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Abstract: We develop methods to find the limits to finite-time single photon extraction from
emitter-cavity systems. We first establish analytic upper and lower bounds on the maximum
extraction probability from a canonical Λ-system before developing a numeric method to optimise
generic output probabilities from Λ-systems generalised to multiple ground states. We use these
methods to study the limits to finite-time photon extraction and the wavepackets that satisfy
them, finding that using an optimised wavepacket ranging between a sinusoidal and exponentially
decaying profile can considerably reduce photon duration for a given extraction efficiency. We
further optimise the rates of quantum protocols requiring emitter-photon correlation to obtain
driving-independent conclusions about the effect of system parameters on success probability. We
believe that these results and methods will provide valuable tools and insights for the development
of cavity-based single photon sources combining high efficiency and high rate.

1. Introduction

Single quantum emitters coupled to optical cavities have constituted a central platform for studying
the interaction of light and matter [1–3], and moreover present a possible implementation for
many quantum information processes, including photon-photon gates [4] and generating long-
range interaction between matter-based qubits [5–7]. A broad class of applications, such as
photonic information processing [8], quantum networking [9,10], or networked modular quantum
computation [11], could utilise emitter-cavity systems to produce single photons for the required
protocols. The probability of photon extraction is typically of central importance, affecting the
rate of heralded protocols [12, 13] and the fidelity of deterministic ones [14].

There are several different approaches to produce single photons. To achieve fast extraction,
one can directly excite the emitter [15], but to approach the ultimate bound to photon extraction
probability of 2𝐶/(2𝐶 + 1), determined solely by the cooperativity 𝐶 [16–18], cavity-assisted
Raman transitions [19–21], or vSTIRAP [22] are commonly used. However, the photon
production duration is typically much greater than direct excitation [21, 23] to reduce excited
state population [24] or maintain adiabatic following [25] respectively. In quantum information
applications, this increased photon duration leads not just to ultimately slower information
processing, but increased decoherence of quantum information stored elsewhere during photon
production [26–28] and increased photonic losses in the longer fibre delay lines [29]. It is thus
crucial to understand how to achieve both high efficiency and high rate photon extraction from
emitter-cavity systems.

In this work, we develop analytical and numerical approaches to find the limits set by system
parameters on high-probability high-rate photon extraction, and how to saturate these limits. In
Sec. 2, we develop upon previous approaches linking photon extraction probabilities to wavepacket
shape [18, 30] to analytically optimise these wavepackets and set upper and lower bounds on
the maximum emission probability for a given production time. In Sec. 3, we build upon these
ideas to develop a numeric procedure that can optimise a variety of probabilities, including
the emission probability, for generalised versions of Λ-systems with multiple ground states.
Finally, in Sec. 4, we use these tools to investigate the limits to finite-time photon extraction, and
the photon wavepackets that satisfy them, before discussing protocols requiring emitter-photon



correlations, taking remote entanglement generation [31] as a case study. Our approach of
optimising the photon wavepacket directly is driving-independent, lending it complementary
advantages to approaches that calculate dynamics directly from the driving pulse [32,33], notably
avoiding local optima in the selected driving parametrisation or ansatzes in the driving form.

Lastly, photon extraction and absorption, though not direct time reversals of each other, are
linked by time reversal [34], with the efficiency of extraction matching that of absorption for
time-reversed control drives and wavepacket profiles [35]. Our results for photon extraction will
therefore correspond to analogous results for photon absorption, on which there is extensive
literature [35–38], but to avoid confusion, we will discuss only photon extraction contexts.

2. Three level Λ-system

2.1. Model

The model we use for the emitter-cavity photon-generation system is the canonical Λ-type emitter
coupled to a single cavity mode. The emitter level structure contains two ground states, |𝑢⟩ and
|𝑔⟩, which are both coupled by electromagnetic transitions to an excited state |𝑒⟩ which decays
via spontaneous emission to any mode except the single cavity mode with amplitude decay rate 𝛾.
The emitter couples to a single cavity mode, whose Hilbert space contains only the vacuum state
|0⟩ and the single photon state |1⟩. The cavity field amplitude decay rate is 𝜅. In real systems,
this decay rate comprises a ‘useful’ decay rate through the desired partially-transmissive mirror
𝜅𝑇 , and a ‘parasitic’ decay rate 𝜅𝐼 which includes other losses such as scattering, absorption, and
diffraction. To reduce the number of variables, we assume 𝜅𝐼 = 0 and therefore 𝜅𝑇 = 𝜅. However,
the coherent dynamics of the system are determined solely by 𝜅, therefore all future results will
hold for cavities with 𝜅𝐼 ≠ 0 provided any output probabilities are attenuated by 𝜅𝑇/(𝜅𝑇 + 𝜅𝐼 ).
The coupling between the excited atomic state with an empty cavity |𝑒, 0⟩, and the ground state
with an occupied cavity |𝑔, 1⟩ is, by convention, 𝑔, with detuning Δ𝑒 of the |𝑒⟩ → |𝑔⟩ emitter
transition frequency from the cavity mode frequency. A diagram of the system is depicted in
Fig. 1.

In a general photon production process, the cavity is initially vacant, the emitter is prepared in
state |𝑢⟩, and a time-dependent driving pulse Ω(𝑡) is applied to transfer population, via |𝑒, 0⟩,
to |𝑔, 1⟩. The single photon then leaks out of the cavity and is collected. This Λ-system model
is sufficiently general to describe photon production through direct excitation, cavity-assisted
Raman transition or vSTIRAP through appropriate choices of the driving pulse Ω(𝑡) and detuning
Δ𝑒 [16]. Regardless of the driving method chosen, the maximum photonic output of the system is

𝑃
(𝑎)
𝜅 =

2𝐶
2𝐶 + 1

,

𝐶 =
𝑔2

2𝜅𝛾
,

(1)

where the dimensionless𝐶 is the cooperativity [16]. This performance is achieved in the adiabatic
(i.e. infinite extraction time) limit, and the goal of this manuscript is to determine similar limits
for non-adiabatic timescales.

The coherent Hamiltonian for this model is

𝐻 = Δ𝑢 |𝑢, 0⟩⟨𝑢, 0| + Δ𝑒 |𝑒, 0⟩⟨𝑒, 0| + [−𝑖Ω∗ |𝑢, 0⟩⟨𝑒, 0| + h.c.] + [𝑖𝑔 |𝑒, 0⟩⟨𝑔, 1| + h.c.] , (2)

where the factor of the imaginary unit 𝑖 before 𝑔 is made for algebraic convenience. The nominal
detuning of the initial state from Raman resonance with |𝑔, 1⟩ is Δ𝑢, which is usually set to zero
in monochromatic driving schemes.

The system dynamics also feature two incoherent decay channels, spontaneous emission from
the excited state and decay of the cavity mode, which may be included in the model by using the



Fig. 1. The level scheme for the Λ-emitter coupled to a single cavity mode. The Hilbert space contains
three levels that are all tensor products of the emitter’s electronic state and the cavity mode Fock state.
These levels are the initial emitter state with no cavity photon |𝑢, 0⟩, an excited emitter state with no
cavity photon |𝑒, 0⟩, and a final emitter state with a cavity photon |𝑔, 1⟩. The excited state and final
state are coupled by the cavity coupling 𝑔, with the excited state detuned from resonance with the
cavity by Δ𝑒. The initial and excited state are coupled by a laser field with complex time-dependent
coupling Ω. The detuning of the laser field from Raman resonance with the cavity is Δ𝑢, although
this is only nominal as the laser field can be adjusted to include an arbitrary detuning in its time
dependence. The excited state amplitude decays at a rate 𝛾 due to spontaneous emission, and the
cavity state amplitude at a rate 𝜅 due to field loss from the cavity.

master equation. However, for emitter-cavity systems operating as photon sources, the dynamics
are only relevant if the cavity emits a photon. This means that, on the assumption that no decay
process can be followed by subsequent cavity decay, a simpler non-Hermitian Hamiltonian

𝐻NH = 𝐻 − 𝑖𝛾 |𝑒, 0⟩⟨𝑒, 0| − 𝑖𝜅 |𝑔, 1⟩⟨𝑔, 1| , (3)

can be used. The assumption that no decay process is followed by cavity decay is typically valid
for cavity decay itself (provided the state |𝑔⟩ is stable on the timescale of the photon production
process). However, spontaneous emission followed by cavity decay can also occur. This causes
the emission of a probabilistic mixture of photon wavepackets, known as temporal mixing, which
reduces the coherence and indistinguishability of photon wavepackets [39], resulting in major
fidelity reductions for certain quantum protocols [40,41]. Choosing a Λ-system where the excited
state decay has a low branching ratio to the initial state |𝑢⟩ strongly mitigates this effect [42].
Because temporal mixing errors can be so destructive to the coherence of the output wavepacket,
we assume that the Λ-system has been chosen such that temporal mixing is negligible and,
therefore, that the non-Hermitian approach is applicable. In the case that temporal mixing is
not negligible, the results we derive maximise the probability of an emission event that is not
preceded by a spontaneous emission event.

Finally, we note that recent work [43] has proposed the use of multiple excited states to realise
the reduced temporal mixing found in systems with low branching ratios to |𝑢⟩, but in systems
that do not naturally have that structure. At the end of Sec. 2.2, we discuss how our results also
apply to these systems.

2.2. Bounded optimisation approach

Using the non-Hermitian approach, our analysis initially follows Goto (2019) [16] to link the
probabilities of cavity emission and spontaneous emission to the photon shape, and then, as
suggested in Vasilev (2010) [18], optimises this shape to yield the maximum output.

We begin by expressing explicitly the non-Hermitian Hamiltonian Eq. (3)



|Ψ(𝑡)⟩ = 𝛼𝑢 |𝑢, 0⟩ + 𝛼𝑒 |𝑒, 0⟩ + 𝛼𝑔 |𝑔, 1⟩ ,
¤𝛼𝑢 = −𝑖Δ𝑢𝛼𝑢 −Ω∗𝛼𝑒,

¤𝛼𝑒 = −(𝛾 + 𝑖Δ𝑒)𝛼𝑒 +Ω𝛼𝑢 + 𝑔𝛼𝑔,

¤𝛼𝑔 = −𝜅𝛼𝑔 − 𝑔𝛼𝑒,

(4)

where |Ψ(𝑡)⟩ is the wavefunction of the emitter-cavity system. Rearrangement of the last relation
yields

𝛼𝑒 = −1
𝑔

(
𝜅𝛼𝑔 + ¤𝛼𝑔

)
, (5)

which expresses the wavefunction component of |𝑒, 0⟩ through the component in the state |𝑔, 1⟩.
Throughout the photon generation process, the three level system with two decay channels has

probabilities of occupation split across five categories: 𝑃𝑢 (𝑡), 𝑃𝑒 (𝑡), and 𝑃𝑔 (𝑡) are the occupation
probabilities of states |𝑢, 0⟩, |𝑒, 0⟩, and |𝑔, 1⟩ at time 𝑡 respectively, 𝑃𝛾 (𝑡) is the probability that
there has been decay by spontaneous emission by time 𝑡, and 𝑃𝜅 (𝑡) is the probability that there
has been photonic decay from the cavity by time 𝑡.

These probabilities, with the exception of 𝑃𝑢, can be written using Hermitian integrals of the
form

𝐼 (𝑛𝑚) (𝑡) =
∫ 𝑡

0

(
𝑛·
𝛼𝑔

𝑚·
𝛼𝑔

∗
+ 𝑚·
𝛼𝑔

𝑛·
𝛼𝑔

∗)
𝑑𝑡, (6)

where 𝑛· is a shorthand for 𝑛 copies of · to indicate 𝑛 time derivatives. Using this notation, the
probabilities are

𝑃𝜅 (𝑡) = 𝜅𝐼 (00) (𝑡),
𝑃𝑔 (𝑡) = 𝐼 (10) (𝑡),

𝑃𝛾 (𝑡) =
𝛾𝜅2

𝑔2 𝐼 (00) (𝑡) +
2𝛾𝜅
𝑔2 𝐼 (10) (𝑡) +

𝛾

𝑔2 𝐼 (11) (𝑡),

𝑃𝑒 (𝑡) =
𝜅2

𝑔2 𝐼 (10) (𝑡) +
𝜅

𝑔2 𝐼 (20) (𝑡) +
𝜅

𝑔2 𝐼 (11) (𝑡) +
1
𝑔2 𝐼 (21) (𝑡) +

1
𝑔2

�� ¤𝛼𝑔 (0)
��2,

𝑃𝑢 (𝑡) = 1 − 𝑃𝜅 (𝑡) − 𝑃𝑔 (𝑡) − 𝑃𝛾 (𝑡) − 𝑃𝑒 (𝑡),

(7)

where the derivations are given in Supplement 1 Sec. 1.
Assuming that any driving pulse Ω(𝑡) can be applied, the 𝛼𝑒 (𝑡) required to produce a desired

𝛼𝑔 (𝑡) is possible provided there is sufficient probability 𝑃𝑢 (𝑡) at all times to control the dynamics.
In particular, an unphysical wavepacket 𝛼𝑔 (𝑡) will cause 𝑃𝑢 (𝑡), which is calculated through
probability conservation, to drop below zero at some time during the process. Therefore,
a physical solution should satisfy 𝑃𝑢 (𝑡) ≥ 0, 0 ≤ 𝑡 ≤ 𝑇 , with the optimal solution having
𝑃𝑢 (𝑡max) = 0 for some time 𝑡max during the process (see [18, 30] for previous uses of this
condition). This condition is troublesome to impose analytically as it applies a separate constraint
for every time during photon production. Instead, we demand that no probability remains in
the initial or excited state at the end of the process (𝑃𝑢 (𝑇) + 𝑃𝑒 (𝑇) = 0), which can be simply
enforced. This ‘upper bound constraint’ is less restrictive than the true constraint in the sense
that any dynamics satisfying the true constraint has output probability less than or equal to some
dynamics satisfying the upper bound constraint. This can be seen by noting that a solution
satisfying the true constraint must satisfy 𝑃𝑢 (𝑇) + 𝑃𝑒 (𝑇) ≥ 0, where the inequality can be
converted to the equality of the upper bound constraint by uniformly increasing the scale of
𝛼𝑔, and therefore increasing the output probability. Solutions derived under the upper bound
constraints therefore constitute upper bounds to the optimum photon extraction probabilities, and
will be denoted with a superscript (𝑈).



The constraint 𝑃𝑢 (𝑇) + 𝑃𝑒 (𝑇) = 0 can be rewritten

1 = 𝑃
(𝑈)
𝜅 (𝑇) + 𝑃

(𝑈)
𝑔 (𝑇) + 𝑃

(𝑈)
𝛾 (𝑇), (8)

as the five probabilities must always sum to unity. This yields a final output probability

𝑃
(𝑈)
𝜅 (𝑇) = 1

1 + 𝑚
,

𝑚 =
𝑃
(𝑈)
𝑔 (𝑇) + 𝑃

(𝑈)
𝛾 (𝑇)

𝑃
(𝑈)
𝜅 (𝑇)

≡ 𝐹

𝐺
,

(9)

where 𝑚 is a scalar determined by the shape of the photon wavepacket and 𝐹 and 𝐺 are functionals
of 𝛼𝑔 introduced for notational convenience.

As seen from Eq. (9), the optimum output probability occurs when 𝑚 is minimised. To
minimise 𝑚, assume that 𝛼𝑔 changes by 𝛿𝛼𝑔, causing a change in 𝐹 (𝐺) of 𝛿𝐹 (𝛿𝐺). The
condition that 𝑚 is an extremum gives 𝛿𝐹/𝛿𝐺 = 𝐹/𝐺. Now define a shape functional

𝑆𝑞 = 𝑃
(𝑈)
𝑔 (𝑇) + 𝑃

(𝑈)
𝛾 (𝑇) − 𝑞𝑃

(𝑈)
𝜅 (𝑇) = 𝐹 − 𝑞𝐺, (10)

for a general scalar 𝑞. Extrema of 𝑆𝑞 satisfy 𝛿𝐹/𝛿𝐺 = 𝑞. Therefore, the procedure to find
extrema of 𝑚 with respect to changes in the photon shape 𝛼𝑔 is a two-stage process: first, find the
extrema of 𝑆𝑞 for all 𝑞 and second, check that 𝑞 = 𝐹/𝐺 = 𝑚. In other words, stationary solutions
must satisfy

𝛿𝑆𝑞 = 0,

𝑞 =
𝐹

𝐺
≡ 𝑚,

(11)

simultaneously, and the optimum solution is that with the smallest 𝑞. To satisfy the first condition
of Eq. (11), we find stationary 𝑆𝑞 according to

𝑆𝑞 =

∫ 𝑇

0
𝐿𝑞 𝑑𝑡,

𝐿𝑞 =

(
𝛾𝜅2

𝑔2 − 𝑞𝜅

)
𝛼𝑔𝛼

∗
𝑔 +

(
1 + 2𝛾𝜅

𝑔2

)
¤𝛼𝑔𝛼

∗
𝑔 +

𝛾

𝑔2 ¤𝛼𝑔 ¤𝛼𝑔
∗ + c.c.,

(12)

where c.c. is a shorthand for complex conjugate, and the ‘effective Lagrangian’ 𝐿𝑞 has been
written explicitly using Eq. (7). Using the Euler-Lagrange equations to minimise this functional

𝜕𝐿𝑞

𝜕𝛼𝑔

=
𝑑

𝑑𝑡

(
𝜕𝐿𝑞

𝜕 ¤𝛼𝑔

)
, (13)

produces a differential equation

¥𝛼𝑔 + 𝜅2 (2𝐶𝑞 − 1) 𝛼𝑔 = 0, (14)

for the wavefunction of the cavity mode. This equation has two types of solution. If 𝑞 < 1/(2𝐶),
the solutions are hyperbolic functions, whereas in the opposite case, they are trigonometric
functions. It is shown in Supplement 1 Sec. 2 (and could also be inferred directly from Eq. (1))
that the hyperbolic solution produces 𝑚 ≥ 1/(2𝐶), and therefore can never satisfy the second
constraint of Eq. (11). This means that the required 𝑞 ≥ 1/(2𝐶), resulting in trigonometric
solutions. Setting the boundary condition that the cavity is vacant at the start of the process gives

𝛼𝑔 (𝑡) = 𝐴 sin
(
𝜔𝑞𝑡

)
,

𝜔2
𝑞 = 𝜅2 (2𝐶𝑞 − 1) ,

(15)



where 𝐴 is a free parameter that can be set to adjust the sum of probabilities. The probabilities
from Eq. (7) can be calculated explicitly using this solution:

𝑃𝜅 (𝑡) = 𝐴2
(
𝜅𝑡 − 𝜅

2𝜔𝑞

sin
(
2𝜔𝑞𝑡

) )
,

𝑃𝑔 (𝑡) = 𝐴2 sin2 (
𝜔𝑞𝑡

)
,

𝑃𝛾 (𝑡) =
𝑃𝜅 (𝑡)

2𝐶
+ 𝐴2

{
1
𝐶

sin2 (𝜔𝑞𝑡) +
𝜔2
𝑞

𝜅2
1

2𝐶

(
𝜅𝑡 + 𝜅

2𝜔𝑞

sin
(
2𝜔𝑞𝑡

) )}
,

𝑃𝑒 (𝑡) = 𝐴2
(
𝜔𝑞

𝑔
cos

(
𝜔𝑞𝑡

)
+ 𝜅

𝑔
sin

(
𝜔𝑞𝑡

) )2
.

(16)

Substituting these results at time 𝑇 into the second condition of Eq. (11) (𝑞 = 𝐹/𝐺) results in

cos
(
2𝜔𝑞𝑇

)
−

2𝜔𝑞

2𝜅(1 + 𝐶) sin
(
2𝜔𝑞𝑇

)
= 1. (17)

This equation has many solutions, however, when satisfied, 𝑞 = 𝐹/𝐺 = 𝑚, and therefore, to
minimise 𝑚, the solution of interest has the minimum 𝑞 and therefore 𝜔𝑞 . There is a solution at
𝜔𝑞 = 𝜋/𝑇 , corresponding to a cavity wavefunction 𝛼𝑔 (and thus photon wavepacket) of sinusoidal
amplitude, beginning at zero and first returning to zero again at time 𝑇 . However, there is a better
solution at a lower 𝑞, which retains a sinusoidal shape, but with a slower temporal frequency 𝜔𝑞

so that the photon does not fully close by time 𝑇 .
Thus the upper bound can be summarised

1 = cos(2𝜔𝑚𝑇) −
2𝜔𝑚

2𝜅(1 + 𝐶) sin(2𝜔𝑚𝑇),

𝑚 =
1

2𝐶

((𝜔𝑚

𝜅

)2
+ 1

)
,

𝑃𝑢
𝜅 =

1
1 + 𝑚

,

(18)

where 𝑚 is taken as the smallest value to satisfy the first equation, which must be solved
numerically. The same optimisation could have been performed using Lagrange multipliers, but
in that approach it is less clear which stationary solution is the global minimum and it is not
emphasised so strongly that the optimisation performed optimises the photon shape.

The upper bound is an output optimised under the condition that the population remaining
in the cavity 𝑃𝑔, emitted spontaneously 𝑃𝛾 and decayed through the cavity 𝑃𝜅 sum to unity at
time 𝑇 . This is less restrictive than the true condition that these probabilities, in addition to the
probability in the excited state 𝑃𝑒 reaches unity at some point in the process. We obtain a lower
bound to the output probability 𝑃𝑙

𝜅 by assuming the photon retains the same amplitude profile,
but reduced in scale to satisfy the true probability constraint. This is a lower bound because the
photon shape has not been optimised for the true constraint.

A potential objection against the validity of these sinusoidal solutions is that the initial
occupation of the excited state |𝑒, 0⟩ is non-zero, whereas the problem stipulates that the system
is prepared in state |𝑢, 0⟩. However, provided arbitrary driving is possible, probability can be
transferred infinitely quickly from |𝑢, 0⟩ to |𝑒, 0⟩ at the beginning of the process. This means
that the lower bound photon solution can be produced from an initial state of |𝑢, 0⟩ in a time
only infinitesimally longer that 𝑇 , and therefore the bounds apply unchanged in the case that the
excited state is initially vacant. Indeed the ability to set a non-zero occupation of |𝑒, 0⟩ at time
𝑡 = 0 is advantageous because it means that the effect of arbitrarily strong driving at the initial
time can be captured without requiring these troublesome dynamics be modelled explicitly.



Finally, it is worth noting that, while the bounds have been derived for a Λ-system, they
are applicable to a wider class of systems. This is because the level structure through which
wavefunction amplitude is delivered to the excited state is not relevant provided it does not restrict
the possible 𝛼𝑒 (𝑡). In particular, as mentioned in Sec. 2, a recent paper [43] has suggested the
use of two excited states to reduce photon indistinguishability due to temporal mixing. Provided
both of the driving fields used in that scenario can realise arbitrary amplitude profiles such that
the occupation of the additional excited state is always negligible, a very similar derivation to the
above can be made for those systems. This finds identical bounds to the Λ system, which extends
to finite time the equivalent adiabatic result described in that paper.

The upper and lower bounds described in this section can be readily calculated, but before
those results are presented in Sec. 4, the numerical method will be developed.

3. Numerical Method for Generalised Λ-systems

3.1. Defining the system

The results presented in Sec. 2.2 set useful bounds on the limits of performance for Λ-systems,
but there are benefits to a more flexible numeric approach. Firstly, while we know that the
true limit to performance for the Λ-system lies between the upper and lower bounds found in
Sec. 2.2, we do not know where between these bounds the limit lies. Secondly, real emitter level
structures often contain additional decay channels near-resonant with the cavity modes, which,
in atom or ion emitters, would typically be to alternative sublevels within the fine or hyperfine
structure. Often, these additional levels must be included to make simulations consistent with
experiment [32, 33, 44], and thus would ideally feature in our model. Finally, this extra structure
can also be utilised to perform protocols which produce single photons entangled with their
emitter [13, 45], meaning that the ability to model systems with additional ground states is
essential to determine the limits of these protocols.

The ideas presented in Sec. 2.2 inspire a numerical method presenting these benefits. The
systems modelled again contain a single initial state |𝑢, 0⟩ and excited state |𝑒, 0⟩, but now
potentially multiple distinct states with occupied cavity modes

��𝑔 𝑗 , 1 𝑗

〉
for 1 ≤ 𝑗 ≤ 𝑗𝑀 , where 𝑗𝑀

is the number of emitter transitions to which the cavity couples. The states
��𝑔 𝑗 , 1 𝑗

〉
, henceforth

known as ‘emitter-occupied cavity states’, are each coupled to the excited state with respective
coupling rate 𝑔 𝑗 . For atomic emitter-cavity applications using dipole-allowed transitions there
may be three emitter-occupied cavity states for the three possible angular momentum transitions
(𝜋 or 𝜎±). However, the number of emitter-occupied cavity states is reduced if a decay is not
allowed by atomic selection rules or if the cavity axis lies along the magnetic field and the
𝜋 decay is not supported, or increased if multiple state manifolds are close to resonance, for
example due to hyperfine structure. Note that while the emitter-occupied cavity states

��𝑔 𝑗 , 1 𝑗

〉
should be mutually orthogonal, neither the ground atomic states

{��𝑔 𝑗

〉}
nor occupied photon

modes (whose single-occupancy states are denoted
��1 𝑗

〉
) need be mutually orthogonal. For

non-birefringent cavities (where the two orthogonal polarisation modes associated with a spatial
profile are degenerate), the most natural choice is to use a mutually orthogonal basis of atomic
eigenstates

{��𝑔 𝑗

〉}
, and define the corresponding photon states

��1 𝑗

〉
through the cavity interaction.

The level scheme is shown in Fig. 2 for an example of two emitter-occupied cavity states. The
equations of motion are



Fig. 2. The level scheme for the generalised Λ-system coupled to a cavity mode, here depicted with
two emitter-occupied cavity states. Compared to Fig. 1, the Hilbert space of the system now contains
an arbitrary number of emitter-occupied cavity states (indexed by 𝑗) with cavity mode occupation��𝑔 𝑗 , 1 𝑗

〉
coupled to the excited state with respective coupling 𝑔 𝑗 . The emitter-occupied cavity states

are each detuned from a nominal central energy level by detuning Δ𝑔 𝑗
from which the excited state is

itself detuned by Δ𝑒 when including the cavity photon energy 𝜔cav.

|Ψ(𝑡)⟩ = 𝛼𝑢 |𝑢, 0⟩ + 𝛼𝑒 |𝑒, 0⟩ +
𝑗𝑀∑︁
𝑗=1

𝛼𝑔 𝑗

��𝑔 𝑗 , 1 𝑗

〉
,

¤𝛼𝑢 = −𝑖Δ𝑢𝛼𝑢 −Ω∗𝛼𝑒,

¤𝛼𝑒 = −(𝛾 + 𝑖Δ𝑒)𝛼𝑒 +Ω𝛼𝑢 +
𝑗𝑀∑︁
𝑗=1

𝑔 𝑗𝛼𝑔 𝑗
,

¤𝛼𝑔 𝑗
= −(𝜅 + 𝑖Δ𝑔 𝑗

)𝛼𝑔 𝑗
− 𝑔 𝑗𝛼𝑒 ∀ 𝑗 1 ≤ 𝑗 ≤ 𝑗𝑀 ,

(19)

where Δ𝑔 𝑗
is the detuning of emitter-occupied cavity state

��𝑔 𝑗 , 1 𝑗

〉
from an arbitrary reference

level, which, for numerical convenience, is best chosen near the centre of the manifold of
emitter-occupied cavity states.

The difficulty with optimising the outputs of this system is that, given appropriate boundary
conditions, specifying an output wavefunction (for example 𝛼𝑔1 (𝑡)) will intrinsically specify all
other 𝛼𝑔 𝑗

(𝑡) as occupied cavity-states couple only to one excited state |𝑒, 0⟩. This interdependence
is not straightforward to treat in the time domain as it involves both wavefunction terms and their
time derivatives.

Instead, the wavefunction coefficients 𝛼𝑔 𝑗
(𝑡) can be specified as a sum

𝛼𝑔 𝑗
(𝑡) = 1

√
𝑇𝑏

∑︁
𝑛

𝐶
( 𝑗 )
𝑛 𝑒𝑖𝜔𝑛𝑡 ,

𝜔𝑛 =
2𝜋
𝑇𝑏

𝑛,

(20)

of Fourier coefficients 𝐶 ( 𝑗 )
𝑛 across a time domain of length 𝑇𝑏 which, as the photon wavefunctions

start at zero amplitude but are not necessarily zero at 𝑇 , must exceed 𝑇 . The time-domain function
𝛼𝑔 𝑗

(𝑡) can then be specified equivalently as a column vector in Fourier space,

#   »

𝛼𝐹
𝑔 𝑗

= (..., 𝐶 ( 𝑗 )
−1 , 𝐶

( 𝑗 )
0 , 𝐶

( 𝑗 )
1 , 𝐶

( 𝑗 )
2 , ...)𝑇 . (21)

The equations of motion Eq. (19) relate the nth Fourier coefficient of the kth emitter-occupied
cavity state |𝑔𝑘 , 1𝑘⟩ to the same coefficient of the jth emitter-occupied cavity state

��𝑔 𝑗 , 1 𝑗

〉
through



𝐶
(𝑘 )
𝑛 =

𝑔𝑘

𝑔 𝑗

𝜅 + 𝑖(𝜔𝑛 + Δ𝑔 𝑗
)

𝜅 + 𝑖(𝜔𝑛 + Δ𝑔𝑘
)𝐶

( 𝑗 )
𝑛 ≡ 𝑓

( 𝑗→𝑘 )
𝑛 𝐶

( 𝑗 )
𝑛 . (22)

Thus any output probability can be maximised with only the vector
#   »

𝛼𝐹
𝑔 𝑗

as a variable because
the wavefunction components in the remainder of the emitter-occupied cavity states may be
automatically encoded in the relations of Eq. (22)

3.2. Calculating Probabilities

To maximise a desired output probability of the system, a selection of probabilities must be
determined. These probabilities are

• 𝑃𝜅 𝑗 (𝑡): The probability that a photon is emitted via
��𝑔 𝑗 , 1 𝑗

〉
before time 𝑡.

• 𝑃𝛾 (𝑡): The probability of spontaneous emission before time 𝑡.

• 𝑃𝑔 𝑗
(𝑡): The probability that state

��𝑔 𝑗 , 1 𝑗

〉
is occupied at time 𝑡.

• 𝑃𝑒 (𝑡): The probability that |𝑒, 0⟩ is occupied at time 𝑡.

These probabilities can all be written as expectation values of matrices 𝑃𝜁 with vector
#   »

𝛼𝐹
𝑔 𝑗

such
that

𝑃𝜁 (𝑡) =
#   »

𝛼𝐹
𝑔1

† · 𝑃𝜁 (𝑡) ·
#   »

𝛼𝐹
𝑔1 , (23)

for generic probability 𝑃𝜁 . Derivations of these matrices are presented in Supplement 1 Sec. 3,
resulting in

𝑃𝜅 𝑗 𝑛′ ,𝑛
(𝑡) = 2𝜅( 𝑓 (1→ 𝑗 )

𝑛′ )∗�̂�𝑛′ ,𝑛 (𝑡) 𝑓 (1→ 𝑗 )
𝑛 ,

ˆ𝑃𝑔 𝑗 𝑛′ ,𝑛
(𝑡) = ( 𝑓 (1→ 𝑗 )

𝑛′ )∗ (exp {𝑖(𝜔𝑛 − 𝜔𝑛′ )𝑡}) 𝑓 (1→ 𝑗 )
𝑛 ,

𝑃𝛾𝑛′ ,𝑛 (𝑡) =
2𝛾
𝑔2

1

[
𝜅2 + Δ2

𝑔1 + 𝑖𝜅(𝜔𝑛 − 𝜔𝑛′ ) + Δ𝑔1 (𝜔𝑛 + 𝜔𝑛′ ) + 𝜔𝑛𝜔𝑛′
]
�̂�𝑛′ ,𝑛 (𝑡),

𝑃𝑒𝑛′ ,𝑛 (𝑡) =
1

𝑔2
1𝑇𝑏

[
𝜅2 + Δ2

𝑔1 + 𝑖𝜅 (𝜔𝑛 − 𝜔𝑛′ ) + Δ𝑔1 (𝜔𝑛 + 𝜔𝑛′ ) + 𝜔𝑛𝜔𝑛′
]

exp {𝑖(𝜔𝑛 − 𝜔𝑛′ )𝑡} ,

(24)
where

�̂�𝑛′ ,𝑛 (𝑡) =

2
𝑇𝑏 (𝜔𝑛 − 𝜔𝑛′ )

sin
(

1
2
(𝜔𝑛 − 𝜔𝑛′ ) 𝑡

)
exp

(
1
2
𝑖 (𝜔𝑛 − 𝜔𝑛′ ) 𝑡

)
, 𝜔𝑛 ≠ 𝜔𝑛′ ,

𝑡

𝑇𝑏
, 𝜔𝑛 = 𝜔𝑛′ .

 (25)

3.3. Enforcing the Initial Vacancy of emitter-occupied cavity states

The solution must satisfy the constraint that there is no cavity occupation at 𝑡 = 0. Consider
enforcing this condition on just the 𝑗 = 1 emitter-occupied cavity state.

0 = 𝛼𝑔1 (0) =
1

√
𝑇𝑏

∑︁
𝑛

𝐶
(1)
𝑛 . (26)

In the Fourier domain, this constraint is encoded
#  »

𝜙𝐹
1
† ·

#   »

𝛼𝐹
𝑔1 = 0,( #  »

𝜙𝐹
1
†
)
𝑛
= 1.

(27)



Equivalent conditions for the other emitter-occupied cavity states lead to a set of 𝑗𝑀 conditions,
#  »

𝜙𝐹
𝑗
† ·

#   »

𝛼𝐹
𝑔1 = 0 ∀ 𝑗 ,( #  »

𝜙𝐹
𝑗
†
)
𝑛
= ( 𝑓 (1→ 𝑗 )

𝑛 )∗.
(28)

The 𝑗𝑀 vectors
#  »

𝜙𝐹
𝑗

define a 𝑗𝑑
𝑀

-dimensional subspace in which a valid solution vector
#   »

𝛼𝐹
𝑔1

should not lie, where 𝑗𝑑
𝑀

≤ 𝑗𝑀 is the number of non-degenerate emitter-occupied cavity states.
We use Gram Schmidt orthogonalisation to produce a basis in which the final 𝑗𝑑

𝑀
states span

this subspace, along with a matrix �̂� that transforms a state in the Fourier basis to this basis.
Additionally, we define the projector Π̂ 𝑗𝑑

𝑀
which removes the last 𝑗𝑑

𝑀
components of a vector,

and the reverse projector ˜̂Π 𝑗𝑑
𝑀

that takes a reduced vector and appends 𝑗𝑑
𝑀

coefficients with value

zero. Any Fourier vector
#   »

𝛼𝐹
𝑔1 can now be projected to a solution that satisfies the initial conditions

#   »

𝛼𝑃
𝑔1 = Π̂ 𝑗𝑑

𝑀
�̂�

#   »

𝛼𝐹
𝑔1 , (29)

where
#   »

𝛼𝑃
𝑔1 is expressed as coefficients in the ‘projected’ basis, to which the superscript 𝑃 refers.

Probability matrices
𝑃𝑃
𝜁
= Π̂ 𝑗𝑑

𝑀
�̂�𝑃𝜁 �̂�

† ˜̂Π 𝑗𝑑
𝑀
, (30)

are then written in the new projected basis where 𝜁 is a generic index that specifies the probability,
with these projected matrices again labelled by superscript 𝑃. Within the projected basis, every
state automatically satisfies the initial conditions, and therefore these conditions need not be
explicitly enforced during optimisation.

3.4. Normalising Probabilities

The (projected) matrix for total probability not in the initial state at time 𝑡

𝑃𝑃
𝑢
(𝑡) =

𝑗𝑀∑︁
𝑗=1

(
𝑃𝑃
𝜅 𝑗 (𝑡) + ˆ𝑃𝑃

𝑔 𝑗
(𝑡)

)
+ 𝑃𝑃

𝛾 (𝑡) + 𝑃𝑃
𝑒 (𝑡), (31)

can be calculated from other probability matrices. As in the analysis of Sec. 2.2, a photon shape
is possible if the total probability not in the initial state remains below unity for all times. We
therefore define normalised probabilities as those found when the photon amplitude is re-scaled
to the maximum that can satisfy this constraint. The normalised probability corresponding to a
generic probability 𝑃𝜁 (𝑡) is

𝑃𝑁
𝜁 (𝑡) =

#   »

𝛼𝑃
𝑔1

† · 𝑃𝑃
𝜁
(𝑡) ·

#   »

𝛼𝑃
𝑔1

#   »

𝛼𝑃
𝑔1

† · 𝑃𝑃
𝑢
(𝑡max) ·

#   »

𝛼𝑃
𝑔1

, (32)

where 0 ≤ 𝑡max ≤ 𝑇 is the time for which [
#   »

𝛼𝑃
𝑔1

† · 𝑃𝑃
𝑢
(𝑡max) ·

#   »

𝛼𝑃
𝑔1 ] is maximised. This expression

automatically normalises probabilities such that the sum of all calculated probabilities remains
less than or equal to unity for the photon production process. Thus, when using normalised
probabilities, the magnitude of the photon vector

#   »

𝛼𝑃
𝑔1 has no significance.



3.5. Optimising Probabilities

To optimise probabilities, we use an iterative approach. Consider optimising a generic product of
probabilities

𝑉 =

𝑙𝑀∏
𝑙=1

𝑃𝑁
𝜁𝑙
(𝑡𝑙), (33)

where 𝑙𝑀 is the order of the probability product, 𝜁𝑙 specifies the probability of the term in the
product labelled by 𝑙, and 𝑡𝑙 is the time at which the probability should be evaluated. In general, a
sum of such products can be desired, but this is just a trivial extension. Each cycle of an iterative
procedure begins with the current solution vector

#   »

𝛼𝑃
𝑔1 . This vector is modified by adding a small

correction

𝛿
#   »

𝛼𝑃
𝑔1 = 𝜖

[(
𝑙𝑀∑︁
𝑙=1

𝑃𝑃
𝜁𝑙
(𝑡𝑙) ·

#   »

𝛼𝑃
𝑔1

)
− 𝑙𝑀𝑃𝑃

𝑢
(𝑡max) ·

#   »

𝛼𝑃
𝑔1

]
, (34)

where 𝜖 is set to a randomly-chosen positive small number at each iteration to prevent the
optimisation stalling and 𝑡max is evaluated every iteration. This additional vector 𝛿

#   »

𝛼𝑃
𝑔1 lies along

the gradient of 𝑉 with respect to the projected solution vector
#   »

𝛼𝑃
𝑔1 under the assumption that 𝑡max

does not change.

3.6. Applicability to experiments

The method presented in this section finds the output wavepacket that maximises a desired
probability, however, this might not be the best practical solution for two main reasons. Firstly,
physically realising the optimum output requires arbitrary control over the driving field, including
effectively instantaneous transfers pulses at the start of, and potentially during, the process
(the method to calculate the driving pulse from a solution for 𝛼𝑔1 (𝑡) is given in Supplement 1
Sec. 4). In real experiments, the possible drive pulses are typically restricted, for example by the
available drive power or modulator slew rates. It is much simpler to include these restrictions in
optimal control approaches that optimise the driving parameters directly. Therefore, a sequential
procedure first using our approach to find the performance limits fundamental to the emitter-cavity
system followed by optimal control to find a realisable drive solution with performance close to
these limits may be most effective. Secondly, the usefulness of photon wavepackets for a given
application is often not solely a question of their total probability. For example, for applications
involving photon interference, the wavepackets would ideally offer low sensitivity to inevitable
pathlength differences [46] through reasonably stable intensity and phase profiles, a criterion
which is not trivial to satisfy [47]. Therefore a more general notion of photon desirability might
be required. If these additional factors can be encoded as probability products, it may be possible
to perform that optimisation within our framework, but again, a two-stage approach whose first
step uses our method to understand the system limits may be more generally applicable.

3.7. Role of detunings

Finally, it should be noted that, at no point during the optimisation, here or for the analytical
approach in Sec. 2.2, did the detunings Δ𝑒 and Δ𝑢 feature. Therefore, the optimised wavepacket
and probability are independent of their values. For Δ𝑢, this is expected, because its value is only
nominal as any change to its value could be compensated by the arbitrary drive pulse. However,
Δ𝑒 is a physical variable, so the conclusion that the optimum performance of these systems is
unaffected by its value is not obvious, but this conclusion has been found in the adiabatic regime
for photon generation [16] and storage [38], and for the generation of Gaussian wavepackets [30].
As in these cases, the driving pulse to produce the optimum performance does depend on Δ𝑒,
even though the photon wavepacket and output probability does not.



4. Results

In this section, we will use the analytic and numeric methods developed in Sections 2.2 and 3
respectively to understand the limits of photon extraction in different scenarios. First, we will look
at the Λ-system to evaluate the finite-time limits of photon extraction, the photon wavepackets
that saturate these limits, and the scale of the benefits in decreased photon duration bestowed by
these optimised wavepackets. Then, we focus on systems with more than one emitter-occupied
cavity state, demonstrating probability maximisation of different outputs, before performing a
case study on how ground-state energy separation limits the success rates of systems designed for
remote entanglement. Details on how numerical parameters such as the number of Fourier basis
states were chosen are given in Supplement 1 Sec. 5.

4.1. Optimum output of Λ-systems in finite time

As mentioned in Sec. 2.1, the optimum output from a Λ-system, 𝑃 (𝑎)
𝜅 (Eq. (1)), strictly applies

only in infinite time. However, recent work studying Gaussian wavepackets [30], in agreement
with the numerical findings of [38], indicates that output close to 𝑃

(𝑎)
𝜅 is achieved provided the

photon timescale (𝑇 in our notation) is much greater than the ‘critical time’

𝑡crit = max
(
𝜅

𝑔2 ,
1
𝜅

)
. (35)

This expression indicates two regimes for the ratio of 𝑔 to 𝜅, with a boundary between them at
𝑔 = 𝜅.

An alternative to trying to drive a photon on timescale 𝑇 is to instantly excite the emitter
to |𝑒, 0⟩ at 𝑡 = 0 and wait for the excitation to transfer to the cavity mode and leak out to the
collection. This technique produces photons quickly, but does so at an infinite-time probability

𝑃
(𝑒)
𝜅 =

𝜅

𝜅 + 𝛾
𝑃
(𝑎)
𝜅 , (36)

which is below the adiabatic limit [48]. The notions of 𝑡crit and 𝑃
(𝑒)
𝜅 highlight the trade-off that

practical applications must balance between the rate of photon production 1/𝑇 and the extraction
probability 𝑃𝜅 (𝑡). We use our analytic and numerical methods to find the limits of this trade-off.

We examine these limits in Fig. 3 for three example systems with cooperativity 𝐶 = 1, but
with the ratio of 𝜅 to 𝑔 chosen to sample the two regimes of 𝑡crit (Eq. (35)) and the boundary
between them. Examining first the comparison for different drive techniques over a range of
times (Column i), the numerical result lies between the upper and lower bounds to the maximised
photon extraction, which converge to 𝑃

(𝑎)
𝜅 for 𝑇 ≫ 𝑡crit as expected. The upper and lower bounds

are quite distinct for the ‘bad cavity’ (high 𝜅, row a), but take similar values for 𝑔 ≥ 𝜅. An instant
excitation approach generally performs well at short times, but the output saturates at 𝑃 (𝑒)

𝜅 , which
is particularly limiting for the parameters of row c). The linear drive curves provide an example
of ‘simple’ driving procedures, indicating how, particularly for the parameters of row a) and
b), optimisation of the output wavepacket shape can lead to much faster photon production at a
given efficiency. However, the performance of linear drives does tend to the maximum output
probability in the adiabatic limit 𝑇 ≫ 𝑡crit, consistent with previous conclusions that photon
extraction [16] and absorption [36] probabilities reach this limit in infinite time regardless of
wavepacket shape.

Columns ii) and iii) show the system occupations and photon wavepackets respectively for
case studies taking 𝑇 = 2.5𝑡crit respectively. Here we see that, in the case that 𝑔 ≫ 𝜅 (row c), the
optimised photon wavepacket has a very similar shape to the upper and lower bounds. However,
as 𝜅 increases (row b and then a), the wavepacket shape deviates significantly from the sinousoid
form, instead exhibiting a sharp rise followed by a prolonged exponential decay.
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Fig. 3. Comparison of the numerically-optimised performance and analytical performance bounds of
Λ-systems with 𝐶 = 1 and row a) 𝜅 = 10𝑔, row b) 𝜅 = 𝑔, and row c) 𝜅 = 𝑔/10. Column i) Output
probabilities achieved through a range of methods against extraction time 𝑇 . The blue and black
lines mark the upper and lower bounds for the maximised extraction probability found in Sec. 2.2
respectively. The red dashed line shows the numerically optimised output. The green line shows
the extracted probability for direct excitation to the excited state, with the green dotted line marking
the infinite-time extraction probability from direct excitation 𝑃

(𝑒)
𝜅 (Eq. (36)). The purple lines show

the output for a series of drives with linearly increasing amplitude and Δ𝑢 = 0, where the rate of
increase of drive amplitude is varied between different lines. The adiabatic extraction probability 𝑃

(𝑎)
𝜅

(Eq. (1)) is marked by the dotted black line, and takes a value of 2/3 for all scenarios. The example
time used for analysing the system populations and photon wavepackets in ii) and iii) is 𝑇 = 2.5/𝑡crit,
and is marked by the grey vertical line. Column ii) System populations for the numerically optimised
solution for output time 𝑇 = 2.5/𝑡crit. Column iii) The probability flux of the output wavepackets for
the numerically optimised case (red) compared to the upper (black) and lower (blue) bounds.



To probe the variation in optimum wavepacket shape, the optimised wavepacket was calculated
at 𝑇 = 2.5/𝑡crit for a variety of 𝜅:𝑔 ratios, with the results shown in Fig. 4. This shows that,
in the limit 𝑔 ≫ 𝜅, the optimised wavepackets tend to a single shape (when viewed in units
normalised to 𝑡crit). This is because, for 𝑔 > 𝜅, Eq. (18) always predicts the same upper bound in
the normalised units, and the optimised wavepacket is very similar to this upper bound. However,
as 𝜅/𝑔 increases, there is a gradual transition in shape towards the limit 𝜅 ≫ 𝑔, which features a
fast rise followed by a prolonged exponential decay. Profiles in the regime 𝜅 > 𝑔 also feature
much more pronounced excited state occupations, which was also observed in [30].

To understand why significant excited state population would distort the optimised wavepacket
from the sinusoidal shape, it is important to remember that this shape was derived from the upper
bound probability condition that 𝑃𝜅 (𝑇) +𝑃𝛾 (𝑇) +𝑃𝑔 (𝑇) = 1. The optimised wavepacket will only
deviate from the upper bound shape if the true probability condition (that 𝑃𝜅 (𝑡) + 𝑃𝛾 (𝑡) + 𝑃𝑔 (𝑡)
+ 𝑃𝑒 (𝑡) = 1 − 𝑃𝑢 (𝑡) = 1 for some time 𝑡 during the process) is not equivalent to the upper bound
condition. This requires either that 𝑃𝑒 (𝑇) ≠ 0, or that 𝑃𝑢 (𝑡) reaches zero at an intermediate time,
which, given that 𝑃𝜅 (𝑡) and 𝑃𝛾 (𝑡) are monotonically increasing, would imply significant 𝑃𝑒 or
𝑃𝑔 at this intermediate time.

Observing the presented data again, we can broadly classify the observed profiles into two
sets. For one set (Fig. 4e), 𝑃𝑢 (𝑡) tends smoothly towards zero at 𝑇 and the output approximates
a sinusoidal profile. In the other set (Fig. 4b, c, and d), 𝑃𝑢 (𝑡) reaches zero at an intermediate
time, and the output wavepacket features an exponential tail from this time onwards, indicated
by the shape of the blue panes below the line in Fig. 4a). Thus, for these cases, the probability
condition is not a single restriction at the final time, but a continuous restriction for all later
times. Therefore, in the 𝑔 ≫ 𝜅 limit of the data, the dynamics are constrained by probabilities at
the final time 𝑇 , and are consequently dominated by the monotonically increasing probabilities
𝑃𝜅 and 𝑃𝛾 . However, in the 𝜅 ≫ 𝑔 limit, the dynamics are constrained by the probability sum
condition over a period of times, meaning that the undulating probabilities 𝑃𝑔 and 𝑃𝑒 play an
important role, and the shape derived in Sec. 2.2 is not a good approximation.

In summary then, the upper bound is easily calculable, but is not physically realisable, either
because 𝑃𝑒 (𝑇) is not exactly zero as assumed in the probability condition Eq. (8), or the total
probability not in the initial state would have to exceed unity at some point during the process.
The lower bound is physically realisable, but it has an assumed, rather than optimum shape. The
numeric method can find the wavepacket shape that optimises the output probability (which must
lie between the bounds), however the wavepacket shape can be substantially different from that of
the bounds. This optimum wavepacket shape can provide considerably reduced photon durations
compared to simple linear drives operating at the same extraction efficiency, but the magnitude
of this improvement depends strongly of the cavity parameter regime.

Finally, we note that the slight high-frequency noise seen in certain profiles (most obviously in
Fig. 3bii) is likely a numerical artefact rather than a genuine feature. See Supplement 1 Sec. 5 for
more details.

4.2. Optimisation of probability metrics

The numeric method of Sec. 3 is able to model emitter systems with multiple emitter-occupied
cavity states, which is a common scenario for atomic emitters. Fig. 5 shows how a single
emitter-cavity system can be used to optimise different outputs. Here we take a system with
𝛾 = 0.6𝜅 and three emitter-occupied cavity states, such that 𝑔1 =

√︁
1/3 𝜅, 𝑔2 = −

√︁
4/15 𝜅, and

𝑔3 =
√︁

1/30 𝜅, which matches the example of an atomic 𝐷 5
2
→ 𝑃 3

2
transition, where the initial

state has angular momentum projection 𝑚𝐽 = 3/2 along the magnetic field and the cavity is
oriented orthogonal to the magnetic field. The energy splitting between emitter-occupied cavity
states is 5𝜅. The driving of this system was optimised for both strong single photon emission
paths independently, 𝑃𝜅1 for row a) and 𝑃𝜅2 for row b), and the two-component decay probability



a)

Fig. 4. Comparison of optimised cavity output profile as a function of Λ-system parameters. a) A
collection of optimised output wavepackets found as the ratio of 𝑔 to 𝜅 is varied, with 𝛾 adjusted
to maintain the cooperativity 𝐶 = 1, and the photon collection time set to 2.5𝑡crit for all data. The
first time at which 𝑃𝑢 (𝑡) is reduced below 1% is marked by the beginning of the blue pane under
each curve. Profiles taken as case studies are drawn with red lines, and are labelled in blue according
to their corresponding probability panel. b)-e): System probabilities as a function of time for the
corresponding output profiles labelled in a).

𝑃𝜅1𝑃𝜅2 , pertinent for protocols where emitter-photon correlations are desired, in row c). Note
that this two-component probability product is not a two-photon event, but a maximisation of
a product of two probabilities related to single photon emission. It should also be noted that,
for the example cavity geometry and transitions, the photon-occupied states |11⟩ and |13⟩ would
be identical (and |12⟩ would have the orthogonal polarisation). This means that, while it is
possible to distinguish 𝑃𝜅1 and 𝑃𝜅3 with an emitter measurement (justifying that they are distinct
probabilities), it is not possible to distinguish them by photonic measurement. This must be
understood when applying these methods to schemes where emitter measurement is not possible,
for example remote entanglement schemes [13] where emitter measurement would destroy the
intended entanglement.

The results show that the same cavity system can be used to produce relatively pure single
photon emission through either strong decay channel, or a binary emitter-photon correlated state
through changing the driving pulse. However, while the single probability-optimised scenarios
(rows a and b) produce smooth wavepackets, the probability product-optimised wavepacket (row c)
features significant oscillations. If the system were driven with the typical bichromatic drive [49],
then these oscillations would be attributed to off-resonant coupling between one drive tone and
the ‘opposite’ transition. However, our optimisation does not assume a specific form of driving
pulse. We therefore see that it is not possible to produce non-undulating wavepackets without
compromising on output probability. Finally, it should be noted that the method can optimise
more general products or sums of probabilities, a faculty which may be used to discourage
unwanted processes that contribute to error in a target application.

4.3. Case study: Effect of ground-state splitting on remote entanglement

Finally, we demonstrate the use of the numeric methods for understanding how emitter structure
limits the performance of quantum protocols, taking two-photon, probabilistic, polarisation-
encoded remote entanglement as a case study. In these schemes, two separate emitter-cavity
systems are driven such that they both produce a single photon whose polarisation qubit is
entangled with the final emitter state. For concreteness, we will imagine a system where |𝑔1⟩ and
|𝑔2⟩ form the emitter qubit, and |11⟩ and |12⟩ have orthogonal polarisations so that the output
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Fig. 5. Example photon wavepackets (Column i) and system populations (Column ii) that maximise
different probabilities for an emitter cavity system with 𝑔1 =

√︁
1/3𝜅, 𝑔2 = −

√︁
4/15𝜅, 𝑔3 =

√︁
1/30𝜅,

and 𝛾 = 0.6𝜅 over a time of 𝑇 = 5/𝜅. The energy splitting between |𝑔1, 11⟩ and |𝑔2, 12⟩, and |𝑔2, 12⟩
and |𝑔3, 13⟩, is 5𝜅. Row a) shows the case where the maximised quantity is the single photon emission
probability 𝑃𝜅1 , row b) 𝑃𝜅2 , and row c) the two-probability product 𝑃𝜅1𝑃𝜅2 .

wavepackets collectively constitute a polarisation qubit. The photon wavepackets from the two
systems are routed to opposite input ports of a non-polarising beamsplitter and then subject to
polarisation-resolved measurement. Upon certain outcomes of this measurement, the emitters are
entangled (see [13,31] for more details of the scheme). Assuming two identical emitter-cavity
systems are used, the probability of remote entanglement success in a given trial is proportional
to 𝑃𝜅1𝑃𝜅2 [50]. Even state-of-the-art free space [51] and cavity-enhanced [41] experimental
implementations have success probability well below unity, leading to remote entanglement far
slower than local operations, inhibiting the protocol’s current usefulness. Given the importance
of success probability and rate, it is crucial to understand exactly how different experimental
parameters affect these quantities.

In an experimental scenario, the two pertinent emitter-occupied cavity states are not typically
degenerate, with the splitting potentially chosen for reasons not directly related to the entanglement
generation process. It is therefore of interest to know what impact a splitting (denoted Δ𝑍 as it
would often constitute a Zeeman splitting in atom or ion applications) would have on the remote
entanglement success probability.

We thus maximise 𝑃𝜅1𝑃𝜅2 as a function of emitter-occupied cavity statesplitting Δ𝑍 and output
time 𝑇 for the system investigated in Sec. 4.2, but where the third emitter-occupied cavity state
has been removed for simplicity. The results are shown in Fig. 6, which shows broadly that an
increasing emitter-occupied cavity state splitting reduces the optimised remote entanglement
success probability, with a high probability plateau for small Δ𝑍 , a low plateau for large Δ𝑧 , and
a transition in between.

Simple pictures for the limiting cases of photon extraction in limited time with Δ𝑍 = 0 and
Δ𝑍 → ∞ can be used to understand the dependence of 𝑃𝜅1𝑃𝜅2 on Δ𝑍 , with derivations for these
limits given in Supplement 1 Sec. 6. Firstly, in the case of Δ𝑍 = 0, the two decay channels have
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Fig. 6. Investigation of the effect of ground state splitting Δ𝑍 on the two-component probability
𝑃𝜅1𝑃𝜅2 optimised for time 𝑇 for a system with 𝑔1 =

√︁
1/3𝜅, 𝑔2 = −

√︁
4/15𝜅 and 𝛾 = 0.6𝜅. a) The

optimised 𝑃𝜅1𝑃𝜅2 as a function of 𝑇 and Δ𝑍 . b) The optimised output probability as a function of
Δ𝑍 for just the longest time shown (𝑇 = 12.5/𝜅) compared to the expected infinite time output for
zero-splitting case 𝑃

(𝑎,Δ0 )
𝜅1𝜅2 and for the high-splitting case 𝑃

(𝑎,Δ∞ )
𝜅1𝜅2 .

no differential phase evolution, so the excited state actually couples directly to a single level with
rate 𝑔eff =

√︃
𝑔2

1 + 𝑔2
2. This results in the infinite-time probability product

𝑃
(𝑎,Δ0 )
𝜅1𝜅2 =

𝑔2
1𝑔

2
2

𝑔4
eff

(
𝑔2

eff

𝑔2
eff + 𝜅𝛾

)2

. (37)

Secondly, in the case that the Zeeman splitting becomes large, the production processes for the
two components should be spectrally decoupled. This leads to an optimised 𝑃𝜅1𝑃𝜅2 of

𝑃
(𝑎,Δ∞ )
𝜅1𝜅2 =

2𝐶12𝐶2
4(2𝐶1 + 1) (2𝐶2 + 1) . (38)

The agreement of the data with Eqs. (37) and (38) is shown in panel b) of Fig. 6. The data
does not extend to infinite extraction time 𝑇 , or to infinite state splitting Δ𝑍 , but the trend broadly
matches the values expected from these simple models.

While the conclusions of Fig. 6 are not themselves surprising, it is worth emphasising the
key advantage of the optimisation method: that it is driving-independent. This means that we
attribute the reduction in success probability with Δ𝑍 directly to the increase in Δ𝑍 , without
any doubt about whether we chose unsuitable driving pulses for some parameters. The same
procedure could be applied to understand the dependence upon system parameters of the success
probability of other quantum information protocols.

5. Conclusions

We have developed an analytic method to establish upper and lower bounds to the probability
of photon extraction from a Λ-system in finite time which lie within the previously known
infinite time bounds. We then extended these ideas to establish a numeric method to find the
limits to photon extraction which also applies to generalisations of the Λ-system to include
multiple cavity decays. This method can optimise general probability products, and, in-keeping
with recent developments for related problems [28,30], does so without optimising the driving



pulse explicitly. The combination of these approaches allows us to calculate the limits to the
compromise between photon extraction probability and rate, and investigate optimised output
wavepackets and corresponding quantum dynamics.

For the canonical Λ-system, we find the photon wavepacket which maximises finite-time
photon extraction probability for given system parameters, observing that its shape lies on a
spectrum between the exponential decay characteristic of fast excitation and the sinusoidal profile
of the analytic bounds, and that this wavepacket can result in significantly faster high-efficiency
photon extraction compared to simple driving approaches. In the case of generalised Λ-systems,
which are often more accurate models of real experiments, we observed how to determine
the limits of a single system, taken to model a trapped ion-cavity system, in producing single
photons of specified polarisation, or an emitter photon correlated state. We then demonstrated
how our methods can be used to derive driving-independent conclusions about the impact of
system parameters, exemplified by the reduction of remote entanglement success probability with
increasing emitter-occupied cavity state splitting.

We believe that the methods presented in this manuscript will aid researchers in realising
high-rate high-efficiency cavity-based sources for single photons and emitter-photon entangled
states across the development cycle. Firstly, the methods determine the performance limits
of existing hardware and how they can be reached. This specifically accounts for the finite
protocol duration and extra emitter structure seen in experimental attempts to reach these
limits [21]. Secondly, the approach can reveal how the parameters of future systems will affect
their performance, enabling the targeting of designs towards high performance use, which would
again allow for the photon production time to be properly included in place of infinite time
results [52]. Finally, the advantages of our driving-independent approach are complementary to
that of optimal control, and the combination of the two may help identify robust driving schemes
with near-ideal performance in practical systems. Additionally, we also reiterate that photon
emission is deeply related to photon absorption, and our results in the context of photon emission
experiments have direct analogues for the applications requiring finite-time absorption of photon
wavepackets.
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