted. In the decoupled representation, its matrix elements

are given by :

(A ST IR [ $ [ n ASTITsM, )

- ¥ Z(~1)J'*'S"ﬂ“z {S(SH)(ZSM)J(J+1)(2J+1)}%

g=x1

/J 1 J s 1 8
x : (5.82)
\-,Q ¢ n/\-T q ¥

Exactly the same results are obtained in the coupled representation.

The matrix elements of the electron spin-spin interaction
will not be given here since in doublet states they are all

identically gzeroc.
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Chapter 6

The B.p.r. Spectrum of the NS Radical

6.1 Introduction

The NS radical was first identified in mixtures of
sul phur vapour and nitrogen, subjected to a discharge, by Fowler and
Bakker . Analysis of the AZZ_—XZTT bands of the electronic
spectrum by Zeeman 2 has given accurate values of the rotational
constant (BO) and the fine-structure constant (A) in the °T ground
state (By=0.7705, en” 1, 1-223.0, em™ 1)

The gas phase electron paramagnetic resonance spectrum
of WS was first observed by reacting nitrogen atoms with hydrogen
sulphide 3’4, but the signals were rather weak and broad. Subsequent-
studies 5 have shown that the reaction of nitrogen atoms with sulphur
monochloride (S 612) vields the spectrum with a signal-to-noise

2
ratio of approximately 100 to 1. This permits accurate determinations

of the axial component h of the hyperfine constant for the 14N
nucleus and the electric guadrupole coupling constant. The results
also show a disagreement with Zeeman's value of BO.

After the publication of these results 5, Uehara and
sforino 6 observed the NS e.p.r. spectrum by discharging N2 and SC12

together; their results are largely in agreement with those given

here.



6.2 Experimental

The nitrogen atoms were obtained by passing 'oxygen-free!
nitrogen, at a pressure of two torr, throuch a microwave discharge
operated at 2450 Miz and at a power output of 100 watts; it was
situated about 15 cm upstféam of the Stark microwave cavity. The
82012 vapour (previously de-gassed at liquid nitrogen temperatures)
enters the cavity by a seperate inlet port, its flow being controlled
by means of a needle valve.

The spectrum was observed using 100kHz Stark modulation.
Ten series of measurements were male on the field position of each
line; because of a small frequency drift, due to deposition of solid
products in the cavity, all line positions were corrected to a
congtant frequency. Also, because of the slight perturbing effects
of the cavity, the field inside the cavity differs sligntly from
that measured just outeside. A correction of 2.7 gauss was thus
made using N0 as a standard 7. The resulting fields are given in
table 1, and the quoted errors of 0.2 gauss are twice the 'random!
standard deviation. The remaining systematic error is probably less
than 0.5 gauss.

In order to measure the dipole moment of HS, a static
electric field of between 50 and 200 Volts/cm was applied across the

end-plates of the cavity. The full details are discussed in section

(6.4).
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6.3 Analysis of the Spectrum

The electron resonance spectrum of NS, given in figure
1, consists of three triplets of lines. The centre of the spectrum
indicates a g-value close to 0.8, the value expected for a good case (a)
molecule in a 2TT3/2 electronic state in its lowest rotational level
(J=3/2). The basic spectrum corresponds to the three LSMJ=i1 transitions,

further split into three by the I=1 14

N megnetic nucleus.

The initial interprétation of the spectrun was made hy
means of a perturbation expansion for the energy levels. Then, using the
fact that the electron resonance transitions guite accurately obey the
selection rules KSMJzi1,;ﬁMI= in a decoupled representation, the
regsonant frequency for each line can be written as a power series in the
magnetic field, H, with ooefficients4expressed in terms of the molecular
parameters A, BO’ h and eQQqO. Since high order terms are required, the
expansion is best performed using projection operators. This technique
can cope with degeneracies but here it is convenient to remove the
degeneracy of states with the same value of J but different M by defining
a suitable zeroth order Hamiltonian. Thus the total Hamiltonian can be

written as

I N S (6.1)
where, ¢ .
$o= o, G DELY (6.2)
J(J+1)

=136



£ ST UT SN JO unxgqoads *x*d+s sseud sen

SSNDO)Y
6:L 8-L Iy

1
|

19 BINGT

9-L

S-L

i TR A
N————
e
I———

{ T T

-

c 22S/3N §9-6858 =4 a

Q-




&+o removes the degeneracy of states with different valueg of Jdy MJ

or 1. Then the main perturbation term, V, is :
. . sli(d + 2%
v o= pH.(L+83) - P (7 My (6.3)
V! contains all the relatively small terms :
- > 3 1. {(J~L-3) - H,
v $fhyp + 3%Q + grfjk‘(i L E) gﬁ¢3ﬂé 1

+  pH.(SgL +8g.8) (6.4)

where Sgi‘and SgS are small mass-polarization and relativistic

corrections to the orbital and spin g-factors.

8,9,10
’

Then using degenerate perturbation theory the

energy of a particular state, |0), is given to fourth order by :
E = Qlp nuwoy = {OlﬂolO) + {olv]oy + <olvi|o)
+ QIv(e /a)r(a fa)rlo)y + {olv(a /2)7]0)
+ (Ol(ay/a)T(a /2)(a /2)rl0) + L0IV(ay/a")7R V(0 /2)TI0)
+ 1v(a/2)7(q /2)7(a /a)7(a /)7 |0)
= ol v(a /a%)(a/2)ve (o /)T |0y
RIRCKCVESIE RCWONCWONDY

- <o|v(a /a)(a, /2" B V(q,/a)7|0) (6.5)
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where PO is the projection operator onto the particular eigenstate

ld) of 5+o and QO projects onto all the other states \ﬁ> such that

Q’0 = [nXn|
T ,: N
a 10 (bo”Bn)

(6.6)

This type of expansion hasg been given previously by Freed 10, but

the one given here differs in the fact that the perturbation V has

zero diagonal matrix elements in the ground state, i.e. POV PO is

zero. After evaluating the matrix elements in (6.5) the energy of

each state can be obtained as a power series in H.

Then neglecting

-
*

for the moment the hyperfine interactions and other small terms, v,

the transition energies of the transitions (M565MJ+1) are as given

below; we shall make use of the abreviation : k==U+@Q)pH and.

1 = gpH (8=2.002319).

- k
E(s2e43) = 0.40000k & 0.05333(3x)k -
- nr Kk \3 0.800 Bl
T 0'01“6(53) k 5
. 0:1667 12 . 0.1067 1°
A+B - A28

+ small (higher order) terms
;! 1 g k 2~
E(+ho-%) = 0.40000k - 0.05097Q§g X

+ higher order terms
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0.01829(§§)2k

0.0067 12

T A-7B
(6.7)

0.8000 Bl
A28

(6.8)



In equation (6.7), all upper signs and all lower signs are to‘be
taken together,

The principal term for all lines is 0.4k, yielding a
g-value of 0.8. The main contribution %o the ‘seperation of the
different Z}MJ=i1 transitions is the second order Zeeman term,
O.OBBBkZ/BB. Thig is inversely proportional to B and allows a
determination of the rotational constant. After allowing for certain
contributions from the third order Zeeman effect, the main term which
affects the position of the centre of the spectrum is ~0.8B1/(A~2B) ;
hence the fine-structure constant 4 can readily bve determined. There
is a further contribution to the overall g-value from V!, namely
O.4gr+0,4(SgL+%Sgs). Thege are all typically of the oxder of 1074
and if neglected represent an uncertainty of A; seé forvexample the
Cl0O spectrum 11.

The first order contributions of the hyperfine
»interactions to the transition energies are

{ 51«,1]?:-, I(1+1 )}

' 2 ]
E'(M49M +1) = O.4h M. + 0.05 e“Qa,(2£.+1)
J g I 0N 1(21-1)

(6.9)
Thus the seperation in the centre group of lines is essentially
independent of engO and gives the magnitude of the hyperfine
constant, h, although not its sign (this can be often obtaiﬂed

from higher order effects). The outer groups of lines show some
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asymmetry due to the quadrupole interaction. For nuclear spin I=1,
the M1=i1 components are both moved by O.1equO (~O.1e2qOQ) to
higher frequency for MJ=% (MJm—B/Q), and the MI=O centre component
is moved by O.2e2q®Q in the opposite direction. Thus the asymmetry
in spacing of the outer t%o groups of lines gives O.6e2qOQ; its sign
is obtained even though it may not be possible to identify which
transition correspomds to MI= +1 or -1,

The energy levels were calculated accurately by computer
diagonalisation of the matrix representing the effective Hamiltonian
in either a coupled or decoupled case (a) representation. Inclusion
of the fizst four’rotational levels in each fine-structure state was
found to give negligible rounding off errors. Initially the values
An225.03, BO=O.7?058 cm‘1, given by Zeeman 2, were used together
with the first order values of h and ezqu, obtained from the
perturbation treatment., After slight modification of W and equQ,
the calculated line positions are given in table 1, column 2. The
predicted line pesitions are on average about 0.7 gauss too low. As
mentioned previously, agreement with experiment could be obtained by
using an 'effective! A value (cf. C1O 11). Instead the value of A
obtained from the electronic spectrum was assumed to be correct.
The remaining discrepancy in the absolute position can be removed

by putting (gf+ﬁgL¢§Sgs) equal to n1.7x10"4; the results are given

© in column 2 of table 1.
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The second order Zeeman splitting, as calculated by matrix
diagonalisation, between the three éBMin1 groups ig about 0.4 gauss
“too small., This is significantly outside the experimental accuracy
and suggests that the rotational congltant, BO, should be modified,
although a close examination of Zeeman's anazlysis of the uv.v. spectrum
gives no strong reason for such a change. The nmagnetic susceptibility
terms which have been neglected can affect the second order Zeeman
splitting, but a calculation of the magnitude of such an effect
confirms that it is negligible at 10 kgeuss. The rotational constant
was changed from 0.T706 to 0.7722 cmm1 and ite effect on the spectrum
is given-in table 1, column 4.

Tt has been assumed that the hyperfine constant is
positive as in NO. The effect of reversing the gign of h is given
in column 5 of table 1.

The perpendicular (nonwaxial) component, b, of the
hyperfine interaction mixes the fine-structure states and slightly
affects the hyperfine splitting. However since it has the same effect
as a change in h, it is imposgible to seperate the two contribubtions.
Order of magnitude calculations suggest that the effect on the
measured magnitude of h is about the same as the experimental error
limite, so will not be important. The whole problem is considered
in more detail in the next chapter on CF, where it is much more

important.
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Finally, one should consider the spin~-rotation
interaction, since the spin-rotation constant is typically of the
order of 100 MHz. However, in a good case (a) molecule, the first
order contribution is zero; this is becavse the spin and rotational
magnetic nmoments are esgsentially perpendicular. Second order
contributions are independent of MT’ so that for a given value of J

‘
all levels are moved by the same amounts the effect on the spectrum
is thus nil. Higher order effects are completely negligible in a

reasonably good cage (a) molecules.

6.4 The Stark Effect and Dipole Moment of N3

In the presence of a strong electric field; each line of
the NS spectrum is split into two component. The effect of a field
of about 100 volt/em is shown in figure 2. leasurement of the splitting
as a function of applied electric field enwables one to determine the
dipole moment of the molecule.

The effective electric inside the microwave cavity was
obtained by measuring the splitting in the HNO spectrum before and
after each run on KNS and using the known value of its aipole noment 12.
Care has to be taken to prevent electrons from getting into the cavity
and reducing the effective electric field secen by the XS radical .

Tnitial results were somewhat low. The free electrons appear to be

formed by photoionisation, which was minimised by placing a bend in
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the flow tube between the microwave dischargé region and the cavity.
It is believed that the dipole moments calculated now are accurate
to the errors quoted becauvse of the low number of free electrons
present in the microwave cavity.

The Hamiltonian in the presence of a nbdﬁL; electric

field is givem by :

HUo=H o (6.10)
where

ME = - {1 (6“11)
In the absence of N ,tn@ basis wave-Tunctions may be written as .

4{;{{ﬁ ASTJINMT 5£7 + (m1)J“S[7 AS-2. Jl’i?f
(6.12)

Although these states are not eigenfunctions of #, it is possible
by means of a suitable transformation {(such as that given in section
6.3) to obtain an effective Hamiltonian disgonel in our basis. The
two states given above have almost the same energy, being seperated
by the N-doubling constant. The electric field interaction doeg not
preserve parity and mixes these two gtates. In an early paper on the
Stark effect 13, only the first order contribution of 3+E was
considered but here third order contribubions will be included.

Then by means of degenerate perturbation theory, the off-diagonal

elements in the matrix :

=143~



W §/2 S

., (6.13)
S W 0/2

representing the mixing of the two N~doublets are given by

©
“

s = (l

gl Kelpg #,(Q /2 R =)+ (| p, (0 /20 By

+ <¥{é+E(Qo/a)V(QO/é)V ~> + (] V(Qa/a)j%E(QO/a)V] -3
g k Vi 2 .. b

+ &rlv(/a)v(e /a) Syl =y - <3 v(Q_/a")v P, -7

+  higher-order terms , (6.14)

where V is given in (6.3). Terms like <+ |60, /a7 )7 PV | = have
L
been omitted because the disgonal matrix elements of V are zero.
The eigenvalues of the secular determinant from (6.13%)

are given by :
) , D62 42y .
E = W + (5% 4457)%, (6.15)

‘and since at the field strengths used in the experiment, S»E§, the

seperation of the fl-doublet components is given by :

5 ;
AE = 28 «+ 2% + higher order terms. (6.16)

The first.order variation of the intensities of the transitions has
been considered previously. At high electric fields only some of

the transitionsg have significant transition probability. Illeasurements

-~
!

T

were performed on the MJ = +43~% transitions and for any given I
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the observed Stark splitting between the two strongly allowed

transitions ig give by

At = 0.8pE - 0.219/J,E(2p:%/5;%3)2 4+ 2.5 52/;3 (6.17)
Although & must be included for IO with its small Sterk splitting
in the calibration of the electric field, it can be completely neglected
for NS (ﬂ.E is typically of the order of 40 MHz while © ig less
than 1 MHz). Then using the known values of the dipole moment
(0.15872 Debye) 12 and the SL-doubling constant (0.91 Hz) 7 for
N0, the mean of the calculated values of the electric dipole moment

of NS is 1.86 + 0.08 Debve.

5.5 Discussion of Resultg

The agreement between the theoretical analysis and
experimental observations is good, apart from the small discrepancy
in B.. Since these measurements, the microwave spectrum of ¥S has

0
14

been observed by Amano et al they affirm the discrepancy in

Zeeman's value of BO; their value of the rotati%%l constant,
By = 2%156.0 MHz = 0.7724 om”1, is in good agreement with the value
obtained here. The microwave spectrum also gives information on the
SL-doubling paraﬁeters and the various contributions to the hyperfine

constants. They were not able to completely seperate off the

perpendicular contribution which mixes the fine-structurs states.
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The results are compared with those of the present work in table 2.
The single configuration approximation has been made by Uehara and

6 o8
KMorino = to obtain a vlue of b = 64 MHz. The uncertainty in this
(cf the discrepancy in the hyperfine congtant ¢ obtained by different
methods in table 2) could be around 50/ but this is not important here
since its effect on the spectrum and hence the change in h is small.
After this mobificatién it ig found that h should be increased from
56.8 to 57.4 MHz.

The NS radical might be expected to have an electronic
structure similar to that of ¥O, and the molecular parameters for
the two are compared in table 2. The hyperfine parameters for 118
are slightly smaller than iﬁ N0, suvggesting that the unpaired
electron is less localised on the nitrogen atom, although this
gemi-qualitative interpretation is somewhat unsatisfactory.

Since the dipole moments of N0 and SO are 0.158 and
1.55 Debye respectively, simple electronezativity arguments indicate
that our value of 1.86 Debye for HS is not unexpected (if they
reinforce one another). The dipole moment of HO is so small that
there must be some doubt about its sizn, but in LS it seems
reasonably certain that the negative end of the dipole is on the
nitrogen. Just recently, a wave»fuﬁction calculation has confimmed

this with a value of 1.73 Debye for the dipole moment¢14
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Table 6.2 : Comparison of the molecular parameters of NS, ohtained
by different avthors, and those of NU.
NS NS s HO
Z
Parameter This work E.p.r. vef 4 | Wicrowave 13
- - . =1
A 223.05 e - 222@94 e 123,16 cnm
-1 can , -1
BO 0.7722 cm - e 1.6957 cm
23150 + 10 WHz 23161 1tz 2%156,01 iz
h = a + 2(b+c)| 56.8 + 0.5 Hz|57.0 + 0.2 1z
After y ot 4 HHz 56634 0.8 1Hz| 75.8 + 0.2 1z
correction 57.4 + 0.5 ¥Hz|57.6 + 0.2 Lz 563t 0.8 iz /5.8 + 0.2 M1
a - 3(btc) 5 5oy i
A - - 67.4 4 0.5 MHz|92.7 + 1.0 1Mz
d MHz e e 87.0 + 0.4 112.60
a lHz o e 61.9 + 0.7 84.28 £ 0.5
(bic) 1Hz -~ — “11.1 £ 1.3 | =16.9 % 1.0
5 *
¢ = 3(a-d) — — ~T5.4 iz ~84.9 MHz
*%
d = -d4/2 -~ - -43.5 1Hz 56,3 1Hz
2 .
e qOQ NIHZ ""3;1 :t 005 "'2.86 "i: 053 "'2,6 :!"_ Oa7 "‘158
1.86 + 0.08 — 1.81 + 0.5 0.15872

pA Debye

*  Assuming a single configeration
g 4]

*% Assuning that the wave-function near the

o ey .:_5 — d"3>
50 that » 1, = Q‘ )

14

N nucleus is like a p-orbital.
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Gas-phase B.P.R. Svectrun of CF

7.1 Introduction

The free radical CP has been known for some 20 years
2 2. . PO, o ,
Its ASTT=X"TT band system was first identified and analysed by
.. (N - ,
indrews and Barrow & who studied the flash photolysis of CF4e Hore
accurate values of the rotational constant BO and the spine-orbit

coupling (fine structure) constant A in the ground vibronic state

2

have recently been obtained by Forter et al. ¢ thege values are

3

confirmed by the work to be described here. The e.p.r. Neasurements
are concerned with the %Tﬁ‘étate which is about 77 cm | above the

=
essentially diamagnetic Zﬁ% ground~state.

FProm the observed hyperfine splitting in the spectrum,
it is possible to obtain a value for the axial component (h) of the
19? magnetic hyperfine interaction. In addition, the relatively small
value of A/BO means that there is considerable rotational mixing of
the two fine-structure states, with the consequence that the
perpendicular component (b) of the hyperfine interaction has a
significant effect upon the electron resonance spectrum. To firvet
order in.the hyperfine interaction fhis effect is the same ag that
of the axial component h and the measurements on CP in its lowesdt

rotational level (J=% provide a relationship between h and b, but

w148~



do not enable their seperate valuss t0 be determined. In the second
rotational level (Jm%}, however, the rotational mixing of the fine-
structure states is greater, so that a second relationship between
h and b is obitained. It is thus possible to seperate h and b. As
we shall see, the various contributions to the hyperfine interaction,
for example the Fermi-contact interaction, are gtill not uniquely
determined but the use of a simple L.C.A.O. model of the clectronic
structure gives significant information.

Measurement of the splitting of esch line by an applied
electric field, which is essentially first order, has yielded the

value of the electric dipole moment.

7.2 Bxperimental

The electron resonance spectrum of CF was obtained by
passing CF4 through a microwave discharge and mixing the discharge
products with a secondary gas inside the resonant microwave cavity
of the spectrometer. The secondary gas was any one of a nunber of
organic molecules containing hydrogen atoms adjacent to an electron
withdrawing group. The most successful were acetonitrile, acetone,
acetaldehyde and ketene, of which the last two yielded the strongest
CF sﬁectra. gince, however, the reéction with acetaldehyde produced
a polymeric deposit in the spectrometer cavity, ketene was used for

most experiments. The preparation of ketene is deseribed in section
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(2.6). The electron regonance spectrun was observed in a Dececa
Stark ca&ity (similar to that designed by Carrington et al. 3) with
a Decca J-3 spectrometer uvsed in conjunction with a Varian 15 in.
magnet. The magnet field positions of the CF lines were measured
by means of an A.E.G. fluxmeter.

Several series of meagsurements were maede on each line and
after correction to a constbant microwzve frequancy, the meesn was
calculated. A small correction was made for the slight difference
in magnetic field between the inside and outside of the cavity; the
final results are given in table 1. The standard error in the line
positioné for the J=3/2 level is 0.4 gauss.

In the J=5/2 level, however, the spectrunm was very weak
and therefore time-averaging techniques wvere used to improve the
signal-to-noise ratio. At the highest fields used, the inhomogeneity
close to the pole faces was too great for the proton resonance
absorption to be observable; the field was therefore calibrated with
the proton resonance probe in the centre of the masnet gap, the
microwave cavity being removed. In this way it was possible to
measure the hyperfine splittings to within +1.5 gauss, but the absolute
field values given in table 2 are gnly acéurate to about +7 gauss.
Fortunately our main interest is in the J=5/2 hyperfine splittings,
which are reasonably well determined.

The electron paramagnetic spectra of CP in its J=3/2 and
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J=5/2 levels are shown in figures 1 and 2 respectively. Since the
maximum magnetic field available is about 22 kilogauss, it is not
possible to measure the two highest field doublets.

Dipole moment measurements were carried out carried oub
by applying static electric fields of up to 200 VOJLO/QM across the
microwave cavity; care was taken to minimise the number of free

electrons present, formed by photoionisation. Bach line in the J=%/2

spectrum is split into two out~ofwphase first derivative components

and the splitting as a function of electric field strength yields

o

dipole moment. The electric field inside the cavity was calibrated

by observing the Stark splitting in 1O before and after each CF
measurement; the dipole moment of NO is known accurately to be

i 7 5
0.15872 Debye .

7.3 Analysis of the Spectra

The electron resonance specira were anslysed by means of
the effective Hamiltonian derived in section 5.3.

fhe spectrum of CF in the J=3/2 level consists of six
lines, with a centre corresponding to a g-value close to 0.8, the
value expected for a zﬁ'/z, J=3/2 state with zood case (a) coupling.
The six lines arise from the three electric dipole allowed [lLJ?ﬁj
transitions, each split into two by the magnetic hyperfine coupling

. 5 . . A . v - g e S
of the 19F nucleuvsg, which has spin I=33 the hyperfine splitting in
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Table 7.1 The experimental and calculated [ield positions (in
gauss) for the J=3/2 rotztional level. The error in
measured field positions is 0.4 gauss.

The microwave frequency is 9270.22 1Mz,
Observed Galculated Calculated
s My field field (a) field (D)
-% 8859.8 8659.8 8659.8
~3/2¢> =1/2
% 862%.4 862%,1 8623%.,0
_ -3 8740.2 8740.0 8740.,0
-1/2 ¢ 1/2
% 8496.8 8496.9 8496.8
y -k 8617.5 8617.9 8617.9
1/2 «» 3/2
% 8367.6 8368.0 8368.1
(2) Using h = 655.6 iHz, b = 0.0z, g!' = ~0.00006.
(b) Using h = 662.9 1Mz, b = 190 iz, &' = -0.00006.
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Table 7.2 :

geuss) for the J=5/2 rotational level.

the experimental hyperfine splittings is + 1.

The experimental and calculated field positions (in

The error in

gauss,

but the absolute field vpositions are only accurate to

The microwave freguency is 9270.2 ¥iz.

Observed Celculated
Observed , s Calculated o
M MI hyperfine % hyperfine
J field splitbing field splitting
-% 21382.4 21376.9
-1/2 1/2 25%.2 25%.8
% 21129.2. 2112%.1
-% 20581.8 : 20585.7
~3/2 =1/2 , 251.2 249 .4
% 20%30.6 20%3%6.3%
-% 20042.2 20043.8
-5/2  =3/2| 247.3 C 248.6
z 19794.9 19795.2

* Using the final values of h and b,

The overall g-value correction is

namely h =

gt = 0.0001.

662.9 1z,




the spectrum is approximately twice as large asg the second-oxder
Zeeman splitting of the £1m3~11 transitions. An approximate
esleulation of the Zeeman splitting using perturbation theory
gives a value of the rotatiocnal constant BO cloge to 1.40 cmm1, in
good agreement with the value obtained from the uwltra-vioclet spectrum.
Tn the quantitative interpretation of the spectrum we uged the values
2 . . ;

of Porter et al. for the rotational and spin~orbit constants,

1y B.=1.40827 cn” ' -1
namely BO— 40827 em , A=TT7.11 cm .

6 7 . N .
In €10 =~ and NS (see previous chapter) as in otherx

good case (a) 2“3/2 molecules, it has been shown that only the axial

component (h) of the total hyperfine interaction can be determined

from the e.p.r. spectrum. This component is given by

. D ’
- 405 f [3c0s78 -1\

w3

where the three terms arise from the nuclear spin~electron orbitel
interaction, the Fermi contact interaction, and the nuclear spin-

electron spin dipolar interaction. Initislly the spectrum was interpreted
by adjusting the values of h and g‘:O*4gr+O.45gL+062£gS (the

rotational and relativistic corrections to the overall g-valuve).

The matrix representing the effective Hamiltonian was set up in a

Hund's case (a) basis set with decoupled nuclear spin, including

rotational levels up to J=9/2 for the ’ﬁé/z state and J=7/2 for the
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5 ,
TE/? state. The matrix was diagonalised numerically for valuves

of the magnetic field a few gauss either side of the observed fields
and after allowing for the selection rules ZAMjriﬂ, Aﬁi:O; the
transition fields were calculated by linear interpolation. Fecause
of the significent magnitude of h, second order corrections to the
energy from states with £&MJmi?9A3MIn'$T had to be includeds in the
final calculations, the contributions from these states were included
explicitly in the matrix to be diagonalised. The best fit to the
spectrum and the corresponding values of h and g' are given in table 1.
The above procedure is not entirely satisfactory in the
case of CF for.the following reasons. The relatively large valve of
By/A means that there is substantial rotational mixing of the ﬁé/é
and TT/? fine structure states (incipient case {b) coupling). This
in turn means that the effect of the non~axial component of the
fluorine hyperfine interaction is by no means negligibvle 8, particularly

since the hyperfine interaction itself is guite large. The non-axial

component, b, is given by :

b - égP Pyt 2 #(0) - <»2~M‘a : '"1>S} (7.2)

and its observable effect on the J=3/2 spectrum is the same as that
produced by a change in the value of h. Consequently, the Jz3/2

spectrum can be guantitatively interpreted in terms of a series of
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values of h and b, shown.in figure 3. Fortunately the J=5/? apectrum
yields a second relationship between the two hyperfine parameters,
from which the individual values can be estimated.

The J:5/2 gpectrum has an effective g-value close to
0.34. It consists of ten lines, the five Z}szij transitions
being split into doublets by the fluorine hyperfine interaction.
Only the six lowes%h fieid lines come within the range of our magnedt.
The spectrum was analysed in the same way as before, except that
larger matrices were disgonalised, the 2&; J=11/2 and the 21, T=9/2

3/2 t/2

levels being included. In the Jx5/2 level the rotational mixing of
the fine structure states is larger than in the J=5/? level so that
the relative contribution of b to the hyperfine splitting is increased.
The values of h and b which best fit the J=5/2 spectrua ave shown in
figure 3.

The point of intersection of the two lines in figurs 3

yields wnigque values of h and b, which are given below.
h = 662.9 + 3 MHz , b = 190 4+ 50 MHz

The errors quoted ariée from the experimental errors in measuring

the hyperfine splittings. The calculated fields for the absorption
lines of the J=3/2 and the J=5/2 spectra using these values are given
respectively, in tables 1 and 2.

The dipole moment of CF was colculated from the observed

15



Figure 7.3 Plot of the values of the nyperfine parameters h and b
which fit the observed fluorine hyperfine spiittings
in the J=3/2 and 5/2 levels. The dotted lines indicate the error

limits. The point of intersection gives the true valuve of h and b.
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Stark gplitting of the h7m§¢¢mg transitiona of the J=3/2 spectrun

using the expression obtained in the previous chapter for uS.

2

- . 2
AE = . T e ) gﬁﬁ 2&2&&
0 BfLu O.219fAL (53 : -

faﬂ

where O is the f-doubling constant. The eleciric field was obtained

LA UL

s (7.3)

from the NO splitting, using the above equation; the dipole moment 5
of NO is known to be 0.15872 Debye and its Si-doubling constant is
0.91 ¥Hz 9. If the fi-doubling congtant of CI' is assumed o0 be azbhouvt
1 1Mz (as expscted from it being isoelectronic with NNO), its
contribution to the Stark gplitting can be completely neglected at

fields of, about 100 volts/cm or more. The velue of the electric

dipole moment of CF is then found to be 0.65 4 0.05 Debye.

7.4 Discussion

Since we are only able to obtain two of the hyperfine
paramaters, any conclusions about the wnpaired electron distribution
in CF must rest on some kind of approximation. Elimination of the

Fermi-contact term from (7.1) and (7.2) yields :

2
. A L3086 -1

r

I

1136 ¥z

2 A4

The molecular orbital containing the unpaired electron can be written,
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approximately, as a linear combination of the carbon and fluorine

2p atomic orbitals :

Y- ep 2y - a2 (7.5)

-3

In the region of the fluorine nucleus, where T 7 is most important,
the wave-function is expected to resemble the fluorine 2p-orbital

so that we can write :

2
300570 -1 o (1 > (
o s = - e 7,6)
<: r5 3 > v’ a3

The hyperfine constants of NO suggest that thie is obeyved to about

o

5%b. Then putting g=2 and assuming that the expectation value of 7

AN

is the same for spin and orbital motion, one obtains s

nglsN<~1—r3> = 406 4 20 Iz, ngF 2@.5,_9:_.> -162 4+ 8 iz
(7.7)
where the error limits are those from experiment and not theoxry.
Finally, on substituting these results into the expression for h (7:1)5

one obtains an approximate value for the Fermi contact interaction :

8w 2 ot
3 g8 PPy ¥ (0) = 28 & 60 MHz (7.8)

0
Tn the fluorine atom itself, the value of gpfip /% 3> is 1900 1H=z 1 .

The exact value actually depetds upon whether the expectation value

is taken over the orbital or spin density distribution, but in oux
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approximation the two values are necessarily the same. Then

neglecting the contributions of the carbon 2p atomic orbital *to <r”5>i

we obtain :

2 406
an = 506 = 0.21 , ap = 0.46 (7.9)

The fluorine atom spectrum also vields ithe value of the Fermi contact
term as 303 Iz, and under the agsumption that the fluorine ¢ orbital
polarization is simply proportional to ag, the predicted value of the
Fermi term in CF is 65 Mz, which is within the range of the observed
value. These argugments are, of course, extremely crude but ithey

are supported by analogous data on the spin~orbit constant of CF.

Dixon and Kroto 1 considered an L.C.A.0. wave=function like (7.5)

énd since the major contribution to the spin-orbit coupling constants
comes from the unpaired electron density near the nuclei, they obtained

the result

2 2
b = agla] + eplagl (7.10)

Here we shall only take the modulus of A since its sign depends upon
whether the orbitals are half filled or not. Also since the value
for carbon is taken from a 3P state, it must be multiplied by &

factor of 2 in order to represent the same guantity. Then using

the values \AF\: 269 cm"1 and‘ﬁclz 28 cm~1 and assuning a§+ag:1 :
2 . 0.20, 3 o = 0.42 (7.11)
&y 4 3 7 -
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This is remarkably good agreement considering the crudity of the
t‘ 'b 4+ ',Lis T 11/\_‘ " < - 41 - TA TS 5
assumptions but it dresumably because only those parts of the electronic
wave-function in close proximity to the nucleus ave considered in each
case and these are likely to be very sinilar to the atomic orbitals.

Although these results provide a worthwhile indication of the

unpaired electron distribution in CF, accurate wave~functions ar

o

necessary for a really accurate discussion of the hvperfine resulis,

The electric dipole moment of CF is found to be much

[e}

larger than the isoelectronic 10, as expe

ted on electro~-negativity

grounds. The sign of the dipole at cannot be determined from

thege experiments but is expected to be consistent with the polarity

C+"'F— .
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Chapter 8

The Renner Effect

8.1 Introductiocn

In linear molecules with a doubly-degenerate electronic
state (TT,ll, etcf ), it is possible, when a doubly degenerate bending
mode of vibration is excited, to have a coupling between the
electronic and vibrational motion of the molecule., This renoves
some of the expected four~fold degeneracy and ensures that the
Born-Oppenheimer product wave-function is no longer a valid approximation

4
for some-of the states; such an interzction was first considered by

Renner and is called the Renner or Remner-Teller effect.2 This can

be immediately illustrated by a group theoretical arguement. The
bending-vibrational and electronic wave-functions belong to degenerztie
representations of the C (or Qﬁh) symnetry group. The vibronic

wave-functions belong to the direct product representation, which is

in general reducible. For example :
TxTT = 3T + 57 + A (8.1)

Renner set up the problem for a molecule in a T state
by assuming that on bending it acquired a dipole moment which mixed

in excited states. Using second-order perturbation theory, he ghowed

that the resulting interaction is equivalent to en extra term in the
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Hamiltonian of the form ekgé cos 2(8-¢), where © and ¢ arc respectively

the electronic and vibrational a211ut1 1 angles,and @, is the bending

~2
normal coordinate.

In an alternative approach, Pople and Longuet-r

have expanded the vibrationzl potential as a power series in (. and

cos(6~¢) like :
OS((‘)»({)) - v QZ“O‘% (G ,,() 4 v .
: 22T ST (8

From this they extract the second term, which giveg a diagonal

contribution in a TT electronic state, and neglect all second order

a1

effects. Purther iheoretical investigations have been made by Pople
. . . . . , .2
into the effects of also introducing spin-orbit coupling in 17
molecules. Pinally the effect of the Remner perturbation on the
. e o . 2 STv
rotational structure of a linear triatomic molecvle in a “T[ oxr a “li
. . 68
electronic state has been considered by Hougan .
The recent discovery of the e.p.r. spectrum of the linear

9,10 and NCS 11, both with T ground electron

triatonic radicals NCO
states has renewed interest in the Renner effect., The theoretical
results obtained in the papers mentioned above are strictly speaking
only applicable to the investigatiqn of electronic spectra; a more
precise derivation of the Renner effect is necessary for the

interpretation of high resolution spectra in the microwave ox

radio-frequency region.
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In this chapter, the Coulombic interaction for the
bending mode of vibration will be expanded as a power series in QZ
(the normal bending coordinate) and bhoth first and second order
contributions to the Henner effect will be included in an effective
Hamiltonian. Because of the large mixing in of excited electronic
states, it is discovered that there asre important third order
contributions to the obéerved magnetic moment of the molecule. The

theory predicts that the correction to the orbital g-value should

be linear in the vibrational gquantum number, V., and this has been

27

confirmed by the experimental results.

8.2 Basic Theory

a

The problem of the linear triatomnic molecule cannot be
solved by using the Born-Oppenheimer seperation of electronic and
nuclear motions, except in the linear configuration (Q2 = 0). Then
the potential due to the nuclei has cylindrical symmetry and the
electronic wave~function can be classified by the guantum number N,
representing the expectation value of the orbital angular momenbum.
This wave-function 4@(/\;ri,r&) is a solution of the electronic

Hamiltonian, 3+e :

2 7 .e
. 1 - 1..2 e - -

Bo o losmyom!) Zé}% R A
i 1f ij 10 TiX

2 By (Aj7,zy) (8.3)



where r! is the coordinate of the nuclei on the linear axis.

When the molecule bends, the Coulombic potential energy
must be modified; the resulting perturbation to the electronic-nuclear
energy is

-2632

v(Q,) - v(0) = *
QQ) © [(Z,-*Z )2 + 2 + :>,2 - 2p.p cos(6,-¢ )%"j
i RS fi Pot Flf{x i T

Zez

+ [(Zi“%%)g ) (’il%{

(8.4)

where the cylindrical polar coordinates ((J, & or ¢, z) have been used.

2

Now assuming small-amplitude vibrations so that (05< (zi»-za,_)2 + Py

the perturbation can be written as a power series in @, and cos(@i-é)a{).
Then if we replace (z:.L-mzoL)2 + f\i vy f{e), which is only a function

of the electronic position coordinates or the stretching normal
coordinates, the perturbation to the Coulombic energy is :

2 2 -
Z8° Pu - 2p;iPx cos(8,-¢,)

£(e) 2£(e)

v(g,) - V(0) =

320692{95 -~ 2pP:Py cos(ei-cz;oﬁ)}z
8 i‘%(e) fz(e)

e

+ higher order terms (8.5)

‘ o 2 2 2
The problem of the configuration,in which sz(zi—azd) + Py axe
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briefly discussed in appendix C, but do not invalidate the arguements
to be given below,
It is desirable to replace all the bhending coordinates

of the nuclei by the normal coordinate Qz.
b = 40 Qi $u = ¢ for all o (8.6)

Then collecting all the electron-nuclear Couwlombic interactions

together, the total bending perturbation can be written as :

v(Q,) - v(0) = Z aey) @ + by(ey) & + 4y, (e)0008(8,~¢)
i \
+ Ay(e.) Q,c052(0,~¢) /
+ higher order terms (8.7)

The coefficients, A, are functions of mainly the electronic
coordinates with a slight dependence on the stretching normal
coordinates. Included in these terms are also the perturbations
obtained from expanding the nuclear-nuclear Coulombic interaction
as a power series in QQ.

The total Hamiltonian, which can be written as s

i
x

$om gy v B4 () - VO .ty

7 (8.8)

mixes the different electronic states. We are interested in measuring
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spectra in the ground electronic state, in tle ground stretching-
vibrational state and in any of the lower states of the bending
vibrational manifold; this will be called the "ground vibronic
manifold" for simplicity. In order to solve for the enerzy levels,
it is desirable to derive an effective Hamiltonian, which operates
in just this particular menifold. As bhefore this is most casily
14,15

performed by the technigue of degencrate perturbation theony

PO ig defined as the projection operator onto the ground vibronic

Z 10,:%(0,1] (e.9)
i

where i represents all the other guantum numbers necegsary to specify

manifold, [0,i)

the state (including the bending vibrational quantum numbex, szﬁw1)a

% F4,i0< L
= ZZ w_}_él, ~ (8.10)

Following Bloch 14, the effective Hamiltonian may be written to third

We also define :

order in the form :

h S R
Stepr = BoMGPo * T H T o+ P #1(Q/a) HP

2 .
b+ B a(0,/2) (0 /) B = Botk1(Q, /<) 4R, SR,

+ higher order terms (8.11)
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$+! should be thought of as §+n} from (8.8), plus all the smaller
magnetic interactions to be introduced later (see equation 5.17).

In the expansion, we shall 1imit ourselves to the harmonic approximation
which is generally sufficiently accurate to explain effects in the

lower vibrational states. The first two terms in (8.11) are those

parts of the Hamiltonian that give disgonal contributions in the

ground manifold. Then, for the moment, taking i'= ﬂh :

d+gff = &, jgi:%Pi + A, Qg + Ay Qgcos(@m¢)2
+ O(Qg) 3 (8.12)
where 6 is used instead of)@i to signify all electroms (it has the
same selection rules on matrix elements if the electronic wave-functions
are assuned to have the form exp iM®), and the sum over r means the
sum over the bending modes if the enexrgy of the ground states of the
stretching vibrations is included in 3%@.
The second order conbtributions of (8.11) are obtained
from those terms in the perturbation (8.7) that are lineaxr in Q3

they result in

2 2 2 - _ P
é*éff = (a2 + aé) Q2 + aQZQZCOo 2(6-9) (8.13)

where an and 250 are obtained from the mixing of excited states with

/\ changed by 1, and aé from the mixing in of excited vibrational
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or electronic states with the same value of Z\.

-1 3
2 = % :Ei: Zgzggéfgo) <?i§iéﬁ1eipehﬂ><;\‘A1 e lpe Ty

a,
Pl A
Tov A, (8"14)

. . . O
where the suffix 41 is given to the 11U state to indicate its valus

of /.

I A . ~1 O SO 5 +36; 0
oy, = Z@ 20)™ % 1y T el o2
A= (8.15)

and

ay = - Z(EJ‘;EO)J<T'iofA1l'ﬂt><T7'th,EI'§”{o> (8.16)

t

2, and aé contribute, in second order, to the harmonic vibrational

potential and 250 ig a second oxder contribution to the Renner

coupling. Collecting all such terms together, the vibrational part

of the effective Hamiltonian, rewritten in polar coordinates, becomes:

2 2 ,
Hopr {iQZPZ) +P + 2k,Q, + ek,Q5c08 2(8-4)
(8.17)
where %kz o= < A2> + a2 + aé (8‘ 1 8)
- > Q
k, = <N, + 2 (8.19)
and (o) = O, ' (8.20)

if the molecule has a linear equilibrium configuration

In the absence of the Renner coupling terms, the
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Hamiltonian is that for the two-dimensional isotropic harmonic

. 16 .
oscillator . .Its solutions are of the form

Y(n,1) = P u1y (Qz) exp ilg (8.21)

and it has eigenvalues, nth = (v2+1)hv y where v, is the bending-
5 ;
vibrational freguency. The second guantum number, 1, signifies

the vibrational angular momentum about the figure axis and can take

the values Voo v2~2, ety ~Voe Since the magnitude of & is
usually less than unity, the functiong in (8.21) are found to be a
suitable representation for evaluating the Renner effect.
So far no account has been taken of the spin~orbvit,
rotational and Zeeman perturbétions. Their first and second order
-

contributions may be obtained in exactly the same manner as 10T

diatomic molecules in chapter 5, yielding :
2
H = { P ey - ,“G -3 1 - L k‘
Yerr PO{B (&-6-1-8)" + gs@ﬁ" 2 7 thngLz +ALS,
s> (0 A pr@ (8) ¢ 4T
'>SQ q.f;i:/_mq.l:)_ YGWM

g=%1 ] ] )
v e prirl (8] NI

’ , , 8.22
t by Tt F oYy 7 %}?o (8.22)
Tt is also necessary to consider the second order crogs-terms belween

the spin~orbit, rotational,and Jeeman interactions and the Coulombic
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perturbation. The resulting terms have the form :

Heep = E—( )¢ {"v )a,e -ig §T2(£,§>QzemiQ¢

g=¢1

e m1 [TAY ""i—q; -
+ 8gp T ID%e (’5} (8.23)

where - ) » AmT 6
3z -By)" 4 e 1an (]2 la, ™ ey

RIS (VAT (L)lz}}m

i

- - e R ”1 ’ 1 7 i m'\ﬁ R
55 > Hmew) {@Ozmqgi)ggnxmmﬂe 199 1, 5
1681, N |-
+ @Omﬂelq iz,,%chiﬁi’jq(li){,e(;}} (5.25)

_,1 1 . , N i .
S e S D aE-n e @ leddls et 1oy

v Ll el (014}

@0‘\2
1

None of these terms give diagonal contributions to the energy but all
mix states with An=+1,Al=#1. Strictly spesking these terms shovld

be included in any matrix representing the Hamiltonian, but, ignoring
the contributions arising from the cubic terms (V‘O ) in the vibrational
potential, all their contributions have the same form as terms

already in (8.22). Then as long as the spin-rotation constant,

rotational g-factor etc. are used as just parameters, which can
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include all these and other second order effects, é%gff mzy be

completely neglected.,

W
R
O

In the complete Hemiltonian (3.202 to 3.214) there
several small vibrational interactions not present in diatomic
molecules, namely the spin-vibration, orbit-vibration and vibrational
Zeeman interaction. The coefficients of the first two are typically
of the order of 100 MHZ'(the same order of magnitude as the spine
rotation interaction) and, since they are competing with the spin-orbit
coupling in trying to modify the e.p.r. spectra, their effect may be
neglected in a particular vibrational state of a case (a) molecule.
There may be a measurable effect if the molecule approximates to a
case (b) coupling scheme.

Phe vibraltional Zeeman term can have a significant effect

on the e.p.r. spectrum. If it is written in the equivalent form
0, = - g 36,1 (8.27)
vz aPEE

where G is the vibrational angular momentum (GZ=1), it can be seen
that the g-value of a vibrational level changes with 1.

Since we are working in the ground vibronic manifold, it is
also necessary to second order contributions to the effective

Hamiltonian from the terms :

-5 Z(-n%;(g»g)wlq (e) (8.28)
=% |
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This comnects different stretching vibrational states v and
as a conseguence yields another seéond order contribution to the
rotational constant.

The Hamiltonian derived so far is essentially that
obtained by taking the theory for diatomic molecules, with the obvious
vibrational modifications, to explain the spectra of linear triatomic
molecules. However some important correctiong have been omitled.

The mixing of electronic states by the bending vibration is so0
strong that certain third order contributions to the effective
Hamiltonian may be expected to have a significant magnitude. Since
such terms involve the electronic energy squared in the denominatowx,
only combinations of perturbations which involve the bending
perturbation or spin-orbit coupling squared need be considered. In
the NCO and NCS radicels, the spin-orbit coupling constant, A, is
only of the order of 200 cm”1, so that with an excitation energy of
the order of 20,000 o™V its contributions will be neglected. The
effects of large values of A on the spectra of diatomic moleCUleé
will be considered in the next chapter.

In this work we are mainly interested in the Zeeman effect
of gaseous radicals so that it is likely that those third order terms
in which one of the matrix elements involves the Zeeman interaction
will be most important. The only terms which will give a diagonal

contribution ars :
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o Z( -5) F XL 4, @ c0a(6-9)[AY (a1, @ c08(0-4)| W)
1,. L 1
x pIo() [l agE) + 8 23()IA) (5.29)
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\ . . . 1.
The diagonal contributions of To(é) are the same in both the ground
and excited electronic states and may be omitted. The remaining terms
(diagonal in /\) may be represented in en effective Hamiltonian by

the expression :

2
k,Q
ﬂsz’ = LF;TO(H)L (L) hp = nlg P To (L)” H) (8.30)
where '
JAY: 9 < . . .
L2 4 6 1. ~ig® o 2
=t - :.}: Z( DI PN NP DN RS
a=+1 A (8.31)

in which § is odd for /A representing'ii states and even for A\
states. This predicts that the orbital g-factor must be changed
linearly with n in order to interpret the e.p.r. spectrum in different
vibrational levels. The work on the first three bending-vibrational
levels of NCO 12,15 has confirmed this theoxy.

If the excited state is a 2 state, it is possible to
connect the A = 41 components of a IT state in the same way as the

Renner coupling term in (8.15). This term can be writlten in the form :
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[ m1 1 T 2 J2 i -
ﬂeff = &GI:FJOQ&)TO(L{) WZ'* cos 2(@°—(§)) (8,52)

This a further correction to the orbital g-factor in states in

which strong Remner mixing can occur (|1l¢l<n, see next section).

8.3 Vibronic and Pine Structure of lolecules with a ZTT Electronic State

Before a detailed consideration of the e.p.r. gpectra
of linear triatomic molecules, it is useful to briefly consider the
vibronic energy levels.

In the absence of the Renner effect, the electronic svates
can be classified by the quantum numbers A (=+1) and Z (=1%),
respectively the component of orbital and spin angular momentunm
along the internuclear axis. As mentioned before the bending
vibrational wave-function is that of the two-dimensional isotropic
harmonic oscillator and is specified by n and 1; n is the energy of
the vibrational state in units of the vibrational quantum and 1 is
the vibrational angular momentum (1=n~1,n«§, eese ,omtl). The energy
levels are shown on the left-hand side of figure 1.

The Renner coupling term, Enggoos 2(9-¢) has finite
matrix elements between states with AA=x2, Al=42, and An=0 or 2.
Consequently, for 1| o n-1, /A and 1 are no longer good guantum
numbers, although the total angular momenturn component along the

figure axis, K = A+ 1, is still conserved. These vibronic states
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Figure 8.1 The vibrational energy levels split by (a) the Renner

effect glone, (b) the Renner effect and spin-orbit

coupling
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are labelled as & , IT, A, ¢ «+++ according as K =0,1,2,% ++voe. Tt
should be noted that states with the maximum value of K in a given
vibrational level are only slightly changed in energy, through the
second order mixing of states with An=2, All other states are
considerably split, because the mixing of states in the same vibrational
level can occur in first order. Heglecting the small second ordex
contributions, the energies of the vibronic levels may be sumarised

by e

E = n i+ %~8(n? - Yg)% hy (8.3%)
n,K = : 2 e

These are represented in column 2 of figure 1.
Every vibronic state with \K|» O is further split into
two Ey the spin-orbit coupling and the K=0 states are slightly displaced
in energy. The resulting energy levels ave given on the right-hand
side of figure 8.1 ;3 the suffices,P, represent the axial component

of the total angular momentum, K+% .

8.4 The e.p.r. Svectra of Linear Triatomic Moleculesg.

Recently, Carrington, Fabris and Lucas have observed
L moo 3 h 2” . » P 9
the e.p.r. spectrum of NCO in its 5/2 ground vibronic state 7 and
. 2 10 2 . . g . .
also its ,A5/? and @§/é vibronic states; these last two are from,
respectively, the first and second excited vibrational levels. All

these have the maximum valuve of X and are essentially good Borne
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Opperheimer states (i.e. they can be represented by the product of

en electronic and a nuclear wave-~function, to & high approximation).

If the molecule can be considered to closely epproximate to a Hund's
case (a) coupling scheme, the g-valus of the spectrum in the rotational

state with angular mowentum, J, is given by :

(ghre,2) P
R (0.50)

i.e, 0.8000, 0.5714, and 0.4444, respectively, in the ground
rotational level of the ZT%/Q, 2A5/? and 2§?72 vibronie states.

The observed g-values of the spectra differ from tﬁis
for séveral reasons.

Firstly, as in.diatomic molecules, the second order
mixing of the fine-structure states and the higher order Zeemen
mixing of the rotational states can affect the g-value. The expressions
for the Zn%/? state are the same as those in (6.7) and (6.8). Slightly
different expressions must be used for the %éﬁ/? and. 2@%/? states;
their modified g-values at 9270 MHz are given in table 8.1,

Secondly, there is the Remmer mixing of vibronic states
with the same value of K, but with An=2. The state lnzn,lml,A=1,fz%>
is mixed with ln+2,1+2,—1;%> and for l=n-~1 the matrix element

2

the orbital angular momentum reversed and in third order contributes

L
connecting the two states is %E{%(K+Ti}zhp . The latter state has

a correction of -EQK(K+1)g1/8 to the orbital g-factor. After
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Table 8.1 Various contributions to the observed g-value of the

FCO radical in its three lowest vibrational levels.

using € = -0,150

2 2 2
Contribution ﬂ}/Q K’}"5/2 2‘57/2
to g-factor nz'},J:B/Z)nﬁZgJ 5/2ln=3,3=17/2
Obsexrved 0.7909 0.56%8 0.43%56
Pirst order 0.8000 0.5714 0.4444
Higher order
terms (as in a 0.7952 0.571% 0.4456
diatomic molecule '
Renmer Effect 0.793%2 0.5668 0.4%88
Aeg,
Regidual = (J+1) ~0.0023% -0,.0030 ~0,0032
A gL ~0,0058 (0, 005% ~0.0048
Value of /.\gL
~0.006% ~0.0063% -0.0061




making this correction (see table 8.1), there is still a discrepancy
between the calculated and observed g-factors. This can be accounted
.for‘by the third order correction nAgL to the orbital g-factor. The
value of‘,AgL calculated from each vibronic level is given in table
8.1 and is fairly constant, supporting the theory. The rotational
and vibrational g-factors have not been included end thege could
accounf for the slight difference in the calculated values of K)gi.
Alternatively the agreement can be improvedbby slightly modifying

the value of €.

8.5 Relationship between Ag and &
4

Since Z&gL and %hé second order contribution to the Remner
constant both irvolve the mixing of excited electronic states, it
seems reasonable that they should be related.

The g-value correction élgL is obtained from terms of the
form <ﬂi«;lA1 1eiq“ef"ior L\><Z orAIA1 1e"iqefﬁ;1> . Since the two
matrix elements are the complex conjugate of one another, the product
must be real and positive. Then from (8.31), the contribution to
[1gL fromNZS states is positive while that from 7. states is negative.
For NCO 10, the observed value of‘l)gi is ~-0,006, so .that on omitting
the effect of A states, the sum of the contributions to [5gL from

St and §7 states is given by :

[_\.gz + Ag£ £ -0.006 (8.35)



In order to relate these to the second order contributions
to € , it is necessary to consider the effect of the space inversion
i6
operator, 4§ , on <§{lquexl [77§{> . Under this operation the radial

coordinates f& remain unchanged and ei goeg o ~ej. Thus

gl = e (8.36)
g(A“ei-i@) - Aﬂg?i@ (8.37)
Js*> = (0| | (8.38)

where s is even for 24'sta$es and odd for T states 18. Since

19

the matrix elements must be invariaant under the inversion operator 5
<ﬁ2 lA118 rﬂt1> = (=1) \Z ‘A41e hf¥1> (8.39)

But the second order contributions 8+ and £ to the Rermer constant
(from the excited Y and ¥ states) are obtained from terms of

the form

<TTZ1 [4 1eii6’ TE(EE 4, 1915“6[‘” 7

CORGRIE S iy G T

(8.40)

i

Thus from (8.15), st states give a negative contribution and T~
states a positive contribution to €. The obsexrved value of € in

NCO is =~0.159, probably due to the fact that the first excited
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. . . + . Ly
electronic state is L' . If it assumed that %7 electronic states
are the only 2 states that give a significant contribution to A FL

and: the second order Remner constant, one obtains :

8o . 2.8 (8. 1)
——E > T (8.41)
8y, + <Aoo )

20 22

where By is the energy of the first T state. ALl the parameters

on the right hand side of the above expression are known for HCO,

€ = ~0,159, hwz = 538,9 cm”, [_\gL = =0.006 and ARg= 2%,000 cmmje

Hence :

8y

—22
Bop * <@2£>

This not only suggests that the second order contribution to the

= 3.2 (8.42)

Renner constant is the largest but that the first order contribution
has the opposite sign. Simple electrostatic arguments, however,
suggest that the first or"der contribution te & sghould be negative;
the electrons and nuclei prefer to be in the same plane (see 8.5).
This discrepancy can be overcome by’ including the contribution
from 2~ states.
If Z_\gf is multiplied by AE, the excitation energy to
the first ' state, we obtain :
k

ks
2 + - %2 -
AgL *ﬁ";é' > a22/2AE H AQL th P »-<122/2[3E (8043)

o

-178-



+ - . . =
MEma%& mﬂzﬁzamaﬂm contributions to a ﬁmn?ﬁ'&ﬁ 7

22
states respectively., Therefore :

o+ -

3, - g,

22 22

W}g;m* £ 2@5,/111»2)4\% = =0.57 (8.44)

Then assuming <A2£> is negative :

+ a

k 22 > """Oa
2

+
aoo

—

59 (8.45)

Hence, .

+
3.2 (2, + 255) > ey, - Ay,

, + .
and since a22 is negative :

a3, | < 1295 Jap,| (8.46)

éhus the contributions froﬁ Z 7 states are at least half as important
as those from T.' states and must be included in the previous
considerations.
If the e.p.r. spectrum of a strongly Renner mixed state
can be observed, it will be possgible to also obtain Z&gi. The expression

for Agﬁkz/hpz is similar to that for a,, in (8.15) except with the

22
ener denominator squared. If one of these energy denominators can
ay

be replaced by AE, then :
Agl (mazz/AE)x(hpz/kz) (8.47)
This would yield a much more accurate estimate of the relative

importances of the first and second order contributions to the Remmer

constant.

o] [



References to Chapter 8°

1. RB. Renner, Z. Phys. 92, 172 (1934).

2. G. Herzberg, "Molecular Spectra and Molecular Structure,-TIT.
Electronic Spectra and Blectronic Structure of Polyatomic
Molecules". (D. Van Hostrand, W.J., 1966).

3. J. A. Pople and H. C. Longuet-lliggins, Mol. Phys. 1, 372 (1966).
4. H. C. Longuet~-Higgins, Advances in Spectroscopy, 2, 429 (1961)
5. J. A. Pople, liol. Phys. 3, 16 (10 O)

6. J. T. Hougen, J. Chem. Phys. 36, 519 (1962).

T. J. T. Hougen, J. Chem. Phys. 36, 1874 (1962).

8. J. T. Hougen, J. Chem. Phys. 37, 40% (1962).

9. A, Carrington, A. R. Babrls and H. J. D. lucas,
J. Chem. Phys. 49, 5545 (1968).

10. A. R. Pabris, Ph.D. Thesis, (Southampton, 1970).

A2

11. A. Carrington, A. R, Fabris and . J., D. Lucas, Mol. Phys. 16, M9

12. A, Carrington, A. R. Fabrig, B. J. Howsrd and H. J. D. Lvcas,
"Proceedings of the International Symposium on Llectronic

and Iuclear ilegnetic Resonance", (ilelbourne, Australia,

13. A. Carrington, A. R. Pabrig, B. J. Howerd and H{. J. D. lLucas,
Mol. Phys. %o be published.

14. C. Bloch, Ifuc. Phys. 6, 329 (19 )8)

15. A. Messiah, "Quantum iechanics" Chapter 14 (HOrth»Holland
Publishing Co., ansterdam, 1965).

16. W, Marganau and G. M. Murphy, "The Mathematics of Physics and

~180-



Chemistry™, (Van Yostrand, Princeton, 1956),
17. J. W. C. Johns, J. Mol. Spec. 15, 473 (1965).
18, E. Wigner and E. BE. Witmer, Z. Physik. 51, 859 (1928).

19. For example, . Tinkham, "Group Theory and Quantum Mechanica',

(MeGraw-1ill, New York, 1964).

-181-



Chagﬁerig

Spin-orbit Coupling Constants in Heavy Diatomic Molecules

9,1 Introduction

The spin-orbit coupling constants of many of the &
moleculeg have been obtained from the second order effects on the
g-velue of the e.p.r. sﬁectrum. In the J=3/2 level of the ZT%/Q
state, the effect on the g-value, due to the mixing of the fine-

structure states, is obtained from (6.7) end (6.8) as :

g, = - 0-800 Bz /A (9.1)

Now the spin-orbit coupling is expected to increase in magnitude on
going to heavier molecules. In the halogen oxide series, A increases

from -282 e ¥ to -815 on” ! on going from C1O T 40 Bro 2. Then one

might expect the value in I0 to be about -1500 cm”1, but the e.p.r. 2
spectrum suggests a value of ~-446 cm'1. Even allowing for the fact
that the spectrum becomes less sensitive to the value of A as its
megnitude increases and also considering possible corrections to the
g-factor like the rotational Zeeman interaction, there is still a
large discrepancy between the expected and 'observed'! values of the
spin~orbit coupling constant.

In this chapter the value of A for several diatomic

radicals is estimated from the values of A for the constituent atoms
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using a simple L.C.A.O. picture; the hyperfine parameters of the
radical and the separate atoms are used to estimate the L.C.A4.0.
coefficients. These results indicate that for the heavier molecules,
the 'observed' values of A should be increased.

In 10, it was pointed out by Dyer et a1.2’3 that if the
value of A was increased in magnitude to -~-1000 cmh1, the calculated
spectrum was moved by 6;2 gevss bto higher field. hen, in order to
interpret the spectrum, it is necessary to increase the value of the
orbital or the gpin g-factor. It is suggested that the third order
mixing of excited electronic states with larger g-values into the
ground state is respongidle for this.

. .2 .
9.2 Bxpected Spin-orbit Coupling Constants in “IT jiolecules

Dixon and Kroto 4 have suggested that if the orbital
. . . ZTT 2 s
containing the unpaired electron in a redical can be written as

a linear combination of 2p atomic orbitals,
= . .2
Py xbx *oady (9-2)

the spin-orbit coupling constant can be obtained from the spin-orbit
coupling constants of the separate atoms, weighted by the unpaired

electron density on that atom. That is :

lagl = 2Slal + allal (9.3)
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Kodulus signs are used because the actual sign of the spin-orbit
coupling cénstant depends upon whether the valence orbitals are
more or less than half filled.

Some care must be taken in using the values of A from
atoms in stateg other than ZP. Thus the group 3 and group T values
may be used directly, but the group 4 and 6 atoms have 3P ground states
containing two unpaired electrons, both in p-orbitals.

As was pointed out by Blume and Watson 5, the spin-orbit
Hamiltonian for the two unpaired electrons can be written approximately

in two ways, namely :
Ho © AL.s = E gii'ﬁi (9.4)
' i

This neglects the spin~othér—orbit interaction and assumes that the
coefficient © is the same for all the unpaired electrons; these are
reasonably correct for the two unpaired electrons in a 5P state.
Since both of these unpaired electrons are in p orbitals, it is
possible (from an evaluation of the matrix elements) to make the

substitution :

€ = 254 | (9.5)

9
and it is the values of &, corresponding to a single unpaired p
electron, that must be used in (9.3) instead of A. These values of

1%] for the group 4, 6 and 7 atoms are tabulated below.
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-1 -
C= 28cm ', Si=150 cm 1, Ge = 880 cm"1,
0 = 1/ -1 o - -1
47 em S =374 em e = 1870 em ,
F . 26 "“‘1 . e "'1 p "'1 "1
=209 em , Cl=587Tcm , Br=245cn , I =5070 cm

(9.6)
In all the o diatomic molecules that have been observed by e.p.r.
(except N0, HS and hydrides), one of the atoms is a halogen, so that
it is possible to derive the L.C.A.0. coefficients by comparing the
hyperfine parameters with those of the atoms.
In 2TT radicals, the axial component of the hyperfine

interaction, h, is given by :

. Y ?-
- - 2 4ag )2 3008 6 -1
v s appe(S) ¢ O« LD 0

The corresponding parameter, at, fof the hyperfine interesction in

2P atoms is given by approximately 5/8 times the expression above.:
Then agsuming th@ﬁ the hyperfine constant of the halogen atom in the
radical is proportional to the unpaired electron density on that |

atom

2 h
Sa1 T %é["" (9.8)

These results are given in column 4 of table 9.1.

It is now possible to calculate the spin~orbit coupling

constants in the radicals by assuming :
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a + a2 = 1
Hal y S 4 (9.9)

and using the modified form of (9.3) :

el - af{tgxi * afzal !gliali (9.10)

These calculated values of 4 are compared with those obtained from
the e.p.r. spectrum in columns 5 and 6 of table 9.1.

For the lighter radicalg like CF, SF and (€10, the
agreement between the two values is fairly good (about « 5%), ziving
us'hope that this approach is fairly accurate. In Br0, the

agreement ig slightly worse, while in SePF and I0, the discrepancy

is extremely large.

9.% The Effect of Hund's Case (c) Coupling

If we believe the large values of the spin-orbit coupling
obtained in the previous section, there will be very large mixing of
excited states into the ground wave-function. For a spin-orbit
coupling constant_of about 1000 cm"1 and with an electronic excitation
eneigy of about 20,000 cm"1, there may be about a 5% contribution
from excited states with AA=41 and AZ=%1 to the ground state
wave-functioﬁ. Thus, in the new electronic wave-function, A and
¥ are no longer conserved, although fL is still a fairly good quantum
number. This corresponds to Hund's coupling case (¢) 6’7. If the

magnetic moment along the axis in the excited state is greater than
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that in the ground state, it is possible to obtain the necessary
correction to the calculated g»factbr that will explain the I0
spectrum.

A1l the major effects of the large mixing of electronic
states can be obtained by extending the effective Hamiltonian in the
ground electronic state (see 5.39) to include the third order terms
in the pexrturbation expansion.

The third order terms have the form :

éhsz = P 8(Q/2) H'(q f2)s P - POM‘(QO/aQ)N‘POé#-'PO

' (9.11)

This may appear to be non-Hermitian, but it only gives
non-Hermitian contributions.if é%fo can connect ground states which
have different diagonal matrix elements of #'. In such a case, the
symmetrised form may be used since the inaccuracies of this manipulation
only appear in fifth order.8

The only significant third order contributions to the
effective Hamiltonian occur when the spin-orbit perturbation is taken
twice in (9.11). Also unless it is used in the matrix elements of
the form P05+'QO, the resulting terms in the Hamiltonian mix the
widely separated fine structure sta%es and give negligible contributions
to the energy. In the e.p.r. spectra, it is likely that the greatest

effect is produced if the remaining matrix element contains the
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Zeeman perturbation. That is :

2

Wope = D olbtgol &) (i I8t501 207 (578) pi,

* {<@nlgLLz + gsszlé’n> - <?o!giLz * gsszlﬁgé}
(9.12)

i1

DgpH, L, (9.13)

The spin orbit coupling can mix in % and O states with SU = }/2,
and with multiplicity (2S+1) equal to 2 or 4. The [\ states yield

4

a negative contribution to A g while the Z%/é states give a positive

contribution.

9.4 Effect on the e.p.r. spectra

As wag mentioned earlier, Dyer et al. have pointed out
that if the A value of IO is increased to -1000 cm*1, the spectrum
is shifted by 6.2 gauss to higher field. If we take the even
higher value of A, determined in section 9.2 (i.e. 2300 cmnj), the
caleulated spectrum will be 9.0 gauss too high. To over come thié,
we can introduce the correction to the axial magnetic moment, giving
Ag = 0.0023.

In the second rotational level, the effect of 4 on the

spectrum is increased (this effect is proportiocnal to J(J+1)-3/2).
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However A g has the same percentage effect on the g-value in all
rotational levels. Thus, since Ag and A have different effect on
the spectrum in different rotational levels, a measurement of the
g-value in the J = 5/2 asg well as the J = 3/2 level should permit a
separation of the iwo effects. For example, if A = -2300 cm"1 and
Ag = 0.0023, the calculated spectrum of IO in the J = 5/2 level
would appear at about 35 gasuss higher field than if A = =446 cm"1 and
9

Ag = 0,0 . Preliminary experimental results 7 on the second
rotational level of SeF suggest that a larger value of A is
needed.,

The only well characterised spectrum, in which a Ag

10,11. The

correction has been introduced, is that of SeH (and SeD).
rotational constants of these two'radicals differ by practically a
factor of two so that there is congiderably differeﬁt rotational
mixings of the fine-structure states. It isg thus possible, after
removing the high order Zeeman contributions, to attribute the observed
difference in the g-values of the two J = }/2 spectra to the term
(BH"BD)X1.6 H/A (see equations 6.7 and 6.8). One then obtains a
definite value of A, which is considerably different and much largex
in magnitude than thatvobtained from each spectrum separately. This
leaves a g-value correction, Ag = O.OOO?S. Work on the second

rotational level of SeH has confirmed the necessity for this correction.

Lucas et al., have attributed this correction in the g-value to the
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gauge invariance of the spin-orbit coupling (see expression 3.211
where p should strictly speaking be replaced' by T_‘_r). They then use
Slater type orbitals to estimate the magnitude of A and GO (their GO
equals 2Ag). They neglect the shielding effects of the electrons
and obtain a value of A that is very close to that obtained from
experiment; this is presumably because A has a 1/&:3 dependence on
the distance between particles so that its most important contribution
comes from near the nuclei, where shielding will be wpimportant. It
is unlikely that this approximation is alright for calculating GO
which has only a 33"1 dependence on the distance between the unpaired
electron and the other charges. Although their calculated value of
GO is in fair a,greemen%}:?;cperiment, it is almost certainly an order
of megnitude too large. It also éeems that their correction— has the =~
wrong siegn to explain the g-value discrepancy. It is proposed that
the tendency to case (c¢) coupling is the true solution.

A1l the radicals considered here (I0, BrO and SeF) will
require a positive value of Ag in order for the magnitude of A to
be increaged; this means that the main mixing must be with 4Z excited
gtates. These radicals all have the same valence configuration,
namely (zo*)z(yo‘)z(wa)z(xc)z(vﬁ)3. The first excited states are :
(’xo*)1(vrr)4 yielding 2y e (xc’)z(vrr)z(ud‘)1 yielding 4y 2%

and 2A; sees (3@:}’)Q(Vrr)z(uﬂ)1 yielding ATT,QTT ’2ﬂ~’ and 2@.
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Thus there is both a 75 and a 2O state from the same excited
configuration. Since they will have approximately the same energy

and their spin-orbit coupling matrix elements (in a single configuration
approximation) with the ground state are the same, it is difficult

to predict the sign of Ag a priori.

It is also possible that the case (c) coupling may be
needed to explain the anémalies in the spectra of molecules, not in
gTT states, but still containing heavy nuclei. TFor example, in the
1[3 state of Se0, an extremely large rotational g-factor has to be
introduced in order to explain the spectrum 12; gi was 14 x 1O~4 while
the expected value is about 2X1O*4. A possible golution is to
introduce a positive /g, obtained from the mixing in of Bﬂé states.
The measurement of the second rotational level (J = 3) should again

permit us to establish which is the correct solution.
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Footfalls echo in the memory
Down the passage which we did not take
Towards the door we never opened

Into the rose-garden.,

Te Se Eliot:

Four Quartets, 'Burnt Horton',I.





