
Walking the Values in Bayesian Inverse Reinforcement Learning

Ondrej Bajgar1 Alessandro Abate1 Konstantinos Gatsis2 Michael A. Osborne1

1University of Oxford
2University of Southampton

Abstract

The goal of Bayesian inverse reinforcement learn-
ing (IRL) is recovering a posterior distribution over
reward functions using a set of demonstrations
from an expert optimizing for a reward unknown
to the learner. The resulting posterior over rewards
can then be used to synthesize an apprentice policy
that performs well on the same or a similar task.
A key challenge in Bayesian IRL is bridging the
computational gap between the hypothesis space of
possible rewards and the likelihood, often defined
in terms of Q values: vanilla Bayesian IRL needs to
solve the costly forward planning problem – going
from rewards to the Q values – at every step of the
algorithm, which may need to be done thousands
of times. We propose to solve this by a simple
change: instead of focusing on primarily sampling
in the space of rewards, we can focus on primarily
working in the space of Q-values, since the com-
putation required to go from Q-values to reward
is radically cheaper. Furthermore, this reversion
of the computation makes it easy to compute the
gradient allowing efficient sampling using Hamilto-
nian Monte Carlo. We propose ValueWalk – a new
Markov chain Monte Carlo method based on this
insight – and illustrate its advantages on several
tasks.

1 INTRODUCTION

Reinforcement learning (RL) has shown impressive perform-
ance across a wide variety of tasks, ranging from robotics
to game playing. However, one of the main challenges in
applying RL to real-world problems is specifying an appro-
priate reward function by hand, which is often difficult and
can result in reward functions that are only imperfect prox-
ies for designers’ intentions. Inverse reinforcement learning

(IRL) addresses this issue by instead learning the underlying
reward function from expert demonstrations.

A key challenge in IRL is that the reward function is of-
ten underdetermined by the available demonstrations, as
multiple reward functions can lead to the same optimal
behaviour. This can be solved by picking a criterion for
choosing among the reward functions compatible with the
demonstrations – maximum margin [Ng and Russell, 2000,
Ratliff et al., 2006] and maximum entropy [Ziebart et al.,
2008] are the most prominent examples. As an alternative,
Bayesian IRL explicitly tracks the uncertainty in the reward
using a probability distribution. This not only accounts for
the issue of underdeterminacy but also provides principled
uncertainty estimates to any downstream tasks, which can
be used, for instance, for the synthesis of safe policies or for
active learning.

While having these attractive properties, Bayesian IRL is
computationally challenging. While inference is done over
the space of reward functions (in terms of which the prior
is also expressed), the likelihood is usually formulated in
terms of Q values (or is otherwise linked to the distribu-
tion of trajectories), and going from the former to the latter
may require solving the whole forward planning problem
at each iteration (as is case in the original Bayesian IRL
algorithm [Ramachandran and Amir, 2007]), which is ex-
pensive in itself and may further need to be done thousands
of times during IRL inference. To avoid this, we propose to
use a simple insight: while going from rewards to Q-values
is expensive, the inverse calculation can be much simpler.
Thus, we propose to perform the inference as if it were done
primarily over the space of Q-values, computing reward
estimates beside it, resulting in a much cheaper algorithm.
A related formulation appeared already in the variational
method of Chan and van der Schaar [2021], which was, how-
ever, learning only a point estimate of the Q-function thus
sacrificing Bayesianism from the centre of the algorithm.

We instead propose a new method that provides a full
Bayesian treatment of the Q values, along with the rewards,

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).

ar
X

iv
:2

40
7.

10
97

1v
1

 [
cs

.L
G

]
 1

5
Ju

l 2
02

4

mailto:<ondrej@bajgar.org>?Subject=Your UAI 2024 paper

and is able to provide samples from the true posterior, be-
ing based on Markov chain Monte Carlo (MCMC) as op-
posed to variational inference, which needs to pre-specify
a family of distributions within which to approximate the
posterior. Furthermore, since the computation required at
each step is much simpler than in prior MCMC-based meth-
ods [Ramachandran and Amir, 2007, Michini and How,
2012], which in itself makes our method more efficient, we
can also easily calculate the gradient, which allows us to
use Hamiltonian Monte Carlo [Duane et al., 1987] granting
further gains in efficiency.

The contributions of this paper are the following: (1) we
provide the first MCMC-based (and thus agnostic to the
shape for the posterior) algorithm for continuous-space
Bayesian inverse reinforcement learning; (2) we show that it
scales better on discrete-space cases than the MCMC-based
baseline, PolicyWalk; and (3) we show that we outperform
the previous state-of-the-art algorithm for Bayesian IRL
on continuous state-spaces, AVRIL, better capturing the
posterior over rewards and performing better on imitation
learning tasks.

The paper is organized as follows: Section 2 provides back-
ground on inverse reinforcement learning and Markov-chain
Monte Carlo and summarizes related work. Section 3 intro-
duces our proposed algorithm called ValueWalk. Section 4
compares our approach to an MCMC-based predecessor,
PolicyWalk [Ramachandran and Amir, 2007], the previous
state-of-the-art scalable method for Bayesian IRL, AVRIL
[Chan and van der Schaar, 2021], and 2 imitation learning
baselines on several control tasks.

2 BACKGROUND

2.1 BAYESIAN INVERSE REINFORCEMENT
LEARNING

The goal of Bayesian inverse reinforcement learning
is recovering a posterior distribution over reward func-
tions based on observing a set of demonstrations
D = {(ϕ(s1), a1), ..., (ϕ(sn), an)} from an expert act-
ing in a Markov decision process (MDP) M =
(S,A, p, r, γ, tmax, ρ0) where S,A are the state and action
spaces respectively, ϕ : S → Φ is a feature function rep-
resenting states in a feature space Φ, p : S × A → P(S)
is the transition function where P(S) is a set of probability
measures over S, r : Φ × A → R is a reward function,
γ ∈ (0, 1) is a discount rate, tmax ∈ N ∪ {∞} is the time
horizon, and ρ0 ∈ P(S) is the initial state distribution.

In IRL, we know all elements of the MDP except for the
reward function and, possibly, the transition function (the
setting without the knowledge of transition dynamics – or
other form of access to the environment or its simulator
– is sometimes called strictly batch [Jarrett et al., 2020];

our method is applicable in both this setting and the one
including an environment simulator, though most of the ex-
periments are run in the former setting following the main
baseline method, AVRIL). Instead, we have a model of
how the expert policy is linked to the reward and, in the
case of Bayesian IRL, also a prior distribution over reward
functions, pR (which is, in general, a multi-dimensional
stochastic process, that for any set of state-action pairs re-
turns a joint probability distribution over the corresponding
set of real-valued rewards). Commonly used expert models
include Boltzmann rationality models such as

P[ai|ϕ(st)] =
eαQ

∗(ϕ(st),ai)∑
a′∈A eαQ∗(ϕ(st),a′)

(1)

[Ramachandran and Amir, 2007, Chan and van der Schaar,
2021] where Q∗(s, a) is the expected (discounted) return if
action a is taken in state s, and the optimal policy is sub-
sequently followed, and α is a rationality coefficient; the
maximum entropy approach [Ziebart et al., 2008], where the
probability of each trajectory is assumed to be proportional
to the exponential of the trajectory’s return; or sparse beha-
viour noise models [Zheng et al., 2014], where the expert is
assumed to behave rationally except for sparse deviations.
Beside these approximately rational models, various models
of irrationality can also be considered [Evans et al., 2015].
The Bayesian IRL framework is flexible with respect to the
choice of expert model, each such model just resulting in a
different likelihood function, and can also be extended to
the case where the model is not fully known.

In this article, we adopt the Boltzmann rationality model
(1). We will assume that conditional on the Q values, the
actions chosen by the expert are independent, yielding the
likelihood

p(D|r) =
∏

st,at,st+1∈D

eαQ
∗(ϕ(st),at)∑

a′∈A eαQ∗(ϕ(st),a′)
p(st+1|st, at)

(2)
for a discrete action space A (the expression can readily be
adapted to a continuous setting by replacing the sum by an
integral). Given this likelihood together with the prior over
rewards pR, we can calculate the posterior using the Bayes
Theorem as p(r|D) = p(D|r)pR(r)/p(D). Generally, we
cannot calculate this posterior analytically, so in practice,
we need to resort to approximate methods. In this article,
we use Markov chain Monte Carlo sampling.

When performing Bayesian inference over the reward, the
transition probabilities will be considered fixed (except for
Appendix A, which discusses the extension of Bayesian
inference also to transition probabilities). Thus looking at
the likelihood as a function of the reward, we can write

p(D|r) = c
∏

st,at∈D

eαQ
∗(ϕ(st),at)∑

a′∈A eαQ∗(ϕ(st),a′)
=: cL(D|r).

(3)

2

Since p(D) =
∫
p(D|r)dpR(r) = c

∫
L(D|r)dpR(r), the

constant transition term cancels out in the posterior, and,
going forward, we can use the partial likelihood L in reward
posterior inference. Furthermore, MCMC algorithms gener-
ally depend only on the unnormalized distribution, thus we
can also drop the remainder of the marginal p(D) from our
calculation.

2.2 MARKOV-CHAIN MONTE CARLO (MCMC)

Markov chain Monte Carlo (MCMC) methods form a class
of algorithms widely used for sampling from complex prob-
ability distributions. MCMC methods rely on constructing
Markov chains whose stationary distribution is the distribu-
tion of interest. Usually a new candidate sample in the chain
is proposed and then accepted or rejected with probability
proportional to the one under the target distribution – in our
case the posterior over rewards.

In simpler MCMC methods, such as Metropolis-
Hastings [Metropolis et al., 1953, Hastings, 1970], which
were also used in some previous articles on Bayesian IRL
[Ramachandran and Amir, 2007, Michini and How, 2012],
the new step is proposed as a random jump in the sampling
space. However, this often leads to a high rejection rate, if
the jumps are large, or tightly correlated samples, if the jump
is small, both of which can make the algorithm inefficient.

Thus, we instead use the popular Hamiltonian (or hybrid)
Monte Carlo (HMC; Duane et al. [1987]) with the no-U-
turn (NUTS) sampler [Hoffman and Gelman, 2014], which
uses the gradient of the posterior density and Hamiltonian-
like dynamics to propose samples that are far apart but still
likely under the posterior, keeping a high acceptance rate,
thus improving the efficiency of the algorithm.

2.3 RELATED WORK

Inverse reinforcement learning is most often used as a com-
ponent in imitation learning: the more general task of learn-
ing an apprentice policy from expert demonstrations (see
Zare et al. [2023] for a good recent survey). Beside IRL,
the other major family of methods within imitation learn-
ing is behavioural cloning [Pomerleau, 1991, Ross et al.,
2011], which, in its vanilla form, aims to learn the policy via
supervised learning directly from the expert’s observation-
action pairs. The supervised learning approach has an ad-
vantage of lower computational cost, but faces the challenge
of covariate-shift, since the training states are distributed
according to the expert policy, not that of the learner agent,
though multiple methods try to mitigate this by encouraging
the learner policy to stay close to the expert one [Dadashi
et al., 2020, Reddy et al., 2019, Brantley et al., 2019].

Inverse reinforcement learning represents an alternative
which, instead of directly learning the observation-action

mapping, first learns an estimate of the reward function,
which can then be used to synthesize a policy. This can offer
better generalization, but usually requires a model of the
environment or access to it in order to run reinforcement
learning, and generally incurs a higher computational cost.

We build on the paradigm of Bayesian IRL introduced by
Ramachandran and Amir [2007]. While the Bayesian ap-
proach is attractive thanks to its principled treatment of
uncertainty in light of the limited demonstration data, the
key downside relative to other methods has been its scalabil-
ity to higher-dimensional settings. Michini and How [2012]
try to improve efficiency upon Ramachandran by focusing
computation into regions of the state space close to the
expert demonstration, still using MCMC, while Chan and
van der Schaar [2021] try to improve efficiency by using
an approximate variational distribution to model the pos-
terior, as well as an additional neural network that tracks
the Q function, which avoids the need for a costly inner-
loop solver. Mandyam et al. [2023] has recently used kernel
density estimation as an alternative method for approximate
Bayesian inference.1

As opposed to recent work experimenting with other approx-
imation techniques, we return to MCMC, with its greater
expressivity, while at the same time adapting it to be used
with continuous state spaces, which would not be feasible
with prior MCMC-based methods.

3 METHOD

Similarly to early work in Bayesian IRL [Ramachandran
and Amir, 2007, Michini and How, 2012], we use Markov
chain Monte Carlo sampling to produce samples from the
posterior distribution over rewards given a prior and expert
demonstrations. Our key innovation is in the way we calcu-
late the posterior. At each step of the Markov chain, these
previous methods generally (1) proposed a new reward (2)
used some method of forward planning, such as policy iter-
ation, to deduce the corresponding optimal Q function and
then (3) used the Q function to evaluate the likelihood and
the reward to evaluate the prior.

We suggest proceeding the other way round: our method
proposes a set of new parameters of the Q function and
then uses it to deduce the corresponding rewards, which is
generally a much easier calculation than going from rewards
to Q functions. The method then uses the reward to calculate
the prior and the Q value to evaluate the likelihood, and
combines the two to calculate the unnormalized posterior
density. This value can then be used for calculating the
acceptance probability in any chosen MCMC algorithm.

1The evaluation in this paper focuses on an offline setting
without access to environment dynamics, while the last mentioned
method fundamentally depends on having access to the environ-
ment dynamics so we omit it from the comparison in this paper.

3

Also thanks to the calculation being simple (rather than
involving a RL-like inner-loop problem) and differentiable,
we can also calculate the gradient, which we can use for
efficient proposals using HMC+NUTS. Since we construct
the random chain in the space of Q values instead of the
space of rewards, used by previous methods, we call our
new method ValueWalk.

3.1 FINITE STATE AND ACTION SPACES

Let us first outline the algorithm for the case of finite state
and action spaces since the calculation can be performed ex-
actly in this case, and the later continuous algorithm builds
on this base case. We concentrate here on the calculation
of the posterior probability corresponding to a single pro-
posed set of Q values (which is performed at each step of
the HMC trajectory) and otherwise employ standard HMC.
Note that here, we assume the knowledge of the environ-
ment dynamics P , since this finite setting is close to that of
PolicyWalk [Ramachandran and Amir, 2007], which also
assumes this knowledge. However, the method can easily
be extended to the strictly batch setting using steps analog-
ous to the ones taken in the next subsection on continuous
spaces, or can be combined with inference over transition
probabilities (see Appendix A).

In this finite case, we perform inference over a vector
Q ∈ R|S||A| representing the optimal Q-value for each
state-action pair. The first thing to notice is that given such a
vector, we can calculate the corresponding reward vector of
the same dimensionality as Q using the Bellman equation
as

R(s, a) = Q(s, a)−γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

πQ(a
′|s′)Q(s′, a′)

(4)
with either πQ(a′|s′) = I[a′ = argmaxa′′Q(s′, a′′)] or a
softmax approximation (which we use since it has the ad-
vantage of being differentiable using an inverse temperat-
ure coefficient ᾱ to regulate the softness of the approxim-
ation). Equation (4) can also be written in vector form as
R = (I−γP̄)Q where P̄ is a |S||A|×|S||A| matrix whose
values are defined as P̄ (s, a; s′, a′) = P (s′|s, a)πQ(a′|s′).
In that case, given a prior pR over rewards, we can calculate
the prior of Q as

pQ(Q) = pR((I − γP̄)Q) det(I − γP̄),

where pQ and pR are the prior probability densities of Q
and R respectively. Since P̄ is a stochastic matrix and
0 < γ < 1, the determinant is always strictly positive.
Note that the determinant needs to be recalculated only if
the optimal policy changes and otherwise can be cached
between steps of HMC eliminating the associated costly
calculation. Furthermore, we found that in practice, the re-
covered samples do not differ significantly if the determinant
term is omitted.

Algorithm 1: Calculation of the unnormalized posterior
for finite S and A and known transition probabilities P
(performed in each step of HMC). The resulting candid-
ate reward sample R̄ is then accepted/rejected together
with the corresponding Q.
Data: a candidate vector of Q values, set of expert

demonstrations D, prior over rewards pR
1 for s, s′ ∈ S, a, a′ ∈ A do
2 πQ(a′|s′) = I[a′ = argmaxa′′Q(s′, a′′)] ;
3 P̄ (s, a; s′, a′) = p(s′|s, a)π(a′|s′) ;
4 end
5 R = (I − γP̄)Q where R̄, Q̄ ;
6 pQ(Q) = pR(R) det(I − γP̄) ;
7 L(D|Q) =∏

(s,a)∈D exp(αQ(s, a))/
∑

a′∈A exp(αQ(s, a′)) ;
Result: p(Q|D) ∝ pQ(Q)L(D|Q); candidate sample

R

The above prior term can be combined with the likelihood

L(D|Q) =
∏

(s,a)∈D

exp(αQ(s, a))/
∑
a′∈A

exp(αQ(s, a′))

to calculate the unnormalized posterior density p(Q|D) ∝
pQ(Q)L(D|Q) which we use in the standard HMC+NUTS
algorithm to produce samples from the posterior over Q
values, and, as a byproduct, also samples from the posterior
over rewards (as would be expected from an IRL algorithm).
Algorithm 1 summarizes the whole posterior probability
calculation, and Theorem 1 in Appendix B formally shows
that the secondary Markov chain over rewards produced by
the algorithm also satisfies the detailed balance condition
with respect to the posterior over rewards and thus consti-
tutes a valid MCMC algorithm for sampling from the reward
posterior.

See Section 4.1 for an example of this finite-case algorithm
applied to a gridworld environment. Note that if the reward
is known to depend only on the state, the sampling can
instead be performed over state-values V . Similarly, if it
depends on the full state, action, next state triple, it should
be performed over state-action-state values to maintain a
match in the dimensionality of the reward and value spaces.

3.2 CONTINUOUS STATE REPRESENTATIONS

For continuous or large discrete spaces, it is generally
no longer possible or practical to maintain a separate Q-
function parameter for each state, so we need to resort to
approximation. Thus, from now on, our inference will centre
around parameters θQ ∈ RnQ of a Q function approximator
Qθ : Φ×A → R where Φ is the space of feature representa-
tions of the states. While the method is again centred around
the Q function, the algorithm can also produce samples
from the reward posterior at any set of evaluation points

4

of interest, Deval. Furthermore, a method such as warped
Gaussian processes [Snelson et al., 2003] can then be used
to generalize the reward posterior from Deval to new parts
of the state-action space.

The likelihood calculation remains very similar to the dis-
crete case:

L(D|θQ) =
∏

(s,a)∈D

exp(αQθQ(ϕ(s), a))∑
a′∈A exp(αQθQ(ϕ(s), a

′))
(5)

(assuming A to be bounded). What concerns the evaluation
of the prior, the reward corresponding to given Q-function
parameters can be expressed using the continuous Bellman
equation as

R(s, a) = QθQ

(
ϕ(s), a

)
− γEs′,a′|s,a

[
QθQ

(
ϕ(s′), a′

)]
on any subset of states and actions.

In general, the integral in Es′,a′|s,a[QθQ(ϕ(s
′, a′)] =∫

s′∈S p(s′|s, a)maxa′∈A QθQ(ϕ(s
′), a′) needs to be ap-

proximated, for which any of a number of numerical meth-
ods can be used, from grid sampling to Monte Carlo meth-
ods, to more sophisticated techniques like probabilistic nu-
merics [Hennig et al., 2022]. For most such methods, we
the integral is approximated using a discrete set of candid-
ate successor states Ssucc(s, a) =

{
s ∼ q(·|s, a)

}
sampled

from some proposal distribution q as

1

|Ssucc|
∑

s′∈Ssucc

p(s′|s, a)
q(s′|s, a)

max
a′∈A

QθQ(ϕ(s
′), a′). (6)

The variant of the approximation we choose depends of
what information we have at our disposal:

• If we have access to a probabilistic model p̂ of the en-
vironment (which can either represent the true environ-
ment dynamics, if we know them, or our best inferred
model of the dynamics including any epistemic uncer-
tainty) that we can sample from, we can simply sample
Ssucc(s, a) = {s′ ∼ p̂(·|s, a)} and drop the importance
weight.

• If we can evaluate the density p̂ we can directly use
the importance sampling equation 6 with q being a
proposal distribution ideally close to p̂.

• If all we have is a static set of trajectories D+ – either
just the expert ones D, or also additional ones sampled
from another, possibly random, policy – we can crudely
approximate the reward for a transition s, a, s′ ∈ D+

using a singleton Ssucc(s, a) = {s′}. This is an approx-
imation made by the baseline AVRIL algorithm, so to
match, we use it for the experiments in Section 4.2.
In that case we require that Deval ⊆ D+, and for
s, a, s′ ∈ D+ we can define an empirical transition
model p̂(s′′|s, a) = δs′(s

′′) to be used within the al-
gorithm.

Algorithm 2: Calculation of the unnormalized posterior
probability with continuous state representations for a
single proposed parameter value θQ (performed in each
step of MCMC). The returned candidate reward samples
are accepted or rejected by the outer MCMC algorithm
together with the candidate parameters θQ.
Data: candidate parameters of the Q-function θQ, a set

of expert demonstarations D, a set of evaluation
locations Deval, prior over rewards pR

1 Initialize empty sequence Rcand of candidate reward
samples ;

2 for (s, a) ∈ Deval do
3 Sample a set of successor states

Ssucc = {s′′ ∼ p̂(·|s, a)};
4 R(s, a) = QθQ(ϕ(s), a)−

γ 1
|Ssucc|

∑
s′∈Ssucc

maxa′∈A QθQ(s
′, a′);

5 Append Rt to Rcand;
6 end
7 Use samples to evaluate the prior pR(Deval,Rcand) ;
8 Use demonstrations to evaluate the likelihood L(D|θQ)

per equation (5) ;
Result: unnormalized approximate posterior

p(θQ|D) ∝ pR(Deval,Rcand)p(D|θQ);
candidate reward samples Rcand.

The corresponding continuous version of the algorithm is
presented in Algorithm 2.

We can store both the Q function parameters θQ and the
corresponding reward samples depending on downstream
needs. We can then fit a warped Gaussian process to the
posterior reward samples to get a posterior reward distri-
bution over the whole state space. This can then be used
together with an algorithm for RL (or safe RL in particular)
to find an apprentice policy from the reward. Alternatively,
as a shortcut, the posterior over Q-functions can be used to
define an apprentice policy directly.

3.3 CONTINUOUS ACTIONS

The algorithm can be extended to continuous actions, repla-
cing the sum in the Boltzmann likelihood (5) by an integral,
and again, in turn, approximating it by a discrete set of
samples from the action space. Simple discretizations (such
as uniform sampling) can work well for low-dimensional
action spaces (as we illustrate in our safe navigation ex-
periment in the next section) but suffer from the curse of
dimensionality, so a more sophisticated scheme would be
needed for higher-dimensional action spaces. We leave that
for future work.

5

-1.0 -30.0 10.0

-1.0 -1.0 -1.0

-1.0 -1.0 -1.0

Ground-truth rewards

20 0 20
0.0

0.1

0.2

0.3

20 0 20
0.00

0.02

0.04

0.06

0.08

20 0 20
0.00

0.01

0.02

0.03

0.04

20 0 20
0.0

0.1

0.2

Pr
ob

ab
ilit

y
de

ns
ity

20 0 20
0.00

0.05

0.10

0.15

20 0 20
0.0

0.1

0.2

20 0 20
0.0

0.1

0.2

20 0 20
Reward

0.0

0.1

0.2

20 0 20
0.00

0.05

0.10

0.15

ValueWalk posterior reward samples

5 0 5
0.0

0.1

0.2

0.3

5 0 5
0.0

0.5

1.0

1.5

5 0 5
0.0

0.5

1.0

1.5

5 0 5
0.0

0.2

0.4

Pr
ob

ab
ilit

y
de

ns
ity

5 0 5
0.0

0.2

0.4

0.6

5 0 5
0.0

0.2

0.4

5 0 5
0.0

0.2

0.4

5 0 5
Reward

0.0

0.1

0.2

0.3

5 0 5
0.0

0.5

1.0

1.5

AVRIL (blue) and MB-AVRIL (red) densities

Figure 1: Left: Illustrative 3x3 gridworld. The agent always starts in the top left corner. The top right corner yields a reward
of 10 and is terminal. The top centre tile represents an unsafe state that should be avoided and yields a reward of -30.
Centre: Histograms of the samples from the posterior over rewards recovered by our ValueWalk algorithm corresponding
to the 9 states of the gridworld. The red line indicates the mean. Right: Density functions of the posterior over rewards
recovered by AVRIL and its model-based version, MB-AVRIL. Note the much narrower range of the reward axis relative to
the histograms.

4 EXPERIMENTS

We tested our method on gridworlds (for illustration and to
compare the speed to PolicyWalk [Ramachandran and Amir,
2007], which our method builds upon but which is restric-
ted to such small finite-space settings) and on 3 simulated
control tasks with continuous states.

4.1 GRIDWORLD

For an illustration of the method with easily interpretable
and visualizable features, we first test it on a simple grid-
world environment shown in Figure 1. We have generated a
fixed set of 50 demonstration steps in the environment and
used our method, ValueWalk (including the environment dy-
namics), the original PolicyWalk [Ramachandran and Amir,
2007], a sped-up version of PolicyWalk using HMC, which
we denote by PolicyWalk-HMC (see Appendix C.1), and
AVRIL [Chan and van der Schaar, 2021] (which does not
use environment dynamics, making the comparison unfair
but illustrative of inherent limitations of such model-free
methods) as well as a model-based version of AVRIL, which
we mark as MB-AVRIL (see Appendix C.2), to recover a
posterior over rewards from an independent normal prior
with mean 0 and standard deviation of 10.

With ValueWalk and PolicyWalk-HMC, we collected a total
of 1,000 MCMC samples using HMC+NUTS with 100
warm-up steps, which lead to R̂ ≤ 1.01 on each dimension
(where R̂ is the potential scale reduction factor [Gelman and
Rubin, 1992], a commonly used indicator that the chains
have mixed well). For vanilla PolicyWalk, we collected 1M
samples (since those are much more correlated). We then

also ran PolicyWalk, PolicyWalk-HMC and ValueWalk on a
6x6 and 12x12 version of the gridworld to examine how the
compute times of these MCMC-based methods scale.

Table 1: Speed comparison. Time per effective sample (in
seconds) produced by PolicyWalk, PolicyWalk-HMC, and
ValuWalk on a 3x3, 6x6, and 12x12 gridworld respectively.

States PolicyWalk PolicyWalk-HMC ValueWalk

9 0.86 0.80 0.20
36 9.00 4.18 0.71

144 246.43 18.44 0.77

4.1.1 Results

Both PolicyWalk and ValueWalk (our algorithm) resul-
ted in matching posterior reward samples as expected
(Kolmogorov-Smirnov did not reveal any significant dif-
ferences with all p-values > 0.2 on each of the 9 dimensions
of the reward). The histograms of the samples are shown in
the middle plot in Figure 1. The speed comparison of the
two methods can be found in Table 1, showing ValueWalk
indeed runs faster than the baseline PolicyWalk algorithm in
both variants, with the advantage growing with an increas-
ing size of the environment and a correspondingly growing
number of reward parameters.

The posterior tends to concentrate around the ground truth
value, except in the terminal top-right state, which shows
that the data are consistent with both positive values and
mildly negative ones (since it is a terminal state, the fact
that the expert heads there can equally well be explained

6

by escaping from negative-reward states as by trying to
incur a positive reward. This is confirmed if we look at the
correlation between various rewards shown in Figure 4 in
Appendix E.1 which shows that the reward in the terminal
state can be negative only if other states’ rewards are also
negative).

We also ran AVRIL on this simple gridworld (which took
43s to converege). In terms of the resulting posterior, there
are 3 things to note (see Figure 1 centre and right). Firstly,
the posteriors of some states are much tighter – the x-axis is
zoomed in about 4x relative to the ValueWalk histograms.
This is due to the fact that AVRIL does not model the uncer-
tainty in the Q-function, instead learning only a point estim-
ate. The reward posterior is then pegged to this Q-function
point estimate thus significantly reducing its variance. As
a result, both the reward of the obstacle and of the goal are
extremely unlikely under the posterior.

Secondly, we can observe that the posterior reward for the
obstacle is not any lower than that for most other states.
This is because this state is never visited in demonstrations,
and AVRIL – not taking the environment dynamics into
account – consequently does not update this value. This
illustrates an important downsides faced by methods without
an environment model. (Note that the model-free version of
ValueWalk would face the same issue.) This defect is fixed
in the model-based version of AVRIL, AVRIL-MB.

Finally, we can see that while the true posterior differs
from normal (see especially the strong skew of the negative-
reward top middle cell), AVRIL is limited by its normal
variational distribution. While in theory, AVRIL could be
used with any variational family, we first need to determine
which family may be suitable, for which an MCMC-based
method such as ours is a useful instrument.

4.2 CLASSIC CONTROL ENVIRONMENTS

To allow for direct comparison, we also evaluated Value-
Walk on three classic control environments that were used
to evaluate AVRIL by its authors: CartPole, where the goal
is to balance an inverted pendulum by controling a cart un-
derneath it, Acrobot, where the goal is to swing up a double
pendulum using an actuated joint, and LunarLander, where
the goal is to safely land a simulated lander on the surface of
the moon. We used the same setup as was used for AVRIL to
study the performance of an apprentice agent as a function
of the number of demonstration trajectories for 1, 3, 7, 10,
and 15 trajectories. The apprentice agent was evaluated on
300 test episodes and the mean reward is reported. We also
compare against energy-based distribution matching (EDM;
Jarrett et al. [2020]) – a successful method for strictly batch
imitation learning – and plain behavioural cloning (BC) as
a simple baseline. Baseline results were taken from Chan
and van der Schaar [2021].

4.2.1 Results

The results are plotted in Figure 2. While both agents do
close to expert-level when provided with 15 expert traject-
ories, our algorithm reaches this level with fewer expert
demonstrations. We hypothesize that this is due to treating
the Q-function in a Bayesian way, as opposed to a point
estimate in AVRIL, leveraging the advantages of a fully
Bayesian treatment in the low data regime.

To support this, we can look at the log likelihoods of the ac-
tion predictions on a hold-out set of 100 test trajectories and
the entropies of the predictive posterior shown in Figure 3.
For ValueWalk, the log likelihood increases as the method
is given more trajectories, while the prediction entropy de-
creases as we would expect from a Bayesian method given
increasing amounts of information. On the other hand, we
do not consistently see similar behaviour in AVRIL. The test
log likelihood consistently increases only in the case of the
LunarLander environment, where it, however, starts from
extremely low levels (the initial mean log probability of -10
would correspond to a probability of 5 ∗ 10−5, suggesting
the method has been putting practically 0 probability on
actions taken by the expert among only 4 possible actions).
Also, the prediction entropy of AVRIL tends to increase with
seeing more trajectories. That suggests that AVRIL may be
exhibiting overfitting behaviour in the low data regimes,
which Bayesian methods should generally avoid.

The ValueWalk experiments on the control environments
were run for 10,000 sample steps with 4,000 warm-up
steps on Lunar Lander and 5,000 sample steps with 2,000
warm-up steps on Cartpole and Acrobot. The training takes
between 2 and 19 hours of wall time on a single Nvidia RTX
3090 GPU2 where AVRIL takes 1-5 minutes to converge.

5 DISCUSSION

We presented a method that allows us to apply MCMC-
based Bayesian inverse reinforcement learning to continu-
ous environments. The method maintains the attractive prop-
erties of MCMC methods: it is agnostic to the shape of
the posterior (where variational methods assume a partic-
ular parameterized distribution family) and given enough
compute, produces samples from the true posterior. This
comes at a large computational cost relative to cheaper meth-
ods, such as variational inference. However, we still think
MCMC-methods do have a role to play in the Bayesian IRL
ecosystem.

Firstly, we have shown that staying true to the Bayesian pos-
terior does bring benefits in terms of superior performance
on imitation learning tasks. Furthermore, the computational
cost is paid in the learning phase, with inference at deploy-
ment being fast (sub millisecond per step in all cases, which

2Experiments with fewer trajectories were run on a CPU.

7

1 3 7 10 15
Number of demonstration trajectories

500

400

300

200

100

0

M
ea

n
re

wa
rd

Acrobot-v1

ValueWalk (ours)
AVRIL
EDM
BC
Random policy
Expert

1 3 7 10 15
Number of demonstration trajectories

0

100

200

300

400

500

M
ea

n
re

wa
rd

CartPole-v1

ValueWalk (ours)
AVRIL
EDM
BC
Random policy
Expert

1 3 7 10 15
Number of demonstration trajectories

200

100

0

100

200

300

M
ea

n
re

wa
rd

LunarLander-v2

ValueWalk
AVRIL
EDM
BC
Random policy
Expert

Figure 2: The test performance of an apprentice agent for ValueWalk and 3 baseline methods for different numbers of
demonstration trajectories. The ValueWalk apprentice agent takes the action that maximizes the median of the posterior
Q-value samples. The line shows mean performance across 5 runs with different sets of expert demonstrations; the shaded
region shows mean±std.

1 3 7 10 15
Number of demonstration trajectories

1.0

0.8

0.6

0.4

0.2

M
ea

n
ac

tio
n

lo
g

pr
ob

ab
ilit

y

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Ac
tio

n
en

tro
py

Acrobot-v1

1 3 7 10 15
Number of demonstration trajectories

0.48

0.46

0.44

0.42

M
ea

n
ac

tio
n

lo
g

pr
ob

ab
ilit

y

ValueWalk logprobs
AVRIL logprobs
ValueWalk entropy
AVRIL entropy

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Ac
tio

n
en

tro
py

CartPole-v1

1 3 7 10 15
Number of demonstration trajectories

12

10

8

6

4

2

0

M
ea

n
ac

tio
n

lo
g

pr
ob

ab
ilit

y

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ac
tio

n
en

tro
py

LunarLander-v2

Figure 3: The log likelihood on a hold-out set of 100 test demonstrations and the entropy of the action predictions produced
by ValueWalk and AVRIL. The plot shows the mean and the 90% confidence interval on the value of the mean calculated
using the bootstrap.

8

would be sufficient for real-time control in most possible
use cases and could be further optimized).

Secondly, we think that having a method that can draw
samples from the true posterior can be extremely important
in the process of developing other, faster or easier to scale
methods, since it allows us to assess how their approxima-
tion deviates from the true posterior and how it impacts their
performance. Also, variational methods in particular require
a pre-specified family of distributions over which the optim-
ization is subsequently run. ValueWalk can be used in an
exploratory phase to determine what family of distributions
may be appropriate for the problem at hand, before possibly
using the advantages of variational methods to scale up.

Thus, despite their steep computational cost, we think
MCMC methods have their place in Bayesian inverse re-
inforcement learning, and our method is a sizable step in
extending them up to a wider range of settings.

References

Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz
Obermeyer, Neeraj Pradhan, Theofanis Karaletsos, Rohit
Singh, Paul Szerlip, Paul Horsfall, and Noah D. Good-
man. Pyro: Deep Universal Probabilistic Programming.
Journal of Machine Learning Research, 2018.

Kiante Brantley, Wen Sun, and Mikael Henaff.
Disagreement-Regularized Imitation Learning. In
International Conference on Learning Representations,
2019.

Alex J Chan and Mihaela van der Schaar. Scalable Bayesian
Inverse Reinforcement Learning. ICLR 2021, 2021.

Robert Dadashi, Leonard Hussenot, Matthieu Geist, and
Olivier Pietquin. Primal Wasserstein Imitation Learning.
In International Conference on Learning Representations,
October 2020.

Simon Duane, A. D. Kennedy, Brian J. Pendleton, and
Duncan Roweth. Hybrid Monte Carlo. Physics Let-
ters B, 195(2):216–222, September 1987. doi: 10.1016/
0370-2693(87)91197-X.

Owain Evans, Andreas Stuhlmueller, and Noah D. Good-
man. Learning the Preferences of Ignorant, Inconsist-
ent Agents. AAAI 2016, December 2015. URL http:
//arxiv.org/abs/1512.05832.

Andrew Gelman and Donald B. Rubin. Inference
from Iterative Simulation Using Multiple Sequences.
Statistical Science, 7(4), November 1992. ISSN
0883-4237. doi: 10.1214/ss/1177011136. URL
https://projecteuclid.org/journals/
statistical-science/volume-7/issue-4/
Inference-from-Iterative-Simulation-Using-Multiple-Sequences/
10.1214/ss/1177011136.full.

W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrika, 57
(1):97–109, April 1970. ISSN 0006-3444. doi: 10.
1093/biomet/57.1.97. URL https://doi.org/10.
1093/biomet/57.1.97.

P Hennig, M A Osborne, and H P Kersting. Probabilistic
Numerics. Cambridge University Press, 2022.

Matthew D Hoffman and Andrew Gelman. The No-U-Turn
Sampler: Adaptively Setting Path Lengths in Hamiltonian
Monte Carlo. Journal of Machine Learning Research, 15:
1593–1623, 2014.

Daniel Jarrett, Ioana Bica, and Mihaela van der Schaar.
Strictly batch imitation learning by energy-based distri-
bution matching. Advances in Neural Information Pro-
cessing Systems, 33:7354–7365, 2020.

Aishwarya Mandyam, Didong Li, Diana Cai, Andrew
Jones, and Barbara E. Engelhardt. Kernel Dens-
ity Bayesian Inverse Reinforcement Learning, March
2023. URL http://arxiv.org/abs/2303.
06827. arXiv:2303.06827 [cs].

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N.
Rosenbluth, Augusta H. Teller, and Edward Teller. Equa-
tion of State Calculations by Fast Computing Machines.
The Journal of Chemical Physics, 21(6):1087–1092, June
1953. ISSN 0021-9606, 1089-7690. doi: 10.1063/
1.1699114. URL http://aip.scitation.org/
doi/10.1063/1.1699114.

Bernard Michini and Jonathan P. How. Improving the
efficiency of Bayesian inverse reinforcement learning.
In 2012 IEEE International Conference on Robotics
and Automation, pages 3651–3656, May 2012. doi:
10.1109/ICRA.2012.6225241. ISSN: 1050-4729.

Andrew Ng and Stuart Russell. Algorithms for Inverse
Reinforcement Learning. In International Conference on
Machine Learning, 2000. URL http://www.eecs.
harvard.edu/cs286r/courses/spring06/
papers/ngruss_irl00.pdf.

Dean A. Pomerleau. Efficient Training of Artificial Neural
Networks for Autonomous Navigation. Neural Compu-
tation, 3(1):88–97, March 1991. ISSN 0899-7667. doi:
10.1162/neco.1991.3.1.88.

Deepak Ramachandran and Eyal Amir. Bayesian Inverse
Reinforcement Learning. IJCAI 2007, page 6, 2007.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin A.
Zinkevich. Maximum margin planning. In ICML 2006,
pages 729–736, New York, NY, USA, 2006. Associ-
ation for Computing Machinery. ISBN 1-59593-383-2.
doi: 10.1145/1143844.1143936. URL https://doi.
org/10.1145/1143844.1143936.

9

http://arxiv.org/abs/1512.05832
http://arxiv.org/abs/1512.05832
https://projecteuclid.org/journals/statistical-science/volume-7/issue-4/Inference-from-Iterative-Simulation-Using-Multiple-Sequences/10.1214/ss/1177011136.full
https://projecteuclid.org/journals/statistical-science/volume-7/issue-4/Inference-from-Iterative-Simulation-Using-Multiple-Sequences/10.1214/ss/1177011136.full
https://projecteuclid.org/journals/statistical-science/volume-7/issue-4/Inference-from-Iterative-Simulation-Using-Multiple-Sequences/10.1214/ss/1177011136.full
https://projecteuclid.org/journals/statistical-science/volume-7/issue-4/Inference-from-Iterative-Simulation-Using-Multiple-Sequences/10.1214/ss/1177011136.full
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1093/biomet/57.1.97
http://arxiv.org/abs/2303.06827
http://arxiv.org/abs/2303.06827
http://aip.scitation.org/doi/10.1063/1.1699114
http://aip.scitation.org/doi/10.1063/1.1699114
http://www.eecs.harvard.edu/cs286r/courses/spring06/papers/ngruss_irl00.pdf
http://www.eecs.harvard.edu/cs286r/courses/spring06/papers/ngruss_irl00.pdf
http://www.eecs.harvard.edu/cs286r/courses/spring06/papers/ngruss_irl00.pdf
https://doi.org/10.1145/1143844.1143936
https://doi.org/10.1145/1143844.1143936

Siddharth Reddy, Anca D. Dragan, and Sergey Levine.
SQIL: Imitation Learning via Reinforcement Learning
with Sparse Rewards. In International Conference on
Learning Representations, September 2019.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A
Reduction of Imitation Learning and Structured Predic-
tion to No-Regret Online Learning. In Proceedings of the
Fourteenth International Conference on Artificial Intel-
ligence and Statistics, pages 627–635. JMLR Workshop
and Conference Proceedings, June 2011.

Edward Snelson, Zoubin Ghahramani, and Carl
Rasmussen. Warped Gaussian Processes. In
Advances in Neural Information Processing Sys-
tems, volume 16. MIT Press, 2003. URL https:
//papers.nips.cc/paper/2003/hash/
6b5754d737784b51ec5075c0dc437bf0-Abstract.
html.

Maryam Zare, Parham M. Kebria, Abbas Khosravi, and
Saeid Nahavandi. A Survey of Imitation Learning: Al-
gorithms, Recent Developments, and Challenges, Septem-
ber 2023.

Jiangchuan Zheng, Siyuan Liu, and Lionel M. Ni. Ro-
bust Bayesian Inverse Reinforcement Learning with
Sparse Behavior Noise. Proceedings of the AAAI
Conference on Artificial Intelligence, 28(1), June
2014. ISSN 2374-3468. doi: 10.1609/aaai.v28i1.
8979. URL https://ojs.aaai.org/index.
php/AAAI/article/view/8979. Number: 1.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and
Anind K Dey. Maximum Entropy Inverse Reinforcement
Learning. AAAI 2008, page 6, 2008.

10

https://papers.nips.cc/paper/2003/hash/6b5754d737784b51ec5075c0dc437bf0-Abstract.html
https://papers.nips.cc/paper/2003/hash/6b5754d737784b51ec5075c0dc437bf0-Abstract.html
https://papers.nips.cc/paper/2003/hash/6b5754d737784b51ec5075c0dc437bf0-Abstract.html
https://papers.nips.cc/paper/2003/hash/6b5754d737784b51ec5075c0dc437bf0-Abstract.html
https://ojs.aaai.org/index.php/AAAI/article/view/8979
https://ojs.aaai.org/index.php/AAAI/article/view/8979

Walking the Values in Bayesian Inverse Reinforcement Learning
(Supplementary Material)

Ondrej Bajgar1 Alessandro Abate1 Konstantinos Gatsis2 Michael A. Osborne1

1University of Oxford
2University of Southampton

A UNKNOWN TRANSITION PROBABILITIES

Section 3.1 presents a version of the ValueWalk algorithm for finite state and action spaces that assumes known transition
probabilities. However, the key trick used in ValueWalk extends to unknown transition probabilities as well.

One simplified option to handle unknown transitions, also employed in the continuous-state case in Section 3.2 matching the
setting used by AVRIL, is replacing the transition probabilities with their empirical estimate p̂(s′|s, a) = ξ(s, a, s′)/ξ(s, a)
where ξ(s, a, s′), ξ(s, a) are the numbers of occurrences in the set of demonstration set of the transition (s, a, s′) and
state-action pair (s, a). In the finite-state, this would mean limiting the evaluation of the prior in Algorithm 3 to only those
state-action pairs that do occur in the data (i.e. replacing vectors and matrices on lines 3-6 by the appropriate sub-vectors
and sub-matrices).

A more principled Bayesian alternative is of course using full Bayesian inference also over transitions – in that case, we can
perform the MCMC sampling jointly over both the transitions and the Q function parameters, recovering samples from the
full joint posterior. The changes needed are (1) treating parameters of the transition model as inputs in the algorithm, (2)
adding a prior over those parameters (so the joint prior will be a product of the Q-parameter prior and the transition-parameter
prior), and (3) including transition probabilities in the likelihood. Here is the adaptation of the finite-space algorithm to this
case of unknown probabilities:

Algorithm 3: Calculation of the unnormalized posterior for finite S and A with unknown transition probabilities
(performed in each step of HMC). The resulting candidate reward sample R̄ is then accepted/rejected together with the
corresponding Q and P.
Data: a candidate matrix of Q values, a candidate transition matrix P , set of expert demonstrations D, prior over

rewards pR, prior over transitions pP
1 for s, s′ ∈ S, a, a′ ∈ A do
2 π(a|s) = exp(ᾱQ(s, a))/

∑
a′∈A exp(ᾱQ(s, a′));

3 P̄ (s, a; s′, a′) = P (s′|s, a)π(a′|s′) ;
4 end
5 R̄ = (I − γP̄)Q̄ where R̄, Q̄ are flattened vector versions of the reward and Q-value matrices ;
6 pQ(Q) = pR(R̄) det(I − γP̄) ;
7 p(D|Q) =

∏
(s,a,s′)∈D P (s′|s, a) exp(αQ(s, a))/

∑
a′∈A exp(αQ(s, a′)) ;

Result: p(Q,P |D) ∝ pP (P)pQ(Q)p(D|Q,P); candidate sample R̄

Accepted for the 40th Conference on Uncertainty in Artificial Intelligence (UAI 2024).

mailto:<ondrej@bajgar.org>?Subject=Your UAI 2024 paper

B PROOF OF SOUNDNESS OF THE ALGORITHM

Theorem 1. Assume that the transition kernel qQ satisfies the detailed balance condition

qQ(Q
′|Q)

qQ(Q|Q′)
=

pQ(Q
′|D)

pQ(Q|D)

with respect to the posterior over Q values defined in Algorithm 1. Then the associated implicit Markov chain over rewards
also satisfies the detailed balance condition with respect to the posterior pR(R|D).

Proof. Let qQ be the transition kernel over Q-values that satisfies the detailed balance condition with respect to the posterior
pQ(Q|D) as assumed in the theorem statement.

The implicit transition kernel qR over rewards induced by qQ can be expressed as

qR(R
′|R) = qQ(Q(R′)|Q(R))

∣∣∣∣det(∂Q(R′)

∂R′

)∣∣∣∣ (7)

where Q(R) = (I − γP̄)−1R is the Q-value corresponding to reward R as used in Algorithm 1. The determinant term
accounts for the change of variables from Q to R.

The posterior over rewards can be expressed in terms of the posterior over Q-values as

pR(R|D) = pQ(Q(R)|D)

∣∣∣∣det(∂Q(R)

∂R

)∣∣∣∣ = pQ(Q(R)|D)
∣∣det(I − γP̄)−1

∣∣ . (8)

Now consider the ratio of the implicit transition kernel:

qR(R
′|R)

qR(R|R′)
=

qQ(Q(R′)|Q(R))

qQ(Q(R)|Q(R′))

∣∣∣det(∂Q(R′)
∂R′

)∣∣∣∣∣∣det(∂Q(R)
∂R

)∣∣∣ =
pQ(Q(R′)|D)

pQ(Q(R)|D)

∣∣∣det(∂Q(R′)
∂R′

)∣∣∣∣∣∣det(∂Q(R)
∂R

)∣∣∣ =

pR(R
′|D) det((I − γP̄ ′)−1)

pR(R|D) det((I − γP̄)−1)

det(I − γP̄ ′)

det(I − γP̄)
=

pR(R
′|D)

pR(R|D)
(9)

where the second equality follows from the assumed detailed balance condition on qQ, the last equality follows from the
expression for pR(R|D) derived above, and P̄ ′ are the joint state-action transitions corresponding to Q′. Thus, the implicit
Markov chain over rewards induced by the transition kernel qQ satisfies detailed balance with respect to the posterior
pR(R|D), as claimed.

The theorem establishes an important property of the ValueWalk method, namely that the implicit Markov chain over
rewards induced by the HMC-based sampling of Q-values satisfies detailed balance with respect to the true posterior over
rewards given the demonstrations, pR(R|D). This property is crucial for the soundness of the method.

Detailed balance is a sufficient condition for the Markov chain to have a stationary distribution equal to the target distribution,
in this case pR(R|D). This means that, assuming the chain is ergodic, the samples of rewards obtained from the ValueWalk
method will asymptotically follow the true posterior distribution, regardless of the initial distribution. In other words, the
theorem guarantees that, given enough samples, ValueWalk will correctly characterize the posterior uncertainty over rewards,
which is a key goal of Bayesian inverse reinforcement learning.

C VARIATIONS OF THE BASELINE METHODS

C.1 POLICYWALK-HMC

We proposed that ValueWalk be used with Hamiltonian Monte Carlo (HMC) treating the underlying parameters as fully
continuous. By contrast, PolicyWalk, as originally proposed, samples the next proposed value of the reward parameters
from neighbours of the current point on a discretized grid. To isolate the speed-up effect of our Q-space trick from the

12

speed-up due to HMC, we also implemented a version of PolicyWalk with HMC (denoted by PolicyWalk-HMC in the
paper. This involves calculating the gradient of the posterior with respect to the reward parameters. To do that, we use the
matrix-multiplication computed Q-values. We omit the dependence of the combined transition-policy matrix to the gradient,
since the derivative of the optimal policy with respect to the reward is zero almost everywhere.

C.2 MODEL-BASED AVRIL

In the gridworld experiments, both PolicyWalk and ValueWalk are leveraging the environment dynamics, which AVRIL
does not use. For fairer comparison, we are thus including also a model-based version of AVRIL, which differs from the
original (model-free) AVRIL in that it evaluates the KL divergence from the prior across all states (the gridworld is using
state-only rewards), and the TD term is calculated (1) over state action pairs and (2) the next-state value can be estimated
using the actual expectation, instead of just using the Q-value of the next empirical state-action pair from the demonstrations.
The remainder of the algorithm remains the same.

D EXPERIMENT DETAILS

For the gridworld experiments, we used a version of AVRIL learning a Q-value for each state-action pair and a mean and
variance value for the reward in each state. For PolicyWalk, we ran inference over a reward vector containing a reward value
per each state. For ValueWalk, we ran inference over the state-value vector.

In the continuous state space environments, for the 3 continuous baseline methods, we match the setup from Chan and
van der Schaar [2021] and use neural network models with 2 hidden layers of 64 units and an ELU activation function. For
our experiments, we scale up the network size with the complexity of the problem: we use one hidden layer with 8 units
for Cartpole, 1 layer of 16 units for Acrobot, and 2 layers of 24 units for LunarLander. In each case, we also tried running
AVRIL with a matching network size but in each case it performed similarly or usually worse than the default 2x64 setup for
which results are reported.

For PolicyWalk and ValueWalk, we use the Pyro [Bingham et al., 2018] implementation of HMC+NUTS. For the control
environment experiments, we ran with 2,000 warm-up steps and 10,000 inference steps for Lunar Lander and 2,000 warm-up
steps with 5,000 inference steps for Carpole and Acrobot (since we are inferring fewer network parameters there). We
automatically tune the step size during warm-up but do not tune the mass matrix.

In the continuous environments, we use a Gaussian process prior with an RBF kernel with fixed scale of 1 and fixed
lengthscale of 0.2 for Cartpole and Acrobot and 0.03 for Lunar Lander (chosen manually based on the distribution of features
in the demonstrations for each environment, where the lengthscale roughly corresponds to the std of one-step change in each
feature).

In Cartpole, Acrobot, and Lunar Lander, we reuse the demonstration sets provided by the authors of AVRIL. Each contains
1000 demonstration trajectories, from which we randomly chose a set of 100 test trajectories and then split the remaining
examples into 5 training splits. We then re-ran each experiment for each number ntraj = 1, 3, 7, 10, 15 of trajectories on the
first ntraj trajectories of each of the 5 splits and evaluated the resulting apprentice agent on 300 episodes of the environment.
We report the mean and std across the splits and evaluations.

Unless otherwise stated, we use a Boltzmann rationality coefficient of 3.

E ADDITIONAL DETAILS OF RESULTS

E.1 GRIDWORLD EXPERIMENTS

Figure 4 shows 2-D histograms of pairwise joint posteriors over rewards of the 9 states of the gridworld. Two aspects of the
expert’s behaviour are captured by this plot and may not be obvious from the simple histograms in Figure 1. Firstly, the
agent heading to the terminal top right corner can be explained either by the reward there being positive, or by the reward in
other states being negative, and thus the agent using the terminal state as a way to escape incurring further negative rewards.
Secondly, note that practically all of the probability mass is placed on the reward of the obstacle tile being lower than that of
the two tiles below, thus explaining the expert avoiding the obstacle tile.

The plot also clearly shows that the posterior is non-Gaussian (note especially the sharp edge expressing high confidence

13

that the ratio of the two values does not cross a certain threshold) and thus could not be captured by the Gaussian-
assuming variational prior. Also, the rewards of different states are, sometimes very tightly, correlated, so modelling them as
independent would again be inappropriate.

14

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

20 0 20

30

20

10

0

10

20

Figure 4: 2-D histograms representing the joint posteriors of the rewards associated with the 9 states of the gridworld
(enumerated left-to-right, top-to-bottom, so state 3 is the goal state in the top right corner.

15

	Introduction
	Background
	Bayesian inverse reinforcement learning
	Markov-chain Monte Carlo (MCMC)
	Related Work

	Method
	Finite state and action spaces
	Continuous state representations
	Continuous actions

	Experiments
	Gridworld
	Results

	Classic Control Environments
	Results

	Discussion
	Unknown transition probabilities
	Proof of soundness of the algorithm
	Variations of the baseline methods
	PolicyWalk-HMC
	Model-based AVRIL

	Experiment details
	Additional details of results
	Gridworld experiments

