Nano-trap Catalysts for Reducing Methane Emissions in Shipping Vessels

Ashia McManus^a, Robert Raja^a, Dominic Hudson^b

[a] School of Chemistry, University of Southampton, S017 1BJ (UK). [b] School of Engineering, University of Southampton, S017 1BJ, (UK)

Introduction

Shipping is a major source of greenhouse gas emissions

More and more ships are **using LNG** as an alternative fuel

LNG minimises NO_x, SO_x and CO₂ emissions

Releases unburnt methane into the atmosphere

As the number of LNG-powered ships has increased so have methane emissions produced from international shipping.^{1,2}

Proposed methane slip abatement methods

	Maintains engine efficiency	Does not produce CO ₂	Reduce methane slip	Re-use Methane
In- cylinder methods				
Total Oxidation Catalysts				
Methane capture catalysts				

Methane Capture Catalysts

Metal Organic Frameworks (MOFs) are promising candidates for

methane capture materials
with advantageous features such as:

Lage surface area

Tuneable pore sizes
Introduce different metal sites

Add functional groups to the framework

Various MOFS with differing frameworks and metal sites have been investigated for CH₄ capture.

Currently MOF ATC-Cu,³ displays the highest CH₄ adsorption ability of 64.96cm³g⁻¹ at 298 K and 1 bar.

ATC-Cu MOF³ is based on the H_4 ATC (1,3,5,7-adamantane tetracarboxylic acid) ligand acting as a 4 coordinated tetrahedral linker connecting Cu paddle-wheel secondary building units.

The MOF contains 3D rectangular channels of dimensions 4.43 x 5.39Å where the proximity of the 2 copper sites mediates a 'nano-trap' for methane.

Key features of methane capture catalyst

- Unsaturated metal centre
- **★** Di-metal centre for enhanced binding
- Appropriate pore size
- Alkyl groups within the pore

Chabazite framework with isomorphous substitution could lead to di-copper sites.

Further possibilities of introducing other metals such as Co could create redox sites for oxidation to methanol.

References

[1] Fourth IMO GHG Study 2020 Full Report

[3] Z. Niu et al, Angew. Chem. Int. Ed., 2019, 58, 10138–10141.

[2] Statista. (2021). Number of liquified natural gas-propelled (LNG) vessels worldwide from 2010 to 2020 with a forecast through 2027 https://www.statista.com/statistics/1096072/trend-in-projected-global-supply-and-demand-for-Ing-fueled-vessels/ (accessed: June 13, 2024)