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1. CALCULATING PROBABILITY FUNCTIONS FOR ANALYTIC METHOD

The probabilities used in Sec. 2.2 of the main text can be expressed in terms of the integral notation
of Eq. (6), restated below for clarity

I(nm)(t) =
∫ t

0

( n·
αg

m·
αg

∗
+

m·
αg

n·
αg

∗)
dt, (S1)

where n· is a shorthand for n copies of · indicating n time derivatives.
Firstly, the probability Pκ that there has been decay from the cavity mode is given by

Pκ(t) = 2κ
∫ t

0

∣∣αg(t′)
∣∣2 dt′,

= κ
∫ t

0
αg(t′)α∗g(t

′) + α∗g(t
′)αg(t′) dt′,

= κ I(00)(t),

(S2)

where the final line follows from the definition of the notation in Eq. (S1).
The probability that the state is |g, 1⟩ can be written similarly through

Pg(t) =
∣∣αg(t)

∣∣2,

=
∫ t

0

d
dt′
(∣∣αg(t′)

∣∣2) dt′,

=
∫ t

0
αg(t′)α̇g

∗(t′) + α̇g(t′)α∗g(t
′)dt′,

= I(10)(t),

(S3)

where the second line follows from the first because the state |g, 1⟩ is unoccupied at the start of
the process.

The probability Pγ(t) of spontaneous emission before time t and Pe(t) of occupation of state
|e, 0⟩ at time t are derived in a similar fashion, using Eq. (5) from the main text, which is restated
below:

αe = − 1
g
(
καg + α̇g

)
. (S4)

This relation may be substituted into the integral form for the spontaneous emission probability,

Pγ(t) = 2γ
∫ t

0

∣∣αe(t′)
∣∣2 dt′, (S5)

to yield

Pγ(t) =
γκ2

g2 I(00)(t) +
2γκ

g2 I(10)(t) +
γ

g2 I(11)(t). (S6)

Finally, the probability Pe(t) that state |e, 0⟩ is occupied at time t can be derived

Pe(t) = |αe(t)|2,

=
∫ t

0

d
dt′
(∣∣αe(t′)

∣∣2) dt′,+|αe(0)|2

=
∫ t

0

∣∣∣∣− 1
g
(
καg(t′) + α̇g(t′)

)∣∣∣∣2 + ∣∣∣∣− 1
g
(
καg(0) + α̇g(0)

)∣∣∣∣2
=

κ2

g2 I(10)(t) +
κ

g2 I(20)(t) +
κ

g2 I(11)(t) +
1
g2 I(21)(t) +

1
g2

∣∣α̇g(0)
∣∣2,

(S7)



where the third line follows from the second through the substitution of Eq. (S4), and the fourth
from the third through the integral definitions Eq. (S1) and the initial condition αg(0) = 0.

The results of this appendix are summarised

Pκ(t) = κ I(00)(t),

Pg(t) = I(10)(t),

Pγ(t) =
γκ2

g2 I(00)(t) +
2γκ

g2 I(10)(t) +
γ

g2 I(11)(t),

Pe(t) =
κ2

g2 I(10)(t) +
κ

g2 I(20)(t) +
κ

g2 I(11)(t) +
1
g2 I(21)(t) +

1
g2

∣∣α̇g(0)
∣∣2,

Pu(t) = 1 − Pκ(t) + Pg(t) + Pγ(t) + Pe(t).

(S8)

2. THE ANALYTIC UPPER BOUND DOES NOT HAVE A HYPERBOLIC SOLUTION

The wavefunction amplitude αg of the occupied cavity state for the upper bound of the emission
probability satisfies Eq. (14) of the main text, which is written below for clarity

α̈g + κ2 (2Cq − 1) αg = 0, (S9)

where κ is the cavity amplitude decay rate, C is the cooperativity, and q is a positive scalar. On
the assumption that 2Cq − 1 < 0, the solutions to Eq. (S9) for αg(t) are hyperbolic. The boundary
condition that αg(0) = 0 means that the form must be a hyperbolic sine. Specifically, αg satisfies

αg = A sinh (st) ,

s =
√

κ2 (1 − 2Cq),
(S10)

where A is an undetermined amplitude. Substituting this wavefunction form into the equation
for the system probabilities (Eq. (7) from the main text) leads to

Pκ(t) = A2κ

(
1
2s

sinh (2st)− t
)

,

Pg(t) = A2 sinh2 (st) ,

Pγ(t) = A2
{

γκ2

g2

(
1
2s

sinh (2st)− t
)
+

2γκ

g2 sinh2 (st) +
γs2

g2

(
1
2s

sinh (2st) + t
)}

.
(S11)

The second condition satisfied by the upper bound is that q = m where m = (Pg(T) +
Pγ(T))/Pκ(T) (Eq. (9) from the main text). Evaluating m with the probabilities from Eq. (S11)
gives

m =
1

2C
+

(
2γ
g2 + 1

)
sinh2 (sT) + γs2

κg2

(
1
2s sinh (2sT) + T

)
1
2s sinh (2sT)− T

. (S12)

The positivity of each term of the right hand side quotient for T > 0 implies that m ≥ 1/2C. This
means that q cannot equal m and be consistent with our assumption that 2Cq − 1 < 0. Therefore
the hyperbolic case is never a solution for the upper bound wavepacket.

3. CALCULATING PROBABILITY MATRICES FOR THE NUMERIC METHOD

All probabilities Pζ(t) used in the optimisation can be expressed as expectation values of matrices

P̂ζ(t) for Fourier vector
#  »

αF
g1

. The simplest example is Pκ1 (t):
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Pκ1 (t) = 2κ
∫ t

0
α∗g1

(t′)αg1 (t
′) dt′,

=
2κ

Tb

∫ t

0
∑
n,n′

C(1)∗
n′ C(1)

n ei(ωn−ωn′ )t
′
dt′,

= ∑
n,n′

C(1∗)
n′ (2κV̂n′ ,n(t))C

(1)
n ,

=
#  »

αF
g1

† · 2κV̂ ·
#  »

αF
g1

,

V̂n′ ,n(t) =
1
Tb

∫ t

0
ei(ωn−ωn′ )t

′
dt′.

(S13)

This can be generalised to other emission probabilities by using the interdependence of the
wavefunctions through

Pκj = ∑
n,n′

C(j)∗
n′ (2κV̂n′ ,n)C

(j)
n ,

=
#  »

αF
g1

† ·
(

2κF̂(j)†V̂(t)F̂(j)
)
·

#  »

αF
g1

,

F̂(j)
n′ ,n = f (1→j)

n δn′ ,n,

(S14)

where δ is the Kronecker delta, leading to the component form

P̂κj n′ ,n(t) = 2κ( f (1→j)
n′ )∗V̂n′ ,n(t) f (1→j)

n . (S15)

For the cavity probabilities, the probability

Pgj (t) = |αgj (t)|2,

= ∑
n,n′

C(1)∗
n′

[
( f (1→j)

n )∗(exp {i(ωn − ωn′ )t}) f (1→j)
n

]
C(1)

n ,

=
#  »

αF
g1

† · P̂gj ·
#  »

αF
g1

,

P̂gj n′ ,n(t) = ( f (1→j)
n′ )∗(exp {i(ωn − ωn′ )t}) f (1→j)

n ,

(S16)

is most easily expressed through a matrix given in component form.
The calculation for the spontaneous emission probability requires the expression for the excited

state component (taken from Eq. (19) of the main text)

αe(t) = − κ + i∆g1

g1
αg1 −

1
g1

˙αg1 . (S17)

From this, the spontaneous emission probability

Pγ(t) = 2γ
∫ t

0
α∗e (t

′)αe(t′) dt′,

=
#  »

αF
g1

† · P̂γ(t) ·
#  »

αF
g1

,

P̂γn′ ,n(t) =
2γ

g2
1

[
κ2 + ∆2

g1
+ iκ(ωn − ωn′ ) + ∆g1 (ωn + ωn′ ) + ωnωn′

]
V̂n′ ,n(t),

(S18)

can be expressed. The matrix for probability Pe(t) = |αe(t)|2 in the excited state at time t can also
be written in a similar component form

P̂en′ ,n(t) =
1

g2
1Tb

[
κ2 + ∆2

g1
+ iκ (ωn − ωn′ ) + ∆g1 (ωn + ωn′ ) + ωnωn′

]
exp {i(ωn − ωn′ )t} .

(S19)
In order to calculate results numerically, the V̂n′ ,n(t) can be evaluated exactly

V̂n′ ,n(t) =

2
Tb (ωn − ωn′ )

sin
(

1
2
(ωn − ωn′ ) t

)
exp

(
1
2

i (ωn − ωn′ ) t
)

, ωn ̸= ωn′ ,

t
Tb

, ωn = ωn′ .

 (S20)
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The matrices derived in this section can be summarised in component notation:

P̂κj n′ ,n(t) = 2κ( f (1→j)
n′ )∗V̂n′ ,n(t) f (1→j)

n ,

P̂gj n′ ,n(t) = ( f (1→j)
n′ )∗(exp {i(ωn − ωn′ )t}) f (1→j)

n ,

P̂γn′ ,n(t) =
2γ

g2
1

[
κ2 + ∆2

g1
+ iκ(ωn − ωn′ ) + ∆g1 (ωn + ωn′ ) + ωnωn′

]
V̂n′ ,n(t),

P̂en′ ,n(t) =
1

g2
1Tb

[
κ2 + ∆2

g1
+ iκ (ωn − ωn′ ) + ∆g1 (ωn + ωn′ ) + ωnωn′

]
exp {i(ωn − ωn′ )t} .

(S21)

4. CALCULATING THE REQUIRED DRIVING PULSE

Given a photon wavepacket αg1 (t) for the numeric method (or equivalently αg(t) for the analytic
method), the driving to produce this wavepacket can be calculated. In practice, the driving should
be calculated for αg1 (t) = (1− χ)αS

g1
(t), where αS

g1
(t) is the ideal solution and χ is a small number.

This is because the ideal solution is on the bounds of physical possibility, and therefore the driving
required to produce it will tend to infinite strength at the end of the process [1]. Reducing the
overall amplitude slightly removes this tendency. This is in analogy with an aspect of photon
absorption where a photon wavepacket cannot be absorbed optimally by an emitter-cavity system
without a singularity in the control drive at the initial time [2].

Taking the equations of motion (Eq. (19) from the main text), all variables except the complex

driving amplitude Ω and the obtained cavity output functions
{

αgj (t)
}

can be eliminated to
produce a differential equation

Ω̇

κ̃γ̃αg1 + (κ̃ + γ̃) ˙αg1 + ¨αg1 + g1

jM

∑
j=1

(gjαgj )

 =

Ω[i∆uκ̃γ̃αg1 + (κ̃γ̃ + i∆u(κ̃ + γ̃)) ˙αg1

+ (κ̃ + γ̃ + i∆u) ¨αg1 +
...

αg1 + g1

jM

∑
j=1

gj(i∆uαgj + ˙αgj )]

+ |Ω|2Ω(κ̃αg1 + ˙αg1 )

(S22)

where γ̃ ≡ γ + i∆e and κ̃ ≡ κ + i∆g1 . These equations should be integrated from the initial
driving amplitude

Ω(θ0)(0, θ0) = − (κ̃ + γ̃) ˙αg1(0) + ¨αg1(0)

g1α
(θ0)
u (0)

,

α
(θ0)
u (0) =

√
1 − |αe(0)|2eiθ0 ,

αe(0) = − 1
g1

˙αg1 (0),

(S23)

where the superscript θ0 indicates that there is freedom in the initial condition. The shape of the
cavity output may dictate that there is population in |e, 0⟩ at time t = 0, meaning the initial state
is a superposition of |u, 0⟩ and |e, 0⟩. The phase of this superposition is θ0, and does not affect
whether the photon can be produced, but does affect the drive Ω that produces it.

As discussed in Sec. 2.2 of the main text, it is still possible to achieve the performance predicted
from a system initialised to |u, 0⟩, but the driving now consists of two parts. The first is an
instantaneous (or in practice very fast) excitation that sets up the initial state of Eq. (S23), and the
second is specified by Eq. (S22). The relative phase of the two parts of the drive determines θ0, so
must be precisely controlled.

It is important to note, however, that the conditions imposed have not restricted the driving in
any way. As such, the drive may contain spikes of intensity where very fast changes in excited
state amplitude are required to produce the optimum photon. These spikes can persist even when
the target amplitude is reduced from the theoretical maximum amplitude.

The driving pulse derivative equation (Eq. S22) is very sensitive to any numerical artefacts in

the cavity output functions
{

αgj (t)
}

. This means that the numerically optimised outputs from
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the main text can produce driving pulses that have very large swings in amplitude required
to produce these artefacts. It is possible to reduce such issues by removing high frequency

components from the optimised photon vector
#  »

αF
g1

, but at the cost of distorting the wavepacket.
Once the full quantum dynamics have been calculated, the driving wavepacket can be verified

by checking that it is consistent with a rearranged version of Eq. (19) from the main text

Ω =

(
1

αu

)α̇e + γ̃αe −
jM

∑
j=1

gjαgj

 . (S24)

This equation could also be used to predict the driving in the Λ-system case with ∆e = ∆u =
θ0 = 0. In that situation, the equations of motion (Eq. (4) in the main text) are completely real, so
wavefunction component amplitudes αu, αe, and αg can be calculated directly from probabilities
with the appropriate choice of sign. This special method for calculating the driving for particular
Λ-systems is less sensitive to numerical artefacts than Eq. (S22), but the impact of artefacts is
still significant for our data. Therefore, to meaningfully calculate the driving for wavepackets
optimised by the numeric procedure would likely require very smooth wavepackets that have
been optimised extensively to remove any defects and very high time resolution.

To give a sense of the pulses required, it is possible to calculate the pulses using the lower
bound wavepacket. This wavepacket has an analytically defined shape, and there are therefore
no numerical artefacts. Examples of the driving required to produce the lower bounds for the
case studies of Fig. 3 in the main text were calculated using Eq. S22 and are shown in Fig. S1. This
shows how the driving strength required diverges as the probability limits are approached, and
that the driving profile required varies considerably with system parameters. Finally, we see that
the zeroes of the drive are a feature of the wavepacket shape and not its amplitude (as can be
seen simply from Eq. S24).
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Fig. S1. Driving amplitude required to produce the lower bound wavepacket for the case stud-
ies presented in Fig. 3 in the main text, in each case with ∆e = ∆u = θ0 = 0. Due to this choice,
the driving amplitude Ω is always real in this figure, although for general parameters values
Ω is a complex function of time. The plots a), b), and c) correspond to rows a), b), and c) in
columns ii) and iii) of Fig. 3 of the main text respectively. The driven photon wavepacket is
scaled in amplitude by a factor (1 − χ) compared to the true lower bound, meaning that limχ→0
produces the lower bound solution and is therefore on the edge of physical possibility.

5. SELECTING NUMERICAL PARAMETERS FOR SIMULATIONS

A. Number of Fourier basis states

The numerical simulations optimise a desired probability by adjusting the vector
#  »

αF
g1

of amplitudes
in a Fourier expansion of αg1 (t). The number of Fourier coefficients used must be sufficient for
the situation or the reported optimum will deviate from the true optimum. While there is no
precise rule for the number of states that must be used, there are general principles to guide this
choice. These can be formulated as conditions on the maximum basis frequency ωmax.
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Firstly, the basis must be suitable large to describe the photon’s temporal profile. This requires

ωmax ≫ 2π

τ
, (S25)

where τ is the timescale of the photon. This timescale is at most T (the total emission time of
the photon), but for wavepackets with fast rises like the exponential decay solutions (Such as
Fig. 3aiii), τ may be considerably shorter than T and the requisite basis size correspondingly
bigger.

Secondly, the wavepacket profile αg1 (t) does not necessarily have to go to zero at time T, but,
due to the initial condition at t = 0 and the periodic temporal behaviour imposed by the Fourier
series, must go to zero at the basis time Tb. This means that the basis must be sufficiently large to
model the amplitude as it goes to zero between times T and Tb, even if the amplitude in this time
window is not physical. This imposes the condition

ωmax ≫ 2π

Tb − T
. (S26)

Thirdly, with emitter-occupied cavity states detuned from the nominal zero frequency by
∆gj , the Fourier expansion is likely to contain components at these frequencies. If the largest

magnitude detuning in
{

∆gj

}
is ∆max, this imposes the condition

ωmax > ∆max. (S27)

Finally, to ensure that all emitter-occupied cavity states are initially unoccupied, a total of
jdM constraints are applied to the solution, where jdM is the number of non-degenerate emitter-
occupied cavity states (see Sec. 3.3 in the main text). This means that the basis size must be
reduced by jdM, and therefore must be bigger than jdM to begin.

In practice the number of frequency states used for the investigation was typically around
50-100 positive frequencies (with an equal number of negative frequencies and a zero frequency
component). However, this number varied significantly depending on the system parameters,
with the wavepackets featuring prominent exponential decays generally requiring more compo-
nents. An important limitation is imposed by the detuning condition Eq. S27 which means that a
large number of basis states is required to model systems with large emitter-occupied cavity state
energy splittings and long photon production times.

B. Number of normalisation times
The method of ensuring that the probabilities during photon production do not violate probability
conservation is described in Sec. 3.4 of the main text. This requires the time tmax at which the
probability not contained in the initial state is maximised. To calculate this time, the unnormalised
total probability matrix P̂P

u (t) was calculated at a discrete series of times throughout the photon
production process. At each step during the optimisation process of Eq. (34) in the main text,
the maximum time tmax is calculated by finding the total probability matrix with the largest
expectation.

A consequence of this method is that, if too few discrete times are chosen for evaluating the
total probability, it is possible to violate probability conservation between discrete times, provided
probability conservation is satisfied at discrete times. This is likely to be the reason behind the
high frequency noise seen in some figures (such as 3bii) or 4d) in the main text), which becomes
stronger and lower frequency if the number of discrete times is reduced. The disadvantge to
using a large number of discrete times is that the optimisation process takes considerably longer.

6. LIMITING CASES FOR THE REMOTE ENTANGLEMENT CASE STUDY

For the remote entanglement case study (Sec. 4.3 of the main text) we maximise the probability
product Pκ1 Pκ2 obtained in finite time from a generalised Λ-system with two emitter-occupied
cavity states. The cavity coupling of one emitter-occupied cavity state is g1, and the other g2,
where the corresponding occupied cavity modes, |11⟩ and |12⟩, are orthogonally-polarised. The
energy splitting ∆Z between the two emitter-occupied cavity states (|g1, 11⟩ and |g2, 12⟩) and the
time of photon production T are varied. Simple models can be used to predict the infinite time
outputs in the cases that ∆Z = 0 and ∆Z → ∞.
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Firstly, in the case of ∆Z = 0, the excited state actually couples directly to a single level

|geff, 1eff⟩ =
g1 |g1, 11⟩+ g2 |g2, 12⟩√

g2
1 + g2

2

, (S28)

with an effective coupling geff =
√

g2
1 + g2

2. This means that the adiabatic limit to the photon
emission probability is

P(a,∆0)
κeff =

2Ceff
2Ceff + 1

,

Ceff =
g2

eff
2κγ

.
(S29)

The ratio of this emitted probability labelled Pκ1 to the probability labelled Pκ2 is g2
1 : g2

2. The
reported success probability in infinite time is therefore

P(a,∆0)
κ1κ2 =

g2
1g2

2
g4

eff

(
P(a,∆0)

κeff

)2
, (S30)

which may be rearranged to

P(a,∆0)
κ1κ2 =

g2
1g2

2
g4

eff

(
g2

eff
g2

eff + κγ

)2

. (S31)

Secondly, in the case that ∆Z becomes large, the production processes for the two components
are spectrally decoupled. The decay indexed by j = {1, 2} then has a separate cooperativity
Cj = g2

j /2κγ and therefore an infinite-time ratio of cavity emission to spontaneous emission of
2Cj : 1. Note that this argument attributes some of the spontaneous emission probability Pγ

to emitter-occupied cavity state 1 and some to emitter-occupied cavity state 2. Though there is
no experimental distinction between the spontaneous decay attributed to the two indices, this
labelling functions to account for probabilities. If the total probability of either spontaneous
emission attributed to decay channel 1 or emitted through emitter-occupied cavity state 1 is f1,
the emitted probability through emitter-occupied cavity state 1 is

Pκ1 = f1
2C1

2C1 + 1
, (S32)

and equivalently for emitter-occupied cavity state 2 the cavity emission probability is

Pκ2 = f2
2C2

2C2 + 1
, (S33)

where f2 is the sum of cavity emission and spontaneous emission attributed to emitter-occupied
cavity state 2. As there is no final occupation of the excited state or the emitter-occupied cavity
states in the adiabatic regime, for an optimised output the sum of cavity and spontaneous emission
outputs should be unity. This means that f1 + f2 = 1. It is simple to see that the optimum values
of f1 and f2 are both 1/2. This leads to an optimised success probability

P(a,∆∞)
κ1κ2 =

2C12C2
4(2C1 + 1)(2C2 + 1)

. (S34)

REFERENCES

1. G. S. Vasilev, D. Ljunggren, and A. Kuhn, “Single photons made-to-measure,” New J. Phys.
12, 063024 (2010).

2. J. Dilley, P. Nisbet-Jones, B. W. Shore, and A. Kuhn, “Single-photon absorption in coupled
atom-cavity systems,” Phys. Rev. A 85, 023834 (2012).

7


	Calculating probability functions for analytic method
	The analytic upper bound does not have a hyperbolic solution
	Calculating probability matrices for the numeric method
	Calculating the required driving pulse
	Selecting numerical parameters for simulations
	Number of Fourier basis states
	Number of normalisation times

	Limiting cases for the remote entanglement case study

