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1. Introduction

Dimethyl ether (DME) has been identified as a sustainable diesel
alternative for marine transport.! DME can be synthesised in two
steps from CO, and H, using a hybrid catalyst which utilises both
metallic and acidic functionalities. Metallic catalysts firstly
convert CO, and H, to methanol, which is then dehydrated using
a solid-acid catalyst to form DME. Optimisation of the hybrid Y |
catalyst’s individual components is required to obtain high DME 4,7 & %8s, 0 8%s%a
vields. Herein, we screened a range of microporous solid-acid : g
catalysts to identify which frameworks would be most suitable for
use in a hybrid catalyst.
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2. Aluminophosphates el ™
Aluminophosphates (AIPOs) and silicoaluminophosphates (SAPOs) are
microporous, solid-acid catalysts. AIPOs are built from PO,* and AlO,
tetrahedra, which link via oxygen to form frameworks with diverse pore sizes,
channel dimensionalities and cage structures. A Brgnsted acid site (H*) is
created as a result of a charge imbalance generated when Si** substitutes P>+ L N N

during SAPO framework formation.2 It is possible to create different L
frameworks and tailor catalytic activity by altering the synthetic procedure. e SAEQ-18

Fingerprint-like powder X-ray diffraction patterns verify that all . JL ST W FECR— AIPO-18

synthesised catalysts were successfully synthesised with no impurities.
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to coke formation while medium swois  dehydration. Work is currently
pore 1D AIPO-11 and SAPO-11 ongoing to develop SAPO-

remain highly active throughout. 5 so 100 1%0 200 2%0 300 3%0 based h_ybrid catalysts for
Time-on-Stream (minutes) converting CO, to DME.
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