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We develop methods to find the limits to finite-time single photon extraction from emitter-cavity systems. We first
establish analytic upper and lower bounds on the maximum extraction probability from a canonical 3-system
before developing a numeric method to optimize generic output probabilities from3-systems generalized to multi-
ple ground states. We use these methods to study the limits to finite-time photon extraction and the wavepackets
that satisfy them, finding that using an optimized wavepacket ranging between a sinusoidal and exponentially
decaying profile can considerably reduce photon duration for a given extraction efficiency. We further optimize
the rates of quantum protocols requiring emitter-photon correlation to obtain driving-independent conclusions
about the effect of system parameters on success probability. We believe that these results and methods will provide
valuable tools and insights for the development of cavity-based single photon sources combining high efficiency
and high rate.
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1. INTRODUCTION

Single quantum emitters coupled to optical cavities have consti-
tuted a central platform for studying the interaction of light and
matter [1–3], and moreover present a possible implementation
for many quantum information processes, including photon-
photon gates [4] and generating long-range interaction between
matter-based qubits [5–7]. A broad class of applications, such
as photonic information processing [8], quantum networking
[9,10], or networked modular quantum computation [11],
could utilize emitter-cavity systems to produce single photons
for the required protocols. The probability of photon extraction
is typically of central importance, affecting the rate of heralded
protocols [12,13] and the fidelity of deterministic ones [14].

There are several different approaches to produce single
photons. To achieve fast extraction, one can directly excite the
emitter [15], but to approach the ultimate bound to photon
extraction probability of 2C/(2C + 1), determined solely by
the cooperativity C [16–18], cavity-assisted Raman transitions
[19–21], or vSTIRAP [22] are commonly used. However, the
photon production duration is typically much greater than
direct excitation [21,23] to reduce excited state population [24]
or maintain adiabatic following [25], respectively. In quan-
tum information applications, this increased photon duration
leads not just to ultimately slower information processing,
but increased decoherence of quantum information stored
elsewhere during photon production [26–28] and increased

photonic losses in the longer fiber delay lines [29]. It is thus
crucial to understand how to achieve both high efficiency and
high-rate photon extraction from emitter-cavity systems.

In this work, we develop analytical and numerical approaches
to find the limits set by system parameters on high-probability
high-rate photon extraction, and how to saturate these limits.
In Section 2, we develop upon previous approaches linking
photon extraction probabilities to wavepacket shape [18,30] to
analytically optimize these wavepackets and set upper and lower
bounds on the maximum emission probability for a given pro-
duction time. In Section 3, we build upon these ideas to develop
a numeric procedure that can optimize a variety of probabilities,
including the emission probability, for generalized versions of
3-systems with multiple ground states. Finally, in Section 4,
we use these tools to investigate the limits to finite-time photon
extraction, and the photon wavepackets that satisfy them, before
discussing protocols requiring emitter-photon correlations,
taking remote entanglement generation [31] as a case study.
Our approach of optimizing the photon wavepacket directly is
driving-independent, lending it complementary advantages to
approaches that calculate dynamics directly from the driving
pulse [32,33], notably avoiding local optima in the selected
driving parametrization or ansatzes in the driving form.

Lastly, photon extraction and absorption, though not direct
time reversals of each other, are linked by time reversal [34],
with the efficiency of extraction matching that of absorption
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for time-reversed control drives and wavepacket profiles [35].
Our results for photon extraction will therefore correspond
to analogous results for photon absorption, on which there is
extensive literature [35–38], but to avoid confusion, we will
discuss only photon extraction contexts.

2. THREE LEVEL 3-SYSTEM

A. Model

The model we use for the emitter-cavity photon-generation
system is the canonical 3-type emitter coupled to a single
cavity mode. The emitter level structure contains two ground
states, |u〉 and |g 〉, which are both coupled by electromagnetic
transitions to an excited state |e 〉 that decays via spontaneous
emission to any mode except the single cavity mode with ampli-
tude decay rate γ . The emitter couples to a single cavity mode,
whose Hilbert space contains only the vacuum state |0〉 and
the single photon state |1〉. The cavity field amplitude decay
rate is κ . In real systems, this decay rate comprises a “useful”
decay rate through the desired partially transmissive mirror κT ,
and a “parasitic” decay rate κI that includes other losses such as
scattering, absorption, and diffraction. To reduce the number
of variables, we assume κI = 0 and therefore κT = κ . However,
the coherent dynamics of the system are determined solely by κ ;
therefore all future results will hold for cavities with κI 6= 0 pro-
vided any output probabilities are attenuated by κT/(κT + κI ).
The coupling between the excited atomic state with an empty
cavity |e , 0〉, and the ground state with an occupied cavity |g , 1〉
is, by convention, g , with detuning1e of the |e 〉→ |g 〉 emitter
transition frequency from the cavity mode frequency. A diagram
of the system is depicted in Fig. 1.

In a general photon production process, the cavity is
initially vacant, the emitter is prepared in state |u〉, and a time-
dependent driving pulse�(t) is applied to transfer population,

Fig. 1. The level scheme for the3-emitter coupled to a single cavity
mode. The Hilbert space contains three levels that are all tensor prod-
ucts of the emitter’s electronic state and the cavity mode Fock state.
These levels are the initial emitter state with no cavity photon |u, 0〉, an
excited emitter state with no cavity photon |e , 0〉, and a final emitter
state with a cavity photon |g , 1〉. The excited state and final state are
coupled by the cavity coupling g , with the excited state detuned from
resonance with the cavity by 1e . The initial and excited states are
coupled by a laser field with complex time-dependent coupling �.
The detuning of the laser field from Raman resonance with the cavity
is 1u , although this is only nominal as the laser field can be adjusted
to include an arbitrary detuning in its time dependence. The excited
state amplitude decays at a rate γ due to spontaneous emission, and the
cavity state amplitude at a rate κ due to field loss from the cavity.

via |e , 0〉, to |g , 1〉. The single photon then leaks out of the
cavity and is collected. This 3-system model is sufficiently
general to describe photon production through direct excita-
tion, cavity-assisted Raman transition, or vSTIRAP through
appropriate choices of the driving pulse�(t) and detuning1e

[16]. Regardless of the driving method chosen, the maximum
photonic output of the system is

P (a)
κ =

2C
2C + 1

,

C =
g 2

2κγ
, (1)

where the dimensionless C is the cooperativity [16]. This per-
formance is achieved in the adiabatic (i.e., infinite extraction
time) limit, and the goal of this manuscript is to determine
similar limits for non-adiabatic timescales.

The coherent Hamiltonian for this model is

H =1u |u, 0〉〈u, 0| +1e |e , 0〉〈e , 0|

+
[
−i�∗|u, 0〉〈e , 0| + h.c.

]
+
[
ig |e , 0〉〈g , 1| + h.c.

]
,

(2)

where the factor of the imaginary unit i before g is made for
algebraic convenience. The nominal detuning of the initial state
from Raman resonance with |g , 1〉 is1u , which is usually set to
zero in monochromatic driving schemes.

The system dynamics also feature two incoherent decay chan-
nels, spontaneous emission from the excited state and decay of
the cavity mode, which may be included in the model by using
the master equation. However, for emitter-cavity systems oper-
ating as photon sources, the dynamics are only relevant if the
cavity emits a photon. This means that, on the assumption that
no decay process can be followed by subsequent cavity decay, a
simpler non-Hermitian Hamiltonian,

HNH
= H − iγ |e , 0〉〈e , 0| − iκ|g , 1〉〈g , 1|, (3)

can be used. The assumption that no decay process is followed
by cavity decay is typically valid for cavity decay itself (provided
the state |g 〉 is stable on the timescale of the photon production
process). However, spontaneous emission followed by cavity
decay can also occur. This causes the emission of a probabilistic
mixture of photon wavepackets, known as temporal mixing,
which reduces the coherence and indistinguishability of photon
wavepackets [39], resulting in major fidelity reductions for cer-
tain quantum protocols [40,41]. Choosing a 3-system where
the excited state decay has a low branching ratio to the initial
state |u〉 strongly mitigates this effect [42]. Because temporal
mixing errors can be so destructive to the coherence of the out-
put wavepacket, we assume that the3-system has been chosen
such that temporal mixing is negligible and, therefore, that the
non-Hermitian approach is applicable. In the case that tem-
poral mixing is not negligible, the results we derive maximize
the probability of an emission event that is not preceded by a
spontaneous emission event.

Finally, we note that recent work [43] has proposed the use
of multiple excited states to realize the reduced temporal mix-
ing found in systems with low branching ratios to |u〉, but in
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systems that do not naturally have that structure. At the end
of Section 2.B, we discuss how our results also apply to these
systems.

B. Bounded Optimization Approach

Using the non-Hermitian approach, our analysis initially
follows Goto (2019) [16] to link the probabilities of cavity
emission and spontaneous emission to the photon shape, and
then, as suggested in Vasilev (2010) [18], optimizes this shape to
yield the maximum output.

We begin by expressing explicitly the non-Hermitian
Hamiltonian Eq. (3):

|9(t)〉 = αu |u, 0〉 + αe |e , 0〉 + αg |g , 1〉,

α̇u =−i1uαu −�
∗αe ,

α̇e =−(γ + i1e )αe +�αu + gαg ,

α̇g =−καg − gαe , (4)

where |9(t)〉 is the wavefunction of the emitter-cavity system.
Rearrangement of the last relation yields

αe =−
1

g

(
καg + α̇g

)
, (5)

which expresses the wavefunction component of |e , 0〉 through
the component in the state |g , 1〉.

Throughout the photon generation process, the three level
system with two decay channels has probabilities of occupation
split across five categories: Pu(t), Pe (t), and Pg (t) are the occu-
pation probabilities of states |u, 0〉, |e , 0〉, and |g , 1〉 at time t ,
respectively, Pγ (t) is the probability that there has been decay
by spontaneous emission by time t , and Pκ(t) is the probability
that there has been photonic decay from the cavity by time t .

These probabilities, with the exception of Pu , can be written
using Hermitian integrals of the form

I(nm)(t)=
∫ t

0

(
n·
αg

m·
αg
∗

+
m·
αg

n·
αg
∗
)

dt, (6)

where n· is a shorthand for n copies of · to indicate n time deriva-
tives. Using this notation, the probabilities are

Pκ(t)= κ I(00)(t),

Pg (t)= I(10)(t),

Pγ (t)=
γ κ2

g 2
I(00)(t)+

2γ κ

g 2
I(10)(t)+

γ

g 2
I(11)(t),

Pe (t)=
κ2

g 2
I(10)(t)+

κ

g 2
I(20)(t)+

κ

g 2
I(11)(t)

+
1

g 2
I(21)(t)+

1

g 2

∣∣α̇g (0)
∣∣2,

Pu(t)= 1− Pκ(t)− Pg (t)− Pγ (t)− Pe (t), (7)

where the derivations are given in Supplement 1, Section 1.
Assuming that any driving pulse �(t) can be applied,

the αe (t) required to produce a desired αg (t) is possible
provided there is sufficient probability Pu(t) at all times to

control the dynamics. In particular, an unphysical wavepacket
αg (t) will cause Pu(t), which is calculated through proba-
bility conservation, to drop below zero at some time during
the process. Therefore, a physical solution should satisfy
Pu(t)≥ 0, 0≤ t ≤ T, with the optimal solution having
Pu(tmax)= 0 for some time tmax during the process (see [18,30]
for previous uses of this condition). This condition is trouble-
some to impose analytically as it applies a separate constraint
for every time during photon production. Instead, we demand
that no probability remains in the initial or excited state at the
end of the process (Pu(T)+ Pe (T)= 0), which can be simply
enforced. This “upper bound constraint” is less restrictive than
the true constraint in the sense that any dynamics satisfying
the true constraint has output probability less than or equal to
some dynamics satisfying the upper bound constraint. This can
be seen by noting that a solution satisfying the true constraint
must satisfy Pu(T)+ Pe (T)≥ 0, where the inequality can
be converted to the equality of the upper bound constraint by
uniformly increasing the scale ofαg , and therefore increasing the
output probability. Solutions derived under the upper bound
constraints therefore constitute upper bounds to the optimum
photon extraction probabilities, and will be denoted with a
superscript (U).

The constraint Pu(T)+ Pe (T)= 0 can be rewritten as

1= P (U)
κ (T)+ P (U)

g (T)+ P (U)
γ (T), (8)

as the five probabilities must always sum to unity. This yields a
final output probability:

P (U)
κ (T)=

1

1+m
,

m =
P (U)

g (T)+ P (U)
γ (T)

P (U)
κ (T)

≡
F
G
, (9)

where m is a scalar determined by the shape of the photon
wavepacket and F and G are functionals of αg introduced for
notational convenience.

As seen from Eq. (9), the optimum output probability occurs
when m is minimized. To minimize m, assume that αg changes
by δαg , causing a change in F (G) of δF (δG). The condition
that m is an extremum gives δF /δG = F /G . Now define a
shape functional,

Sq = P (U)
g (T)+ P (U)

γ (T)− q P (U)
κ (T)= F − q G, (10)

for a general scalar q . Extrema of Sq satisfy δF /δG = q .
Therefore, the procedure to find extrema of m with respect
to changes in the photon shape αg is a two-stage process:
first, find the extrema of Sq for all q and second, check that
q = F /G =m. In other words, stationary solutions must satisfy

δSq = 0,

q =
F
G
≡m (11)

simultaneously, and the optimum solution is that with the
smallest q . To satisfy the first condition of Eq. (11), we find
stationary Sq according to

https://doi.org/10.6084/m9.figshare.25921171
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Sq =

∫ T

0
Lq dt,

Lq =

(
γ κ2

g 2
− qκ

)
αgα

∗

g +

(
1+

2γ κ

g 2

)
α̇gα

∗

g +
γ

g 2
α̇g α̇

∗

g + c.c.,

(12)

where c.c. is a shorthand for complex conjugate, and the
“effective Lagrangian” Lq has been written explicitly using
Eq. (7). Using the Euler-Lagrange equations to minimize this
functional,

∂Lq

∂αg
=

d
dt

(
∂Lq

∂α̇g

)
, (13)

produces a differential equation,

α̈g + κ
2(2Cq − 1)αg = 0, (14)

for the wavefunction of the cavity mode. This equation has two
types of solutions. If q < 1/(2C), the solutions are hyperbolic
functions, whereas in the opposite case, they are trigonometric
functions. It is shown in Supplement 1, Section 2 [and could
also be inferred directly from Eq. (1)] that the hyperbolic solu-
tion produces m ≥ 1/(2C), and therefore can never satisfy the
second constraint of Eq. (11). This means that the required
q ≥ 1/(2C), resulting in trigonometric solutions. Setting the
boundary condition that the cavity is vacant at the start of the
process gives

αg (t)= A sin(ωq t),

ω2
q = κ

2(2Cq − 1), (15)

where A is a free parameter that can be set to adjust the sum of
probabilities. The probabilities from Eq. (7) can be calculated
explicitly using this solution:

Pκ(t)= A2

(
κt −

κ

2ωq
sin(2ωq t)

)
,

Pg (t)= A2 sin2
(
ωq t

)
,

Pγ (t)=
Pκ(t)
2C

+ A2

{
1

C
sin2(ωq t)+

ω2
q

κ2

1

2C

(
κt +

κ

2ωq
sin(2ωq t)

)}
,

Pe (t)= A2

(
ωq

g
cos(ωq t)+

κ

g
sin(ωq t)

)2

.

(16)

Substituting these results at time T into the second condition
of Eq. (11) (q = F /G) results in

cos(2ωq T)−
2ωq

2κ(1+C)
sin(2ωq T)= 1. (17)

This equation has many solutions; however, when satisfied,
q = F /G =m, and therefore, to minimize m, the solution of
interest has the minimum q and thereforeωq . There is a solution
at ωq = π/T, corresponding to a cavity wavefunction αg (and
thus photon wavepacket) of sinusoidal amplitude, beginning at
zero and first returning to zero again at time T. However, there

is a better solution at a lower q , which retains a sinusoidal shape,
but with a slower temporal frequencyωq so that the photon does
not fully close by time T.

Thus the upper bound can be summarized:

1= cos(2ωm T)−
2ωm

2κ(1+C)
sin(2ωm T),

m =
1

2C

((ωm

κ

)2
+ 1

)
,

P (u)
κ =

1

1+m
, (18)

where m is taken as the smallest value to satisfy the first equation,
which must be solved numerically. The same optimization
could have been performed using Lagrange multipliers, but
in that approach it is less clear which stationary solution is the
global minimum and it is not emphasized so strongly that the
optimization performed optimizes the photon shape.

The upper bound is an output optimized under the condition
that the populations remaining in the cavity Pg , emitted sponta-
neously Pγ , and decayed through the cavity Pκ sum to unity at
time T. This is less restrictive than the true condition that these
probabilities, in addition to the probability in the excited state
Pe , reach unity at some point in the process. We obtain a lower
bound to the output probability P (l)

κ by assuming the photon
retains the same amplitude profile, but reduced in scale to satisfy
the true probability constraint. This is a lower bound because
the photon shape has not been optimized for the true constraint.

A potential objection against the validity of these sinusoidal
solutions is that the initial occupation of the excited state |e , 0〉
is non-zero, whereas the problem stipulates that the system is
prepared in state |u, 0〉. However, provided arbitrary driving is
possible, probability can be transferred infinitely quickly from
|u, 0〉 to |e , 0〉 at the beginning of the process. This means that
the lower bound photon solution can be produced from an
initial state of |u, 0〉 in a time only infinitesimally longer that T,
and therefore the bounds apply unchanged in the case that the
excited state is initially vacant. Indeed the ability to set a non-
zero occupation of |e , 0〉 at time t = 0 is advantageous because
it means that the effect of arbitrarily strong driving at the initial
time can be captured without requiring these troublesome
dynamics be modelled explicitly.

Finally, it is worth noting that, while the bounds have been
derived for a 3-system, they are applicable to a wider class
of systems. This is because the level structure through which
wavefunction amplitude is delivered to the excited state is not
relevant provided it does not restrict the possible αe (t). In
particular, as mentioned in Section 2, a recent paper [43] has
suggested the use of two excited states to reduce photon indis-
tinguishability due to temporal mixing. Provided both of the
driving fields used in that scenario can realize arbitrary ampli-
tude profiles such that the occupation of the additional excited
state is always negligible, a very similar derivation to the above
can be made for those systems. This finds identical bounds to the
3 system, which extends to finite time the equivalent adiabatic
result described in that paper.

The upper and lower bounds described in this section can
be readily calculated, but before those results are presented in
Section 4, the numerical method will be developed.

https://doi.org/10.6084/m9.figshare.25921171
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3. NUMERICAL METHOD FOR GENERALIZED
3-SYSTEMS

A. Defining the System

The results presented in Section 2.B set useful bounds on the
limits of performance for 3-systems, but there are benefits to
a more flexible numeric approach. First, while we know that
the true limit to performance for the 3-system lies between
the upper and lower bounds found in Section 2.B, we do not
know where between these bounds the limit lies. Second, real
emitter level structures often contain additional decay chan-
nels near-resonant with the cavity modes, which, in atom or
ion emitters, would typically be to alternative sublevels within
the fine or hyperfine structure. Often, these additional levels
must be included to make simulations consistent with experi-
ment [32,33,44], and thus would ideally feature in our model.
Finally, this extra structure can also be utilized to perform pro-
tocols that produce single photons entangled with their emitter
[13,45], meaning that the ability to model systems with addi-
tional ground states is essential to determine the limits of these
protocols.

The ideas presented in Section 2.B inspire a numerical
method presenting these benefits. The systems modelled again
contain a single initial state |u, 0〉 and excited state |e , 0〉, but
now potentially multiple distinct states with occupied cavity
modes |g j , 1 j 〉 for 1≤ j ≤ jM , where jM is the number of emit-
ter transitions to which the cavity couples. The states |g j , 1 j 〉,
henceforth known as “emitter-occupied cavity states,” are each
coupled to the excited state with respective coupling rate g j .
For atomic emitter-cavity applications using dipole-allowed
transitions there may be three emitter-occupied cavity states
for the three possible angular momentum transitions (π or
σ±). However, the number of emitter-occupied cavity states
is reduced if a decay is not allowed by atomic selection rules or
if the cavity axis lies along the magnetic field and the π decay
is not supported, or increased if multiple state manifolds are
close to resonance, for example, due to hyperfine structure. Note
that while the emitter-occupied cavity states |g j , 1 j 〉 should
be mutually orthogonal, neither the ground atomic states
{|g j 〉} nor occupied photon modes (whose single occupancy
states are denoted |1 j 〉) need be mutually orthogonal. For non-
birefringent cavities (where the two orthogonal polarization
modes associated with a spatial profile are degenerate), the most
natural choice is to use a mutually orthogonal basis of atomic
eigenstates {|g j 〉}, and define the corresponding photon states
|1 j 〉 through the cavity interaction. The level scheme is shown
in Fig. 2 for an example of two emitter-occupied cavity states.
The equations of motion are

|9(t)〉 = αu |u, 0〉 + αe |e , 0〉 +
jM∑
j=1

αg j |g j , 1 j 〉,

α̇u =−i1uαu −�
∗αe ,

α̇e =−(γ + i1e )αe +�αu +

jM∑
j=1

g jαg j ,

α̇g j =−(κ + i1g j )αg j − g jαe ∀ j 1≤ j ≤ jM, (19)

Fig. 2. The level scheme for the generalized 3-system coupled to
a cavity mode, here depicted with two emitter-occupied cavity states.
Compared to Fig. 1, the Hilbert space of the system now contains
an arbitrary number of emitter-occupied cavity states (indexed by j )
with cavity mode occupation |g j , 1 j 〉 coupled to the excited state with
respective coupling g j . The emitter-occupied cavity states are each
detuned from a nominal central energy level by detuning 1g j from
which the excited state is itself detuned by 1e when including the
cavity photon energyωcav.

where 1g j is the detuning of emitter-occupied cavity state
|g j , 1 j 〉 from an arbitrary reference level, which, for numerical
convenience, is best chosen near the center of the manifold of
emitter-occupied cavity states.

The difficulty with optimizing the outputs of this system is
that, given appropriate boundary conditions, specifying an out-
put wavefunction [for example, αg1(t)] will intrinsically specify
all other αg j (t) as occupied cavity states couple only to one
excited state |e , 0〉. This interdependence is not straightforward
to treat in the time domain as it involves both wavefunction
terms and their time derivatives.

Instead, the wavefunction coefficients αg j (t) can be specified
as a sum,

αg j (t)=
1
√

Tb

∑
n

C ( j )
n e iωn t ,

ωn =
2π

Tb
n, (20)

of Fourier coefficients C ( j )
n across a time domain of length Tb ,

which, as the photon wavefunctions start at zero amplitude but
are not necessarily zero at T, must exceed T. The time-domain
function αg j (t) can then be specified equivalently as a column
vector in Fourier space:

−→
αF

g j
= (. . . ,C ( j )

−1 ,C ( j )
0 ,C ( j )

1 ,C ( j )
2 , ...)T . (21)

The equations of motion Eq. (19) relate the nth Fourier coef-
ficient of the kth emitter-occupied cavity state |g k, 1k〉 to the
same coefficient of the jth emitter-occupied cavity state |g j , 1 j 〉

through

C (k)
n =

g k

g j

κ + i(ωn +1g j )

κ + i(ωn +1g k )
C ( j )

n ≡ f ( j→k)
n C ( j )

n . (22)

Thus any output probability can be maximized with only the

vector
−→
αF

g j
as a variable because the wavefunction components in

the remainder of the emitter-occupied cavity states may be auto-
matically encoded in the relations of Eq. (22)
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B. Calculating Probabilities

To maximize a desired output probability of the system, a selec-
tion of probabilities must be determined. These probabilities are

• Pκ j (t): the probability that a photon is emitted via
|g j , 1 j 〉 before time t ;

• Pγ (t): the probability of spontaneous emission before
time t ;

• Pg j (t): the probability that state |g j , 1 j 〉 is occupied at
time t ;

• Pe (t): the probability that |e , 0〉 is occupied at time t .

These probabilities can all be written as expectation values of

matrices P̂ζ with vector
−→
αF

g j
, such that

Pζ (t)=
−→
αF

g1
†
· P̂ζ (t) ·

−→
αF

g1
, (23)

for generic probability Pζ . Derivations of these matrices are pre-
sented in Supplement 1, Section 3, resulting in

P̂κ j n′,n
(t)= 2κ( f (1→ j )

n′ )
∗

V̂n′,n(t) f (1→ j )
n ,

P̂g j n′,n
(t)= ( f (1→ j )

n′ )∗(exp {i(ωn −ωn′)t}) f (1→ j )
n ,

P̂γn′,n
(t)=

2γ

g 2
1

[
κ2
+12

g1
+ iκ(ωn −ωn′)

+ 1g1(ωn +ωn′)+ωnωn′
]

V̂n′,n(t),

P̂en′,n
(t)=

1

g 2
1 Tb

[
κ2
+12

g1
+ iκ (ωn −ωn′)

+ 1g1 (ωn +ωn′)+ωnωn′
]

exp {i(ωn −ωn′)t} ,
(24)

where

V̂n′,n(t)=
2

Tb(ωn−ωn′)
sin
(

1
2 (ωn −ωn′) t

)
exp

(
1
2 i (ωn −ωn′) t

)
, ωn 6=ωn′ ,

t
Tb
, ωn =ωn′ .

}
(25)

C. Enforcing the Initial Vacancy of Emitter-Occupied
Cavity States

The solution must satisfy the constraint that there is no cavity
occupation at t = 0. Consider enforcing this condition on just
the j = 1 emitter-occupied cavity state:

0= αg1(0)=
1
√

Tb

∑
n

C (1)
n . (26)

In the Fourier domain, this constraint is encoded:

−→
φF

1

†

·
−→
αF

g1
= 0,(

−→
φF

1

†)
n
= 1. (27)

Equivalent conditions for the other emitter-occupied cavity
states lead to a set of jM conditions:

−→
φF

j

†

·
−→
αF

g1
= 0 ∀ j ,(

φF
j

†
)

n
= ( f (1→ j )

n )∗. (28)

The jM vectors
−→
φF

j define a j d
M-dimensional subspace in

which a valid solution vector
−→
αF

g1
should not lie, where j d

M ≤ jM

is the number of non-degenerate emitter-occupied cavity states.
We use Gram Schmidt orthogonalization to produce a basis
in which the final j d

M states span this subspace, along with a
matrix Û that transforms a state in the Fourier basis to this basis.
Additionally, we define the projector 5̂ j d

M
, which removes the

last j d
M components of a vector, and the reverse projector ˜̂5 j d

M
,

which takes a reduced vector and appends j d
M coefficients with

value zero. Any Fourier vector
−→
αF

g1
can now be projected to a

solution that satisfies the initial conditions
−→
αP

g1
= 5̂ j d

M
Û
−→
αF

g1
, (29)

where
−→
αP

g1
is expressed as coefficients in the “projected” basis, to

which the superscript P refers. Probability matrices

P̂ P
ζ = 5̂ j d

M
Û P̂ζ Û † ˜̂5 j d

M
(30)

are then written in the new projected basis where ζ is a generic
index that specifies the probability, with these projected matri-
ces again labelled by superscript P . Within the projected basis,
every state automatically satisfies the initial conditions, and
therefore these conditions need not be explicitly enforced
during optimization.

D. Normalizing Probabilities

The (projected) matrix for total probability not in the initial
state at time t ,

P̂ P
ū (t)=

jM∑
j=1

(
P̂ P
κ j
(t)+ P̂ P

g j
(t)
)
+ P̂ P

γ (t)+ P̂ P
e (t), (31)

can be calculated from other probability matrices. As in the
analysis of Section 2.B, a photon shape is possible if the total
probability not in the initial state remains below unity for all
times. We therefore define normalized probabilities as those
found when the photon amplitude is re-scaled to the maximum
that can satisfy this constraint. The normalized probability
corresponding to a generic probability Pζ (t) is
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P N
ζ (t)=

−→
αP

g1

†
· P̂ P

ζ (t) ·
−→
αP

g1

−→
αP

g1

†
· P̂ P

ū (tmax) ·
−→
αP

g1

, (32)

where 0≤ tmax ≤ T is the time for which [
−→
αP

g1
†
· P̂ P

ū (tmax) ·
−→
αP

g1
]

is maximized. This expression automatically normalizes proba-
bilities such that the sum of all calculated probabilities remains
less than or equal to unity for the photon production process.
Thus, when using normalized probabilities, the magnitude of

the photon vector
−→
αP

g1
has no significance.

E. Optimizing Probabilities

To optimize probabilities, we use an iterative approach.
Consider optimizing a generic product of probabilities

V =
lM∏
l=1

P N
ζl
(tl ), (33)

where lM is the order of the probability product, ζl specifies the
probability of the term in the product labelled by l , and tl is the
time at which the probability should be evaluated. In general,
a sum of such products can be desired, but this is just a trivial
extension. Each cycle of an iterative procedure begins with the

current solution vector
−→
αP

g1
. This vector is modified by adding a

small correction:

δ
−→
αP

g1
= ε

[( lM∑
l=1

P̂ P
ζl
(tl ) ·
−→
αP

g1

)
− lM P̂ P

ū (tmax) ·
−→
αP

g1

]
, (34)

where ε is set to a randomly chosen positive small number at
each iteration to prevent the optimization stalling and tmax is

evaluated every iteration. This additional vector δ
−→
αP

g1
lies along

the gradient of V with respect to the projected solution vector
−→
αP

g1
under the assumption that tmax does not change.

F. Applicability to Experiments

The method presented in this section finds the output
wavepacket that maximizes a desired probability; however, this
might not be the best practical solution for two main reasons.
First, physically realizing the optimum output requires arbitrary
control over the driving field, including effectively instanta-
neous transfers of pulses at the start of, and potentially during,
the process (the method to calculate the driving pulse from a
solution for αg1(t) is given in Supplement 1, Section 4). In real
experiments, the possible drive pulses are typically restricted, for
example, by the available drive power or modulator slew rates.
It is much simpler to include these restrictions in optimal con-
trol approaches that optimize the driving parameters directly.
Therefore, a sequential procedure first using our approach to
find the performance limits fundamental to the emitter-cavity
system followed by optimal control to find a realizable drive
solution with performance close to these limits may be most
effective. Second, the usefulness of photon wavepackets for
a given application is often not solely a question of their total
probability. For example, for applications involving photon

interference, the wavepackets would ideally offer low sensitivity
to inevitable pathlength differences [46] through reasonably
stable intensity and phase profiles, a criterion that is not triv-
ial to satisfy [47]. Therefore a more general notion of photon
desirability might be required. If these additional factors can be
encoded as probability products, it may be possible to perform
that optimization within our framework, but again, a two-stage
approach whose first step uses our method to understand the
system limits may be more generally applicable.

G. Role of Detunings

Finally, it should be noted that, at no point during the opti-
mization, here or for the analytical approach in Section 2.B,
did the detunings1e and1u feature. Therefore, the optimized
wavepacket and probability are independent of their values.
For1u , this is expected, because its value is only nominal as any
change to its value could be compensated for by the arbitrary
drive pulse. However,1e is a physical variable, so the conclusion
that the optimum performance of these systems is unaffected by
its value is not obvious, but this conclusion has been found in the
adiabatic regime for photon generation [16] and storage [38],
and for the generation of Gaussian wavepackets [30]. As in these
cases, the driving pulse to produce the optimum performance
does depend on 1e , even though the photon wavepacket and
output probability does not.

4. RESULTS

In this section, we will use the analytic and numeric methods
developed in Sections 2.B and 3, respectively, to understand
the limits of photon extraction in different scenarios. First,
we will look at the 3-system to evaluate the finite-time limits
of photon extraction, the photon wavepackets that saturate
these limits, and the scale of the benefits in decreased photon
duration bestowed by these optimized wavepackets. Then, we
focus on systems with more than one emitter-occupied cavity
state, demonstrating probability maximization of different
outputs, before performing a case study on how ground-state
energy separation limits the success rates of systems designed for
remote entanglement. Details on how numerical parameters
such as the number of Fourier basis states were chosen are given
in Supplement 1, Section 5.

A. Optimum Output of 3-Systems in Finite Time

As mentioned in Section 2.A, the optimum output from a
3-system, P (a)

κ [Eq. (1)], strictly applies only in infinite time.
However, recent work studying Gaussian wavepackets [30], in
agreement with the numerical findings of [38], indicates that
output close to P (a)

κ is achieved provided the photon timescale
(T in our notation) is much greater than the “critical time”:

tcrit =max

(
κ

g 2
,

1

κ

)
. (35)

This expression indicates two regimes for the ratio of g to κ ,
with a boundary between them at g = κ .

An alternative to trying to drive a photon on timescale T
is to instantly excite the emitter to |e , 0〉 at t = 0 and wait for
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the excitation to transfer to the cavity mode and leak out to the
collection. This technique produces photons quickly, but does
so at an infinite-time probability,

P (e )
κ =

κ

κ + γ
P (a)
κ , (36)

which is below the adiabatic limit [48]. The notions of tcrit and
P (e )
κ highlight the trade-off that practical applications must bal-

ance between the rate of photon production 1/T and the extrac-
tion probability Pκ(t). We use our analytic and numerical meth-
ods to find the limits of this trade-off.

We examine these limits in Fig. 3 for three example systems
with cooperativity C = 1, but with the ratio of κ to g chosen
to sample the two regimes of tcrit [Eq. (35)] and the boundary
between them. Examining first the comparison for differ-
ent drive techniques over a range of times [Column (i)], the
numerical result lies between the upper and lower bounds to

the maximized photon extraction, which converge to P (a)
κ for

T� tcrit as expected. The upper and lower bounds are quite
distinct for the “bad cavity” [high κ , row (a)], but take similar
values for g ≥ κ . An instant excitation approach generally per-
forms well at short times, but the output saturates at P (e )

κ , which
is particularly limiting for the parameters of row (c). The linear
drive curves provide an example of “simple” driving procedures,
indicating how, particularly for the parameters of rows (a) and
(b), optimization of the output wavepacket shape can lead to
much faster photon production at a given efficiency. However,
the performance of linear drives does tend to the maximum
output probability in the adiabatic limit T� tcrit, consistent
with previous conclusions that photon extraction [16] and
absorption [36] probabilities reach this limit in infinite time
regardless of wavepacket shape.

Columns (ii) and (iii) show the system occupations and
photon wavepackets, respectively, for case studies taking

Fig. 3. Comparison of the numerically optimized performance and analytical performance bounds of3-systems with C = 1 and row (a) κ = 10g ,
row (b) κ = g , and row (c) κ = g /10. (Column i) Output probabilities achieved through a range of methods against extraction time T. The blue and
black lines mark the upper and lower bounds for the maximised extraction probability found in Section 2.B, respectively. The red dashed line shows
the numerically optimized output. The green line shows the extracted probability for direct excitation to the excited state, with the green dotted line
marking the infinite-time extraction probability from direct excitation P (e )

κ [Eq. (36)]. The purple lines show the output for a series of drives with lin-
early increasing amplitude and1u = 0, where the rate of increase of drive amplitude is varied between different lines. The adiabatic extraction proba-
bility P (a)

κ [Eq. (1)] is marked by the dotted black line, and takes a value of 2/3 for all scenarios. The example time used for analyzing the system popu-
lations and photon wavepackets in (ii) and (iii) is T = 2.5/tcrit, and is marked by the gray vertical line. (Column ii) System populations for the numeri-
cally optimized solution for output time T = 2.5/tcrit. (Column iii) The probability flux of the output wavepackets for the numerically optimized case
(red) compared to the upper (black) and lower (blue) bounds.
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T = 2.5tcrit, respectively. Here we see that, in the case that
g � κ [row (c)], the optimized photon wavepacket has a very
similar shape to the upper and lower bounds. However, as κ
increases [row (b) and then (a)], the wavepacket shape deviates
significantly from the sinousoid form, instead exhibiting a sharp
rise followed by a prolonged exponential decay.

To probe the variation in optimum wavepacket shape, the
optimized wavepacket was calculated at T = 2.5/tcrit for a vari-
ety of κ : g ratios, with the results shown in Fig. 4. This shows
that, in the limit g � κ , the optimized wavepackets tend to a
single shape (when viewed in units normalized to tcrit). This
is because, for g > κ , Eq. (18) always predicts the same upper
bound in the normalized units, and the optimized wavepacket
is very similar to this upper bound. However, as κ/g increases,
there is a gradual transition in shape towards the limit κ� g ,
which features a fast rise followed by a prolonged exponential
decay. Profiles in the regime κ > g also feature much more
pronounced excited state occupations, which was also observed
in [30].

To understand why a significant excited state population
would distort the optimized wavepacket from the sinusoi-
dal shape, it is important to remember that this shape was
derived from the upper bound probability condition that
Pκ(T)+ Pγ (T)+ Pg (T)= 1. The optimized wavepacket
will only deviate from the upper bound shape if the true prob-
ability condition (that Pκ(t)+ Pγ (t)+ Pg (t)+ Pe (t)=
1− Pu(t)= 1 for some time t during the process) is not equiv-
alent to the upper bound condition. This requires either that
Pe (T) 6= 0, or that Pu(t) reaches zero at an intermediate time,
which, given that Pκ(t) and Pγ (t) are monotonically increas-
ing, would imply significant Pe or Pg at this intermediate
time.

Observing the presented data again, we can broadly classify
the observed profiles into two sets. For one set [Fig. 4(e)], Pu(t)
tends smoothly towards zero at T and the output approximates
a sinusoidal profile. In the other set [Figs. 4(b)–4(d)], Pu(t)
reaches zero at an intermediate time, and the output wavepacket
features an exponential tail from this time onwards, indicated
by the shape of the blue panes below the line in Fig. 4(a). Thus,

for these cases, the probability condition is not a single restric-
tion at the final time, but a continuous restriction for all later
times. Therefore, in the g � κ limit of the data, the dynamics
are constrained by probabilities at the final time T, and are
consequently dominated by the monotonically increasing prob-
abilities Pκ and Pγ . However, in the κ� g limit, the dynamics
are constrained by the probability sum condition over a period
of times, meaning that the undulating probabilities Pg and Pe

play an important role, and the shape derived in Section 2.B is
not a good approximation.

In summary then, the upper bound is easily calculable, but
is not physically realizable, either because Pe (T) is not exactly
zero as assumed in the probability condition Eq. (8), or the total
probability not in the initial state would have to exceed unity
at some point during the process. The lower bound is physi-
cally realizable, but it has an assumed, rather than optimum,
shape. The numeric method can find the wavepacket shape that
optimizes the output probability (which must lie between the
bounds); however, the wavepacket shape can be substantially
different from that of the bounds. This optimum wavepacket
shape can provide considerably reduced photon durations com-
pared to simple linear drives operating at the same extraction
efficiency, but the magnitude of this improvement depends
strongly of the cavity parameter regime.

Finally, we note that the slight high-frequency noise seen in
certain profiles [most obviously in Fig. 3(bii)] is likely a numeri-
cal artifact rather than a genuine feature. See Supplement 1,
Section 5 for more details.

B. Optimization of Probability Metrics

The numeric method of Section 3 is able to model emitter
systems with multiple emitter-occupied cavity states, which
is a common scenario for atomic emitters. Figure 5 shows
how a single emitter-cavity system can be used to optimize
different outputs. Here we take a system with γ = 0.6κ and
three emitter-occupied cavity states, such that g 1 =

√
1/3κ ,

g 2 =−
√

4/15κ , and g 3 =
√

1/30κ , which matches the exam-
ple of an atomic D 5

2
→ P 3

2
transition, where the initial state has

angular momentum projection m J = 3/2 along the magnetic

Fig. 4. Comparison of optimized cavity output profile as a function of 3-system parameters. (a) A collection of optimized output wavepackets
found as the ratio of g to κ is varied, with γ adjusted to maintain the cooperativity C = 1, and the photon collection time set to 2.5tcrit for all data. The
first time at which Pu(t) is reduced below 1% is marked by the beginning of the blue pane under each curve. Profiles taken as case studies are drawn
with red lines, and are labelled in blue according to their corresponding probability panel. (b)–(e) System probabilities as a function of time for the
corresponding output profiles labelled in (a).
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field and the cavity is oriented orthogonal to the magnetic field.
The energy splitting between emitter-occupied cavity states is
5κ . The driving of this system was optimized for both strong
single photon emission paths independently, Pκ1 for row (a)
and Pκ2 for row (b), and the two-component decay probability
Pκ1 Pκ2 , pertinent for protocols where emitter-photon corre-
lations are desired, in row (c). Note that this two-component
probability product is not a two-photon event, but a maximi-
zation of a product of two probabilities related to single photon
emission. It should also be noted that, for the example cavity
geometry and transitions, the photon-occupied states |11〉 and
|13〉 would be identical (and |12〉 would have the orthogonal
polarization). This means that, while it is possible to distinguish
Pκ1 and Pκ3 with an emitter measurement (justifying that they
are distinct probabilities), it is not possible to distinguish them
by photonic measurement. This must be understood when
applying these methods to schemes where emitter measurement
is not possible, for example, remote entanglement schemes
[13] where emitter measurement would destroy the intended
entanglement.

The results show that the same cavity system can be used to
produce relatively pure single photon emission through either
a strong decay channel, or a binary emitter-photon correlated
state through changing the driving pulse. However, while the
single probability-optimized scenarios [rows (a) and (b)] pro-
duce smooth wavepackets, the probability product-optimized
wavepacket [row (c)] features significant oscillations. If the
system were driven with the typical bichromatic drive [49],
then these oscillations would be attributed to off-resonant
coupling between one drive tone and the “opposite” transition.
However, our optimization does not assume a specific form

of driving pulse. We therefore see that it is not possible to pro-
duce non-undulating wavepackets without compromising on
output probability. Finally, it should be noted that the method
can optimize more general products or sums of probabilities, a
faculty that may be used to discourage unwanted processes that
contribute to error in a target application.

C. Case Study: Effect of Ground-State Splitting on
Remote Entanglement

Finally, we demonstrate the use of the numeric methods for
understanding how emitter structure limits the performance
of quantum protocols, taking two-photon, probabilistic,
polarization-encoded remote entanglement as a case study. In
these schemes, two separate emitter-cavity systems are driven
such that they both produce a single photon whose polarization
qubit is entangled with the final emitter state. For concreteness,
we will imagine a system where |g 1〉 and |g 2〉 form the emitter
qubit, and |11〉 and |12〉 have orthogonal polarizations so that
the output wavepackets collectively constitute a polarization
qubit. The photon wavepackets from the two systems are routed
to opposite input ports of a non-polarizing beamsplitter and
then subjected to polarization-resolved measurement. Upon
certain outcomes of this measurement, the emitters are entan-
gled (see [13,31] for more details of the scheme). Assuming
two identical emitter-cavity systems are used, the probability of
remote entanglement success in a given trial is proportional to
Pκ1 Pκ2 [50]. Even state-of-the-art free space [51] and cavity-
enhanced [41] experimental implementations have success
probability well below unity, leading to remote entanglement far
slower than local operations, inhibiting the protocol’s current
usefulness. Given the importance of success probability and rate,

Fig. 5. Example photon wavepackets (Column i) and system populations (Column ii) that maximize different probabilities for an emitter cavity
system with g 1 =

√
1/3κ , g 2 =−

√
4/15κ , g 3 =

√
1/30κ , and γ = 0.6κ over a time of T = 5/κ . The energy splitting between |g 1, 11〉 and |g 2, 12〉,

and |g 2, 12〉 and |g 3, 13〉 is 5κ . Row (a) shows the case where the maximized quantity is the single photon emission probability Pκ1 , row (b) Pκ2 , and
row (c) the two-probability product Pκ1 Pκ2 .
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it is crucial to understand exactly how different experimental
parameters affect these quantities.

In an experimental scenario, the two pertinent emitter-
occupied cavity states are not typically degenerate, with the
splitting potentially chosen for reasons not directly related to
the entanglement generation process. It is therefore of interest
to know what impact a splitting (denoted1Z as it would often
constitute a Zeeman splitting in atom or ion applications)
would have on the remote entanglement success probability.

We thus maximize Pκ1 Pκ2 as a function of emitter-occupied
cavity state splitting1Z and output time T for the system inves-
tigated in Section 4.B, but where the third emitter-occupied
cavity state has been removed for simplicity. The results are
shown in Fig. 6, which shows broadly that an increasing emitter-
occupied cavity state splitting reduces the optimized remote
entanglement success probability, with a high probability
plateau for small1Z , a low plateau for large1Z , and a transition
in between.

Simple pictures for the limiting cases of photon extraction in
limited time with1Z = 0 and1Z→∞ can be used to under-
stand the dependence of Pκ1 Pκ2 on 1Z , with derivations for
these limits given in Supplement 1, Section 6. First, in the case
of 1Z = 0, the two decay channels have no differential phase
evolution, so the excited state actually couples directly to a single
level with rate g eff =

√
g 2

1 + g 2
2 . This results in the infinite-time

probability product

P (a ,10)
κ1κ2

=
g 2

1 g 2
2

g 4
eff

(
g 2

eff

g 2
eff + κγ

)2

. (37)

Second, in the case that the Zeeman splitting becomes large,
the production processes for the two components should be
spectrally decoupled. This leads to an optimized Pκ1 Pκ2 of

P (a ,1∞)
κ1κ2

=
2C12C2

4(2C1 + 1)(2C2 + 1)
. (38)

The agreement of the data with Eqs. (37) and (38) is shown in
panel (b) of Fig. 6. The data does not extend to infinite extrac-
tion time T, or to infinite state splitting 1Z , but the trend
broadly matches the values expected from these simple models.

While the conclusions of Fig. 6 are not themselves surprising,
it is worth emphasizing the key advantage of the optimization
method: that it is driving-independent. This means that we
attribute the reduction in success probability with 1Z directly
to the increase in 1Z , without any doubt about whether we
chose unsuitable driving pulses for some parameters. The same
procedure could be applied to understand the dependence upon
system parameters of the success probability of other quantum
information protocols.

5. CONCLUSIONS

We have developed an analytic method to establish upper and
lower bounds to the probability of photon extraction from a
3-system in finite time, which lie within the previously known
infinite-time bounds. We then extended these ideas to establish
a numeric method to find the limits to photon extraction, which
also applies to generalizations of the3-system to include multi-
ple cavity decays. This method can optimize general probability
products, and, in-keeping with recent developments for related
problems [28,30], does so without optimizing the driving pulse
explicitly. The combination of these approaches allows us to
calculate the limits to the compromise between photon extrac-
tion probability and rate, and investigate optimized output
wavepackets and corresponding quantum dynamics.

For the canonical3-system, we find the photon wavepacket
that maximizes finite-time photon extraction probability
for given system parameters, observing that its shape lies
on a spectrum between the exponential decay characteris-
tic of fast excitation and the sinusoidal profile of the analytic
bounds, and that this wavepacket can result in significantly
faster high-efficiency photon extraction compared to sim-
ple driving approaches. In the case of generalized 3-systems,
which are often more accurate models of real experiments,
we observed how to determine the limits of a single system,
taken to model a trapped ion-cavity system, in producing sin-
gle photons of specified polarization, or an emitter photon
correlated state. We then demonstrated how our methods can
be used to derive driving-independent conclusions about the
impact of system parameters, exemplified by the reduction

Fig. 6. Investigation of the effect of ground-state splitting1Z on the two-component probability Pκ1 Pκ2 optimized for time T for a system with
g 1 =
√

1/3κ , g 2 =−
√

4/15κ , and γ = 0.6κ . (a) The optimized Pκ1 Pκ2 as a function of T and1Z . (b) The optimized output probability as a func-
tion of 1Z for just the longest time shown (T = 12.5/κ) compared to the expected infinite-time output for zero-splitting case P (a ,10)

κ1κ2
and for the

high-splitting case P (a ,1∞)
κ1κ2

.
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of remote entanglement success probability with increasing
emitter-occupied cavity state splitting.

We believe that the methods presented in this manuscript
will aid researchers in realizing high-rate high-efficiency cavity-
based sources for single photons and emitter-photon entangled
states across the development cycle. First, the methods deter-
mine the performance limits of existing hardware and how
they can be reached. This specifically accounts for the finite
protocol duration and extra emitter structure seen in experi-
mental attempts to reach these limits [21]. Second, the approach
can reveal how the parameters of future systems will affect
their performance, enabling the targeting of designs towards
high-performance use, which would again allow for the photon
production time to be properly included in place of infinite-time
results [52]. Finally, the advantages of our driving-independent
approach are complementary to that of optimal control, and
the combination of the two may help identify robust driving
schemes with near-ideal performance in practical systems.
Additionally, we also reiterate that photon emission is deeply
related to photon absorption, and our results in the context
of photon emission experiments have direct analogues for
the applications requiring finite-time absorption of photon
wavepackets.
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