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A B S T R A C T

Hydroelastic wave interaction with a circular crack of an ice-cover in a channel together with
some related problems is considered, based on the linearized velocity potential theory and
Kirchhoff plate theory. The domain decomposition method is adopted in the solution procedure.
Two sub-domains are divided by the crack, one below the inner ice sheet and the other below the
outer ice sheet. By using the Green function of an ice-covered channel, the velocity potential in
the outer domain is established from the source distribution formula over an artificial vertical
surface extended from the crack. The source distribution is expanded in both vertical and
circumferential directions, which allows the velocity potential to be obtained in an explicit form
with unknown coefficients. The velocity potential in the inner domain is expanded into a double
series. An orthogonal inner product is used to impose continuity conditions on the artificial
vertical surface and the edge conditions at the crack. The derived formulation is not just limited to
the circular crack problem but can also be readily used in a variety of other problems, including
wave diffraction by a surface-piercing vertical cylinder, polynya and circular disc floating on the
free surface in a channel. Extensive results are provided for the forces on the inner ice sheet, the
transmission and reflection coefficients. In particular, a detailed analysis is made on their be-
haviours near the natural frequencies of the channel, and the natural frequencies corresponding
to the motion of the inner ice sheet.

1. Introduction

The topic of water wave interaction with floating ice sheets has been received considerable attention in the past few decades. On
one hand, water wave propagating in polar regions may cause seasonal changes on the morphology of the ice cover and distribution,
which could have a significant impact on the polar environment (Collins III et al., 2015). On the other hand, from the aspect of polar
engineering, understanding the behaviour of wave in icy water regions can provide some important insights into the nature of its
interaction with offshore structures. Ice may appear in different forms in polar regions. If the horizontal dimension of an ice sheet is
much larger than its thickness, the ice sheet may be modelled as a thin elastic plate (Ewing and Crary, 1934). By applying the
Kirchhoff-Love plate theory and linearized potential flow theory, Fox and Squire (1994) studied the reflection and transmission of an
oblique incident wave into a semi-infinite ice sheet based on the method of matched eigenfunction expansions (MEE). Later, the
problemwas considered by Balmforth and Craster (1999) through theWiener-Hopf technique, while the ice sheet was described by the
Timoshenko-Mindlin equation. Sturova (1999) used the MEE procedure to investigate the diffraction of an oblique incoming wave by
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an ice sheet with finite width. When the length of the ice sheet is not sufficiently large, it becomes a fully three-dimensional problem.
Meylan and Squire (1996) studied the problem of water wave diffraction by a floating circular ice floe through a combination of the
methods of MEE and Green function. Wang and Meylan (2004) solved the wave diffraction problem of ice floe with arbitrary shapes,
where the boundary element method (BEM) was used for the flow, and the finite element method (FEM) for the ice sheet. Similar work
was also one by Montiel et al. (2013) for water wave interaction with one and multiple floating elastic discs through the method of
MEE. A more recent work was that by Porter (2019) based on Fourier transform and Rayleigh-Ritz method to study the interaction
between water waves and single and multiple rectangular floating ice sheets.

In reality, ice sheets typically exhibit imperfections and various defects, among which cracks are common occurrences. When
incoming water waves interact with these cracks, significant stress and strain may occur within the ice sheet, particularly in the vicinity
of the ice edge, which can promote the propagation of fractures, result in for example some sea ice leads. Squire and Dixon (2000)
derived an analytical solution of waves propagation through an ice sheet with a solitary crack. Later, Williams and Squire (2002)
extended it to oblique incident waves. The finite water depth problem was solved by Evans and Porter (2003) through the methods of
vertical mode expansion and Green function. The approach was then employed by Porter and Evans (2006) to study wave diffraction
by multiple parallel straight cracks. Through expanding the jumps of deflection and slope at the crack into Chebyshev polynomials,
Porter and Evans (2007) extended the problem to cracks with finite length. A similar problem was also considered by Marchenko
(1993) and Williams and Squire (2006) based on the Wiener-Hopf technique and residue calculus, respectively. In their works, ice
sheets of different properties on both sides of the crack were considered. In addition to straight cracks, closed curved cracks, also
referred to as crevasses (Jansson et al., 2007) can also form on ice sheets. When water waves interact with a closed curved crack, one of
the effects is that the excess of the stress or fatigue may have the potential to cause disintegration of the ice sheet in the affected area. A
relevant example is the breakup of the Wilkins Ice Shelf (Anon., NASA, 2013). Also, water waves may cause large vertical movement
and deflection of the ice sheet inside of the closed crack, which is similar to the motion of an ice floe (Squire et al., 1995), although its
horizontal movement is restricted by the external ice sheet. The motion of the inner ice sheet may pose risks in some geographic
observations and measurements near the ice cracks (Lazzara et al., 1999). Li et al. (2018) investigated the problem of water wave
diffraction by a circular crack in an ice sheet floating on the water of finite depth. In their work, the Green function without the crack
was first derived in an integral form. Then the diffraction potential was constructed from the boundary integral equation and the
solution was obtained analytically. Mandal et al. (2018) studied a more general case by the method of vertical mode expansion, where
different properties of ice sheets inside and outside the circular crack were considered. Later, Li et al. (2020) proposed a numerical
approach and further extended the problem to wave diffraction by multiple cracks of arbitrary shapes. In some cases, the cracks may
not be very narrow, and polynya or leadmay appear. Relevant works can be found in Chung and Linton (2005) for the transmission and
reflection of waves across a lead between two semi-infinite ice sheets, Bennetts andWilliams (2010) for wave scattering by polynyas of
arbitrary shapes, and Shi et al. (2019) for wave interaction with multiple wide-spaced polynyas.

In ocean engineering it is common to use wave tanks to undertake model tests to understand the nature of the waves and their
interactions with structures. The tank is usually long, and measures are usually put at the far end to minimize wave reflection. It is
therefore often treated as infinitely long channel. However, the width of the tank is often limited, and its effects on the wave and the
behaviour of the structure may be important. To use the results from model test for the real ocean, it is important to understand the
nature of the side wall effects. The problem of a hydroelastic wave propagating along a channel fully covered by a homogeneous ice
sheet was considered by Korobkin et al. (2014) and Ren et al. (2020). Their results suggested that the progressing waves in the channel
are always three–dimensional because of the effect of the ice sheet edge constrains on the channel walls. Using a similar procedure in
Korobkin et al. (2014), Shishmarev et al. (2016) and Khabakhpasheva et al. (2019) studied the wave generated by a load moving
steadily on the surface of an ice sheet. Yang et al. (2021) investigated the hydroelastic waves due to a uniform current passing a
submerged horizontal circular cylinder in a channel with an ice cover, which is related to the problem of a submerged body at forward
speed. Furthermore, Yang et al. (2022) employed the method of vertical modes expansion for the Green function in the channel and
used it to solve the problem of wave diffraction by a vertical circular cylinder standing in an ice-covered channel.

Here, although the approach of Yang et al. (2022) is used, the boundary integral equation has been derived for general cases. The
vertical cylinder problem in the work of Yang et al. (2022) is only one of the special cases. Based on this more general formation, a
variety of problems, including wave diffraction by cracks in an ice sheet, polynya, and discs floating on the free surface are investigated
in the paper. The distribution of the natural frequencies of the tank is rigorously established. Previous work has provided only an
implicit equation in the form of an infinite series for the natural frequencies. The solutions were obtained through a numerical search.
It is not too clear where the roots are and whether the search has missed some roots. It has shown clearly here how the roots of the
dispersion equation for waves in an ice-covered channel are distributed and the bound of each root. Also, the infinite series of the
dispersion relationship does not converge when the thickness of the ice sheet is taken to be zero, and therefore the equation cannot be
used directly in such a case. We have then shown that the roots, or the natural frequencies, tend to those of the free surface as the
thickness tends to zero and this means that the result of the free surface is recovered by the present formulation. Detailed analysis is
made on the transmission and reflection coefficients, hydrodynamic forces on the inner ice sheet, and sloshing motion of fluid in
polynya in the tank. The reasons of sharp variation of physical results with the wave frequency are explained, especially associated
with the natural frequencies of the channel, and the natural frequencies of the motion of the inner ice sheet, natural frequencies of
sloshing motion in the polynya as well as various edge conditions. Besides, the procedure here can be also used to solve problems of
arbitrary shapes by employing numerical discretization.

The paper is organized as follows. The mathematical model is introduced in Section. 2. Formulations for the velocity potential of
incident wave are described in Section 3.1. The total velocity potentials in the inner and outer domains are constructed in Section. 3.2.
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The far-field behaviour of the wave is discussed in Section 3.3. In Section 3.4, the formulas of hydrodynamic forces on the inner ice
sheet are derived. The numerical results are presented in Section. 4. Conclusions are given in Section. 5.

2. Mathematical model

We use the case of wave propagation in a channel covered by an imperfect ice sheet, or ice sheet with a crack to derive the
formulation. Although the procedure used can be readily applied to a crack of an arbitrary shape, we focus on a circular one. The cross
section of the channel is rectangular and its width 2b and mean water depth H are constant, as sketched in Fig. 1. The ice sheet is
divided into two parts by the circular crack, each part of the ice sheet is assumed to have uniform density and thickness, or ρ1 and h1 for
the outside ice sheet, ρ2 and h2 for the inside ice sheet. A Cartesian coordinate system O − xyz is defined with the origin located at the
central plane of the channel and the lower surface of the ice sheet, the x-axis points in the longitudinal direction of the channel and
z-axis points upwards. The centre of the circular crack with radius a is located at

(
xc,yc,0

)
. An incoming wave that comes from x= +∞

will be diffracted by the crack.
A cylindrical coordinate system (r, θ, z) with the origin at the centre of the crack is further introduced as

x − xc = rcosθ
y − yc = rsinθ

}

. (1)

The fluid with density ρ is assumed to be inviscid and incompressible and homogeneous, and its motion is irrotational. Thus, the
velocity potential Φ(x, y, z, t) can be adopted to describe the flow field. When the amplitude of the wave is small compared with its
length, linearization can be further introduced. When the motion is sinusoidal in time with radian frequency ω, the total velocity
potential can be expressed as

Φ(x, y, z, t) = Re
{

ϕ(x, y, z)× eiωt
}
. (2)

where ϕ(x, y, z) is due to incident and diffracted waves. The conservation of mass requires ϕ to satisfy the Laplace equation

∇2ϕ +
∂2ϕ
∂z2 = 0, − ∞ < x < +∞, − b ≤ y ≤ b, − H ≤ z ≤ 0, (3)

where ∇2 = ∂2
∂x2 +

∂2
∂y2 denotes the two-dimensional Laplacian in the horizontal plane. The ice sheet is modelled by the Kirchhoff-Love

theory for an elastic plate. Assuming that there is no air gap between the ice sheet and the water surface, the boundary condition there
can be written as

(
Li∇4 − miω2 + ρg

) ∂ϕ
∂z − ρω2ϕ = 0, z = 0,

{
i = 1 : r < a

i = 2 : r > a
. (4)

where Li = Eih3i /
[
12
(
1 − ν2i

)]
, Ei and νi (i= 1, 2) represent the flexural rigidity, Young’s modulus and Poisson’s ratio of the sheet

respectively,mi = ρihi denotes the mass per unit area of the ice sheet, g denotes the gravitational acceleration. i= 1, 2 here correspond
to the outer and inner ice sheets respectively. At the two side walls and the bottom of the channel, the impermeable condition gives

∂ϕ
∂y = 0, y = ±b, (5)

Fig. 1. The sketch of the problem.
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∂ϕ
∂z = 0, z = − H, (6)

We assume that the ice sheets on two sides of the circular crack are fully detached, which means that the conditions of zero bending
moment and shear force should be enforced (Timoshenko and Woinowsky-Krieger, 1959)

B

(
∂ϕ
∂z

)

= 0 and S

(
∂ϕ
∂z

)

= 0, r = a, z = 0, (7a, b)

where the operators B and S are defined as

B = ∇2 −
νʹ
i
a

(
1
a

∂2

∂θ2
+

∂
∂r

)

S =
∂
∂r∇

2 +
νʹ
i
a2

(
∂3

∂r∂θ2
−
1
a

∂2

∂θ2

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (8a, b)

and ν́i = 1 − νi. For the edge conditions at the intersection lines of the ice sheet with two side walls, we consider two common types

∂ϕ
∂z = 0,

∂2ϕ
∂y∂z = 0 Clamped

∂3ϕ
∂y2∂z+ ν ∂3ϕ

∂x2∂z = 0,
∂4ϕ

∂y3∂z+ (2 − ν) ∂4ϕ
∂x2∂y∂z = 0 Free

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, y = ±b, z = 0. (9a, b)

In addition, at x = ±∞, the far-field radiation conditions should be imposed to ensure that the disturbed wave propagates
outwards.

3. Solution procedure

The fluid domain is divided into two parts, as given in Fig. 1, namely the outer domain Ω1 (r> a) and the inner domain Ω2 (r< a).
The velocity potential in Ωi (i= 1, 2) is defined as ϕ(i). ϕ(1) can be further written as ϕ(1) = ϕI + ϕ(1)

D , where ϕI and ϕ(1)
D denote the

incident and diffraction potential respectively. Here, ϕ(1)
D is constructed by a boundary integral equation, and ϕ(2) is established

through the eigenfunction expansion.

3.1. The velocity potential of an incoming wave in an ice-covered channel

The velocity potential of an incoming wave in an ice-covered channel can be written as (Yang et al., 2022),

ϕI(x, y, z) = iω A
χ(k0)

× e− ik0(x− xc) ×
∑+∞

m=− 2

Im(k0)ψm(z)
Qm

cos[σm(k0)y]
sin[σm(k0)b]

, (10)

where ψm(z), Qm, Im(k) and σm(k) have been introduced in Appendix. A,

χ(k0) =
∑+∞

m=− 2

Im(k0)κmtanhκmH
Qmsin[σm(k0)b]

, (11)

A in Eq. (10) denotes the amplitude of the wave at y = 0. k0 is the largest positive real root of F S(k,ω) = 0, as discussed in Ap-
pendix. A.

3.2. The velocity potentials in the inner and outer domains

Through applying the Green’s second identity to G and ϕ(1)
D , we may have

Λϕ(1)
D (x, y, z) = ∯ S

[

ϕ(1)
D
(
x0, y0, z0

) ∂G
(
x, y, z, x0, y0, z0

)

∂n0
− G

(
x, y, z, x0, y0, z0

) ∂ϕ(1)
D
(
x0, y0, z0

)

∂n0

]

dS0, (12)

where S is comprised of the bottom of the channel SH, two vertical channel walls SW, the entire outer ice sheet SI, two vertical far-field
surfaces S±∞ at x = ±∞ and a vertical surface at r = a. Λ in Eq. (12) is the solid angle at the field point (x,y,z). Since all the boundaries
here are smooth, Λ = 2π if (x,y,z)is at the boundary, otherwiseΛ = 4π. G

(
x, y, z, x0, y0, z0

)
denotes the Green function for a rectangular

channel fully covered by a homogeneous ice sheet (Yang et al., 2022), which is given in detail in Appendix. A. Noticing that the Green
function in Eq. (A1) satisfies all the boundary conditions apart from that at r = a. In such a case, Eq. (12) can be further simplified to
the following formula Yang et al. (2022) of source distribution over r = a

Y.F. Yang et al.
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ϕ(1)
D (x, y, z) = a

∫ 2π

0

〈
G
(
x, y, z; x0, y0, z0

)
,Ψ
(
x0, y0, z0

)〉
dθ0. (13)

where Ψ is the strength of the source distributed over the interface at r = a, x0 − xc = acosθ0 and y0 − yc = asinθ0 (Yang et al., 2022).
The operator 〈〉 is defined as

〈G,Ψ〉 =

∫0

− H

GΨdz+
L1

ρω2

(
∂G
∂z

∂3Ψ
∂z3 +

∂3G
∂z3

∂Ψ
∂z

)⃒
⃒
⃒
⃒
z=0

. (14)

Following Eq. (14), we may consider

Im,m̃ =
1

κ2m − κ2
m̃

∫0

− H

[
ψ ʹ́
m(z)ψ m̃(z) − ψm(z)ψʹ́

m̃
(z)
]
dz, m ∕= m̃. (15)

ψm(z) is defined in Eq. (A2), which provides ψʹ́
m(z) = κ2mψm(z), ψʹ́

m̃
(z) = κ2

m̃
ψ m̃(z), and then Eq. (15) gives

Im,m̃ =

∫0

− H

ψm(z)ψ m̃(z)dz. (16)

Applying the integration by parts to Eq. (15), we obtain

Im,m̃ =
ψʹ
m(0)ψ m̃(0) − ψʹ

m̃
(0)ψm(0)

κ2m − κ2
m̃

. (17)

Using the ice sheet boundary condition in Eq. (4), we have

ψm(0) =
L1

ρω2ψ (IV)
m (0) +

ρg − m1ω2

ρω2 ψʹ
m(0)

ψ m̃(0) =
L1

ρω2ψ (IV)
m̃

(0) +
ρg − m1ω2

ρω2 ψʹ
m̃
(0)

⎫
⎪⎪⎬

⎪⎪⎭

. (18a, b)

Substituting Eq. (18) into Eq. (17), we obtain

Im,m̃ =
L1

ρω2

ψʹ
m(0)ψ

(IV)
m̃

(0) − ψ (IV)
m (0)ψʹ

m̃
(0)

κ2m − κ2
m̃

. (19)

Using ψ (IV)
m (0) = κ4mψʹ

m(0) and ψ (IV)
m̃

(0) = κ4
m̃

ψʹ
m̃
(0), Eq. (19) can be further expressed as

Im,m̃ = −
L1

ρω2

(
κ2m+ κ2

m̃

)
ψʹ
m(0)ψʹ

m̃
(0) = −

L1
ρω2

(
d3ψm

dz3
dψ m̃
dz

+
dψm

dz
d3ψ m̃
dz3

)

z=0

. (20)

From Eqs. (16) and (20), we obtain

∫0

− H

ψm(z)ψ m̃(z)dz+
L1

ρω2

(
d3ψm

dz3
dψ m̃
dz

+
dψm

dz
d3ψ m̃
dz3

)

z=0

= 0, m ∕= m̃. (21)

When m = m̃, the left-hand side of Eq. (21) can be found to be equal to Qm given in Eq. (A3). Thus, we may have the following
orthogonal product for the vertical mode ψm(z),

〈ψm,ψ m̃〉 =

∫0

− H

ψmψ m̃dz+
L1

ρω2

(
dψm

dz
d3ψ m̃
dz3

+
d3ψm

dz3
dψ m̃
dz

)⃒
⃒
⃒
⃒
⃒
z=0

= δmm̃Qm (22)

as given by Sahoo et al. (2001), where δmm̃ denotes the Kronecker delta function.

To obtain ϕ(1)
D , Ψ may be expressed into a double series in the cylindrical coordinate (a, θ0, z0) as

Ψ(a, θ0, z0) =
1
4πa

∑+∞

n=− ∞

∑+∞

m=− 2

an,m
QmJ n(κma)

× ψm(z0)e− inθ0 , (23)

where an,m are unknown coefficients, and J n represents the n-th Bessel function of the first kind.
From Abramowitz and Stegun (1965), we write

Y.F. Yang et al.
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H
(2)
0 (κmR) =

∑+∞

n=− ∞
H

(2)
n (κmr)J n(κmr0)ein(θ0 − θ)

ei[σm(y0 − yc)±k(x0 − xc)] =
∑+∞

n=− ∞
J n(κmr0)ein(θ0±γm)

ei[− σm(y0 − yc)±k(x0 − xc)] =
∑+∞

n=− ∞
(− 1)nJ n(κmr0)ein(θ0∓γm)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (24a, b, c)

The Green function in Eq. (A1) becomes

G(x, y, z; r0, θ0, z0) =
iπ
2
∑+∞

n=− ∞

∑+∞

m=− 2

ψm(z)ψm(z0)
Qm

H
(2)
n (κmr)J n(κmr0)ein(θ0 − θ)+

∑+∞

n=− ∞

∑+∞

m=− 2

ψm(z)ψm(z0)
Qm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫+∞

0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
En,m(k, yc)e− ik(x− xc) + E− n,m(k, yc)eik(x− xc)

]
cosσmy

2σmsinσmb

− i
[
Fn,m(k, yc)e− ik(x− xc) + F− n,m(k, yc)eik(x− xc)

]
sinσmy

2σmcosσmb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

e− iσmbdk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

× J n(κmr0)einθ0+

∑+∞

n=− ∞

∑+∞

m=− 2

∑+∞

mʹ=− 2

ψmʹ(z)ψm(z0)
QmʹQm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

ℓ

Im(k)Imʹ(k)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
En,m(k, yc)e− ik(x− xc) + E− n,m(k, yc)eik(x− xc)

]
cosσmʹy

F S(k,ω)sinσmʹbsinσmb

+

[
Fn,m(k, yc)e− ik(x− xc) + F− n,m(k, yc)eik(x− xc)

]
sinσmʹy

F A(k,ω)cosσmʹbcosσmb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

dk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

× J n(κmr0)einθ0

, (25)

where

En,m(k, yc) = ei
nπ
2 cos

(
σmyc + nγm −

nπ
2

)

Fn,m(k, yc) = ei
nπ
2 sin

(
σmyc + nγm −

nπ
2

)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (26a,b)

k = κmsinγm
σm = κmcosγm

}

. (27a,b)

Substituting Eqs. (23) and (25) into Eq. (13), we obtain

ϕ(1)
D (x, y, z) =

iπ
2
∑+∞

n=− ∞

∑+∞

m=− 2
an,m ×

ψm(z)
Qm

H
(2)
n (κmr)e− inθ

+
∑+∞

n=− ∞

∑+∞

m=− 2
an,m ×

ψm(z)
Qm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫+∞

0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
En,m(k, yc)e− ik(x− xc) + E− n,m(k, yc)eik(x− xc)

]
cosσmy

2σmsinσmb

− i
[
Fn,m(k, yc)e− ik(x− xc) + F− n,m(k, yc)eik(x− xc)

]
sinσmy

2σmcosσmb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

e− iσmbdk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

+
∑+∞

n=− ∞

∑+∞

m=− 2

∑+∞

m’=− 2

an,m ×
ψm’ (z)
Qm’Qm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫

ℓ
Im(k)Im’ (k)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

[
En,m(k, yc)e− ik(x− xc) + E− n,m(k, yc)eik(x− xc)

]
cosσm’y

F S(k,ω)sinσm’bsinσmb

+

[
Fn,m(k, yc)e− ik(x− xc) + F− n,m(k, yc)eik(x− xc)

]
sinσm’y

F A(k,ω)cosσm’bcosσmb

⎤

⎥
⎥
⎥
⎥
⎥
⎦

dk

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

.

(28)

To impose the boundary condition at r = a and edge conditions at r = a, z = 0 on ϕ(1)
D , we may apply Eqs. (24b, c) to Eq. (28),

which provides

ϕ(1)
D (r, θ, z) =

iπ
2
∑+∞

n=− ∞

∑+∞

m=− 2
an,m ×

ψm(z)
Qm

H
(2)
n (κmr)e− inθ +

∑+∞

n=− ∞

∑+∞

nʹ=− ∞

∑+∞

m=− 2
an,mC n,nʹ,mψm(z)J nʹ(κmr)ein

ʹθ

+
∑+∞

n=− ∞

∑+∞

nʹ=∞

∑+∞

m=− 2

∑+∞

mʹ=− 2

an,mD n,nʹ,m,mʹψmʹ(z)J nʹ(κmʹr)einʹθ,

(29)

where
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C n,n’ ,m =
1
Qm

∫+∞

0

⎡

⎢
⎢
⎢
⎢
⎣

En,m(k, yc)E− n’ ,m(k, yc) + E− n,m(k, yc)En’ ,m(k, yc)
2σmsinσmb

− i
Fn,m(k, yc)F− n’ ,m(k, yc) + F− n,m(k, yc)Fn’ ,m(k, yc)

2σmcosσmb

⎤

⎥
⎥
⎥
⎥
⎦
e− iσmbdk, (30)

D n,nʹ,m,mʹ =
1

QmQmʹ

∫

l

Im(k) Imʹ(k)

⎡

⎢
⎢
⎢
⎣

En,m(k, yc)E− nʹ,mʹ(k, yc) + E− n,m(k, yc)Enʹ,mʹ(k, yc)
F S(k,ω)sinσmbsinσmʹb

+
Fn,m(k, yc)F− nʹ,mʹ(k, yc) + F− n,m(k, yc)Fnʹ,mʹ(k, yc)

F A(k,ω)cosσmbcosσmʹb

⎤

⎥
⎥
⎥
⎦
dk, (31)

ϕI in Eq. (10) can also be written in the cylindrical system in the following form

ϕI(r, θ, z) = iω A
χ(k0)

×
∑+∞

n=− ∞

∑+∞

m=− 2

Im(k0)ψm(z)
Qm

E− n,m(k0, yc)
sin[σm(k0)b]

J n(κmr)einθ. (32)

In the inner domain Ω2, from Ren et al. (2021), ϕ(2) can be written as

ϕ(2)(r, θ, z) =
∑+∞

n=− ∞

∑+∞

m=− 2
bn,mJ n(k mr)φm(z)einθ, (33)

where

φm(z) =
coshk m(z+ H)
cosh(k mH)

, (34)

and bn,m are unknown coefficients. Similar to κm, α = k m are defined as the roots of K2(α,ω) = 0, where

K2(α,ω) =
(
L2α4+ ρg − m2ω2)αsinhαH − ρω2coshαH. (35)

In particular, k − 2 and k − 1 are two complex roots with negative imaginary parts and k − 2 = − k − 1, k 0 is the purely positive real root,
k m(m= 1,2, 3,⋯) are an infinite number of purely negative imaginary roots. φm(z) also satisfies the following inner product as

〈φm,φm̃〉 =

∫0

− H

φmφm̃dz+
L2

ρω2

(
dφm

dz
d3φm̃
dz3

+
d3φm

dz3
dφm̃
dz

)⃒
⃒
⃒
⃒
⃒
z=0

= δmm̃Pm, (36)

where

Pm =
2k mH+ sinh(2k mH)
4k mcosh2(k mH)

+
2L2
ρω2k

4
mtanh

2
(k mH). (37)

On the surface of r = a, the pressure and velocity of the fluid should be continuous, or

ϕ(1)(a, θ, z) = ϕ(2)(a, θ, z) and
∂ϕ(1)(a, θ, z)

∂r =
∂ϕ(2)(a, θ, z)

∂r , (38a, b)

Applying the inner products in Eqs. (22) and (36), and using Eq. (38), we have

〈
∂ϕ(1)

∂r ,ψm

〉

=

∫0

− H

∂ϕ(2)

∂r ψmdz+
L1

ρω2

(
dψm

dz
∂4ϕ(1)

∂r∂z3 +
d3ψm

dz3
∂2ϕ(1)

∂r∂z

)⃒
⃒
⃒
⃒
⃒
z=0

, (39)

〈
ϕ(2),φm

〉
=

∫0

− H

ϕ(1)φmdz+
L2

ρω2

(
dφm

dz
∂3ϕ(2)

∂z3 +
d3φm

dz3
∂ϕ(2)

∂z

)⃒
⃒
⃒
⃒
⃒
z=0

. (40)

Substituting Eqs. (29), (32) and (33) into Eqs. (39) and (40), and define
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∂2ϕ(1)

∂r∂z = −
∑+∞

n=− ∞
cneinθ

∂4ϕ(1)

∂r∂z3 = −
∑+∞

n=− ∞
dneinθ

∂ϕ(2)

∂z = −
∑+∞

n=− ∞
eneinθ

∂3ϕ(2)

∂z3 = −
∑+∞

n=− ∞
fneinθ

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (41a-d)

where cn, dn, en and fn are unknown coefficients. A system of linear equations of the following form can be obtained as

iπ
2

(− 1)nH (2)
n

ʹ
(κma)

QmJ
ʹ
n(κma)

a− n,m +
∑+∞

nʹ=− ∞

C nʹ,n,manʹ,m +
∑+∞

nʹ=− ∞

∑+∞

mʹ=− 2

D nʹ,n,mʹ,manʹ,mʹ −
∑+∞

mʹ=− 2

X(κm, k mʹ)k mʹJ
ʹ
n(k mʹa)

QmκmJ
ʹ
n(κma)

bn,mʹ

+
L1tanhκmH

ρω2QmJ
ʹ
n(κma)

(
κ2mcn + dn

)

= − i
ωAIm(k0)E− n,m(k0, yc)
Qmχ(k0)sin[σm(k0)b]

, (42)

bn,m −
iπ
2
∑+∞

mʹ=− 2

(− 1)nX(k m ,κmʹ)H (2)
n (κmʹa)

QmʹPmJ n(k ma)
a− n,mʹ

−
∑+∞

nʹ=− ∞

∑+∞

mʹ=− 2

X(k m ,κmʹ )J n(κmʹa)
PmJ n(k ma)

C nʹ ,n,mʹanʹ,mʹ −

∑+∞

nʹ=− ∞

∑+∞

mʹ=− 2

∑+∞

mʹʹ=− 2

X(k m ,κmʹ )J n(κmʹa)
PmJ n(k ma)

D nʹ,n,mʹʹ ,mʹanʹ ,mʹʹ +
L2k mtanhk mH
ρω2PmJ n(k ma)

(
k 2
men+ fn

)

= i
ωA

χ(k0)
∑+∞

mʹ=− 2

X(k m ,κmʹ )Imʹ (k0)J n(κmʹa)E− n,mʹ (k0,yc)
QmʹPmJ n(k ma)sin[σmʹ(k0)b]

(43)

where

X(x1, x2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1tanhx1H − x2tanhx2H
x21 − x22

x21 ∕= x22

2x1H+ sinh2x1H
4x1cosh2x1H

x21 = x22

, (44)

H
(2)
n

ʹ
(α) and J

ʹ
n(α) in Eqs. (42) and (43) denote the derivatives of H (2)

n (α) and J n(α) with respect to α. In addition, the free edge
conditions at the crack should also be imposed through ϕ(1) and ϕ(2). Substituting Eqs. (29) and (32) into Eqs. (7) and (8), we have

iπ
2
∑+∞

m=− 2

1
Qm

B
[
H

(2)
− n(κma)

]
a− n,m +

∑+∞

n’=− ∞

∑+∞

m=− 2
C n’ ,n,mB[J n(κma)]an’ ,m +

∑+∞

n’=− ∞

∑+∞

m=− 2

∑+∞

m’=− 2

D n,’n,m’ ,mB[J n(κma)]an’ ,m’

= − i
ωA

χ(k0)
∑+∞

m=− 2

Im(k0)E− n,m(k0, yc)
Qmsin[σm(k0)b]

B[J n(κma)],

(45a)

iπ
2
∑+∞

m=− 2

1
Qm

S
[
H

(2)
− n(κma)

]
a− n,m +

∑+∞

n’=− ∞

∑+∞

m=− 2
C n’ ,n,mS[J n(κma)]an’ ,m +

∑+∞

n’=− ∞

∑+∞

m=− 2

∑+∞

m’=− 2

D n,’n,m’ ,mS[J n(κma)]an’ ,m’

= − i
ωA

χ(k0)
∑+∞

m=− 2

Im(k0)E− n,m(k0, yc)
Qmsin[σm(k0)b]

S[J n(κma)].

(45b)

Substituting Eq. (33) into Eqs. (7) and (8), we have

∑+∞

m=− 2
B[J n(k ma)]bn,m = 0, (46a)
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∑+∞

m=− 2
S[J n(k ma)]bn,m = 0, (46b)

where

B[J n(κma)] =

[(

κ2m −
n2ν’

i
a2

)

J n(κma) +
ν’
i
a

κmJ
’
n(ma)

]

κmtanhκmH, (47a)

S[J n(κma)] =

[(

κ2m +
n2ν’

i
a2

)

κmJ
’

n(κma) −
n2ν’

i
a3

J n(κma)
]

κmtanhκmH. (47b)

The infinite series in Eqs. (29), (32) and (33) are truncated at n = nʹ = ±N andm =mʹ =M. In such a case, there is a total number of
2(2N+1)(M+5) unknowns, 2(2N+1)(M+3) of which are an,m and bn,m, and 4(2N+1) of which are cn, dn, en and fn. From Eqs. (42) and
(43), 2(2N+1)(M+3) equations can be established, while Eqs. (45) and (46) provide additional 4(2N+1) equations. Thus, a total
number of 2(2N+1)(M+5) equations can be obtained, which is the same as that of the unknowns.

When the inner and outer ice sheets have the same Li = L and mi = M (i = 1, 2), the integrals on the right-hand sides of Eqs. (39)
and (40) can be written in terms of the orthogonal product. From these two equations, an,m and bn,m can be explicitly written in terms of
cn and dn and they can be eliminated from the matrix equation. This is the same as by redefining SI in Eq. (12) as both the inner and
outer ice sheet surfaces and removing the vertical surface at r = a. When integration by parts is used for both ice sheet surfaces, the
equation will become one involving the line integral along the crack only, and of cn and dn are the only unknowns.

The above formulation is derived for a crack between two ice sheets of different properties. In fact, as mentioned in the Intro-
duction, the formulation can be used for a variety of problems. If we let C n,nʹ,m = D n,nʹ,m,mʹ = 0, ϕ(1)

D in Eq. (29) becomes the
diffraction velocity in the unbounded ocean. If we let h1 = 0, removeD n,nʹ,m,mʹ , cn and dn terms from Eq. (42), remove Eq. (45) and let
the integration inC n,nʹ,m passes over the singularities at σmsinσmb = 0, the problem becomes an elastic disc floating on the free surface.
Similarly, when h2 = 0, it becomes the problem of wave diffraction by a polynya in an ice-covered channel. Furthermore, if we remove
the first term on the right-hand of Eq. (39) and corresponding bn,m in Eq. (42), then Eqs. (42) and (47a) become identical to those for a
vertical cylinder in an ice-covered channel (Yang et al., 2022). For a non-circular shape, the vertical mode expansion can still be used,
while the horizontal plane, the problem can be solved numerically.

3.3. Far-field behaviour of the solution

We may apply

lim
|x|→+∞

P.V.
∫+∞

0

f(k)eikx

k − ks
dk = sgn(x)iπf(ks)eiksx (48)

to Eq. (28). Noticing that the Bessel functions tend to 0, ϕ(1)
D at x→ ± ∞ can be expressed as

ϕ(1)
D (x, y, z) =

∑NS − 1

j=0

∑+∞

m=− 2
α±
j,mψm(z)fj,m(y)e∓ikj(x− xc), (49)

where

α±
j,m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− 2πiIm
(
kj
)

QmF
ʹ
S
(
kj,ω

)
tan
[
σm
(
kj
)
b
]
∑+∞

n=− ∞

∑+∞

mʹ=− 2

an,mʹImʹ
(
kj
)
E±n,mʹ

(
kj, yc

)

Qmʹsin
[
σmʹ
(
kj
)
b
] at F S

(
kj,ω

)
= 0

− 2πiIm
(
kj
)

QmF
ʹ
A
(
kj,ω

)
cot
[
σm
(
kj
)
b
]
∑+∞

n=− ∞

∑+∞

mʹ=− 2

an,mʹImʹ
(
kj
)
F±n,mʹ

(
kj, yc

)

Qmʹcos
[
σmʹ
(
kj
)
b
] at F A

(
kj,ω

)
= 0

, (50)

fj,m(y) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos
[
σm
(
kj
)
y
]

cos
[
σm
(
kj
)
b
] at F S

(
kj,ω

)
= 0

sin
[
σm
(
kj
)
y
]

sin
[
σm
(
kj
)
b
] at F A

(
kj,ω

)
= 0

, (51)

F ʹ
S(k,ω) and F ʹ

A(k,ω) respectively denote the derivatives of F S(k,ω) and F A(k,ω)with respective to k. Using Eqs. (10) and (49), we
have
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ϕ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑+∞

m=− 2
P mψm(z) f0,m(y)e− ik0(x− xc) +

∑NS − 1

j=0

∑+∞

m=− 2
R j,mψm(z)fj,m(y)eikj(x− xc) x = − ∞

∑NS − 1

j=0

∑+∞

m=− 2
T j,mψm(z)fj,m(y)e− ikj(x− xc) x = +∞

, (52)

where R j,m = α−
j,m and T j,m = α+

j,m+ δj,0P m, and

P m = i
ωA

χ(k0)
Im(k0)

Qmtan[σm(k0)b]
. (53)

Notice ψm(z) = ψm(z), f j,m(y) = fj,m(y) when m ≥ 0, as well as ψ − 1(z) = ψ − 2(z), ψ − 2(z) = ψ − 1(z), f j,− 1(y) = fj,− 2(y), f j,− 2(y) =
fj,− 1(y), P − 1 = P − 2, P − 2 = P − 1 since κ− 2 = − κ− 1 and σ− 2

(
kj
)
= − σ− 1

(
kj
)
. ϕ then can be expressed as

ϕ =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑+∞

m=− 2
P̃ mψm(z) f0,m(y)e− ik0(x− xc) +

∑NS − 1

j=0

∑+∞

m=− 2
R̃ j,mψm(z)fj,m(y)e− ikj(x− xc) x = − ∞

∑NS − 1

j=0

∑+∞

m=− 2
T̃ j,mψm(z)fj,m(y)eikj(x− xc) x = +∞

. (54)

where

P̃ m =

⎧
⎨

⎩

P − 1 m = − 2
P − 2 m = − 1
P m m ≥ 0

, (55)

and R̃ j,m, T̃ j,m R̃ j,m, T̃ j,m are defined in the same way. Substituting Eqs. (52) and (54) into Eq. (B3) and using Eq. (B5), we obtain

I+(x) =
∫b

− b

[〈

ϕ,
∂ϕ
∂x

〉

−

〈

ϕ,
∂ϕ
∂x

〉]

x=+∞
dy = i

∑NS − 1

j=0

∑NS − 1

l=0

∑+∞

m=− 2
QmT j,mT̃ l,m

(
kj + kl

)
ei(kl − kj)(x− xc)

∫b

− b

fj,m(y)fl,m(y)dy. (56)

Invoking Eq. (B8), I+(x) is independent to x, Eq. (56) can be simplified as

I+ = 2i
∑NS − 1

j=0

∑+∞

m=− 2
kjQmT j,mT̃ j,mY

(
σm
(
kj
))
, (57)

where

Y
(
σm
(
kj
))

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2σm
(
kj
)
b+ sin

[
2σm

(
kj
)
b
]

2σm
(
kj
)
cos2

[
σm
(
kj
)
b
] at F S

(
kj,ω

)
= 0

2σm
(
kj
)
b − sin

[
2σm

(
kj
)
b
]

2σm
(
kj
)
sin2

[
σm
(
kj
)
b
] at F A

(
kj,ω

)
= 0

. (58)

The integral at x = − ∞ in Eq. (B4) can be treated in the same way, which provides

I− = − 2i
∑NS − 1

j=0

∑+∞

m=− 2
kjQmR j,mR̃ j,mY

(
σm
(
kj
))

+ 2i
∑+∞

m=− 2
k0QmP mP̃ mY(σm(k0)). (59)

From Eqs. (B3), (57) and (59), we have

∑NS − 1

j=0

(
UT
j +U

R
j

)
= UI, (60)

where
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

UT
j = kj

∑+∞

m=− 2
QmT j,mT̃ j,mY

(
σm
(
kj
))

UR
j = kj

∑+∞

m=− 2
QmR j,mR̃ j,mY

(
σm
(
kj
))

UI = k0
∑+∞

m=− 2
QmP mP̃ mY(σm(k0))

, (61a, b, c)

UT
j and UR

j denote a measure of the energy of the kj component of the transmitted and reflected waves respectively, UI represents a
measure of the energy of the incident wave. For convenience, the transmission and reflection coefficients of the wave components kj
can be defined as

Tj =

(
UT
j

UI

)1/2

and Rj =

(
UR
j

UI

)1/2

(62a, b)

Thus, from Eqs. (60) and (62), Tj and Rj satisfy

∑NS − 1

j=0

(
T2j +R

2
j

)
= 1. (63)

3.4. Hydrodynamic forces on the inner circular ice sheet

Once the velocity potential ϕ(2) is found, the hydrodynamic forces on the inner circular ice sheet can be calculated through

Fj = iωρ
∫ ∫

SI2

ϕ(2)njdS, j = 1, 2, 3. (64)

where j = 1 corresponds to the vertical force Fz, and j = 2 and 3 correspond to the moment Mx about the line x = xc & z = 0 and the
momentMy about the line y = yc & z = 0, and (n1,n2,n3) =

(
1,y − yc,xc − x

)
= (1,rsinθ, − rcosθ). Substituting Eq. (33) into (64), and

using (Abramowitz and Stegun, 1965)

∫z

0

tnJ n− 1(t)dt = znJ n(z), (65)

we obtain
⎡

⎢
⎢
⎣

Fz

Mx

My

⎤

⎥
⎥
⎦ = πρωai

∑+∞

m=− 2

1
k m

×

⎡

⎢
⎢
⎣

2b0,mJ 1(k ma)

ia
(
b− 1,m + b1,m

)
J 2(k ma)

a
(
b− 1,m − b1,m

)
J 2(k ma)

⎤

⎥
⎥
⎦. (66)

4. Numerical results

In the cases studied below, the typical values of the physical parameters of the ice sheet and the fluid are chosen as follows:

ρ1 = ρ2 = 917 kgm− 3, E1 = E2 = 4.2 × 109 Nm− 2, ν1 = ν2 = 0.3
ρ = 1000 kgm− 3, g = 9.8 ms− 2, H = 5 m

}

, (67)

unless otherwise specified. All the numerical results are presented in the dimensionless form, based on the density of water ρ, the
acceleration due to gravity g, and a characteristic length scale. They are obtained by truncating the infinite series in Eqs. (42), (43),
(45) and (46) at N = 12 and M = 48, which have been confirmed to be convergent.

4.1. Analysis of the distribution of the roots of the dispersion equations

Here, we may investigate further the distribution of the roots. Take the dispersion equation of the ice-covered channel with
clamped – clamped edges as an example. From the derivations in Yang et al. (2022), Eq. (A3) can also be written in the following form
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F S(k,ω) = − 2
∑+∞

m=− 2

κ2mtanh
2κmH

Qm

1
σmtanσmb

=
4ρω2

b
∑+∞

n=0

α2nsinhα2nH
K1(α2n,ω)(1+ δn0)

F A(k,ω) = 2
∑+∞

m=− 2

κ2mtanh
2κmH

Qm

1
σmcotσmb

=
4ρω2

b
∑+∞

n=0

α2n+1sinhα2n+1H
K1(α2n+1,ω)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (68a,b)

where αn =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k2 + n2π2/4b2

√
, andQm and K1(α, ω) are defined in Eqs. (A3) and (A7) respectively. K1(α,ω) is the dispersion equation of

unbounded fluid domain with an ice-cover. It has been known that K1(α,ω) = 0 has only one real root at α = κ0, or K1(α,ω)< 0when α
< κ0 and K1(α,ω) > 0 when α > κ0. When k > κ0, we have αn > κ0, and K1(αn,ω) > 0 in Eq. (68) for all n, which gives F S(k,ω)> 0 and
F A(k,ω) > 0. Thus, all the positive real roots of F S(k,ω) and F A(k,ω) are located within the range of 0 < k < κ0. Wemay denote λj =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

κ20 − j2π2/4b2
√

, j = 0…Nʹ, where Nʹ =

[
2κ0b

π

]

, [x] is the floor function. Letting k = λ2j+2 + ϵ with ϵ→0+ and 2j+ 2 < Nʹ, we have

K1
(
α2j+2,ω

)
→0+ and therefore F S(k, ω)→+ ∞. Letting k = λ2j − ϵ, we have K1

(
α2j,ω

)
→0− and therefore F S(k, ω)→ − ∞. Since

F S(k,ω) is continuous in k ∈
(
λ2j+2,λ2j

)
, there will be at least one root of F S(k,ω) = 0 in k ∈

(
λ2j+2,λ2j

)
. We also notice that ksinhkHK1(k,ω) is a

decreasing function, apart from a jump from − ∞ at k = κ0 + 0− to +∞ at k = κ0+ 0+. Thus F S(k,ω) is a decreasing function in k ∈
(
λ2j+2, λ2j

)
and F S(k,ω) will have only one root k2j within this range. Similarly, in k ∈

(
λ2j+1, λ2j− 1

)
, there will be one root k2j− 1 of

F A(k,ω) = 0. Attention should be paid when 2j < Nʹ but 2j+ 2 > Nʹ. In the range of
(
0,λ2j

)
, as F S(k,ω) is a decreasing function and

F S(k,ω)→ − ∞ at k = λ2j − ϵ, F S(k,ω) = 0 has a solution only if F S(0,ω) ≥ 0. Noticing that F S(0,ω) = 0 corresponds to the natural
frequency ω(c)

2j of the channel (Yang et al., 2022), which means that only when κ0 has passed this natural frequency, F S(k,ω) = 0 will
have a solution in the range of

(
0,λ2j

)
. Besides, when n > j+ 1, all the terms in the summation of F S(k,ω) in Eq. (68a) will be positive,

and the summation tends to +∞ when hi→0+. Also, as there will be a root k2j ∈
(
λ2j+2, λ2j

)
of F S(k,ω) = 0 (2j+ 2 < Nʹ), it suggests

that k2j→λ2j+ 0− , where 1
K1(α2j ,ω)

→ − ∞, or the root of F S(k,ω) = 0 will be k2j→λ2j, which is consistent with the free surface problem.

Furthermore, because Nʹ increases as b increases, for a given ω, the number of real positive roots of F S(k,ω) = 0 and F A(k,ω) = 0
increases as b increases. For a finite value of j, λ2j− 1, λ2j, λ2j+1, λ2j+2→κ0 as b→+ ∞, which indicates that the corresponding roots of
F S(k,ω) = 0 in

(
λ2j+2, λ2j

)
and of F A(k,ω) = 0 in

(
λ2j+1, λ2j− 1

)
all tend to κ0.

4.2. Two identical ice sheets separated by a circular crack

At the edge of the circular crack, there will be jumps of the displacement and slope, which can be written as

η̂(θ) = 1
iω

∂
[
ϕ(1)(a, θ, 0) − ϕ(2)(a, θ,0)

]

∂z and η̂r(θ) =
1
iω

∂2
[
ϕ(1)(a, θ, 0) − ϕ(2)(a, θ, 0)

]

∂r∂z , (69a,b)

Invoking Eqs. (29), (32), (33) and (41), we have

η̂(θ) =
∑+∞

n=− ∞
wneinθ and η̂r(θ) =

∑+∞

n=− ∞
ϑneinθ. (70a,b)

Fig. 2. Jumps of displacement and slope across the crack under different channel widths (free – free on channel walls). The circular crack is at the

centre of the channel
(

yc = 0, h1a = h2
a = 0.0

)

5.
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where

wn =
1
iω

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iπ
2
∑+∞

m=− 2

a− n,mH
(2)
− n(κma)κmtanhκmH

Qm

+
∑+∞

n’=− ∞

∑+∞

m=− 2
an’ ,mC n’ ,n,mJ n(κma)κmtanhκmH

+
∑+∞

n’=− ∞

∑+∞

m=− 2

∑+∞

m’=− 2

an’ ,mD n’ ,n,m,m’ J n(κm’a)κm’ tanhκm’H

+
iωA

χ(k0)
∑+∞

m=− 2

Im(k0)E− n,m(k0, yc)J n(κma)κmtanhκmH
Qmsin[σm(k0)b]

+ en

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (71a)

ϑn = −
1
iω

{

cn +
∑+∞

m=− 2
bn,mJ

’
n(k ma)k 2

mtanhk mH

}

. (71b)

The numerical results of |η̂(θ)| and |η̂r(θ)| are given in Fig. 2 with H/a = 5. The physical parameters here are chosen to be the same
as those in Fig. 2 in Li et al. (2018). It can be seen that when at b/a = 10 and effect of channel width is highly significant. This seems to
be very much different from the free surface channel problem. There for the wave radiation and diffraction problem of a sphere (Wu,
1998a) and the wave-making resistance problem of a sphere (Wu, 1998b), the channel wall effect becomes insignificant when b
/a ≈ 10, apart from near natural frequencies of the channel in the radiation and diffraction problem. Here from b /a = 10 to b /a =

200, there is a big change in the results. When b/a > 200, the effect of the channel wall begins to diminish and at b /a = 400, the result
is almost identical to that in the unbounded ocean (Li et al., 2018).

We may then consider the hydrodynamic forces on the inner circular ice sheet at different values of channel widths. The numerical
results for |Fz| and |My| versus κ0a with clamped – clamped and free – free edges channel wall conditions are given in Figs. 3 and 4
respectively. It can be seen from Figs. 3(a) and 4(a) that while the main trend of the curves of |Fz| follows that in unbounded ocean, a
series of rapid changes can be observed in the curves of |Fz| when κ0a is close to one of the natural frequencies of the ice-covered
channel. It should be noted that as the problem is symmetric about y = 0, only those natural frequencies corresponding to
F S(k,ω) = 0 have an impact, which are given in Table 1. Different from |Fz|, in Figs. 3(b) and 4(b), the rapid changes are not observed
in the curves of |My| versus κ0a. The reason for the different behaviours between |Fz| and |My| is actually similar to that discussed in
(Yang et al., 2022) about the horizontal forces and shear forces on a vertical cylinder. From Eq. (66), it can be known that Fz is related
to b0,m, while My is related to b±1,m. Since the present case is symmetric about y = 0, it can be found from Eq. (33) that bn,m =

(− 1)nb− n,m, and Eq. (37) can be further simplified as

ϕ(2)(r, θ, z) = 2
∑+∞

n=0

(
1

1+ δn0

)

× bn,mJ n(k mr)φm(z)cosnθ. (72)

Fig. 3. Force and moment on the inner ice sheet (clamped – clamped on channel walls, Ha = 5, h1a = h2
a = 0.1, yc/a = 0). (a) Fz; (b) My.
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As explained in Yang et al. (2022), the system of linear equations for an,m, bn,m, cn ~ fn (n is odd) here is in fact independent to that of
an,m, bn,m, cn ~ fn (n is even). For even n, the coefficientD n,nʹ,m,mʹ will be singular at these natural frequencies, but for odd n,D n,nʹ,m,mʹ will
be bounded. In such a case, the behaviours of |Fz| and |My| near the natural frequencies cannot be expected to be the same. Away from
the natural frequencies, both |Fz| and |My| are much closer to those in the unbounded ocean. In fact, even at b/a = 5, they are not too

Fig. 4. Force and moment on the inner ice sheet (free – free on channel walls, H/a = 5, h1 /a = h2/a = 0.1, yc/a = 0). (a) Fz; (b) My.

Table 1
Natural frequencies of the symmetric modes (F S(k,ω) = 0) with clamped- clamped edges on the channel walls (H/a = 5, h1 /a = 0.1).

b/a = 5 b/a = 10 b/a = 20

j ω(2j)
c

̅̅̅̅̅a
g

√
κ0a κ0b

π ω(2j)
c

̅̅̅̅̅a
g

√
κ0a κ0b

π ω(2j)
c

̅̅̅̅̅a
g

√
κ0a κ0b

π

1 6.0332 0.9976 1.5877 1.2005 0.4842 1.5414 0.3977 0.1989 1.2665
2 20.0193 1.6358 2.6035 3.7065 0.8133 2.5888 0.8388 0.3924 2.4983
3 44.1697 2.2683 3.6102 8.1687 1.1309 3.5997 1.5995 0.5595 3.5617
4 79.6859 2.9000 4.6148 14.8518 1.4466 4.6047 2.7884 0.7199 4.5829
5 127.4431 3.5302 5.6185 23.9680 1.7618 5.6080 4.4485 0.8785 5.5925

Fig. 5. Force and moment on the inner ice sheet versus the channel width at two different wave numbers (clamped – clamped on channel walls, H
/a = 5, h1 /a = h2/a = 0.1, yc/a = 0). (a) Fz; (b) My. The blue dot lines correspond to the values in the unbounded ocean.
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much different from those in the unbounded ocean. Compared with Fig. 2, one can therefore see that while the impact of channel width
on the ice sheet deflection near the crack is highly significant, the effect on the force is much smaller, as in the free surface problem. For
this reason, the edge conditions on the channel wall have a much smaller effect on |Fz| but |My|, as can be observed in Figs. 3 and 4.

In Figs. 3 and 4, away from natural frequencies, an additional peak can be obviously observed. In Fig. 3, from the curves of b /a = 5,
10, 20 and∞, there are peaks at κ0a = 0.4841, 0.4623, 0.4763 and 0.4751 for |Fz|, as well as κ0a = 0.5457, 0.5461, 0.5461 and 0.5461
for |My|. As discussed in Li et al. (2018) for the case b/a = ∞, these peaks are in fact related to the natural frequency of the motion of
the inner ice sheet. Mathematically, the frequency at which the determinant of the matrix corresponding to the system of linear
equations for an,m, bn,m and cn ∼ fn is 0 will be a complex, because the system has the damping effect due to wave radiation. When ω is
real, the determinant of the matrix will not be zero. However, the determinant can be very small when ω is close to the complex natural
frequency or at the undampedmotion natural frequency, which makes some of the coefficients in an,m and bn,m very large. In particular,
b0,m is very large when κ0a = 0.4841, 0.4623, 0.4763 and 0.4751, b±1,m is very large when κ0a = 0.5457, 0.5461, 0.5461 and 0.5461
corresponding to b/a = 5, 10, 20 and∞. This explains the behaviour of |Fz| and |My| at these points. It can be also observed these values
of undamped motion natural frequencies are not very sensitive to the channel widths and edge conditions, but the corresponding peak
values of |Fz| and |My| are significantly affected.

Wemay further show how the force andmoment on the inner ice sheet vary with the half channel width b. In Fig. 5 (a), at κ0a = 0.5,
with the increase of b/a, |Fz| gradually approaches the value of the unbounded ocean when κ0a is not near the natural frequencies of the
channel. When κ0a is near one of the natural frequencies, |Fz| drops significantly and it then returns to the original trajectory towards
the blue dotted line corresponding to the unbounded ocean. At κ0a = 0.4623, which is near the natural frequency of the motion of the
inner ice sheet when b/a = 10, as seen in Fig. 3 (a). Although the result also tends to that in the unbounded ocean, shown in the blue
dotted line, its curve oscillates around the dotted line, and it approaches the dotted line more slowly than the case of κ0a = 0.5. Thus,
the way at which the result tends to that in the unbounded ocean is very different at different frequencies. In Fig. 5 (b), at both fre-
quencies, the moment |My| shows some differences with that in the unbounded ocean only when b/a is small. When b /a > 20, the
effect of the channel walls has almost diminished. This is consistent with what has been observed in Figs. 3 (b) and 4 (b).

The deflection η(i) (i = 1, 2) of the inner and outer ice sheets are also considered. The deflection at the centre of the inner ice sheet
versus the half channel width b is presented in Fig. 6. It can be found that |η(2)| shows a quite similar behaviour with |Fz| given in Fig. 5
(a). We further show the behaviour of the wave profile when κ0a near one of the channel’s natural frequencies κ0a ≈ 0.4842 at b /a =

10. Fig. 7 gives results at two frequencies, κ0a = 0.484 and κ0a = 0.485, which are respectively just below and just above the natural
frequency. These two frequencies are very close, but a significant difference can be observed in Figs. 7 (a) and (b), which indicates that
ice sheet deflection also experiences a rapid change near one of the natural frequencies of the channel. Furthermore, the ice sheet
deflection at κ0 = 0.546 and κ0a = 0.547 at b/a = 10 are given in Fig. 8, which are close to the undamped motion natural frequency
κ0a ≈ 0.5461 of the inner ice sheet. It can be seen that the deflection of the inner sheet is very large and can be well over 100 times the
incoming wave amplitude. This clearly shows that the inner sheet is near resonance. It can also be seen from Fig. 8 that the deflection of
the outer ice sheet is much smaller. This is because two ice sheets are fully disconnected at the crack. Their interactions are through
waves, not through the shear force and moment at the crack.

Apart from the hydrodynamic forces on the inner circular ice sheet and the ice sheet deflection, we may also consider the energy of
the transmitted and reflected waves at infinity. From Eq. (60), we may define

UT =

∑NS − 1
j=0 UT

j

UI
and UR =

∑NS − 1
j=0 UR

j

UI
(73)

as a measure of the wave energy at x = ±∞. An example of UT and UR versus κ0a at different channel widths are given in Fig. 9. It can
be observed that UT is normally larger than UR in these three cases. However, at b/a = 5 and b/a = 10, when κ0a is near one of the
undamped motion natural frequencies discussed above, sudden changes on UT and UR leads to UT < UR, and even UT→0 and UR→1 at

Fig. 6. The deflection at the centre position of the inner ice sheet versus the channel width at two different wave numbers (clamped – clamped on
channel walls, H/a = 5, h1 /a = h2/a = 0.1, yc/a = 0).
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some value of κ0a. By contrast, the sudden changes onUT andUR occurred when κ0a is near one of the channel’s natural frequencies are
not so drastic. Besides, when κ0a is away from these natural frequencies, as b/a increases the value of UT gradually increases and UR

gradually decreases
To show how the energy of each kj wave component varies at infinity, the transmission and reflection coefficients of the first five

components at b/a = 10 are given in Fig. 10. Initially, at small κ0a, there is only one wave component k0 at infinity. As discussed below
Eq. (68), when κ0 has passed a value corresponding to each natural frequency ω(c)

2j , a new symmetric wave component k2j will appear.

At the natural frequency ω = ω(c)
2j (j = 1, 2,…) and, k2j = 0, sudden changes of T2j and R2j can be observed. It can be seen that T0 is

normally the most significant component over the most ranges of κ0a, which means the transmitted energy at x = +∞ is normally
dominated by the k0 component. It can also be seen that when κ0a passes the value corresponding to the natural frequency ω(c)

2j , R2j will
be the main component of the reflection coefficients in a small range close to the natural frequency. This means that R0 is not always
the largest one.

Computations are also conducted for a circular crack at off-centre positions of the channel. The hydrodynamic forces on the inner
ice sheet are given in Fig. 11. Because the problem is asymmetric,Mx is no longer zero and its results are provided in Fig. 11 (b). In this
case the natural frequencies corresponding to both the symmetrical mode F S(k,ω) = 0 and the anti-symmetric modes F A(k,ω) = 0
will have effects. Thus, there are more oscillations on |Fz| and |Mx| curves when yc/a ∕= 0. However, the curve of |My| still remains
smooth. In fact, ϕ(2) in Eq. (33) can be further written as

Fig. 7. The modulus of the ice sheet deflection (clamped – clamped on channel walls, b/a = 10, H/a = 5, h1/a = h2/a = 0.1, yc /a = 0). (a) κ0a =

0.484; (b) κ0a = 0.485.

Fig. 8. The modulus of the ice sheet deflection (clamped – clamped on channel walls, b/a = 10, H/a = 5, h1/a = h2/a = 0.1, yc /a = 0). (a) κ0a =

0.546; (b) κ0a = 0.547.
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ϕ(2)(r, θ, z) =
∑+∞

n=0

∑+∞

m=− 2

{[
bn,m + ( − 1)nb− n,m

1+ δn0

]

cosnθ + i
[
bn,m − ( − 1)nb− n,m

1+ δn0

]

sinnθ
}

J n(k mr)φm(z). (74)

If we define bn,m+(− 1)nb− n,m
1+δn0

= fn,m, i bn,m − (− 1)nb− n,m
1+δn0

= gn,m (n = 0, 1, 2…), from Eqs. (42), (43), (45) and (46), it can be shown that the
linear equations for f2n,m, f2n+1,m, g2n,m and g2n+1,m (n = 0, 1, 2…) are completely independent. The linear equations for f2n,m and g2n+1,m
are singular at one of the natural frequencies of the channel, but those for f2n+1,m and g2n,m are always bounded. From Eq. (66), |Mx| is in
fact related to g2n+1,m, and |My| is related to f2n+1,m. Thus, the behaviours of |Mx| and |My| near those natural frequencies reflect the
nature of these equations.

4.3. Two different ice sheets separated by a circular crack

We may first consider the case when h2 = 0, or wave diffraction by a circular polynya in an ice-covered channel. In such a case,
K2(α,ω) in Eq. (35) becomes

K2(α,ω) = αtanhαH −
ω2

g
. (75)

The summation ofm in Eq. (33) is from 0 to + ∞, where k 0 is the purely positive real root of Eq. (75), and k m (m = 1,2,3,…) are an
infinite number of purely negative imaginary roots. The wave elevation in the polynya along x-axis and its comparison with that in an
unbounded ocean (Ren et al., 2018) is given in Fig. 12. The physical parameters adopted in Fig. 12 are the same as Fig. 2 in Ren et al.

Fig. 9. The wave transmission and reflection coefficients at infinity (clamped – clamped on channel walls, H/a = 5, h1/a = h2 /a = 0.1, yc /a = 0)
(a) UT ; (b) UR.

Fig. 10. The transmission and reflection coefficients of each wave component (clamped – clamped on channel walls, b/a = 10, H /a = 5, h1 /a = h2
/a = 0.1, yc/a = 0). (a) Tj; (b) Rj.
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(2018), and the term iωA in Eq. (10) is revised as − iAgκ0tanhκ0H/ω to be consistent with the ϕI in their work. Similar to Fig. 2, with the
increases of b/a, the results in channel gradually tend to those in unbounded ocean.

Fig. 13 gives the results of wave transmission and reflection coefficients defined in Eq. (73). With the decrease of h2 /a, the curves of
UT and UR become more and more oscillatory. This may be related to the resonance of the fluid motion in the inner domain Ω2. For
liquid sloshing in a circular cylindrical container, the natural frequencies may be obtained as (Faltinsen and Timokha, 2009)

ωn,m =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

kn,mgtanhkn,mH
√

, n = 0, 1, 2…, m = 1, 2, 3… (76)

where kn,m denotes them-th root of J ʹ
n
(
kn,ma

)
= 0. In Fig. 13, the range 0 ≤ κ0a ≤ 2 corresponds to 0 ≤ ω

̅̅̅̅̅̅̅̅
a/g

√
≤ 32.5862. Within this

range, a large number of ωn,m calculated from Eq. (76) can be found and they are close to each other. Although the current polynya
problem is not the same as the sloshing problem in a container, these values of ωn,m may still be used as a reference. Near one of the
frequencies, the fluid motion may change rapidly. Correspondingly, UR and UT become highly oscillatory against κ0a. We may take n
= 0 and m = 10 in Eq. (76) as an example, which corresponds to κ0a = 0.7714. We plot four wave profiles in Fig. 14 at κ0a = 0.769,
0.770, 0.771 and 0.772, which is near 0.7714. A very large free surface elevation in the polynya can be observed at these frequencies.
Also, a slight change in κ0a can lead to a significant change in the wave profile. This is closely related to the rapid changes observed in
Fig. 13. A local close-up near κ0a = 0.7714 is also given in Fig. 13 (b).

Fig. 11. Force and moment on the inner ice sheet (clamped – clamped on channel wall, b/a = 10,H/a = 5, h1 /a = h2/a = 0.1, yc /a = 0). (a) Fz;
(b) Mx; (c) My.
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Next, the hydrodynamic forces on the inner ice sheet at different thickness h1 of the outer ice sheet are considered, the numerical
results are given in Fig. 15. When h1 = 0, the problem becomes an elastic disc floating on the free surface channel. It should be noted

that |Fz| and |My| are nondimensionalized as |Fz|/
[

ρga2A
(

ω2a
g

)]

and |My|/

[

ρga3A
(

ω2a
g

)]

respectively. The reason for ω2a
g being used

here is because at the same κ0a, ω can be very different at different h1/a. Normalisation through ω2a/g can help the results to have a
similar magnitude. From the figure, it can be seen that when κ0b

π is small, |Fz| and |My| in these four cases are nearly the same, which
means that the nondimensionalized force and moment on the inner ice sheet at lower frequency region are not sensitive to h1. This is
mainly due to the fact at small κ0b

π , the boundary condition on the ice sheet at different thicknesses is all close to that of a rigid plate.
When κ0b

π is near one of the natural frequencies of the channel, rapid changes can always be observed on |Fz|. Here, as h1 /a→0, it can be
clearly seen that the natural frequencies of the channel gradually tend to those corresponding to the free surface at κ0b

π = j (j = 1,2,3…).
When κ0b

π is near one of the undamped motion natural frequencies of the channel, a peak can be observed on the curves of |Fz| and |My|.
Typically, from the curves of h1/a = 0.1, 0.05 and 0.02, peaks can be observed at κ0b

π = 1.4715, 2.2428 and 3.4635 for |Fz|, and at κ0b
π =

1.7383, 2.5468 and 4.1224 for |My|, which indicated that the values of the undampedmotion natural frequencies are sensitive to h1 /a.
Moreover, as h1/a decreases, the peak value at each motion natural frequency decreases, and it becomes almost invisible when h1 /a =

0.
The strain of the ice sheet is an important parameter related to the fracture of the ice sheet. According to Fung (1977), the principal

strains of the inner ice sheet are the eigenvalues of the strain tensor matrix, or

Fig. 12. Wave elevation along x-axis (clamped – clamped on channel walls, H/a = 2, h1/a = 0.02, h2/a = 0, yc/a = 0). (a) κ0a = 2; (b) κ0a = 4.

Fig. 13. The wave transmission and reflection coefficients at infinity (clamped – clamped on channel walls, b/a = 10, H/a = 5, h1 /a = 0.1, yc /a =

0) (a) UT ; (b) UR.
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Fig. 14. The modulus of the wave elevation (clamped – clamped on channel walls, b/a = 10, H/a = 5, h1/a = 0.1, h2/a = 0, yc /a = 0). (a) κ0a =

0.769; (b) κ0a = 0.770; (c) κ0a = 0.771; (d) κ0a = 0.772.

Fig. 15. Force and moment on the inner ice sheet at different thicknesses of the outer ice sheet (clamped – clamped on channel wall, b /a = 10,H /a
= 5, h2/a = 0.1, yc/a = 0). (a) Fz; (b) Mx.
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ϵ =
hi
2

[
ϵrr ϵrθ
ϵrθ ϵθθ

]

=
h2
2

⎡

⎢
⎢
⎢
⎣

∂2W
∂r2

1
r

∂2W
∂r∂θ

−
1
r2

∂W
∂θ

1
r

∂2W
∂r∂θ

−
1
r2

∂W
∂θ

1
r

∂W
∂r +

1
r2

∂2W
∂θ2

⎤

⎥
⎥
⎥
⎦
, (77)

where

W(r, θ, t) = Re
{

η(2)(r, θ)eiωt
}
= Re

{
η(2)(r, θ)

}
cosωt − Im

{
η(2)(r, θ)

}
sinωt, (78)

From Eq. (77), the eigenvalues of ϵ are obtained as

ς1,2 =
hi
4

⎡

⎣

(
∂2W
∂r2 +

1
r

∂W
∂r +

1
r2

∂2W
∂θ2

)

±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(

∂2W
∂r2 −

1
r

∂W
∂r −

1
r2

∂2W
∂θ2

)2

+ 4
(
1
r

∂2W
∂r∂θ

−
1
r2

∂W
∂θ

)2
√ ⎤

⎦. (79)

Substituting Eq. (78) into Eq. (79) and letting ωt varies from 0 to 2π, the maximum principal strain ϵmax then can be found. Figs. 8
and 13 indicate that the forces and deflection may be quite large near one of the natural frequencies corresponding to the motion of the
inner ice sheet. Here, we may make a comparison of the maximum principal strain in the inner sheet with and without the external ice
sheet at κ0b

π = 1.4715, which is near the natural frequency. ϵmax is presented in Fig. 14, which is nondimensionalized similarly to that in
Fig. 13. It can be observed that ϵmaxg/ (ω2A) is much more significant when there is an external ice sheet, which means the inner ice
sheet is much more probably to be broken in such a case.

Fig. 16

5. Conclusion

The wave interaction with a circular crack of an ice-cover in a channel has been investigated analytically in this paper. The fluid
domain is divided into two parts by the vertical surface extended from the crack. The diffraction potential in the outer domain Ω1 is
constructed through a source distribution formula by using the Green function, and the velocity potential in the inner domain Ω2 is
constructed by adopting the vertical mode expansion and Fourier series expansion. The present method is not just limited to the crack
problem, and is applicable to a variety of different problems. The numerical procedure has been verified through the comparison with
the results of wave diffraction by a circular crack (Li et al., 2018) and by a polynya (Ren et al., 2018) in the unbounded ocean.

In the paper, the distribution of the roots of the dispersion equation for an ice-cover channel is established. For wave number κ0 in
the unbounded ocean, it is found that all the roots kj of the dispersion relations F S(k,ω) = 0 and F A(k,ω) = 0 are located in the range
0 < k < κ0. When k ∈

(
λ2j+2,λ2j

)
, there will be only one root k2j of F S(k,ω) = 0, and when k ∈

(
λ2j+1,λ2j− 1

)
, there will be only one root

k2j+1 of F A(k,ω) = 0, where λj =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

κ20 − j2π2/4b2
√

,. For a finite value of j < 2bκ0
π , all the roots kj will tend to be κ0 as b→+ ∞. When the

thickness of the ice sheet tends to zero, it has been shown that the results tend to those corresponding to the free surface problem.
When κ0a is near one of the natural frequencies of the channel, sudden changes can be observed in the vertical force |Fz| on the inner

ice sheet, as well as in the moment |Mx| if the cylinder is at off-centre position. By contrast, the moment |My| varies smoothly. This is

Fig. 16. Distribution of the maximum principal strain ϵmaxg/
(
ω2A

)
in the inner ice sheet at κ0b/π = 1.4715. (clamped – clamped on channel wall, b

/a = 10,H/a = 5, h2/a = 0.1, yc/a = 0). (a) h1/a = 0; (b) h1/a = 0.1.
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similar to what has been observed from the forces on the vertical cylinder in an ice-covered channel by Yang et al. (2022). For h1
/a ∕= 0, when κ0a is near one of the undamped motion natural frequencies of the inner ice sheet, a peak can be observed on |Fz| or |My|.
The values of the motion natural frequencies are not sensitive to the channel width b/a but are very sensitive to outer ice thickness h1
/a. Furthermore, the peak values of |Fz| and |My| at these undamped motion natural frequencies gradually decrease as h1 /a decreases
and become virtually invisible when h1/a = 0. When κ0a is near one of the undamped motion natural frequencies, the wave reflection
coefficientUR may tend to 1 and be larger than the transmission coefficientUT . When the inner ice thickness h2/a→0, highly oscillatory
behaviours of UT and UR have been observed. This may be related to resonance of fluid motion in polynya, similar to liquid sloshing in
a circular cylindrical container.
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Appendix. A. Green function for a channel fully covered by a perfect ice sheet

We may introduce the Green function of a channel fully covered by an ice sheet here. From Yang et al. (2022), the Green function
can be written in the following neater and equivalent way,

G
(
x, y, z; x0, y0, z0

)
= iπ

∑+∞

m=− 2

ψm(z)ψm(z0)
Qm

× H
(2)
0 (κmR)

+
∑+∞

m=− 2

2ψm(z)ψm(z0)
Qm

×

∫ +∞

0

[
cosσmycosσmy0

σmsinσmb
− i

sinσmysinσmy0
σmcosσmb

]

e− iσmbcosk(x − x0)dk

+
∑+∞

m=− 2

∑+∞

mʹ=− 2

4ψmʹ(z)ψm(z0)
QmʹQm

∫

ℓ
Imʹ(k) Im(k)

⎡

⎢
⎢
⎢
⎢
⎣

cosσmʹycosσmy0
F S(k,ω)sinσmʹbsinσmb

+
sinσmʹysinσmy0

F A(k,ω)cosσmʹbcosσmb

⎤

⎥
⎥
⎥
⎥
⎦
cosk(x − x0)dk.

(A1)

where

ψm(z) =
coshκm(z+ H)
coshκmH

, (A2)

Qm =
2κmH+ sinh2κmH
4κmcosh2κmH

+
2L1
ρω2κ4mtanh

2κmH. (A3)

Im(k) = ζm(k) ×
κmtanhκmH

σm
, (A4)

F S(k,ω) = − 2
∑+∞

m=− 2

κ2mtanh
2κmH

Qmσm
×

ζ2m(k)
tanσmb

F A(k,ω) = 2
∑+∞

m=− 2

κ2mtanh
2κmH

Qmσm
× ζ2m(k)tanσmb

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (A5a, b)
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with

ζm(k) =

{
1 Clamped − Clamped

σ2m(k) + ν1k2 Free − Free
, (A6)

and σm(k) = − i
(
k2 − κ2m

)1/2
. In Eq. (A1), (x, y, z) and

(
x0, y0, z0

)
denote the field and source points respectively, and R represents the

distance between (x, y, z) and
(
x0,y0,z0

)
.H (2)

n represents the n-th order Hankel function of the second kind, α = κm are the roots of K1(α,
ω) = 0, where

K1(α,ω) =
(
L1α4+ ρg − m1ω2)αsinhαH − ρω2coshαH. (A7)

In particular, κ− 2 and κ− 1 are two complex roots with negative imaginary parts and κ− 2 = − κ− 1, where the over bar indicates
complex conjugate, κ0 is the purely positive real root, κm (m = 1,2,3,…) are an infinite number of purely negative imaginary roots. It
should be noted that F S(k,ω) = 0 and F A(k,ω) = 0 represent the dispersion equations of the ice-covered channel. The roots of the
former correspond to the channel natural frequencies of waves symmetric about x = 0, while the roots of the latter to those of waves
anti-symmetric about x = 0. To satisfy the radiation condition at x = ±∞, the integration path l in Eq. (A1) from k = 0 to k = +∞
should pass over all the singularities at F S(k,ω) = 0 and F A(k,ω) = 0. It should be noted that F S(k,ω) × F A(k,ω) = 0 may have
multiple real positive roots. We may denote them as kj (j = 0…NS − 1) here, with kj+1 < kj. k2j are the roots of F S(k,ω) = 0, while k2j+1
are the roots of F A(k,ω) = 0, the graphical representation of these roots can be found in Ren et al. (2020) and Yang et al. (2022).
Physically, each kj is the wavenumber of the j-th longitudinal wave generated by the Green function. In the free surface channel with h1

= 0, kj =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

κ20 −
j2π2
4b2

√

and it corresponds to a unique transverse mode cos jπ2b (y + b). By contrast, for an ice sheet or h1 ∕= 0, all the
transverse modes here are coupled, or for each wave component kj at infinity, all the other transverse modes exist, although the mode
corresponding to jπ

2b may still be dominant. We may also notice that there are also singularities in the two integrations of the Green
function when the sine or cosine functions in the denominator are equal to zero. However, the residuals of the two integrations at these
points cancel each other. Therefore, the Cauchy principal integrations are implied at these singular points.

Appendix. B. The Boundary integral equation of ϕ and ϕ at infinity

We may apply the Green’s second identity to velocity potential ϕ and its complex conjugate ϕ over the entire fluid boundary S,
which gives

∯ S

[

ϕ(x, y, z)
∂ϕ(x, y, z)

∂n − ϕ(x, y, z)
∂ϕ(x, y, z)

∂n

]

dS = 0. (B1)

By applying a similar procedure in Yang et al. (2021), only the integrations over the two vertical surface S±∞ at far-field and along
two lines at x = ±∞ & z = 0 need to be kept, which provides

∫ ∫

S+∞

(

ϕ
∂ϕ
∂x − ϕ

∂ϕ
∂x

)

dS −
∫ ∫

S− ∞

(

ϕ
∂ϕ
∂x − ϕ

∂ϕ
∂x

)

dS+
L1

ρω2

∫b

− b

(
∂ϕ
∂z

∂
∂x∇

2∂ϕ
∂z −

∂2ϕ
∂x∂z∇

2∂ϕ
∂z −

∂ϕ
∂z

∂
∂x∇

2∂ϕ
∂z +

∂2ϕ
∂x∂z∇

2∂ϕ
∂z

)

z=0

⃒
⃒
⃒
⃒

x=+∞

x=− ∞
dy

= 0.
(B2)

Applying the Laplace equation into Eq. (B2), we have
∫ ∫

S+∞

(

ϕ
∂ϕ
∂x − ϕ

∂ϕ
∂x

)

dS −
∫ ∫

S− ∞

(

ϕ
∂ϕ
∂x − ϕ

∂ϕ
∂x

)

dS

+
L1

ρω2

∫b

− b

(
∂ϕ
∂z

∂4ϕ
∂x∂z3 +

∂3ϕ
∂z3

∂2ϕ
∂x∂z −

∂ϕ
∂z

∂4ϕ
∂x∂z3 −

∂3ϕ
∂z3

∂2ϕ
∂x∂z

)

z=0

⃒
⃒
⃒
⃒

x=+∞

x=− ∞
dy = 0.

(B3)

Define

I±(x) =
∫ ∫

S±∞

(

ϕ
∂ϕ
∂x − ϕ

∂ϕ
∂x

)

dS+
L1

ρω2

∫b

− b

(
∂ϕ
∂z

∂4ϕ
∂x∂z3 +

∂3ϕ
∂z3

∂2ϕ
∂x∂z −

∂ϕ
∂z

∂4ϕ
∂x∂z3 −

∂3ϕ
∂z3

∂2ϕ
∂x∂z

)

z=0,x=±∞
dy. (B4)

Invoking the inner product in Eq. (22), I±(x) can be further expressed as
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I±(x) =
∫b

− b

[〈

ϕ,
∂ϕ
∂x

〉

−

〈

ϕ,
∂ϕ
∂x

〉]

x=±∞
dy. (B5)

Here, we may consider

dI±
dx

=

∫ ∫

S±∞

(

ϕ
∂2ϕ
∂x2 − ϕ

∂2ϕ
∂x2

)

dS

+
L1

ρω2

∫b

− b

(
∂ϕ
∂z

∂5ϕ
∂x2∂z3 +

∂3ϕ
∂z3

∂3ϕ
∂x2∂z −

∂ϕ
∂z

∂5ϕ
∂x2∂z3 −

∂3ϕ
∂z3

∂3ϕ
∂x2∂z

)

z=0,x=±∞
dy.

(B6)

Applying the Laplace equation into Eq. (B6), we have

dI±
dx

=

∫ ∫

S±∞

(
ϕ∇2

yzϕ − ϕ∇2
yzϕ
)
dS

+
L1

ρω2

∫b

− b

(
∂ϕ
∂z

∂5ϕ
∂x2∂z3 +

∂3ϕ
∂z3

∂3ϕ
∂x2∂z −

∂ϕ
∂z

∂5ϕ
∂x2∂z3 −

∂3ϕ
∂z3

∂3ϕ
∂x2∂z

)

z=0,x=±∞
dy,

(B7)

where ∇2
yz denotes the Laplace operator on the O − yz plane. By using a similar procedure in Yang et al. (2021) again, we can obtain

dI±
dx

= 0, (B8)

which suggests that I± is independent to x.
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