Attention-based dynamic multilayer graph neural networks for loan default
prediction

Sahab Zandi®*, Kamesh Korangi®°, Marfa Oskarsdéttird, Christophe MuesP, Cristidn Bravo?®

“Department of Statistical and Actuarial Sciences, Western University, 1151 Richmond Street, London, Ontario, N6A 5B7,
Canada.
b Department of Decision Analytics and Risk, Southampton Business School, University of Southampton, University Road,
SO17 1BJ, United Kingdom.
¢Centre for Operational Research, Management Sciences and Information Systems, University of Southampton, University
Road, SO17 1BJ, United Kingdom.
?Department of Computer Science, Reykjavik University, Menntavegur 1, 102 Reykjavik, Iceland.

Abstract

Whereas traditional credit scoring tends to employ only individual borrower- or loan-level predictors,
it has been acknowledged for some time that connections between borrowers may result in default risk
propagating over a network. In this paper, we present a model for credit risk assessment leveraging a
dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network, each
layer reflecting a different source of network connection. We test our methodology in a behavioural credit
scoring context using a dataset provided by U.S. mortgage financier Freddie Mac, in which different types
of connections arise from the geographical location of the borrower and their choice of mortgage provider.
The proposed model considers both types of connections and the evolution of these connections over time.
We enhance the model by using a custom attention mechanism that weights the different time snapshots
according to their importance. After testing multiple configurations, a model with GAT, LSTM, and
the attention mechanism provides the best results. Empirical results demonstrate that, when it comes
to predicting probability of default for the borrowers, our proposed model brings both better results and
novel insights for the analysis of the importance of connections and timestamps, compared to traditional

methods.

Keywords: OR in Banking, Credit Scoring, Dynamic Multilayer Networks, Graph Neural Networks,

Recurrent Neural Networks

1. Introduction

Network science provides a beneficial tool to study complex systems of interacting entities that can

be found in many areas, such as biology, finance and economics (Barabési & Pdstai, 2016)). To represent

*Corresponding author
Email addresses: szandi@uwo.ca (Sahab Zandi), k.korangi@soton.ac.uk (Kamesh Korangi), mariaoskars@ru.is
(Marfa Oskarsdéttir), c.mues@soton.ac.uk (Christophe Mues), cbravoro@uwo.ca (Cristidn Bravo)

Preprint submitted to European Journal of Operational Research June 20, 2024

connections between these entities, graphs are a common representation method, which have diverse
applications in social network analysis (Haythornthwaite, 1996|), computational finance (Wang et al.
2022)), and recommender systems (Wang et al., 2021)), among many others. Graph Neural Networks
(GNNs) are models in the field of deep learning, specifically tailored to perform over graph domains. They
have been utilized for different tasks, including node classification (Tang et al., 2021)), edge prediction
(Zhang & Chenl [2018), and graph clustering (Tsitsulin et al., 2020). In most cases, they have been
used with static single layer networks, in which nodes are linked based on one source of connection, and
the network remains unchanged over time. In reality, though, nodes could be connected by more than
one source of connection, as is the case in our application setting. Such networks are generally called
multilayer networks (Kivela et al., |2014). Furthermore, the nodes and edges in a graph may evolve. For
example, new nodes may appear, node features may change, and a new relation may emerge between two
nodes. Being able to capture these changes in the models could lead to higher predictive performance for
problems that are characterized by such dynamic graphs.

To enable dynamic graph learning, we consider Recurrent Neural Networks (RNNs) (Elman, 1990)).
RNNs are used for data that is presented in a sequence, such as time series data or natural language.
Their main objective is to create a representation of a series of inputs, usually indexed by time, to predict
an output. Because of their powerful learning capacity, they have been applied successfully in various
types of tasks, including speech recognition (Graves et al., 2007), acoustic modelling (Qu et al., 2017),
trajectory prediction (Altché & de La Fortelle, [2017)), sentence embedding (Palangi et al., 2016)), and
correlation analysis (Mallinar & Rosset) 2018]). Since dynamic graphs represented by discrete snapshots
can be considered sequence data, RNNs provide a solution to capture the evolution of these graphs.
However, it is known that attention-based RNNs outperform encoder-decoder-based RNNs, indicating
that the incorporation of attention can improve the prediction performance (Aliabadi et al., 2020]).

The application area that we focus on in this paper is credit scoring — one of the prominent applica-
tions of data analytics. Lenders build credit scoring models to help adjudge the risk involved in granting
a loan and decide on the terms of the loan and the interest rate (Thomas et al.,|2017). Traditional credit
scoring models use loan- or borrower-level data to assess a loan applicant’s default risk, thus treating
borrowers as independent entities. While potential default correlation between borrowers has been ac-
knowledged for some time, it is only more recently that this has started to be further investigated using
network science. This is part of a broader trend in which credit scoring research increasingly focuses on
improving the performance of existing credit scoring models through the incorporation of machine learn-
ing methods, and the inclusion of alternative data sources such as network data (Bravo & Oskarsdéttir,

2020).

In this paper, we propose using an attention-based dynamic multilayer graph neural network to model
the problem of credit risk across time and explicitly incorporate default correlation between borrowers.
This work makes the following contributions. Firstly, our solution, Dynamic Multilayer Graph Neural
Networks (DYMGNN), represents a novel approach for node classification in multilayer networks. Sec-
ondly, we show how to apply the proposed method to credit risk modelling, using the example context
of mortgage loan default prediction. Finally, we show that, in this setting, our model, by considering
dynamicity, multilayer effects, and using an attention mechanism, outperforms other baseline methods.

The structure of this paper is as follows. The next section discusses a selection of previous work on
GNN and credit risk modelling. Section[3|explains the methodology, multilayer networks, embeddings, and
the models used in this paper. Section [4]sheds light on the data, dynamic networks, and the experiments
in the paper. Section [o| presents the experimental results and highlights some discussion points relevant

to the models. The final section summarizes our conclusions and suggests future work.

2. Previous work

2.1. Graph neural networks

Graphs can be seen in many real-world applications. In some cases, the graph is static, i.e., the
graph structure and node features do not change over time. In other cases, the graph is dynamic, i.e.,
the graph evolves. GNNs are neural models that capture the dependencies between the nodes within a
graph through message passing between the nodes of the graph. A comprehensive survey of methods and
applications related to GNNs is provided by Zhou et al.| (2020). Recently, some types of GNNs such as
the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) and Graph Attention Network (GAT)
(Velickovié et al., [2018)) have been widely used for various deep learning tasks, albeit mostly on static
graphs.

GCN is an approach for semi-supervised learning on graph-structured data, utilizing an efficient
layer-wise linear model based on a first-order approximation of spectral graph convolutions. To prevent
overfitting, it simplifies the convolution calculation by constraining the number of parameters, and by
minimizing the number of operations, for example, reducing the matrix multiplications per layer. The
number of graph edges is linearly scaled in GCN and this model learns hidden layer representations
in which both the local graph structure and node features are encoded. GCN has shown acceptable
performance on citation networks and knowledge graphs (Kipf & Welling, [2017)).

A second type of GNN, known as GAT, uses an attention mechanism to learn node-level representations
(Velickovi¢ et al.,[2018). The encoder-decoder-based neural machine translation system was outperformed

by the attention mechanism in natural language processing (Bahdanau et al., 2015)). Nowadays, attention

models are widely utilized for document categorization (Pappas & Popescu-Belis| |2017)), recommendation
systems (Xiao et al.,|[2017)), and the creation of image captions (Xu et al., 2015). The attention mechanism
concentrates on a few selected relevant attributes while ignoring other irrelevant attributes (Bahdanau
et al., 2015). The categories of attention models that are now in use are global and local attention
(Luong et al., 2015), soft and hard attention (Bahdanau et al. 2015]), and self-attention (Vaswani et al.,
2017). Global attention considers all source positions when deriving the context vector, providing a
comprehensive overview of the entire input sequence. In contrast, local attention focuses on a subset
of source positions, making it more efficient by narrowing the context to relevant parts. Soft attention
generates a weighted sum of the attention scores, allowing gradients to pass through and making the
model end-to-end trainable. Hard attention, on the other hand, selects a single source position, making
it less computationally expensive but more challenging to optimize due to its non-differentiable nature.
Self-attention is an attention mechanism that is applied to compute a representation of a single sequence,
enabling the model to weigh the importance of different positions in the sequence when generating its
output. In conjunction with RNN or convolutions, self-attention can be used in many applications like
learning sentence representations (Lin et al.l |2017) and machine reading (Cheng et al., [2016). The
GAT is a type of GNN that applies an attention mechanism to graph-structured data, so as to classify
nodes. It computes the hidden representation of each node by paying attention to its adjacent nodes
and then applying a self-attention strategy. GAT achieved state-of-the-art results in both transductive
(semi-supervised) and inductive (supervised) settings.

Most of the GNN models have been proposed for static graph learning; however, over the past few
years, several machine learning models capturing the structure and evolution of dynamic graphs have
been introduced. A complete review of representation learning approaches for dynamic graphs is given
in Kazemi et al.| (2020)), while a more specialized review of GNN-based approaches for dynamic graphs is
provided by Skarding et al.|(2021). There are many different approaches to modelling spatial and temporal
information in graph-structured data. Diffusion Convolutional Recurrent Neural Network (DCRNN; |Li
et al.l 2018) and Spatio-Temporal Graph Convolutional Networks (STGCN; [Yu et all [2018) analyse
graph-structured data first and pass the results to sequence-to-sequence models or RNNs. Structural-
RNN collects spatial and temporal data synchronously to associate the graph structure with temporal
data so that it can apply RNNs on new graphs (Jain et al. [2016). Dynamic Graph Convolutional
Networks (DGCN) propose a novel approach that combines RNNs and GCNs to learn long short-term
dependencies together with the graph structure (Manessi et al., [2020). EvolveGCN is an approach for
graph representation learning in dynamic graphs that uses an RNN to evolve the parameters of a GCN

model. By doing so, EvolveGCN can capture the dynamics of the graph sequence without relying on node

embeddings (Pareja et al [2020). Temporal Graph Convolutional Network (T-GCN) is a novel method
for real-time traffic forecasting that uses GCN to learn the complex topological structure of the urban
road network for spatial dependence. It also employs RNN to capture the dynamic changes in traffic data
for temporal dependence (Zhao et al., [2020). Temporal Graph Attention (TGAT) has been proposed for
inductive representation learning on temporal graphs that uses a self-attention mechanism and a novel
functional time encoding technique to efficiently aggregate temporal-topological neighbourhood features
and learn time-feature interactions. TGAT can handle both node classification and link prediction tasks,
and can be extended to include temporal edge features (Xu et al. 2020)). Joint Dynamic User-Item
Embeddings (JODIE) has been proposed to predict future user-item interactions in domains such as e-
commerce, social networking, and education. It is a coupled recurrent neural network model that learns
the embedding trajectories of users and items through representation learning, and it introduces a novel
projection operator to estimate the embedding of the user at any time in the future (Kumar et al., 2019).
Dynamic Representation (DyRep) encodes evolving information over dynamic graphs into low-dimensional
representations, namely as embeddings, using an inductive deep representation learning framework. The
learned embeddings drive the dynamics of two fundamental processes: communication and association
between nodes in dynamic graphs (Trivedi et all [2019). Dynamic Self-Attention Network (DySAT)
computes node representations by jointly using self-attention layers along two dimensions: structural
neighbourhood and temporal dynamics, and has been evaluated on link prediction experiments (Sankar
et al., 2019).

The methods mentioned above are all designed for single layer networks, and would thus not be suit-
able for the multilayer problem we tackle. Recently, however, several approaches to generalize GNNs to
the multilayer case have been proposed. Firstly, Graph Attention Models for Multilayered Embeddings
(GrAMME) introduces attention mechanisms and develops two GNN architectures to exploit the inter-
layer dependencies: GrAMME-SG and GrAMME-Fusion. GrAMME-SG considers a multilayer network
to be a supra graph with implicit edges between layers, whereas GrAMME-Fusion makes use of a supra
fusion layer to aggregate embeddings from layerwise attention models (Shanthamallu et al., [2019). Sec-
ondly, Multilayer network Embedding via Learning Layer vectors (MELL) incorporates the idea of a layer
vector that characterizes the connectivity in a layer. MELL embeds nodes in each layer into the lower
embedding space using all layer structures and incorporates layer vectors to differentiate edge probabilities
in the layers (Matsuno & Murata, 2018). Thirdly, Multilayer Graph Neural Network (mGNN) presents
an innovative way of employing GCN on multilayer networks. In this approach, node feature propagation
occurs independently in both intralayer and interlayer edges, and multiple layers can be stacked to cap-

ture information from the topology and features further in the network. This method can handle node

classification, intra layer link prediction, and network clustering (Grassia et al., |2021)).

All the aforementioned methods have been developed for networks that are either static and single
layer, static and multilayer, or dynamic and single layer. A unified approach that can handle networks
that are both dynamic and multilayer has not been put forward yet. This is significant, as most real-life

networks share both characteristics simultaneously. Our approach focuses on solving this problem.

2.2. Credit risk modelling with network data

Credit risk modelling has a long history, and researchers from a broad range of areas have been
working on developing credit risk rating systems (Markov et all 2022)). The statistical models that were
traditionally used for credit risk modelling seemed to have difficulties dealing with large datasets as they
may be characterized by increased noise, heavy-tailed distributions, nonlinear patterns, and temporal
dependencies (Gordy, 2000). Advances in computing power and availability of large credit datasets
paved the way to artificial intelligence (AI) driven credit risk estimation algorithms such as machine
learning and deep learning (Shi et al., 2022). Recently, some machine learning methods were found to
outperform conventional models in terms of accuracy when applied to large datasets (Lessmann et al.,
2015; Gunnarsson et al., 2021)).

Whereas traditional methods such as logistic regression make the IID assumption, treating borrowers
as independent observations, it is widely understood that correlated default exists in lending ((jskarsdéttir
& Bravol, 2021)). Default correlation measures the extent to which the default of one borrower is related to
that of another borrower, which may be caused by similar economic conditions affecting both, or, within
a sector, by industry-specific reasons. Several researchers have shown that these correlations should be
taken into account to avoid misestimating credit risk (Fenech et al. 2015). Some researchers have used
alternative data sources such as network data to show the existence of correlation. For this purpose,
they used different sources of data such as telephone call data (Oskarsdéttir et al., [2019)), app-based
marketplace data (Roa et all [2021), social media data (De Cnudde et al.l [2019), and agricultural loan
network data (Oskarsdéttir & Bravo, |2021). Some other researchers have used network data from inter-
firm transactions to improve credit risk modelling strategies for Small and Medium-sized Enterprises
(SMEs) (Vinciotti et al., 2019). A common feature of the aforementioned studies is that they all use
numerical measures obtained from the alternative data sources. However, all of them consider networks
that are either static or single layer. In fact, nodes could be connected in various ways in a network, and
these relationships could change over time, making them dynamic. Our work is an effort to take advantage
of dynamic multilayer networks in this field and thus address some of the limitations of previous work.

Whereas traditionally numerical features were extracted from the network and used for credit scoring,

more recently, GNNs have been used to develop predictive models in this field, eliminating the need to

explicitly extract those features. In one study, GCNs were employed to predict peer-to-peer loan defaults
and were found to outperform baseline models such as SVM, Random Forest, and XGBoost (Lee et al.,
2021). GNN with Self-attention and Multi-task learning (SaM-GNN) has been proposed for credit default
risk prediction. This approach incorporates two parallel tasks based on shared intermediate vectors for
input vector reconstruction and credit default risk prediction (Li et al., 2022)). Motif-preserving Graph
Neural Network with curriculum learning (MotifGNN) has been introduced to jointly learn the lower-
order structures from the original graph and higher-order structures from multi-view motif-based graphs
for default prediction (Wang et al., [2023)). In another study, a novel spatial-temporal aware GNN was
proposed to predict SME loan default risk from a network of mined supply chain relationships (Yang
et al., 2021). The potential benefits of using networks that are both dynamic and multilayer in credit risk
modelling are not yet fully realized. This research presents a novel method for utilizing these networks

within this area of study.

3. Methodology

In this section, we describe our methodology. First, we explain our approach for constructing a
sequence of snapshots of multilayer networks. Then, we discuss how we employ different types of embed-
dings to encode topological and temporal dependencies in the networks. After that, we describe different

configurations of DYMGNN and their respective architectures.

3.1. Multilayer networks

We start by defining the multilayer network and its node features. Consider an unweighted and
undirected network G = (V, A, X), where V' = {v;, v9, ..., v, } is the set of nodes in a layer of the network,
n = |V| denotes the number of distinct nodes, and X € R" 9 is a feature matrix, in which X; is a
column vector that represents the features of node v; and d stands for the number of features. A network

R™*7! wwhere | denotes the number of layers. This

is represented by its supra adjacency matrix, A €
matrix encodes information about connections between pairs of nodes within a layer as well as connections
between pairs of nodes from two different layers, i.e., if v; from layer k and v; from layer m are connected
(1 <k,m <1), then A_1)n4i(m—1)nt+j = 1; otherwise, the value is 0. In a multilayer network, all layers
contain the same set of nodes, while their edge sets are assumed to be different. Each layer focuses on a
particular type of relationship, with intra layer edges connecting the nodes that are related. In addition,
a series of interlayer edges simply specify which nodes are identical. Fig. [I] shows a multilayer network
and its corresponding supra adjacency matrix.

The network dynamics are captured through a sequence of snapshots [G(l), - G(T)] where G) =

(VB A® X ®) for each t € {1,...,7}. We are interested in obtaining the node embeddings at ¢t < 7

1.
.
]
o
£ ~ "
® @ N L] ®
. *—— n ®
e ’
' ®
e -5
R B bhd H
2 a
» a » » »
v “ b ®
w L "
5 £l
& = »
/.- ®
& rs o @ &
- ® ® °
o] ®
[]
L »

1

Figure 1: A multilayer network (left) and its supra adjacency matrix (right).

based on snapshots at or before ¢. For the application in this paper, we assume V) = V@ = | = y()
and A = A® = = A ie. nodes and their connections remain constant over time, but features
can vary from one snapshot to another. Once the set of multilayer networks is complete, an embedding

must be calculated from this data, as explained in the next section.

8.2. Topological embedding

Neural networks are a type of machine learning model inspired by the human brain, consisting of layers
of interconnected neurons. Each neuron processes input data, applies a mathematical transformation using
weights and biases, and passes the result to the next layer. They are trained through a process called

backpropagation, which adjusts the weights and biases to minimize prediction errors measured by a loss

function (Goodfellow et al., 2016). GNNs extend these neural networks to handle graph-structured data.

Capturing the topological dependence in a network is a key problem, as neighbouring nodes could

influence each other. In this work, we trial two different types of GNNs, i.e., GCN (Kipf & Welling]
2017) and GAT (Velickovi¢ et al., 2018)), to obtain the topological relationship between a node and its

neighbours, encode the topological structure of the network and the features of nodes, capturing the
information within the node connections. GCN or GAT is applied to each G®) to obtain a hidden
representation matrix Z(). Each row of Z®) contains a node embedding, meaning that for node v; we
have a sequence of embeddings [ZZ-(l), Zi(Q), ey Z,L»(T)].

The GCN formulation performs isotropic aggregation, according to which each neighbour contributes

equally to update the representation of the central node. The GCN model for a snapshot can be expressed

as follows:
Z =D 2AD-12XWT. (1)

Here, A = A + I,,; is the supra adjacency matrix of the snapshot with inserted self-loops. I; is the
identity matrix, D;; = > y flij is the diagonal degree matrix of A, and W7 € R%*P is a learnable weight
matrix where D is the embedding size.

The GAT model expands the basic aggregation function of the GCN, assigning different importance

to each edge through the attention coefficients. It can be formulated as follows:

e;; = LeakyReLU(a [W X;||W X;]), (2)

exp(eij) (3)

i —
YT X keN(vy)ulu;) €2P(eik)”

Zi = 3 jeN (vt} @i W X;- (4)

Equation [2| computes a pairwise denormalized attention score between two neighbours, where || de-

T ¢ R2D ig a learnable weight vector. The attention score

notes the concatenation operation and a
indicates the importance of a neighbour node in the message passing framework. Equation applies a
softmax function to normalize the attention scores on each node’s incoming edges. This function puts
the output of the previous step in a probability distribution and, as a result, the attention scores are
more comparable across different nodes. In this equation, N (v;) represents the neighbourhood of node
v;. Note, we also include the self-edge for each node. In Equation , the embeddings from neighbours
are aggregated together, scaled by the attention scores. The main objective of this process is to learn a
different contribution from each neighbour. The operations from to constitute a single head. The
modelling capacity can be improved by considering multiple attention heads, thus allowing for different

attention being given to different sets of neighbours. The output representations from the different heads

can be aggregated using averaging operations.

3.8. Temporal embedding

Dealing with the temporal dependence is another key problem, as the temporal sequence of connections
between nodes could provide useful information. In this work, we use LSTM (Hochreiter & Schmidhuber),
1997)) and GRU (Cho et al.,[2014)) to catch the information related to the evolution of the networks. Both
LSTM and GRU use gated mechanisms to memorize as much information as possible; however, there

are some differences between these two models (Chung et al 2014)). Comparing these two, LSTM has a

more complex structure, more parameters, and longer training time. LSTM is known to be able to deal
with long-range dependencies, making it the preferred choice for models built over data of relatively large
size (Yang et all [2020). As our data is of medium size and the interface between GNNs and RNNs is
not fully explored, the choice between LSTM and GRU is not obvious. We will, therefore, compare both
models in Section |5l After obtaining the sequence of topological embeddings [Zi(l), ZZ@) s s Zi(t)], we need
to input it into the RNN model and use the hidden representation of the RNN model as the temporal
node embeddings for v;.

LSTM uses a total of three gates, i.e., input gate, forget gate, and output gate. The input gate
determines what information from the current topological embedding and previous temporal embeddings
will be cached, or stored for future use, in long term memory. The forget gate decides which information
from the long term memory should be maintained or repudiated. The output gate takes the current
topological embedding, the previous temporal embedding and the newly computed long term memory to

produce the new temporal embedding that will be passed on to the cell in the next time step. The LSTM

model can be formulated as follows:

10 = o(ZOW;; + HEDW,, + by), (5)

FO = o(ZOW; + HEYWyy, + by), (6)

C =F®O o Cct=D 4 10 @ tanh(ZOW, + HEDW,, 4 b,), (7)
0O = o(ZOWo; + HEDW,, + by), (8)

H® =0W & tanh(C). (9)

In the equations above, ® denotes element-wise (Hadamard) product. o is an activation function
(typically sigmoid) and tanh represents the hyperbolic tangent function. I) ¢ RixD pt) ¢ RrixD,
and O € R™*D represent input, forget, and output gates for the nodes, respectively. C'1) € R™*D and
H® e R™*D are memory cell and hidden state for the node embeddings, respectively. Wiy € RP*P and
by € RP are weight matrix and bias vector, respectively. H® and C(©) can be initialized with zeros
or learned from the data (Mohajerin & Waslander, 2017)).

GRU is similar to LSTM, but it incorporates two gates, i.e., an update gate and a reset gate. The reset
gate determines how much of the previous temporal embedding should be neglected, while the update

gate determines the amount of the new input that needs to be passed along to the next state. The GRU

10

model can be formulated as

U® = o(ZOW,; + HEDW,, + by), (10)
R® = o(ZOW,; + HDW,y, +b,), (11)
HO =1 -U®)o H=YD + U® © tanh[ZOWy,; + (RO © HEDYWy, + by). (12)

In the equations above, U®) € R™*D and R®) ¢ R™*PD represent update and reset gates for the nodes,
respectively. All other definitions are the same as LSTM. Fig. [2| depicts the respective structures of the
LSTM and GRU models.

H® H®

ct-1 c® gD

HED

(a) LSTM (b) GRU

Figure 2: The cell structures of RNN models.

8.4. GNN-RNN models

The GNN-RNN model is one of the proposed models for DYMGNN in this work. Within the GNN-
RNN framework, there are two configurations, i.e., GNN-LSTM and GNN-GRU, which can be summarized

as

Z® = GNN(X 1, AM), (13)
H® c® =18TM(Z®, H¢=D Ct-1) for GNN-LSTM, (14)
H® = GRU(Z®, Ht-1) for GNN-GRU. (15)

Fig. |3 displays an overview of these models.
These models are capable of capturing the topological and temporal dependencies of snapshots through

combining GNN and RNN, whilst the same importance is assigned to each timestamp. The temporal

11

Decoder Decoder
H H®
c© c® c® c-1 o
0 1) (2) (r-1) ()
LST™M LstTm | e LSTM H GRU H GRU H B | GRU H
HO gW H® H1T F72G)
AL Z® yAY zM z@ zm
GNN GNN | e GNN GNN GNN | e GNN
el a@ el felt)l felt) G

Figure 3: GNN-LSTM (left) and GNN-GRU (right) dynamic models.

embedding for the nodes is obtained by feeding their sequence of embeddings, produced by the GNN
model, to the RNN model.

3.5. GNN-RNN-ATT models

The GNN-RNN-ATT model is another proposed model for DYMGNN. In GNN-RNN-ATT models,
a soft attention mechanism is applied to assign different importance to each timestamp. This approach
contrasts with GNN-RNN models which assign equal importance to every timestamp. The use of attention
in GNN-RNN-ATT models allows for a more nuanced weighting of temporal information. Our approach
for creating a new hidden state for the node embeddings that is more expressive of the global variation

trends can be formulated as follows:

st = ahH(t)Wh, (16)

t) _ _ exp(sM)
5 22:1 ezp(s(k')) 9 (17)

Hopr = Y1, BYHD. (18)

First, the hidden states at different timestamps, H®) | are obtained using GNN and RNN;, as discussed
in the previous model. Equation computes an denormalized attention score for each hidden state,
where aj, € R and W, € RP*! are learnable weight vectors. The normalized attention score for each
hidden state is computed using a softmax function as shown in Equation In Equation , Hgy is
calculated by aggregating the hidden states scaled by the normalized attention scores. The main goal of
this process is to re-weight the influence of snapshots at different timestamps. Finally, the final output

results can be obtained using H,4; that can describe the global variation information.

12

Fig. [shows two configurations of GNN-RNN-ATT, i.e., GNN-LSTM-ATT and GNN-GRU-ATT.

v v
1 T
Decoder Decoder
! [
Huu Moy
i I [I 1 [
x 8 x82 [x 8l x iU xg® 317
Y LY
HY HY e b A‘H[:’j’ H
o ul c{lJ Cﬂ]‘ c! =1] Gl-’]
> — —
LSTM LSTM | e LSTM GRU GRU e GRU
TEO 0N THm He HET 7O H H Hi= H®
LY
zm 72 z Z0 712 ()
GNN GNN | e GNN GNN GNN = e GNN
£y
[I I I I
felty) el el Gl G2 el

Figure 4: GNN-LSTM-ATT (left) and GNN-GRU-ATT (right) dynamic models. By adding an attention layer to the model,
we are able to re-weight the impact of different snapshots.

3.6. Decoder and loss function

A deep neural network model is typically comprised of an encoder and a decoder. The encoder takes
input and produces embeddings, whereas the decoder takes the embeddings and performs the prediction

task (Goodfellow et all 2016). In our specific case, GNN, RNN, and ATT comprise the encoder of the

full model, while the decoder is a set of feed-forward neural networks applied to the node embeddings,
followed by a series of layers that either apply a chosen activation function for non-linearity or dropout
function for regularization. The final output is the model prediction for our binary outcome (here, default
Y/N), i.e., whether the node v; belongs to class 1 (Y; = 1) or 0 (Y; = 0). The decoder outputs a vector
Y where Y; specifies the probability of a node v; belonging to class 1 given the snapshots [G(l), ey G(T)].
While there is no unique format for the decoder, the architecture used in this work is shown in Fig.

One of the most important aspects of a deep learning model is its loss function. For our work, we use

the well-known binary cross-entropy loss function (Gneiting & Rafteryl 2007)) which can be written as

Loss = =1 ™ [¥: - Log(¥0) + (1 = ¥) - tog(1 — Y1) (19)

i=1

13

- =
5 3
()
S 3 = £
— — ()
8 c o = ~
= .0 I bt S
=

B) o () =
e e B -
E e g — =]
L

[} = o O
(7] o [¢) 2] c
c = = < o
c g e a E
@) = >
3} =
<C Q
<€
),) J)

Figure 5: Architecture of the decoder.

4. Experimental setup

4.1. Dataset

In this paper, the goal of our models is to predict one-year-ahead loan default based on borrower or loan
characteristics. For this purpose, we use the Single-Family Loan-Level (SFLL) dataset provided by the
Federal Home Loan Mortgage Corporation (FHLMC), commonly known as Freddie Mac, which contains
loan-level data for a sizable share of mortgage loans in the United States (FreddieMac, 2022). Freddie
Mac purchases mortgages on the secondary market, pools them, and sells them as a mortgage-backed
security to investors on the open market.

The dataset includes information regarding the loan, such as the amount, the interest rate, the insur-
ance percentage, and the provider, as well as information on the borrower, including the borrower’s debt
to income ratio and/or unpaid balance, FICO credit score, the geographical area in which they reside, and
whether they are a first-time home buyer. It also includes information about the property (type, number
of units, etc.). To represent the categorical information, we introduce our own binary features contrasting
one category against other categories combined. Numerical node features are normalized using min-max
scaling. We clean the data by treating outliers and null values. Specifically, outliers are capped at the
99*h percentile and 15 percentile points. There are not many null values, and they are treated with
median imputation. Feature descriptions for the data used in model training are given in Table |1 Most
of the features are available at the time of loan application and do not change from one month to another;
however, a few features such as ‘current_upb’, ‘if_delq_sts’, ‘mths_remng’, and ‘current_int_rt’ can change
from month to month, as they track repayment behaviour over the loan period. More information about

the data can be found in Appendix A.

4.2. Dynamic networks

As we are interested in studying the effect of connections between the borrowers and the evolution

of those connections over time, we use the data to create a sequence of dynamic networks following the

14

Feature Description

fico Credit score at the time of acquisition

if_fthb Is the borrower a first-time home buyer?

mi_pct Mortgage insurance percentage

cnt_units Number of units in the property

if_prim_res Is the property a primary residence?

dti Original debt to income ratio

ltv Original loan to value ratio

if_corr Is a correspondent involved in the origination of the mortgage?
if_sf Is the property a single family home?

if_purc Is the mortgage loan a purchase mortgage?

cnt_borr Number of borrowers obligated to repay the mortgage

if sc Does the mortgage exceed conforming loan limit?

current_upb Current unpaid principal balance

if_delq_sts Are there any payment arrears (between 30 and 90 days)?
mths_remng Number of remaining months of the mortgage

current_int_rt | Current interest rate

default Being 90 days or more in payment arrears over next 12 months

Table 1: Description of the node features.

process in subsection In particular, we are interested in predicting one-year-ahead loan default based
on application information and six months of borrower’s repayment behaviour. We choose a six-month
period because six and twelve months are common choices for lookback periods (Kennedy et al., 2013)).
Furthermore, this paper will later show that extending beyond six months offers minimal additional
benefits.

For this work, loans originated in 2009 and 2010 are used for training and testing. We select these years
to ensure sufficient default information is available for reliably comparing the models. It is important to
note, however, that loan population and behaviour change over time, and our sample data may reflect
some effects of the global financial crisis. Thus, further research could explore the robustness of our
proposed methods across different time periods and financial conditions. We use application data and 18
months of behavioural data, from January 2012 to June 2013, for training. We also use application data
and six months of behavioural data of a holdout set, from July 2013 to December 2013, for testing. We
consider rolling windows, shifting by one month, for training and testing, with each window containing
six snapshots [G(1), ..., G)], and each snapshot corresponding to one month. So, we have 13 windows
for training and one window for testing. All snapshots of a specific window have the same set of nodes.
However, the node set could be different from one window to another; a loan that has defaulted will
remain marked as a defaulter for the observation window but will disappear once the window moves past
it. During the training of each window, the goal is to predict default within 12 months following the
month of the last snapshot in that window. A one-year horizon is practical for credit management and

decision-making, as it balances the need for a sufficiently long period to assess risk while not extending so

15

far that predictions become highly speculative (Lopez & Saidenberg, [2000). Fig. |§| displays the timeline
for the windows and their corresponding horizons in model training,.

Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec. Jan. Feb. March April May June July
| | | | | | | | | | | | | | | | | | | |
L | I I [I | | I I I [[I I I I [I 1

—
Window 1

Horizon 1

o
Window 2

-
..... Horizon 2

Figure 6: The timeline for windows and their corresponding horizons in model training.

We can train the models using either single layer or double layer networks, with geographical location
of the borrower and the company lending the loan being the connector variables. Borrowers whose zip
codes have the same first two digits are assumed to be in the same geographical area. In the case of
the double layer network, nodes in one layer are also connected to their twins in the other layer. Some
previous studies showed that applying some sort of dropout techniques on graph structures could help
increase the expressiveness of the GNN models (Shu et al., 2022)). Therefore, we decide to randomly select
and isolate 50% of the nodes in each snapshot of a window. In other words, in each snapshot, at least
half of the nodes do not have any connections with other nodes.

To gain insight into the size and characteristics of the networks, we provide some descriptions in
Table Letting G(T) = Ule G® | Table [2 shows the number of nodes and the number of edges for
G created from the snapshots in the first window of the training set, as well as the snapshots of the
validation and test sets. It is evident that the single layer networks derived from the lending company are
denser than those derived from the geographical area. This is because there are fewer lending companies

serving as connector variables compared to the number of geographical areas serving as such.

Single Layer:Area Single Layer:Company Double Layer:Area-Company
Set #Nodes #Edges ‘ #Nodes #Edges ‘ #Nodes #Edges
Training 148,520 16,368,244 148,520 91,486,176 297,040 108,151,460
Validation 82,180 4,725,842 82,180 27,735,664 164,360 32,625,866
Test 96,490 6,761,051 96,490 38,404,277 192,980 45,358,308

Table 2: Network description for G(™).

4.3. Ezxperiments

We are interested in comparing the performance of different models on single layer and double layer
networks, and in benchmarking them against some baseline methods. The classes are imbalanced in this

binary node classification problem, so we use the Area Under the Curve (AUC) and F) score to assess

16

the performance of each model. The results are presented with 95% confidence intervals, derived from
bootstrap over the test set.

As computational efficiency is another consideration, we also examine the runtime for training the
models. In addition, we use the Shapley approach to help us interpret the best performing model and
better understand the importance of the different node features. We also look at the attention scores to

assess the relative contribution of snapshots at different timestamps.

5. Results and discussion

5.1. Baseline methods

We benchmark our proposed model against a selection of GNN-based and non-GNN-based baseline
models. Table [3] shows the results for two GNN-based baseline models, i.e., static GCN and static GAT,
whereas Table {4] shows the results for three non-GNN-based baseline models, i.e., Logistic Regression
(LR), XGBoost (XGB), and a Deep Neural Network (DNN). LR is popular in the commercial and financial
sectors due to its straightforwardness and ease of understanding. Meanwhile, XGB has established itself as
a powerful technique for both classification and regression tasks involving structured datasets (Gunnarsson
et al.,|2021). DNN is fundamental to deep learning and has seen broad usage across a variety of predictive
tasks.

For training the GNN-based baseline models, we consider a static network, which is the last snapshot
of each window, and values of behavioural features are the mean values of those features across the six
snapshots of the respective window. We do not use RNNs for these static models; the decoder and the
loss function for these models are the same as those used in the dynamic models.

For non-GNN-based baseline models that rely solely on non-network features, we use a grid search to
tune the hyper-parameters for each model using the validation dataset. The LR model is tuned with saga
solver and a grid search for the penalty {L1, L2}. The XGB model hyper-parameters are tuned with a
grid search for the learning rate {0.001, 0.01, 0.1}, maximum depth {2, 3, 4}, number of estimators {50,

100, 250, 500}, and alpha {0.1,. . . ,0.9}. The architecture of the DNN is given in Appendix B.
Single Layer:Area Single Layer:Company Double Layer:Area-Company
Model AUC F | AUC F | AUC F

Static GCN | 0.701 £0.014 0.802+0.012 | 0.681 £0.014 0.798 £0.013 | 0.729+0.012 0.810 £ 0.012
Static GAT | 0.752+0.013 0.814+0.010 | 0.746+0.011 0.812£0.009 | 0.763 £0.014 0.817 4+ 0.012

Table 3: Performance of the GNN-based baseline models.

In Table[3] we can see that the Static GAT performs better than the Static GCN, on both single layer

and double layer networks. The difference in performance between them is considerable, and could be

17

Model ‘ AUC F

LR 0.796 £0.020 0.824 £0.013
XGB | 0.805+0.018 0.837£0.012
DNN | 0.803 £0.016 0.833+0.014

Table 4: Performance of the non-GNN-based baseline models.

due to the different way in which GAT and GCN aggregate information from the one-hop neighbourhood.
Among the non-GNN models (see Table , XGB appears to have better performance compared to LR
and DNN; however, the differences are fairly small. XGB outperforms LR, suggesting that XGB can
capture non-linear relationships better than LR does. It is also not unexpected to see that DNN does
not outperform XGB, as this might be the case where the structured data is not very complex or does
not contain many features (Borisov et al., 2022; |Gunnarsson et al., 2021). Comparing Table {4] against
Table (3| it is observed that the performance of each non-GNN-based baseline model surpasses that of
the best performing GNN-based baseline model, i.e., Static GAT, on both single layer and double layer
networks. This observation is important as it indicates that more complex models do not always yield

better performance.

5.2. Performance of the dynamic models

Table [5] and Table [6] show the performance of the different models on our two single layer networks,
while Table [7] shows the performance on the double layer network. Out-of-sample performance is again
measured in terms of AUC and F) score on a test set. The best performing model in each group is

highlighted in bold.

Model AUC Fi
Topological Temporal | Without ATT With ATT ‘ Without ATT With ATT
GON LSTM 0.804 +£0.011 0.807+0.012 | 0.841 +0.008 0.847 + 0.009
GRU 0.775+£0.013 0.780 £0.011 | 0.825£0.006 0.829 + 0.008
GAT LSTM 0.806 +£0.009 0.810+0.012 | 0.842+0.005 0.849 +0.007
GRU 0.793 £0.005 0.802+0.014 | 0.833+£0.004 0.840 £ 0.006

Table 5: Performance of the dynamic models on the single layer network derived from the geographical area.

Model AUC
Topological Temporal | Without ATT With ATT ‘ Without ATT With ATT
GON LSTM 0.802+0.012 0.804 £0.012 | 0.840+0.009 0.843 4+ 0.007
GRU 0.769 £0.013 0.774+£0.014 | 0.818 £0.006 0.823 + 0.006
GAT LSTM 0.805+0.012 0.808 £0.010 | 0.840 £0.009 0.846 + 0.008
GRU 0.786 +£0.007 0.795+£0.014 | 0.832£0.004 0.835=+ 0.006

Table 6: Performance of the dynamic models on the single layer network derived from the lending company.

18

Table 5] and Table [6] show that, for each of the single layer networks, the GAT-LSTM-ATT model
produces the highest AUC and Fj score, while GCN-GRU gives the poorest results. This could be due to
the fact that GAT assigns different importance to each edge, and we know that some connections could
be more informative than others. Also, the complex structure of LSTM appears to make it the preferred
RNN for this problem. Another key observation is that models enhanced with the attention mechanism

consistently show better performance compared to those without attention.

Model AUC F
Topological Temporal | Without ATT With ATT ‘ Without ATT With ATT
GON LSTM 0.806 £ 0.010 0.810 £0.009 | 0.845+£0.004 0.848 + 0.006
GRU 0.789 £0.010 0.793 £0.011 | 0.833 £0.005 0.835 =+ 0.009
GAT LSTM 0.807 £0.008 0.812+0.008 | 0.847+0.005 0.851+0.007
GRU 0.800 £0.004 0.804 £0.006 | 0.839 £0.003 0.843 + 0.008

Table 7: Performance of the dynamic models on double layer network created with both geographical area and lending
company.

As for the double layer network, we can see from Table [7] that, similarly to what was observed for
the single layer networks, the GAT-LSTM-ATT model again shows the best performance. The results
for the double layer network, however, tend to outperform the single layer ones, which is intuitive as the
double layer network is able to consider connections of either type. It is also noticeable that the results
obtained from the double layer network have shorter confidence intervals, suggesting greater robustness
in these results. Importantly, the best performing dynamic modelling approach, i.e., GAT-LSTM-ATT,
performs better on average than the baseline methods presented in the previous subsection. For exam-
ple, the GAT-LSTM-ATT model for the double-layer network produces AUC and Fj score of 0.812 and
0.851, respectively, compared to 0.805 and 0.837 for the best baseline model, i.e., XGB (see Table .
This translates to a 0.87% gain in AUC and a 1.67% gain in Fj score. Although these numerical gains
might seem modest, even a 1% improvement can yield significant financial benefits for some businesses.
Interestingly, even when applied to either of the single layer networks, the GAT-LSTM-ATT still tends
to perform well compared to the baseline models. This demonstrates that DYMGNN offers an advantage
over conventional methods by capturing a richer set of information, thus providing a more comprehensive
and realistic picture of a borrower’s default probability. Hence, incorporating dynamic network informa-
tion is able to provide additional information over simply using local features and/or static networks.
The most pronounced difference lies between our dynamic model and the static network-based models,

demonstrating the importance of capturing network changes over a sufficiently long time window.

19

5.3. Runtime analysis

Computational complexity of training machine learning models considers two core aspects: time com-
plexity and space complexity. Time complexity relates to the time it takes to train a model and how this
is affected by problem size, whereas space refers to how much space a model uses (memory footprint).

As time complexity is a potential consideration in our work, we report the runtimes for the dynamic
models in Table[§ and Table[dl The runtimes for the GNN-RNN models and GNN-RNN-ATT models are
presented in separate tables as those models’ architectures differ from each other. The hyperparameters
and resources used for the computations can be found in Appendix C. Note, to allow for easier comparison,

the runtimes in each table are also normalized with respect to the lowest number in that table.

Model Single Layer:Area Single Layer:Company Double Layer: Area-Company
Topological Temporal | Non-normalized Normalized ‘ Non-normalized Normalized ‘ Non-normalized Normalized
GCN LSTM 1,690 1.18 7,090 4.93 8,397 5.84

GRU 1,437 1.00 6,109 4.25 7,221 5.03
GAT LSTM 2,571 1.79 10,148 7.06 12,171 8.47
GRU 2,081 1.45 8,390 5.84 10,019 6.97

Table 8: Runtime for training the GNN-RNN models (seconds).

Model Single Layer:Area Single Layer:Company Double Layer:Area-Company
Topological Temporal | Non-normalized Normalized ‘ Non-normalized Normalized ‘ Non-normalized Normalized
GCN LSTM 1,700 1.16 7,104 4.86 8,481 5.80

GRU 1,463 1.00 6,190 4.23 7,225 4.94
GAT LSTM 2,597 1.78 10,151 6.94 12,120 8.28
GRU 2,114 1.44 8,413 5.75 10,054 6.87

Table 9: Runtime for training the GNN-RNN-ATT models (seconds).

From the tables, we can see that training a model on a single layer network derived from the lending
company takes longer than training a model on a single layer network created based on geographical area.
This is not unexpected as the former network contains a higher number of connections between the nodes
compared to the latter. GAT-LSTM and GAT-LSTM-ATT have the highest training runtimes among
the GNN-RNN and GNN-RNN-ATT models, respectively, whereas GCN-GRU and GCN-GRU-ATT have
the lowest runtimes. GNN-RNN-ATT models normally have higher runtimes compared to the GNN-RNN
models, owing to the complexity added to those models by the attention mechanism. It is worth noting
that the runtime for the XGB model is only 151 seconds, highlighting the greater complexity of our

proposed models compared to traditional non-network classifiers.

5.4. Interpretability of the architecture

Having established that the best results can be obtained by applying the GAT-LSTM-ATT model to
the double layer network, in this section, we employ the Shapley approach (Lundberg & Lee, 2017) to

better understand this model. Using this method, we can establish each node feature’s relative importance

20

and quantify its contribution to the model output. Fig.[7a]displays the relative importance of node features
for the best performing proposed model, i.e., GAT-LSTM-ATT, and the best performing baseline model,
i.e., XGB. Fig.[7h|displays an information-dense summary of how the node features for the best performing

proposed model impact its output.

if delq sts if_delq_sts {>= —_—
- -ﬁ(O fico —-h—-"
G'It_bO" cnt_borr —+ P
mths_remng mths_remng e
current int rt current_int_rt . '+” -
I i —— -
if_purc if_purc — 3
Itv tv - el— H
if sf i sf —f £
current_upb current_upb - &
if_corr if_corr -
mi_pct mi_pct {—.
if_prim_res if_prim_res —1F-
if_fthb N GAT-LSTM-ATT i fthb —-
if_sc == XGB if sc —
t_units ! T T T T T cnt_units s+ ewmmemmmie. o
0.00 0.05 0.10 0.15 0.20 0.25 030 Low
-02 -01 0.0 01 02 03
Relative importance SHAP value (impact on model output)
(a) Relative importance for GAT-LSTM-ATT and XGB. (b) Shapley values for GAT-LSTM-ATT.

Figure 7: Summary of node feature importance.

As seen in Fig. the presence of overdue payments holds the most significant relative importance
compared to other features, for both GAT-LSTM-ATT and XGB. Overdue payments are a strong indi-
cator of a borrower’s financial health; similarly, while timely payments generally suggest good financial
management, payment arrears can signal financial distress. The FICO credit score has the second highest
relative contribution among the features. This is intuitive as this feature summarizes a lot of information
about the payment history and financial behaviour of the borrower. For both models, the number of bor-
rowers ranks as the third most crucial feature. For the GAT-LSTM-ATT model, the number of remaining
months holds the fourth position in terms of importance, whereas for the XGB model, the debt to income
ratio claims the fourth spot. Notably, the disparity in the significance attributed to features by the two
models is more pronounced for the top two features.

Fig. shows that payment arrears are highly indicative of default risk. It can also be viewed that
borrowers with high credit scores are less likely to default, according to the model, while borrowers with
low credit scores are more prone to be classified as defaulters. High values of the number of borrowers
are associated with lower default risk, while low values are associated with higher default risk. Higher
(lower) number of remaining months is linked with higher (lower) default risk.

Fig. |8 displays the dependency plots of the four most important features. Note, the feature values are
scaled to be between 0 and 1 using min-max scaling. Fig. illustrates that borrowers who consistently
meet their payment deadlines tend to have high credit scores and are less prone to default. On the other

hand, those who experience delays in making payments are more commonly associated with the cohort

21

0.9 10
03
04
0.8
N 03 . 02
e wn - 0.7 e
s | 7 8
& | =]
5o 02 8 39 01 05 o
] = e 2
o o - 0.6 a ©
<! g < |
x 0.1 I 4=
0 0] 0.0
05
0.0
' 01
—01 04
0.0 02 0.4 0.6 08 10 00 02 04 06 08 10 00
if_delq_sts fico
(a) if_delq-sts (b) fico
0.08 10 . 10
0.06 0.05 .
N
0.04
5 5 0.00 s ﬁ"'
- 0.02 o) = 2 . -~)
[T = @ v £ . . 4
20 | 25 |
T 2 00 05 5 o 2 . 05 %
>] > o005 ® T
%6 o &£ N
I -002 = $E v e -
n n ,5{
.
-0.04 -0.10 “
N4
-0.06 PR
. -
e
-0.08 1 . 00 -0.15 0.0
0.0 02 04 06 08 10 02 04 06 0.8 10
cnt_borr mths_remng
(¢) ent_borr (d) mths_remng

Figure 8: Dependency plots of the four most important features for GAT-LSTM-ATT. The colour shows the value of the
closest feature by correlation.

of defaulters. Fig. [8b] demonstrates that the credit score, by and large, has a linear impact, with higher
scores signalling lower risk of default. Lower values of credit score are much more informative than the
higher values. Additionally, the model reveals some intriguing interaction effects. The relative impact
of credit score on the default risk is more pronounced in the case of borrowers who have a history of
late payments. This indicates that while a low credit score is generally a good indicator of high default
risk, its predictive influence increases for those who do not consistently make timely payments. Fig.
suggests that cases involving fewer borrowers are more likely to default on their loans. This might be
attributed to various factors, such as limited financial resources, reduced collective responsibility, or lesser
peer pressure to maintain creditworthiness among a smaller group. Fig. [8d|indicates that the number of
remaining months displays a nearly linear trend, with lower numbers pointing to safer cases. This may
stem from the increased uncertainty associated with longer durations (as opposed to shorter durations
which signal an approaching end to the financial commitment) or from survival bias. Additionally, the
figure points out that this feature’s effect on default risk is more significant for borrowers with a pattern
of delayed payments.

We also aim to analyse the normalized attention scores from the GAT-LSTM-ATT model to determine

22

the relative importance of each timestamp. Fig. [J]illustrates how these scores vary over time.

06

05 4 I
0. /
0.3 1 /

021 ,‘

0.1 0

Normalized attention score (")

0.0 T T T T T
1 2 3 4 5 6

Timestamp (t)

Figure 9: Variation of the normalized attention scores.

The figure shows that for the first few timestamps, the attention score is relatively stable and low,
remaining close to 0.1. This indicates a minimal level of attention or importance being assigned during
these early timestamps. However, as time progresses, particularly after timestamp 3, there is a noticeable
upward trend in the attention score. This increase becomes more pronounced between timestamps 4 and
6, where the attention score rises sharply, peaking just below 0.6 at timestamp 6. This pattern suggests
that as time progresses, the snapshots grow in importance. The reason for this progressive increase in
attention could be that the most recent information holds greater value. Additionally, it can be inferred
that longer lookback periods are unlikely to add anything extra, since the bulk of attention is allocated

within a relatively brief period.

6. Conclusions

This study introduced an innovative approach to credit risk assessment through the use of dynamic
graph neural networks. We found that this technique outperforms traditional models commonly applied
in the sector when tested against US mortgage data. By harnessing the capabilities of both GNN and
RNN, our method successfully captures the evolving connections between individual loans. We engineered
this methodology to exploit the potential of multilayer networks, rather than the common single layer
ones. The findings suggested that models incorporating double layer networks with a customized attention
mechanism show enhanced predictive capability.

The evaluation of these models was conducted using a dataset from the mortgage lending domain.
In our experiments, we constructed single and double layer networks using the borrower’s geographical
location and the lending company as the connector variables. Through rigorous testing of various models,
we established that the GAT-LSTM-ATT model exhibits the best performance among all configurations
of DYMGNN, and other baseline models, both GNN-based and non-GNN-based. Furthermore, this model

23

is able to capture a richer set of information, thereby providing more realistic insights into a borrower’s
probability of default.

When comparing training times, it became apparent that models employing the attention mechanism
exhibit greater complexity and require more extensive training times, yet the runtime remains within
acceptable limits. As in any operational research area, explainability is important to consider (De Bock
et al., 2023). Therefore, we applied the Shapley approach to decode the model’s inner workings, assessing
the impact of each node feature on the final output. This analysis revealed the differences in the impor-
tance of node features between a baseline model and our DYMGNN model, with particular focus on the
four most pivotal features. Additionally, we investigated the relative importance of snapshots at different
timestamps by analysing the attention scores associated with each. The results confirmed that the most
recent snapshots play a crucial role in influencing the model’s output.

Future research could explore wider networks by incorporating additional layers to map more complex
inter-individual connections. The method could also be extended by further considering distance infor-
mation and assigning different weights to the network edges based on geographical proximity between
the centroids of neighbouring zip code areas. It might also be beneficial to vary the number of snapshots
by adjusting the window length for generating dynamic networks. The exploration of other GNNs and
RNNs not considered in this study presents another promising direction. Moreover, gaining a deeper
understanding of how different network connections influence default risk could offer valuable insights

into credit risk modelling.

Acknowledgements

The first author acknowledges the support of the Natural Sciences and Engineering Research Council
(NSERC) of Canada through the Canada Graduate Scholarships — Doctoral (CGS D) program. The
second and fourth authors acknowledge the support of the Economic and Social Research Council (ESRC)
[grant number ES/P000673/1]. The third author acknowledges the support of the Icelandic Research Fund
(IRF) [grant number 228511-051]. The last author acknowledges the support of the NSERC [discovery
grant RGPIN-2020-07114]. This research was undertaken, in part, thanks to funding from the Canada
Research Chairs program [CRC-2018-00082]. This work was enabled in part by support provided by
Compute Ontario (computeontario.ca), Calcul Québec (calculquebec.ca), and the Digital Research

Alliance of Canada (alliancecan.cal).

References

Aliabadi, M. M., Emami, H., Dong, M., & Huang, Y. (2020). Attention-based recurrent neural network for multistep-ahead

prediction of process performance. Computers € Chemical Engineering, 140, 106931.

24

computeontario.ca
calculquebec.ca
alliancecan.ca

Altché, F., & de La Fortelle, A. (2017). An LSTM network for highway trajectory prediction. In 2017 IEEE 20th international
conference on intelligent transportation systems (ITSC) (pp. 3563-359).

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In 3rd
International Conference on Learning Representations (ICLR).

Barabési, A.-L., & Pésfai, M. (2016). Network science. Cambridge University Press.

Borisov, V., Leemann, T., SeBler, K., Haug, J., Pawelczyk, M., & Kasneci, G. (2022). Deep neural networks and tabular
data: A survey. IEEE Transactions on Neural Networks and Learning Systems, Farly Access, 1-21.

Bravo, C., & Oskarsdéttir, M. (2020). Evolution of credit risk using a personalized pagerank algorithm for multilayer
networks. In KDD MLF 2020: KDD Workshop on Machine Learning in Finance.

Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-networks for machine reading. In Proceedings of the
2016 Conference on Empirical Methods in Natural Language Processing (pp. 551-561).

Cho, K., Van Merriénboer, B., Bahdanau, D., & Bengio, Y. (2014). On the properties of neural machine translation:
Encoder-decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntazx, Semantics and Structure in Statistical
Translation (pp. 103-111).

Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence
modeling. In NIPS 2014 Workshop on Deep Learning.

De Bock, K. W., Coussement, K., De Caigny, A., Slowinski, R., Baesens, B., Boute, R. N., Choi, T.-M., Delen, D., Kraus,
M., Lessmann, S. et al. (2023). Explainable AI for operational research: A defining framework, methods, applications,
and a research agenda. Furopean Journal of Operational Research, In press.

De Cnudde, S., Moeyersoms, J., Stankova, M., Tobback, E., Javaly, V., & Martens, D. (2019). What does your Facebook
profile reveal about your creditworthiness? Using alternative data for microfinance. Journal of the Operational Research
Society, 70, 353—-363.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

Fenech, J. P., Vosgha, H., & Shafik, S. (2015). Loan default correlation using an Archimedean copula approach: A case for
recalibration. Economic Modelling, 47, 340-354.

FreddieMac (2022). Single family loan-level dataset. URL: https://www.freddiemac.com/research/datasets/
sf-loanlevel-dataset.

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American
Statistical Association, 102, 359-378.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Gordy, M. B. (2000). A comparative anatomy of credit risk models. Journal of Banking & Finance, 24, 119-149.

Grassia, M., De Domenico, M., & Mangioni, G. (2021). mGNN: Generalizing the graph neural networks to the multilayer
case. arXw preprint arXiw:2109.10119, .

Graves, A., Ferndndez, S., & Schmidhuber, J. (2007). Multi-dimensional recurrent neural networks. In International Con-
ference on Artificial Neural Networks (ICANN 2007) (pp. 549-558).

Gunnarsson, B. R., Vanden Broucke, S., Baesens, B., Oskarsdéttir, M., & Lemahieu, W. (2021). Deep learning for credit
scoring: Do or don’t? FEuropean Journal of Operational Research, 295, 292-305.

Haythornthwaite, C. (1996). Social network analysis: An approach and technique for the study of information exchange.
Library € Information Science Research, 18, 323-342.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9, 1735-1780.

25

https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset
https://www.freddiemac.com/research/datasets/sf-loanlevel-dataset

Jain, A., Zamir, A. R., Savarese, S., & Saxena, A. (2016). Structural-RNN: Deep learning on spatio-temporal graphs. In
Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5308-5317).

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, L., Sethi, A., Forsyth, P., & Poupart, P. (2020). Representation learning for
dynamic graphs: A survey. Journal of Machine Learning Research, 21, 1-73.

Kennedy, K., Mac Namee, B., Delany, S. J., O’Sullivan, M., & Watson, N. (2013). A window of opportunity: Assessing
behavioural scoring. Ezpert Systems with Applications, 40, 1372-1380.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph convolutional networks. In 5th International
Conference on Learning Representations (ICLR).

Kiveld, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal
of Complex Networks, 2, 203-271.

Kumar, S., Zhang, X., & Leskovec, J. (2019). Predicting dynamic embedding trajectory in temporal interaction networks. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 1269-1278).

Lee, J. W., Lee, W. K., & Sohn, S. Y. (2021). Graph convolutional network-based credit default prediction utilizing three
types of virtual distances among borrowers. Expert Systems with Applications, 168, 114411.

Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-of-the-art classification algorithms for
credit scoring: An update of research. European Journal of Operational Research, 247, 124-136.

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2018). Diffusion convolutional recurrent neural network: Data-driven traffic forecasting.
In 6th International Conference on Learning Representations (ICLR).

Li, Z., Wang, X., Yao, L., Chen, Y., Xu, G., & Lim, E.-P. (2022). Graph neural network with self-attention and multi-task
learning for credit default risk prediction. In 23rd International Conference on Web Information Systems Engineering —
WISE 2022 (pp. 616-629).

Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B., & Bengio, Y. (2017). A structured self-attentive sentence
embedding. In 5th International Conference on Learning Representations (ICLR).

Lopez, J. A., & Saidenberg, M. R. (2000). Evaluating credit risk models. Journal of Banking & Finance, 24, 151-165.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Proceedings of the 31st
International Conference on Neural Information Processing Systems (NIPS’17) (pp. 4768—-4777).

Luong, M.-T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. In
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1412-1421).

Mallinar, N., & Rosset, C. (2018). Deep canonically correlated LSTMs. arXiv preprint arXiv:1801.05407, .

Manessi, F., Rozza, A., & Manzo, M. (2020). Dynamic graph convolutional networks. Pattern Recognition, 97, 107000.

Markov, A., Seleznyova, Z., & Lapshin, V. (2022). Credit scoring methods: Latest trends and points to consider. The Journal
of Finance and Data Science, 8, 180—201.

Matsuno, R., & Murata, T. (2018). MELL: Effective embedding method for multiplex networks. In Companion Proceedings
of the The Web Conference 2018 (pp. 1261-1268).

Mohajerin, N., & Waslander, S. L. (2017). State initialization for recurrent neural network modeling of time-series data. In
2017 International Joint Conference on Neural Networks (IJCNN) (pp. 2330-2337).

Oskarsdéttir, M., & Bravo, C. (2021). Multilayer network analysis for improved credit risk prediction. Omega, 105, 102520.

Oskarsdéttir, M., Bravo, C., Sarraute, C., Vanthienen, J., & Baesens, B. (2019). The value of big data for credit scoring:

Enhancing financial inclusion using mobile phone data and social network analytics. Applied Soft Computing, 74, 26-39.

26

Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., & Ward, R. (2016). Deep sentence embedding using
long short-term memory networks: Analysis and application to information retrieval. IEEE/ACM Transactions on Audio,
Speech, and Language Processing, 24, 694-707.

Pappas, N., & Popescu-Belis, A. (2017). Multilingual hierarchical attention networks for document classification. In Pro-
ceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp.
1015-1025).

Pareja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler, T., Schardl, T., & Leiserson, C. (2020).
EvolveGCN: Evolving graph convolutional networks for dynamic graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence (Volume 34) (pp. 5363-5370).

Qu, Z., Haghani, P., Weinstein, E., & Moreno, P. (2017). Syllable-based acoustic modeling with CTC-SMBR-LSTM. In
2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (pp. 173-177).

Roa, L., Correa-Bahnsen, A., Suarez, G., Cortés-Tejada, F., Luque, M. A., & Bravo, C. (2021). Super-app behavioral
patterns in credit risk models: Financial, statistical and regulatory implications. FExpert Systems with Applications, 169,
114486.

Sankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2019). Dynamic graph representation learning via self-attention
networks. In Workshop on Representation Learning on Graphs and Manifolds, ICLR 2019.

Shanthamallu, U. S., Thiagarajan, J. J., Song, H., & Spanias, A. (2019). GrAMME: Semisupervised learning using multi-
layered graph attention models. IEEE Transactions on Neural Networks and Learning Systems, 31, 3977-3988.

Shi, S., Tse, R., Luo, W., D’Addona, S., & Pau, G. (2022). Machine learning-driven credit risk: A systemic review. Neural
Computing and Applications, 34, 14327—-14339.

Shu, J., Xi, B., Li, Y., Wu, F., Kamhoua, C., & Ma, J. (2022). Understanding dropout for graph neural networks. In
Companion Proceedings of the Web Conference 2022 (pp. 1128-1138).

Skarding, J., Gabrys, B., & Musial, K. (2021). Foundations and modeling of dynamic networks using dynamic graph neural
networks: A survey. IEEE Access, 9, 79143—-79168.

Tang, Y., Huang, Z., Cheng, J., Zhou, G., Feng, S., & Zheng, H. (2021). Graph neural network-based node classification
with hard sample strategy. In 2021 International Conference on Cyber-Physical Social Intelligence (ICCSI) (pp. 1-4).
Thomas, L., Crook, J., & Edelman, D. (2017). Credit scoring and its applications. SIAM-Society for Industrial and Applied

Mathematics.

Trivedi, R., Farajtabar, M., Biswal, P., & Zha, H. (2019). DyRep: Learning representations over dynamic graphs. In 7th
International Conference on Learning Representations (ICLR).

Tsitsulin, A., Palowitch, J., Perozzi, B., & Miiller, E. (2020). Graph clustering with graph neural networks. In Proceedings
of the 16th International Workshop on Mining and Learning with Graphs (MLG).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention
is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17).

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2018). Graph attention networks. In 6th
International Conference on Learning Representations (ICLR).

Vinciotti, V., Tosetti, E., Moscone, F., & Lycett, M. (2019). The effect of interfirm financial transactions on the credit
risk of small and medium-sized enterprises. Journal of the Royal Statistical Society Series A: Statistics in Society, 182,

1205-1226.

27

Wang, D., Zhang, Z., Zhao, Y., Huang, K., Kang, Y., & Zhou, J. (2023). Financial default prediction via motif-preserving
graph neural network with curriculum learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (pp. 2233-2242).

Wang, J., Zhang, S., Xiao, Y., & Song, R. (2022). A review on graph neural network methods in financial applications.
Journal of Data Science, 20, 111-134.

Wang, S., Hu, L., Wang, Y., He, X., Sheng, Q. Z., Orgun, M. A., Cao, L., Ricci, F., & Yu, P. S. (2021). Graph learning based
recommender systems: A review. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence
(IJCAI-21) (pp. 4644-4652).

Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., & Chua, T.-S. (2017). Attentional factorization machines: Learning the weight of
feature interactions via attention networks. In Proceedings of the Twenty-Sizth International Joint Conference on Artificial
Intelligence (IJCAI-17) (pp. 3119-3125).

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive representation learning on temporal graphs. In
8th International Conference on Learning Representations (ICLR).

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., & Bengio, Y. (2015). Show, attend and tell:
Neural image caption generation with visual attention. In Proceedings of the 82nd International Conference on Machine
Learning (Volume 37) (pp. 2048-2057).

Yang, S., Yu, X., & Zhou, Y. (2020). LSTM and GRU neural network performance comparison study: Taking Yelp review
dataset as an example. In 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)
(pp. 98-101).

Yang, S., Zhang, Z., Zhou, J., Wang, Y., Sun, W., Zhong, X., Fang, Y., Yu, Q., & Qi, Y. (2021). Financial risk anal-
ysis for SMEs with graph-based supply chain mining. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence (IJCAI-20) (pp. 4661-4667).

Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic
forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)
(pp. 3634-3640).

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems (NIPS’18).

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H. (2020). T-GCN: A temporal graph convolutional
network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21, 3848-3858.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2020). Graph neural networks: A review
of methods and applications. Al Open, 1, 57-81.

28

Appendix A. Statistics of the node features

Feature ‘ Mean Std. Dev. Min. Max.
fico 752.76 44.75 565 832
mi_pct 2.40 7.40 0 35
cnt_units 1.02 0.17 1 4

dti 33.61 11.15 1 65

Itv 69.30 16.07 7 97
cnt_borr 1.50 0.50 1 2
current_upb 173,036.60 97,258.30 13,829.33 716,617.50
mths_remng 304.58 65.55 73 574
current_int_rt 4.88 0.45 3.25 7.25

Table A.1: Descriptive statistics of the non-binary node features. For each loan’s behavioural features (‘current_upb’,
‘mths_remng’, and ‘current_int_rt), the maximum values over all monthly snapshots are considered.

Feature ‘ Os 1s
if_fthb 128,131 20,389
if_prim_res 12,790 135,730
if_corr 89,602 58,918
if_sf 42,195 106,325
if_purc 95,380 53,140
if_sc 147,130 1,390
if_delq_sts 118,184 30,336
default 141,094 7,426

Table A.2: Frequency of the binary node features. For each loan, the maximum value of ‘if_delq_sts’ over all monthly
snapshots is considered.

Appendix B. Architecture of the DNN baseline model

J
\
\
J

= 5 5 g
— 1 —~ _l — 1 g
o [0} o [0) o) = =
® 3 o 0 3 o < 3 o - &
o) _) = 2 o
< < = g < = e < S & s
N .2 Il - §e] I - .2 Il = s
) E =2 & E e) E =2 g 3
% > g —> = —> % > g —> = —> % > g —> = —> % 8
- L 3 - w 3 - L 3 = i
[0} [Q. [0) = Q. [0} [Q. O
2] .9 <] 0 .9 o 1) i) o Z 5
c = a < © =) = © (@] o =
= > < > = > o ®
al 2 =l 2 o) & g
[} 5] [} E=
< < < 2
S _ S S _ _

Figure B.1: Architecture of the DNN baseline model.

29

Appendix C. Hyperparameters for model training and computation resources

Hyperparameter ‘ Value

Epochs 200
Early stop 50
Learning rate 0.001
Optimizer Adam

Table C.1: Hyperparameters for model training.

Resource ‘ Specification

Processor AMD Milan 7413 @ 2.65 GHz 128M cache L3
CPU cores per task | 2

GPU NVidia A100

Memory per GPU 40 GB

Table C.2: Computation resources.

30

	Introduction
	Previous work
	Graph neural networks
	Credit risk modelling with network data

	Methodology
	Multilayer networks
	Topological embedding
	Temporal embedding
	GNN-RNN models
	GNN-RNN-ATT models
	Decoder and loss function

	Experimental setup
	Dataset
	Dynamic networks
	Experiments

	Results and discussion
	Baseline methods
	Performance of the dynamic models
	Runtime analysis
	Interpretability of the architecture

	Conclusions
	Statistics of the node features
	Architecture of the DNN baseline model
	Hyperparameters for model training and computation resources

