Nano-trap Catalysts for Reducing Methane Emissions in Shipping Vessels Ashia McManus^a, Robert Raja^a, Dominic Hudson^b [a] School of Chemistry, University of Southampton, S017 1BJ (UK). [b] School of Engineering, University of Southampton, S017 1BJ, (UK) ## Introduction Shipping is a major source of greenhouse gas emissions More and more ships are **using LNG** as an alternative fuel LNG minimises NO_x, SO_x and CO₂ emissions Releases unburnt methane into the atmosphere As the number of LNG-powered ships has increased so have methane emissions produced from international shipping.^{1,2} ### Proposed methane slip abatement methods | | Maintains engine efficiency | Does not produce CO ₂ | Reduce
methane
slip | Re-use
Methane | |---------------------------------|-----------------------------|----------------------------------|---------------------------|-------------------| | In-
cylinder
methods | | | | | | Total
Oxidation
Catalysts | | | | | | Methane
capture
catalysts | | | | | ## Methane Capture Catalysts Metal Organic Frameworks (MOFs) are promising candidates for methane capture materials with advantageous features such as: Lage surface area Tuneable pore sizes Introduce different metal sites Add functional groups to the framework Various MOFS with differing frameworks and metal sites have been investigated for CH₄ capture. Currently MOF ATC-Cu,³ displays the highest CH₄ adsorption ability of 64.96cm³g⁻¹ at 298 K and 1 bar. ATC-Cu MOF³ is based on the H_4 ATC (1,3,5,7-adamantane tetracarboxylic acid) ligand acting as a 4 coordinated tetrahedral linker connecting Cu paddle-wheel secondary building units. The MOF contains 3D rectangular channels of dimensions 4.43 x 5.39Å where the proximity of the 2 copper sites mediates a 'nano-trap' for methane. ## Key features of methane capture catalyst - Unsaturated metal centre - **★** Di-metal centre for enhanced binding - Appropriate pore size - Alkyl groups within the pore Chabazite framework with isomorphous substitution could lead to di-copper sites. Further possibilities of introducing other metals such as Co could create redox sites for oxidation to methanol. #### References [1] Fourth IMO GHG Study 2020 Full Report [3] Z. Niu et al, Angew. Chem. Int. Ed., 2019, 58, 10138–10141. [2] Statista. (2021). Number of liquified natural gas-propelled (LNG) vessels worldwide from 2010 to 2020 with a forecast through 2027 https://www.statista.com/statistics/1096072/trend-in-projected-global-supply-and-demand-for-Ing-fueled-vessels/ (accessed: June 13, 2024)