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Chapter 1

Structure of the report

This report constitutes the theory manual of the WANDS software in the most

current version. Since the software is bound to change over time, this report is also

updated from time to time. For this reason, the chapters are separately dated. Each

time a chapter is updated a new version of the contents list in chapter 1, Introduction

is made. Terms with specific meaning for the context of WANDS are indicated by

being printed in italics. A separate user manual for WANDS is also produced as an

ISVR TM.

The first chapter of this report considers the way boundary conditions and (closely

related) coupling conditions in FE and BE models are implemented.

The second chapter explains how the different coupling models are implemented in

WANDS.

The third chapter briefly summarizes some of the most important subroutines in

WANDS.

The following chapters details the theory for the different methods. This includes

the theory of plate strip waveguide finite elements, solid waveguide finite elements

and boundary elements. These chapters also give a few validation examples for the

separate methods.
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Chapter 2

Introduction

This report considers numerical methods for systems with uniform geometry and

properties along one axis, as they are implemented in WANDS (WAve Number

Domain Software). WANDS, as the name suggest, uses a fourier transform along

the axis with uniform properties to describe this dependence in the wavenumber

domain. The dependence with respect to the cross-sectional geometry is described

with Finite Elements (FE) and/or Boundary Elements (BE). The FE models in the

current version of WANDS describe structural models of plates, solids and beams,

whereas the BE models describe fluids. Each type of FE or BE domain is termed a

“sub-model”. In addition, the coupling conditions implemented to join the different

FE or BE models are also referred to as sub-models or coupling sub-models. Currently

there is only one solution method implemented in WANDS. However, the output

from WANDS gives sub-model matrices that can be loaded into numerical program

packages such as MATLAB where other solution methods can be implemented.

WANDS is programmed with the intention that more domains and solution meth-

ods should be easily implemented in future versions. For instance this could be Biot

equations for porous media and coupling between fluid FE and fluid BE models.

In addition, there are several different solution methods that may be implemented.

Some of these can be found in the introduction to reference [1], although that sum-

mary does not consider the implementation of BE models.

The possibility to add more sub-models and solution methods to WANDS means
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that a thorough understanding of both the theory and the structure of WANDS

is needed for anyone who wants to expand the software. This report is primarily

written for that person. Hence, this report can be considered largely as a theory

manual for WANDS. Also for users of WANDS in its current version, a thorough

understanding of the theory is very useful. As an example inspections of the system

matrix, and the blockmatrices in it, is a very good way to find any errors in the

input data file as well as in the WANDS code itself.

To handle a large number of sub-models in a consistent way, the coupling between

the sub-models must also be handled in a consistent way. Here, each coupling be-

tween two different sub-models is seen as another type of sub-model in its own right.

With the currently implemented coupling conditions there are therefore currently

17 different sub-models,(when beams are included), although some of the coupling

sub-models are theoretically very simple. In addition beams may be coupled to

either plate or solid FE submodels, these beam models are sometimes referred to

as submodels of their own. Although, from a programming point of view, they are

incorporated into the respective FE model.

2.1 Background

Propagation of mechanical waves in complex shaped systems are difficult to analyse

in a single consistent way. The underlying problem is that the wavelengths get

shorter as the frequencies increase.

At low frequencies the wavelengths are much longer than the length of any geometri-

cal dimension or irregularity in the system, and simple analytical wave-propagation

models can be used to give highly accurate solutions.

For problems at slightly higher frequencies the dimensions of the irregularities are of

the same magnitude as the wavelength. For such problems numerical methods such

as the conventional Finite Element method or the conventional Boundary Element

method give reasonable computation times and can be used successfully.

At high frequencies the wavelength become much shorter than the geometrical di-

mensions and high-frequency methods considering reflecting waves (ray-tracing) or
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energy methods such as Statistical Energy Analysis (SEA) can be used,. Although

there is still work to be done for improving these methods, they generally provide

small equation systems and hence fast calculations.

Methods appropriate to the mid-frequencies have proved harder to find. This is

largely because the low frequency methods become very costly in terms of the com-

putations needed, whereas the high frequency models are too crude since they do

not represent a good physical representation of the problem. Increasingly progress is

being made for solving mid frequency problems. New numerical approaches based on

using waves to approximate the field are applied and computing power is increased.

The above categorization of low, mid and high frequency methods is well understood

and research effort is applied accordingly. However, an extra concern arises from

the fact that many analyses to be tackled are of systems with very different dimen-

sions along different axes. The dimensions then fall into different frequency range

categories. For such systems it can be advantageous to employ special methods for

solving for the wave propagation problem presented by the large dimensions while

retaining the detailed numerical solution in the other domains. The main driver for

developing such methods is that the computational effort required when applying

conventional methods in all three dimensions would be to costly. However, at least

for the methods considered here, the physical insight of the solutions that can be

gained by treating problems in terms of wave-propagation is also attractive.

In the current work numerical methods for problems which have uniform properties

along one axis are treated. Although these methods differ slightly, they all consider

wave-propagation along the axis of uniform properties. Thus they are here termed

wave-domain methods. There are numerous examples of systems for which these

methods are advantageous, i.e. aluminium extrusions, pipes and ducts.

One large field is railway related applications, such as rails, extruded aluminium

panels, tunnels, noise barriers and several bridges. Detection of cracks in rails, for

which lowly damped high-order waves are used, is one application currently (2007)

investigated. Noise from embedded rails is another application where wave-domain

methods have been applied, since unlike conventional rails, 2D methods are not

suitable, see [2]. Long extruded aluminium panels are common in the design of

railway cars, and although they have advantages for crashworthiness and weight,
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they are poor sound insulators, see [3]. Analyses of ground vibration from tunnels

are very costly in terms of the computer power needed and full scale models are

obviously not possible, [4]. Yet another ongoing railway related research activity is

railway bridges.

The need for the wave-approach in railway applications is the reason for deriving

the WANDS software, although there are of course numerous other applications.

2.2 Current list of sub-models

The following sub-models are currently included in WANDS.

• Plate FE models (FEP models)

• Beams coupled to FEP models

• Solid FE models (FES models)

• Beams coupled to FES models

• Coupling between plate FE and solid FE models (FEP-FES models)

• Fluid FE models (FEF models)

• Coupling between plate FE and fluid FE (FEP-FEF models)

• Coupling between solid FE and fluid FE (FES-FEF models)

• Fluid BE models (BEF models)

• Coupling between fluid boundary element models (BEF-BEF models)

• Coupling between plate FE and fluid BE models (FEP-BEF models)

• Coupling between solid FE and fluid BE models (FES-BEF models)

• Solid BE models (BES models)

• Coupling between solid boundary element models (BES-BES models)

• Coupling between plate FE and fluid BE models (FEP-BES models)
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• Coupling between solid FE and fluid BE models (FES-BEF models)

• Coupling between solid BE and fluid BE models (BES-BEF models)

The abbreviations above refer to names that are used internally in WANDS. As is

seen in Chapter 14, this structuring into different models is somewhat arbitrary,

since it does not always directly represent the mathematical representation of the

problem. The beam models may thus be seen as optional features for the plate and

solid FE models respectively. Hence beam models can not exist alone in WANDS

and they do not need any special coupling models associated with them.

Also, the fluid BE formulation give rise to both a relation between the pressure

and velocity due to the geometry of the fluid domain and a set of equations for

the prescribed boundary conditions. Hence the fluid BE models might be seen as

consisting of two separate models. Nevertheless the list given above gives an idea

of how submodels are used both in this manual and as the interface to the user of

WANDS.
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Chapter 3

General description of boundary

and coupling conditions in FE

and BE models

3.1 Introduction

In WANDS several different finite element (FE) and boundary element (BE) models

are coupled together. The models to be coupled as well as the coupling conditions

it self are each called a ”sub-model”. If all existing FE/BE and coupling sub-model

types are counted there are no less than 17 different sub-model types that must be

handled. In future versions the number of sub-models may become even greater as

more sub-model types are added to WANDS. In addition to this there are several

matrices for each sub-model and an arbitrary number of different sub-models of the

same type.

In this report FE models that consist of either plate or solid finite elements are

considered. In addition beam finite elements may be connected to either of these

model types. The beam equations just adds extra stiffnesses and masses to the

plate and solid FE models. Thus, the stiffnesses and masses of the beam equations

are simply added into the corresponding matrices of the plate and solid FE models

respectively.
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However, for other sub-model types the implementation is more complicated. There

is a need to group these sub-model types and treat them in a generalized way in

order to make their implementation more straightforward. Here the approach used

in WANDS is described.

The first section in this chapter introduces the theory implemented in the derivation

of the sub-models. The theory described here is given with very few details since the

aim is to give an easy-to-follow overview. The theoretical details for each sub-model

type are detailed throughout this report.

The second section of this chapter concentrates on how the sub-models are assembled

in WANDS. This section is important to understand how WANDS can be amended

with more sub-model types and/or solution methods.

3.2 Theory

In the this section, the theories for implementation of boundary conditions in FE

and BE models are briefly outlined. The derivation of the BE models is based

on ideas from the derivation of BE models for fluid equations. These ideas should

however be applicable to other domain types with small alterations. Since the theory

of coupling between different models is closely related to boundary conditions, the

coupling models are treated simultaneously.

A most practical way to derive the coupling between different types of models is

to use the same starting point for all models. Throughout this manual Hamilton’s

principle is used as this starting point. For linear systems and harmonic motion this

principle may be stated as,

δ(U − T )− δW = 0 (3.1)

Here, δ should be interpreted as, ”the first variation of”. U is the potential energy

in the system, which for the systems here is the same as the strain energy, T is the

kinetic energy and W is the virtual work on the system which includes both external

forces as well as internal forces that give rise to losses in the system.
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In addition to equation (3.1), essential or Dirichlet boundary conditions must also

be fulfilled. For structures these boundary conditions impose constraints on the

displacements. A second set of boundary conditions referred to as natural or Neuman

boundary conditions are implicitly included in equation (3.1). For structures such

boundary conditions prescribes the relationship between displacements and forces

on the boundary.

By using expressions for the potential energy kinetic energy and the virtual work in

equation (3.1) it can be taken one step further. The resulting expression is referred

to as the weak form of the equation of motion. Here, this is a bilinear functional

describing the system.

FE-model boundary conditions and coupling

In WANDS the FE model is derived by an approximation the weak form of the

equation of motion for the domain. With this formulation the natural (or Neuman)

boundary conditions never explicitly enter the equations.

However, essential (Dirichlet) boundary conditions must also be fulfilled. For a

structural model these boundary conditions give constraints for the displacements.

These constraints generally also exert forces onto the domain which must considered

in addition to the essential boundary conditions. The coupling between plate and

solid FE models is treated as a special case of such constraints.

BE-model boundary conditions

As the name suggest, a BE model is an approximation of an equation on the bound-

ary. At least for fluids,this boundary equation can be derived from equation (3.1)

by Greens formula, which can be seen as a 2 or 3D equivalence to integration by

parts. Applying Greens formula splits an integral over a 2D domain into two new

integrals. One is still over the 2D (or 3D) domain but the other is a line (or 2D)

integral over the boundary.

The virtual work made on the boundary from external forces is added to the second

integral. This then describes the natural (or Neuman) boundary condition. Thus,

it prescribes relations between forces and displacements, (or pressures and particle

velocities for fluids).
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The integrand in the first integral contains the left hand side of the homogeneous

wave equation for the domain.

In the BE formulation the first integral is satisfied exactly whereas the the solution

appearing from the second integral is approximated with piecewise polynomials.

Since the virtual work on the boundary is included in this integral there are no ad-

ditional terms from external forces appearing in the boundary element formulation.

The essential (Dirichlet) boundary conditions on the boundary must also be ful-

filled. This gives a second set of equations. To enable more general cases the

essential boundary conditions can be replaced with impedance (or Robin) boundary

conditions.

For coupling between two fluid BE models the essential boundary condition is simply

that the displacements and pressures along the shared boundary must be the same

in both models.

FE-BE coupling conditions

Subsequently couplings between FE and BE models are considered. These couplings

are closely related to how boundary conditions in the respective models are treated.

The equality of displacements on the boundary can be treated by stating their

equality as extra equations in the system. As stated before, the Neuman boundary

conditions are not needed in the BE formulation, whereas they are included as extra

forces in the FE model. Thus equations that project pressures from the boundary

of a fluid BE model onto the boundary of a solid FE model must be added.

3.2.1 FE model and boundary conditions

The equations of motion for a system may be derived from Hamilton’s principle. For

harmonic motion the variational or weak form of these equations may be written,

∫

Ω
L1(δu, u)dΩ−

∫

Ω
δufdΩ = 0 . (3.2)

where L1 is a bilinear functional of δu and u derived from expressions of the potential

and kinetic energies. The second integral in equation (3.2) describes the virtual work

on the model.
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Examples of this equation can be found in Chapter 5, 4 and 8. In addition there

are also essential boundary conditions associated with the model. These yield con-

straints on the boundary which may be written as,

L2(u) = 0 on the boundary Γ . (3.3)

where L2(u) is a linear combination of the displacements u on the boundary. The

Finite Element model derived for WANDS approximates equation (3.2) with piece-

wise polynomials in each element. This procedure is detailed in Chapter 5, 4 and 8.

The result may be written as,

Du = f , (3.4)

where, D is a dynamic stiffness matrix. u is a complex valued vector containing

the displacements at the nodes of the FE-mesh and f is the corresponding vector

describing the external forces. For the solution method implemented in WANDS,

D = D(κ, ω) where κ is the wavenumber along the waveguide and ω is the frequency.

For the simple cases of a restrained boundary node n, such that,

un = 0 (3.5)

the implementation of equation (3.3) is simplified by taking out the n:th row and

the n:th column of D in equation (3.4). The reasons for this simple approach can be

found in reference [5](Ch. 2.10). As for most FE softwares, WAFER and WANDS

uses this approach for simple restrained degrees of freedom.

However this simple approach is not valid for all constraints. For a more general

case, equation (3.3) is approximated at the nodes by,

Cu− q = 0 (3.6)

where, q is a set of imposed displacements and C is a matrix projecting the sought

solution vector u onto q.
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These constraints generally introduce forces acting on the constrained degrees of

freedom. These forces keep the structure together so that the prescribed constraints

are fulfilled. They can be included into equation (3.2) as a term in the virtual work.

The forces due to the displacements in equation (3.6) can be shown to be,

fc = −CTu (3.7)

Hence, by including this virtual work, equation (3.4) becomes,

Du + CTfc = f (3.8)

In addition equation (3.6) must be included into the system. The system thus

becomes,


 D CT

C 0





 u

−fc


 =


 f

q


 (3.9)

A more mathematical approach to derive the same equation is to multiply equation

(3.6) with Lagrange multipliers λ and add them to the energy that is to be minimized

in be the FE formulation, see [5] (chapter 9.2) or Chapter 7 here. This yields,

1
2
uTDu− uT + λT(Cu− q) = 0 (3.10)

After partial derivatives, first with respect to u and subsequently with respect to λ,

equation (3.9) is obtained with λ = −fc.

In WANDS this method to implement constraints is used when solid and plate FE

models are to be coupled. Then we have,

D =


 Dplate 0

0 Dsolid


 CT =


 CT

sp1

CT
sp2


 and q = 0 (3.11)

and the coupled plate-FE to solid-FE system is written,
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


Dplate 0 Csp1
T

0 Dsolid Csp2
T

Csp1 Csp2 0







uplate

usolid

−fc


 =




fplate

fsolid

0


 (3.12)

It is worth mentioning that there are other methods to implement constraints in FE

models, as discussed in Chapter 7 and reference [5] (Chapter 9).

3.2.2 BE model and boundary conditions

For a Boundary Element (BE) model the starting point is once again equations (3.2)

and (3.3). There is however an important difference in that the boundary element

method only takes account of forces on the boundary, so that the second integral

in equation (3.2) now is taken over the boundary Γ instead of the whole domain Ω.

Integration by parts (or for 2- and 3-D cases applying Greens formula) on equation

(3.2) yields,

∫

Ω
uL3(δu)dΩ−

∫

Γ
L4(δu, u, f)dΓ = 0 (3.13)

Before considering how this equation can be approximated with a BE model, it is

useful to discuss it first. By comparing equations (3.2) and (3.13) it can be noted

that L4 includes a term coming from the integration by parts and also the virtual

work on the boundary. Also, since the two integrals are over different domains (e.g.

a fluid volume and its boundary) the sought solution is one that results from both

integrals being zero.

For a non-trivial solution we require that the first integral is fulfilled for any u,

hence,

L3(δu) = 0 in all of Ω (3.14)

Equation (3.14) is the known as the strong form of the waveequation and it is the

most commonly known form of the differential equation equation, e.g. for a rod

equation with constant cross-section (3.14) is written as,

20



∂2δv

∂x2
− ω2

c2
L

δv = 0 , (3.15)

where cL is the longitudinal wave–speed along the rods x− coordinate and δv is the

virtual displacement along the rod. Equations (3.14) and (3.15) are homogeneous

since no forces acting inside of the domain Ω are permissible here.

If the second integral in equation (3.13) is set to zero the resulting equation is

referred to as the boundary integral equation. Thus,

∫

Γ
L4(δu, u, f)dΓ = 0 (3.16)

For a fluid in a 2D region, the boundary integral equation takes the form,

∫

Γ
Ψ

∂δΨ∗

∂n
− δΨ∗∂Ψ

∂n
dΓ = 0 (3.17)

where, Ψ is the velocity potential, n is the unit normal out of the fluid domain. See

10.

Equations (3.16) and (3.17) are variational forms of the Neuman or natural boundary

conditions. These type of boundary conditions relates derivatives of u to forces on

the boundary and as already mentioned L4 includes external forces on the boundary.

Hence, equation (3.13) is fulfilled if both of equations (3.14) and (3.16) are fulfilled.

These two equations are normally the starting point for the derivation of the direct

BE method implemented in WANDS (see e.g. [6])

BE formulation

In the BE formulation a number of solutions u = G (Green functions) of equation

(3.14) corresponding to sources at the node points on the boundary are used to

span the solution of the system. The Greens function for each source point yields

one equation in the equation system. The solutions on the boundary for δu are

then approximated with piecewise polynomials known as boundary elements. These

polynomials approximate both the primary variable, δu, and its derivative(s).
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To make the system complete the essential boundary conditions L2(u) = 0 from

equation (3.3) must also be included, these may either be Dirichlet boundary con-

ditions or Robin boundary conditions. The first of these merely states the displace-

ments on the boundary, whereas the second type gives a local impedance, relating

the displacement to the forces on the surface at each node.

In some BE models the essential boundary conditions are used to eliminate either δu

or ∂δu
∂n before the system matrix equation is assembled, thus making the size of the

system N x N rather than 2N x 2N (where, for a fluid, N is the number of nodes).

Since the essential boundary conditions may consist of coupling to other models,

this approach has not been used in WANDS.

So far in this section the description has been applicable to either fluid or solid

elastic boundary elements. The following applies specifically to fluid BE models as

detailed in Chapter 10

For an uncoupled fluid boundary element model we have,


 µH −µG

Cb −iωρCa







∂Ψ
∂n

Ψ


 =




pin

iωρ

cc


 (3.18)

Here, Ψ is a velocity potential and the first row represents the BE approximation

with possible incoming waves pin on the right hand side. Further details of this

system are explained in Chapter 10.

It is worth noting that there is a fundamental difference between the pressure pin in

equation (3.18) and the forces f introduced in equation (3.4). In equation (3.4) the

forces are the total forces on the boundary, i.e. the forces corresponding to those

that might be measured with suitable force transducer on a real system. Contrary,

the pin vector represents the pressure from incoming waves only, i.e. if these are

impinging on a flat hard surface the true pressure on the surface (as hypothetically

measured) would be 2pin.

The second row in equation (3.18) represents the essential boundary conditions.

Since these are local for each node, the matrices Ca and Cb each only have at most

one entry on each row. A moving boundary may be represented by the vector cc.
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WANDS does not require a specific number of boundary conditions, so the size of

Ca and Cb is only determined by the number of boundary conditions specified by

the user. This is because other boundary conditions may be added by the couplings

to other models.

The coupling between two adjacent domains is treated similarly to the boundary

conditions. Consider two adjacent fluid domains with all nodes shared between

them. The H and G matrices for the respective model (subscripted 1 and 2) will

represent the BE models. However the coupling between them will now represent the

essential boundary conditions and thus replace the Ca and Cb matrices in equation

(3.18). The total system will be,




µH1 −µG2 0 0

0 0 µH2 −µG2

A1 A2 B1 B2







∂Ψ1
∂n

Ψ1

∂Ψ2
∂n

Ψ2




=




p1in

iωρ

0
p2in

iωρ

0




(3.19)

Normally the A and B matrices in equation (3.19) will only represent the fact that

the velocities and pressures on both boundaries are the same. Each matrix pair (A1

and A2 or B1 and B2 ) will then only have one non-zero entry on each row.

More complicated boundary conditions may be implemented, e.g. air-water coupling

on a rough sea. If a moving boundary is requested, the zero vectors on the right

hand side may also be replaced.

3.2.3 FE-BE coupling

The coupling between an FE model and a fluid BE model is explained here. As

shown previously, the FE model must include components acting on its boundary.

Here, these components will be due to the pressures in the BE model.

Contrary, in the BE model, there are no extra components for the first set of equa-

tions, which remain unaltered. However, the essential boundary conditions will

change. For the coupled system these are due to the requirement that displace-

ments on the boundary in the two models must be the same.
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The pressure (i.e. the forces) on the boundary is directly related to the velocity

potential, Ψ by, p = iωρµΨ. Hence the pressure of the BE model is also given by

piecewise polynomials (or boundary elements). For each element,

p = Np(ξ)Tp̂ (3.20)

where p̂ is the pressure at the nodes in the element and Np(ξ) are polynomials

defined along the element’s part of the boundary. Hence, an equivalent force will

depend on the size of the element.

In the FE model the complex conjugate of the virtual work is likewise given by

piecewise polynomials,

δu∗ = δuHNu(ξ) (3.21)

Thus, the virtual work on the FE model from the fluid BE domain on a shared piece

of boundary corresponding to one element is written,

δW =
∫

δu∗p ds = δuH

∫
Nu(ξ)Np(ξ)Ta dξ p (3.22)

where the integration is carried out over the width 2a of the boundary element. The

integrals over different elements results in element matrices that are assembled into

a system matrix C1. The FE model is modified to include the pressures from the

BE model, so that equation (3.4) becomes,

Du−C1p = f . (3.23)

The BE model seen in equation (3.18) is almost unchanged. However, the boundary

conditions on the second row in this equation will not include the boundary with

the FE model. Instead, the essential boundary conditions on the shared boundary

arise from the fact that the FE and the BE model have the same displacements.

This can be expressed as,

iωC2u− I2vn = 0 (3.24)
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where u is the vector of displacements of the FE model and vn is the normal velocity

of the boundary element model, which is related to ∂Ψ
∂n . If all of the boundary of the

BE model is shared with the FE model, the coupled FE-BE system will be,




µH −µG 0

0 −iωρµC1 D

−µI2 0 iωC2







∂Ψ
∂n

Ψ

u


 =




pin

fe

cc


 (3.25)

3.2.4 EXAMPLE: ROD

As an example consider the longitudinal vibrations in a rod.

With the inclusions of external virtual work, Hamiltons principle states that,

δ(
∫ t2

t1
U − T )− δW dt = 0 (3.26)

where U is the potential energy, T is the kinetic energy and δW is the virtual work

on the system. For the simple longitudinal motion the potential and kinetic energies

are given by,

U =
∫ t2

t1

∫ x2

x1

1
2
(EA)(

∂u

∂x
)2 dx dt (3.27)

and

T =
∫ t2

t1

∫ x2

x1

1
2
(Aρ)u̇2dx dt (3.28)

The virtual work from external forces may be written as,

δW =
∫ t2

t1

∫ x2

x1
δufdx dt (3.29)

There may also be losses that would be modelled as virtual work made by internal

forces. Here these losses are seen as an added imaginary part of the Young’s modulus

E.
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The · denotes time derivative. Note that these expressions are defined in the time

domain and that they are quadratic in u.

The variation means that a small perturbation is made such that one considers

U(u + δu)− U(u) instead of U(u) and similarly for T . This is essentially the same

as ∂
∂uU(u)δu.

Now, by extending the time intervall to ∓∞ and applying Parseval’s theorem, the

resulting expressions in the frequency domain may be written,

U =
∫ +∞

−∞

∫ x2

x1
(
∂δû

∂x
)∗(EA)(

∂û

∂x
) dx dω (3.30)

and

T =
∫ +∞

−∞

∫ x2

x1
(iωδû)∗(Aρ)(iωû)dx dω (3.31)

It is very important to note that there are several assumptions that make this

possible. Firstly it is assumed that the states of the system at t1 and t2 are irrelevant

for the time when the system is actually viewed. Secondly the coefficients ρA and

EA are time independent. This is the same as requiring the expressions U and T are

quadratic, this is the reason why the frequency domain expressions have essentially

the same form as the time domain expressions. It may also be noted that the

expressions in the frequency domain involve the complex conjugate of û. In the

time domain u is always real, so there the formal distincion between u and u∗ is

irrelevant. Due to the linearity of the system different frequencies may be viewed

independently.

If an infinite structure with constant material properties is to be considered, the

procedure that takes the time domain to the frequency domain, could also be applied

to take the x-domain to a wavenumber domain where different wavenumbers may

be viewed independently.

Here, however, the x-domain is considered to be finite. The equation from Hamiltons

principle then becomes,
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∫ +∞

−∞

∫ x2

x1
(
∂δû

∂x
)∗(EA)(

∂û

∂x
)− (iωδû)∗(Aρ)(iωû)− δf̂ û dx dω (3.32)

This is the weak form of the equation of motion. In addition to this equation the

displacements at x1 and x2 must be defined in some way. If only the displacements

u but not their derivatives are involved these are called the essential or Dirichlet

boundary conditions. If the impedance at the boundaries are given rather than a

fixed value this is called a Robin or impedance boundary condition. There are several

ways to solve the problem. One is to approximate û and δû with some functions

and then minimize the functional. The ńormal’ finite element approach is to chose

the approximation space as piecewice polynomials. If both δû and û use the same

approximation space, e.g. linear polynomials, this is equivalent to the Galerkin

method. For the integrand to have any meaning, the numerical integration must

converge, for the present example this will be true if piecewise linear polynomials

are used.

A different way to find a solution is to integrate the first term, i.e. the term derived

from the potential energy, in (3.32) by parts. This gives,

[
δû∗(EA)

∂û

∂x

]x2

x1

−
∫ x2

x1
δû∗(EA(

∂2û

∂x2
)dx + ω2(ρA)û)dx−

∫ x2

x1
δû∗f̂dx = 0 (3.33)

To fulfill equation 3.33 for any choice of δû∗, the integrand has to be zero, see e.g.

[7]. This means that,

(EA(
∂2û

∂x2
)dx + ω2(ρA)û) = f̂ (3.34)

This is the strong form of the equation of motion. Furthermore there may be point

forces at the boundaries, this then gives

(EA)
∂û

∂x
|x=x1 = f̂x = x1 (3.35)

at x = x1 and similarly at x = x2. These boundary conditions are the Neuman or

natural boundary conditions that must be fulfilled in addition to the essential or

impedance boundary conditions.
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By solving (3.34), exact wave solutions for the rod can be found. These solutions

are however not fully determined in that the amplitudes of the waves must be found.

By matching the essential and natural boundary conditions the complete solution

can be described. If relations between values at the boundary relating to each other

are expressed in a dynamic stiffness matrix, the method is known as the dynamic

stiffness method.

It should be noticed that the integration by parts leading to equation (3.33) can be

made for the adjoint system instead. Hence, in the absence of internal forces,

(EA(
∂2δû∗

∂x2
)dx + ω2(ρA)δû∗) = 0 (3.36)

and

[
û(EA)

∂δû

∂x

]x2

x1

−
[
δû∗f̂

]x2

x1
= 0 (3.37)

By substituting from (3.35) we have,

[
û(EA)

∂δû

∂x

]x2

x1

−
[
δû∗(EA)

∂û

∂x

]x2

x1

= 0 (3.38)

This is the reciprocity relation for the rod. It can be noticed that the reciprocity is

derived from the same boundary terms that give rise to the Neuman (or natural)

boundary conditions. By using the exact wavesolutions for δû∗ in the reciprocity

relations we get a relation between û and ∂û
∂x at the boundaries. The waves originat-

ing at x1 and travelling towards x2 give one relation and a second relation is found

by the wave in the opposite direction. If in addition the essential or impedance

boundary conditions are considered a fully determined system is found. This is the

principle behind the boundary element method. It got its name because it is the

values at the boundaries that is found.

Yet another method is to use the wave-solutions of the (3.34) as test(and trial) func-

tions in the (3.32) rather than the piecewise polynomials. This method is referred

to as the spectral finite element method.
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Since the boundary element method, the spectral finite element method and the dy-

namic stiffness method all use the wave solutions and essential boundary conditions,

they are bound to give the exact solution for the problem.

3.2.5 Summary

In WANDS there are essentially two different types of models. The first type com-

prise the FE and BE models, whereas the second type comprise the different coupling

or boundary condition models.

Coupling and boundary conditions of BE-models are included as extra equations in

a system matrix. These equations relate local pressures and displacements of the

boundary nodes.

Coupling and boundary conditions of FE-models also need similar equations to de-

scribe constraints of local displacements on the boundary. However, FE-models must

also include the forces due to these constraints.

3.3 Application

In this section main data structures used in the programming code of WANDS are

described. The most important subroutines are also briefly explained.

Finally the sparsity pattern of the system matrix for a simple example of mul-

tidomain coupling is considered and the block matrices are related to the previous

discussion.

3.3.1 Structures of sub-models

For each of the sub-models of a particular coupled model all the matrices needed

are calculated by a subroutine for that sub-model type. The system matrix is then

formed by writing all different sub model matrices into the system matrix. This is

done in the following order:

1. All BE-sub-models are written. Only the BE formulation is written here, the
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boundary conditions are written later. The matrices written are the H and G

matrices given in the previous chapter. Also possible pressure input fields are

written to the ”source” vector on the right hand side of the system equation.

2. For each plate model the dynamic stiffness matrix D is written. This matrix is

formed by adding the FE matrices, Ki and M, with frequency and wavenumber

coefficients. These have have in turn at this stage already been added with

beam FE equations. Also possible forces are written to the ”source” vector.

3. All dynamic stiffness matrices for solid FE models are written, also with pos-

sible beam equations added.

4. The boundary conditions of the fluid BE models are written. There are two

such matrices for each model, Ca and Cb.

5. The coupling conditions between adjacent fluid BE models are written. This

includes two different matrices one for each model. These matrices describe

the condition that both pressure and velocities must comply at the shared

boundary.

6. Coupling matrices between fluid BE models and plate FE models are written.

This includes three different matrices. One matrix that describes the forces on

the FE model from the fluid pressure and two matrices describing the condition

that the displacements of both models must be the same at the boundary.

7. Coupling matrices between fluid BE models and solid FE models are written.

The matrices included correspond to those for coupling between fluid BE and

plate FE models.

8. Finally the matrices coupling plate and solid FE models are written. These

couplings include four different matrices. The first, CT
sp1, give the forces on

the plate model. The second, CT
sp2, gives the forces on the solid model. The

third and the fourth gives the displacement constraints between the models

and are the respective transposes of the first two.
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Example

The procedure listed above may be best described by a simple example. The topol-

ogy of this example is shown in the figure below.

The solid lines correspond to FE models. Top left is a plate FE model, P1, with two

plate elements. Top right is a solid FE model, S1, made of two triangular elements.

The two FE models are coupled at the third node of the plate. There are four fluid

BE models in this system, numbered, F1 to F4, from the top down. The F1 BE

model is coupled both the plate and the solid. The F2 and F3 models are coupled

together. A wave is impinging on the F2 model at an angle of 45 degrees. Finally,

the F4 model has a rigid boundary. The system matrix assembled from this model

will look like this,




HF1 −GF1 0 0 0 0 0 0 0 0 0

0 0 HF2 −GF2 0 0 0 0 0 0 0

0 0 0 0 HF3 −GF3 0 0 0 0 0

0 0 0 0 0 0 HF4 −GF4 0 0 0

iωρ1µ1C1P1 0 0 0 0 0 0 0 DP1 0 CT
sp1

iωρ1µ1C1S1 0 0 0 0 0 0 0 0 DS1 CT
sp2

0 0 0 0 0 0 0 CbF4 0 0 0

0 0 A1 A2 B1 B2 0 0 0 0 0

0 I2P1 0 0 0 0 0 0 C2P1 0 0

0 I2S1 0 0 0 0 0 0 0 C2S1 0




(3.39)

More details on the programming are found in chapter 14
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Figure 3.1: Simple example of multidomain coupling.
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Chapter 4

Solid orthotropic waveguide

finite elements

4.1 Theory

A variation of a Lagrangian, δL, for a solid is defined by,

δL =

t2∫

t1

δ (U − T )− δW dt , (4.1)

where δ denotes first variation, t1 and t2 are the start and end times, U and T

are the potential and kinetic energies and δW is the virtual work from external or

internal (dissipative) forces. In the absence of other systems Hamilton’s modified

principle, [8], states that,

δL = 0 . (4.2)

for any given t1 and t2. Here, the system state at t1 and t2 is irrelevant, given that

harmonic motion over a long period of time is considered. Thus, t2 and t1 may tend

to ±∞ respectively without any loss of information.

Parseval’s identity for two real valued functions, f (t) and g (t) yields,

34



+∞∫

−∞
f (t) g (t) dt =

+∞∫

−∞
f̂ (ω)∗ ĝ (ω) dω , (4.3)

where t is time, ω is angular frequency, * denotes complex conjugate and ^ denotes

the Fourier transform defined by,

ĝ (ω) =
1√
2π

+∞∫

−∞
g (t) e−iωtdt . (4.4)

Applying Parseval’s identity on equation (4.1) gives,

δL (ω) =

+∞∫

−∞
δU (ω)− δT (ω)− δW (ω) dω . (4.5)

Calculated response at different frequencies are independent when linear systems

are considered. Consequently, a variation formulation defined for each frequency is

given by,

δLω = δU (ω)− δT (ω)− δW (ω) . (4.6)

In the following, each of the terms on the right hand side of equation (8.6) are

treated separately.

4.1.1 Potential energy

In the time domain the potential energy in a volume V may be written,

U =
1
2

∫

V
εTDε dV (4.7)

where, ε =
[

εx εy εz γxy γxz γyz

]
are the strains in the material and D is

the material stress-strain matrix, which for orthotropic material may be written,
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D =




Exx Exy Exz 0 0 0

Exy Eyy Eyz 0 0 0

Exz Eyz Ezz 0 0 0

0 0 0 Gxy 0 0

0 0 0 0 Gxz 0

0 0 0 0 0 Gyz




(4.8)

The first variation in the frequency domain of equation (4.9) is given by,

δU(ω) =
∫

V
δε̂HDε̂dV (4.9)

where, H denotes the complex transpose. By convention, the dissipative virtual

energy may now be approximated by letting the entries in D be amended by an

imaginary part such that,

D = <{D}+ i={D} (4.10)

where ={D} also is symmetric and positive definite. For most problems it is suffi-

cient to let,

D = <{D} (1 + iη) (4.11)

where η is the ’normal’ damping loss factor which may be given directly into the

software. Inside the WANDS software the routines will be run twice if the more

general damping is required (i.e. a damping that use different loss factors in different

directions).

Strain–displacement relations

Linear strain–displacement relations are given by,
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ε =




εx

εy

εz

γxy

γxz

γyz




=




∂u
∂x

∂v
∂y

∂w
∂z

∂u
∂y + ∂v

∂x

∂u
∂z + ∂w

∂x

∂v
∂z + ∂w

∂y




(4.12)

which also may be written as,

ε =
[
B0 +

∂

∂x
B1

]
u , (4.13)

where uT =
[

u v w
]

are displacements in the x, y and z directions.

B0 =




0 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y 0 0
∂
∂z 0 0

0 ∂
∂z

∂
∂y




and B1 =




1 0 0

0 0 0

0 0 0

0 1 0

0 0 1




. (4.14)

FE–approximations

Consider a prismatic structure element with ’x’ being the co–ordinate for which

uniform properties exist and ’A’ being the cross–sectional area. Approximate û and

δû with,

û = N(y, z)ũ(x) and δû = N(y, z)δũ(x) (4.15)

where, N(y, z) are 2D real valued FE–shape–functions and ũ and δũ are real and

virtual nodal displacements.

Inserting equation (4.13) into (4.10) then yields,
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δU (ω) =
∫

x

∂iδũ
∂xi

1∑

i=0

1∑

j=0

aij
∂jũ
∂xj

dx (4.16)

where,

aij =
∫

A
[BiN]T D [BjN] dA . (4.17)

It should be noted that,

a01 = aT
10 (4.18)

which may be seen directly from the definition in (4.17). This relation is utilized in

the WANDS.

4.1.2 Kinetic energy

Kinetic energy in a volume V in the time domain is given by,

T =
1
2

∫

V
u̇M u̇dV (4.19)

where, u̇ represents the velocity of the displacements and M is a mass matrix defined

by,

M = ρ




1 0 0

0 1 0

0 0 1


 (4.20)

where, ρ is the material density. Taking the first variation, transforming to the

frequency domain and applying the FE–approximations in section (4.1.1) yields,

δT (ω) = ω2

∫

x
δũH [m2] ũdx (4.21)

where,
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m2 =
∫

A

[
NTMN

]
dA . (4.22)

4.1.3 External forces

The virtual energy, denoted with δW in equation, (4.1), is defined by,

δW =
∫

V
δuTfdV (4.23)

Thus, in the frequency domain, with the FE shape–function approximation from

section 4.1.1, we have,

δW =
∫

x
δũH

∫

A
NTf̂dAdx =

∫

x
δũHf̃ dx (4.24)

4.1.4 Waveguide finite element model

Inserting the expressions for δU , δT and δW , i.e. equations (5.16), (5.23) and (11.5),

into equation (8.6), yields,

δLω =
∫

x

1∑

i=0

1∑

j=0

∂iδũ
∂xi

aij
∂jũ
∂xj

− ω2δũH [m2] ũ− δũHf̃dx (4.25)

This equation may be denoted as the ’weak form’ of the waveguide–FE model.

The element matrices,aij and m2 must be evaluated for each different element. This

evaluation, made with Gauss quadrature, also includes a co-ordinate transformation

that enables deformed element shapes. This procedure is however better described

in references to ordinary 2D-FE code e.g. [5].

Hamilton’s principle, equation (8.2), integration by parts with respect to the x–co–

ordinate and calculus of variation yields,

[
k2

∂2

∂x2
+ k1

∂2

∂x2
+ k0 − ω2m2

]
ũ− f̃ = 0 (4.26)

where, k0 = a00, k1 = a01 − a10 = and k2 = −a11.
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Finite element assembling is carried out so that nodal displacements of nodes shared

by several elements are set equal. The assembled matrices are denoted with capital

letters, thus,

[
K2

∂2

∂x2
+ K1

∂2

∂x2
+ K0 − ω2M2

]
Ũ− F̃ = 0 (4.27)

4.1.5 Remarks

Remark 1

The calculation of the a11 matrix is simplified by performing the multiplication,

[B1]
T D [B1] =




Exx 0 0

0 Gxy 0

0 0 Gxz


 (4.28)

which then may be interpreted as a smaller stiffness matrix (denoted as [B]4 by

Sheng, [4])

Remark 2

A weak form of the wave–equation will result by assembling the aij matrices rather

than the ki matrices. This form implicitly contain information about natural bound-

ary conditions and is therefore essential when general finite length problems are

considered. An application utilizing the equivalent form of equation (4.25) for thin

plate elements is found in reference [9]. The inclusion of the weak form into the

software requires storing non symmetric matrices since a01 is neither symmetric nor

antisymmetric.

Remark 3

For a moving load on an infinite length waveguide the following analysis may be

made. Instead of utilizing Parseval’s identity directly we keep the time integral in

equation (4.1). The analysis leading to equation (4.25) will then instead be written,
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δL =
∫ +∞

−∞

∫ +∞

−∞

1∑

i=0

1∑

j=0

∂iδũ
∂xi

aij
∂jũ
∂xj

− δ ˙̃u
T

[m2] ˙̃u− δũTf̃dxdt (4.29)

Now, from Parseval’s identity, the double integrals in equation (4.30) are equivalent

to integrals of the twice Fourier transformed functions, here denoted by ˆ̂, i.e.

δL =
∫ +∞

−∞

∫ +∞

−∞

1∑

i=0

1∑

j=0

∂iδˆ̂u
T

∂xi
aij

∂j ˆ̂u
∂xj

− δ ˆ̇̂u
T

[m2]
ˆ̇̂u− δũT̂̂fdκdω (4.30)

Now, assuming a force travelling at speed c, i.e. f̃ = f̃ (x− ct, t) it may be favourable

to consider a solution ũ = ũ (x− ct, t).

For any function f(x− ct, t), the Fourier transform,Fx→κ , from x → κ yields,

Fx→κ{f(x− ct, t)} = e−iκctf̂(κ, t) (4.31)

The second transform, Ft→ω from t → ω, then yields,

Ft→ω{e−iκctf̂(x, t)} = ˆ̂
f(κ, ω + κc) (4.32)

The corresponding transform of the velocity is,

Ft→ω{ ∂

∂t
(e−iκctf̂(κ, t))} = iω

ˆ̂
f(κ, ω + κc) (4.33)

which is proven in the Appendix to this chapter.

Considering independence of separate values of κ and ω, the integrations may be

omitted and the final variational statement of motion becomes,

δL =
1∑

i=0

1∑

j=0

∂iδˆ̂u
H

∂xi
aij

∂j ˆ̂u
∂xj

− ω2δˆ̂u
H

[m2] ˆ̂u− δũĤ̂fd (4.34)

where, ˆ̂u = ˆ̂u(κ, ω) , ˆ̂f = ˆ̂f(κ, ω) and ω = ω + κc.

This does not comply with the results given by Sheng [4] (page 12.) where

instead, ω = ω − κc is derived and also used in front of the kinetic term (the mass

matrix). This discrepancy should be checked further.
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Remark 3

External forces, in the weighted form seen in equation (11.5), are not included in the

software. Implementation of such forces may be included, but it is usually sufficient

to apply concentrated forces to the nodal degrees of freedom directly.

4.2 Validation

The validations are made by considering 8–node quadrilateral elements.

4.2.1 Convergence

Two meshes, with 9 and 25 elements respectively, of the same square are considered.

The 25 element mesh is seen in Figure 4.1.

The convergence for an isotropic material (here steel is used) is seen in Figure 4.2.

The results in Figure 4.2 indicate that the convergence is as expected. For lower

order waves, those branches to the left in Figure 4.2, the two meshes yields almost

identical results. This is expected since both meshes should be able to resolve the

corresponding, relatively simple, cross–sectional shapes. Also, as expected, there

is discrepancy in the results between the two meshes for higher wave orders. Fur-

thermore, the 25 element mesh gives lower frequencies for the same wavenumber.

This is explained with the fact that the stiffness matrices includes derivatives with

respect to the cross–sectional coordinates and thus include larger errors than the

mass matrix. Such discretization errors tend to overestimate the exact potential

and kinetic energies, and thus the resulting frequencies will be overestimated.

The rate of convergence for eigenfrequencies for ordinary finite elements is further

discussed in [10]. However, at the moment such convergence studies are outside the

scope of this project.
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Figure 4.1: 25 element mesh

4.2.2 Isotropic rod

Alaami, reference [11], made studies of rectangular rods with a method similar to

that presented here. Alaami’s elements have triangular cross-section (and presum-

ably linear shape–functions). Also, since there are no meshes given in [11], the exact

values from Alaami’s analysis are of less importance. Also by comparing with ana-

lytical results for a cylinder, Alaami claims to have a discrepancy of about 2% for

100 elements. Plotting tabulated values from [11] and the present analysis results

in Figure 3, where the non dimensional frequency, Ω, is defined by,

Ω = ω/ωs ; ω2
s = G/(ρl2) , (4.35)
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Figure 4.2: Rings=9–element mesh; Dots=25–element mesh

where G is the shear modulus and l is the side length. Poisson’s ratio ν = 0.3.

The results indicate a satisfactory agreement. The small discrepancies might be

explained by a lack of convergence in Alaami’s study, this would also explain the

fact that the frequencies for the present study are generally lower.

4.2.3 Orthotropic rod

The dispersion relations for the orthotropic case is calculated for topaz, (How much

would a topaz rod with 1 by 1 metre cross–section cost?). The material properties

for the material used are given in Table 4.1.

Since non–dimensional frequencies are used, the density could take any reasonable

value, the value in Table 4.1 is however typical of topaz.

The non dimensional frequency, Ω, is here defined by,
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Figure 4.3: Dispersion relations for isotropic rod; Squares=Alaami’s results;

Dots=25–element mesh

Ω = ω/ωs ; ω2
s = Gyz/(ρl2) , (4.36)

As can be seen, there are no apparent discrepancies between the orthotropic results

shown in 4.4 compared to the isotropic case shown in 4.3.

4.2.4 Analytical solution

Due to the relatively small differences between elasticities in different directions for

topaz and the need for future validation cases, for instance for pre–stress, an analyti-

cal solution would be quite valuable. One such solution might be obtained for an rec-

tangular rod with constrained boundaries. Assuming trigonometric cross–sectional

displacements that are zero on the boundaries might then yield an analytical so-

lution. So far no successfull solution for this problem has been found. However it
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Side length: l 1 m

Young’s modulus x–direction: Exx 294GPa

Young’s modulus y–direction: Eyy 349GPa

Young’s modulus z–direction: Ezz 281GPa

Young’s modulus xy–direction: Exy 88 GPa

Young’s modulus yz–direction: Exz 84 GPa

Young’s modulus yz–direction: Eyz 126GPa

Shear modulus xy–direction: Gxy 131GPa

Shear modulus yz–direction: Gxz 132GPa

Shear modulus yz–direction: Gyz 108GPa

Density: ρ 3550 kg/m3

Table 4.1: Parameters for orthotropic rod

might be something to come back to.

4.3 Appendix

Theorem:

Ft→ω{ ∂

∂t
(e−iκctf̂(κ, t))} = iω

ˆ̂
f(κ, ω + κc) (4.37)

Proof:

Ft→ω{ ∂

∂t
(e−iκctf̂(κ, t))} =

∫ +∞

−∞

∂

∂t

(
e−i(κct)f̂

)
e−iωtdt

= −iκc

∫ +∞

−∞
f̂(κ, t)e−i(ω+κc)tdt +

∫ +∞

−∞
e−i(κct) ∂

∂t

(
f̂(κ, t)

)
e−iωtdt (4.38)

The first term on the bottom line of equation (4.38) is here denoted I1 and the

second is denoted I2. I1 is recognized as,

I1 = −iκc
ˆ̂
f(κ, ω + κc) (4.39)
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Figure 4.4: Dispersion relations for orthotropic rod; Squares=Alaami’s results;

Dots=25–element mesh

I2 is evaluated with integration by parts as,

I2 =
[
f̂(κ, t)e−i(ω+κc)t

]+∞

−∞
−

∫ +∞

−∞
−i (ω + κc) e−i(ω+κc)tf̂(κ, t)dt (4.40)

For the Fourier transform to exist, the bracketed expression must equal zero, whereas

the integral is recognized as,

∫ +∞

−∞
i (ω + κc) e−i(ω+κc)tf̂(κ, t)dt = i (ω + κc) ˆ̂

f(κ, ω + κc) (4.41)

Thus after summing I1 and I2 we have,

Ft→ω{ ∂

∂t
(e−iκctf̂(κ, t))} = iω

ˆ̂
f(κ, ω + κc) (4.42)

which is the same as equation (4.37). QED.
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Chapter 5

Orthotropic plate strip finite

elements

5.1 Theory

The analysis based on Hamilton’s principle in the beginning of Chapter 4 can be

used as a starting point for the derivation of the plate elements as well. The main

difference compared to the solid elements is the expression for the potential energy

and the following treatment of this expression.

5.1.1 Potential energy

Following thin plate theory and considering the frequency domain, see [1], the first

variation of potential energy in an area A for an orthotropic plate may be written,

δU =
∫

A

[
δεH δκH

]
D


 ε

κ


 dA (5.1)

where,
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
 ε

κ


 =




εx

εy

γxy

κx

κy

κxy




(5.2)

and

D0 =


 h [D0]

h3

12 [D0]


 , (5.3)

where, h is the plate thickness and

D0 =
1

1− νxνy




Ex Exνy

Eyνx Ey

0 0 Gxy


 . (5.4)

The strains, ε, and the curvatures, κ are given by,




εx

εy

γxy

κx

κy

κxy




=




∂u
∂x

∂v
∂y

∂u
∂y + ∂v

∂x

∂2w
∂x2

∂2w
∂y2

∂2w
∂x∂y




(5.5)

Which may also be written,


 ε

κ


 =

[
B0 +

∂

∂x
B1 +

∂2

∂x2
B2

]



u

v

w


 (5.6)

where the operators B0, B1 and B2 are given by,
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B0 =




0 0 0

0 ∂
∂y 0

∂
∂y 0 0

0 0 0

0 0 ∂2

∂y2

0 0 0




, B1 =




1 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 ∂
∂y




and B2 =




0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0




(5.7)

Now, shape–functions, Ψip(y) and Ψb(y) are introduced. Here, Ψip are linear func-

tions and Ψb are cubic Hermite polynomials. Upon replacing the y–coordinate with

the non–dimensional coordinate, ξ = y−ym

L/2 , where ym is the mid y–coordinate of the

element, the shape–functions are defined by,

Ψip(y) = [N1ip N2ip] (5.8)

= [
1
2
(1− ξ)

1
2
(1 + ξ)] (5.9)

Ψb(y) = [N1b N2b N1b N2b] (5.10)

= [
1
4
(2− 3ξ + ξ3)

L

8
(1− ξ − ξ2 + ξ3) (5.11)

1
4
(2 + 3ξ − ξ3)

L

8
(−1− ξ + ξ2 + ξ3)] (5.12)

for the in—plane and out–of–plane motions respectively. L is the width of the

element.

The displacements are approximated as,




u

v

w


 = Ψ(y)ũ(x) . (5.13)

where,

Ψ =




N1ip 0 0 0 N2ip 0 0 0

0 N1ip 0 0 0 N2ip 0 0

0 0 N1b N2b 0 0 N3b N4b


 , (5.14)
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for the nodal displacements partitioned as,

ũ(x) =
[

u1 v1 w1 φ1 u2 v2 w2 φ2

]T
(5.15)

Upon substituting equation (5.13) into equation (5.6) and the result subsequently

into equation (5.21), the potential energy is approximated as,

∫ 2∑

i=0

2∑

j=0

∂iδũH

∂xi
aij

∂jũ
∂xj

dx (5.16)

where

aij =
∫

[BiΨ]T [D] [BjΨ] dy (5.17)

To evaluate aij , we start with the terms [BjΨ]. Multiplication, (here using MAPLE

to avoid mistakes), yields,
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[B0Ψ] =




0 0 0 0 0 0 0 0

0 ∂N1ip

∂y 0 0 0 ∂N2ip

∂y 0 0
∂N1ip

∂y 0 0 0 ∂N2ip

∂y 0 0 0

0 0 0 0 0 0 0 0

0 0 ∂2N1b
∂y2

∂2N2b
∂y2 0 0 ∂2N3b

∂y2
∂2N4b
∂y2

0 0 0 0 0 0 0 0




(5.18)

[B1Ψ] =




N1ip 0 0 0 N2ip 0 0 0

0 0 0 0 0 0 0 0

0 N1ip 0 0 0 N2ip 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 ∂N1b
∂y

∂N2b
∂y 0 0 ∂N3b

∂y
∂N4b
∂y




(5.19)

[B2Ψ] =




0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 N1b N2b 0 0 N3b N4b

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




(5.20)

These matrices may be evaluated for any value of y or ξ. The inner integral in

equation (5.16) is thus made from ξ = −1 to ξ = +1 and dy = (L/2)dξ. Thus L/2

is the Jacobian of the 1D coordinate transform.

Equation (5.21) may be seen as a weak form equation for the potential energy.

5.1.2 Kinetic energy

The first variation of the kinetic energy in the frequency domain, is written,

δT =
∫

A
ρh

[
δu∗ δv∗ δw∗

]



u

v

w


 dA (5.21)
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where ρ is the plate density.

With the same approximations as in the previous section we have,

δT =
∫

x
δũH m2 ũdx (5.22)

where,

m2 =
∫

y
ρhΨTΨdy (5.23)

is evaluated as discussed in the previous section.

5.1.3 External forces

Distribution of external forces may be included into the formulation as shown in

reference [1], by considering the virtual work. Normally it is sufficient to include

point forces at the nodes only and, as for the solid elements, this is the way forces

on plate elements are included in WANDS.

5.1.4 Element formulation

Inserting variations of potential and kinetic energies into Hamilton’s principle, fol-

lowed by integration by parts while neglecting boundary terms of the ends of the

waveguide and subsequently applying calculus of variation yields,

[
k4

∂4

∂x4
+ k2

∂2

∂x2
+ k1

∂2

∂x2
+ k0 − ω2m2

]
ũ− f̃ = 0 (5.24)

where, k0 = a00, k1 = a01 − a10, k2 = a02 + a20 − a11 and k4 = a22.

5.1.5 Co-ordinate transformation and assembling

Now the 1D cross-section of the element must be projected on the 2D cross-section

of the assembled model. This is made by introducing the coordinate transforms T.

Consider an element rotated by the angle α and nodes given by the position vectors,
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r1 and r2. The unit vector along the element is given by r2−r1
‖r2−r1‖ . By taking the

scalar vector product with the unit vector along the y–direction and applying the

identity a • b = ‖a‖‖b‖cos(α) for scalar vector products, it may be shown that

cos(α) =
y2 − y1

‖r2 − r1‖ (5.25)

By applying the vector, ’×’, product and its interpretation in a similar way it may

be shown that,

sin(α) =
z2 − z1

‖r2 − r1‖ (5.26)

From Figure 5.1, the transformation from the local co–ordinates of the rotated ele-

ment displacements to those in the global co–ordinate system, the latter indicated

with the subindex ’g’, is given by,




u1g

v1g

w1g

φ1g

u2g

v2g

w2g

φ2g




=




1 0 0 0 0 0 0 0

0 cos(α) − sin(α) 0 0 0 0 0

0 sin(α) cos(α) 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 cos(α) − sin(α) 0

0 0 0 0 0 sin(α) cos(α) 0

0 0 0 0 0 0 0 1







u1

v1

w1

φ1

u2

v2

w2

φ2




(5.27)

The opposite transformation from the global coordinates to the local coordinate are

sought and these are given by the inverse of the matrix in equation (5.27). Luckily,

since these sort of transformation matrices are orthonormal, the inverse is simply

given by the transpose. The transpose of the matrix in equation (5.27) is denoted

by T. Transformation of each of the stiffness matrices in equation (5.24) is made

by,

kig = TTkiT (5.28)
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Figure 5.1: Co-ordinate rotation .
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and the transformation of the mass matrix is similar. The reason for using the

transformation on both sides of the original matrix is clear from considering the

weak form expressions.

Assembling of the element matrices yields the equation for the whole system as,

[
K4

∂4

∂x4
+ K2

∂2

∂x2
+ K1

∂2

∂x2
+ K0 − ω2M2

]
Ũ = F̃ (5.29)

5.2 Validations

The first validation is made by comparing the current software package with a model

made by a package developed by Svante Finnveden at KTH. A Y-shaped profile is

considered. The profile is seen in Figure 5.2 and thought to be made of 1 mm thick

steel. The eigenvalues of each of the matrices in equation (5.29) are considered. An

error estimate for each matrix is calculated as,

max |λf − λs|
max |λs| (5.30)

where, λf and λs are the eigenvalues for the WANDS and the KTH model respec-

tively. The largest error found is 2.3 · 10−6.

Secondly, a steel-pipe is considered. The pipe model is made of 40 elements of equal

length. The pipe is 1 mm thick and has 0.1 m radius. The comparison is made with

a semi-analytic solution as presented in [12]. The dispersion relation is plotted in

Figure 5.3.

The straight line without rings in Figure 5.3 represents a fluid wave in the air inside

the pipe. An inconsistency can be seen about 100 Hz where the WFE–model have

a cut on. This cut on will be at a lower frequency for a model with 20 elements

than for the model with 40 elements. For a model with 80 elements the situation is

again better although for 160 elements it becomes worse. This behaviour is likely

to indicate a numerical problem. Another indication of this problem as that each

semi–analytic dispersion curve displays two FE-solutions, which indicates that the

geometrical symmetry of the pipe is not handled properly. Internally the plate–strip
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Figure 5.2: Y–beam mesh

program is now changed to ’doubleprecision’ for all but the input variables. The

output still is now also written with double precision. However, for some problems,

it has been found that the output matrices are not quite symmetric or antisymmetric.

For these cases better results in calculations are obtained if they are forced to be

symmetric or antisymmetric. Another reason for numerical instability comes from

the entries in the D matrix of equation (5.3), these might have very large differences

in magnitude when using SI–units since the thickness usually is much less than unity.

An attempt to implement this by using a length scale in dm rather than m is seen

in Figure 5.4.

This is clearly better, but a length scale in cm again makes correspondence less ac-

curate (for even lower frequencies). Letting the outputs be written with 10 decimals

yields much better results as seen in Figure 5.5

Thirdly, an orthotropic plate strip with hinged sides is considered, for this case

an analytical solution exists, see [1]. Here, the thickness is 1mm and the width

of the plate is 1m. The Young’s modulus in the x- and y-directions are 200 and
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Figure 5.3: Dispersion relations for steel pipe; Lines=Finnveden; Rings=40–element

mesh

50GPa respectively. The Poisson’s ratio in the x -direction is 0.3. The out-of-plane

dispersion relations for a ten element model compared to the analytical solution is

seen in Figure 5.6

The discrepancies in Figure 5.6 are of order and type expected from the FE–

approximation. The results indicated by Figure 5.6 are good, but this case only

considers out-of-plane motion, thus validation for in-plane motion is not given here.
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Figure 5.4: Dispersion relations for steel pipe; Lines=Finnveden; Rings=40–element

mesh (using dm scale)
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Figure 5.5: Dispersion relations for steel pipe; Lines=Finnveden; Rings=40–element

mesh
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Figure 5.6: Dispersion relations for orthotropic plate, Lines=analytic solution,

Rings=WFE solution.
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Chapter 6

Beam elements

6.1 Introduction

Beam elements along the ‘extrusion’ are included in the FE code and described in

this chapter. The beam elements restrain motion in the x-, y- and z-directions as

well as rotations. Thus a single beam element describes longitudinal, flexural and

torsional motion. Moreover the flexural motions may be coupled when the y- and

z-axes do not coincide with the beam symmetry-axis and similar coupling may also

occur between longitudinal and rotational coupling. Flexural motions are described

with Euler theory, i.e. stiffnesses proportional to the fourth derivative with respect to

the direction of propagation. Longitudinal and torsional stiffnesses are proportional

to the second derivatives with respect to the direction of propagation.

6.2 Theory

A beam is here seen as having four different types of waves, flexural motion in the,

y- and z- directions, longitudinal motion in the x- direction and rotation about the

x- direction.
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6.2.1 Flexural motion

Uncoupled flexural motion

First, consider a beam such that no coupling between any two motions is present. A

wave equations for a beams flexural motion about the y-axis may then be written,

see e.g. [13].

Dz
∂4w

∂x4
− ω2ma w = Fz (6.1)

For displacements, w, in the z- direction. Dz is the flexural rigidity for bending

about the y-axis, as found in many books on structural mechanics. For reference Dz

is calculated as the integral,

Dz =
∫

A
Ex(y, z)z2dA , (6.2)

over the cross–section area, A. For constant isotropic material, Ex(y, z) = E sim-

plifies to,

Dz = E Iy . (6.3)

ma is the mass per unit length in the x-direction,

ma =
∫

A
ρ(y, z) dA . (6.4)

Similarly, the flexural equation for motion about the z-axis, i.e. in the y-direction,

is written as,

Dy
∂4v

∂x4
− ω2mav = Fy . (6.5)

Coupled flexural motion

If there is flexural motion the two displacements, v and w will be coupled. The

coupling results in the system,
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



 Dy −Dyz

−Dyz Dzz


 ∂4

∂x4 − ω2


 ma 0

0 ma








 v

w


 =


 Fy

Fz


 (6.6)

where,

Dyz =
∫

A
Ex(y, z) yz dA (6.7)

The minus sign in equation 6.6 is due to the convention of defining moments as

positive when they cause positive rotation about the y- or z- axis.

6.2.2 Longitudinal and torsional motion

Uncoupled motion

The equation for the longitudinal motion, u, in the x-direction is written as,

Dl
∂2u

∂x2
− ω2ma u = Fx (6.8)

where, Dx, is given as,

Dl =
∫

A
Ex(y, z)dA (6.9)

which may be simplified to,

Dl = AEx , (6.10)

when Ex(y, z) is constant.

The equation for the rotation of the beam is written as,

Dt
∂2φ

∂x2
− ω2Ja φ = Fr , (6.11)

where, Ja is the cross–sections moment of inertia and Dr is the torsional rigidity,

which for a circular cross-section with inner and outer radius, ri and ro is given by,
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Dt =
π

2
G(r4

o − r4
i ), (6.12)

where, G is the (constant) shear modulus, [13]. Generally the torsional rigidity is

much more difficult to calculate. One method to establish, Dr is to make a waveguide

FE model of it. This is explained in the following section.

Coupled motion

As for the flexural motion, coupling may also exist between longitudinal and torsional

motion. This coupling is generally referred to as warping, and explained in e.g.

reference [14].

The ẃarping’ coupling is highly dependent on the position at which a beam couples

to the surrounding structure. Thus, it must be evaluated at this position. The

coupled matrix equation is written,


 −


 Dl Dtl

Dtl Dt


 ∂2

∂x2 − ω2


 ma 0

0 Ja








 u

φ


 =


 Fx

Mx


 (6.13)

For more information about ’warping’ in thin–walled beams see [15]. Generally the

analytical calculation of the warping is cumbersome. Also, the approximation in

equation (6.13) may be very crude. For instance, consider two circular beams of

different diameter connected with a thin plate–strip, as presented in Figure 6.1.

With reference to Figure 6.1, the torsional motion is a linear combination of the

beams flexural motion. Thus it is proportional to κ4, furthermore there is a strong

coupling between the flexural and torsional motion. One way to overcome the prob-

lem of giving correct input data for a beam might be to make a waveguide finite

element model and subsequently perform a modal condensation only to have the

first four waves in the model. This, however, has not yet been tested.
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Figure 6.1: Rotation of a beam made of two circular beams and a plate

6.3 Coupling of beams to surrounding models

The implemented beam elements do not define any new nodes. Instead the beams

couple to already existing nodes in the plate and solid models.

6.3.1 Plate connected beams

For the plate models all four degrees of freedom exist for each node. Thus it is easy

to add the extra rigidities,Dy, Dz, Dl and Dt and corresponding masses to each

node. In WANDS these parameters are formed in extra matrices, K4bp, K2bp and

Mbp. Thus the complete plate system is given by,

[
(Kp4 + Kbp4)

∂4

∂x4
+ (Kp2 + Kbp2)

∂2

∂x2
+ Kp1

∂2

∂x2
+ Kp0 − ω2(Mp + Mbp)

]
W̃(x) = F̃p(x)

(6.14)

where F̃p(x) is the force vector of the model.
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6.3.2 Solid connected beams

For the solid model the rotation is unspecified at the nodes. However, it may be

specified as a linear combination of two nodal displacements. The linear combination

is best specified at a position between two nodes. By following the theory and

notations made in Chapter 7, the four degrees of freedom are given by,




ub

vb

wb

φb




=




1
2(1− ζ) 0 0 1

2(1 + ζ) 0 0

0 1
2(1− ζ) 0 0 1

2(1 + ζ) 0

0 0 1
2(1− ζ) 0 0 1

2(1 + ζ)

0 1
2rdz −1

2rdy 0 −1
2rdz

1
2rdy







us1

vs1

ws1

us2

vs2

ws2




(6.15)

where, ub , vb , wb , φb are the displacements and rotation at the position of the beam.

us1 , vs1 , ws1 are the displacements of the first coupling node in the solid model and

us2 , vs2 , ws2 are the displacements of the second. The beam’s position between the

two solid nodes is given by the non-dimensional coordinate ζ with a value between

−1 and +1, (note at −1 and +1 the rotation is undefined at the solid model nodes).

With this information the beam stiffness matrices is distributed to the solid ele-

ment degrees of freedom. This is done by seeing the matrix in equation (6.15)

as a transformation matrix, T. Denoting
[

ub vb wb φb

]
= ub and the vec-

tor
[

us1 vs1 ws1 us2 vs3 ws2

]
= us, the energies corresponding to the beam

stiffnesses and mass are given by,

uH
b [K4b]

∂4ub

∂x4
= uH

s [T]T[K4b][T]
∂4us

∂x4

uH
b [K2b]

∂2ub

∂x2
= uH

s [T]T[K2b][T]
∂2us

∂x2

and

uH
b [Mb]ub = uH

s [T]T[Mb][T]us

(6.16)

Thus, the stiffness and mass matrices for the solid coupled beam are,
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[K4sb] = [T]T[K4b][T]

[K2sb] = [T]T[K2b][T]

and

[Msb] = [T]T[Mb][T]

(6.17)

The matrices for the solid coupled beams are assembled into separate matrices and

the whole solid and beam model is formed by,

[
(Kbs4)

∂4

∂x4
+ (Ks2 + Kbs2)

∂2

∂x2
+ Ks1

∂2

∂x2
+ Ks0 − ω2(Ms + Mbs)

]
W̃(x) = F̃s(x)

(6.18)

where F̃s(x) is the force vector of the model.

6.4 Validation

The validation is made in two stages. First the validation of a beam coupled to the

middle of a plate model is made. This validation is very simple, since the beam

model outputs may be checked directly. Hence, it is only required to check that

the input data parameters are written at the correct positions in the output data

matrices, K4bp, K2bp and Mbp.

Secondly a similar model, but with solid elements (8-noded quadrilaterals) and a

solid coupled beam is made. The dispersion relations for the two models are then

compared. Also, to ensure that the effect of the beam is significant a model without

the beam is also considered. The dispersion relations for the cases without and with

beams can be seen in Figures 6.2 and 6.3.

The models represents simply supported plate strips with or without a beam placed

at the middle.

The following parameters are used,

Width of plate: = 1m,
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Thickness of plate: = 0.02m,

Young’s modulus = 210GPa,

Poisson’s ratio: 0.3.

Plate density: ρ = 7800kg/m3

Masses:

Ma = 500kg/m, Ja = Mt = 2.5kgm

Longitudinal and torsional rigidities:

Dl = 750Nm2, Dt = 1 · 107 Nm2, Dtl = 75Nm2

Flexural rigidities:

Dfy = 20 · 106 Nm2, Dfz = 30 · 106 Nm2, Dfyz = −2 · 106 Nm2
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Figure 6.2: Dispersion relations for simply supported plate without beam; Solid

elements (•); Plate elements (◦).
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Figure 6.3: Dispersion relations for simply supported plate with beam; Solid ele-

ments (•); Plate elements (◦).
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Chapter 7

FE-solid to FE-plate coupling

7.1 Introduction

To couple a plate element with a solid element requires a way to couple the rotational

d.o.f. of the plate to the solid. In this chapter, methods to accomplish this coupling

is examined.

The main reference throughout this section is the book ’Concepts and Applications

of Finite Element Analysis’, by Cook et.al. [5].

There are, in principle, two separate ways to include rotational coupling into the

WFE software.

The first option is to rewrite the solid elements so that their nodal degrees of freedom

include rotation. The coupling condition is then included by requiring the rotation

of a plate element and a solid element to equal where they share the same node.

The second option is to let the rotation of the plate be constrained by neighboring

nodes of the solid. This is most easily implemented if the plate node is placed on a

boundary of the solid element but not sharing one of its nodes. The implementation

of this second option may be made in several different ways. In WANDS these

constraints are implemented with Lagrange multipliers.
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7.2 Rotational degrees of freedom in solid elements

7.2.1 Assembling

If rotational degrees of freedom were to be implemented in the software the rotations

at each node with at least one plate element joined to it, should assemble both

displacement d.o.f. as well as the rotation. Rotation at nodes shared by solid

elements only should not be assembled, since this would introduce an unnecessary

constraint not needed in the C0 continuity of solid elements. This means that the

assembling algorithm must keep track of two separate node types both appearing

for the solid elements.

7.2.2 Solid elements

Solid elements may be formed either ny introducing new shape functions or by

transforming shape functions of existing elements, see p. 237-238 in [5]. In both

ways care must also be taken when transforming the coordinates from the original

’type’ elements to other geometries, i.e. dealing with Jacobians etc.

Another reported problem is that, if all nodes have the same rotation, no deformation

of the element is possible, see p. 238 in [5]. This may be handled by introducing an

additional energy into the elements for the difference between the midpoint rotation

and the nodal rotations. One example of this is given in [16].

7.2.3 Conclusion

The many problems prevent this method from being used for coupling plate rotations

to solids. In fact the only given rationale for introducing rotations into elements is

for 2D plates. Also, at least in 3D, the problem above still seems to be the subject

of research activity.
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7.3 Rotational coupling by restraints

7.3.1 Restraints for rotational coupling

Consider two nodes, ’1’ and ’2’, of an element with linear interpolation (i.e. linear

shape–functions). Any point ’p’ on the element boundary joining the two nodes has

the co-ordinates,

rp(ξp) = rm + rdξp (7.1)

where, ξp ∈ [−1, 1] is the non–dimensional co-ordinate describing the position be-

tween the two nodes, (e.g. ξp = 0 is the midpoint between the nodes). rm is the

position vector for the midpoint and rd is the unit directive vector.

rm =
r2 + r1

2
(7.2)

and

rd =
r2 − r1

‖r2 − r1‖ . (7.3)

where, ‖ · ‖ denotes the Euclidian norm.

For linear interpolating shape–functions, given the two displacement vectors, u1 =[
u1 v1 w1

]
and u2 =

[
u2 v2 w2

]
of the respective node, the displacement

at ’p’ may be written as,

uT
p = N(ξp)


 uT

1

uT
2


 (7.4)

where, N(ξ) =
[

1
2(1− ξ) 1

2(1 + ξ)
]
.

A small rotation at ’p’ is given by,

θp = ∇× up (7.5)
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Here, only the x component of θp is sought. By using the chain rule of differentiation,

this component is given by,

θpx =
∂w

∂ξ

∂ξ

∂y
− ∂v

∂ξ

∂ξ

∂z
(7.6)

The differentiations, ∂ξ
∂y and ∂ξ

∂z may now be recognized as the the y and z components

of the directive vector rd. The differentiations, ∂w
∂ξ and ∂v

∂ξ may be evaluated directly

from equation (7.4). Consequently,

θpx =
1
2
(w2 − w1)rdy − 1

2
(v2 − v1)rdz (7.7)

Equations, (7.4) and (7.7), gives constraints for any plate element node at the point

’p’ as function of the position and displacements of nodes 1 and 2. The derivation

assumes that the node of the plate element is on the boundary of the

solid element. These constraints may be implemented in the FE–code in different

ways as discussed in the following. To do so and to follow the notation in Cook

these equations are rewritten as,

[C]D = 0 (7.8)

where [C] is known as the constraint matrix and D is the vector of degrees of freedom

either involved in the restraints or of the whole system.

If node number 1 of the plate model is to be connected to nodes 1 and 2 of the solid

model, [C]D will be:
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[C]D =




1
2 (1− ζ) 0 0 1

2 (1 + ζ) 0 0 −1 0 0 0

0 1
2 (1− ζ) 0 0 1

2 (1 + ζ) 0 0 −1 0 0

0 0 1
2 (1− ζ) 0 0 1

2 (1 + ζ) 0 0 −1 0

0 1
2rdz − 1

2rdy 0 − 1
2rdz

1
2rdy 0 0 0 −1







us1

vs1

ws1

us2

vs2

ws2

up1

vp1

wp1

φp1




(7.9)

where subscripts s and p refer to ‘solid’ and ‘plate’ nodes respectively and columns

of zeros are added for the dof’s not included in the constraints.

7.3.2 Constraint implementation by transformation

Equation (7.8) may be rewritten to, see pages 272-273 in [5] for details.


 Dr

Dc


 = [T]Dr (7.10)

where, Dr are the d.o.f. to be retained and Dc are those to be condensed out, (i.e.

removed) and [T] is a transformation matrix. For the new system, for each of the

system matrices, Kj and M2 we have,

Knew = TTKoldT (7.11)

and

Fnew = TTFold (7.12)

for the forces. The new system then becomes singular and must be partitioned

and rewritten into a a smaller system. Consequently there are many manipulations
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needed for creating the new system. Manipulations of smaller systems will appear

if subsystems of the elements of concern are considered. Also there is a possibility

not to partition and rewrite the equations, but this will result in singular matrices,

reference [17].

Due to the many matrix manipulations the above method to implement constraints

makes it less attractive.

7.3.3 Constraint implementation by Lagrange multipliers

This is the way the constraints are implemented in WANDS. Lagrange multipliers

are introduced in the Lagrangian for Hamilton’s principle by adding,

λT[C]D . (7.13)

After applying calculus of variations, the new system then becomes,


 K(κ)− ω2M2 CT

C 0





 D

λ


 =


 F

0


 (7.14)

Physically the Lagrangian multipliers λ can be seen as forces keeping the constrained

d.o.f. in their correct position.

Two minor drawbacks will arise from the present method. Additional d.o.f. will be

added to the system rather than condensed out. Furthermore there will be a larger

bandwidth of the matrices. Since the problems at hand will have few constraints

(i.e. points where plate elements meet solid elements) the added d.o.f. are not a big

problem. The larger bandwidth may cause some problems when solving the com-

plete system for each wave number and frequency with Gaussian elimination or LU

factorization (as made in WANDS). However, an iterative solver is probably better,

since the start vector may be taken as the solution of the last wavenumber calculated

and thus yield a very fast convergence. For an iterative solver the bandwidth is of

less importance.

The main advantage of Lagrange multipliers is that the method is simple to im-

plement. Especially, the implementation can be made after assembling the two
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separate systems for the solid and the plate elements. The constraints may then be

formulated and added to join the two systems. Of course the node numbers and

involved d.o.f. must be handled, but the original systems does not change. Further

information is found on p. 275-276 in [5].

7.3.4 Constraint implementation by penalty method

This method is somewhat similar to the Lagrange multiplier method, but instead of

adding Lagrange multipliers a penalty function is added to the Lagrangian. Thus,

the energy,

1
2
DT[Kc]D (7.15)

is added, where,

[Kc] = [C]T[α][C] (7.16)

and [α] is a diagonal matrix, with entries of large magnitude that must be chosen

in some way. By substituting equation (7.16) into equation (7.15) it is seen that the

penalty function becomes zero if the constraints, [C]D = 0 are met.

Physically the penalty matrix, [Kc], can be interpreted as springs holding the con-

straints in their right position. The implementation of the method seem to be the

easiest of all methods explored here, since no new d.o.f. are introduced, though the

bandwidth will generally still increase. The main drawback of the method is the

way in which [α] is to be chosen. If the entries in [α] are too small the constraints

will have no effect, whereas if they are too large numerical cancellation problems

may occur.Further information is found on p. 276-278 in [5].

7.3.5 Conclusions

The ’Lagrange multiplier method’ and the ’penalty method’ are the two methods

favoured by the author. This is mostly due to their simplicity, that enables the

constraints to be added after forming unconstrained systems for the solid and plate
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elements. The penalty method has advantages in its simplicity, symmetry and phys-

ical interpretation. But the drawback is possible numerical problems. Thus the

Lagrange multiplier method has been chosen for WANDS.

7.4 Validations

Two validations are considered. A model with simply supported sides is examined

and compared with an analytical solution. Also, a beam with a triangular cross-

section is modelled both with plate strip elements only and with one side modelled

with solid elements. The results given in this section are for the Lagrange multiplier

method.

7.4.1 Plate strip model

A model of a plate strip with simply supported edges is made. Sections 1 and 3 are

modelled with plate strip elements whereas section 2 is modelled with 8–node solid

elements. The rotation of the side of the solid elements is given by two of its corners.

The reason for choosing 8-node elements is that 4-node elements use linear shape

functions over its cross–section. These linear shape functions can not approximate

thin plate bending within one element.

The plate strip is subdivided in three sections, section 1 with coordinates (0,0.25)

section 2 with coordinates (0.25,0.75) and section 3 with coordinates (0.75,1). Each

finite element has a width of 0.05 m. The material is steel and the thickness is 0.02

m.

7.4.2 Triangle model

Two triangle beams are modelled. One with plate strip elements only and one with

one side modelled with solid 8-node elements.

The triangle has co–ordinates (0, 0),(0, 1) and (0.5,−0.5). For the plate–strip model

each side is divided into 9 equally spaced elements. For the plate–solid model, the
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Figure 7.1: Plate strip

longest side is replaced with 30 solid elements. The material is steel and the thickness

is 0.02 m.
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Figure 7.2: Dispersion relations for plate strip

80



0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6

7

8

9

10
Comparison, solid−plate model  (o) v.s. plates only model ( . )

Frequency [Hz]

W
av

en
um

be
r 

[m
−
1]

Figure 7.3: Dispersion relations for ’delta’ beam
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Chapter 8

Fluid finite elements

8.1 Frequency domain Lagrangian

The variation of a fluid Lagrangian, δLf , may be defined by, [1].

δLf = −
t2∫

t1

δ (Uf − Tf )− δWf,loss dt , (8.1)

where δ denotes first variation, t1 and t2 are the start and end times, Uf and Tf

are the fluid potential and kinetic energy and δWf,loss is the virtual work from

dissipative forces. In the absence of fluid–shell coupling, e.g. for rigid walls,

δLf = 0 . (8.2)

All terms in equation (8.1) are here required to be bilinear or quadratic functionals.

This restriction is necessary since linear differential equations are sought. Further-

more, the system state at t1 and t2 is irrelevant, given that harmonic motion over

a long period of time is considered. Thus, t2 and t1 may tend to ±∞ respectively

without any loss of information.

Parseval’s identity for two real valued functions, f (t) and g (t) yields,
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+∞∫

−∞
f (t) g (t) dt =

+∞∫

−∞
f̂ (ω)∗ ĝ (ω) dω , (8.3)

where t is time, ω is angular frequency, * denotes complex conjugate and ^ denotes

the Fourier transform defined by,

ĝ (ω) =
1√
2π

+∞∫

−∞
g (t) e−iωtdt . (8.4)

Applying Parseval’s identity on equation (8.1) gives,

δLf (ω) = −
+∞∫

−∞
δUf (ω)− δTf (ω)− δWf,loss (ω) dω . (8.5)

Calculated response at different frequencies are independent when linear systems

are considered. Consequently, a variational formulation defined for each frequency

is given by,

δLfω (ω) = δTf (ω)− δUf (ω) + δWf,loss (ω) . (8.6)

In the following δLfω is referred to as the fluid ’Lagrangian variation’. Each of the

terms on the right hand side of equation (8.6) are treated independently in

Section 8.2.

8.2 The fluid Lagrangian variation

In this thesis the fluid is considered to be ’ideal’ or close to ’ideal’, i.e. the fluid has

low viscosity and low heat conductivity.

8.2.1 Velocity potential

Acoustic pressure, p, the change of density due to acoustic pressure, ρa and the

fluid particle displacement, uf in an ideal, undamped, fluid are related through the

velocity potential ψ, such that, [18],
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∂uf

∂t
= −µ∇ψ , (8.7)

ρa = µ
ρf

cf
2

∂ψ

∂t
, (8.8)

and

p = ρf µ
∂ψ

∂t
, (8.9)

ρf is the fluid density at equilibrium, cf is the sound velocity in an unbounded

fluid and µ is a scaling constant introduced to enhance numerical stability in fluid–

structure coupled systems.

8.2.2 Potential energy

From Temkin [18, Chapter 2.7], the acoustic potential energy per unit volume, U
′′′
f

in an ideal fluid is given by,

U
′′′
f =

1
2

c2
f

ρf
ρa

2 (8.10)

Combining equation (8.10) with equation (8.8), and taking the first variation of U
′′′
f

and applying the transformation to the frequency domain according to Section 1

yields the expression,

δUf =
∫

δU
′′′
f dV = ω2

∫
µ2 ρf

c2
f

δψ̂∗ψ̂ dV (8.11)

where V is the volume of the fluid and ∗ denotes complex conjugate.

8.2.3 Kinetic energy

Also from [18], the kinetic acoustic energy, T
′′′
f per unit volume in an ideal fluid is

given by,
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T
′′′
f =

1
2
ρf

∥∥∥∥
∂uf

∂t

∥∥∥∥
2

, (8.12)

where, ‖. . .‖ symbolises the Euclidean norm. Combining Equation (8.12) with Equa-

tion (9.2), taking the first variation of T
′′′
f and applying the transformation to the

frequency domain according to Section 1 yields,

δTf =
∫

δT
′′′
f dV =

∫
µ2ρf ∇δψ̂H∇ψ̂ dV , (8.13)

where, H symbolises the conjugate transpose, i.e. ∗T.

8.2.4 Virtual work from dissipative forces

The virtual work from dissipative forces are treated similarly to those for structures.

Consequently, it is found that dissipative forces can be accounted for by adding

imaginary parts to the coefficients in δUf and δTf , i.e. to ’µ2 ρf

c2f
’ and ’µ2ρf ’. Hence,

the coefficients, ’µ2 ρf

c2f
’ and ’µ2ρf ’ in equations (8.11) and (8.13) are replaced by,

µ2ρf (1 + iηv) and µ2 ρf

c2
f

(1− iηe) , (8.14)

where ηv ≥ 0 and ηe ≥ 0 are, the generally frequency dependent, damping coeffi-

cients.

Note that, the existence of a velocity potential, ψ, is valid since uf is irrotational in

ideal conditions. In practice, dissipative forces in fluids are commonly due to shear

viscosity. This viscosity may cause a rotational velocity field. Thus, an introduction

of dissipative forces due to shear viscosity may violate the assumptions leading to

equations (8.11) and (8.13). However, if shear forces are small compared to the

acoustic pressure the assumption of an ’ideal fluid’ is still valid in practice.

8.2.5 Lagrangian variational statement

The Lagrangian variation for the fluid is now given by combining equations (8.6),

(8.11), (8.13) and (8.14). The result is simply stated here:
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δLf = µ2

∫
ρf (1 + iηv)∇δψ̂H∇ψ̂ − ω2(1− iηe)

ρf

c2
f

δψ̂∗ψ̂ dV (8.15)

In the succeeding sections the coefficients, ρf and cf are considered to be constant

within each waveguide finite element. The scaling constant, µ, is required to be

constant within the entire fluid.

8.3 Waveguide finite elements

8.3.1 Shape functions and cross section geometry

The waveguide finite element method yields wave equations along the waveguide.

The dependence, with respect to the cross–section of a fluid element, is approximated

with test- and shape-functions for the variation term and the velocity potential,

respectively.

Assume that the velocity potential can be written with the śhape’-functions Nf as.

Ψ̂ = NT
f ψ̂(x) (8.16)

and similarly for δΨ̂. Then equation (8.15) can be rewritten with the aid of,

∫
Oδψ̂Oψ̂dV =

∫ ∫
δψH ∂Nf

∂y
∂NT

f

∂y
ψ̂ + δψH ∂N f

∂z
∂NT

f

∂z
ψ̂ +

∂δψ̂
H

∂x
NfNT

f

∂ψ̂

∂x
dAdx

(8.17)

and

∫
δψ̂ψ̂dV =

∫ ∫
δψ̂

H
NfNT

f ψ̂dAdx (8.18)

The routines used for integration over the cross section of solid elements can be used

for the fluid finite elements as well. The resulting equation of motion for a single

fluid element is,
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δLf =
∫

δψ̂
H
b00ψ̂ +

∂δψ̂
H

∂x
b11

∂ψ̂

∂x
− ω2δψ̂

H
n2ψ̂dx (8.19)

Note that the potential energy here gives the term proportional to ω2 whereas the

kinetic energy gives the terms proportional to the derivatives with respect to the

x -axis. This is the reason for the minus sign in equation (8.1).

The assembling of the fluid elements is carried out as for solid and plate elements,

the resulting equation in the absence of coupling is thus written as,

∫
δΨ̂

H
B00Ψ̂ +

∂δΨ̂
H

∂x
B11

∂Ψ̂
∂x

− ω2δΨ̂
H
N2Ψ̂dx = 0 (8.20)

The zero right hand side of this equation is because there are no external sources

implemented in WANDS, although this could easily be implemented. The weak form

of equation (8.21) can be integrated by parts as for solid and plate elements to give

the strong form,

−B11
∂2Ψ̂
∂x2

+ B00Ψ̂− ω2N2Ψ̂ = 0 (8.21)

which is the waveguide FE model for a fluid.
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Chapter 9

Fluid FE coupling to Plate FE

and Solid FE

The coupling between fluid finite elements and plate finite element is in theory

virtually the same as that between fluid finite elements and solid finite elements.

Hence, this chapter is focused on the derivation of the coupling between fluid and

plate elements. The small differences are noted in section 9.5.

9.1 Frequency domain coupling functional

From Chapter 1 in [1] a functional describing coupling between a fluid and a shell

over a wetted surface S, is given by,

δBc = −
∫

S

ρf µ

t2∫

t1

∂δψ

∂t
w + δw

∂ψ

∂t
dt dS , (9.1)

where, t denotes time, ρf is the fluid density at equilibrium, µ is a positive scaling

constant, δ denotes first variation, w is the shell normal displacement into the fluid

and ψ is the fluids velocity potential defined by,

∂uf

∂t
= −µ∇ψ , (9.2)
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where, uf is the fluid particle displacement. The first term in equation (9.1) is the

virtual work from the plate on the fluid and the second term is the virtual work

from the fluid on the plate.

The system state at t1 and t2 is irrelevant, given that harmonic motion over a long

period of time is considered. Thus, t2 and t1 may tend to ±∞ respectively without

any loss of information.

Parseval’s identity for two real valued functions, f (t) and g (t) yields,

+∞∫

−∞
f (t) g (t) dt =

+∞∫

−∞
f̂ (ω)∗ ĝ (ω) dω , (9.3)

where t is time, ω is angular frequency, * denotes complex conjugate and ^ denotes

the Fourier transform defined by,

ĝ (ω) =
1√
2π

+∞∫

−∞
g (t) e−iωtdt . (9.4)

Letting t1 and t2 tend to ±∞ and applying Parseval’s identity to equation (9.1)

gives,

δBc(ω) = iω

∫

S

ρf µ

∞∫

−∞
δψ̂∗ ŵ − δŵ∗ ψ̂ dω dS . (9.5)

Calculations of the response at different frequencies are independent when linear

systems are considered. Consequently, a variational formulation defined for each

frequency is given by,

δBc(ω) = iω µ

∫

S

ρf

(
δψ̂∗ ŵ − δŵ∗ ψ̂

)
dS , (9.6)

where, µ is taken out of the integral since it is required to be constant throughout

the fluid.
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9.2 Fluid shell coupling elements

9.2.1 Sign convention

Equation (9.1) and consequently equation (9.5) are defined so that a positive value

of the shell displacement, w, corresponds to displacement into the fluid. This fact

must be considered when fluid–shell coupling is introduced into the waveguide finite

element model. In WANDS a coordinate interior to the fluid must be specified. Two

vectors are then formed. The first, r12, is between the first and second local nodes

of the wetted edge of the element (assuming that this is the same for both elements).

The second,r10, is between the first local element node and the interior node in the

fluid. The sign of the cross product between the two vectors, i.e.

sign(r12 × r10) (9.7)

then gives the direction of the displacement. Figure 9.1 shows two adjoining fluid

and plate elements. If the node numbering of the coupled elements differs, the sign

is switched.

The co-ordinates for the two nodes ’i’ and ’l’ coincide. Similarly, nodes ’j’ and ’m’

also coincide. Node ’k’ is an internal node in the fluid, not to be connected to a shell

element. Upon requesting that the local z-coordinate of the shell element points

into the fluid, a positive out-of-plane displacement, w, corresponds to displacement

into the fluid. The node numbering is then chosen such that,

Node ’i’ is the local node 1 or 2 of the fluid element.

Node ’l’ is the local node 1 of the plate element.

Node ’j’ is the local node 2 or 3 of the fluid element.

Node ’m’ is the local node 2 of the plate element.

9.2.2 Shape–functions

Trial and test-functions are chosen equal in the following description and referred to

as ‘shape–functions’. The shape-functions for the velocity potential, ψ̂ and the plate
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Figure 9.1: Plate and fluid element

or shells out of plane displacement ŵ are described in Chapter 8 and 5 respectively.

Shape functions for plate

From Chapter 5, the out-of-plane displacement of the plate is denoted ŵ. The

element interpolation of ŵ and δŵ is written,

ŵ = NT
b (ϑ) ŵ (x) δŵ∗ = δŵ (x)HNb (ϑ) , (9.8)

where

ŵ =
[

ŵ1 φ̂1 ŵ2 φ̂2

]T
, δŵ =

[
δŵ1 δφ̂1 δŵ2 δφ̂2

]T
, (9.9)

and
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Nb (ϑ) =




1
4

(
2− 3ϑ + ϑ3

)

a
4

(
1− ϑ− ϑ2 + ϑ3

)

1
4

(
2 + 3ϑ− ϑ3

)

a
4

(−1− ϑ + ϑ2 + ϑ3
)




. (9.10)

w1, w2 θ1 and θ2 are the displacements and rotations about the x -axis for the

respective nodes.

Shape functions for fluid

For linear elements, the interpolation of ψ̂ on the wetted surface between nodes 1

and 2 is written,

ψ̂ =
[

ξ1 ξ2

]

 ψ̂1 (z)

ψ̂2 (z)


 (9.11)

where,ψ̂1 (z) is the value of ψ̂ at node 1 and ψ̂2 (z) is the value of ψ̂ at node 2.

The triangular co–ordinates ξ1 and ξ2 vary linearly between node 1 and node 2. At

node 1,

[
ξ1 ξ2

]
=

[
1 0

]
(9.12)

and at node 2,

[
ξ1 ξ2

]
=

[
0 1

]
(9.13)

Thus, on the wetted surface, the relation between ξ1, ξ2 and ϑ is,

ξ1 =
1
2

(1− ϑ) and ξ2 =
1
2

(1 + ϑ) (9.14)

Consequently, the shape functions for ψ̂ along the wetted surface are the same as

those for the linearly dependent in–plane displacements of a plate strip, i.e. û and

v̂, see Chapter 5. Hence, following the notations there, Np is now defined as,
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Np =
[

ξ1 ξ2

]T
(9.15)

.

Similar expressions are given for quadratic and cubic fluid elements.

9.2.3 coupling element

In Cartesian co–ordinates a small wetted surface area element is, dS = dx dy. Con-

sequently, with the interpolations for ψ̂ and ŵ given above, the sought coupling

element is described by,

δBfc,ω = iω

∫ [
δψ̂

H
δŵ

H
]
m1


 ψ̂

ŵ


dx (9.16)

where,

m1 = ρf µ


 I1

−I1
T


 , (9.17)

and

I1 = a

+1∫

−1

Np (ϑ)NT
b (ϑ) dϑ , (9.18)

This integral is evaluated analytically. The matrices I1 are subsequently assembled

into coupling matrices C1.

9.3 Coupling model in terms of matrices

The coupling will add off-diagonal block matrices that couple the two systems. With

the chosen formulation a coupled fluid shell system may be written as,

K4(−iκ)4 + K2(−iκ)2 + K1(−iκ) + K0 + iωM1 − ω2M2 = F (9.19)
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where the K matrices and the M2 matrix are formed of the fluid FE and plate FE

models such that,

Kj =


 Kjf 0

0 Kjp


 (9.20)

where indices f and p denotes fluid and plate subsystems respectively. The M2

consist of corresponding block matrices from the two sub-models . The coupling

matrix M1 has off diagonal coupling block matrices, such that,

M1 =


 0 C1

−CT
1 0


 (9.21)

Hence, iωM1 can be seen as a gyroscopic coupling matrix.

9.4 Validation

The validation here is made for linear triangular fluid elements only. This is mostly

because such elements are easy to mesh with the PDE-toolbox found in MATLAB. A

fluid filled pipe modelled with fluid-shell coupled waveguide finite elements derived

at KTH by Nilsson and Finnveden, [19], [1] and [20] are used here as a referenced

example. These elements in turn have been validated against an axi-symmetric

formulation derived by Finnveden [12].

The mesh is seen in Figure 9.2.

The parameters are chosen to resemble a 5 mm thick steel pipe filled with water.

The dispersion relations are given by solving the quadratic eigenproblem,

K4(−iκ)4 + K2(−iκ)2 + K1(−iκ)1 + K0 + iωM1 − ω2M2 = 0 (9.22)

The dispersion relations are plotted in Figure 9.3, together with those for the ref-

erence. The only difference between these two models is that the reference model

includes bubble degree of freedoms for the inplane motion of the plate elements.
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Figure 9.2: Mesh of a fluid filled pipe

The rings denote the WANDS model and, as can be seen, there is very little difference

between the models.

9.5 Fluid finite element coupling to solid finite elements

The theory for coupling fluid finite elements to solids is essentially the same as the

coupling to plate elements. The main difference is that the out of plane shape func-

tions for the solid differs from the plate strip. As for the fluid elements there are

three different forms of these shape functions along the wetted edge. To simplify the

programming, coupling is restricted to elements of the same type, i.e. linear fluid

elements can only be coupled to linear solid elements and likewise for quadratic and

cubic elements. Since all fluid and solid elements are required to have counterclock-

wise local node numbering, the direction of the coupling might be simplified. The

internal node is however still used in WANDS.
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Figure 9.3: Dispersion curves for a fluid filled pipe
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Chapter 10

Fluid Boundary Elements

10.1 Hamiltons principle

Consider a fluid system. Hamilton’s principle for the system is written,

δLf =

t2∫

t1

δ (Uf − Tf )− δWf,e − δWf,s dt = 0 , (10.1)

where,

Uf is the potential energy of the fluid system,

Tf is the kinetic energy of the fluid,

δWf,e is the virtual work from external sources,

δWf,s is the virtual work from the solid at the systems’ shared boundary.

For reasons later to be apparent, the fluid is considered undamped, thus the virtual

work from internal forces is not included in equation (10.1).

Let t1,2 → ∓∞ respectively and subsequently apply Parseval’s identity to obtain the

frequency domain relations. Due to linearity, each frequency may then be considered

independently.
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10.2 Energy variations and virtual work

The velocity potential Ψ, is defined such that,

∇(Ψ) = −v (10.2)

and

p = ρ
∂Ψ
∂t

(10.3)

where v is the particle velocity. In the frequency domain, the variation of the

potential and kinetic energies become, [1]

δUf = ρ

∫

V
k2δΨ̂∗Ψ̂dV (10.4)

where k = ω
c is the wavenumber of freely propagating waves, omega is the angular

frequency, c is the velocity of the fluid and ρ is the fluid density.

δTf = ρ

∫

V
∇(δΨ̂)H∇(Ψ̂)dV (10.5)

The virtual work from prescribed displacements at the boundary is defined as, see

[1] (p. 38).

δWf,s = −
∫

S
δpu · dS (10.6)

where, u is the particle displacement, S is the boundary surface of the fluid and

dS = ndS, with n being the unit normal vector out of the fluid domain. Substituting

the velocity potential into equation (10.6), we have,

δWf,s = −ρ

∫

S
δΨ∗∂Ψ

∂n
dS (10.7)

The ‘external’ forces can be seen as a large number of line sources, Qi. For simplicity

each monopole source is taken individually. The total contribution from all sources

can then found by considering a source at an arbitrary position. Thus,
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δWf,e =
∫

V
δΨ∗QidV (10.8)

where Qi = −Q̂i(x)δ(r − ri). δ is the dirac function r is the coordinate in the y-z

plane of an arbitrary point and ri is the coordinate of the line source in the y–z

plane.

10.3 Boundary equation

10.3.1 Greens formula

Applying Green’s formula to equation (10.5) results in,

ρ

∫

V
∇(δΨ̂)H∇(Ψ̂)dV = ρ

(∫

S
Ψ

∂δΨ∗

∂n
−

∫

V
δΨ∗4ΨdV

)
(10.9)

Substituting and rearranging equations (10.1), (10.5), (10.4) and (10.9) into equation

(10.1), yields,

ρ

(∫

V
k2δΨ̂∗Ψ̂ + δΨ̂∗4Ψ̂dV

)
+ ρ

(∫

S
δΨ̂∗∂Ψ̂

∂n
−Ψ

∂δΨ̂∗

∂n

)
(10.10)

10.3.2 Wavenumber domain

At this stage a second Fourier transformation to the wavenumber domain, with

κ being the wavenumber along the x -axis, is made by letting the length of the

waveguide tend to infinity and applying Parseval’s identity. With the same argument

as for the frequency transform, the wavenumber integral is then dropped. The result

is written,

ρ

∫

A
δΨ̃∗

(
42DΨ̃ + (k2 − κ2)Ψ̃ + Q̃iδ(r− ri)

)
dA +

(∫

Γ
δΨ̃∗∂Ψ̃

∂n
−Ψ

∂δΨ̃∗

∂n
dΓ

)

(10.11)

where, 42D = ∂2

∂y2 + ∂2

∂z2 , A is the area of the domain and Γ is the boundary. Both

integrals in (10.11) are now required to equal zero.
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10.3.3 Greens functions

By requiring the first integral in equation (10.11) to equal 0 for all possible choices

of δΨ∗ we have,

42DΨ̃ + (k2 − κ2)Ψ̃ = −Q̃iδ(r− ri) (10.12)

Wave solution

If k2 > κ2, the solution to equation (10.12) is generally written,

Ψ̃ = AH1
0 (r

√
k2 − κ2) + BH2

0 (r
√

k2 − κ2) (10.13)

for r 6= 0, where H1
0 and H2

0 are Hankel functions of order zero of the first and

second kind respectively, r = ‖r − r0‖ and A and B are real constants. With the

convention of time dependence ∝ eiωt, H1
0 represents an incoming wave, whereas H2

0

represents an outgoing wave. Thus A = 0.

The coefficient B is determined by considering the integral about the source point.

For Q̃i = 1 this yields, (see [Wu] Chapter3) B = − i
4 .

Nearfield solution

If κ2 > k2 we have the general solution,

Ψ̃ = CK0(r
√

κ2 − k2) + DI0(r
√

κ2 − k2) (10.14)

where K0 and I0 are modified Bessel functions. Since, I0(r) →∞ as r →∞, D = 0.

The constant C is evaluated by substituting equation (10.14) into equation (10.12)

and integrating over the area in the vicinity of the source. Again set Q̃i = 1, then,

we have,

lim
r → 0

∫

Γ0

∂Ψ̃
∂n

dΓ0 = −1 (10.15)
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By substituting to polar co-ordinates and using the limit ([21] p 240),

lim
x → 0

K0(x) = − ln(x) (10.16)

it is found that, C = 1/(2π). Inserting this value of C into equation (10.14) gives the

Green’s function for the near-field solution. By allowing complex values in K0, this

Green’s function is actually valid for all arguments α, as discussed in 10.5. Therefore

it is the only Green’s function used in WANDS.

10.3.4 Boundary integral

With the first integral in equation (10.11) solved, the focus is turned to the sec-

ond, which is also required to be zero. As for the first, area, integral, the second,

boundary, integral is written as a sum of two integrals. The first of these is over

the boundary of the fluid and the second over the boundary in the vicinity of the

source. Thus,

∫

Γ
δΨ̃∗∂Ψ̃

∂n
−Ψ

∂δΨ̃∗

∂n
dΓ =

lim
r → 0

∫

Γ0

δΨ̃∗∂Ψ̃
∂n

−Ψ
∂δΨ̃∗

∂n
dΓ0+

∫

Γ
δΨ̃∗∂Ψ̃

∂n
−Ψ

∂δΨ̃∗

∂n
dΓ = 0

(10.17)

The virtual velocity potential δΨ is chosen as a numerical approximation. Thus δΨ

is expressed analytically at r = r0. By noting this, the first integral on the right

hand side may be evaluated as,

lim
r → 0

∫

Γ0

δΨ̃∗∂Ψ̃
∂n

−Ψ
∂δΨ̃∗

∂n
dΓ0 = δΨ∗(r0)C(r0) (10.18)

where,

C(r0) =
lim

r → 0

∫

Γ0

∂ΨL

∂n
dΓ0 (10.19)

and ΨL is the solution of Laplace equation, i.e. the solution of equation (10.12) with

k2 − κ2 = 0. Substituting equation (10.24) into equation (10.17) yields,
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C(r0)δΨ∗(r0) = −
∫

Γ
δΨ̃∗∂Ψ̃

∂n
−Ψ

∂δΨ̃∗

∂n
dΓ (10.20)

10.3.5 Wavedomain BE-model

By approximating δΨ∗ with piecewise polynomials and evaluating equation (10.20)

for each node on the boundary, a system of equations is obtained. Since there is little

difference between the wavedomain BE equations and normal 2D BE equations, it

is natural to base a WBE program on 2D BE software. Here a 2D BE code made

by Wu [6] has been modified. The details of the code are found in Chapter 2 in [6].

In WANDS, the resulting matrix equation is written,

µHΨ̃ + µG
∂Ψ̃
∂n

=
−pin

iω
(10.21)

where µ is a scalar scaling coefficient introduced to improve conditioning numbers

see [1] (Chapter 3). H and G are generally full non-symmetric complex valued

matrices.

Equation (10.21) gives the relation between Ψ̃ and ∂Ψ̃
∂n , (or pressure and normal

velocity).

10.3.6 Robin boundary condition

Equation (10.21) does not provide a fully determined system. In addition to equation

(10.21) another relation between the boundary pressure and the velocity has to be

given. This second set of conditions are due to the specifics of the boundary, rather

than the fluid around it. There may either be boundary conditions specifying a

coupling to another system or there may be a local boundary conditions such as a

moving surface or an acoustic impedance. The latter can be described as Robin (or

impedance) boundary conditions. Then for each node we have,

Ca p + Cb vn = Cc (10.22)

which may also be written as a matrix equation,
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Cap + Cbvn = bf c̃c (10.23)

Since part of the boundary may couple to other subsystems the number of boundary

conditions may be less than the number of nodes in the fluid BE model. Hence equa-

tion (10.23) may not have square matrices. Also, internally in WANDS, equation

(10.23) is expressed in terms of the velocity potential and it’s normal derivative.

The physical interpretation is however clearer from (10.22) and the coefficients Ca,

Cb and Cc are given as input data to WANDS.

10.4 Difference compared to existing 2D BE software

Equations (10.11) and (10.12) show that the only difference from a 2D BE method

is that two different Green’s-functions must be used. For k > κ the ordinary 2D

Green–function is used, with the input argument (kr) → (r
√

k2 − κ2). For κ > k a

nearfield Green–function with the argument (r
√

κ2 − k2) is used.

Besides the introduction of a new Green’s-function for the nearfield solution, it

should also be noted that Wu approximates the pressure, p and normal velocity vn

rather than the velocity potential δΨ∗ and its normal derivative . Thus equation

(10.24) is written,

C(r0)p̃(r0) = −
∫

Γ

(
iρωṽnΨ + p̃

∂Ψ̃
∂n

)
dΓ (10.24)

which is exactly the same expression as in [6] page 31, but with p̃ and ṽn given in

the wave domain.

The main difference in WANDS is that the argument into the Greens function is

α =
√

k2 − κ2 instead of k, and that the Green’s function is also valid for imaginary

values of α.

In [6] the (2D) Boundary Element model for a fluid is given as,

[A] ŷ = â (10.25)
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where A = A(ω) is the system matrix, ŷ are the unknown pressures or velocities

and â are the known pressures or velocities.

This is different from equation (10.21) because equation (10.25) also includes the

boundary conditions. This gives smaller equations, but will be a cumbersome proce-

dure when some of the boundary conditions are replaced by couplings to surrounding

subsystems. Therefore equation (10.25) is not used in WANDS. Another, smaller

difference is that WANDS includes an option of using half-infinite spaces.

10.4.1 Note about Laplace equations

By letting r → 0 the 2D Laplace equation is obtained. The solution to this equation

is used for calculating the coefficient C(r0) in Wu’s BE-code. Both the wave and

near–field solution tend to −1/(2π) ln(r) as κ → k. Thus there is no need to change

this part of the 2D code.

10.5 General Green’s function

In the above derivation, the fluid is assumed undamped. For damped fluids k2

becomes complex. In that case there is a need to find a Green’s-function for any

possible choice of (k2 − κ2). Choose the time dependence ∝ e+iωt. Due to axial

symmetry about the point source, for simplicity located at r0 = 0, equation (10.12)

is rewritten as,

r2 d2Ψ
dr2

+ r
dΨ
dr

+ α2r2Ψ = 0 (10.26)

for any point r 6= 0. Note that α2 is generally a complex number.

10.5.1 Upper half plane Green’s function

<(α) may be either positive or negative. With the chosen time dependence and κ2

real, damping requires that =(α2) ≥ 0. The general solution to equation (10.26) is

then,
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Ψ = AK0(αr) + BI0(αr) (10.27)

where α =
√

α2. Since equation (10.26) is a second order equation, the two solutions,

K0 and I0 span its solution space.

For real valued wavenumbers κ, α2 is in the upper half plane or on the real axis

depending on wether damping is included or not. There are several different cases

for the value of α2.

Case 1 α2 = 0

Case 2 <(α2) = 0 and =(α2) > 0

Case 3 <(α2) > 0 and =(α2) = 0

Case 4 <(α2) > 0 and =(α2) > 0

Case 5 <(α2) < 0 and =(α2) = 0

Case 6 <(α2) < 0 and =(α2) > 0

Case 1

Case 1 corresponds to κ2 = k2 and no damping, this corresponds to the coincidence

frequency where the phase velocity along the line source is equal to that of the

surrounding fluid. This case, theoretically, results in an infinite radiation ratio, see

[13] also the field in the fluid doesn’t satisfy the Sommerfeld radiation condition, see

[22].

Case 2

With <(α2) = 0 and =(α2) > 0 we have, α = a + ia where a is real and positive. In

the far–field we have, see [21](p 240)

K0(αr)eiωt ∝ 1√
r
e−(a+ia)r+iωt =

1√
r
e−arei(ωt−ar) (10.28)

Thus AK0(αr) corresponds to an outward propagating decaying wave in this case.

Also in the far field,
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I0(αr)eiωt ∝ 1√
r
e(a+ia)r+iωt =

1√
r
earei(ar+ωt) (10.29)

Thus the amplitude of BI0(αr) increases in the far field and, thus B so be 0.

Case 3

With <(α2) > 0 and =(α2) = 0 we have, α = a with a real and positive. This

corresponds to an undamped case below coincidence frequency, which is expected

to behave as a nearfield. In the far field,

K0(αr)eiωt ∝ 1√
r
e−areiωt (10.30)

which is a decaying solution, i.e. a near–field solution (evaluated in the far–field).

Also,

I0(αr)eiωt ∝ 1√
r
eareiωt (10.31)

which is a solution with an increasing amplitude, thus B must be 0 in this case.

Case 4

With, <(α2) > 0 and =(α2) > 0 , α = a + ib, where a and b are real and positive.

This corresponds to a damped case below coincidence frequency. In the far field we

have,

K0(αr)eiωt ∝ 1√
r
e−(a+ib)r+iωt =

1√
r
e−arei(ωt−br) (10.32)

Thus AK0(αr) corresponds to an outward propagating decaying wave in this case.

Also in the far field,

I0(αr)eiωt ∝ 1√
r
e(a+ib)r+iωt =

1√
r
earei(ωt+br) (10.33)

106



Thus the amplitude of I0(αr) increases in the far field and, thus B must be 0. Thus

the results of Case 4 is equivalent to Case 2.

Case 5

With <(α2) < 0 and =(α2) = 0 we have, α = ia where a is a real and positive

constant. This corresponds to the undamped solution above coincidence frequency.

In the far-field,

K0(αr)eiωt ∝ 1√
r
e−iar+iωt =

1√
r
ei(ωt−ar) (10.34)

which is an outward propagating wave. Also in the far field,

I0(αr)eiωt ∝ 1√
r
eiar+iωt =

1√
r
ei(ωt+ar) (10.35)

which is an inward propagating wave. Since an inwardly propagating wave is un-

physical, B is yet again 0.

Case 6

With <(α2) < 0 and =(α2) > 0 we have, α = a + ib where a and b are real and

positive. Then, in the far field,

K0(αr)eiωt ∝ 1√
r
e−(a+ib)r+iωt =

1√
r
e−arei(ωt−br) (10.36)

This represents an outward propagating decaying wave. Also in the far field,

I0(αr)eiωt ∝ 1√
r
e(a+ib)r+iωt =

1√
r
earei(ωt+br) (10.37)

which represents an increasing inward propagating wave. Thus yet again B = 0.
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Amplitude of the Green’s function

From the above reasoning it is clear that the Green’s function for any physical choice

of α2 is,

Ψ = AK0(αr) (10.38)

where, α =
√

α2. To decide the unknown amplitude A, we proceed as in Section 10.3.3,

(or [6] Chapter 3.1), by considering a small integral around the source.

The resulting equation, see [6] p 31, is,

lim
r → 0

∫

Γ0

∂Ψ
∂r

dΓ0 = −1 (10.39)

The limit,

lim
r → 0

K0(αr) ∼ − ln(αr) (10.40)

see [21] p. 240. Now, evaluating the integral of equation (10.39) results in,

A =
1
2π

(10.41)

Hence,

Ψ(r) =
1
2π

K0(αr) (10.42)

for any choice of α ∈ C.

Important note

The above derivation of a Green’s function valid for any choice of α depends on the

choice of time dependence. If instead of e+iωt, e−iωt, were chosen, Case 3, <(α2) < 0,

will still result in a decaying solution for K0. However Case 5, <(α2) > 0, will

produce an outgoing wave for K0. Thus the time dependence must be, ∝ e+iωt.
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10.5.2 Lower half plane Green’s function

The Green’s function derived in the previous section is valid for any choice of α2 =

k2 − κ2 that belongs to the upper half plane. A Green’s function valid for α2 in the

lower complex half plane is given by noting that if,

α2 = ±a− ib (10.43)

where a and b are positive and real, then,

α = ±
√

a− ib = ±(c− id) (10.44)

By choosing the negative sign of the solution it can be proved that the K0 solution in

equation (10.27) must be discarded, whereas I0 gives a physically correct solution.

With A = 0, the coefficient B = −1
4 is found in a similar way to that given in

Section 10.5.1. Hence,

Ψ(r) =
1
2π

K0(αr) (10.45)

where α =
√

α2 for α2 in the upper half plane and

Ψ(r) = −1
4
I0(αr) (10.46)

where α = −
√

α2 for α2 in the lower half plane. For =(α2) = 0 either solution may

be used. For α2 = 0 (coincidence) neither solution is valid.

10.6 Fluid BE validation

10.6.1 Solution for an axi–symmetric wave on a pipe

Analytical solutions

Consider a pipe with an axi-symmetric displacement. Since there is no θ dependence,

the governing equation for the surrounding fluid is given by,

109



∂2p

∂r2
+

1
r

∂p

∂r
+

∂2p

∂z2
+ k2p = 0 (10.47)

where p is the pressure and r and z are the radius and axial coordinate respectively. k

is the wavenumber for freely propagating waves, i.e. k = ω
c and c is the propagating

speed in the fluid. The boundary condition for a displacement wave along the

cylinder with radius, a is,

∂p

∂r
|r=a = −iρωvre

−iκz (10.48)

where ρ is the fluid density and vr is the amplitude of the velocity of the wave. Also

due to the Sommerfeld radiation condition,

lim r →∞ p(r) ∝ 1√
r

(10.49)

By applying a Fourier transform to equation (10.47), is written,

∂2p

∂r2
+

1
r

∂p

∂r
+ (k2 − κ2)p = 0 (10.50)

Propagating solution

If k > κ the solution of equation (10.50) is,

p(r, κ) = AH
(2)
0 (αr) + B H

(1)
0 (αr) (10.51)

where H
(1)
0 and H

(2)
0 are the first and second kind Hankel functions of zero:th order

respectively and α =
√

k2 − κ2. With the convention of time dependence∝ exp(iωt),

H
(1)
0 represents an incoming wave, thus B = 0.

The Fourier transform drops the exponential dependence of the first boundary con-

dition. Thus the first boundary condition gives the coefficient A as,

A =
iωvr

αH
(2)
a (αa)

(10.52)
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The pressure, p, is therefore given by,

p(r, κ) =
iωvr

αH
(2)
a (αa)

H
(2)
0 (αr) (10.53)

Nearfield solution

If κ > k the solution of equation (10.50) is,

p(r, κ) = C K0(αr) + D I
(1)
0 (αr) (10.54)

where I0 and K0 are modified Bessel functions of the first and second kind and

α =
√

(k2 − κ2). Since, I0(αr) → ∞ as r → ∞, D = 0. To find C we use the

boundary condition at the cylinder surface is used to obtain,

C =
iρωvr

αKa(αa)
(10.55)

Thus,

p =
iρωvr

αKa(αa)
K0(αr) (10.56)

WBE solution

The propagating analytical and WBEM solutions for a cylinder with a = 1 m, f =

131.235Hz, c = 343 m/s and κ = 11/m is shown in Figure 10.1. The frequency and

sound speed corresponds to k = 2.404m−1 and the WBEM solution uses 16 nodes

and 8 elements.

The nearfield solution for the same cylinder and frequency but with κ = 51/m is

shown in Figure 10.2.
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Figure 10.1: Solid lines=real part of pressure; dashed lines= imaginary part of

pressure; dots=WBEM

10.6.2 Infinite duct

2D duct model

The mesh for a 2D duct is seen in Figure 10.3. The length of the duct ensures that

it may be seen as infinite, given the impedances used here.

The floor, i.e. the lower part of the duct is assumed rigid. The central part of

the floor, between y = ±X0 [m] moves with a velocity of 1m/s (with zero phase

corresponding to motion into the duct). The ceiling of the duct has an impedance

of Z = ρ c (a + b i). The fluid density, ρ = 1.21 kg/m3 the fluid sound speed is

c = 343m/s.
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Figure 10.2: Solid lines=real part of pressure; dashed lines= imaginary part of

pressure; dots=WBEM

10.6.3 WBEM duct model

The mesh for the WBEM duct is seen in Figure 10.4

The width of the duct ensures that it may be seen as 2 dimensional. The entire floor

in the WBEM model is seen as hard and moving with velocity 1 m/s into the duct.

10.6.4 Comparison of 2D BEM and WBEM

For X0 = 3m, a = 10 and b = 5, z = 0.7m and frequency, f = 101.04Hz the result

is shown in Figure 10.5.

For longer distances, x, the solution for the WBE model decays faster than the 2D

model as can be seen in Figure, 10.6.

Figure 10.6 shows the imaginary part of the solution but the real part behaves
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Figure 10.4: Mesh of infinite 2D duct.

similarly. This discrepancy may be corrected by letting the impedance be dependant

on κ. Results for the correction Z → Z(3 + (k − κ)4)/4 are shown in Figure 10.7.

No general correction of this type is available. Since, in reality, impedance is usually

dependant on the the angle of incidence and the WBEM method at least gives some

means to correct for this angle, the discrepancy in Figure 10.6 is not a serious one.

Another example is calculated for X0 = 2 m, z = 0.3m, f = 101.04Hz, a = 2 and

b = 1. This is shown in Figure 10.8.
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Figure 10.5: Solution for infinite duct, solid and dashed = real and imaginary parts

of 2D-model solution; dots = WBE model solution
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Figure 10.6: Imaginary part of solution for infinite duct; thick line = 2D model; thin

line = WBEM model
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Figure 10.7: Imaginary part of solution for infinite duct; thick line = 2D model; thin

line = WBEM model
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Chapter 11

FE plate and FE solid to BE

fluid coupling

11.1 Introduction

The coupling between a solid or plate finite element model and a fluid boundary

element is considered in this chapter. Two boundary conditions have to be fulfilled.

Firstly, the displacements normal to the boundary must be equal. Secondly the

virtual work from the fluid pressure acting on the solid (or plates) must be included

in the finite element model. The virtual work from the finite element exerted onto

to fluid is not needed, as explained in Section 11.4.

11.2 WFE-model

The derivation of waveguide finite element models for plates and solids are detailed

in 5 and 4. The result may be written,

∫ 


2∑

i=0

2∑

j=0

∂iδÛH

∂xi
Aij

∂jÛ
∂xj

− ω2δÛHMÛ− δÛHF̂


dx = 0 (11.1)

where, Û is a vector of the response variables, mainly nodal displacements, and Aij

and M are matrices.
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By letting the integration interval tend to ∓∞ and applying Parrseval’s identity,

equation (11.1) may be written in terms of variables in the wavenumber domain, κ,

denoted with the ˜ symbol. The equation of motion becomes,

∫ +∞

−∞

(
δŨH

(
K(κ)− ω2M

)
Ũ− F̃

)
dκ = 0 (11.2)

Since δŨH in equation (11.3) is arbitrary and, due to linearity, solutions for different

wavenumbers, κ, are independent, we have,

(
K(κ)− ω2M

)
Ũ− F̃f − F̃e = 0 (11.3)

Where the force vector has been split up as a sum of forces from the coupled BE

model, F̃f , and other external forces F̃e.

11.2.1 Calculation of force vectors

F̃ may be calculated by considering the virtual work for each element,

δW =
∫

Ω
δũHf̃dΩ (11.4)

where δũH is the virtual displacement in an element, f̃ is the the force per unit

volume or area and Ω is either an area (for plate elements) or a volume (solid

elements). In the most common, Gelerkin, FE approximations also used here, the

virtual displacement uses the same shape functions, N, that approximate the sought

displacements. Thus the virtual work on each element may be written,

δW =
∫

x
δũH

∫

A
NTf̃ dAdx =

∫

x
δũHf̃ dx (11.5)

Assembling the element virtual works according to equation (11.5) yields,

δW =
∫

δŨHF̃dx (11.6)

which is the result used in equation (11.1).
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11.3 WBE-model

A Wavedomain Boundary Element (WBE) model for the fluid is derived in Chapter 10.

When the boundary conditions are not included, the result may be written as,

[
H

]
p̃−

[
G

]
ṽn = p̃i (11.7)

where, [H] and [G] and are matrices depending on the argument
√

(k2 − κ2). p̃

and ṽn are the pressures and normal velocities at the shared boundary and p̃i is the

boundary pressure due to incoming waves. (see [6] Ch 2 eq 47)

11.4 Boundary conditions

Only boundary conditions along the length of the system are considered here and

not those at its end. For each system there are two types of boundary conditions,

Dirichlet (or Essential) and Neuman (or Natural).

The Dirichlet solid–fluid boundary conditions are the displacements along the wetted

surface. The displacements for the two systems must match, thus,

iωũ⊥ = ṽn (11.8)

where, ũ⊥ is the displacement of the solid normal to the surface and into the solid

and ṽn is the particle velocity of the fluid normal to the surface.

Neuman boundary conditions are due to the virtual work on the respective model

from the other system.

For the solid model the virtual work is due to a virtual displacement and the force

from the ’actual’ fluid pressure acting on the surface. Thus, for each element along

the surface, the virtual work from the fluid is given by,

∫
δũH
⊥p̃ dΓ (11.9)

where, δũ⊥ is the virtual displacement normal to the surface and out of the fluid.
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For the boundary element model the virtual work is due to the ’virtual pressure’,

i.e. the first variation of the pressure multiplied by the displacement of the solid

into the fluid. This term is already included in the boundary element formulation

as,

Ψ
∂δΨ̃∗

∂n
(11.10)

where δΨ̃∗ is the Green’s function of the system, see Chapter 10.

11.4.1 The Dirichlet Boundary Conditions

At the shared boundary the normal displacement of the WFE model must equal

the normal displacement of the WBE model. The velocity vn of the WBE model is

defined to be positive for velocities out of the fluid domain, ([6] p 31 + p32).

Also here the time dependance is ∝ eiωt

With these conventions we have,

iωũ⊥ = ṽn (11.11)

where, u⊥ is the normal displacement of the WFE model into the solid. These

displacements are given as a subset of all response variables, U, so that,

iωC2Ũ = I2ṽn (11.12)

where C2 is a transformation matrix transforming FE-displacements Ũ to the equiv-

alent normal displacements at the boundary. I2 is a matrix that is unitary if all

normal velocities where coupled to the finite element model.

A more detailed derivation of C2 for different elements is made in Section 11.7. Also

note that the assembling of C2 differs from assembling finite element matrices. This

is because the contribution to a nodal displacement from different elements should

be averaged rather than added.
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11.4.2 The Neumann Boundary Condition

The virtual work from the fluid on the solid must be positive for a displacement

resulting from a pressure increase. Thus the displacement should be defined as

positive into the solid. The virtual work, δ̃Ws,f , from the fluid to the solid in the

wavenumber domain is written as,

δ̃Ws,f =
∫

Γ
δũ∗p dΓ (11.13)

where Γ is the shared boundary between the solid and fluid domains and δu is

the virtual displacement into the solid. The integral of equation (11.13) should be

evaluated for each segment along the boundary. Both δũ∗ and p̃ are approximated

by piecewise polynomials. Thus for each segment (boundary element) along the

shared boundary,

δũH

∫

Γ
NT

uNf dΓ p̃ele (11.14)

The integral in equation (11.14) forms a coupling matrix between the finite element

and the boundary element. If all these elements are assembled we have,

δ̃Ws,f = δŨH [C1] p̃ (11.15)

Hence the force from the fluid onto the plate or solid FE model is given by,

[C1] p̃ (11.16)

A more detailed derivation of C1 for different elements is made in Section 11.6. This

matrix is however very similar to that used for the force of a fluid FE model onto a

plate or solid FE model.
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11.5 Combined equations

In total there are at least three equations that have to be fulfilled. First the FE-

model must be fulfilled. This equation now also includes the forces from the fluid

acting on the solid FE model.

[
K(κ)− ω2M

]
Ũ− [C1] p̃ = F̃ (11.17)

The second equation that must be fulfilled is the BE model,

[
H

]
p̃−

[
G

]
ṽn = p̃i . (11.18)

The third equation is the boundary conditions that specifies equal velocity of the

two systems,

iω [C]2 Ũ− I2ṽ = 0 . (11.19)

A fourth equation is the Robin boundary conditions, that may have to be used for

boundary element nodes that are not coupled to the FE model, see Chapter 10.

By introducing the velocity potential according to Chapter 8, such that,

∇(Ψ) = −µṽ (11.20)

and

p = iωµρΨ̃ (11.21)

the combined system may be written as,




µGnew µH 0

0 −iωρµC1

(
K(κ)− ω2M

)

µ (I2) 0 −C2







∂Ψ̃
∂n

Ψ̃

Ũ


 =




p̃i

iωρ

F̃

cc


 (11.22)
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where, Gnew = 1
iωρG.

Note If the Robin boundary conditions are needed for some part of the boundary

this will add a fourth row to equation (11.22). The two last ‘blocks rows’ should

however together have precisely the number of rows that the BE model has nodes.

Note In the original calculation, see Chapter 3 in [6], there is a multiplication of

iωρ involved in the calculation of G, so the G matrix that is defined here is in fact

a simplification compared to [6]. (A direct use of the code in [6] would give a BE

model that depends on both of the two arguments ω and κ, rather than just α(ω, κ)).

11.6 Derivation of Neuman coupling matrix

The C1 matrix in Section 11.4.2 is derived in some more detail in this section.

For each element the virtual work from the fluid on the plate is given by,

δW =
∫

Γ
δũ∗⊥p̃d Γ (11.23)

The out of plane displacement, u⊥, for a plate element is approximated as,

u⊥ = w = N(ξ)ũ (11.24)

where, N(ξ) and ũ are given by,

Nb(y) = [N1b N2b N1b N2b] =




1
4(2− 3ξ + ξ3)

L
8 (1− ξ − ξ2 + ξ3) 1

4(2 + 3ξ − ξ3)
L
8 (−1− ξ + ξ2 + ξ3)




T

(11.25)

and
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δũH =




δw̃∗1
δφ̃∗1
δw̃∗2
δφ̃∗2




(11.26)

11.6.1 Sign of displacement into the FE–domain

To make sure that the local displacements are positive into the FE–domain, consider

the expression,

intflag = sign(r̃e × r̃i) • ẽx . (11.27)

where the all vectors are defined in Figure 11.1.

The intflag = +1 if the out–of–plane displacement is positive into the FE–domain and

intflag = −1 if they are positive into the fluid. Thus by multiplying the displacements

with intflag they are ensured to be positive into the FE–domain.

Thus,

intflag · δu⊥ (11.28)

is always positive into the FE–domain.

11.6.2 Transformation from global to local displacement

The global degrees of freedom of a plate model are given in the global x, y and z

directions and the rotation φ. To retrieve the displacement normal to an element,

a transformation from the global system coordinate system to the, plate elements,

local coordinate system is employed. By also including, intflag, defined above, the

transformed displacements are assured to be into the FE-domain. Hence,
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Figure 11.1: Making displacements positive into the FE-domain
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


w̃1 loc

φ̃1 loc

w̃2 loc

φ̃2 loc




= intflag




− sin(ϕ) cos(ϕ) 0 0 0 0

0 0 1 0 0 0

0 0 0 − sin(ϕ) cos(ϕ) 0

0 0 0 0 0 1







ṽ1

w̃1

φ̃1

ṽ2

w̃2

φ̃2




(11.29)

The pressure of the boundary element model does not need any transformation since

it is a scalar.

For an edge of a solid element with cubic interpolation functions, there are four nodes

on the edges. Assume that all of the edge nodes lie equally spaced on a straight line.

The transformation from global to local coordinates then given,




w̃1 loc

w̃2 loc

w̃3 loc

w̃4 loc




= intflag




−sϕ cϕ 0 0 0 0 0 0

0 0 −sϕ cϕ 0 0 0 0

0 0 0 0 −sϕ cϕ 0 0

0 0 0 0 0 0 −sϕ cϕ







ṽ1

w̃1

ṽ2

w̃2

ṽ3

w̃3

ṽ4

w̃4




(11.30)

where sϕ = sin(ϕ) and cϕ = cos(ϕ) has been introduced to save some space. For

linear and quadratic interpolating functions only the 2 by 4 and 3 by 6 upper left

part of the transformation matrix are needed.

11.6.3 Integration of element coupling

Evaluating equation (11.23) for a single element of width 2a now gives,
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δW =
∫ +a

−a
δũH

locNb(x, a)Np(x)p̃dx = δũH [T] a

∫ +1

−1
Nb(ξ, a)Np(ξ) dξ p̃ (11.31)

where,

δũH =
[

δṽ∗1 δw̃∗1 δφ̃∗1 δṽ∗2 δw̃∗2 δφ̃∗2
]

(11.32)

and the transformation matrix [T] is the matrix given in equation, (11.29).

By assuming that the nodes of the boundary element are equally spaced and lye

on a straight line, the above integral may be evaluated analytically. The results

for the plate’s out-of-plane shape functions and different interpolating boundary

element functions has been calculated with MAPLE. The results for linear, quadratic

and cubic fluid shape functions are,

a

∫ +1

−1
Nb(ξ, a)Np(ξ)dξ =




7
10

3
10

a

5
2 a

15
3
10

7
10

−2 a

15
−a

5




(11.33)

a

∫ +1

−1
Nb(ξ, a)Np(ξ)dξ =




11
30

2
3

−1
30

a

15
4 a

15
0

−1
30

2
3

11
30

0 −4 a

15
− a

15




(11.34)

and

129



a

∫ +1

−1
Nb(ξ, a)Np(ξ)dξ =




4
35

93
280

3
70

3
280

a

70
3 a

28
3 a

70
a

420
3

280
3
70

93
280

4
35

− a

420
−3 a

70
−3 a

28
− a

70




(11.35)

for the respective case.

For coupling between solid finite elements and fluid boundary elements only elements

with the same type of interpolation are implemented in WANDS. Other coupling

types and curved boundaries may be implemented in the future. For cubic–cubic

coupling on a straight line with equally spaced nodes the integral in equation (11.31)

the interpolation functions both for the boundary element and for the edge of the

solid finite element are given in [6]. The evaluation of the ‘cubic-cubic’ integral

results in,




4
105

33
1120

−3
280

19
3360

33
1120

27
140

−27
1120

−3
280

−3
280

−27
1120

27
140

33
1120

19
3360

−3
280

33
1120

4
105




(11.36)

The quadratic-quadratic coupling results in,




4
15

2
15

−1
15

2
15

16
15

2
15

−1
15

2
15

4
15




(11.37)

The linear-linear coupling results in,
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


2
3

1
3

1
3

2
3


 (11.38)

11.6.4 assembling

The assembling of different coupling element matrices into a global coupling matrix

are made as in a normal FE–software.

11.7 Derivation of Dirichlet coupling matrix

11.7.1 Boundary conditions for each element

Consider a plate finite element coupled to a linear boundary element. The essential

(or Dirichlet) boundary condition is that,

iωũ⊥ = ṽn (11.39)

Given that ṽn is defined as normal velocity positive into the solid, (iωũ⊥) must also

be defined positive into the solid. By using intflag as defined in equation, (11.27)

the relation for coupling a linear boundary element to a plate finite element may be

written,


 ṽ1n

ṽ2n


 = iω


 1 0 0 0

0 0 1 0







w̃1loc

φ̃1loc

w̃2loc

φ̃2loc




(11.40)

where the local node displacements are given as in equation (11.29). For a quadratic

boundary element we must evaluate the interpolation function of the plate element

at the mid coordinate, this gives,
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


ṽ1n

ṽ2n

ṽ3n


 = iω




1 0 0 0
2
4

a
4

2
4

−a
4

0 0 1 0







w̃1loc

φ̃1loc

w̃2loc

φ̃2loc




(11.41)

and for a cubic boundary element, e.g. a four–noded element, we have,




ṽ1n

ṽ2n

ṽ3n

ṽ4n




= iω




1 0 0 0
80
27

32a
27

28
27

−16a
27

80
27

32a
27

28
27

−16a
27

0 0 1 0







w̃1loc

φ̃1loc

w̃2loc

φ̃2loc




(11.42)

For a solid finite element coupled to a boundary element with the same type of

interpolation the matrices above are replaced with identity matrices. Naming the

above matrices [BCmat] the coupling matrix [C2] for each element may be written,

ṽn = iω[BCmat][T]ũ (11.43)

11.7.2 Assembling

The assembling of Dirichlet boundary conditions from different elements cannot

be made by just adding the matrix components. This is because these represents

displacements and thus for a node shared between two elements the imposed dis-

placements would be twice that of a neighbouring node that is not shared. Instead

the average displacement from each element must be imposed. This is effectively a

parallel coupling of the displacements. Thus, at a shared node,

cij =
cij1 · cij2

cij1 + cij2
(11.44)

where cij is the assembled matrix and, cij1 and cij2 are the components from coupling

of the respective elements.
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Chapter 12

Solid BE model

12.1 General

The solid BE model is made by subroutines created by X.Sheng [23] and [4]. These

subroutines gives the relation between ‘traction’ vectors and displacements at the

boundary. The ‘traction’ vectors are forces per unit area acting on the boundary,

hence the normal component of a traction vector is a pressure.

The matrix equation, see [4], is written,

[Hsolid]ũ = [Gsolid ]̃t + b (12.1)

where, û is a vector of the displacement at the boundary and t̂ is a vector of the

traction forces on the boundary. The vector b denotes body forces but these have

not been implemented in WANDS.

Note!

Equation (12.1) is different from the corresponding fluid BE equation in the same

way that a solid FE equation differs from a fluid FE equation. Hence, [H] is always

the matrix in front of the ‘primary’ variable. For a fluid this is the pressure whereas

for the solid it is the displacement. The ‘secondary’ variable is in both cases that

which is proportional to a spatial derivative to the primary variable. For the solid

this is the traction vector.
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However to comply with the order in which the fluid BE model is written, the

assembly into the system matrix is made so that the traction vector comes first.

Hence,


 −Gsolid Hsolid . . .

. . .







t̂

û

. . .


 (12.2)

There are some other differences between the solid and the fluid BE models.

• There are three (essential) boundary conditions that need to be given for each

node.

• Only quadratic elements are implemented for the solid BE models.

• The solid BE model always has some damping included in the material. This

means that there is no need to implement the ‘CHIEF’ points used for the

fluid BE.

• There are no field or power calculations implemented in the solid BE model.

• There is however an edge element option in the solid BE formulation.

The local coordinate system of the solid BE-model is shown in Figure 12.1

x is the first direction vector, s is the second and n is the third. The boundary is

indicated with a dashed line

12.2 Boundary conditions

In addition to the boundary element equation (12.1) (without body forces), essen-

tial (Dirichlet or Robin) boundary conditions are also needed. These are generally

written as,

CAui + CBti = CC (12.3)
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Figure 12.1: Coordinate system of solid boundary element compared to global co-

ordinate system.

135



where ui is the displacement in the i:th direction 1 = x, 2 = s, 3 = n and similarly

for the traction ti in the i:th direction. These boundary conditions are then written

into the system matrix, similarly to the boundary conditions for the fluid BE model.

Internally in the system matrix in WANDS, CB is to the left of CA, since the traction

components are numbered lower that the displacements, see equation (12.2).

12.3 Validation

A simple validation example has been made where the displacements in a solid FE

model are compared with those in a solid BE model. Since the BE models have

already been used in Sheng’s software [4] and [23], this very simple model is the

only one considered.

The example was also used to clarify the coordinate directions used by Sheng.

The FE mesh is seen in Figure 12.2,

The results of a simple BE model are compared with the solution for this model.

The axis in figure 12.2 are given in metres and the material is aluminium, but with

an unusually high loss factor of η = 0.1. The validation is for an almost static case

with ω = 20 Hz and κ = 1 m−1. A downward force is applied at the top centre

node of the FE mesh. The magnitude of this force is 0.05 N, which approximately

corresponds to a pressure of 1/3 N/m applied to the three mid nodes of the BE

model.

The bottom nodes of the FE model are restrained.

The BE model is just a straight line from y = 12 to y = 8 metres. The reason

for letting the boundary elements run from a higher value of y to a lower, is that

this corresponds to a BE model below the line. Hence if x is the unit vector in the

x-direction and s is the unit vector in the direction along the boundary element,

then n = x× s is the unit vector pointing into the solid domain.

The displacements in the x-direction is plotted in Figure 12.3

The displacements in the s-direction, i.e. in the negative y-direction, are plotted in

Figure 12.4.
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Figure 12.2: Simple FE model for validation of solid BE.
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Figure 12.3: Displacement in the x-direction.
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Figure 12.4: Displacement in the x-direction.
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Figure 12.5: Displacement in the x-direction.

The displacements in the n-direction, i.e. in the negative z-direction, are plotted in

Figure 12.5.

The solid lines in these figures are the real part of the displacement and the dashed

lines corresponds to the imaginary parts. The circles corresponds to the FE model.

Note!

As already mentioned, the force in the FE model corresponds to pressures in the

BE model, which may explain the less sharp displacements in the BE model. The

edge nodes of the BE model have very large displacements, which are not shown

here. These displacements might become more normal if the ‘edge element’ option

is included. The slightly rough displacements of the BE model, especially in the

x-direction, might be due to either some numerical problems or some minor error in
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the code. The largest displacement (in the z-direction) is however fairly smooth and

further investigation is not within the scope of this work. The condition number

of the system matrix for the BE model is 7 · 103 which is well within any double

precision accuracy.
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Chapter 13

Solid BE to Plate FE and Solid

FE coupling

Coupling of a solid boundary element to a plate or solid finite element model is

very similar to the coupling of a fluid boundary element to the same types of finite

elements.

Hence the coupling consists of two parts.

13.1 Virtual work on FE model

The first part describes the forces from the boundary element model onto the plate

or solid finite elements. The main difference compared to the fluid boundary element

coupling is that there are three directions of the forces along the boundary elements

that need to be coupled to the finite elements. In principle this is done as for the

coupling of fluid boundary elements. Thus, over one element we have the virtual

work in the frequency domain,

δW =
∫

δtHu ds (13.1)

where,
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t =
[

tx ts tn

]
(13.2)

are the traction vectors in the local coordinate system along the boundary element

and

u =
[

ux us un

]
(13.3)

are the corresponding displacements at the edge of the finite element. The traction

vector in the n direction is the pressure onto the solid boundary element.

To be able to calculate these components of the virtual works we may note that

both the displacements and the traction can be described by shape functions Nbe(s)

and Nfe(s) that describe these along the coupled edge. The shape functions for

the boundary elements are quadratic, and for simplicity they are considered to be

straight here. Hence,

ti = Nbe(s)̂ti (13.4)

where subindex i = x, s, n and

Nbe(ξ) =
[

1
2ξ(ξ − 1) (ξ + 1)(ξ − 1) 1

2ξ(ξ + 1)
]

(13.5)

and ξ = s/a where a is the half width of the element.

In WANDS solid boundary elements are only coupled to solid finite elements that

also are quadratic. For plate elements the inplane displacements, i.e. the x and s

displacements are linear whereas the out of plane motion is cubic. The virtual work

from the traction vector in the i-direction may thus be written,

δWi = δt̂H
i

∫
Nbe(s)TNfe(s) dsûi (13.6)

the virtual work in the other directions are similar. The total virtual work on the

finite element could be written as one equation. Here, however, it is simply seen as
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the sum over the indices i and after dropping the δt̂H
i term (in accordance with how

it is made for other couplings) the entries for each direction are assembled into the

coupling matrix. For the s and n directions a transformation matrix must also be

applied. Hence,

ûs = Tû (13.7)

where u here includes all nodal degrees of freedom along the edge of the finite

element.

As discussed in Chapter 10 the virtual work, or Neuman boundary condition, is

already included in the boundary element model.

13.2 Essential boundary conditions

The essential boundary conditions are simply that the displacements at each pair

of coupled nodes must be the same. For each element his gives an equation of the

type,

Iube −Tufe = 0 (13.8)

For instance to couple the out of plane motion of a plate with the out of plane motion

of a solid boundary element, the displacements of the nodes of the plate element

must first be given in the local coordinate system of the boundary element. Since

the plate element is assumed to be angled as the boundary element, we have




w′1
φ′1
w′2
φ′2




=




− sinα cosα 0 0 0 0

0 0 1 0 0 0

0 0 0 − sinα cosα 0

0 0 0 0 0 1







v1

w1

φ1

v2

w2

φ2




(13.9)
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where the primed system is that angled in the same way as the boundary element

and the unprimed is the global coordinate system. The mid node displacement of

the boundary element should be coupled to the displacement at the middle of the

plate element. This displacement is given by the out of plane displacements and

rotations of the two plate nodes, by evaluating the shapefunctions at s = 0. The

result is,




w1B

w2B

w3B


 =




1 0 0 0
1
2

a
4

1
2

a
4

0 0 0 1







w′1
φ′1
w′2
φ′2




(13.10)

where the subindex B denotes displacement corresponding to the boundary element

and a is the half width of the plate.
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Chapter 14

Software structure

The general structure of the WANDS software is described here. The main pro-

gram can be seen as consisting of three parts. These are firstly a subroutine called

GEN READ that reads essential generic data for the system. Secondly a part that

creates different data structures and creates the sub matrices used to form the sys-

tem matrix. Finally a part that assembles and solves the system and writes the

calculated results.

14.0.1 GEN READ

The first part is the GEN READ subroutine which reads the system data from the

input file. The system data is the data in the input file that begins with the word

*INSYS:. Primarily this information defines which different submodels are to be

found in the rest of the input. In the *INSYS: data blocks each submodel is given a

‘tag’. These tags are exported to the main program where they are used as inputs

to the subroutines that constructs the different block matrices for the system.

The data that is read also provides information on the frequency and wavenumber

ranges that should be used as well as specifying what data should be written to

output files.
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14.1 Submodel routines

When the *INSYS: blocks are read, the number of different submodel types have

been decided and ‘tagged’. This means that the matrices that are used to form the

complete system have been decided and the program now starts to search for the data

needed to form each of these matrices. As can be seen from the earlier discussions in

this manual, the block matrices for the FE submodels and the coupling submodels are

found by multiplying a number of submodel matrices by wavenumbers, frequencies

and sometimes a scaling factor. For instance, for a solid FE model, the dynamic

stiffness matrix becomes

Ds =
[
K2(−iκ)2 + K1(−iκ) + K0 − ω2M2

]
(14.1)

Hence the matrices K2, K1,K0 and M must be formed first and then used re-

peatedly to create different dynamic stiffness matrices Ds for different values of the

wavenumber κ and the frequency ω.

The code the mainprogram calls to create solid FE matrices is,

c-------------------------------------------------------------------------

c SET FE SOLID MATRICES

DO 60 s_count=1,SIZE%fes_mods

WRITEDATA%FES(s_count)%WR = SYSDATA%FE_SOLID(s_count)%WR

TAG(1) = SYSDATA%FE_SOLID(s_count)%tag

TAGLENG(1) = SYSDATA%FE_SOLID(s_count)%tagleng

! write matrices if WR is true

CALL FE_SOLID(filein,folder,SOLID_MATS(s_count),

* tag(1),tagleng(1), WRITEDATA%FES(s_count))
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60 ENDDO

c-------------------------------------------------------------------------

The loop is made over all solid FE models, so when s_count=2, the second solid FE

model matrices are formed. filein is the file that the data should be read from.

folder is the folder to which data should be written, the data written at this stage

are the matrices e.g. M and also some data that relate degrees of freedom with node

numbers etc. SOLID_MATS(s_count) is a structure that contains the matrices that

are exported to the main program. tag(1) is the tag for the s_count, submodel

and tagleng is just the length of this string. WRITEDATA%FES(s_count) specifies if

the solid FE matrices should be written.

In contrast, for BE models the matrices relating forces and displacements are formed

by integrating Bessel functions whose arguments are given by the wavenumber and

frequency. Since this generally must be made for each considered wavenumber and

frequency, these matrices are formed when the system matrix is formed. Only the

data needed, such as geometrical and material data are extracted in the subroutine

used in this second part of the main program.

The following sections describe briefly each of the submodel routines called.

14.1.1 FE PLATE

Creates the matrices for one plate FE model. This routine calls two other routines.

The first DATA INPUT PLATE reads the data for the specific submodel. The

second FEM 2 5D plate actually creates the matrices. The latter subroutine is called

twice, once for the stiffness matrices and once for the damping matrices.

14.1.2 FE SOLID

Creates the matrices for one solid FE model. This routine calls two other routines.

The first DATA INPUT SOL reads the data for the specific submodel. The second
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FEM 2 5D SOL actually creates the matrices. The latter subroutine is called twice,

once for the stiffness and the mass matrices and once for the damping matrices.

14.1.3 FE FLUID

Creates the matrices for one fluid FE model. This routine calls two other routines.

The first DATA INPUT FLU reads the data for the specific submodel. The second

FE 2 5D FLU actually creates the matrices. The latter subroutine is called twice,

once for the ‘stiffness’ and ‘mass’ matrices and once for the damping matrices.

14.1.4 FEPFES COUP

This subroutine creates the coupling matrices for coupling between a plate and a solid

FE model. This subroutine needs data from each of the plate model, the solid model

and the coupling model. It calls DATA INPUT PLATE and DATA INPUT SOL

to get the input data for the respective plate and solid submodels. Then it calls

DATA INPUT SP to get the coupling data. Finally the coupling matrices are cre-

ated by the SOL PLATE subroutine.

14.1.5 FEPFEF MAIN

This subroutine creates the the coupling between a plate finite element model

and a fluid finite element model. FEPFEF MAIN calls four major subroutines.

DATA INPUT PLATE and DATA INPUT FLU have already been used for read-

ing the plate and fluid submodels data when these where created, but they are

reused in FEPFEF MAIN. The coupling specific data is read by the subroutine,

DATA INPUT PFF and a coupling matrix M1ur is formed by the subroutine

FEPFEF COUP. Since the coupling formulation is gyroscopic, this matrix is used

both to describe the work done by the fluid on the plate and that done by the

plate on the fluid. As an option, the M1ur coupling matrix is written to the file

M1_urTAG.out file.
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14.1.6 FESFEF MAIN

This subroutine creates the coupling between solid and fluid finite elements. It is

very similar to the subroutine that couples plate elements to fluid finite elements.

14.1.7 COUP MAIN PF

This subroutine creates the coupling between one plate FE model and one fluid

BE model. It calls COUPDATA to get the coupling specific data. Then it calls

PLATEDATA which reads data for the plate from the topology output file. Then

it calls BEMDATA, which reads the data needed for the fluid BE model.SET C1

creates the C1 matrix and SET C2 creates the C2 and I2 matrices.

14.1.8 COUP MAIN SF

This subroutine creates the coupling between one solid FE model and one fluid BE

model. It calls COUPDATA SF to get the coupling specific data. Then it calls

SOLIDDATA which reads data for the solid from the topology output file, since

the node numbering changes between input data and output data when the solid

FE model is created. Finally it calls BEMDATA, which reads the data needed for

the fluid BE model. SET C1 SF creates the C1 matrix and SET C2 SF creates the

C2 and I2 matrices.

14.1.9 BEFBEF COUP

Creates the coupling matrices between two fluid BE submodels.

14.1.10 BE INP2

This subroutine prepares all data needed to form BE H and G matrices. The actual

formation of these matrices is not made in the main program (MAINPROG2) but

made in a solution routine. The reason is that there is no explicit dependency of

the frequency and wavenumber
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14.1.11 BESBES COUP

This subroutine creates coupling between two solid boundary elements. It calls the

subroutine BEMDATA BSBS which reads the specific coupling data. It also use

the subroutine BES prep twice to read the solid BE data for the solid BE domains

to be coupled. The coupling itself is just matrices that sets the specified adjacent

displacements and tractions equal, this is done in the subroutine SET BSBS MAT

14.1.12 BESBEF COUP

This subroutine does coupling between a solid BE domain and a fluid BE domain.

It calls BES prep and BEMDATA TOP to get the data for the two models to be

coupled. Then the data for the coupling is read by BEMDATA BSBF. The coupling

matrices are subsequently formed by, SET BSBF MAT after which they are written

to the output files.

14.2 DLOOP

The third section in the WANDS mainprogram is the solution method, DLOOP. This

is performs a double loop over all frequencies and wavenumber under consideration.

Also some postprocessing, such as radiated power, is calculated within DLOOP.

14.2.1 DLOOP SOL record data

DLOOP SOL is called as a subroutine which uses the data structures of the different

submodels. Hence the amount of data fed into DLOOP SOL is quite substantial.

The DLOOP SOL routine is called as,

CALL DLOOP_SOL(SYSDATA,SIZE,FLUID_MATS,PLATE_MATS,SOLID_MATS,BEF_MATS,

*BEF_DATA,BES_MATS, BES_DATA,COUP_MATS_PF, COUP_MATS_SF,

*COUP_MATS_PS,COUP_MATS_PFF,COUP_MATS_SFF,COUP_MATS_BFBF,

151



*COUP_MATS_BSBS,COUP_MATS_BSBF,COUP_MATS_FSBS,COUP_MATS_FPBS,

*WRITEDATA, folder)

SYSDATA is a record that contains all the tags for the different submodels. SIZE is a

record that just gives the number of submodels there are of each type. FLUID_MATS

is a record that contains the finite element matrices for the fluid submodels.

As an example, FLUID_MATS(2)%K0%ent(13) is the 13:th entry in the K0 matrix of

the second fluid finite element. This entry has the row and column indices given by,

FLUID_MATS(2)%K0%row(13) and FLUID_MATS(2)%K0%col(13).

Similar data is given for plate and solid FE models as, PLATE_MATS and SOLID_MATS

For a fluid BE domain the matrices that relate the velocity potential and its normal

derivative through the boundary integral are yet to be calculated. However boundary

condition for boundaries not coupled to other models may also be present. These

boundary conditions are reshaped into matrix equation in the BE_INP2 subroutine

and these equations are given as inputs to the DLOOP subroutine by the

BEF_MATS record. BES_MATS gives the corresponding matrices for the solid BE sub-

models.

BEF_DATA and BES_DATA contains the data needed to form the boundary integral

matrices, i.e. the H and G matrices.

The coupling matrices between different types of submodels are given in the records,
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COUP_MATS_PF for plate FE to fluid BE coupling

COUP_MATS_SF for solid FE to fluid BE coupling

COUP_MATS_PS for plate FE to solid FE coupling

COUP_MATS_SFF for solid FE to fluid FE coupling

COUP_MATS_PFF for plate FE to fluid FE coupling

COUP_MATS_BFBF for fluid BE to fluid BE coupling

COUP_MATS_BSBS for solid BE to solid BE coupling

COUP_MATS_BSBF for solid BE to fluid BE coupling

COUP_MATS_FSBS for solid FE to solid BE coupling

COUP_MATS_FPBS for plate FE to solid BE coupling

Finally the WRITEDATA record is also given as input, this record contains some infor-

mation on which outputs should be written.

14.2.2 DLOOP SOL subroutine structure

Inside the DLOOP_SOL subroutine there are several other subroutines called. The

most important of these are as follows.

SET_SYSIND. This subroutine sets the indices in the global system matrix for the

corners of each BE and FE matrix.

SET_SYSPOINT. This routine compares the tags that the coupling matrices points at

with the BE and FE matrix submodels, so that the coupling is associated with a

model number rather than just a tag name.

SET_COUPIND. This routine sets the indices of the different coupling matrices.

After these basic routines have been called, the loops over the frequencies and

wavenumbers start. The outer loop is that over the frequencies, whereas the in-

ner loop is over the wavenumbers that are associated with this specific frequency.

First the fluid BE models [H] and [G] matrices are formed directly into the system

matrix and the boundary condition matrices that are already formed are written into

the system matrix. Then the solid BE models are written into the system matrix in

a similar way. The subroutines that do this are,

BEF_FORM and BES_FORM for the fluid and solid BE models respectively.
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After this all other matrices are written into the system matrix by using the,

SYSFORM subroutine.

The system is solved by using the,

SYS_SOLVE subroutine which uses two different routines downloaded from the NAG

library. (One routine is for square matrices and the other is for the overdetermined

system that arise from some fluid BE models)

Finally some postprocessing is made (such as calculating radiated power from fluid

BE models). This is done in the SYS_POST_PROC routine, that also writes some

directly calculated results to an output file.

14.3 Data structures

14.3.1 Background and definitions

WANDS is written strictly as a code that passes data in and out of subroutines.

Hence there are no ‘common’ blocks of shared information between different routines.

There is some data that is read from the TOPOLOGY.out file, i.e. that are read from

an already written output. This is used when coupling a solid FE model to a fluid

or solid BE model.

Passing data between subroutines is usually recommended. In WANDS it has the

specific advantage that the programming becomes easier and more robust. It also

means that additional solution methods or submodel types become more easy to

include in the software.

The major drawback is that there is substantial amount of data that needs to be

passed between different subroutines. To make the overview easier to understand

the data is therefore grouped in different records, each of these records may contain

different types of data such as matrices, vectors and integers. The data a record

may contain is defined by the records structure. The structure associated with a

specific record is given in the beginning of the subroutine, i.e.

TYPE(FE_MATS_SPARSE), DIMENSION(:), ALLOCATABLE :: PLATE_MATS
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means that the record PLATE_MATS is of the structure type FE_MATS_SPARSE. This

particular command line is copied from the mainprogram. Since there may be several

plate FE models PLATE_MATS is here defined as an array. The number of entries in

this array will be the same as the number of different FE plate submodels. However,

since this is not known until the *INSYS: blocks of the input file has been read, the

record is defined as allocatable. This means that the size of the array is given later

in the program.

The plate matrices for FE plate submodels are constructed one at a time. Hence,

in the FE_PLATE subroutine the matrices are given in the record,

TYPE(FE_MATS_SPARSE) :: PLATE_MATS_S

The structures are defined in the STRUCTURES module and in the SOL_STRUCTURES

module both of which are found in the FORTRAN files with same names. As an

example the FE_MATS_SPARSE structure, used in the example above, is defined as,

c--------------------------------------------------------

c FE MATRICES IN SPARSE FORMAT

TYPE FE_MATS_SPARSE

SEQUENCE

TYPE(SPARSE_MAT_C) :: K4

TYPE(SPARSE_MAT_C) :: K2

TYPE(SPARSE_MAT_C) :: K1

TYPE(SPARSE_MAT_C) :: K0

TYPE(SPARSE_MAT_C) :: M

TYPE(SPARSE_VEC_C) :: F ! force vector
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integer matsize

integer Kindex(2,2)

c MEANS:

c Kindex(1,1)=rowstart

c Kindex(1,2)=rowend

c Kindex(2,1)=colstart

c Kindex(2,2)=colend

integer*1 dummy(4*dimsp+12)

END TYPE

c-------------------------------------------------------

As can be seen, this structure uses another structure called SPARSE_MAT_C, which is

defined as,

TYPE SPARSE_MAT_C ! Generic type for storing complex sparse matrices

SEQUENCE

complex*16 ent(dimsp), dummy(2) ! real and imaginary part of entry

integer row(dimsp), col(dimsp) ! row and column index

integer matsize(2) ! size on matrix rows and columns

END TYPE
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Note!

The meaning of this has already been explained in section 14.2. However there has

been a quite considerable problem with this structure. As can be seen the dimension

of the SPARSE_MAT_C structure, i.e. the number of entries allowed in an FE matrix,

is set by the dimsp parameter, which in turn is set at the top of the STRUCTURES

module. If dimsp is to large the ‘image’ size of the compiled code will exceed that

allowed in Windows. Of course one may increase dimsp if some other array is

decreased, but it has been found that the array (matrix) sizes given by dimsp are

the most significant for the image size.

This problem has now been solved by using allocatable arrays and sparse matrix

formats for all larger matrices. However, this meant that the stack size of the

compiler had to be increased instead. The limit of the number of degrees of freedom

that can be used in the current version of WANDS is determined by the maximum

array size. For a two dimensional, complex valued, double precision array the limit

is 8192 by 8192.

By compiling for a 64 bit system, it might be possible to increase this size. To

rewrite the code to use a sparse system matrix and sparse solvers, probably involves

much work.

If the image size problem reoccurs the program can be split into a main executable

*.exe file and one or several *.dll files.

14.3.2 Solution structures

In the DLOOP_SOL subroutine the different submodels are assembled into a larger

system matrix. This process means that the different matrices are put in the right

place. For the program and programmer to keep these ordered a record SYSIND

for the indices of the FE and BE submodels has been created. For the coupling

submodels a different record, COUPIND, has been created. The structures for both

of these records are found in the SOL_STRUCTURES module in the file with the same

name. Since these structures will be used if any new submodel types are included

in WANDS, it may be useful to explain how they work.
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1 1 [HG] matrix indices for solid BE model

1 2 [HG] matrix indices for fluid BE model

1 3 [CaCb] matrix indices for solid BE model

1 4 [CaCb] matrix indices for fluid BE model

2 1 [K(κ)− ω2M] matrix index for plate FE

2 2 [K(κ)− ω2M] matrix index for solid FE

2 3 [K(κ)− ω2M] matrix index for fluid FE

Table 14.1: Index structure notation

SYSIND

SYSIND is a record of type INDEX0. INDEX0 contains a record, SUB, which is of type

INDEX1. INDEX1 contains a record, also called SUB, which is of type INDEX2. INDEX2

contains a record, also called SUB, which is of type INDEX3.

Finally INDEX3 contains the row and column indices that the corners of the submodel

matrix will have when it is assembled into the system matrix. This is given as

G_INDX(l,m,n).

The index for any FE or BE matrix is thus given by,

SYSIND%SUB(i)%SUB(j)%SUB(k)%G_INDX(l,m,n)

i=1 denotes that the indices are for a BE domain, whereas i=2 denotes that they

are for an FE domain.

j denotes different things depending on whether a BE or FE domain is considered.

The meaning of i and j is summarised in Table 14.1

k the number of the submodel of this type.

l,m is the corner of the matrix, the four corners are denoted as,

• l,m=1,1 is the upper left corner of the matrix.

• l,m=1,2 is the upper right corner of the matrix.

• l,m=2,1 is the lower left corner of the matrix.
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BEF_BEF Fluid BE to Fluid BE

BES_BES Solid BE to Solid BE

BES_BEF Solid BE to Fluid BE

FEP_FES Plate FE to Solid FE

FEP_FEF Plate FE to Fluid FE

FES_FEF Solid FE to Fluid FE

FEP_BEF Plate FE to Fluid BE

FES_BEF Solid FE to Fluid BE

FES_BES Solid FE to Solid BE

FEP_BES Plate FE to Solid BE

Table 14.2: Coupling index structure notation

• l,m=2,2 is the lower right corner of the matrix.

n=1 denotes the value of the row at this corner and n=2 denotes the column.

Example

SYSIND%SUB(1)%SUB(3)%SUB(2)%G_INDX(1,1,2)

is the column index of the upper left corner of the second solid BE models boundary

condition matrices, [CaCb].

COUPIND

The coupling matrices are assembled after the BE and FE models have been assem-

bled into the system matrix. To aid this a record COUPIND is created.

COUPIND is a record of type C_INDEX1. C_INDEX1 contains several records of type

C_INDEX2. C_INDEX2 contains a record, SUB, of the type INDEX3, (also used in

SYSIND)

The records used in C_INDEX1 are

The following SUB record is used to number the different coupling elements. This

can be made in different ways and the specific order of the coupling submodel type

can be read in the COUPIND_SUBS.for or SYSFORM_SUBS.for files.
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Example

COUPIND%FEP_FES(1)%SUB(2)%G_INDX(1,2,1)

is the row index of the upper right corner of the second coupling matrix of the first

plate to solid coupling model. The second coupling matrix, here means the CT
1 ma-

trix, which together with the CT
2 matrix defines that a combination of displacements

in the two models are equal.
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