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I do not know what I may appear to the world, but to 

myself I seem to have been only like a boy playing on 

the sea-shore, and diverting myself in now and then 

finding a smoother pebble or a prettier shell than 

ordinary, whilst the great ocean of truth lay all 

undiscovered before me. 

Sir Isaac Newton: 

Brewsters Memoirs of Newton, li. 



ABSTRACT

FACULTYOP SCIENCB

CHEMISTRY

Doctor of Rhilosop^f

THE THEORY ARD E.P.R. SPECTRA OF LIREAR FREE RADICALS 

ly Brian John Howard.

This dissertation is concerned mainly with the theory 

needed to explain the gas-phase electron paramagnetic resonance spectra 

of linear free radicals,

' The Hamiltonian operator describing the system is obtained 

by transfprming the Pauli-Schrodinger form of the Breit equation 

from a space-fixed to a molecule-fixed axis system. Prom this an 

effective Hamiltonian, operating in just the ground vibronic state, 

is derived. This is then used to interpret the e.p.r, spectra of 

RS and CP, We obtain the electric dipole moment and information on 

the hyperfine parameters of these radicals.

The theory applicable to the energy levels of linear 

triatomic molecules is derived and the effects of the bending 

vibration on the e.p.r. spectra are obtained. Finally, the effects 

of case (c) coupling on the spectra of diatomic molecules are 

discussed; it is proposed that these are the cause of the discrepancies 

observed in the spectra of certain heavy molecules.
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Chapter 1

INTRODUCTION

The study of free radicals by the method of electron 

paramagnetic resonance started in the mid-1940' s. Amo#ng the first 

1 2 
radicals to be studied were the stable gases 0. and NO * whose spectra 

have been analysed by many authors. ,

Until quite recently, further work has been mainly 

restricted to liquids and solids. In the condensed phases, quantised 

rotational motion is completely quenched and we are consequently left 

with just the interaction of the electron spin with the applied magnetic 

10 
field . In the case of doublet states, the spectrum is approximately 

that of a free electron, centred on g=2, split by the hyperfine — 

interaction with any magnetic nuclei present in the molecule. In solids, 

particularly single crystals, and also in liquid crystals it is possible 

to determine the anisotropy of the interactions, namely the g- and 

hyperfine tensors. In liquids the random tumbling motion averages all 

the anisotropic interactions. The spectrum then gives only the isotropic 

interaction parameters. The "rotational" motion only reveals itself 

in the linewidths; it is a possible mechanism for relaxation. In the 

case of molecules in triplet or higher multiplet states, or with 

appreciable orbital angular momentum, the spectrum may differ 

considerably from g=2, but we can always neglect rotation.



For gases at pressures of only a few torr, the 

rotational motion is quantised. In bent molecules (e.g. NO^, CIGL 

and NF.) the only interaction of the electron spin with the molecular 

framework is the spin-rotation coupling. The magnitude of this is 

typically a few hundred MHz, and at fields of the order of kilogauss 

this produces just a small perturbation on the basic g=2 spectrum. 

The same is true for linear paramagnetic species in Z electronic 

states. Other linear molecules show a strong interaction between the 

spin and the molecular framework. In doubly-degenerate electronic 

states, i.e. states with orbital angular momentum, the spin-orbit 

coupling interaction provides a strong coupling of the spin to the 

internuclear axis. In triplet and higher multiplet states, the 

spin-spin dipolar interaction provides a similar coupling; it is 

particularly important for molecules with heavy atoms because of 

their large second order spin-orbit effects. These interactions tend 

to modify the g-value and if the molecule is polar give some of the 

transitions tunable with a magnetic field electric dipole intensity. 

These transition intensities are about 10' times greater than the 

magnetic dipole transitions observed in the condensed phases and in 

molecules with decoupled spin; consequently it is mainly radicals of 

this category that have been observed.

Following the work on the stable 0. and NO, the unstable 

radicals OH ,SH , SeH TeH and SO ' have been observed; 



the first four have a Efland the la^t a ^^ground state. Since then 

members of this laboratoiy have more than doubled the number of radicals. 

They have observed SO in its ^6^° state as well as ^^T^^^^^^, SeO (^E. 

and ^Zi)^^\ciO ^,BrO ^^,10 ^^,SF ^^,SeP ^^.FS ^^, and CP (all in 

their ^TT ground state). Recently the field has been enlarged by the 

detection of the linear triatomic radicals UGO and NOS (both with ^TT 

ground electronic states) ^^’2°. They show novel featxires, not 

previously observed, because of the interaction of the doubly degenerate 

vibration with the doubly degenerate electronic wavefunction. The 

theory of the resulting Renner interaction is described later in this 

27 
work .

Most of these radicals have been previously observed by 

electronic spectroscopy where the rotational constant and the spin-ofbit 

or the dipolar spin-spin coupling constant have been obtained. The 

e.p.r. spectra give these constants and in addition the magnetic ' 

hyperfine and electric quadrupole constants for magnetic nuclei, a 

measure of the rotational Zeeman interaction, small relativistic 

corrections to the electron spin and orbital g-factors, and in certain 

cases the spin-rotation interaction (in molecules which do not closely 

approximate to Hund's coupling case (a) ). Also ly means of a Stark 

cavity developed in this group, it is possible to measure the dipole 

moment.

Recently pure microwave spectroscopy has been used to study 



unstable paramagnetic molecules. The microwave spectra yield accurate 

values of the rotational constant, together with the other non-Zeeman 

parameters (with comparable accuracy to e.p.r.). Also one can look 

at the essentially diamagnetic ^ state of radicals and obtain 

complementary data on the hyperfine interaction; it is then possible 

to separate the various contributions, namely, the Permi—contact term, 

the electron-nuclear spin-spin dipolar interaction and the orbit-spin 

interaction.

As yet pure microwave spectroscopy is confined to OH ^^, 

SO , do , BrO , and NS (all fairly long lived radicals) and 

appears to be less sensitive than e.p.r. . This is reasonable since 

it is easier to obtain a high concentration of short-lived radicals in 

the small resonant cavity of e.p.r. than in the long non-resonant — 

wave-guide of a microwave spectrometer. Also the high 'Q? resonant 

cavity gives better signal-to-noise characteristics and hence greater 

sensitivity.

A great number of molecular constants are obtained from 

the electron resonance spectra and these can be used as sensitive tests 

of the accuracy of recent wavefunctions of open shell molecules. For 

example Carrington and Lucas compare the calculated and experimental 

hyperfine parameters of the isotopic forms of OH ^\ Another application 

of the techique of e.p.r. of gases is in kinetic studies. At present 

there is great interest in the radical intermediates in chemical 



reactions and quantitative determinations of their concentrations 

have been used in the study of the mechanism of several reactions (see 

for example Westenberg and de Haas

In this thesis, we start by first describing the e^cperimental 

techniques for the study of radical spectra. Then in chapter $, the 

theoiy for the,interpretation of such spectra is derived as precisely 

as possible within the confines of relativistic quantum mechanics. 

Paramagnetic molecules contain many different kinds of angular momenta 

coupled together, and the evaluation of the matrix elements of the 

Eamiltonian is made far simpler by using irreducible s^^rical tensor 

techniques. The essential points of these Racah methods are discussed 

in chapter 4. Chapter $ is concerned with calculating the energy levels. 

An effective Hamiltonian operating in only the ground vibronic state 

is derived and its matrix elements are evaluated. In chapters 6 and 7, 

we discuss the formation of NS and OF and the detailed analysis of their 

spectra. Chapter 8 is confined to the Renner effect. This is derived in 

a novel manner using degenerate perturbation theory. The important 

second and third order contributions have not been previously discussed 

but they have significant effects on the g-factor of the spectrum. 

In chapter 9, the effects of the spin-orbit coupling is described; this 

is believed to give the solution to the anomalies observed in the 

g-values of heavy radicals.



At certain points in the text it is necessary to obtain 

some fairly complicated mathematical results, and in.order to preserve 

the logical developement of the theory, will be included in the appendices 

at the end of their respective chapters.
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Chanter 2

EXPERIT,IENTAL

2.1 Introduction

The gas-phase free radicals described in this thesis are 

prepared by reacting the active species formed by passing a primary 

gas through a microwave discharge with a secondary gas inside the 

resonant microwave cavity. The cavity is positioned in a static 

magnetic field and the paramagnetic species are detected by standard 

e.p.r. techniques (except that electric field modulation is normally 

used). The radicals are usually very short lived, being quickly 

decomposed by collisions with other molecules present. It is thus 

necessary to use as low a pressure of reacting gases as possible, 

with the restriction that a high enough concentration of radicals is 

required in the microwave cavity to permit detection. Together with 

the problem of line-widths, a pressure in the region of 1 torr has 

been found optimiaa.

2.2 Spectrometer System.

Two spectrometers have been used in the study of the 

radicals described in this thesis. The NS spectrum was observed 

using a Varian V-4502 spectrometer in conjunction with a Varian 

12 inch magnet (with a maximum field of 14 kilogauss) and a V-fr250$ 

-10



iieldial” ma-^etic field regulator. Microwave power was supplied 

by an X-band klystron which operates in the region of 9 GHz and 

could be tuned to the frequency of the caviigr. Simple A.P.O. looking 

to the cavity resonant frequenqy is used.

The CP radical was detected using a Decca X-5 spectrometer 

which has better inherent sensitivity. The spectrometer works at an 

essentially fixed frequency of $270 MHz; the resonant frequency of 

the cavity has to be tuned to this. Small frequency drifts (about 

1 MHz) are accommodated by a Cavity Lock system. The magnetic field 

was produced with a Varian 15 inch magnet with a Mark II "Pieldial"; 

it gives a maximum field of 15.5 kilogauss with a 4 inch magnet gap 

and around 22 kilogauss with a 2g inch gap.

Both spectrometers incorporate 100 kHz modulation together 

with phase sensitive detection. The output of the Varian modulation 

unit has been modified to give high impedance sinusoidal voltage 

(Stark) modulation, pacilities are also available to apply a D.C. 

voltage on top of the A.C. modulation; this is essential in order to 

observe a signal with Stark modulation. The Decca instrument 

however has sine- and square-wave modulation capability. The latter 

has a constant amplitude of modulation of approximately 500 volts 

peak-to-peak. It has the great advantage of giving a greater signal 

to noise ratio because one can modulate through the complete height 

of the absorption signal without fear of broadening the line. If a

-11
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Figure 2.1 ELook Diagram of Basic Spectrometer System



D.C. voltage of I50 volts is applied, the modulation is from zero to 

$00 volts and the spectrum consists of the straight absorption line 

plus a Stark shifted line of opposite phase which are usually overlapped 

and give the appearance of a first derivative.

A block diagram of the basic spectrometer system is given 

in Figure 2.1, Microwave power from the klystron is supplied to 

the high "Q" resonant cavity and the reflected power is detected by 

the crystal detectors. A slowly changing magnetic field is applied 

to the sample in the cavity using a "Pieldial" which controls the 

current passing through the magnet coils. 100 kHz modulation (electric 

or magnetic field) is applied across the cavity and at an absorption 

line, the reflected power to the crystals is also modulated at 100 

kHz. The crystal current is amplified in a pre-amplifier and then 

demodulated by passing through a phase sensitive detector and time­

constant. The resulting signal is further amplified and then displayed 

on chart paper or on an oscilloscope.

2,^ Microwave Cavity

The cavity used in the detection of NS and CP is 

cylindrical and operates in the TE^^. mode. In this the microwave 

standing wave has the electric and magnetic field pattern shown 

in Figure 2.2.

If the cavity is placed with its axis parallel to the

— 12—
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static magnetic field, the microwave electric field is everywhere 

perpendicular to the applied magnetic field and gives a maximum 

filling factor for electric dipole transitions. (N.B. the electric 

vector is a maximum about half-way between the centre and the 

cylindrical walls)*

The great advantage of this mode is that no currents 

flow between the flat end-walls and the side-walls. This allows 

us to create a gap here without lowering the "Q" of the cavity

significantly; in fact it actually helps to suppress modes other 

than those of the form TE..
01p

We can then insulate the end-plates

from the main cavity body and apply the Stark modulation and D.C. 

electric field across the 'end-plates.

The cavity for use on the Varian spectrometer was designed 

and built by Carrington, Levy and Miller . It is designed to form 

an integral part of the vacuum system; this does away with the quartz 

inserts of earlier cavities and their deterioratory effect on the 

"Q". The cavity body and end-plates are machined from brass and 

gold-plated to help prevent chemical attack. The cylinder walls 

have two Inlet ports to allow mixing of the reacting gases inside 

the cavity and an outlet hole on the far side; this cavity is 

illustrated in Figure 2.).

The Decca cavity, built by Mr. Butcher and Mr. Cook 

of Decca Radar, is similar but contains a Teflon tuning stub to 

15-



alter the frequency over a small range and permit exact tuning to 

9270 MHz. It possesses a set of end-plates made from ceramic and 

covered with a thin layer of gold; this permits Zeeman modulation 

by means of coils affixed to the outside.

2.4 Vacuum System

The vacuum system is fairly simple* It consists of two 

gas manifolds mounted on a trolley. Each is connected to one of the 

entry ports or the cavity via pyrex glass tubing, employing ball and 

socket joints to make it flexible. At the rear of the cavity, an 

Edwards double-stage rotary pump, protected by a liquid nitrogen 

trap, maintains the flow of gas.

The primary gas (Ng. or CP.) is admitted to one manifold 

from a gas storage cylinder through an Edwards needle valve, to 

regulate the flow. About $0 cm. upstream of the cavity, the gas 

passes through a microwave discharge cavity (Electro-Medical Supplies 

Ltd.) operating at 2450 MHz. and at a power of around 100 watts. 

The gas is dissociated into active species (nitrogen atoms or fluorine 

atoms+GPg). The tubing between the discharge cavity and the ' 

microwave cavity is lined with P.T.P.E. tubing to prevent wall 

recombinations of atoms. It was also found desirable to have a 

bend in the tube between the two cavities to prevent direct 

photoionisation of the gas in the microwave cavity; the free electrons 

14.



80 formed would affect the effective magnetic and electric fields 

seen by the radicals and consequently render inaccurate measured 

field positions and dipole moments. This was found to be particularly 

true in the case of NS,

The secondary gas is stored in a trap at a temperature 

at which its vapour pressure is about 100 mm. of Hg. It is admitted 

to the second manifold via a needle-valve and reacts with the primary 

gas discharge products inside the Stark cavity.

The flows of the two gases are modified to optimise the 

spectrum; the total pressure as measured by an Edwards' Pirani 

gauge, was usually near one torr.

2.5 Measurement of Spectrum

Throughout the operation of the spectrometer, the 

klystron frequency was monitored frequently. For the Varian 

instrument, the microwave frequency (in the region of 9 GHZ.) was 

measured direct using a Hewlett-Packard H.P.9245L frequency counter 

with an H.P.5255A frequency converter. Por the Decca spectrometer, 

the beat frquency (about $0 IiTHz.) between the microwave frequency and 

a known harmonic of a crystal oscillator was measured using the 

H.P.5245L.

The magnetic field measurements were made using n.m.r, 

probes in the magnet gap adjacent to the cavity, Por NS, a Varian 

-15-



F-8 fluxmeter with deuterium probes was used, but with considerable 

difficulty. The GF was measured using an. AEG fluxmeter with proton 

probes. The spectrum was first displayed on chart paper using a 

Hewlett-Packard 7(X)1A X-Y chart recorder. Then the magnetic field 

scan was callibrated by placing vertical pen marks when the proton 

or deuteron came into resonance. The resonance frequencies of the 

probes were measured with the H.P.5245L frequency counter.

Since the probe cannot be placed inside the cavity, a 

small correction to the measured magnetic field has to be made to 

allow for the small inhomogeneity of the field across the magnet 

gap and the possible distortion of the field by magnetic impurities 

in the cavity body. These were estimated by measuring the HO spectrum 

and comparing it with the calculated spectrum at the particular 

microwave frequency, using the experimental parameters of Brown and

2 
Radford ,

2.6 Chemicals

Nitrogen ("oxygen-free") and tetrafluoromethane were 

supplied by the British Oxygen Co. Ltd, and Iviatoeson Co. Ltd, They 

were used direct from cylinders with no further purification.

SgClg and SCI were B.D.H. Laboratory grade reagents; 

they were used after out-gassing by freezing down to tn® solid and 

pumping hard.



Ketene was prepared by passing acetic anhydride throng 

a furnace at 600°C under its own vapour pressure at )O°C . The 

products were collected in a liquid nitrogen trap, but with 

continual pumping to remove volatile products like hydrogen and 

methane that are formed. The ketene is then purified by repeated 

vacuum distillation from an acetone/dry-ice trap to a liquid 

nitrogen trap. It was stored at liquid nitrogen temperatures to 

help prevent polymerisation.

17
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To see a World in a grain of sand, 

And a Heaven in a vild flower, 

Hold Infinity in the palm of your hand, 

And Eternity in an hour.

William Hlalce:

Auguries of Innocence. 



chapter 5

THE CQLIPLETE MOLECULAR HAT.ilLTONIAN

5.1 Introduction

The increased interest in the radio-frequency and 

microwave spectra of open-shell molecules (for example, the e.p.r. 

spectra described in this thesis) makes it necessary to obtain as 

complete a molecular Hamiltonian as possible in order to properly 

interpret the spectra and to correlate experimentally determined 

parameters with those calculated from electronic wavefunctions. It 

has been pointed out by Gerratt that the most complete derivation 

to date is that of Curl , who limits himself to only those terms 

which are important in relating.the spin-rotation and electronic 

g-tensors of paramagnetic molecules. As far as the author is aware, 

all "complete" Hamiltonians have been obtained by adding together 

the various interaction terms, which have been obtained separately, 

and assuming that the resultant is correct. In the following 

sections the Hamiltonian is derived as rigorously as possible within 

the limitations of relativistic quantum mechanics. The method of 

approach is outlined below.

Initially we obtain a molecular Hamiltonian expressed in 

space-fixed coordinates by taking the Hreit equation (the two-particle 

form of the Dirac equation) and reducing it to non-relativistic form 



by a Foldy-Wouthuysen type transformation. Certain important radiative 

corrections, which could he obtained from quantum field theory ( e.g: 

that to the electron g-factor ), are introduced phenomenologically. 

The classical Hamiltonian, expressed in molecular coordinates, is 

obtained via the classical Langrangian. This is then transformed to 

the quantum mechanical Hamiltonian by means of a Podolsky-type 

transformation.

To begin with we obtain the Hamiltonian appropriate to 

a general non-linear molecule. This is then followed by a parallel 

developement for the linear molecule with all its incipient 

difficulties (because it has only two rotational degrees of freedom). 

Throughout this work all external electromagnetic fields are assumed 

to be constant.

3.2 Space-fixed Hamiltonian

The energy of a single electron in an external

% / c 
electromagnetic field is well described by the Hirac equation 

which is the simplest first order operator that is Lorentz invariant 

(i.e. is unchanged in form by any orthogonal space-time transformation) 

and satisfies the Klein-Gordon equation. Such a Hamiltonian is;

().1)

1,/here TT^ 2_+ '^ is the mechanical momentum, ^ is the 

-20



conjugate (canonical) momentum, ^ is the scalar potential and A 

is the vector potential of the electromagnetic field ( A = H, the 

static magnetic field). In the simplest representation o^ and p 

are 4^4 matrices related to the Pauli spin matrices cr ,

/O 0I
oc

0 0 I
(3.2)

and in the representation with diazonalz

0

z X
1 1 0

/ 0 i

y 0
(3.3)

I is the 2-dimensional unit matrix. The wavefunction is a 4-dimen8ional 

spinor. To first order, two solutions have energy me and the other 

2
two -me . These are mixed by b< (a so-called odd operator). In any 

physical problem, it is desirable to reduce the Dirac equation to a 

" " 6
non-relativistic form by a Foldy-Wouthuysen unitary transformation, 

where the odd terms are made negligible. This gives the energy in 

a descending power series in c (the velocity of light), with leading 

term mo .

In the case of two electrons, it is not possible to
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write an exact relativistic equation; however the Breit equation "^ 

for two electrons is correct (i.e. Lorentz Invariant) to order c"^

c(x,.rr, + c 2 2
m^c + m.c

Thia has been reduced

Barker and Glover

o"^ is :

i

^1®2
1

2
.2=^ '±/ \y::2"

2r^
(3.4)

to a non-relativistic form by Chraplyvy ^ and

The resulting Hamiltonian correct to order

2 
m. c __L rr^

2m. ''i
1

e. e.e. ().5a)

+
g.4(e.

1 1
2m. 0

—1 —1 (3.5b)

g.-te.
s. (3.5o)

t^e.

2 2 
8m7c

1

1
(3.5d)

rrf 1

8m^o^ i
(3.58)

1
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2111
^m^^m c

-; R).K (3.5f)

11,]
2 2 34m^c R^

=1.(2.%) (3.5g)

+ 1 1 ,1

2m.m.c
1 J

8i.(R^nJ ().5h)

+

(5'51)

1 J 1 J 
n 2 Gm.m.c

1 J

z —1 2
-J

3 (s..R)(8..R)

81T §(R)(s..8.
X 1 J

(3.5j)

+ 0(c ^) ,

where i and 

1 or 2), m.

momentum, g- 

electron i.

j are electron subscripts (in the case of two electrons

-e., s., g., R. and Hi are the mass, charge, spin angular 

factor, position vector and mechanical momentum of

Also :



and &(R) is the Dirac delta function. Throughout this work the 

fields are assumed to be homogeneous and constant in time; therefore 

the subscripts to A and ^ may be dropped.

The significance of the various terms in equation ($.5) 

is as follows : (5a) represents the classical interaction terms 

for electrons in an electromagnetic field, namely their rest mass, 

kinetic energy, interaction with an external electric potential and . 

the Coulomb interaction between two electrons. (5b) gives the 

interaction of the spin magnetic moment with the external magnetic 

field. Relativistically a moving spin magnetic moment has an electric 

moment perpendicular to it and its velocity and the interaction of 

this with the external electric field is represented by (5c); 

alternatively, to a moving charge, the electric field appears to have 

some magnetic character which can then interact with the electron 

11 
spin. This term has been considered by Thomas . Por homogeneous 

electric fields (5c) simplifies to :

For the same reason J vanishes; this^the Dar^^in term which 

represents the interaction due to the spreading out of the charge of 

the electron or so-called Zitterbewegung (see for example ref. 4). 

(5e) gives the relativistic corrections to the electron kinetic 

energy and the Zeeman interaction. The latter term has been included 

24'



even though formally of order c ^ because it arises in the reduction 

of the Dirac equation for one electron in the same way that corrections 

to the orbital Zeeman are obtained from the former term, and also it 

has been shown to be important spectroscopically ^^'^^, ^he 

retarded interaction (5f) of the charge of one electron with the 

electromagnetic field due to the other electron (orbit-orbit 

interaction) has been derived classically by Darwin ^^. The spin- 

°^^it and spin-other-orbit interactions are given by (5g) and (5h). 

(5i) is similar to the Darwin term (5d) but is a correction due to 

the electric field of the other electrons. It can be interpreted as 

a spread of the electron charge and to a first approximation is the 

modification to the Coulomb interaction (5a) provided by a spherically 

charge distribution of mean square radius {r^} = ^(h/mc)^. The 

final term (5j) is the spin-spin interaction. The former represents 

the classical dipole-dipole interaction and the latter expresses the 

mutual interaction between two mutually penetrating magnetic moments 

(the Fermi-contact term). Asimilar Hamiltonian has been obtained by 

Itoh ^^ using quantum electrodynamics.

We now wish to extend this Hamiltonian to a molecule 

but before this can be done a number of modifications and assumptions 

have to be made. First, it is assumed that there are no three particle 

interactions; this has been confirmed to order c"^ by Itoh ^^ for 

a system of many electrons. Secondly, the value of the electron 

2^



g-faotor in equation ($.5) is exactly 2, whereas the experimental 

value is 2.002319; this discrepancy can he accounted for if we use 

quantum electrodynamics. In this work the experimental value will 

he used; other radiative corrections will be neglected even though 

the Lamb shift may be important in the observation of electronic 

transitions. Thirdly, the Hamiltonian must be extended to include 

nuclei, which are not Lirac particles and have anomalous magnetic 

moments. These particles are included by assuming that they behave 

like Lirac particles, hut having the magnetic moments given by 

experiment. Bethe and Salpeter (page 194) have shown that this 

assumpwtion is allowed provided that terms involving only 

(nuclear mass)"^ are retained. The terms of higher order in nuclear 

mass are all formally of order c and are negligible. Finally, the— 

possibility of nuclear quadrupole interactions may be included 

phenomenologically by adding its form will not concern us here, 

hut is given by many authors.

From now on we shall use the subscripts (%- and 6 to 

distinguish the nuclei. Z^ will be the atomic number of nucleus ot, 

^^® Bohr magneton anda^. = — — — the nuclear magneton; m is 
p 

the proton mass. Dropping the subscripts from electron mass, charge 

and g-factor the complete molecular Hamiltonian in the space-fixed 

coordinate system is :
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M-
1

-^ (8..S)TI^

me

+ V + O(o"^). (3'6)

In this Hamiltonian :

().7)

and. V which contains or n^ is given hyall terms not involving )T.
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The transformation of V to molecular coordinates is trivial. Since 

m and TC both contain magnetic vector potential terms of order c"^, 

the Hamiltonian (3«6) contains terms of high order in c which are 

formally negligible, but we retain them to maintain the gauge 

invariance of the Hamiltonian (see for example ref, 4) , i^ ariy 

application these terms may be dropped after the choice of a suitable 

gauge. In the derivation of this Hamiltonian the anomalous magnetic 

moments of the electrons and nuclei have been introduced after a 

Foldy-Wouthuysen typo transformation. Hegstrom '^, who considered 

the hydrogen atom, introduced these effects before the Foldyr 

Wouthuysen type reduction and has obtained slightly different results 

for the spin-orbit coupling terms. If the g-factor of an electron 

is written as g = 2(1 f a) his spin-orbit coupling terms are 



proportional to (1 + 2a) in contrast to ours which is proportional 

to (1 + a)* An appeal to quantum electrodynamics is necessary to 

decide which is correct, hut the author is not aware of such a 

study.

Since the difficulties that arise in transforming the 

Hamiltonian to a molecular coordinate system involve only the

momenta, we may write equation (3.6) in the simpler form :

The expressions B, C and B (a tensor) are all of order c"^ and are

given ty :
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and g

— ’ ' (3.14)

Equation ().$) is the quantum mechanical Hamiltonian, but the classical 

Hamiltonian is given by the same expression*

),) Transformation of Classical Hamiltonian from Space-fixed to 

Molecule-fixed Axes*

The classical Hamiltonian ().6) is difficult to transform 

directly because it is expressed in terms of momenta. We shall 

follow a method similar to thatof Curl and use a classical 

Langrangian as an intermediary; the advantage of the Lagrangian is 

that it is a function of velocities, which are easier to transform. 

Classically the Lagrangian,^, and the velocities, ^, of a system 

of particles are related to the Hamiltonian, -H", and the conjugate

(3.15)

(3.16)
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Por the Lagrangian :

o( J oC

we obtain the conjugate momenta ;

P. = mR. - A. - ) 2m
—1 —1 C —1 —1 1—1 A— =^J —J

- y .R + 0(c ^) C).18)

and.

P = m R + —— A " «R. + 0 (c ) « (3«19)

i 

Substitution into equations ($.17) euid ().16) gives the same 

Hamiltonian as ().19) snd we are thus justified in using (3.17)

as our Lagrangian,

The Lagrangian includes relativistic corrections and it 

might be thought that we should use a Lorentz transformation when 

transforming to molecular coordinates. This would be true if we 

were performing our physical measurements while moving with the 
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molecule. Instead we measure quantities like energy differences 

and electric or magnetic fields in a laboratory fixed frame. The 

Lagrangian should be appropriate to the laboratory frame, whether 

space or molecular coordinates are used, and a classical or 

Galilean transformation should be used; that is to say we only 

perform a transformation of variables within the space-fixed frame 

of reference.

In performing the transformation, it is necessary to . 

seporate translational^ rotational, vibrational and electronic 

motion as completely as possible. This is done in three stages :

(a) change the origin of coordinates from a space-fixed one to the 

molecular centre of mass, R, keeping the axes parallel to the original 

space-fixed axes; this separates off the translational motion,

(b) without changing the origin,allow the axes to rotate with the 

molecule with velocity^ ; this separates off rotation.

(c) move the origin to the centre of mass of the nuclei without 

changing the orientation of the axes.

17 
This is analogous to the method of Wilson and Howard , or as

18 
detailed in chapter 11 of Wilson, Lecius and Cross .

If the subscript X is used to denote oc or i, the old 

coordinates, R\* c^ he written in terms of the new coordinates r^^ 

as *

R\ = Bf + S (3^20)



where R is the position of the centre of mass of the molecule

(5.21)

where M is the total mass of the molecule ( =Z ni>,^ a^d where S is

the position of the centre of mass of the nuclei relative to the centre

of mass of the complete molecule*

(3.22)
$ =

It should also he noted that because of condition (c) i

(3.23)

Since ^ is the angular velocity of the molecular axes with respect 

to the space-fixed axes, the time derivative of (3.21) is :

ix = i + + i + O^A^ x) + ((fi/v^) ()'24)

where the comnonents of r. (and 8 ) are measured in the moving 

axis system.

Before we consider the transformation of the Lagrangian 

(3.17) to molecule-fixed axes, we perform the transformation in the 

absence of external fields and magnetic effects between particles.

Then the space-fixed Lagrangian becomes :



(3.25)

Rewriting Rv in terms of molecular velocities, equation ($.25)

becomes :

-1 1—1
1-

2iu.

2V

(3.26)

or expanding in molecular coordinate

where :

2 
MR +

XX yy

+

i

I
2

"^x I
2

'^y

+

—1

^^xy'^x'^^y

I

(3.28)and similarly I and I 
yy zz



1 and I^^ are similarly defined.

So far the orientation of the molecule fixed axes ha@'

been left undetermined. The method used by Wilson and Howard and

20
used here is the Bckart condition

(X

where r^ is the equilibrium value of r . This condition gives 

/-^AL/k—0^ ^* ^bich is almost equivalent to there being no angular 

momentum of the nuclei relative to the rotating axis system.

The nuclear displacements, r°, are now written in 

terms of the normal coordinates Q ,

J^o( (lot

r

(3.31)

The elements ^ obey a number of orthogonality relationships :

(3.32)

(3.33)

(3.34)

These represent respectively the orthogonality between the vibrational 

modes, between vibrations and translation, and between vibrations and 



rotation. In terms of normal coordinates, the nuclear Coriolis 

coupling in (^.2?) can be written as :

(summation over r and s assumed)

where ^ is the Coriolis coupling constant : 
rs u

rs
(5.36)

OC
6——o(r /s"^ ixs

Then the total Lagrangian is given by ;

2jC. = KE + + ^yy
2

^y zz
2 

'^z

!Z(yiYVj)

i, j

rs r 8

^rsQpQs

the Lagrangian andIt is now necessapy to express then the Hamiltonian

f I

in terms of momenta instead of velocities.



The components of translational momenta are given ly :

().)8)P = im

The angular momentum conjugate to (J is J = —

\ r. + U (mr. - '^^2-.)

Exactly analogous expressions are obtained, for ^ and M . 
y z

Similarly

the momentum conjugate to Q is :

p = = Q + V Q
8 8 rs r

and. the electron momenta jg. conjugate to r. are :

(5.40)

Substituting (^.40) a^oi (3^41) i^bo (3.$9) gives



(;.42)

Ifow corresponds to a component of angular momentum of the 

nuclei, G , and E^.(r. . p/) is the x-component of the total orbital 

angularmomentum, L :

where the moments of inertia have been redefined as ;

4 -Z-kCy^+z!,) - hlt^j-rAes (5-44)

and similarly I . Analogous exnressions for the other comuonents 

of jj are obtained, giving in matrix notation :

J - L - G = (3.46)

For a non-linear molecules ^ is non-singular, so that inversion 

is permitted.

. . Id = ( J — L — G ) (^.^Y)

where the inverse matrix of I .

However from (^.37) :

+ Z PA + - 2V (5.48)
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Then using equation ($.16) and replacing (J - L - G) ty X, the 

rotational angular momentum, we obtain :

where M^ is

are related

^(^.49)

the total nuclear mass.

In passing, it is useful to note that the new momenta 

to the momenta in the space-fixed coordinates by ;

t o<.

r o(r —o(

(5'50)

0.^1)

0.52)

(5.55)

The above section is equivalent to starting with a Lagrangian of 

the form :

where q^,^ is a generalised molecular coordinate, and obtaining the

corresponding Hamiltonian :

P P + V (5.55)

X,P
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where G^^ is an element of the matrix inverse to that with elementa

The complete Lagrangian (;.17) can be written in terms 

of these generalised molecular coordinates ae :

- Z (3'5^)
where a\ is the external magnetic potential term of order c \ and 

the remaining coefficients are all of order c ; the terms d and c 

are symmetrical with respect to interchange of subscripts. The 

conjugate momentum is given by :

This is equivalent to :

The Hamiltonian is then given by :



■1

i(P\ +

0(c ().59)

which on substitution of ().58) gives :

+ ^ O\p^q)^pq,^^ + T + 0(0"^) ().6o)

All the latter terms in q. are of order c and we can replace 

entirely by pp by substituting :

The elements G.that appear above are exactly identical to those 

obtained in the absence of external field effects, inter-particle 

interactions and relativistic corrections. Thus the complete 

Lagrangian (5*17) yields a inolecular Hamiltonian :

1 i
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+ mm
—i =ip(. —oc

(X

+ y "fO (c ^)

(3.62)

where ,

IT = p + A (3.63)

I?' " .2 4^ (3.64)

(3.63)

and + 8..
—1

(3.66)

The A's are covariant ।quantities
21

and transform in the same way

as the momenta. Thus TiT Ti ff and. IT. are related to IT. and H_ 

in the same way as P, N, P^ and r. are related to P^^ and P^^ (see 

equations (3^50) to ().5)) ). In ().62), we have chosen to write 

the interaction terms of order c in terms of space-fixed velocities. 

This will aid the transformation to a quantum mechanical Hamiltonian.

It remains to express R. and R in terms of the new 

mechanical momenta :

R. = iTT. + 0(0""^) (3.67)

R = + 0(0"^) (3.68)

Then using the inverse of ($.50) to ($.5))

—1 m—1 M—
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i

"»OCA— ”* ' ' \ /

" 26 ' 0 
where I is related to the tensor /x and I , the inertia 

tensor evaluated at the equilibrium positions of the nuclei, ly ;

A = 1° (3.71)

Strictly speaking, these small terms are the exact 

transform of the analogous small terms in (3'4). Also the kinetic 

energy terms are the exact transform of the space-fixed kinetic 

energy terms in a classical form.

3.4 Transformation to the Quantum Mechanical Hamiltonian

In the previous section, it was shown that the quantum 

mechanical Hamiltonian :

transforms into a molecule-fixed Hamiltonian with a classical form :



The remaining terms of the total Hamiltonian can be obtained by 

direct substitution of momenta in a space system by those in the 

molecular system according to equations analogous to ($.70) and 

($.71). It is thus necessary to find a way of transforming ($.7$) 

to a quantum mechanical form.

An analogous problem has been considered by Wilson et 

11Q 
al. . They start off with a space-fixed Hamiltonian :

(3.74)

This transforms to a classical molecular Hamiltonian of the form :

yf + V

22,19
Hsing the Podolsky transformation for

(3.75)

the quantum

mechanical form is :

(5.76)

where g is the determinant of the matrix with elements g^p. (A 

proof of this is given in Appendix A). An exactly equivalent 

equation is obtained on the addition of electronic momenta. Let 

us first consider the field-free case, i.e. equation ($.48). The 

above manipulation cannot be performed directly on ($.48), since it 

involves N which is not a momentum conjugate to any given coordinates. 

Instead it has to be expressed first in terms of p^, p^, p^(conjugate 



to the Euler angle 6, ^, X) and the other conjugate momenta P 

and n..

The basic argument has been given by V/ilson, Pecius 

19 
and Cross but will be included here for completeness. Initially 

we require the components of angular velocity in terms of 9, <^ and 

X, These latter are true vector quantities and on compounding 

along the molecule x, y, z axes gives :

U = GsinX - (|)sin^cosX

n = OcosX f ^sin^sinX (3'77)

u) = - ^cos8 + X

The inverse transformation is : -

The components of total angular momentum are given by :

sin^ pg - osc6 cosX p, + cotG cosX py

(3.80)
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Then :

N — M •* L ™ G 
X X X X

= sinXp^ - cacD cosXp^ + ootGcos^^p

Similarly,

N = cosD(pg + cscB sinX p^ - cotGsin'Xp^

i r,8

i r,8 

%r a manipulation of the elements of the determinant of the g-matrix 

it is possible to remove all elements connecting rotation and 

vibration, rotation and electronic motion, and vibration and 

electronic motion on one side of the diagonal. Then ;

g = det gxy

- l^^tyNr) cosec 0 X (mass dependent terms)

(3.84)

The mass dependent terms arise from the 1/m and V^L terms in the 

electronic-electronic sub-matrix and is completely independent of 

all the coordinates. They all disappear on substitution into ($.76).



Thus writing /^ as detyx. :

= ^ i/^sin ^0 p)^yL^sin^ gXpPp/^^sin'^G + V 

^^^ ($.85)

This is appropriate for an integration volume element dq.dqg''''dq^,

but it is customary to use a volume element sin^ d6d^dXdQ."'\

This modifies the wa^e-function by a factor of sin^o

and the wave equation :

jj^= ETl)

corresponding to the Hamiltonian (3.8$) should be replaced by :

where
I 

^ = sin ^^ '^

($.86)

+ V

'hen Wilson,
19Decius and Gross show that after non-commutation

properties have been taken into account, the Hamiltonian be written 

in terms of the original momenta (see ($.81) to (3.8$) ) as :

'^ / (3.87)
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This depends upon the fact that if the true momenta p^ are related 

to the ficticious momenta Mp by :

($.88)

we require : 

det = 8 = sin &

and ^ (\^"^^ (p^ X 8px) = (^ ()'89)

In the presence of fields the classical Hamiltonian becomes :

= I^ i gxpTT^T^, + V ().9O)

But since TT^ has the same transformation properties as p^ fthey 

are boj^h covariant quantities), the Podolsky transformation yields 

an equation similar to ($.86) i.e.

;^f' = ^ ^/^sin-^^TT^/^^sinOg)^^]!^/^ + V ()'91)

This time we require :

( ETT^s"'') + X 8-^8^^ (n^^Z^rx ) = 0 ($.92)

L.H.S. = '^(P)^8""^) + ^8"^8^p^(

' = 0

—/^8™



Hence ;

U,v i

To this should be added the remaining terms from (3.9) :

where B, C and D are given in (3.10) to (3.14) arid TT. and TLare 

written in terms of molecular momenta as :

% ' i^ + Sir 0.95)

3.5 Simplification of the Hamiltonian

In order to make use of the complete Hamiltonian (3.93) 

and (3.94) in physical problems, it is expedient to perform some 

further manipulations so that terms appear in a more familiar form. 

In doing this we shall freq^uently omit terms without comment if they 
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make a negligible contribution to the energy; these terms are typically 

of order c or ) c or higher.

Initially the space-fixed vector potentials are written 

in a form which satisfies a Coulomb gauge :

Al . M/^RiJ I A, = i(H^S„) (5.97)

Thus the molecule-fixed potentials, which are given by relationships

similar to 1^.52) to (3^5)?, are :

().1OO)
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ajid.

In these equations the total molecular electric charge is :

i

().1O2)

aaid R. and R have been written in terms of molecular coordinates

using equations ($.20j and ($.22). These potentials could be

substituted directly into ($.8?), but the presence of translational

and vibrational coordinates in a. is undesirable, since they lead

to large second order effects in most representations of the total 

wave-function. However, these terms may be removed by a change of

24 25gauge t" , a suitable scalar function being :

The total wave-function is multiplied by a phase factor exp (i?/k)

and each potential A. is replaced by

(3.104)

(3.105)

i



80 that the latter contains only electron coordinates. Ideally 

one would like to obtain all potentials in forms involving only 

their'Corresponding coordinates, but this has not proved possible. 

However, the unwanted terms all give negligible contributions to 

the energy and will be omitted below; the Hamiltonian will then 

no longer be strictly gauge invariant, but this is permissible, 

since a definite gauge has now been chosen.

We shall now consider each term of (3^93,)»94) in turn, 

omitting all those contributions that are negligible in a separable 

representation of the form :

where is the translational wave-function and depends only 
Ttrans

on R, the rotational wave-function,depends only on the Ruler 

angles associated with the orientation of the molecule,Tpvjb ^^ 

a function of the normal coordinates, and the electronic 

wave-function depends on r^^ and possibly Q^.



The translational part,j4, of the Hamiltonian ().9)) 

^^ ^ ^— ^ —) ' ^"^^ those parts of A involving R give diagonal 

contributions, and the second order contributions of the other terms 

only connect different electronic and vibrational states and are 

therefore negligible except at very high fields. Thus :

2 2
"^T = ^ - ^c H.(R ^p) + (3.109)

and only adds to the energy a constant term that cannot be detected 

spectroscopically.

The rotational Hamiltonian can be expanded as :

u,v u,v

51 (3k110)

u,v u,v

Making use of the fact that :

the second and third terms of (5.110) become :

(5.112)

In a similar way the vibrational part of the Hamiltonian is :



r r

r r

where the last two terms simplify to ; 

Zl/, + t[P,Aj 0.114) 

r

The second term in (3.114) caii 1^ shown to vanish hy direct 

substitution (3.IO5) and (3.52). Now Watson ' has shown that : 

u,v r 

u,v r u

In addition it can be shown 

V <»(,V 

where I is defined by (3«71). addition A^is uo be evaluated 

after the gauge transformation :

i

Addition of equations (3.110) and (3*113) and substitution of (3.103) 

(3.112) and (3.114) to (3.116) yields ; 
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u,T r u r

+ Z - -^[M<Aj/l"'''')^N^ + N^(r°^A)^(l""^)^

,u,v

(A^r'A^^^r '"' Z ^'Sr^uv'Sr

V V
U,T

(3.118)

In substituting ($.117) for A^, terms involving translational and 

electronic coordinates may be omitted since they are negligible. 

In equation (5.119) the first three terms are, respectively, the 

rotational kinetic energy, the vibrational kinetic energy and the 

mass-dependent contribution to the potential energy that has been 

discussed by Watson ^°. The next and last terms are responsible for 

rotational and vibrational contributions to diamagnetism. The 

remaining two terms are linear in external magnetic field and 

represent rotational and vibrational Zeeman effects.

The electronic part of the Hamiltonian is .:

(5.119)

Substituting equation (5.10?) for a. and neglecting small terms

this becomes :
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-iA21)Pi
2 

e 
2mc^

(5.120)

The first three terms are the kinetic energy of the electrons 

together with the mass-polarization and relativistic corrections; 

the next terms represent the electronic orbital Zeeman interaction 

also with its mass-polarization and relativistic corrections, while 

the final term is responsible for electron diamagnetism.

The remaining terms of the Hamiltonian (3. 94) may be 

considered in four parts, the first being :

) B..Tr
i

the spin-orbit and spin-other-orbitThe first two terms give 

interactions, while the third term represents the interaction of 

the nuclear spins with the electronic orbital angular momentum.

The last term gives the interaction of the moving electrons with 

the static electric field, and is usually negligible as are the 

«e ^^™e



magnetic field (gauge invariance) terms which have been omitted.

Using equation (3.96) we have :

oL

(4i,r

^:,i

(3.122)

where the three terms represent, respectively, the mass polarization

correction to the spin-orbit and spin-other-orbit coupling. the

spin-vibration interaction and the spin-rotation interaction.

The third of the remaining terms is :

13.123)

and gives the retarded interaction between moving electrons

(orbit-orbit interaction) and the relativistic correction to
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the electron spin Eeeman term which appears in V (see equation

(3.8) ). Finally :

4

Z/'
r.

-C ^i(*.

1
'-J

z

z

kf%C
r.

r.
r:

2mo

2
2 : '^-(^ + 4«

(3.124)

1

1

^ipt

2

These are respectively the mass polarization correction to the 

orbit-orbit interaction of (3.123), the orbit-vibration and the 

orbit-rotation interactions.

The expression for the potential energy, V, is the 

same as that given in equation (3.8), but with each interparticle 

distance R. replaced byr^^.

Equations (3.109), (3.110), (3.120 to 124) and (3.8) 

together give a cosiplete Hamiltonian (correct to order c ) for 

a non-linear molecule in the presence of constant electromagnetic 

fields. In this gamiltonian are several new terms which have only 

been investigated in simple systems like atoms. These new terms 
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include mass-polarization corrections to the orbital Zeeman 

interaction ().12G^, the spin-orbit coupling ($.122)* and the 

orbit-orbit interaction ($.124). The first of these has been 

11 
considered by Abr^am and Van Vleck in the case of the oxygen 

atom. They may be important in considering the effects of isotopic 

substitution on spectra and,since they are proportional to (m/M), 

their relative importance Tfill be greatest for light species; 

however, the spin-'Orbit correction will have the largest magnitude 

for molecules witkheavy nuclei.

Other novel terms are the spin-vibration interaction 

($.122) and the orbit-vibration interaction ($.124), which however 

only give diagonal contributions if the molecule has sufficient 

symmetry for soma -of the vibrational modes to be degenerate; this 

is related to the fact that^^^Q^Pg only contributes in first 

order if r and a are two components of a degenerate mode.

Eguatlcn ($.118) includes a vibration as well as a 

rotational Zeeman term. This would modify the g-factor of a 

molecule (whether closed- or open- shell), when it is in a 

degenerate vibrat&onal state (a degenerate mode has been excited), 

but to the author's knowledge such an effect has not yet been 

observed.



3.6 Quantum Mechanical Hajniltonian for a Linear Molecule

The hamiltonian derived, so far is only strictly valid 

for non-linear molecules. The modifications that have to be made 

for linear molecules will be outlined in the following section.

The derivation of the classical Bamiltonian is exactly 

analogous to that given for a general non-linear molecule in Section 

3.3, except that the Eckart equation (3.)0) only gives two conditions 

specifying the molecule-fixed axis szAstem. This is equivalent to 

the idea that a linear molecule has only two degrees of rotational 

freedom, i.e. its orientation is specified by just two Euler angles 

0 and^. Por an n-atom molecule, there are consequently (3ii-5) 

instead of ^311-6) vibrational degrees of freedom. Throughout, 

we shall take the figure axis of the linear molecule to be the 

z axis. The equilibrium positions of the nuclei are a^^ (situated 

on the z axis). Then the Eckart conditions are : 

2 = 0 0.125)

and the vibrational normal coordinates are defined by : 

4^(Zpc-a(/J "24r^ 0.126)

r

The new orthogonality relationships for the components of 2^ ^-^'^^ 

29 
given hy Amat and Henry



The derivation of conjttgate momenta is exactly the

same as in (5.38) to (5«45) except now :

4 - ^1 - ^yz " 4 - ° (3.127)

4 i3.128J

where,

1
I (3.129)

The proof of the

e
r

29
se is given T?y Amat and henry

30 
and also Watson .

" e
is the value of I' at the equilibrium configuration.

Ie 13.130)

13.131)

with

Therefore

I

J

oC

06

" L — G I ft) —

(3.132)

(3.133)

X X X X
(3.134)

(3.135)
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Inverting ($.1^)* we obtain :

" r (J% - ^z - V ) '^ = r(jy - ^-y - GyJ (3.1)6)

The Lagrangian equivalent to ().48) ie :

r i

+ j|- - 2V (3.1)7)

Then if we replace
1
21' by B, the claaeical molecular Hamiltonian

becomes :

2

r

+

i

(3.138)V

It is now necessary to transform to quantum mechanical form; the 

19
method, of Wilson, Hecius and. Cross cannot be used without

modification because of the lack of the third HiHer angle. It

is still, however, necessary to write the components of N (=J-^L) 

in terms of p^, p^, P^ and jg^. The angular velocities are given by:

cd « - 6 sin 6

(3.139)

<^ cos 8
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The inverse transformation, however* is not unique :

6 w 
y

4)
u cosec 8 or Useo0 

z
or combinations. (3.140)

Prom (3.$159) :

Pe
bT uLcu"

68
6T ^(^z 

awg 68

^T +

y
(5.141)

here Jhas been replaced, by ^ to emphasise the point that its

components do not obey commutation relations for angular momenta

Similarly :

4 cos^ .15.142)

It is not possible to write4 in terms of PA, but using (5.155) :

(5.145)

r,8
and

cosec 6 + cot&

r,3 (5.144)

- ^ sin 9

z
i

z

r.^p. ) +
s

i

The classical Hamiltonian has the form :

Mp + V (5.145)

where the M^ are related to the conjugate momenta by : 



the
where e^^ is /symmetric matrix defining the transformation. This 

yields :

^ = X Pp + (3.146) 

after the lodolsky transformation ' '' (also Appendix A), the 

quantum mechanical form is :

= ^ig^"%pMp^ + V (3.147) 

where the quantum mechanical operator ;

(3.148)

However, for linear molecules p^ and s/^ commute; therefore My..oan 

he replaced ty M^in ($.147).

The determinant g of g^is :

g = E — g cosec ^ = EH cOsec ^ (3*149)

where E and E are functions of only the masses of the particles. 

Equation ($.147) applies when one has a weight factor of unity in 

the normalisation of the wave-function. Using the more usual 
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weight factor of sin^ , the Hamiltonian should he pre-multiplied 

by sin'^O and post-multiplied by sin^^ I yielding *

B(ll^ + 008ec6 N 8ine I^) + ^ ^lAp^'"''p;.B^

Z is Pi 

i

1
»jiiui<i*«IVilUUi

2
+ 7 (3.150)

Expanding the rotational terms and putting the total internal

angular momentum, W = & + L, we obtain :

B( H^ + cdsec^lLGinGHy)

=" B[^x + oo8ec6^ySin6^y- W^^x "

- cosec ^1 sin DlfC - + ^''^^ + ^J
/ (),151)

This is equal to the expression given hy Hougan for the case of 

the linear triatomio molecule ^^ after making use of the non-commutation 

properties of ^ with W and sin 0 .

(3.152)

The same author has shown that the above Hamiltonian (3.152) is 

isomorphic with a symmetrictbp Hamiltonian, where the third Euler 

angle X is introduced. This form is more suitable, since then the 



techniques of spherical tensor operators (to be described in the 

next chapter) can be used in evaluating matrix elements. Here we 

obtain the same result by means of a similarity transformation.

i.e. ^ —^ sjfs and V' "' 3^ 8")^ (3.15;)

If 8 is taken to be exp (iW^X/K^), the rotational wave-function 

automatically takes on the form of a symmetric top wave-function. 

It is also an eigenfunction of the operator p^ = -i^t^* with 

eigenvalues equal to those of W . Therefore it is possible to 

replace W ly p^whenever it acts directly on the wave-function. 

Elsewhere *^ can ba replaced by p^ if the commutation properties 

with other terms in the expression are taken into account.

How the effect of the similarity transformation on the 

various terms in the Hamiltonian is as follows.

exp (iWgX/k) G^ exp (-iW^X/K)

= exp (iG^x/k) G^ exp (-iG2</^)

8=0

'] (3.154)

where there are s commutators Also Watson has shown that :

—itG 
y (3.155)

^^x
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Therefore,
,s

-i-
(8+i;/2 ]f

191 y'
@ even 3 odd

a G cosX - G 8111% 
X y

(3.156)

Similarly

G 008/^ + G sinX 
y :%

(3.157)

S s G 
X

S G 
y

a

The physical interpretation of the operator S is a rotation of the 

physical system hy an angle -%ahont the molecule-fixed z-axis or 

a positive rotation of the axes hyX about the same axis. We shall 

use the latter definition because it leaves the Euler angleSspeolfying 

the molecular axis system as (<^,&,X) as required. The effect of the 

similarity transformation on an .operator P(o<.) whereoc represents 

the point at which it is operating,

S P(o() S~^ = p'(o<) = F(^^) (3.158)

can be interpretated as follows. Initially we have P operating at 

pointed in. the original axis system. After the rotation, at the 

point x in the new axis system the operator is a different function F 

of the position coordinates. However this is identical to the original 

operator with different arguements^'; these correspond to the 

coordinates of the new point (in the original axis system) which

have coordinates (X in the new axis system.



The same is true with differential operators,

= G^ = G^posS^ - G 3iii% 
y

13.156')

G^ and G have definite operator forms in whichever system they 

are measured and the effect of the similarity transformation is 

to alter the point of operation of G^ to a new point where the , 

operator becomes G_ (i.e. the same operator except that the original 

coordinates are replaced by the new coordinates obtained after 

a rotation by X about the molecular z-axis). It can be rewritten 

in terms of the original arguements or coordinates, which may be 

considered as those, in the new axis system; G^ and G on the right 

hand side of I).156) are operators in the new axis system.

Similarly,

8 L^ ST^ = L^oosX - Lsin X (5.159)

8 L S"^ » LyOOsTC + L^sinX (5.16O)

Similar results are obtained for the position coordinates:

8 x^ ^^ = XyOOsX - y\8in X (5.161)

S y^ S"^ = y^oos X + x^sin X (5.162)

for \ = ^ or i.

The problem with vibrational coordinates and momenta is more 
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complicated. If a vibration is non-degenerate, that is, it is one 

along the z~axis, its normal coordinates and momenta are left 

unchanged by the similarity transformation. The remaining doubly-

in the x,y plane can be expressed in terms ofdegenerate modes,

their z and y components, P or QI etc.

S P^ s"^ = P^pO81< - P^sinX

S I^ S"^ = I^cosX + P^sinX
r r r

S 0^ S"^ = Q^cosX - Q^sin X

S SF^ = (^cosX + Q^sin^C

(3.16))

(3.164)

(3.165)

(3.166)

It is found convenient to rewrite ^^ and 4 in terms of the components

along

where

the new z and y axes.

4 = J cos A - J sinA
'"z z y

4 = J cos)C + J sinX

the components of J are defined by :

(3.167)

(5.168)

J^ = cosXCcotGw^ - cosecG p^) f sinXpg (3.169)

/ a -8inX(cotGHy^ - cosecGp^) + cosXpg (3.170)

(3.171)
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These are readily related to the true rotational angular momentum

^"^ "^z ^^^®"' ^^ (3'79J to (3.8)J by replacing W^, by p^.

The rotational Hamiltonian ().151) then becomes :

= B cosecu - w ) sinafj - w 

(3.172) 

+ B cosec^(J - W ) 8in9(J - W )

- ik B cotG r8inX(J - W ) + CO8)((J - W 
X ' y y

- W ) = W (J - w )
z ' X

= - W ) W - iK w
' X z y

= P. - W) + 16 (J - w) (3'173)

- IL) = " ^'^ (^x - ^x) 0'174)

relationships and replacing J by J in (3.172)

But,

Similarly,

Using these abovi

gives :

B [(J - G - L) + (J - G - L) ] (3.175)

= B (J - G - ^2

since,

(J - G - = (J - G - = 0 (3'177) 
6 
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All the remaining terms in the Hamiltonian are unchanged in form 

after the similarity transformation.

Now in the presence of external fields, the quantum 

mechanical Hamiltonian equivalent to ($.150) is : 

jf = ^ + ^T\ + BcosecGT^sinGT^ + 2^iB^T7^B''^T7^B^ 

r

We shall now perform the similarity transformation on 

the complete Hamiltonian, hut the effect on the vector potential 

terms is slightly different. First, it will he assumed that all 

the potentials have been gauge transformed as in equations ($.104) 

to ($.107). Also it will he assumed that only those coordinates 

which appear in their corresponding vector potentials give 

non-negligihle contributions; this is the same assumption as that 

made for the general molecule and which is found to be true for 

fields up to tens of kilogauss. Then we obtain :

A = - ^^ ()*U9)

4- (3.180)

yielding (A^)^ = 0, as expected by analogy with H^ = 0, 
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j

The magnetic field., E, is unchanged ty the similarity transformation; 

this is because it is assumed to be a constant, independent of 

coordinates and momenta,

i.e. S E^ S"^ . E (3.183)

The subscripts are somewhat misleading, because here the result is 

a field component along the original axes (but acting at the new 

point X ,y ). If we want the components along the new axes, we have 

to perform a transformation of axes along which the field is 

resolved. Therefore :

= E_ CO8/( - E sinX 
y

(3.184)

= E cosX + E sinX 
X

(3.183)

where asterisks have been added to the components in the new axis

system for clarity; but they will be dropped later when no confusion 

can arise. Thus the rotational vector potentials transform as;

S (A^)^ ST^ = (A^)^ oosX - (A^)y 8inX ().186)

S (Ag)y S"^ = (A^)y OO8)C + (A^)^ 8inX (3.18?) 

-72-



where the resulting, vector potentials A are meas.urel at point 

x,y in the rotated axis system.

The cross terms between rotational angular momentum 

and field transform to :.

. B[:os6 (j' - W) - 8inY(/ - w3[(A2)oo8X - (A^LeinTl]

+ B cosec^([(J - .W )8inX + (J - W )oosX]8in6 
X X y y

% [(A^)zgi^^ + (^)yGOsX] + B ^.(J - W) 

(3.188)

Bringing the sin8 to the front, the above expression becomes :

*B2 ° B (j' - ff) . + B 4, . ti' - W)

- ih cot^{(4)%^^^^ t (4)y°°^^) (^-189)

It is now desirable to replace the operator IV in J by p^. The 

relevant part of (3.189) is :

OOteWg{(A^)^OO8X - (A^)y8iilX ]

= cotG cosXpy (A^)^ - 8inXp^(A^)y

+ cot6 [Wg, (A^)]^)(" (A^)y8inX] (3.I9O)

- ootG[oosX p^, (^)x3 ootajainX p^, (A^)^
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Now taking the full form for ^ , we obtain *

^™ F - - ' ™^

the new set of axes (after rotatj

(3.191)

(3.192)

refer toall components 

Lon by X ).

of vectors

;4)J = — iti

Ol

(3.193)

;4)y] (3.194)

Now E and R, being space-fixed quantities, have impliedX dependence 

sothat :

[Px. (4)J -

» - it (\)y - O''^' (-"Spy] 0'^95)

Senoe ().19O) becomes :

cote Wg{^(A^)^co8X - (A^)y8inX] = itoot8{(A^)^8inX - (A^)y(^^

+ oot^posXp)^ (A^)x - ooteainXpy

(3.197)
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Therefore :

»tg2 - B (J-W).4 + 4-ti"2) (5-198)

The susceptibility term A^ remains essentially unchanged; it is a 

scalar product, independent of momenta, and is left unaffected on 

rotation. The same is true of all the remaining terms in (3.178) 

since all these remaining momenta commute with X.

To all these terms should be added those representing 

magnetic and other small interactions between particles; these are 

essentially the same as those for a general molecule, given in 

()*94). After the unitary transformation :

where we have taken into account the renormalization of the 

wave-function ly pre-multiplying by B '^ and post-multiplying by 

B^. Also the space-fixed momenta are replaced by the slightly 

modified functions of molecular momenta :

n. . TT. + =iT 0-200)

(3.201) 
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$.7 Simplification of the Hamiltonian for a Linear Molecule

In this section it is proposed that the Hamiltonian 

will be simplified in a similar manner to that for the general 

molecule given in section $.5 . As before, those terms which give 

a negligible contribution in a product representation of the 

wave-function will be neglected. With this in mind, we take the 

expressions (3.179) to (3*182) for the vector potentials.

The translational Hamiltonian is exactly the same as 

before :

This term is usually neglected.

The rotational Hamiltonian (in its isomorphic form) is 

given by :

**g . B (5 . ^/ ().2O))

This has the same form as for a spherical-top molecule, but it 

should be remembered that the z-oomponents of both H and ^ are 

identically zero. Expanding (3*203) gives respectively, the normal 

rotational kinetic energy, the rotational Zeeman effect and the 

rotational contribution to the molecular diamagnetism.

The vibrational Hamiltonian can be significantly 

simplified . 



z*/ip/ . Zp: f iBi(p=3-i) 

r r r 

r 

since B is only first order in Q . Also P commutes with A 
T r . r 

so that ; 

WA^B'^P^^ + . y^AF (3.205) 

r r

Collecting all these terms together : 

7
(3.206)

r

These are respectively, the vibrational kinetic energy, the

vibrational Zeeman term and the vibrational contribution to the

molecular diamagnetism. The vibrational Zeeman term can be

re-written as :

S.r^A^ Fr (3.207)

This only gives non-zero diagonal contributions if r belongs to a 

degenerate (i.e. bending) mode of vibration. Then if second order 

effects can be neglected and Z^/m^ can be replaced by ^bff/^* ^^®

above approximates to :

7Z
^eff® 

2Mc
(3.208)n. 0
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the form one might intuitively have expected.

The electronic Hamiltonian is unchanged for a linear 

molecule ;

The remaining terms follow the same form as those for the general 

molecule.

- SljAEi) -

i ^ij

\ ^pN^ 1 _ / 

6_1 me 3

i

These are, respectively, the spin-orbit interactions, the nuclear 

spin orbit hyperfine interaction and the interaction of the magnetic 

moment of a moving electron with a static electric field.

™ Y8™



w 

m 0
^^i,r

—B^ s..(r. f ) P B 
—ii%A r

These are the mass-polarization correction, to the spin-orbit 

coupling, the spin-vibration interaction which manifests itself 

in degenerate vibrational states with a form ^^^.6* &nd the spin­

rotation interaction, which differs slightly from the expression 

for the general molecule.

2

4m^c^i i/j

2mto ^
($.212) -

These terms are respectively the orbit-orbit interaction and the

relativistic correction to the electron-spin Zeeman interaction.

These are identical to the corresponding terms for a non-linear

molecule.

1
+

ij
r.. —f r..).p.
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2- ;^ 2i-(^ ^ Zj^ -f Zdx^'^La l"'^ 0.213)

These give the mass-polarization correction to the orbit-orbit

interaction, the orbit-vibration and the orbit-rotation interaction.

To these should be added the potential energy term, T.

These terms have been discussed in section $.2; they are the same 

except that the space-fixed coordinates R^^have been replaced by 

their corresponding distances r^^in the molecule-fixed axis system

The above Hamiltonian, given in ($.202) to ($.214),is 

appropriate to any linear molecule but in certain special oases can 
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be substantially simplified,

Por example, in the diatomic molecule, the vibrational 

angular momentum goes to zero and the intermediate moment of 

inertia becomes :

: ' Z™.^, ■ (iH-b^^ (5-215) 

where r is the internuclear distance.

Making these modifications gives a total Hamiltonian 

that is in agreement with that by other authors (e.g. ref. ))) 

except that here all the mass-polarization corrections have been 

included.

If we have a spin wave-fdnction quantised in the-molecular 

frame, it automatically has implicit Euler angle dependence and thus 

can be operated on by the rotational operators, J. Ideally, one 

would like J to act only on the rotational wave-functions and this 

can be done if J is replaced by J-S everywhere it appears in the 

Hamiltonian; S is the total electron spin operator (see Appendix H). 

The rotational Hamiltonian is thus obtained by replacing H by 

J-G-L-8 instead of J-G-L.
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Appendix A

Transformation of Tensor Quantities in Curvilinear Coordinates

Let us consider aP-dimensional Cartesian space, x^ 

which transforms into the curvilinear coordinates q^. They are 

contravariant vectors since they transform like :

A™ (repeated suffix convention)

where the bar implies a new coordinate system. Similarly covariant 

components (with suffices instead of superfixes) are defined

according to :

6x

The distance between two points in the curvilinear coordinate

system is given by

where,

ds^ = gj^j &q^ dq^ (A.3)

(A.4)

The Jacobian for the transformation (which relates the volume elements

in the two axis syetems) is given by :



...

MiiijMiiiii m«,im i^wMamwMWBM*

(A.5)

g say (A.6)

The volume element in thev-dimeneional phase space is *

d.TC = "'"dx dX'"' = Jg '-''d(^^dq^'"" (A«7)

Aiy infinitesimal change in the position vector in phase space is :

dr = -^^ dq^ = e. dq^ (A.8) 

where e is a basis vector in the new space (but not normalised) 

If no two e are parallel, it is possible to define a reciprocal 

set of vectors e^ such that :

e..e^ = $,. (A.9)

and dr = e^ dq. (A.10)

Por any general vector, A

A = a^ e. = a a^ (A.11) 

where a^ and a. are respectively the contravariant and covariant 

components of A . The distance element in (A.?) can be re-written



a dr.d^ = e. e. aq^ (A.12)

Therefore, 

and also the inverse

^' -j

matrix,

"li (A.D)

(A.I4)

/3

Post-multiplying
(A. 14) by e^

and summing: over j gives

(A.15)

-1
also ^^ (A.16)

In terms of these, the gradient of a scalar will transform as *

The divergence of a vector V will be taken to be the covariant 

derivative. Thus :

(A.18)

^ ^^ik ^q^ ^q^ /J? \i^



(A.19)

(1.20)

(1.21)



Appendix B

Effect of Rotation Operators on Case (a) Spin. Wave-fimctiona

The molecule fixed (case a) wave-function iS'^has 

implicit Eioler angle dependence and thus can be operated on ty the 

rotation operators. For a single electron spin (8=t), we can write 

the EiiLer angle dependence as

'il'(scr)

where LJ signifies
the three Euler angles ('''fpiT) and ^^^yl 

a rotation matrix, to be defined in the next chapter, but can be

written explicitly as a 2x2 matrix as below. 

exp -i(i^+'))/2 cos ^/2

exp i(y-o()/2 sin ^^2

exp l((^-T)/2 sin ^2

exp i(3t+'))/2 cos ^2
(B.2)

where m=:±^ labels the columns and o=ii^ labels the rows. R.B. We 

shall from now on use the symbols (<x,p,T) instead of (^,0,'Y^) to 

e]q)re88 the orientation of the molecular axis system.

The differential operators appearing in the rotational 

operator J will be written as (:&)g ^tc. to signify that it operates 

on the complete Euler an^e dependence of the wave-function, and as

) etc. when the electron spins are molecule-quantised and only 



the rotational wave-function ia operated on. Now consider a 

wave-function that is the product of a rotational wave-function and 

a single electron spin wave-function, R(o^,p)T)'4'((y)* 

Then,
("^s ^('^f*T)^(°') = (^L ^(**P,T)^(

But > (^) »tc 

i/2 (.l)^+(^

where s is the molecular z-component of the electron-spin operator

in dimensionless units (-^=1). Similarly,

= & (-1)^'^ 'T^C'-'^ Gxp -2icry (using B.2)

= "& 4^(-'^) (-1)^^ cosyf i(-l)^^'^inY 

(5.57

Now 81^(0) = i(8^+8_)i/'(cr) = i4'(-<T) (B.6)

and i8i^(o) = &(8_p " 8_)'!j/(cr) = 2(-l)^^'^tj/(-(T') (5.7)

Therefore : /^ = -i(8 siny + 8 cosY)z^(cT) (B.$)



i(8^^in^r + ByOosy) (B.10)

a

But, since

m

2008^^2 - 2co8|9 = 2sin ^2 + ooa A

8

g/a)) (28111^^2 + 00819

1.

-ma '

with

(2oos^^2 - 008

01=0"

COSQ

m

1. in^ ezp -2i(ry

m

iscosp + i sin|a(

(B.11)

Now if the spjn-wave-function of each electron, in turn, is operated 

then, the components of spin of one electron 

must be replaced by the sum of the components of the individual 

electrons. Thus if S is the total spin operator (in units of "^=1), 



f i ain8(s cog? - S sin?) -iS cogp

' ^ "" (B.12)

(B.13)

(B.14)

These can now be substituted, into the expressions for the rotational 

angular momentum, ($.79) to ($.8)). Thus

(B.15)

(B.16)

(B.17)

where the rotational operators on the right hand, side of the above

expressions act only on the explicit rotational dependence of the 

wave-function, i.e. only on the rotational wave-function.
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Chapter 4

ANGULAR MOf^MTU.! THEORY

4.1 Introduction

The concept of rotational invariance plays an important 

part in the analysis of physical systems; for example in the absence 

of external fields and considering a molecule to be an indepedent 

entity, its Hamiltonian remains unchanged after a rotation, i.e. the 

Hamiltonian commutes with the infinitesAimal rotation operator. This 

leads to the concept of angular momentum and irreducible spherical 

tensor operators, in terms of which the Hamiltonian can be written. 

The use of these techniques simplifies the evaluation of matrix 

elements and the basic principles involved are given below. Also 

we attempt to clear up some misconceptions of other authors. Finally 

important matrix elements are evaluated.

4.2 Rotation Operators

A rotation can be considered in either an active or a 

nassive sense. In an example wnere we are trajisforming irom one 

axis system to another, it might seem preferable to have an operator 

which rotates the axis system from one position to the second. This

1 2-4
is essentially the passive operator of Edmonds and others 

Although this is easy to define, it is found rather difficult to use.



Instead we shall follow the method of Brink and Satchler 
5

and other

authors '' who define their rotation operators as those which rotate 

the physical system from one position to another. For the two- 

dimensional case, consider a function Y" which depends upon the polar 

coordinate ^ . Then rotation of the system by an an/;le 04 transforms 

the wavefunction in such a way that the hew wavefunction at point 

^f<k is equal to the old function at .

1^ (<^) = l^('^)"(p($^) - ^(^ (4'1)

or for small rotations :

Lim R(<x.) = j -

" (4.2)

where LA is the angular momentum operator. For any general rotation 

of the system through a small angle o( about an axis n :

B = 1 - iocj. n (4'5)

where J is the total angular momentum operator (in units of'ti). A 

finite rotation is a succession of infinitesimal rotations sc that

R^(oc) = exp[^J.n)(%] (^"^^

Since two rotations do not in general commute, it is found that .
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J J J J + iJ 
y X z

or the commutator and cyclic order (4.5)

These commutation relations are the definitions of true angular

momentum operators.

4.$ Irreducible Representations of the Rotation Group

Consider a finite manifold that is an irreducible 

representation Z\ of the rotation group. Any finite rotation can 

be produced by a succession of infinitesimal rotations, so that a 

necessary and sufficient condition that A is irreducible is that 

it is irreducible to the operators J,, J, and J .

Now let the ket Ijm^be an eigenvector of J with 

eigenvalue m, which has a maximum value of j. Then

Jg Ijm} = m|jm) (4.6)

The operators defined by : J J +. iJ have the commutation 
X y

relations :

4 ' R. R
(4.7)

and are found to be the raisin. and lowering operators changing

m by ±1.

Jj^ljm) = [j(j+l) - m(mtlj]^|j,mil) (4.8)



Here the arbitrary phase factor is chosen according to the convention, 

of Condon and Shortley9 This representation^ j)., has a degeneracy 

of 2j+1 (m = j,j-1,j-2, ....  ',-j). Also 2j must be an integer; 

therefore half-integral j is allowed.

Por integral j (=1), the eigenfunctions are the spherical 

harmonics.

^lm(^'^) = 6ini(^) ^'^^^ (4.9)

where (SkJ^) = (-1)^ '"^^O

- (-1) m<0 (4.10) 

and P^\^) is the associated Legendre polynomial ^^

4.4 Rotation Matrices

Hsing the rotation operators defined in section 4'2, it 

is possible to specify the effect of any general rotation. If a 

set of orthogonal axes (x,y,z) are rotated to new positions (x',y',z'), 

their relative orientation can be specified by the Puler angles 

(<t,6,Y) which are defined by the following right-hand screw rotations.

First the axes are rotated about the z axis by an angle oc 

to new positions (x^,y^,z). Then they are rotated by p around 

the y. aids to give (xgfy^,,*), and finally through an angle Y about 
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the z axis. 

If the system is rotated by (oL,p,Y), the rotation

operator corresponding to this rotation (cf. section 4'2) is:

])((X,p,Y) = exp(-iYJgj)exp(-ipJy)exp(-i*J^) (4.11)

Alternatively this rotation can be obtained in terms of rotations 

about the original axes. Then :

Prom here on we shall use oj as a short-hand for Cx,^,}^.

In a manner similar to that in equation (4.1), the

operation of D(^) on a function m. (8,^J with angular dependence

like a spherical harmonic, gives a new function of 8 and cp , 

epual to at QO*,^/) the points rotated into (8,(|>) by this

operation.

1^'(6,'I') = ])(to)^j^(&,4') = {L^(e',4/) (4.15)

and using the closure relationship : 

^'(G,^) = ^ (^j^(B,^) <)n|D(u))|jm) 

n

" y (4'14) 

is the matrix representing the rotation (x,^,]^ in the 
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(2j+l) dimensional irreducible representation of the rotation 

group (corresponding to angular momentum j).

An alternative interpretation of (4.14), which will be 

much used later, is to consider (g',^/) as the coordinates of the 

old point (6^^^ measured in the new set of axes obtained by rotating 

the old axes with the system. Hence we have a relationship between 

spherical harmonic type functions in. different axis systems at any 

general point in space. .

Since H(i^) is an unitary operator :

!)+((<,p.T) = (4.15)

^jm|D-\Lj)|jm'^ = <^jm'|l)(u))|jm^

This yields :

n

Also it should be noted that :

&j ((6) = exp(-im* -in-y) d^(6)

^^^^ ^^(P) = ^jm|exp(-ipJy)|jn)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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The dependence of the rotation matrices on oC and^ 

suggests that they are also related to the symmetric top wave­

functions. If (4.14J ELnd. (4'13) are inverted and using (4.17) :

and chosing G^' = <^' = 0, so that i^=oc, 8 = p :

^jn^^*^) " 2? ('^nm^'^'P'^) ^jm^°'°) (4.22)

Any further 

factor, and

rotation "v about z

provided all

changes each 4)"^ by a phase Tim

-jm^*^'^^ ^^^^P^ °^^ ^^ zero

(4.2))

is an eigenfunction of L^i. Hencef j)^^(L:i)j is proportional to 

the symmetric top wavefunction.

4.5 Coupling of Azigular Momenta

In a system of two independent angular momenta J. and

J , it is found that and J are all commuting operators

and that the corresponding eigenfunctions can be written as the 

product :

iTd^jg-i";^

Ti'Y?

(4.24)



where the y's are all other quantum numbers necessary to specify 

the states. Alternatively, another set of commuting operators is 

J., J = (j. + and J = (J. f J_ ) , with corresponding 

eigenfunctions j'Yj.jgJ^^ . These are irreducible representations; 

however the product wave-functions are reducible representations of 

the complete rotation group.

The unitary transformation connecting these two 

representations is :

" 1- kl^2^1™2) (0102^1^21^1^2^^)

where ^j^jgJIflj^jgnii]"^ = (Jij2'^i'^2kl^2'^'^) ^^ ^^® vector- 

coupling or Clebsch-Gordon coefficients. They have non-zero values 

if all the j's can form a triangle (i.e. j, + j.^ J H^|0i " O2I ) 

and if M = m. + m (since J = J. + Their values are 

tabulated by many authors (see for example references 7 and 8).

The Clebsch Gordon coefficients are somewhat asymmetric 

to interchange of momenta and the more symmetrical Wigner 5-j symbols 

will be used here and in later chapters. They are defined by :

/^l J

M"^2

jl-j2+M
(2J+1) ^j^jm^mglj^jgJM/ 

(4.27)



The values of certain $-j symholsare tabulated in Edmonds and 

in Brink and Satchler p.$6 .

Any even permutation of columns of a 3-j symbol leaves 

its numerical value unchanged, while an odd permutation is equivalent 

to multiplication by (-lj^1^^2^^. Thus the order of vector-coupling 

can change the result by a phase factor.

When three angular momenta are coupled together, the 

result is no longer unique even to phase factor; it depends upon 

the order of coupling of the original momenta. For example, 2^ and 

2g can be coupled to give 2^2 ^ this with 2^ to give the resultant 

2. Alternatively the resultant 22^ fro^ adding j.;, ^d 2^ ^^^ tie 

added to 2., to also give J.

Then,if we use the notation of writing momenta that are 

coupled in brackets in front of the resultant, the unitary transformation 

between the two schemes above is :

1(0^02)0
12

* j ^; "J "^^

(4.28)

The coefficients are independent of M, and are used to define the 

Wigner 6-j symbols.
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(_1)jl+J2+J3+^[(2j^g+1)(2jg^+lj]"*

(4.29)

Higher $n-j symbols have been defined, but' it is sufficient to 

define only the 9-j symbol which isused in the coupling of four 

momenta. Hsing the above notation to distinguish the order of 

coupling of momenta, the 9-j symbol is defined by :

(4.;o)

The properties of the 3^^j symbols are given in chapter 6 of 

Edmonds and chapter $ and appendices of nrink and Satcnler «

4.6 Irreducible Spherical Tensor Operators

In three-dimensional space, the Cartesian tensors of a 

given rank arh in general reducible under the operation of the lull 

rotation group. For example, a general second rank tensor i^j can 

be split into the following :



™1 Sy . i(Ty tT.p - ,1T (4.51,

These have respectively one, three and five independent components 

which transform amoung themselves on rotation and are irreducible 

components of the generalsecond rank tensor and belong to the 

^^ and &g representations of the rotation group.

It is thus natural to define general spherical tensors 

T^ of rank k which transform amdungst themselves like spherical 

harmonics if k is inuegral and form an irreducible representation 

&, of the complete rotation group.

p

wnere T^ expresses the q component of T^ in new axes (those 

rotated by (o(^,P,?) ) in terms of the old comnonents T^.

This is immediately extended to tensor operators, so that 

for operator A we obtain (just as in (4.13) and (4.14) ) :

or the inverse :

Tp(A) = (A) .(4.34)
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An equivalent definition of spherical tensor operators is in terms 

of commutation relations. Por an infinitesimal rotation (1 - io^x), 

JB^W » S^q - ic<<kp|j^,kq>

T-^<l=P|JxlKl> 

p

I^J^ , T^] = [k(k+1) - q(qt1)]'^'/^^ (4.56)

4.7 Matrix Elements of Spherical Tensors

Consider the matrix element C^^yTTI^llTqlocj'M'^ . The

state vector

reducible and can be written asrepresentation, which is in general

/06JM ^O) is non-zero only if J=K and M=Q and is also independent
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of M. Therefore we can rewrite (4«^8) as :

where T^ u^'^'^ ^^ ^ reduced, matrix element. The above result

is known as the Wi^er-Eckart Theorem, and basically states that 

a matrix element of a spherical tensor operator can be written as the 

product of a 5-j symbol and a term independent of the projection 

quantum numbers.

This can be extended to matrix elements in a coupled

representation. Let two independent momenta 2. and be coupled 

to give J. For a tensor operator T^(1) or T^(2), which acts only ' 

on part 1 or part 2, we obtain :

^^1^2"^ . (-1)'ii+j2+kltJ[^2J+1)(2j'+1)]

(4.41)



In certain circumstances, the tensor operator T is formed by the

reduction of the product of
two other tensor operators T^^ and T^^

That is :

^1
" (4.42) 

g. Orgy

Then with the above coupled wavefunctions the matrix elements can

be re-written as :

T^kpkg)

pi jl
[(2J+1)(2J'+1)(2K+1)]^ ijg jg 

w' J

(4.43)

A special example of this is the scalar product of two tensor

operators; this may be obtained by K=0 and k^=kp=k.. Then :

x(jl||T\l) |,ji)<J2||^^(^)||

(4.44)
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Chapter 5 

AK EFFECTIVE HAMILTONIAN ARD ITS llATRIX ELEMENTS 

FOB A LINEAR MOLECULE

5.1 Introduction

In this chapter, we shall formulate a scheme for the 

calculation of the energy levels of open-shell molecules. The 

method of approach is that for diatomic molecules, but can be 

readily modified to account for more complicated systems, for 

example linear triatomic molecules which will be considered later.

5.2 Born-Oppenheimer Approximation

The exact wave-function to describe a molecule is 

difficult to obtain; instead approximate methods can be used to 

calculate the energy levels.

First of all, it is necessary to adopt a basis, for 

calculating the matrix elements, which most closely approximates 

to the exact wave-function of the physical system.

The vast difference in velocities of nuclei and electrons 

(a factor of about 10^) allows a separation of their motions. Thia 

12 
was performed in a classic paper by Born and Oppenheimer ' who 

showed that to a good approximation the total wave-function for a 

diatomic molecule can be written as the product of a rotational



part, a vibrational part, and an electronic part. Thue,

'^el l^vib V'rot (5.1)

Let U8 now consider the simple field free case in the absence of 

magnetic interactions between particles, where the Hamiltonian is:

The translational motion is completely separable and will not be 

considered further; it just shifts the energy zero by an amount 

not detectable spectroscopically, gy expanding both the wave-function 

and the Hamiltonian in a power series of (m/WJ^, Bom and 

Oppenheimer showed that the best electronic wave-function is 

obtained by solving the Hamiltonian for electronic motion at each 

intemuclear distance. This assumes the previously stated fact 

that the electronic motion is much faster than the nuclear motion 

and that consequently the electronic motion and hence wave-function 

responds instantaneously to the change in nuclear configuration. 

Hence the electronic wave-function, which is also a function of

vibrational coordinates, is obtained by solving :
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where r^^ and. 0 are electronic and. vibrational normal coordinates 

respectively.

In the case of a diatomic or a linear polyatomic 

molecule in its linear equilibrium configuration, rotation of the 

electrons about the molecule-fixed z axis leaves the Hamiltonian 

unchanged. Hence the z component of the total orbital angular 

momentum operator commutes with 6f and the electronic wave-function 

is an eigenfunction of L with eigenvalue A. This is not true 

when the molecule leaves its linear configuration, since coupling 

between electronic and vibrational motion destroys A as a good 

quantum number. The problem of the linear triatomic molecule is 

considered in chapter 8. Here we shall limit ourselves to the 

easier diatomic species although much of the reasoning is easily 

extended to other systems.

The electron spin will also be considered to be quantised 

along the molecular z-axis. This yields Hund's coupling case a, 

which closely approximates the truth in the molecules considered 



2
in this dissertation (all IT); their spin-orbit coupling constants 

are many times the rotational constants^ See,for example, Herzberg ^ 

for details of the coupling schemes. The component of total spin 

angular momentum, S , along the molecular z-axis is thus a good 

quantum number. The total electronic wave-function will now be 

written in the form V'^2(A,Z;r.,O) to emphasise it is an eigenfunction 

of L and S ; it is also an eigenfunction of P^ (with eigenvalue^-) 

the z comuonent of the total electronic angular momentum, P = L + S. 
-— we* ww. eew

Since these electronic wave-functions form a complete 

set, the total wave-function,'^, can be written as a sum of 

products of"^2 with a nuclear wave-function p2(Q^*^*^*X)) 'the rotational 

and vibrational motions have not yet been separated but are 

considered together as nuclear motions (all the arguements of P^ 

are specified by the nuclear coordinates). Then ;

$ = '^+2(^)^*^'V ^2(0^'^'^,^) (5'4)

8 
and.

^4"$^ » 2$ (5'5)

Premultiplying by 'y^ and integrating over all electronic 

coordinates dT7 (including spin) yields :
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all the C'e were neglectedIn the Bom-Oppenheimer approximation, 

(they contributed in the next order of (m/^i)* ). The Born

adiabatic approximation however, is more precise and includes 

the diagonal matrix elements C, while still neglecting 0^^. 

The wave-functions are still simple products of nuclear and 

electronic functions and it can be shown using the Variational 

Principle (see, for example, Longuet-higgins ^) that this is the 

best product wave-function with i^ obeying (5.5)* i«e. the best 

approximation in which the electrons follow the nuclear motion 

adiabatically.

Tn ($.6), the rotational and vibrational variables are 

readily separable (on division by B), so that P^ can be written 

exactly as the product of a vibrational and a rotational 

wave-function.
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= v(gE(8,4>,'X) (5.9) 

where, 
(j^ - R(e,*,x) = a(e,4',X) (5.10) 

and

= E 7(g (5.11)

The rotational eigen-eqnation is that for a symmetric top, with

solutions ;

\ o TT /

where ^yj^^) ^'^ i^ ^^^ rotation matrix defined in (4.14). It is 

an eigenfunction of J , J^, and J^ (where we use upper and lower 

case letters for respectively space and molecule-fixed components) 

with eigenvalues J(J+1), M andll,respectively.

The vibrational equation can be written as a power series 

in nuclear displacements from the equilibrium configuration (at the 

potential minimum). All first power terms are zero and the 

quadratic terms are written in terms of the normal coordinates, 

which are chosen such that no cross terms exist. One usually 

chooses basis vibarational wave-functions as those that satisfy the 

quadratic potential. Each normal mode is now separable yielding 

a product wave-function, with each individual component obeying : 
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( iP^ + iM^ )X„(Q^) - E„X„(y (5.15)

The solutions are ; 

Xn(^ " ($.14) 

where, H (x) is a Hermite polynomial, 

^n^^^ "^ (-l)^exp z^ ^T^ezp(-x^) (5.15) 

dx

The total wave-funotion is then written as * 
f . W' g^^D) 'T[y (g (5.16)

This type of wave-function will be used as the "best" approximate 

solution to the complete wave-function, even when external fields 

and magnetic interactions between particles are included. If 

nuclear spins are also considered, the above wave-function must 

be multiplied by the appropriate nuclear spin functions (spins 

assumed space-quantised). If coupling to the nuclear frame is 

sufficiently great to give a molecule quantised spin, in the 

rotational wave-function must be considered to also contain the 

nuclear spin momentum as must W in the rotational Hamiltonian 

(cf electron spin)
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5.^ Effective Hamiltonian for a diatomic Molecule

In the following chapters, we shall he studying the 

spectra of molecules in their ground electronic and usually ground 

vibrational state. Many terms in the Hamiltonian mix in excited 

vibrational and electronic states, but they are of a sufficiently 

small magnitude that their effects can be adequately treated by 

second order perturbation theory. This approach has been used by 

8 9 
Tinkham and Strandberg and Rosenblum, Hethercot and Townes . A 

more pleasing approach is to modify the Hamiltonian in such a way 

that when it acts in just the ground vibronic state it gives the 

same energies as the complete Hamiltonian acting in the complete 

manifold of states, i.e. an effective Hamiltonian is formed.

prom now on, the translational motion of the molecule 

as a whole will be neglected. The initial 'basis' wave-functions 

are determined according to the method of Horn and Oppenheimer 

or Hom and Huang . Let us now allow the electronic Hamiltonian 

(5.1) to also include the orbit-orbit interactions (3.212) and 

(3.213); it can then be solved to give the electronic wave-function 

The energy, E^, essentially fixes the energy of 

each electronic state.

Most of the Important terms in the total molecular 

Hamiltonian are diagonal in the electronic state. The remaining 

non-adiabatic terms like C . in (5.8) are the ones which will be 
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included, in our effective Ilamiltonian ly second order perturbation 

theory.

If the potential energy is expressed as a power series

in 0, the total Hamiltonian (after letting E2(0) be the electronic 

energy at Q= 0 for a given electronic state) is given by *

+ V(Q ) + B(j - L - S)^

r

* ^ao * SsPS-2 <■ SiPS-Ii + ^^ (5-17)

where ^ is the spin-orbit interaction and ^ contains the 
so

following small terms :

" ^s + ^hyp + ^quad + ^NZ ^BZ '

"^ ^R """ ^LR ^ ^E (5.18)

These are, respectively, the electron spin-spin, hyperfine, 

quadrupole, nuclear Zeeman, rotational Zeeman, spin-rotation, 

orbit-rotation and electric field (Stark) interactions.

The spin-orbit interaction is often written

10 
phenomenologically as ^..3 ; this is usually sufficiently 

accurate to describe electronic spectra, but more care must be 

taken here about its form. The true spin-orbit Hamiltonian (3.210) 

and (3.211) can be written as a tensor coupling between the orbital 
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angular momentum of electron i and. the electron spin of electron j. 

As was demonstrated hy Kayama and Baird ^\ Al.S allows mixing of 

states with AAN±1,AI-T1, hut omits all interactions in which the

total spin can be changed by 1 * Bere we shall use the short-hand

which gives the correct selection rules on matrixi-i'' -i

elements between electronic states; it cannot, however, be used in 

the calculation of spin-orbit coupling constants from wave-functions 

where the more precise Hamiltonian ($.210) and (3'211) must be used.

A different treatment of the matrix elements of the exact spin-orbit 

term (without mass-polarization corrections) has been given by

12 
Fontana and Ikath .

The terms are sufficiently small or have small 

enough matrix elements between electronic states that their second 

order mixing of excited states may be neglected. The remaining terms, 

i4 = jf- j+ , yield significant mixing. Then, including the second

13 14 
order contributions by degenerate perturbation theory ' , the 

effective Hamiltonian is given by ;

= F}fH = P)tP + P ^P (5.19) 
o 0 0 o a o

where P 
0

is the projection operator onto the ground electronic

state A :

Z ko"^"!
k

P 
0

(5.20) 
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where k represents all other relevant quantum numbers necessary to 

specify the state. Q is the projection operator onto all other

electronic states S. such that 
n

%

r 
a

(5.21)

E -E is the difference in electronic energies between the ground and 
no

excited states

If j4 is now expanded in terms of spherical tensor 

operators ^^^^^ measured with respect to the molecule-fixed axis

system :

r - . .

(5.22)

+ y(.l)^{T^(L) [22 T2^(8)

q

i

with q = 11.

The most important contributions in second order are 

those between electronic states in wnich -A. has been changed by 1^ 

and the perturbation originates and ends in the same component of 



the ground electronic state (for A ^0, the electronic state is douh^ 

degenerate). Then taking all combinations of terms from ($.22) one 

obtains :

^eff " Po(XTQ(^4.B[2(j).T^(j)-To(j)TQ(jj+j:pTQ

q

f S° pT^(H)T2^(j-3) const+ P
o

2g(^
(5.2))

where, <}_^|(A+2B)I^(!,)|^^<^^|(A+2B)T]A"
q"^n (5.24) 

here, since 8 has not been changed, we are allowed to replace

^^q( i-i^ -q(-i 

(of. "Y and 2%).

'\L)T^ (s), after a suitable choice of A

B" . yy^2(E -E )-Y( iBlklJk X<nl^2q(L)ko) (^'^^^ 

n q

n q (5.26) 
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n q
+ 4X(;:)k><)^|(^+2B)i^Q(!L)k>} 

(5.28) 

irote that all the corresponding terms given in the work of 

Carrington, Currie, Levy and Lliller '' are a factor of two too 

large.

The parts of ($.23) give, respectively, the second 

order corrections : X to the electron spin-spin interaction, B to 

the rotational constant, JL to the high frequency paramagnetism. 

g^ is the electronic contribution to the rotational Zeeman effect, 

y to the spin-rotation interaction and Zig is an anisotropic 

contribution to the electron g-value.

in a doublet state, such as ^TT which we shall mainly be 

considering, the spin-spin interaction term disappears, since a 

second rank tensor operator cannot give non-zero matrix elements 

between S=& states (i.e. vectors of length -&,& and 2 cannot form a 

triangle).

Further second order contributions from excited states
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with the same value of /i and. diagonal in S yield. :

^eff = ^ot ^^o(^) + ^ + T(g

+ A %(L)To(^ + Z. (J-!rS)^o(!i)TQ(^jp^
(5.50)

where ;
. 2[-m* (E^-E.)"' <kko(L)|/nXgl^o(^l^ (^')^) 

n

_H 
B = X" (VV^{<A,l:l4><4il^(g k>

.-fl
D

^- (^n'^o) 4o I ^ knX^n I I -^o^ 

n

(5.)))

A

n

+ (5.34)

II

n

(5.35)
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with V (Q ) used, to represent the vibrational Hamiltonian ^^^ '*' ^(i^) 

y , B and A are small contributions to the spin-spin dipolar 

interaction, the rotational constant and the spin-orbit coupling 

constant. /E" is an unusual term which tends to give different 

rotational constants in the different fine-structure components of 

a particular electronic (or vibronic) state. This might invalidate 

some of the work on the determination of spin-orbit coupling constants 

19,20 
from the measurements of effective rotational constants . For 

example, in ^TT molecules use is made of B^^^ = B(I ± V^)'

The parts of the spin-orbit coupling which can connect 

electronic states of different multiplicity give a second order 

contribution ;

n q i,j

X Tq(s.) T] (s ) (5.36)

which when operating in a state of given multiplicity can be 

replaced by :

^ff = T'T§(^ (5.57)

This will not affect the spectrum of a molecule in a doublet state 

and together with the remaining terms of the same ±orm will be 

omitted from the Hamiltonian for the study of ^ff molecules. This 

''"Il ^'M'



term, however, has been found to be important in the interpretation 

of triplet state molecules like 21 oxygen

The resulting Hamiltonian acts only within the ground 

electronic state. It is desirable to further reduce the Hamiltonian 

to one acting only in the ground vibrational state.

The non-diagonal part of the vibrational energy (^j^^ 

r 
+ T(Q3 ) strongly mixes the various vibrational states. Its second 

order contribution modifies slightly the energy of a particular 

vibrational level. Its cross-terms with all the other quantities in 

the effective Hamiltonian which can mix vibrational levels slightly 

modifies these terms but keeps them of the same form. Thus from a 

1 1
typical term of the form Q T ^M).T (H) one obtains an additional 

term : 9^\iA),T\H) where

V

,-E.)-''{</.|ab^X:JV(gk^>

+ ^^|f(g|/^)<^^|8|<_,)j (5.;8)

The cross-terms between these latter quantities will in general be 

neglected. Their coefficients normally have only weak vibrational 

dependence, so mixing of excited vibrational states will be slight. 

Amoung these is the rotational term quadratic in rotational quantum 

number J (rotational distortion term); it is typically of the order 

of 10") cm"^ am has a completely negligible effect on gas-phase e.p.r. 



spectra. All the major Zeeman terms have negligible vibrational 

dependence, so that the Eamiltonian in a particular vibronic level 

can be written as :

* = Po{B'(J-L-3)^ + E,pE.S + ^pi^(L)T^(E) + i'l^Cl^TgC^

+ ^(-1)'^[AagpT^(S)T2q(3) + T'TqU-3)TZ,(8)

^^^^ s' = B + s" + s" + s'" (5.40) 

where the term with triple dashes signifies that obtained by second 

order mixing of vibrational states in an analogous manner to the 

mixing Of electronic states in (5.24) to (5.29).

Also : , L n II ? II . Ill
X a X+ X + X + X + X (5* 41) 

where X includes the diagonal contribution of the electron-electron 

dipolar spin-spin interaction from (5.214),

g]. - 4 - 4 (^-'1^) 
with the nuclear contribution, g\ obtained by expanding ($.20)), 

Agg is essentially that given in (5.29) , 
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A = A + A + A (5.43) 

and , „ 
T = Y+ Y + Y (5.44) 

where y is the expectation value of the coefficient of IT.S in 

(5.211). The analogous orbit-rotation term from ($.215) has a 

zero coefficient.

— ^Q(^^Q(ll) "^an be neglected, since we shall 

be working in just one fine structure state and. we shall use the 

rotational constant appropriate to that state.

In a TT electronic state with A= -1, it is possible to 

mix the two components in second order perturbation theory. This 

will remove the degeneracy of the two components giving rise to 

what is known asA-doubling or in the case of good. Bund's case (a) . 

molecules,Jl-type doubling. This results from the fact that, in the 

absence of external electric fields, the complete Hamiltonian is 

invariant to space-inversion (i.e. ^ commutes with the inversion 

operator j" ). Therefore the eigenfunctions of the Hamiltonian can 

correspondingly be written as eigenfunctions of ^ *

21 .22
How as demonstrated by Hougan and Chiu ", upon 

inversion of all particles in the space-fixed axes, the Euler an^es 

((/,8,Y) specifying the orientation of the molecular axis system change 

as follows :

(t -4 TT +(< ; /3 fr-^ ; T -4 -y (5'45)



Therefore malcing use of the properties of the rotation matrices 

3)^(w)» namely :

and.
rLW

RJ /

* iilY 
e (5,46)

(5.47)

the rotational wave-functions transforms as :

(5.48)

The spin wave-functions can be treated, similarly :

(5.49)

(5.50)

(5.51)

*

5

*

*

Upon inversion, the electronic coordinates transform as

, z. —^ z.9 (5.52)

Therefore, the angular coordinate of an electron 0^^ in cylindrical

polar coordinates goes to 

wave-function ly l^o^'^*

Thus representing the vibronic

(5.55) 

Hence,
J-S (5.54)
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The phase here differs from that of hougan because of his 

dausual definition of the phase of his wave-functions. However 

the phase obtained by many other authors who use the phase 

convention of Condon and Shortley ^^ and rotational wave-functions 

with the same phase as the rotation matrices ° should be modified. 

The true wave-functions are then :

^^ = It^^AsZJAMj) + (-l)'^"'gh(^-/\S-ZJ4UIj) (5.55) 

where we take the + or - sign, according to whether we want the + 

or - parity state.

The P.-doubling properties between these states has 

been considered hy Lucas ^^, but does not affect us here since in 

the molecules to be considered, the Jl-douioling has not been 

observed. In the absence of the il-doubling terms, the matrix 

elements of the effective Hamiltonian are necessarily the same for 

both components of the Jl-doublet. These in turn are equal to the 

matrix elements in the representation I'yi^A.SZJfLMj^ which does 

not possess inversion symmetry. We shall, however, find it 

convenient to use this last representation for tne calculation of 

matrix elements.

118-



5•4 Matrix Elements 

Since the basis functions involve the coupling of many 

momenta, it is desirable to use the techniques of spherical tensor 

operators ' , which simplifies the evaluation of matrix elements.

The case (a) basis set (Y^^ASZd-AJlIM^ with a 

decoupled nuclear spin, very closely approximates to the true 

physical situation. However, and &L are not completely good

quantum numbers and it is often found convenient in matrix 

diagonalization to use a coupled representation ll^ASZlJAPMp)

with I and J coupled to give a total angular momentum P, and where 

Mp, the space z-component of P, is a good quantum number. Below the 

matrix elements of the complete effective Hamiltonian will be 

evaluated in both the coupled and decoupled representations.

5.4.1 Anomalous Commutation Relationships of J

If the rotational angular momentum is referred to the 

molecule-fixed axes, it is found that its components do not obey 

normal commutation relations but have the sign of i reversed.

J , J = -ij and cyclic (5'56) 
yJ

This results from the fact that the components of J do not commute

2 
with the direction cosines, relating one axis system to the other
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It is thus not readily possible to expand a scalar product of 2 

with some other vector in terms of spherical tensor operators in the 

molecule-fixed axis system. This is related to the fact that true 

spherical tensors are defined via normal commutation relationships.

Van Vleck got around this "problem by devising the method of reversed 

angular momentum. He could have reversed J so that J = -J obeys 

normal commutation relations. Instead he reversed all normal 

momenta so that they commuted with an anomalous sign.

i.e. P = -P gives (5.57)

The arbitraiy phase in the matrix elements was chosen so that 

T gave real and positive (and consequently ]\ gave real and negative) 

matrix elements. This is in disagreement with the phase convention 

of Condon and Shortley ^° which is almost universally used.

With the definition of rotation matrices, it is possible 

to write the Hamiltonian in terms of space-fixed components and then 

relate these to the molecular system. Thus if we use a notation 

where subscripts p and q refer to components respeotively in space 

and molecular axis systems, the scalar product of J and P can be 

expanded as *

p
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Remembering that does not commute with it might 

seem that the above expansion is not hermitian, but luckily, on 

summing over p, all the non-commutation terms disappear. The matrix 

element of (5.58) is readily obtained by introducing the projection 

operator onto the complete manifold of rotational states (equals 

unity) between the rotation matrix and T^fj). The matrix elements 

with q^O have the opposite sign to those given by reversed angiilar 

momentum methods. Thus the method of Freed ^^, who mixed the two 

approaches, is not legitimate for the evaluation of matrix elements.

5.4.2 Rotational and Pine-structure Hamiltonian

The Hamiltonian appropriate to the ground vibronic state 

can be written in the form *

*trso - Z (J - L - 8) + A L 8

-28Y(J)Y(^ + (aV 2b')t1(l)T^(S)

where the term H (1 +L) 
X y

which affects all states equally, has been 

neglected. In a decoupled representation, its matrix elements may 

summarized as follows :

<^A3Zjn.Mj| w^^J,,^sA:'j'p.':g
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&Z2! 6;ul BQp(j+l) +

X j8(Sfl)(2S+l)j(J+1)(2J+l)^  ̂ (5.60)
q f-Zs 1 s\ c

+ (i^+ 2B^) (-1)^^ , 4S(S+1)(2S+1)^2

where ^^A] A^hoA^ ^ 6](^lho'^ ^^ ^^" replaced hy A^

and ^Q, the epir-orhit coupling constant andthe rotational constant

in the ground vibronic state. Since the matrix element is independent 

of nuclear spin and also of M_, the same matrix elements are. 

obtained in the coupled representation.

5.4.3 External Magnetic Field Interactions

The total effective Hamiltonian representing the 

interaction of the magnetic moments of the molecule with amagnetic 

field applied along the space-fixed z-axis is :

^.ip ^ ^o(io()

(5.61)
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In the decoupled, representation, the matrix elements are given, by :

q

J'

(g, + g_)A + (g^+g
'r

«(

/J 1 J'

J 1

0

8 '^qo

8 1

^ q

S

1'

Using the coupled representation, the matrix elements become :

(*1^A8ZIJilFMp,|lfg|*^A8Z'IJ'Jl'F'rg

X

q
J

q Ji'rrt

(2J+l)(2J«+l)xg

X 8(S+l)(2S+l)(2J+l)(2J'+l)k=
J^/ 8 1 8

q JL'/ \-Z q T'

+ gjj(J+i)(2J+i)r%ju
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g^|S^ (-l/'^'^'^^'^^^^ fl(l+l)(2I+l)(2F+l)(2P'+l)l =

(5.63)

The magnetic interaction, between the nuclear epin and 

an unpaired, electron can be expressed as the sum of three terms 

representing the electron orbital-nuclear spin dipolar interaction, 

the Fermi contact interaction and the electron spin-nuclear spin 

dipolar interaction. This can be written in terms of spherical 

tensor operators as :

1

n * 1

S' 3:^'1;K 1 P,q (5.64)
where 1' is closely related to the orbital angular momentum 1. and 

has an identical molecular z component (see (3*210) ).

1
/ 3 
i,c< p>q

P,q

,1 , 
pq

(o)

(3.65)

)1 'iqQll'S^)

1 2

.^1 ^

(3.66)
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C^(6j6) is related to the spherical harmonic Y^^ ^(0^) ty *

C^(8^) . 4Tr
2k+1 Tkq(»f) (5.67)

In the decoupled representation, the matrix elements are given by :

> 2 (-1)^^'^^''^Y^J jl(l+l)(2I+l)(2J+l)(2J'+l)l^

/1 1 I \ / J 1 \ / J 1

» i J \ /

t (-1)=-^!%

X
o I

I q

s ■

I’
r.

+
, _ _ /1 2 1 \ / S 1

()oA)«g(-i)':+-:

X (5,68)

The corresponding matrix elements in the coupled representation are :
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z
p

1

/ S 1 S

+ (30/4)^g (-1)^+^^ I

\q

:[ (3||T^(»,)||3)6oA ^“-=^|h„A> (5.69)

where CQ(0^) haa been, written explicitly as ^()cos 0-1). Also we 

have only considered one nuclear spin present in the molecule. The 

matrix element "^Q^I^C^^g^)) ho^^ ^^ ^^^ electron ^density of electron 

i at nucleus

In the approximation that the electronic wave-function 

can be written as a single configuration with all paired electrons 

in identical orbitals, the summation over i need only be over 

unpaired electrons. In the case of a single unpaired electron T (s^) 

is replaced by T^C^)* with the consequence that ^S||T^(8.)(| S^ can 

be replaced by 4s(S+l)(2S+1)>^. Analogously, the matrix element 

^o^ I ^iX ^odi)| 4^^/^ can be replaced by where ^^meana

the expectation value.
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25
Lucas ^, following the method of McWeeny , has used reduced

density matrices to show that the term we have replaced 1^

and often used as a parameter is not equal to the corresponding

term in the spin-spin dipolar interaction. This is often implied in

-3 
the statement that the expectation of r^i is different for spin and 

orbital angular momentum. They are only expected to be the same 

when the single configuration approximation is very good.

5.4'5 Electric Quadrupole Interaction

The electric quadrupole term represents the interaction 

of the nuclear electric quadrupole with the field gradient due to an 

external distribution of electrons. If we treat the nucleus 

classically as a number of point charges Zp at r^ with respect to 

the centre of mass, the Coulomb interaction -Zpe^( r^^-r) may be 

31 
expanded as a power series in r^/r.. Then the multipole expansion 

in terms of spherical harmonics yields :

oo +1 ^1

where (r@{t) are the spherical polar coordinates of a particle. The 

1=0 term has already been considered in the normal Coulomb interaction. 

The 1=1 terms disappear since the nucleus has no electric dipole 

moment. It is the 1=2 term that will be considered here (higher 

order terms are, negligible); they give the quadrupole interaccion.
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Making the substitution :

T^(S)

and =2(Vi) -
the quadrupole Hamiltonian becomes :

P,q

If the quadrupole moment of the nucleus is defined by :

Q = 2(11 I T^Cg)| II)

(5.71)

(5.72)

(5.73)

(5.74)

the matrix elements in the decoupled representation become :

/nAsyJiiMjn^Llj4 IM^As2:j'ji'M^} 
' *0 J 1 (q^ 'O d j.

(5.75)

In the coupled representation, the corresponding results are
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^ASIUjlFI^^ Jf^^ASZIJWFMp

/j 2 J'\/ I 2 l\-1 r) ,
<S«A|Tq(^)hoA!>

V (5.76)

The q=+2 component of the quadrupole interaction.can contribute to 

the A-doubling, but ae before this will be neglected. The matrix 

element of 2TQ(^) in the above equations is conventially written as 

q^, the axial component of the electric field gradient. The quantity 

e^g^Q which then results is called the quadrupole coupling constant.

5,4.6 Electric Field (Stark) Interaction

The Hamiltonian for a molecule in a uniform electric 

field, E, can be obtained from (3.214) ty replacing if»x ly 

-E.(E +r\+8). Then for a non-charged molecule :

(5.77)

where is the dipole moment operator. In

ot i
terms of spherical tensor operators, this becomes :
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Its matrix elements in the decoupled representation are ;

In the coupled representation, the matrix elements are given ty :

{*1^ A S Z IJUFIilg, I ^ h^ A sr IJ 'Il!F' M^)

where u is the dipole moment of the ground vihronic state.

5.4.7 Spin-rotation Interaction

The spin-rotation Hamiltonian is :

q=±1 
P

where certain constant terms, which affect all levels eq^ually, have 
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been, omitted. In the decoupled representation, its matrix elements 

are given by :

Y
q=±.1

J+SrIZrZ ^s(S+l)(2S+l)j(j+l)(2J+lj^g

(5.82)

Exactly the same results are obtained in the coupled representation.

The matrix elements of the electron spin-spin interaction 

will not ba given here since in doublet states they are all 

identically zero.
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Chapter 6

The E.p.r. Spectrum of the NS Radical

6.1 Introduction

The NS radical was first identified in mixtures of 

sulphur vapour and nitrogen, subjected to a discharge, ty Fowler and 

Bakker . Analysis of the A S-X TT bands of the electronic 

spectrum by Zeeman has given accurate values of the rotational 

2 constant (Bg) and the fine-structure constant (A) in the TT ground 

state (BQ-O.77O5Q cm"^, A=22).o_ cm"'')

The gas phase electron paramagnetic resonance spectrum 

of NS was first observed by reacting nitrogen atoms with hydrogen 

sulphide ^'^, but the signals were rather weak and broad. Subsequent- 

studies ^ have shown that the reaction of nitrogen atoms with sulphur 

monochloride (SgClg) yields the spectrum with a signal-to-noise 

ratio of approximately 100 to 1. This permits accurate determinations 

of the axial component h of the hyperfine constant for the ^^N 

nucleus and the electric quadrupole coupling constant. The results 

also show a disagreement with Zeeman's value of B^.

After the publication of these results , Uehara and 

Morino ^ observed the NS e.p.r. spectrum by discharging Ng and SClg 

together; their results are largely in agreement with those given 

here.
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6.2 Expe rimental

The nitrogen atoms were obtained by passing 'o%ygen-free' 

nitrogen, at a pressure of two torr, through a microwave discharge 

operated at 2450 MHz and,at a power output of 100 watts; it was 

situated about 15 cm upstream of the Stark microwave cavity. The 

SgClg vapour (previously de-gassed at liquid nitrogen temperatures) 

enters the cavity by a seperate inlet port, its flow being controlled 

by means of a needle valve.

The spectrum was observed using lOOkhz Stark modulation. 

Ten series of measurements were made on the field position of each 

line; because of a small frequency drift, due to deposition of solid 

products in the cavity, all line positions were corrected to a 

constant frequency. Also, because of the slight perturbing effects 

of the cavity, the field inside the cavity differs slightly from 

that measured just outside. A correction of 2.7 gauss was thus 

made using HO as a standard ^. The resulting fields are given in 

table 1, and the quoted errors of 0.2 gauss are twice the 'random' 

standard deviation. The remaining systematic error is probably less 

than 0.5 gauss.

In order to measure the dipole moment of HS, a static 

electric field of between 50 scrA 200 volts/cm was applied across the 
end-plates of the cavity. The full details are discussed in section 

(6.4).



6.^5 Analysis of the Spectrum

The electron resonance spectrum of NS, given in figure 

1, consists of three triplets of lines. The centre of the spectrum 

indicates a g-value close to 0.8, the value expected for a good case (a) 

molecule in a ^1^2 ^1^"^^^^^^° state in its lowest rotational level 

(1=5/2). The basic spectrum corresponds to the three Alij=±1 transitions, 

further split into three by the 1=1 ^^N magnetic nucleus.

The initial interpretation of the spectrum was made by 

means of a perturbation expansion for the energy levels. Then, using the 

fact that the electron resonance transitions quite accurately obey the 

selection rules /\M^=t1,/\M_=0 in a decoupled representation, the 

resonant frequency for each line can be written as a power series in the 

magnetic field, H, with coefficients expressed in terms of the molecular 

parameters A, B^, h and e Qq^. Since high order terms are required, the 

expansion is best performed using projection operators. This technique 

can cope with degeneracies but here it is convenient to remove the 

degeneracy of states with the same value of J but different M^ by defining 

a suitable zeroth order Hamiltonian. Thus the total Hamiltonian can be 

written as :

if = if + V + VI (6.1) 
0

if = if + /^^(^.tg%J:O: M (6.2)

1(1+1)
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4+ removes the degeneracy of states with different values of J, Mj

or/l. Then the main perturbation term, V, is ;

V* contains all the relatively small terms :

where $g, and 6g^ are small mass-polarization and relativistic 

corrections to the orbital and spin g-factors.

Then using degenerate perturbation theory ^^^*^^^ the 

energy of a particular state, |0^, is given to fourth order by :

B = ^iPjflUo) = (0l^ol0) + <(O|V|O) + ^|V'|0}

+ <b|7(Q/a)v(Q/a)7|0) f <b|v(Q/a)v|o)

+ <0|v(Qya)v(Q/a)v(Qya)v|0) + <:o|T(Q/a^)VP^7(Q/a)T|d)

+ <^|v(Q/a)7(Q/a)V(Q/a)v(Q/a)v|0)

- <O|T(Q/a^)v(Q/a)VP^V(Q/a)v|d>

- (]|T(Q/a^)V P/(Q/a)v(Q/a)7|0)

- <O|V(Q/a)T(Q/a^)T PQT(Q/a)7|d> (6.5)
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where P
o

is the projection operator onto the particular eigenstate

|d^ of j+^ and. Q projects onto all the other states |n^ such that : 

y li^nl
(6.6)

This type of expansion has been giyen previously by Freed , but

the one given here differs in the fact that the perturbation 7 has 

zero diagonal matrix elements in the ground state, i.e. P7 f^ is 

zero. After evaluating the matrix elements in (6.$) the energy of 

each state can be obtained as a power series in H. Then neglecting 

for the moment the hyperfine interactions and other small terms, V', 

the transition energies of the transitions (Mj^Mj+l) are as given 

below; we shall make use of the abreviation : k = (l+g/2)^H and 

1 = gpH (g^^.002)19).

z(±**Mi) = 0.40000k + o.oi3;;(^)k - o.oi829(^)^ 

- 0.018«(^)\ -

0J6671_ 0.1067 1 0.0067 1
A+B A-2B , A-7B

+ small (higher order) terms , (6.7)

E(+^_^) = 0,40000k - 0.0)657(2g)^k - 0,8000 BL 
A-2B

+ higher order terms (6.8)
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In equation (6.?), all upper signs and all lower signs are to be 

taken together.

The principal term for all lines is 0.4k, yielding a 

g-value of 0.8. The main contribution th the seperation of the 

different 6M^=±1 transitions is the second order Zeeman term, 

0.053$k /5B. This is inversely proportional to B and allows a 

determination of the rotational constant. After allowing for certain 

contributions from the third order Zeeman effect, the main term which 

affects the position of the centre of the spectrum is -O.8B1/(A-2B) ; 

hence the fine-structure constant A can readily be determined. There 

is a further contribution to the overall g-value from V, namely 

0.4g40.4(Sg_4^&g_). These are all typically of the order of 10 

and if neglected represent an uncertainty of A; see for example the 

11 
CIO specti-um .

The first order contributions of the hyperfine 

interactions to the transition energies are :

= 0.4hi/L + 0.05

5M^-I(I+1) 

1(21-1)

(6.9) 

Thus the seperation in the centre group of lines is essentially 

independent of e^Qg^ and gives the magnitude of the hyperfine 

constant, h, although not its sign (this can be often obtained 

from higher order effects). The outer groups of lines show some 



asymmetry due to the quadrupole interaction. Por nuclear spin 1=1, 

the tL=±1 components
2 2

are both moved by 0.1e Qq (-0.1e g^Q) to

higher frequency forMj=& 3/2), and the 1L=O centre component(Mj=-

is moved ty 0.20^0.0. in the opposite direction. Thus the asymmetry

2
in spacing of the outer two groups of lines gives 0.6e g^Q; its sign 

is obtained even though it may not be possible to identify which

transition correspoinds to IiL= +1 or -1.

The energy levels were calculated accurately by computer 

diagonalisation of the matrix representing the effective Hamiltonian 

in either a coupled or decoupled case (a) representation. Inclusion 

of the first four rotational levels in each fine-structure state was 

found to give negligible rounding off errors. Initially the values 

1=22).0_, ^0=0.7705g cm" , given ly Zeeman , were used together 

with the first order values of h and e^q^Q, obtained from the

. . 2
perturbation treatment. After slight modification of h and e q^Qs 

the calculated line positions are given in table 1, column 2. The 

predicted line positions are on average about 0,7 gauss too low. As 

mentioned previously, agreement with experiment could be obtained by 

using an 'effective* A value (cf. GIO ^^). Instead the value of A 

obtained from the electronic spectrum was assumed to be correct. 

The remaining discrepancy in the absolute position can be removed 

by putting (g'+Ss^t^Sgg) equal to —1.72^10 । the results are given

in column 2 of table 1.
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The second order Zeeman splitting, as calculated by matrix 

diagonalisation, between the three 6ll,=t1 groups is about 0.4 gauss 

too small. This is significantly outside the experimental accuracy 

and suggests that the rotational constant, B, should be modified, 

although a close examination of Zeeman's analysis of the u.v. spectrum 

gives no strong reason for such a change. The magnetic susceptibility 

terms which have been neglected can aifect the second orcer Zeeman 

splitting, but a calculation of the magnitude of such an effect 

confirms that it is negligible at 10 kgauss. The rotational constant 

was changed from 0.7706 to 0.7722 cm""' and its effect on the spectrum 

is givenin table 1, column 4.

It has been assumed that the hyperfine constant is 

positive as in NO. The effect of reversing the sign of h is given 

in column 5 of table 1.

The perpendicular (non-axial) component, b, of the 

hyperfine interaction mixes the fine-structure states and slightly 

affects the hyperfine splitting. However since it has the same effect 

as a change in h, it is impossible to separate the two contributions. 

Order of magnitude calculations suggest that the effect on the 

measured magnitude of h is about the same as the experimental error 

limits, so will not be important. The whole problem is considered 

in more detail in the next chapter on OP, where it is much more 

important.
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Finally, one should, consider the spin-rotation 

interaction, since the spin-rotation constant is typically of the 

order of 100 MBz. However, in a good case (a) molecule, the first 

order contribution is zero; this is because the spin and rotational 

magnetic moments are essentially perpendicular. Second order 

contributions are independent of M.., so that for a given value of J 

all levels are moved by the same amount; the effect on the spectrum 

is thus nil. Higher order effects are completely negligible in a 

reasonably good case (a) molecules.

6,4 The Stark Effect and Hipole Moment of HS

In the presence of a strong electric field, each line of 

the HS spectrum is split into two component. The effect of a field 

of about 100 volt/cm is shown in figure 2. Measurement of the splitting 

as a function of applied electric field enaables one to determine the 

dipole moment of the molecule.

The effective electric inside the microwave cavity was 

obtained by measuring the splitting in the HO spectrum before and 

12 
after each run on HS and using the known value of its dipole moment 

Care has to be taken to prevent electrons from getting into the cavity 

and reducing the effective electric field seen by the HS radical. 

Initial results were somewhat low. The free electrons appear to be 

formed by photoionisation, which was minimised by placing a bend in
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the flow tube between the microwave discharge region and the cavity. 

It is believed that the dipole moments calculated now are aocurate 

to the errors quoted because of the low number of free electrons 

present in the microwave cavity.

The Hamiltonian in the presence of a static electric 

field is given by :

'W + if

where

(6.10)

(6.11)

In the absence of if,the basis wave-functions may be written as

(6.12)

Although these states are not eigenfunctions of if, it is possible 

ty means of a suitable transformation (such as that given in section 

6.)) to obtain an effective Hamiltonian diagonal in our basis. The 

two states given above have almost the same energy, being seperated 

by theJl-doubling constant. The electric field interaction does not 

preserve parity and mixes these two states. In an early paper on the 

Stark effect ^^, only the first order contribution of dfg was 

considered but here third order contributions will be included.

Then by means of degenerate perturbation cheory, the off-diagonal 

elements in the matrix :
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W + $/2
s

(6.1$)

representing the mixing of the two Jl-donblets are given ty

+ ^l^(Qo/^)^(Q()/^)V |-^ + ^+ I V(Q^a)jfg(Q^a)V I -}

+ ^+|V(Q^a)v(Qy'a)j+^|-y - (^+|v(Q^a^)VP^^|-}

+ higher-order terms , (6.14)

where V is given in (6.)). Terms like ^+ |j+T;,(Q^a^)V P^V | -^ have 

been omitted because the diagonal matrix elements of V are zero.

The eigenvalues of the secular determinant from (6.1$) 

are given by :

E " W ± ^ (S^ + 4S^)^, (6.15)

and since at the field strengths used in the experiment, 8)^5, the 

seperation of the Jl-doublet

6E = 28

The firstorder variation of 

been considered previously.

components is given

S^

4S
(6.16)

the intensities of the transition

At high electric fields

the transitions have significant transition probability. Measurements 

were performed on the M. = transitions and for any given Ly.
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the observed.Stark splitting between the two strongly allowed 

transitions is give by :

At = 0.8/AE - O,219y^B(2AH/5B) + 2.5 $ / E (6.1?)

Although $ must be included for NO with its small Stark splitting 

in the calibration of the electric field) it can be completely neglected 

for NS (/^E is typically of the order of 40 I^THz while S is less 

than 1 NiSz). Then using the known values of the dipole moment 

(0,15872 Debye) ^^ and the JL-doubling constant (0.91 Khz) for 

NO, the mean of the calculated values of the electric dipole moment 

of NS is 1.86 ±.0.08 Debye.

5.5 Discussion of Results

The agreement between the theoretical analysis and 

experimental observations is good, apart from the small discrepancy

in Bg. Since these measurements, the microwave spectrum of NS has 

been ,observed by Amano et al They affirm the discrepancy in

Zeeman's value of B^; their value of the rotatioal constant,

Bg = 25156.0 Khz = 0.7724 cm"^ is in good agreement with the value

obtained here. The microwave spectrum also gives information on the 

Jt-doubling parameters and the various contributions to the hyperfine 

constants. They were not able to completely seperate off the 

perpendicular contribution which mixes the fine-structure states. 
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The results are compared with those of the present work in table 2. 

The single configuration approximation has been made by Uehara and 

Morino to obtain a "^ue of b 64 MHz» The uncertainty in this 

(of the discrepancy in the hyperfine constant c obtained by different 

methods in table 2) could be around 50^ but this is not important here 

since its effect on the spectrum and hence the change in h is small. 

After this mobification it is found that h should be increased from 

56.8 to 57.4 I'Gz.

The NS radical might be expected to have an electronic 

structure similar to that of NO, and the molecular parameters for 

the two are compared in table 2. The hype^fi^^ parameters for iTS 

are slightly smaller than in NO, suggesting that the unpaired 

electron is less localised on the nitrogen auom, although this 

semi-qualitative interpretation is somewhat unsatisfactoiy.

Since the dipole moments of NO and SO are O.I58 and 

1*55 Debye respectively, simple electronegativity arguments indicate 

that our value of 1.86 Debye for DS rs net unexpected (if they 

reinforce one another). The dipole moment of NO is so small that 

there must be some doubt about its sign, but in NS it seems 

reasonably certain that the negative end of tne dipole is on che 

nitrogen. Just recently, a wave-function calculation has confa-mied 

1/ 
this with a value of 1/73 pebye for the dipole moment.
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Table 6,2 : Comparison of the molecular parameters of KS, obtained

by different authors, and those of hU.

Parameter
NS

This work E.p

NS

.r. ref 4

NS
13 

Microwave

NO

A 223
-1 

cm 
2

222.9. cm"^ 123.16 cm"^

0.7722 cm"^

23150 t 10 MHz 23I6I tHz 23156.01 MHz

1.6957 cm"^

h = a + &(b+c) 56.8 t 0.5 MHz 57.0 ± ()« 2 MHz

After
correction 57.4 t 0.5 I'lHz 57.6 1 0. 2 MHz 56.3c± 0*8  liSz 75.8 t 0.2 I,iEz

a - &(b+c) 67.4 ± 0.5 MHz 92.7 tl.O MHz

d MHz 87.0 ± 0.4 112.60

a MHz 61.9 ± 0.7 84.28 ± 0.5

(b+c) MHz 

0 = $(a-d) 

d = -d/2

-11.1 ± 1.3

-75.4 MHz

-43.5 I4Hz

—16«9 i T.O

-84.9 MHz

-56.3 MHz

e^g^Q MHz
1 ± 0.5 "^2 * ^6 0.3 -2.6 ± 0.7 — 1«8

^ Debye 1. 86 ± 0.08 1.81 ±0.5 0.15872

* Assuming a single configeration so that

** Assuming that the wave-function near the ^4g nucleus is like a p-orbital
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chapter Y

Gas-phase E.P.5. Spectrum of OF

7.1 Introduction

The free radical CP has been known for some 20 years. 

Its A^TT-X^TT band system was first identified and analysed by 

Andrews and Barrow ^ who studied the flash photolysis of CP^. More 

accurate values of the rotational constant Eg and the spin-orbit 

coupling (fine structure) constant A in the ground vibronic state 

have recently been obtained by porter et al. ; these values ar^ 

confirmed by the work to be described here. The e.p.r. measurements 

are concerned with the state which is about cm above the 

essentially diamagnetic Hi ground-stats.

Prom the observed hyperfine splitting in the spectrum, 

it is possible to obtain a value for the axial component (h) of the 

^9p magnetic hyperfine interaction. In additibn, the relatively small 

value of A/pQ means that there is considerable rotational mixing of 

the two fine-structure states, with the consequence that the 

perpendicular component (b) of the hyperfine interaction has a 

significant effect upon the electron resonance spectrum. To firsu 

order in the hyperfine interaction this effect is the same as that 

of the axial component h and the measurements on CP in its lowest 

rotational level Provide a relationship between h and b, but 
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do not enable their separate values to be determined. In the second 

rotational level (1=^, however, the rotational mixing of the fine- 

structure states is greater, so that a second relationship between 

h and b is obtained. It is thus possible to seperate h and b. As 

we shall see, the various contributions to the hyperfine interaction, 

for example the Fermi-contact interaction, are still not uniquely 

determined but the use of a simple l.C.A.O. model oi the eleccronic 

structure gives significant information.

Measurement of the splitting of each line by an applied 

electric field, which is essentially first order, nas yielued the 

value of the electric dipole moment.

7.2 Experimental

The electron resonance spectrum of OF was ootained by

passing OF through a microwave discharge and mixing the discharge

products with a secondary gas inside the resonant microwave cavit) 

of the spectrometer. The secondary gas was any one of a number o 

organic molecules containing hydrogen atoms adjacent to an electron 

withdrawing group. The most successful were acetonitrile, acetone, 

acetaldehyde and ketene, of which the last two yielded the strongest 

CF spectra. Since, however, the reaction with acetaldehyde produced 

a polymeric deposit in the spectrometer cavity, ketene was used for 

most experiments. The preparation of ketene is described in section 
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(2.6). The electron resonance spectrum was observed in a Decca 

Stark cavity (similar to that designed by Carrington et al. ^) with 

a Decca X-^ spectrometer used in conjunction with a Varian 15 in. 

magnet. The magnet field positions of the CP lines were measured 

by means of an A.E.G. fluxmeter.

Several series of measurements were made on each line and 

after correction to a constant microwave frequency, the mean was 

calculated. A small correction was made for the slight difference 

in magnetic field between the inside and outside of the cavity; the 

final results are given in Table 1. The standard error in the line 

positions for the J=5/2 level is 0,4 gauss.

In the J=5/2 level, however, the spectrum was very weak 

and therefore time-averaging techniques were used to improve the 

signal-to-noise ratio. At the highest fields used, the inhomogeneity 

close to the pole faces was too great for the proton resonance 

absorption to be observable; the field was therefore calibrated with 

the proton resonance probe in the centre of the magnet gap, the 

microwave cavity being removed. In this way it was possible to 

measure the hyperfine splittings to within ±1.5 gauss, but the absolute 

field values given in table 2 are only accurate to about ±7 gauss. 

Fortunately our main interest is in the J=5/2 hyperfine splittings, 

which are reasonably well determined.

The electron paramagnetic spectra of CP in its J=$/2 and 
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J=5/2 levels are shown in figures 1 and 2 respectively. Since the 

maximum magnetic field available is about 22 kilogauss, it is not 

possible to measure the two highest field doublets.

Dipole moment measurements were carried out carried out 

by applying static electric fields of up to 200 volts/cm across the 

microwave cavity; care was taken to minimise the number of free 

electrons present, formed by photoionisation. Each line in the J=3/2 

spectrum is split into two out-of-phase first derivative components 

and the splitting as a function of electric field strength yields the 

dipole moment. The electric field inside the cavity was calibrated 

by observing the Stark splitting in hO before and after each OF 

measurement; the dipole moment of hO is known accurately to be 

5 
0.15872 Debye

7.5 Analysis of the Spectra

The electron resonance spectra were analysed by means of 

the effective gamiltonian derived in section 5'3'

The spectrum of GF in the J=5/2 level consists of six 

lines, with a centre corresponding to a g-value close to 0.8, tne 

value expected for a ^^/2* '^''V^ state with good case (a) cuupl±^G' 

The six lines arise from the three electric dipole allowed 

transitions, each split into two by the magnetic hyperfine coupling 

of the ^^P nucleus, which has spin the hyperfine splitting m
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Table 7.1 : The experimental and calculated field positions (in 

gauss) for the J=$/2 rotational level. The error in 

measured field positions is ±0.4 gauss.

The microwave frequency is $270.22 MHz.

Observed 

field

Calculated 

field (a)

Calculated 

field (b)

1
885$.8 885$.8 885$.8

2 8625,4 8625.1 8625.0

-i/2 f-* 1/2
-i 8740.2 8740.0 8740.0

84$6.8i 84$6.8 84$6.$

1/2 ^^)/2
-2 8617.5 8617.9 8617;9

8568.18567.6 8568.0

(a) Using h = 655.^ LiEz, h = 0.0 IviHz, g* = -0.00006.

(b) Using h = 662.$ I,UIz, b = 1$0 UIz, g' = -0,00006.
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Table 7.2 : The experimental and calculated field positions (in 

gauss) for the J=5/2 rotational level. The error in 

the experimental hyperfine splittings is ^1.5 gauss, 

but the absolute field positions are only accurate to 

± 7 gauss, The microwave frequency is $270.2 Khz.

Observed

field

Observed 

hyperfine 

splitting

Calculated

field

Calculated 

hyperfine 

splitting

21)82.4 21)76.9
-1/2 1/2

-L 21129.2.
2)).2

2112).1
25).8

20)81.8 20)85.7
-3/2 —1/2 251.2 249.4

i 20))0.6 20))6.)

20042.2 2004).8
248.6-5/2 -5/2

2 19794.9
247.)

19795.2

* Using the final values of h and b, namely h = 662,9 ^Hz, b = 190 IvUz.

The overall g-value correction is g' = 0.0001. 



the spectrum is approximately twice as large as the second-order 

Zeeman splitting of the ZiM^=+1 transitions. An approximate 

calculation of the Zeeman splitting using perturbation theory 

" -1 . 
gives a value of the rotational constant BQ close to 1.40 c?ni , in 

good agreement with the value obtained from the ultra-violet spectrum. 

In the quantitative interpretation of tlie spectrum we used the values 

of Porter et al. ^ for the rotational and spin-orbit constants, 

namely BQ=1.40827 cm \ A=77.11 ^m ,

In CIO ^ and BS (see previous chapter) as in other 

good case (a) molecules, it has been shown that only the axial

component (h) of the total hyperfine interaction can be determined

from the e.p.r. spectrum. This component is given by :

h - Wii (?% + ^^(0)

where the three terms arise from the nuclear spin-electron orbital 

interaction, the Fermi contact interaction, and the nuclear spin­

electron spin dipolar interaction. Initially the spectrum was interpreted 

by adjusting the values of h and g =0.4g^t-0,4^6]j4-0.2&^g (^^^ 

rotational and relativistic corrections to the overall g-value).

The matrix representing the effective Kamiltonian was set up in a 

Bund's case (a.) basis set with decoupled nuclear spin, including 

rotational levels up to J=9/2 for the state and J=7/2 for the 
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2
TTj /g state. The matrix was diagonalised numerically for values 

of the magnetic field a few gauss either side of the observed fields 
and after allowing for the selection rules the

transition fields were calculated by linear interpolation, because 

of the significant magnitude of h,second order corrections to the 
energy from states with AWL=+1,/1M^.^^+1 had to be included; in the 

final calculations, the contributions from these states were included 

explicitly in the matrix to be diagonalised. The best fit to the 

spectrum and the corresponding values of h and g' are given in table 1.

The above procedure is not entirely satisfactory in the 

case of CP for the following reasons. The relatively large value of 

BVA means that there is substantial rotational mixing of the ll^yg 

^^/2 ^^^® structure states (incipient case (b) coupling). This 

in turn means that the effect of the non—axial component Oi 
fluorine hyperfine interaction is by no means negligible , 

since the hyperfine interaction itself is quite large. The 

component, b, is given by :

f /^ops^e -l\ 1 

" \ 2]^ J

and its observable effect on the J")/2 spectrum is the same 

the 

particularly 

non-axial

(7.2)

as that

produced by a change in the value of h. Consequently, the J=^/2 

spectrum can be quantitatively interpreted in terms of a series of 

-1^$.



values of h and b, shown.in figure ). Fortunately the 1=5/2 spectrum 

yields a second relationship between the two hyperfine parameters, 

from which the individual values can be estimated.

The 1=5/2 spectrum has an effective g-value close to 

0.54' It consists of ten lines, the five AMj=±.1 transitions 

being split into doublets by the fluorine hyperfine interaction. 

Only the six lowest field lines come within the range of our magnet. 

The spectrum was analysed in the same way as before, except that 

larger matrices were diagonalised, the ^H^/p J=1l/2 and the 

levels being included. In the 1=5/2 level the rotational mixing of 

the fine structure states is larger than in the 1=5/2 level so that 

the relative contribution of b to the hyperfine splitting is increased. 

The values of h and b which best fit the 1=5/2 spectrum are shown in 

figure 5«

The point of intersection of the two lines in figure 5 

yields unique values of h and b, which are given below.

h = 662.9 ± ) MHz , b = 190 ± 50 MHz

The errors quoted arise from the experimental errors in measuring 

the hyperfine splittings. The calculated fields for the absorption 

lines of the 1=5/2 and the 1=5/2 spectra using these values are given 

respectively, in tables 1 and 2. 

The dipole moment of CP was calculated from the observed 
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Figure 7.^ Plot of the values of the hyperfine parameters h and h 

which fit the observed fluorine hyperfine splittings 

in the J=$/2 and 5/2 levels. The dotted lines indicate the error 

limits. The point of intersection gives the true value of h and h.

h (tniz)



stark splitting of the transitions of the J=)/2 spectrum

using the expression obtained in the previous chapter for NS.

2.58^

5B / /cE '
Ae= 0.8^ - 0.219juCB

where 8 is theA-doubling constant. The electricfield was obtained 

from the NO splitting, using the above equation; the dipole moment ^ 

of NO is knoT/n to be 0.15872 Debye and itsJl-doubling constant is 

0.91 MHz ^, If the Jl-doubling constant of CP is assumed to be about 

1 MHz (as expected from it being isoelectronic with NO), its 

contribution to the Stark splitting can be completely neglected at 

fields of, about 100 volts/cm or more. The value of the electric 

dipole moment of CF is then found to be 0.6$ ± O.O5 Debye.

7.14:JDiscussi^

Since we are only able to obtain two of the hyperfine 

paramaters, any conclusions about the unpaired electron distribution 

in CP must rest on some kind of approximation. Elimination of the 

Fermi-contact term from (7.I) and (7.2) yields ;

The molecular orbital containing the unpaired electron can be written.
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approximately, as a linear combination of the carbon and fluorine 

2p atomic orbitals ;

4^ = a^ 2pp - a^ 2pg (7.5)

In the region of the fluorine nucleus, where r is most important, 

the wave-function is expected to resemble the fluorine 2p'Orbital 

so that we can write ;

i (7.6)
\ IT \rVS

The hyperfine constants of NO suggest that this is obeyed to about 

5^. Then'putting g=2 and assuming that the expectation value of r 

is the same for spin and orbital motion, one obtains :

= 406 ± 20 MHz, giTppi/\^°^')^/ = -1^2 ±.8 ]^m

(7.7)

where the error limits are those from experiment and not theory. 

Finally, on substituting these results into the expression for h (7.1), 

one obtains an approximate value for the Fermi contact interaction :

In the fluorine atom itself, the value of g^^^p^^r y :'-^ "^900 I'^Sz 

The exact value actually depends upon whether the expectation value 

is taken over the orbital or spin density distribution, but in our
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same . Thenapproximation the two values are necessarily the 

neglecting the contributions of the carbon 2p atomic orbital to ^r''^^ 

we obtain :

^ , &g, = 0'46 (7'9)

The fluorine atom spectrum also yields the value of the Fermi contact 

term as 30$ llEz, and under the assumption that the fluorine s orbital, 

polarization is simply proportional to az, the predicted value of the 

Fermi term in CF is 6$ MHz, which is within the range of the observed 

value. These arguements are, of course, extremely crude but they 

are supported by analogous data on the spin-orbit constant of CF. 

Dixon and Kroto considered an L.C.A.O. wave-function like (7*5) 

and since the major contribution to the spin-orbit coupling constants 

comes from the unpaired electron density near the nuclei, they obtained 

the result : 

(7'10)

Here we shall only take the modulus of A since its sign depends upon 

whether the orbitals are half lilled or not. Also since tne value 

for carbon is taken from a ^P state, it must be multiplied by a. 

factor of 2 in order to represent the same quantity. Then using 

the values lAJ= 269 om"^ and|Agt= 28 cm"'' and assuming a^+ag=1 : 

a^ = 0.20. ; a^ = 0.42 (7.11)
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This is remarkably good agreement considering the crudity of the 

assumptions but it/presumably because only those parts of the elect 

wave-function in close proximity to the nucleus are considered in e 

case and these are likely to be very similar to the atomic orbitals 

Although these results provide a worthwhile indication of the 

unpaired electron distribution in CF, accurate wave-functions are 

necessary for a really accurate discussion of the hyperfine results 

The electric dipole moment of CP is found to be much 

larger than the isoelectronic NO, as expected on electro-negativity 

grounds. The sign of the dipole moment cannot be determined from 

these experiments but is expected to be consistent with the polaric
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Chapter 8

The Reimer Effect

8.1 Introduction

In linear moleculee with a douhly-degenerate electronic 

state (TT,A, etc. ), it is possible, when a doubly degenerate bending 

mode of vibration is excited, to have a coupling between the 

electronic and vibrational motion of the molecule. This removes 

some of the expected four-fold degeneracy and ensures that the 

Born-Oppenheimer product wave-function is no longer a valid approximation 

1 
for some -of the states; such an interaction was first considered by

2
Renner and is called the Renner or Renner-Teller effect. This can 

be immediately illustrated by a group theoretical arguement. The 

bending-vibrational and electronic wave-functions belong to degenerate 

representations of the C^^ (or %^) symmetry group.. The vibronic 

wave-functions belong to the direct product representation, which is 

in general reducible. Por example :

TTxTT . Z+ + 2" + (8.1)

Renner set up the problem for a molecule in a TT state 

by assuming that on bending it acquired a dipole moment which mixed 

in excited states. Using second-order perturbation theory, ne snowed 

that the resulting interaction is equivalent to an extra temo in une 
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2
Hamiltonian of the form ekQ^ cos 2(0-^^), where 0 and ^ are respectively 

the electronic and vibrational azimuthal angles, and Qg is the bending 

normal coordinate.

In an alternative approach, Pople and Longuet-Higgins ^'^ 

have expanded the vibrational potential as a power series in (L and 

cos(6-^) like :

Prom this they extract the second term, which gives a diagonal 

contribution in a TT electronic state, and neglect all second order 

effects. Further theoretical investigations have been made by Pople ' 

into the effects of also introducing spin-orbit coupling in fT 

molecules. Finally the effect of the Renner perturbation on the 

rotational structure of alinear triatomic molecule in a ^7T or a ''T) 

electronic state has been considered by Ilougan .

The recent discovery of the e.p.r. spectrum of the linear 

triatomic radicals NCO * and HCS , both with TT ground electronic 

states has renewed interest in the Renner effect. The theoretical 

results obtained in the papers mentioned above are strictly speaking 

only applicable to the investigation of electronic spectra; a more 

precise derivation of the Renner effect is necessary for the 

interpretation of high resolution spectra in the microwave or 

radio-frequency region.
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In this chapter, the Coulombic interaction for the 

bending mode of vibration will be expanded as a power series in Qg 

(the normal bending coordinate) and both first and second order 

contributions to the Renner effect will bo included in an effective 

Hamiltonian. Because of the large mixing in of excited electronic 

states, it is discovered that there are important third order 

contributions to the observed magnetic moment of the molecule. The 

theory predicts that the correction to the orbital g-value should 

be linear in the vibrational quantum number, Vi, and this has been 

confirmed by the experimental results.

8.2 Basic Theory

The problem of the linear triatomic molecule cannot be 

solved by using the Born-Oppenheimer seperation of electronic and 

nuclear motions, except in the linear configuration (Qg = O). Then 

the potential due to the nuclei has cylindrical symmetry and the 

electronic wave-function can be classified by tne quantum number A. , 

representing the expectation value of the orbital angular momentum. 

This wave-function ^'(/i;r^,r^) is a solution of tne electronic 

Hamiltonian, ^ :
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where r^ is the coordinate of the nuclei on the linear axis.

When the molecule bends, the Goulombic potential energy

must be modified; the resulting perturbation to the electronic-nuclear

energy is :

VCOg) - T(0)

where the cylindrical polar coordinates (p, 0 or ^, z) have been used. 

Now assuming small-amplitude vibrations so that |O_^<(z.-z^) +p^) 

the perturbation can be written as a power series in p^ and cos(0.-^^ 

Then if we replace (z.-z^) + p^^^ ty f(e), which is only a function 

of the electronic position coordinates or the stretching normal

coordinates the perturbation to the Goulombic energy is :

TlQg) - T(0) f^(e) 2f(e)

+ higher order terms (8.5)

The problem of the configuration,in which
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briefly disouseed in appendix C, but do not in-zalidate the arguements 

to be given below.

It is desirable to replace all the bending coordinates

of the nuclei ty the normal coordinate

(^ "^2 ^ ' f(< 9^ ^^^ allc/ (8.6)

Then collecting all the electron-nuclear Coulomblc interactions

together, the total bending perturbation can be written as *

TlQg) - T(0) =

^2

^(^i) ^2 "^ A^i(6i)Q2°°^(®i")^)

(^j) OgCOsSCG^-^)

+ higher order terms (8.7)

The coefficients, A, are functions of mainly the electronic 

coordinates with a slight dependence on the stretching normal 

coordinates. Included in these terms are also the perturbations 

obtained from expanding the nuclear-nuclear Coulombic interaction 

as a power series in Qu.

The total Hamiltonian, which can be written as :

r (8.8)

mixes the different electronic states. We are interested in measuring
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spectra in the ground electronic state, in the ground stretching- 

vibrational state and in any of the lower states of the bending 

vibrational manifold; this will be called the "ground vibronic 

manifold" for simplicity. In order to solve for the energy levels, 

it is desirable to derive an effective Hamiltonian, which operates 

in just this particular manifold. As before this is most easily 

performed by the technique of degenerate perturbation theory 

P is defined as the projection operator onto the ground vibronic 

manifold, |0,i^ :

pQ = |o,i^(o,i| (8.9)

i 

where i represents all the other quantum numbers necessary to specify 

the state (including the bending vibrational quantum number,

We also define :

-L^^^l^^bll (8.10)

Following Eloch ^'^, the effective Hamiltonian may be written to third 

order in the form :

+ higher order terms (8.11
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jf' should be thought of as jf , from (8.8), plus all the smaller 

magnetic interactions to be introduced later (see equation $.1?).

In the expansion, we shall limit ourselves to the harmonic approximation 

which is generally sufficiently accurate to explain effects in the 

lower vibrational states. The first two terms in (8.11) are those 

parts of the Hamiltonian that give diagonal contributions in the 

ground manifold. Then, for the moment, taking :

r

where 8 is used instead of 8. to signify all electrons (it has the 

same selection rules on matrix elements if the electronic wave-functions 

are assumed to have the form exp i/6), and the sum over r means the 

sum over the bending modes if the energy of the ground states of the 

stretching vibrations is included in j^^.

The second order contributions of (8.11) are obtained 

from those terms in the perturbation (8.?) that are linear in Qg} 

they result in

= (ag + ap 0^ + agg^cos 2(0-))) (8.1$)

where ag and Sgg are obtained from the mixing of excited states with 

A changed by 1, and a^ from the mixing in of excited vibrational
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or electronic states with the same value of A.

a,, and. a' contribute, in second order, to the harmonic vibrational 

potential and agg is a second order contribution to the Renner

coupling. Collecting all such terms together, the vibrational part

of the effective Hamiltonian, rewritten in polar coordinates, become

" —9 (^o^^o) +F, + + ckgOgCOs 2(8-^)
(8.17)

^2 "= (^^ + ^2 + ^ (8.18)

and ^^1^ - 8 , (8.20) 

if the molecule has a linear equilibrium configuration 

In the absence of the Renner coupling terms, the 
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Hamiltonian is that for the two-dimensional isotropic harmonic 

oscillator . Its solutions are of the form :

'XCn,!) = p ^V (8.21) 

and it has eigenvalues, hhP. = (v2+1)hp2, where V^ is the hending- 

vihrational frequency. The second quantum number, 1, signifies 

the vibrational angular momentum about the figure axis and can take 

the values vu, V2-2,   , -Vg. Since the magnitude of e is 

usually less than unity, the functions in (8.21) are found to he a 

suitable representation for evaluating the Henner effect.

So far no account has been taken of the spin-orbit, 

rotational and Zeeman perturbations. Their first and second order 

contributions may be obtained in exactly the same manner as for 

diatomic molecules in chapter 5, yielding :

It is also necessary to consider the second order cross-terms between 

the spin-orbit, rotational,and Zeeman interactions and the Coulombio 
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perturbation. The resulting terms have the form :

where

n q=±.1

g| = ^^«E -Eo)-’'^<^jTl(L)|5..><t,lA„e-^'l® k>

+ ^o|Alie^'^®|e::>^T]^(L)|^^)j (8.26)

^one of these terms give diagonal contributions to the energy but all 

mix states with An=t1,Al=±1. Strictly speaking these terms should 

be included, in any matrix representing the Hamiltonian, but, ignoring 

the contributions arising from the cubic terms (k'Qg) ^^ ^^^ vibrational 

potential, all their contributions have the same form as terms 

already in (0.22). Then as long as the spin-rotation constant, 

rotational g-factor etc. are used as just parameters, wnich can
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include all these and other second order effects ^6ff ^

completely neglected.

In the complete Hamiltonian (3*202 to 3.214) there are 

several small vibrational interactions not present in diatomic 

molecules, namely the spin-vibration, orbit-vibration and vibrational 

Zeeman interaction. The coefficients of the first two are typically 

of the order of 100 MHs (the same order of magnitude as the spin­

rotation interaction) and, since they are competing with the spin-orbit 

coupling in trying to modify the e.p.r. spectra, their effect may be 

neglected in a particular vibrational state of a case (a) molecule. 

There may be a measurable effect if the molecule approximates to a 

case (b) coupling scheme.

The vibrational Zeeman term can have a significant effect 

on the e.p.r. spectrum. If it is written in the equivalent form ;

- ggpG.n'^Z (8.27) 

where G is the vibrational angular momentum (G=l), it can be seen 

that the g-value of a vibrational level changes with 1.

Since we are working in the ground vibronic manifold, it is 

also necessary to second order contributions to the effective 

Hamiltonian from the terms :

y(-l)Y(J-S)T] (G) (8.28) 

q=11
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17 This connects different stretching vibrational states and 

as a consequence yields another second order contribution to the 

rotational constant.

The Hamiltonian derived so far is essentially that 

obtained by taking the theory for diatomic molecules, with the obvious 

vibrational modifications, to explain the spectra of linear triatomic 

molecules. However some important corrections have been omitted.

The mixing of electronic states by the bending vibration is so 

strong that certain third order contributions to the effective 

Hamiltonian may be expected to have a significant magnitude. Since 

such terms involve the electronic energy squared in the denominator, 

only combinations of perturbations which involve the bending 

perturbation or spin-orbit coupling squared need be considered. In 

the HCO and NOS radicals, the spin-orbit coupling constant, A, is 

only of the order of 200 cm'^ so that with an excitation energy of 

the order of 20,000 cm" its contributions will be neglected. The 

effects of large values of A on the spectra of diatomic molecules 

will be considered in the next chapter.

In this work we are mainly interested in the Zeeman effect 

of gaseous radicals so that it is likely that those third order termo 

in which one of the matrix elements involves the Zeeman interaction 

will be most important. The only terms which will give a diagonal 

contribution are :
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A

X
PT^CS) [(A|6^T^(L) + ggT^(8)|A)

(8.29)

<rf |g^T^(L) + ggT^Cs)!!?^ <rf|

The diagonal contributions of T^Cs) are the same in both the ground 

and excited electronic states and may be omitted. The remaining terms 

(diagonal inA) may be represented in an effective hamiltonian by

the expression ;

1 pAg^,pTQ(S)TQ(L) -^ = n Ag^pT^(L)TQ(n) (8.30)

where

q=±1 A (8^)1)

in which $ is odd for A representing/E states and even for A

states. This predicts that the orbital g-factor must be chahged

linearly with n in order to interpret the e.p.r. spectrum in different

vibrational levels. The work on the first three bending-vibrational

levels of NCO ' has confirmed this theory.

If the excited state is a ^ state it is possible to

connect the A = ±1 components of a TT state in the same way as the

Renner coupling term in (8.13) This term can be written in the form
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^ff = Ai^^T^(L)To(H)-^oo8 2(8-^) (8.32)

This a further correction to the orbital g-factor in states in 

which strong Renner mixing can occur (|l|tl<n, see next section).

8.3 Vibronic and Pine Structure of Molecules with a TT Electronic State 

Before a detailed consideration of the e.p.r. spectra 

of linear triatomic molecules, it is useful to briefly consider the 

vibronic energy levels.

In the absence of the Renner effect, the electronic states 

can be classified by the quantum numbers A(=±1) a^id %^(=i&), 

respectively the component of orbital and spin angular momentum 

along the internuclear axis. As mentioned before the bending 

vibrational wave-function is that of the two-dimensional isotropic 

harmonic oscillator and is specified by n and 1; n is the energy of 

the vibrational state in units of the vibrational quantum and 1 is 

the vibrational angular momentum (l=n-1,n-3, ,-n+1). The energy

levels are shown on the left-hand side of figure 1.

The Renner coupling term, ekpO^cos 2(0-^) has finite 

matrix elements between states with AA=±2,A1=±2, andAn=O or ±2. 

Consequently, for 111 =^ n-1, A and 1 are no longer good quantum 

numbers, although the total angular momentum component along the 

figure axis, K =A+ 1, is still conserved. These vibronic states
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Figure 8.1 The vibrational energy levels split by (a) the Renner 

effect alone, (b) the Renner effect and spin-orbit

coupling

(b)



are labelled as X , 77^ A,$^ according as K =0,1,2,$ .... it 

should be noted that states with the maximum value of K in a given 

vibrational level are only slightly changed in energy, through the 

second order mixing of states with An=2. All other states are

considerably split, because the mixing of states in the same vibrational

level can occur in first order. Neglecting the small second order

contributions, the energies of the vibronic levels may be sumarised

'n,E
n j: ^^(n^ - (8.)))

These are represented in column 2 of figure 1.

Every vibronic state with lK|>0 is further split into 

two by the spin-orbit coupling and the E=O states are slightly displaced 

in energy. The resulting energy levels are given on the right-hand 

side of figure 8.1 ; the suffices,1, represent the axial component 

of the total angular momentum, Kf'S.

8.4 The e.p.r. Spectra of Linear Triatomic Molecules.

Recently, Carrington, Fabris and Lucas have observed

the e.p.r. spectrum of NCO in '^yg ground vibronic

also its ^^yg ^° and ^$^y2 ^^^^^"^° states; these last

9 
state

two are

respectively, the first and second excited vibrational levels.

and

from.

All

these have the maximum value of K and are essentially good Lom-
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Oppenheimer states (i.e. they can be represented by the product of 

an electronic and a nuclear wave-function, to a high approximation). 

If the molecule can be considered to closely approximate to a Hund's 

case (a) coupling scheme, the g-value of the spectrum in the rotational 

state with angular momentum, J, is given ly :

i.e, 0,8000, 0.5714* and 0.4444* respectively, in the ground 

rotational level of the^H^/g* ^'^/2 2
$Y/g vibronic states

The observed g-values of the spectra differ from this 

for several reasons.

Firstly, as in diatomic molecules, the second order

mixing of the fine-structure states and the higher order Zeeman

mixing of the rotational states can affect the g-value. The expressions 

for the state are the same as those in (6.?) and (6.8). Slightly 

' 2. 2— 
different expressions must be used for the ^/2 ^7/2 ^^^^^^' 

their modified g-values at $270 MHz are given in table 8.1.

Secondly, there is the Renner mixing of vibronic states 

with the same value of E, but with 6n=2. The state (n=n,l=l,A=1,W'>

is mixed with jn+2,1+2,-1,^^ and for l=n-1 the matrix element

connecting the two states is The latter state has

the orbital angular momentum reversed and in third order contributes

a correction of E^(K+1)^8 to. the orbital g-factor After
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Table 8.1 Various contributions to the observed g-value of the

NCO radical in its three lowest vibrational levels.

Contribution

to g-factor

''3/2

n = 1 , J = ;/2

^5/2

^n = 2 , J = 5/2

'$7/2

n = ^ , J = 7/2

Observed 0.7909 0.5638 0.4356

First order 0.8000 0.5714 0.4444

Sigher order 

terms (as in a 

diatomic molecule^

0.7952 0.5713 0.4456

Fenner Effect 0.7932 0,5668 0.4388

-0.0023 -0.0030 -0.0032

-0,0058 --0.0053 -0.0048

Value of AgL 

using S = -O.I5O
-0,0063 -0.0063 -0.0061



making this correction (see table 8.1), there is still a discrepancy 

between the calculated and observed g-factorg. This can be accounted 

for by the third order correction nAg. to the orbital g-factor. The 

value of Ag. calculated from each vibronic level is given in table 

8.1 and is fairly constant, supporting the theoiy. The rotational 

and vibrational g-factors have not been included end these could 

account for the slight difference in the calculated values of 

Alternatively the agreement can be improved by slightly modifying 

the value of G.

8.5 Relationship between Ag^ and 8 

Since Ag^ and the second order contribution to the Renner

constant both involve the mixing of excited electronic states, it

seems reasonable that they should be related.

The g-value correction Ag, is obtained from terms of the 

form ^°jA^^e^^®|yorZ^XEorA|A^^e''^^®|TT°^') . Since the two 

matrix elements are the complex conjugate of one another, the product 

must be real and positive. Then from (8.51), the contribution to 

Ahg from A states is positive while that from % states is negative. 

Por NOO ^^, the observed value of A& is -0.006, so that on omitting 

the effect of /^ states, the sum of the contributions to Ag, from 

^^ and Z" states is given by :

A^ + /l^ -0.006 (8.55)
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In order to relate these to the second order contributions

to e , it is necessary to consider the effect of the space inversion

operator,^, on (ZlA^^e^^^ln?^")
. Under this operation the radial

coordinates ^ remain unchanged and 0. goes to -0.. Thus

|Tr±i> - (8.;6)

^(A^^^e:"^®) = A^^e+^® (8.)7)

3|Z*> - (8.36)

where s is even for X^ states and odd for Z states ^^. Since

19 
the matrix elements must be invariant under the inversion operator »

(-1)= 6^:14..*^%.) (8.;9)

But the second order contributions e^ and 2 to the Kenner constant 

(from the excited Z^ and Z states) are obtained from terms of 

the form :

(rT2J4,.*^«|r%U4i"^'°fT;,)

- (-i)\n:ihi'"1^"X^^hi'^Xi>
(8.40)

Thus from (8.15)) Z^ states give a negative contribution and Z 

states a positive contribution to 2. The observed value of E in 

HCO is -O.I59, probably due to the fact that the first excited
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electronic state is If it assumed that electronic states

are the only Z states that give ignificant contribution to&g.

and the second order Renner constant, one obtains :

(8.41

where Bg^ is the energy of the first Z^ state. All the parameters 

on the right hand side of the above expression are known for IfCO, 

E a -0.159, h>^ = 5$8*9 cm \ 6gf = -0.006 and AB^ 2$,000 cm ^

Bence :

^22
).2 (8,42)

This not only suggests that the second order contribution to the 

Renner constant is the largest but that the first order contribution 

has the opposite sign. Simple electrostatic arguments, however, 

suggest that the first order contribution to E should be negative; 

the electrons and nuclei prefer to be in the same plane (see 8.$). 

This discrepancy can be overcome by including the contribution 

from Z states.

If Ag^ Is multiplied by AB, the excitation energy to

the first Z^ State, we obtain :

^ h>J ^ ^22/^^^ ' (8.43)
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where agg and a^g are the contributions to agg from Z and Z

states respectively. Therefore :

^2 " ^22
0.51

Then assuming negative

Bence

and since

^2 '22
0.159 (8.45)

.gg is negative

Thus the contributions from Z

^22 ^2

"22

least half as important

as those from Z.^ states and must be included in the previous

considerations.

If the e.p.r. spectrum of a strongly Renner mixed state

can be observed, it will be possible to obtain The expression

for Agikg/h)^ is similar to that for a.^ except with the

energy denominator squared. If one of these energy denominators can

2

22 "^22

1

be replaced try 6E, then :

22^ ̂^)'^(^^2''^2^ (8.47)

This would yield a much more accurate estimate of the relative 

importances of the first and second order contributions to the Renner

constant.
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Chapter $

Spin-orhit Coupling Constants in IIea;vy Diatomic Molecules

9.1 Introduction

The spin-orhit coupling constants of many of the 

molecules have been obtained from the second order effects on the 

g-value of the e.p.r. spectrum. In the J=3/2 level of the ^^y2 

state, the effect on the g-value, due to the mixing of the fine- 

structure states, is obtained from (6,?) and (6.8) as.;

g = - 0.800 %/A (9.1)

I^ow the spin-orbit coupling is expected to increase in magnitude on 

going to heavier molecules. In the halogen oxide series, A increases 

from -282 cm" to -815 cm" on going from CIO to BrO . Then one 

might expect the value in 10 to be about -1500 cm , but the e.p.r. 

spectrum suggests a value of -446 cm . Even allowing for the fact 

that the spectrum becomes less sensitive to the value of A as its 

magnitude increases and also considering possible corrections to the 

g-factor like the rotational Zeeman interaction, there is still a 

large discrepancy between the expected and 'observed' values of the 

spin-orbit coupling constant.

In this chapter the value of A for several diatomic 

radicals is estimated from the values of A for the constituent atoms 
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using a simple L.C.A.O. picture; the hyperfine parameters of the 

radical and the separate atoms are used to estimate the L.G.A.O. 

coefficients. These results indicate that for the heavier molecules 

the 'observed' values of A should be increased.

In 10, it was pointed out by Dyer et al. that if the 

value of A was increased in magnitude to -1000 cm"^, the calciiLated 

spectrum was moved by 6.2 gauss to higher field. Then, in order to 

interpret the spectrum, it is necessary to increase the value of the 

orbital or the spin g-factor. It is suggested that the third order 

mixing of excited electronic states with larger g-values into the 

ground state is responsible for this.

$.2 Expected Spin-orbit Coupling Constants in TT Molecules

Dixon and Kroto have suggested that if the orbital 

containing the unpaired electron in a ^TT radical can be written as 

a linear combination of 2p atomic orbitals,

the spin-orbit coupling constant can be obtained from the spin-orbit 

coupling constants of the separate atoms, weighted by the unpaired 

electron density on that atom. That is : 

1^1 ay 1^1 (9.))
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Modulus signs are used because the actual sigh of the spin-orbit 

coupling constant depends upon whether the valence orbitals are 

more or less than half filled.

Some care must be taken in using the values of A from 

atoms in states other than P. Thus the group $ and group 7 values 

may be used directly, but the group 4 and 6 atoms have ground states 

containing two unpaired electrons, both in p-orbitals.

As was pointed out by Plume and Watson , the spin-orbit 

Hamiltonian for the two unpaired electrons can be written approximately 

in two ways, namely :

i

This neglects the spin-other-orbit interaction and assumes that the 

coefficient & is the same for all the unpaired electrons; these are 

reasonably correct for the two unpaired electrons in a ^P state. 

Since both of these unpaired electrons are in p orbitals, it is 

possible (from an evaluation of the matrix elements) to make the 

substitution :

^ = 2S A (9'5) 

and it is the values of %, corresponding to a single unpaired p 

electron, that must be used in (9*5) instead of A. These values of 

l6| for the group 4> ^ and 7 atoms are tabulated below.

184



G = 28 cm \ Si = 150 cm \ Ge = 880 cm"'^ 

0 = 147 cm \ S = 574 cm \ Se = 1870 cm'"^

P = 269 cm'^ Cl = 587 cm'^, Br = 2456 cm'^ I = 5070 cm"^

(9.6) 

In all the ^FT diatomic molecules that have been observed ty e.p.r. 

(except NO, NS and hydrides), one of the atoms is a halogen, so that 

it is possible to derive the L.C.A.O. coefficients by comparing the 

hyperfine parameters with those of the atoms.

In H radicals, the axial component of the hyperfine 

interaction, h, is given ty :

O

The corresponding parameter, a', for the hyperfine interaction in 

^ atoms is given ty approximately 5/8 times the expression above. 

Then assuming that the hyperfine constant of the halogen atom in the 

radical is proportional to the unpaired electron density on that 

atom :

4al = ^

These results are given in column 4 cf table 9.1.

It is now possible to calculate the spin-orbit coupling 

constants in the radicals ty assuming :
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"gal + 5c - ■' ’ (9-9) 

aiKl using the modified form of ($.$) :

These calculated values of A are compared with those obtained from 

the e.p.r. spectrum in columns 5 and 6 of table 9.1.

Por the lighter radicals like CP, SP and CIO, the 

agreement between the two values is fairly good (about ±.9^0, giving 

us hope that this approach is fairly accurate. In BrO, the 

agreement is slightly worse, while in SeP and 10, the discrepancy 

is extremely large.

9.) The Effect of Sund's Case (c)''Coupling

If we believe the large values of the spin-orbit coupling 

obtained in the previous section, there will be very large mixing of 

excited states into the ground wave-function. Por a spin-orbit 

coupling constant of about 1000 cm"^ and with an electronic excitation 

energy of about 20,000 cm" , there may be about a %l( contribution 

from excited states with A'A=±1 and AI=Tl to the ground state 

wave-function. Thus, in the new electronic wave-function, 6. and 

S are no longer conserved, although TL is still a fairly good quantum 

number. This corresponds to Hund's coupling case (c) ^'^. If the 

magnetic moment along the axis in the excited state is greater than 
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that in the ground state, it is possible to obtain the necessary 

correction to the calculated g-factor that will explain the 10 

spectrum.

All the major effects of the large mixing of electronic 

states can be obtained by extending the effective Hamiltonian in the 

ground electronic state (see $.39) to include the third order terms 

in the perturbation expansion.

The third order terms have the form : 

(9.11)

This may appear to be non-Hermitian, but it only gives 

non-Hermitian contributions if ^g^f can connect ground states which 

have different diagonal matrix elements of ^'. In such a case, the 

symmetrised form may be used since the inaccuracies of this manipulation 

only appear in fifth order.^

The only significant third order contributions to the 

effective Hamiltonian occur when the spin-orbit perturbation is taken 

twice in (9.11). Also unless it is used in the matrix elements of 

the form Fj^'Q^* ^^c resulting terms in the Hamiltonian mix the 

widely separated fine structure states and give negligible contributions 

to the energy. In the e.p.r. spectra, it is likely that the greatest 

effect is produced if the remaining matrix element contains the 
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Zeeman, perturbation. That is :

^ff " ^<^ol^8oMn>('^n|:^8ol-^o}(^^n''^o)^^^z
n
=={<^nlS.^^®s^lO - <^ol®L^'^®s^lO} 

(9.12)

= Zsgpn^Lg (9.13)

The spin orbit coupling can mix in % and. ^ states with JL= )/2, 

and. with multiplicity (2S+1) equal to 2 or 4. The 6 states yield 

a negative contribution to Ag while the positive 

contribution. -

9.4 Effect on the e.p.r. spectra

As was mentioned earlier, ]]yer et al. have pointed out 

that if the lvalue of 10 is increased to -1000 cm'^ the spectrum 

is shifted by 6.2 gauss to higher field. If we take the even 

higher value of A, determined in section 9*2 (i.e* 2^00 cm the 

calculated spectrum will be 9.0 gauss too high. To over come this, 

we can introduce the correction to the axial magnetic moment, giving 

Ag = 0.002),

In the second rotational level, the effect of A on the 

spectrum is increased (this effect is proportional to J(J+1)-3/2). 

188-



However Ag has the same percentage effect on the g-value in all 

rotational levels. Thus, since Ag and. A have different effect on 

the spectrum in different rotational levels, a measurement of the 

g-value in the J = 5/2 as well as the J = 5/2 level should permit a 

separation of the two effects. Por example, if A = -2500 cm and 

Ag = 0.0025, the calculated spectrum of 10 in the J = 5/2 level 

would appear at about 55 gauss higher field than if A = -44^ cm ^ and 

Ag = 0.0 . preliminary experimental results ^ on the second 

rotational level of SeP suggest that a larger value of A is 

needed.

The only well characterised spectrum, in which a Ag 

correction has been introduced, is that of SeH (and SeD),^^’^\ The 

rotational constants of these two radicals differ by practically a 

factor of two so that there is considerably different rotational 

mixings of the fine-structure states. It is thus possible, after 

removing the high order Zeeman contributions, to attribute the observed 

difference in the g-values of the two J = 5/2 spectra to the term 

(H^-TL)x1.6 S/A (see equations 6.7 azid 6.8). One then obtains a 

definite value of A, which is considerably different and much larger 

in magnitude than that obtained from each spectrum separately. This 

leaves a g-value correction, Ag = 0.0007c' Work on the second 

rotational level of SeH has confirmed the necessity for this correction. 

Lucas et al, have attributed this correction in the g-value to the 
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gauge invariance of the spin-orbit coupling (see expression $.211 

where jg should strictly speaking be replaced ty {r)' They then use 

Slater type orbitals to estimate the magnitude of A and G^ (their G^ 

equals 2Ag). They neglect the shielding effects of the electrons 

and obtain a value of A that is veiy close to thau obtained from 

experiment; this is presumably because A nas a 1/r dependence on 

the distance between particles so that its most important contribution 

comes from near the nuclei, where shielding will be unimportant. It 

is unlikely that this approximation is alright for calculating G^ 

which has only a ar ^ dependence on the distance between the unpaired

electron and the other charges. Although their calculated v^ue of 

is in fair agreement experiment, it is almost certainly an order

of magnitude too large. It also seems that their correction, has the 

wrong sign to explain the g-value discrepancy. It is proposed that 

the tendency to case (c) coupling is the true solution.

All the radicals considered here (lO, BrO and Sep) will 

require a positive value of ^g in order for the magnitude of A to 

be increased; this means that the main mixing must he with ^excited 

states. These radicals all have ths same valence configuration, 

namely (zcr)^(yo-)^(wa)^(xo)^(vn)\ The first excited states are : 

" ' (x(r)\vn)^ yielding ^Z; " (xo)^(vn^^(uO-)^ yielding^Z, 1 

and ' (xo')^(vrr)^(un)^ yielding TT, and ^, 
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Thug there is both a ^Z and a ^A state from the same excited, 

configuration. Since they will have approximately the same energy 

and their spin-orbit coupling matrix elements (in a single configuration 

approximation) with the ground state are the same, it is difficult 

to predict the sign of ZSg a priori.

It is also possible that the case (c) coupling may be 

needed to explain the anomalies in the spectra of molecules, not in 

ZTT states, but still containing heavy nuclei. Por example, in the 

/\ state of SeO, an extremely large rotational g-faotor has to be 

introduced in order to explain the spectrum ^^; g2 was 14 % 10 while . 

the expected value is about 2x10"^. A possible solution is to 

introduce a positive Ag, obtained from the mixing in of %^ states. 

The measurement of the second rotational level (J = $) shoifLd again 

permit us to establish which is the correct solution.

-191



References to Chapter $

1« A. Carrington, P. R. Pyer and D. 5. Levy,

J. Chern. Phys. ^, 175^ (196?).

2. A. Carrin^on, P. N. Iyer and P. S. Levy,

J. Chern. Phys. J^, )09 (197O)«

). P. R. Dyer, Ph.P. Thesis (Cambridge, 1969).

4. R. R. Dixon and R, W. Kroto, Trans. Par. Soo. _^, 1484 (196$).

$. M. Dlnme and R. Watson, Proc. Roy. Soo. A, 2%%, $65 (196$).

6. G, Herzberg, "Molecular Spectra and Molecular Structure. 1.

Spectra of Diatomic Molecules", (D. Van Rostrand, 

Princeton, R. J., 1950).

7. F. Hund, Z. Plysik. ^, 6$? (1926); ^, 742 (192?); ^2, 9$ (1927).

8. C. E. Solverez, J. Phys. C, 2* 2161 (1969).

9. C. R. lyfleet and D. K. Russell, private communication.

10. A. Carrington and R. J. D. Lucas, Proc. Roy. Soc. 2L^, ^^^ (i9ho).

11. R. J. D. Lucas, Ph.D. Thesis, (Southampton, 1969).

12. G. R. Currie, Ph.D. Thesis (Cambridge, 1968).

192



Footfalls echo in the memory

Down the passage which we did. not take

Towards the door we never opened

Into the rose-garden.

T. S. Eliot:

Four Onartets, 'Burnt Norton',I,




