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Abstract

Whereas traditional credit scoring tends to employ only individual borrower- or loan-level predictors,

it has been acknowledged for some time that connections between borrowers may result in default risk

propagating over a network. In this paper, we present a model for credit risk assessment leveraging a

dynamic multilayer network built from a Graph Neural Network and a Recurrent Neural Network, each

layer reflecting a different source of network connection. We test our methodology in a behavioural credit

scoring context using a dataset provided by U.S. mortgage financier Freddie Mac, in which different types

of connections arise from the geographical location of the borrower and their choice of mortgage provider.

The proposed model considers both types of connections and the evolution of these connections over time.

We enhance the model by using a custom attention mechanism that weights the different time snapshots

according to their importance. After testing multiple configurations, a model with GAT, LSTM, and

the attention mechanism provides the best results. Empirical results demonstrate that, when it comes

to predicting probability of default for the borrowers, our proposed model brings both better results and

novel insights for the analysis of the importance of connections and timestamps, compared to traditional

methods.

Keywords: OR in Banking, Credit Scoring, Dynamic Multilayer Networks, Graph Neural Networks,

Recurrent Neural Networks

1. Introduction

Network science provides a beneficial tool to study complex systems of interacting entities that can

be found in many areas, such as biology, finance and economics (Barabási & Pósfai, 2016). To represent

∗Corresponding author
Email addresses: szandi@uwo.ca (Sahab Zandi), k.korangi@soton.ac.uk (Kamesh Korangi), mariaoskars@ru.is

(Maŕıa Óskarsdóttir), c.mues@soton.ac.uk (Christophe Mues), cbravoro@uwo.ca (Cristián Bravo)

Preprint submitted to European Journal of Operational Research June 20, 2024



connections between these entities, graphs are a common representation method, which have diverse

applications in social network analysis (Haythornthwaite, 1996), computational finance (Wang et al.,

2022), and recommender systems (Wang et al., 2021), among many others. Graph Neural Networks

(GNNs) are models in the field of deep learning, specifically tailored to perform over graph domains. They

have been utilized for different tasks, including node classification (Tang et al., 2021), edge prediction

(Zhang & Chen, 2018), and graph clustering (Tsitsulin et al., 2020). In most cases, they have been

used with static single layer networks, in which nodes are linked based on one source of connection, and

the network remains unchanged over time. In reality, though, nodes could be connected by more than

one source of connection, as is the case in our application setting. Such networks are generally called

multilayer networks (Kivelä et al., 2014). Furthermore, the nodes and edges in a graph may evolve. For

example, new nodes may appear, node features may change, and a new relation may emerge between two

nodes. Being able to capture these changes in the models could lead to higher predictive performance for

problems that are characterized by such dynamic graphs.

To enable dynamic graph learning, we consider Recurrent Neural Networks (RNNs) (Elman, 1990).

RNNs are used for data that is presented in a sequence, such as time series data or natural language.

Their main objective is to create a representation of a series of inputs, usually indexed by time, to predict

an output. Because of their powerful learning capacity, they have been applied successfully in various

types of tasks, including speech recognition (Graves et al., 2007), acoustic modelling (Qu et al., 2017),

trajectory prediction (Altché & de La Fortelle, 2017), sentence embedding (Palangi et al., 2016), and

correlation analysis (Mallinar & Rosset, 2018). Since dynamic graphs represented by discrete snapshots

can be considered sequence data, RNNs provide a solution to capture the evolution of these graphs.

However, it is known that attention-based RNNs outperform encoder-decoder-based RNNs, indicating

that the incorporation of attention can improve the prediction performance (Aliabadi et al., 2020).

The application area that we focus on in this paper is credit scoring — one of the prominent applica-

tions of data analytics. Lenders build credit scoring models to help adjudge the risk involved in granting

a loan and decide on the terms of the loan and the interest rate (Thomas et al., 2017). Traditional credit

scoring models use loan- or borrower-level data to assess a loan applicant’s default risk, thus treating

borrowers as independent entities. While potential default correlation between borrowers has been ac-

knowledged for some time, it is only more recently that this has started to be further investigated using

network science. This is part of a broader trend in which credit scoring research increasingly focuses on

improving the performance of existing credit scoring models through the incorporation of machine learn-

ing methods, and the inclusion of alternative data sources such as network data (Bravo & Óskarsdóttir,

2020).
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In this paper, we propose using an attention-based dynamic multilayer graph neural network to model

the problem of credit risk across time and explicitly incorporate default correlation between borrowers.

This work makes the following contributions. Firstly, our solution, Dynamic Multilayer Graph Neural

Networks (DYMGNN), represents a novel approach for node classification in multilayer networks. Sec-

ondly, we show how to apply the proposed method to credit risk modelling, using the example context

of mortgage loan default prediction. Finally, we show that, in this setting, our model, by considering

dynamicity, multilayer effects, and using an attention mechanism, outperforms other baseline methods.

The structure of this paper is as follows. The next section discusses a selection of previous work on

GNN and credit risk modelling. Section 3 explains the methodology, multilayer networks, embeddings, and

the models used in this paper. Section 4 sheds light on the data, dynamic networks, and the experiments

in the paper. Section 5 presents the experimental results and highlights some discussion points relevant

to the models. The final section summarizes our conclusions and suggests future work.

2. Previous work

2.1. Graph neural networks

Graphs can be seen in many real-world applications. In some cases, the graph is static, i.e., the

graph structure and node features do not change over time. In other cases, the graph is dynamic, i.e.,

the graph evolves. GNNs are neural models that capture the dependencies between the nodes within a

graph through message passing between the nodes of the graph. A comprehensive survey of methods and

applications related to GNNs is provided by Zhou et al. (2020). Recently, some types of GNNs such as

the Graph Convolutional Network (GCN) (Kipf & Welling, 2017) and Graph Attention Network (GAT)

(Veličković et al., 2018) have been widely used for various deep learning tasks, albeit mostly on static

graphs.

GCN is an approach for semi-supervised learning on graph-structured data, utilizing an efficient

layer-wise linear model based on a first-order approximation of spectral graph convolutions. To prevent

overfitting, it simplifies the convolution calculation by constraining the number of parameters, and by

minimizing the number of operations, for example, reducing the matrix multiplications per layer. The

number of graph edges is linearly scaled in GCN and this model learns hidden layer representations

in which both the local graph structure and node features are encoded. GCN has shown acceptable

performance on citation networks and knowledge graphs (Kipf & Welling, 2017).

A second type of GNN, known as GAT, uses an attention mechanism to learn node-level representations

(Veličković et al., 2018). The encoder-decoder-based neural machine translation system was outperformed

by the attention mechanism in natural language processing (Bahdanau et al., 2015). Nowadays, attention
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models are widely utilized for document categorization (Pappas & Popescu-Belis, 2017), recommendation

systems (Xiao et al., 2017), and the creation of image captions (Xu et al., 2015). The attention mechanism

concentrates on a few selected relevant attributes while ignoring other irrelevant attributes (Bahdanau

et al., 2015). The categories of attention models that are now in use are global and local attention

(Luong et al., 2015), soft and hard attention (Bahdanau et al., 2015), and self-attention (Vaswani et al.,

2017). Global attention considers all source positions when deriving the context vector, providing a

comprehensive overview of the entire input sequence. In contrast, local attention focuses on a subset

of source positions, making it more efficient by narrowing the context to relevant parts. Soft attention

generates a weighted sum of the attention scores, allowing gradients to pass through and making the

model end-to-end trainable. Hard attention, on the other hand, selects a single source position, making

it less computationally expensive but more challenging to optimize due to its non-differentiable nature.

Self-attention is an attention mechanism that is applied to compute a representation of a single sequence,

enabling the model to weigh the importance of different positions in the sequence when generating its

output. In conjunction with RNN or convolutions, self-attention can be used in many applications like

learning sentence representations (Lin et al., 2017) and machine reading (Cheng et al., 2016). The

GAT is a type of GNN that applies an attention mechanism to graph-structured data, so as to classify

nodes. It computes the hidden representation of each node by paying attention to its adjacent nodes

and then applying a self-attention strategy. GAT achieved state-of-the-art results in both transductive

(semi-supervised) and inductive (supervised) settings.

Most of the GNN models have been proposed for static graph learning; however, over the past few

years, several machine learning models capturing the structure and evolution of dynamic graphs have

been introduced. A complete review of representation learning approaches for dynamic graphs is given

in Kazemi et al. (2020), while a more specialized review of GNN-based approaches for dynamic graphs is

provided by Skarding et al. (2021). There are many different approaches to modelling spatial and temporal

information in graph-structured data. Diffusion Convolutional Recurrent Neural Network (DCRNN; Li

et al., 2018) and Spatio-Temporal Graph Convolutional Networks (STGCN; Yu et al., 2018) analyse

graph-structured data first and pass the results to sequence-to-sequence models or RNNs. Structural-

RNN collects spatial and temporal data synchronously to associate the graph structure with temporal

data so that it can apply RNNs on new graphs (Jain et al., 2016). Dynamic Graph Convolutional

Networks (DGCN) propose a novel approach that combines RNNs and GCNs to learn long short-term

dependencies together with the graph structure (Manessi et al., 2020). EvolveGCN is an approach for

graph representation learning in dynamic graphs that uses an RNN to evolve the parameters of a GCN

model. By doing so, EvolveGCN can capture the dynamics of the graph sequence without relying on node
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embeddings (Pareja et al., 2020). Temporal Graph Convolutional Network (T-GCN) is a novel method

for real-time traffic forecasting that uses GCN to learn the complex topological structure of the urban

road network for spatial dependence. It also employs RNN to capture the dynamic changes in traffic data

for temporal dependence (Zhao et al., 2020). Temporal Graph Attention (TGAT) has been proposed for

inductive representation learning on temporal graphs that uses a self-attention mechanism and a novel

functional time encoding technique to efficiently aggregate temporal-topological neighbourhood features

and learn time-feature interactions. TGAT can handle both node classification and link prediction tasks,

and can be extended to include temporal edge features (Xu et al., 2020). Joint Dynamic User-Item

Embeddings (JODIE) has been proposed to predict future user-item interactions in domains such as e-

commerce, social networking, and education. It is a coupled recurrent neural network model that learns

the embedding trajectories of users and items through representation learning, and it introduces a novel

projection operator to estimate the embedding of the user at any time in the future (Kumar et al., 2019).

Dynamic Representation (DyRep) encodes evolving information over dynamic graphs into low-dimensional

representations, namely as embeddings, using an inductive deep representation learning framework. The

learned embeddings drive the dynamics of two fundamental processes: communication and association

between nodes in dynamic graphs (Trivedi et al., 2019). Dynamic Self-Attention Network (DySAT)

computes node representations by jointly using self-attention layers along two dimensions: structural

neighbourhood and temporal dynamics, and has been evaluated on link prediction experiments (Sankar

et al., 2019).

The methods mentioned above are all designed for single layer networks, and would thus not be suit-

able for the multilayer problem we tackle. Recently, however, several approaches to generalize GNNs to

the multilayer case have been proposed. Firstly, Graph Attention Models for Multilayered Embeddings

(GrAMME) introduces attention mechanisms and develops two GNN architectures to exploit the inter-

layer dependencies: GrAMME-SG and GrAMME-Fusion. GrAMME-SG considers a multilayer network

to be a supra graph with implicit edges between layers, whereas GrAMME-Fusion makes use of a supra

fusion layer to aggregate embeddings from layerwise attention models (Shanthamallu et al., 2019). Sec-

ondly, Multilayer network Embedding via Learning Layer vectors (MELL) incorporates the idea of a layer

vector that characterizes the connectivity in a layer. MELL embeds nodes in each layer into the lower

embedding space using all layer structures and incorporates layer vectors to differentiate edge probabilities

in the layers (Matsuno & Murata, 2018). Thirdly, Multilayer Graph Neural Network (mGNN) presents

an innovative way of employing GCN on multilayer networks. In this approach, node feature propagation

occurs independently in both intralayer and interlayer edges, and multiple layers can be stacked to cap-

ture information from the topology and features further in the network. This method can handle node
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classification, intra layer link prediction, and network clustering (Grassia et al., 2021).

All the aforementioned methods have been developed for networks that are either static and single

layer, static and multilayer, or dynamic and single layer. A unified approach that can handle networks

that are both dynamic and multilayer has not been put forward yet. This is significant, as most real-life

networks share both characteristics simultaneously. Our approach focuses on solving this problem.

2.2. Credit risk modelling with network data

Credit risk modelling has a long history, and researchers from a broad range of areas have been

working on developing credit risk rating systems (Markov et al., 2022). The statistical models that were

traditionally used for credit risk modelling seemed to have difficulties dealing with large datasets as they

may be characterized by increased noise, heavy-tailed distributions, nonlinear patterns, and temporal

dependencies (Gordy, 2000). Advances in computing power and availability of large credit datasets

paved the way to artificial intelligence (AI) driven credit risk estimation algorithms such as machine

learning and deep learning (Shi et al., 2022). Recently, some machine learning methods were found to

outperform conventional models in terms of accuracy when applied to large datasets (Lessmann et al.,

2015; Gunnarsson et al., 2021).

Whereas traditional methods such as logistic regression make the IID assumption, treating borrowers

as independent observations, it is widely understood that correlated default exists in lending (Óskarsdóttir

& Bravo, 2021). Default correlation measures the extent to which the default of one borrower is related to

that of another borrower, which may be caused by similar economic conditions affecting both, or, within

a sector, by industry-specific reasons. Several researchers have shown that these correlations should be

taken into account to avoid misestimating credit risk (Fenech et al., 2015). Some researchers have used

alternative data sources such as network data to show the existence of correlation. For this purpose,

they used different sources of data such as telephone call data (Óskarsdóttir et al., 2019), app-based

marketplace data (Roa et al., 2021), social media data (De Cnudde et al., 2019), and agricultural loan

network data (Óskarsdóttir & Bravo, 2021). Some other researchers have used network data from inter-

firm transactions to improve credit risk modelling strategies for Small and Medium-sized Enterprises

(SMEs) (Vinciotti et al., 2019). A common feature of the aforementioned studies is that they all use

numerical measures obtained from the alternative data sources. However, all of them consider networks

that are either static or single layer. In fact, nodes could be connected in various ways in a network, and

these relationships could change over time, making them dynamic. Our work is an effort to take advantage

of dynamic multilayer networks in this field and thus address some of the limitations of previous work.

Whereas traditionally numerical features were extracted from the network and used for credit scoring,

more recently, GNNs have been used to develop predictive models in this field, eliminating the need to
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explicitly extract those features. In one study, GCNs were employed to predict peer-to-peer loan defaults

and were found to outperform baseline models such as SVM, Random Forest, and XGBoost (Lee et al.,

2021). GNN with Self-attention and Multi-task learning (SaM-GNN) has been proposed for credit default

risk prediction. This approach incorporates two parallel tasks based on shared intermediate vectors for

input vector reconstruction and credit default risk prediction (Li et al., 2022). Motif-preserving Graph

Neural Network with curriculum learning (MotifGNN) has been introduced to jointly learn the lower-

order structures from the original graph and higher-order structures from multi-view motif-based graphs

for default prediction (Wang et al., 2023). In another study, a novel spatial-temporal aware GNN was

proposed to predict SME loan default risk from a network of mined supply chain relationships (Yang

et al., 2021). The potential benefits of using networks that are both dynamic and multilayer in credit risk

modelling are not yet fully realized. This research presents a novel method for utilizing these networks

within this area of study.

3. Methodology

In this section, we describe our methodology. First, we explain our approach for constructing a

sequence of snapshots of multilayer networks. Then, we discuss how we employ different types of embed-

dings to encode topological and temporal dependencies in the networks. After that, we describe different

configurations of DYMGNN and their respective architectures.

3.1. Multilayer networks

We start by defining the multilayer network and its node features. Consider an unweighted and

undirected network G = (V,A,X), where V = {v1, v2, ..., vn} is the set of nodes in a layer of the network,

n = |V | denotes the number of distinct nodes, and X ∈ Rn×d is a feature matrix, in which Xi is a

column vector that represents the features of node vi and d stands for the number of features. A network

is represented by its supra adjacency matrix, A ∈ Rnl×nl, where l denotes the number of layers. This

matrix encodes information about connections between pairs of nodes within a layer as well as connections

between pairs of nodes from two different layers, i.e., if vi from layer k and vj from layer m are connected

(1 ≤ k,m ≤ l), then A(k−1)n+i,(m−1)n+j = 1; otherwise, the value is 0. In a multilayer network, all layers

contain the same set of nodes, while their edge sets are assumed to be different. Each layer focuses on a

particular type of relationship, with intra layer edges connecting the nodes that are related. In addition,

a series of interlayer edges simply specify which nodes are identical. Fig. 1 shows a multilayer network

and its corresponding supra adjacency matrix.

The network dynamics are captured through a sequence of snapshots [G(1), ..., G(τ)] where G(t) =

(V (t), A(t), X(t)) for each t ∈ {1, ..., τ}. We are interested in obtaining the node embeddings at t ≤ τ
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Figure 1: A multilayer network (left) and its supra adjacency matrix (right).

based on snapshots at or before t. For the application in this paper, we assume V (1) = V (2) = ... = V (τ)

and A(1) = A(2) = ... = A(τ), i.e., nodes and their connections remain constant over time, but features

can vary from one snapshot to another. Once the set of multilayer networks is complete, an embedding

must be calculated from this data, as explained in the next section.

3.2. Topological embedding

Neural networks are a type of machine learning model inspired by the human brain, consisting of layers

of interconnected neurons. Each neuron processes input data, applies a mathematical transformation using

weights and biases, and passes the result to the next layer. They are trained through a process called

backpropagation, which adjusts the weights and biases to minimize prediction errors measured by a loss

function (Goodfellow et al., 2016). GNNs extend these neural networks to handle graph-structured data.

Capturing the topological dependence in a network is a key problem, as neighbouring nodes could

influence each other. In this work, we trial two different types of GNNs, i.e., GCN (Kipf & Welling,

2017) and GAT (Veličković et al., 2018), to obtain the topological relationship between a node and its

neighbours, encode the topological structure of the network and the features of nodes, capturing the

information within the node connections. GCN or GAT is applied to each G(t) to obtain a hidden

representation matrix Z(t). Each row of Z(t) contains a node embedding, meaning that for node vi we

have a sequence of embeddings [Z
(1)
i , Z

(2)
i , ..., Z

(τ)
i ].

The GCN formulation performs isotropic aggregation, according to which each neighbour contributes

equally to update the representation of the central node. The GCN model for a snapshot can be expressed
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as follows:

Z = D̃−1/2ÃD̃−1/2XW T . (1)

Here, Ã = A + Inl is the supra adjacency matrix of the snapshot with inserted self-loops. Inl is the

identity matrix, D̃ii =
∑

j Ãij is the diagonal degree matrix of Ã, and W T ∈ Rd×D is a learnable weight

matrix where D is the embedding size.

The GAT model expands the basic aggregation function of the GCN, assigning different importance

to each edge through the attention coefficients. It can be formulated as follows:

eij = LeakyReLU(aT [WXi||WXj ]), (2)

αij =
exp(eij)∑

k∈N(vi)∪{vi}
exp(eik) , (3)

Zi =
∑

j∈N(vi)∪{vi} αijWXj . (4)

Equation 2 computes a pairwise denormalized attention score between two neighbours, where || de-

notes the concatenation operation and aT ∈ R1×2D is a learnable weight vector. The attention score

indicates the importance of a neighbour node in the message passing framework. Equation (3) applies a

softmax function to normalize the attention scores on each node’s incoming edges. This function puts

the output of the previous step in a probability distribution and, as a result, the attention scores are

more comparable across different nodes. In this equation, N(vi) represents the neighbourhood of node

vi. Note, we also include the self-edge for each node. In Equation (4), the embeddings from neighbours

are aggregated together, scaled by the attention scores. The main objective of this process is to learn a

different contribution from each neighbour. The operations from (2) to (4) constitute a single head. The

modelling capacity can be improved by considering multiple attention heads, thus allowing for different

attention being given to different sets of neighbours. The output representations from the different heads

can be aggregated using averaging operations.

3.3. Temporal embedding

Dealing with the temporal dependence is another key problem, as the temporal sequence of connections

between nodes could provide useful information. In this work, we use LSTM (Hochreiter & Schmidhuber,

1997) and GRU (Cho et al., 2014) to catch the information related to the evolution of the networks. Both

LSTM and GRU use gated mechanisms to memorize as much information as possible; however, there

are some differences between these two models (Chung et al., 2014). Comparing these two, LSTM has a
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more complex structure, more parameters, and longer training time. LSTM is known to be able to deal

with long-range dependencies, making it the preferred choice for models built over data of relatively large

size (Yang et al., 2020). As our data is of medium size and the interface between GNNs and RNNs is

not fully explored, the choice between LSTM and GRU is not obvious. We will, therefore, compare both

models in Section 5. After obtaining the sequence of topological embeddings [Z
(1)
i , Z

(2)
i , ..., Z

(t)
i ], we need

to input it into the RNN model and use the hidden representation of the RNN model as the temporal

node embeddings for vi.

LSTM uses a total of three gates, i.e., input gate, forget gate, and output gate. The input gate

determines what information from the current topological embedding and previous temporal embeddings

will be cached, or stored for future use, in long term memory. The forget gate decides which information

from the long term memory should be maintained or repudiated. The output gate takes the current

topological embedding, the previous temporal embedding and the newly computed long term memory to

produce the new temporal embedding that will be passed on to the cell in the next time step. The LSTM

model can be formulated as follows:

I(t) = σ(Z(t)Wii +H(t−1)Wih + bi), (5)

F (t) = σ(Z(t)Wfi +H(t−1)Wfh + bf ), (6)

C(t) = F (t) � C(t−1) + I(t) � tanh(Z(t)Wci +H(t−1)Wch + bc), (7)

O(t) = σ(Z(t)Woi +H(t−1)Woh + bo), (8)

H(t) = O(t) � tanh(C(t)). (9)

In the equations above, � denotes element-wise (Hadamard) product. σ is an activation function

(typically sigmoid) and tanh represents the hyperbolic tangent function. I(t) ∈ Rnl×D, F (t) ∈ Rnl×D,

and O(t) ∈ Rnl×D represent input, forget, and output gates for the nodes, respectively. C(t) ∈ Rnl×D and

H(t) ∈ Rnl×D are memory cell and hidden state for the node embeddings, respectively. W(··) ∈ RD×D and

b(·) ∈ R1×D are weight matrix and bias vector, respectively. H(0) and C(0) can be initialized with zeros

or learned from the data (Mohajerin & Waslander, 2017).

GRU is similar to LSTM, but it incorporates two gates, i.e., an update gate and a reset gate. The reset

gate determines how much of the previous temporal embedding should be neglected, while the update

gate determines the amount of the new input that needs to be passed along to the next state. The GRU
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model can be formulated as

U (t) = σ(Z(t)Wui +H(t−1)Wuh + bu), (10)

R(t) = σ(Z(t)Wri +H(t−1)Wrh + br), (11)

H(t) = (1− U (t))�H(t−1) + U (t) � tanh[Z(t)Whi + (R(t) �H(t−1))Whh + bh]. (12)

In the equations above, U (t) ∈ Rnl×D and R(t) ∈ Rnl×D represent update and reset gates for the nodes,

respectively. All other definitions are the same as LSTM. Fig. 2 depicts the respective structures of the

LSTM and GRU models.

(a) LSTM (b) GRU

Figure 2: The cell structures of RNN models.

3.4. GNN-RNN models

The GNN-RNN model is one of the proposed models for DYMGNN in this work. Within the GNN-

RNN framework, there are two configurations, i.e., GNN-LSTM and GNN-GRU, which can be summarized

as

Z(t) = GNN(X(t), A(t)), (13)

H(t), C(t) = LSTM(Z(t), H(t−1), C(t−1)) for GNN-LSTM, (14)

H(t) = GRU(Z(t), H(t−1)) for GNN-GRU. (15)

Fig. 3 displays an overview of these models.

These models are capable of capturing the topological and temporal dependencies of snapshots through

combining GNN and RNN, whilst the same importance is assigned to each timestamp. The temporal
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Figure 3: GNN-LSTM (left) and GNN-GRU (right) dynamic models.

embedding for the nodes is obtained by feeding their sequence of embeddings, produced by the GNN

model, to the RNN model.

3.5. GNN-RNN-ATT models

The GNN-RNN-ATT model is another proposed model for DYMGNN. In GNN-RNN-ATT models,

a soft attention mechanism is applied to assign different importance to each timestamp. This approach

contrasts with GNN-RNN models which assign equal importance to every timestamp. The use of attention

in GNN-RNN-ATT models allows for a more nuanced weighting of temporal information. Our approach

for creating a new hidden state for the node embeddings that is more expressive of the global variation

trends can be formulated as follows:

s(t) = ahH
(t)Wh, (16)

β(t) = exp(s(t))∑τ
k=1 exp(s

(k))
, (17)

Hatt =
∑τ

t=1 β
(t)H(t). (18)

First, the hidden states at different timestamps, H(t), are obtained using GNN and RNN, as discussed

in the previous model. Equation 16 computes an denormalized attention score for each hidden state,

where ah ∈ R1×nl and Wh ∈ RD×1 are learnable weight vectors. The normalized attention score for each

hidden state is computed using a softmax function as shown in Equation 17. In Equation (18), Hatt is

calculated by aggregating the hidden states scaled by the normalized attention scores. The main goal of

this process is to re-weight the influence of snapshots at different timestamps. Finally, the final output

results can be obtained using Hatt that can describe the global variation information.
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Fig. 4 shows two configurations of GNN-RNN-ATT, i.e., GNN-LSTM-ATT and GNN-GRU-ATT.

Figure 4: GNN-LSTM-ATT (left) and GNN-GRU-ATT (right) dynamic models. By adding an attention layer to the model,
we are able to re-weight the impact of different snapshots.

3.6. Decoder and loss function

A deep neural network model is typically comprised of an encoder and a decoder. The encoder takes

input and produces embeddings, whereas the decoder takes the embeddings and performs the prediction

task (Goodfellow et al., 2016). In our specific case, GNN, RNN, and ATT comprise the encoder of the

full model, while the decoder is a set of feed-forward neural networks applied to the node embeddings,

followed by a series of layers that either apply a chosen activation function for non-linearity or dropout

function for regularization. The final output is the model prediction for our binary outcome (here, default

Y/N), i.e., whether the node vi belongs to class 1 (Yi = 1) or 0 (Yi = 0). The decoder outputs a vector

Ŷ where Ŷi specifies the probability of a node vi belonging to class 1 given the snapshots [G(1), ..., G(τ)].

While there is no unique format for the decoder, the architecture used in this work is shown in Fig. 5.

One of the most important aspects of a deep learning model is its loss function. For our work, we use

the well-known binary cross-entropy loss function (Gneiting & Raftery, 2007) which can be written as

Loss =
−1

n

n∑
i=1

[
Yi · log(Ŷi) + (1− Yi) · log(1− Ŷi)

]
. (19)
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Figure 5: Architecture of the decoder.

4. Experimental setup

4.1. Dataset

In this paper, the goal of our models is to predict one-year-ahead loan default based on borrower or loan

characteristics. For this purpose, we use the Single-Family Loan-Level (SFLL) dataset provided by the

Federal Home Loan Mortgage Corporation (FHLMC), commonly known as Freddie Mac, which contains

loan-level data for a sizable share of mortgage loans in the United States (FreddieMac, 2022). Freddie

Mac purchases mortgages on the secondary market, pools them, and sells them as a mortgage-backed

security to investors on the open market.

The dataset includes information regarding the loan, such as the amount, the interest rate, the insur-

ance percentage, and the provider, as well as information on the borrower, including the borrower’s debt

to income ratio and/or unpaid balance, FICO credit score, the geographical area in which they reside, and

whether they are a first-time home buyer. It also includes information about the property (type, number

of units, etc.). To represent the categorical information, we introduce our own binary features contrasting

one category against other categories combined. Numerical node features are normalized using min-max

scaling. We clean the data by treating outliers and null values. Specifically, outliers are capped at the

99th percentile and 1st percentile points. There are not many null values, and they are treated with

median imputation. Feature descriptions for the data used in model training are given in Table 1. Most

of the features are available at the time of loan application and do not change from one month to another;

however, a few features such as ‘current upb’, ‘if delq sts’, ‘mths remng’, and ‘current int rt’ can change

from month to month, as they track repayment behaviour over the loan period. More information about

the data can be found in Appendix A.

4.2. Dynamic networks

As we are interested in studying the effect of connections between the borrowers and the evolution

of those connections over time, we use the data to create a sequence of dynamic networks following the
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Feature Description

fico Credit score at the time of acquisition
if fthb Is the borrower a first-time home buyer?
mi pct Mortgage insurance percentage
cnt units Number of units in the property
if prim res Is the property a primary residence?
dti Original debt to income ratio
ltv Original loan to value ratio
if corr Is a correspondent involved in the origination of the mortgage?
if sf Is the property a single family home?
if purc Is the mortgage loan a purchase mortgage?
cnt borr Number of borrowers obligated to repay the mortgage
if sc Does the mortgage exceed conforming loan limit?
current upb Current unpaid principal balance
if delq sts Are there any payment arrears (between 30 and 90 days)?
mths remng Number of remaining months of the mortgage
current int rt Current interest rate
default Being 90 days or more in payment arrears over next 12 months

Table 1: Description of the node features.

process in subsection 3.1. In particular, we are interested in predicting one-year-ahead loan default based

on application information and six months of borrower’s repayment behaviour. We choose a six-month

period because six and twelve months are common choices for lookback periods (Kennedy et al., 2013).

Furthermore, this paper will later show that extending beyond six months offers minimal additional

benefits.

For this work, loans originated in 2009 and 2010 are used for training and testing. We select these years

to ensure sufficient default information is available for reliably comparing the models. It is important to

note, however, that loan population and behaviour change over time, and our sample data may reflect

some effects of the global financial crisis. Thus, further research could explore the robustness of our

proposed methods across different time periods and financial conditions. We use application data and 18

months of behavioural data, from January 2012 to June 2013, for training. We also use application data

and six months of behavioural data of a holdout set, from July 2013 to December 2013, for testing. We

consider rolling windows, shifting by one month, for training and testing, with each window containing

six snapshots [G(1), ..., G(6)], and each snapshot corresponding to one month. So, we have 13 windows

for training and one window for testing. All snapshots of a specific window have the same set of nodes.

However, the node set could be different from one window to another; a loan that has defaulted will

remain marked as a defaulter for the observation window but will disappear once the window moves past

it. During the training of each window, the goal is to predict default within 12 months following the

month of the last snapshot in that window. A one-year horizon is practical for credit management and

decision-making, as it balances the need for a sufficiently long period to assess risk while not extending so
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far that predictions become highly speculative (Lopez & Saidenberg, 2000). Fig. 6 displays the timeline

for the windows and their corresponding horizons in model training.

Figure 6: The timeline for windows and their corresponding horizons in model training.

We can train the models using either single layer or double layer networks, with geographical location

of the borrower and the company lending the loan being the connector variables. Borrowers whose zip

codes have the same first two digits are assumed to be in the same geographical area. In the case of

the double layer network, nodes in one layer are also connected to their twins in the other layer. Some

previous studies showed that applying some sort of dropout techniques on graph structures could help

increase the expressiveness of the GNN models (Shu et al., 2022). Therefore, we decide to randomly select

and isolate 50% of the nodes in each snapshot of a window. In other words, in each snapshot, at least

half of the nodes do not have any connections with other nodes.

To gain insight into the size and characteristics of the networks, we provide some descriptions in

Table 2. Letting G(T ) =
⋃6
t=1G

(t), Table 2 shows the number of nodes and the number of edges for

G(T ) created from the snapshots in the first window of the training set, as well as the snapshots of the

validation and test sets. It is evident that the single layer networks derived from the lending company are

denser than those derived from the geographical area. This is because there are fewer lending companies

serving as connector variables compared to the number of geographical areas serving as such.

Single Layer:Area Single Layer:Company Double Layer:Area-Company
Set #Nodes #Edges #Nodes #Edges #Nodes #Edges

Training 148,520 16,368,244 148,520 91,486,176 297,040 108,151,460
Validation 82,180 4,725,842 82,180 27,735,664 164,360 32,625,866
Test 96,490 6,761,051 96,490 38,404,277 192,980 45,358,308

Table 2: Network description for G(T ).

4.3. Experiments

We are interested in comparing the performance of different models on single layer and double layer

networks, and in benchmarking them against some baseline methods. The classes are imbalanced in this

binary node classification problem, so we use the Area Under the Curve (AUC) and F1 score to assess
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the performance of each model. The results are presented with 95% confidence intervals, derived from

bootstrap over the test set.

As computational efficiency is another consideration, we also examine the runtime for training the

models. In addition, we use the Shapley approach to help us interpret the best performing model and

better understand the importance of the different node features. We also look at the attention scores to

assess the relative contribution of snapshots at different timestamps.

5. Results and discussion

5.1. Baseline methods

We benchmark our proposed model against a selection of GNN-based and non-GNN-based baseline

models. Table 3 shows the results for two GNN-based baseline models, i.e., static GCN and static GAT,

whereas Table 4 shows the results for three non-GNN-based baseline models, i.e., Logistic Regression

(LR), XGBoost (XGB), and a Deep Neural Network (DNN). LR is popular in the commercial and financial

sectors due to its straightforwardness and ease of understanding. Meanwhile, XGB has established itself as

a powerful technique for both classification and regression tasks involving structured datasets (Gunnarsson

et al., 2021). DNN is fundamental to deep learning and has seen broad usage across a variety of predictive

tasks.

For training the GNN-based baseline models, we consider a static network, which is the last snapshot

of each window, and values of behavioural features are the mean values of those features across the six

snapshots of the respective window. We do not use RNNs for these static models; the decoder and the

loss function for these models are the same as those used in the dynamic models.

For non-GNN-based baseline models that rely solely on non-network features, we use a grid search to

tune the hyper-parameters for each model using the validation dataset. The LR model is tuned with saga

solver and a grid search for the penalty {L1, L2}. The XGB model hyper-parameters are tuned with a

grid search for the learning rate {0.001, 0.01, 0.1}, maximum depth {2, 3, 4}, number of estimators {50,

100, 250, 500}, and alpha {0.1,. . . ,0.9}. The architecture of the DNN is given in Appendix B.

Single Layer:Area Single Layer:Company Double Layer:Area-Company
Model AUC F1 AUC F1 AUC F1

Static GCN 0.701 ± 0.014 0.802 ± 0.012 0.681 ± 0.014 0.798 ± 0.013 0.729 ± 0.012 0.810 ± 0.012
Static GAT 0.752 ± 0.013 0.814 ± 0.010 0.746 ± 0.011 0.812 ± 0.009 0.763 ± 0.014 0.817 ± 0.012

Table 3: Performance of the GNN-based baseline models.

In Table 3, we can see that the Static GAT performs better than the Static GCN, on both single layer

and double layer networks. The difference in performance between them is considerable, and could be
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Model AUC F1

LR 0.796± 0.020 0.824± 0.013
XGB 0.805± 0.018 0.837± 0.012
DNN 0.803± 0.016 0.833± 0.014

Table 4: Performance of the non-GNN-based baseline models.

due to the different way in which GAT and GCN aggregate information from the one-hop neighbourhood.

Among the non-GNN models (see Table 4), XGB appears to have better performance compared to LR

and DNN; however, the differences are fairly small. XGB outperforms LR, suggesting that XGB can

capture non-linear relationships better than LR does. It is also not unexpected to see that DNN does

not outperform XGB, as this might be the case where the structured data is not very complex or does

not contain many features (Borisov et al., 2022; Gunnarsson et al., 2021). Comparing Table 4 against

Table 3, it is observed that the performance of each non-GNN-based baseline model surpasses that of

the best performing GNN-based baseline model, i.e., Static GAT, on both single layer and double layer

networks. This observation is important as it indicates that more complex models do not always yield

better performance.

5.2. Performance of the dynamic models

Table 5 and Table 6 show the performance of the different models on our two single layer networks,

while Table 7 shows the performance on the double layer network. Out-of-sample performance is again

measured in terms of AUC and F1 score on a test set. The best performing model in each group is

highlighted in bold.

Model AUC F1

Topological Temporal Without ATT With ATT Without ATT With ATT

GCN
LSTM 0.804± 0.011 0.807± 0.012 0.841± 0.008 0.847± 0.009
GRU 0.775± 0.013 0.780± 0.011 0.825± 0.006 0.829± 0.008

GAT
LSTM 0.806± 0.009 0.810± 0.012 0.842± 0.005 0.849± 0.007
GRU 0.793± 0.005 0.802± 0.014 0.833± 0.004 0.840± 0.006

Table 5: Performance of the dynamic models on the single layer network derived from the geographical area.

Model AUC F1

Topological Temporal Without ATT With ATT Without ATT With ATT

GCN
LSTM 0.802± 0.012 0.804± 0.012 0.840± 0.009 0.843± 0.007
GRU 0.769± 0.013 0.774± 0.014 0.818± 0.006 0.823± 0.006

GAT
LSTM 0.805± 0.012 0.808± 0.010 0.840± 0.009 0.846± 0.008
GRU 0.786± 0.007 0.795± 0.014 0.832± 0.004 0.835± 0.006

Table 6: Performance of the dynamic models on the single layer network derived from the lending company.
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Table 5 and Table 6 show that, for each of the single layer networks, the GAT-LSTM-ATT model

produces the highest AUC and F1 score, while GCN-GRU gives the poorest results. This could be due to

the fact that GAT assigns different importance to each edge, and we know that some connections could

be more informative than others. Also, the complex structure of LSTM appears to make it the preferred

RNN for this problem. Another key observation is that models enhanced with the attention mechanism

consistently show better performance compared to those without attention.

Model AUC F1

Topological Temporal Without ATT With ATT Without ATT With ATT

GCN
LSTM 0.806± 0.010 0.810± 0.009 0.845± 0.004 0.848± 0.006
GRU 0.789± 0.010 0.793± 0.011 0.833± 0.005 0.835± 0.009

GAT
LSTM 0.807± 0.008 0.812± 0.008 0.847± 0.005 0.851± 0.007
GRU 0.800± 0.004 0.804± 0.006 0.839± 0.003 0.843± 0.008

Table 7: Performance of the dynamic models on double layer network created with both geographical area and lending
company.

As for the double layer network, we can see from Table 7 that, similarly to what was observed for

the single layer networks, the GAT-LSTM-ATT model again shows the best performance. The results

for the double layer network, however, tend to outperform the single layer ones, which is intuitive as the

double layer network is able to consider connections of either type. It is also noticeable that the results

obtained from the double layer network have shorter confidence intervals, suggesting greater robustness

in these results. Importantly, the best performing dynamic modelling approach, i.e., GAT-LSTM-ATT,

performs better on average than the baseline methods presented in the previous subsection. For exam-

ple, the GAT-LSTM-ATT model for the double-layer network produces AUC and F1 score of 0.812 and

0.851, respectively, compared to 0.805 and 0.837 for the best baseline model, i.e., XGB (see Table 4).

This translates to a 0.87% gain in AUC and a 1.67% gain in F1 score. Although these numerical gains

might seem modest, even a 1% improvement can yield significant financial benefits for some businesses.

Interestingly, even when applied to either of the single layer networks, the GAT-LSTM-ATT still tends

to perform well compared to the baseline models. This demonstrates that DYMGNN offers an advantage

over conventional methods by capturing a richer set of information, thus providing a more comprehensive

and realistic picture of a borrower’s default probability. Hence, incorporating dynamic network informa-

tion is able to provide additional information over simply using local features and/or static networks.

The most pronounced difference lies between our dynamic model and the static network-based models,

demonstrating the importance of capturing network changes over a sufficiently long time window.
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5.3. Runtime analysis

Computational complexity of training machine learning models considers two core aspects: time com-

plexity and space complexity. Time complexity relates to the time it takes to train a model and how this

is affected by problem size, whereas space refers to how much space a model uses (memory footprint).

As time complexity is a potential consideration in our work, we report the runtimes for the dynamic

models in Table 8 and Table 9. The runtimes for the GNN-RNN models and GNN-RNN-ATT models are

presented in separate tables as those models’ architectures differ from each other. The hyperparameters

and resources used for the computations can be found in Appendix C. Note, to allow for easier comparison,

the runtimes in each table are also normalized with respect to the lowest number in that table.

Model Single Layer:Area Single Layer:Company Double Layer:Area-Company
Topological Temporal Non-normalized Normalized Non-normalized Normalized Non-normalized Normalized

GCN
LSTM 1,690 1.18 7,090 4.93 8,397 5.84
GRU 1,437 1.00 6,109 4.25 7,221 5.03

GAT
LSTM 2,571 1.79 10,148 7.06 12,171 8.47
GRU 2,081 1.45 8,390 5.84 10,019 6.97

Table 8: Runtime for training the GNN-RNN models (seconds).

Model Single Layer:Area Single Layer:Company Double Layer:Area-Company
Topological Temporal Non-normalized Normalized Non-normalized Normalized Non-normalized Normalized

GCN
LSTM 1,700 1.16 7,104 4.86 8,481 5.80
GRU 1,463 1.00 6,190 4.23 7,225 4.94

GAT
LSTM 2,597 1.78 10,151 6.94 12,120 8.28
GRU 2,114 1.44 8,413 5.75 10,054 6.87

Table 9: Runtime for training the GNN-RNN-ATT models (seconds).

From the tables, we can see that training a model on a single layer network derived from the lending

company takes longer than training a model on a single layer network created based on geographical area.

This is not unexpected as the former network contains a higher number of connections between the nodes

compared to the latter. GAT-LSTM and GAT-LSTM-ATT have the highest training runtimes among

the GNN-RNN and GNN-RNN-ATT models, respectively, whereas GCN-GRU and GCN-GRU-ATT have

the lowest runtimes. GNN-RNN-ATT models normally have higher runtimes compared to the GNN-RNN

models, owing to the complexity added to those models by the attention mechanism. It is worth noting

that the runtime for the XGB model is only 151 seconds, highlighting the greater complexity of our

proposed models compared to traditional non-network classifiers.

5.4. Interpretability of the architecture

Having established that the best results can be obtained by applying the GAT-LSTM-ATT model to

the double layer network, in this section, we employ the Shapley approach (Lundberg & Lee, 2017) to

better understand this model. Using this method, we can establish each node feature’s relative importance
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and quantify its contribution to the model output. Fig. 7a displays the relative importance of node features

for the best performing proposed model, i.e., GAT-LSTM-ATT, and the best performing baseline model,

i.e., XGB. Fig. 7b displays an information-dense summary of how the node features for the best performing

proposed model impact its output.

(a) Relative importance for GAT-LSTM-ATT and XGB. (b) Shapley values for GAT-LSTM-ATT.

Figure 7: Summary of node feature importance.

As seen in Fig. 7a, the presence of overdue payments holds the most significant relative importance

compared to other features, for both GAT-LSTM-ATT and XGB. Overdue payments are a strong indi-

cator of a borrower’s financial health; similarly, while timely payments generally suggest good financial

management, payment arrears can signal financial distress. The FICO credit score has the second highest

relative contribution among the features. This is intuitive as this feature summarizes a lot of information

about the payment history and financial behaviour of the borrower. For both models, the number of bor-

rowers ranks as the third most crucial feature. For the GAT-LSTM-ATT model, the number of remaining

months holds the fourth position in terms of importance, whereas for the XGB model, the debt to income

ratio claims the fourth spot. Notably, the disparity in the significance attributed to features by the two

models is more pronounced for the top two features.

Fig. 7b shows that payment arrears are highly indicative of default risk. It can also be viewed that

borrowers with high credit scores are less likely to default, according to the model, while borrowers with

low credit scores are more prone to be classified as defaulters. High values of the number of borrowers

are associated with lower default risk, while low values are associated with higher default risk. Higher

(lower) number of remaining months is linked with higher (lower) default risk.

Fig. 8 displays the dependency plots of the four most important features. Note, the feature values are

scaled to be between 0 and 1 using min-max scaling. Fig. 8a illustrates that borrowers who consistently

meet their payment deadlines tend to have high credit scores and are less prone to default. On the other

hand, those who experience delays in making payments are more commonly associated with the cohort
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(a) if delq sts (b) fico

(c) cnt borr (d) mths remng

Figure 8: Dependency plots of the four most important features for GAT-LSTM-ATT. The colour shows the value of the
closest feature by correlation.

of defaulters. Fig. 8b demonstrates that the credit score, by and large, has a linear impact, with higher

scores signalling lower risk of default. Lower values of credit score are much more informative than the

higher values. Additionally, the model reveals some intriguing interaction effects. The relative impact

of credit score on the default risk is more pronounced in the case of borrowers who have a history of

late payments. This indicates that while a low credit score is generally a good indicator of high default

risk, its predictive influence increases for those who do not consistently make timely payments. Fig. 8c

suggests that cases involving fewer borrowers are more likely to default on their loans. This might be

attributed to various factors, such as limited financial resources, reduced collective responsibility, or lesser

peer pressure to maintain creditworthiness among a smaller group. Fig. 8d indicates that the number of

remaining months displays a nearly linear trend, with lower numbers pointing to safer cases. This may

stem from the increased uncertainty associated with longer durations (as opposed to shorter durations

which signal an approaching end to the financial commitment) or from survival bias. Additionally, the

figure points out that this feature’s effect on default risk is more significant for borrowers with a pattern

of delayed payments.

We also aim to analyse the normalized attention scores from the GAT-LSTM-ATT model to determine
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the relative importance of each timestamp. Fig. 9 illustrates how these scores vary over time.

Figure 9: Variation of the normalized attention scores.

The figure shows that for the first few timestamps, the attention score is relatively stable and low,

remaining close to 0.1. This indicates a minimal level of attention or importance being assigned during

these early timestamps. However, as time progresses, particularly after timestamp 3, there is a noticeable

upward trend in the attention score. This increase becomes more pronounced between timestamps 4 and

6, where the attention score rises sharply, peaking just below 0.6 at timestamp 6. This pattern suggests

that as time progresses, the snapshots grow in importance. The reason for this progressive increase in

attention could be that the most recent information holds greater value. Additionally, it can be inferred

that longer lookback periods are unlikely to add anything extra, since the bulk of attention is allocated

within a relatively brief period.

6. Conclusions

This study introduced an innovative approach to credit risk assessment through the use of dynamic

graph neural networks. We found that this technique outperforms traditional models commonly applied

in the sector when tested against US mortgage data. By harnessing the capabilities of both GNN and

RNN, our method successfully captures the evolving connections between individual loans. We engineered

this methodology to exploit the potential of multilayer networks, rather than the common single layer

ones. The findings suggested that models incorporating double layer networks with a customized attention

mechanism show enhanced predictive capability.

The evaluation of these models was conducted using a dataset from the mortgage lending domain.

In our experiments, we constructed single and double layer networks using the borrower’s geographical

location and the lending company as the connector variables. Through rigorous testing of various models,

we established that the GAT-LSTM-ATT model exhibits the best performance among all configurations

of DYMGNN, and other baseline models, both GNN-based and non-GNN-based. Furthermore, this model
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is able to capture a richer set of information, thereby providing more realistic insights into a borrower’s

probability of default.

When comparing training times, it became apparent that models employing the attention mechanism

exhibit greater complexity and require more extensive training times, yet the runtime remains within

acceptable limits. As in any operational research area, explainability is important to consider (De Bock

et al., 2023). Therefore, we applied the Shapley approach to decode the model’s inner workings, assessing

the impact of each node feature on the final output. This analysis revealed the differences in the impor-

tance of node features between a baseline model and our DYMGNN model, with particular focus on the

four most pivotal features. Additionally, we investigated the relative importance of snapshots at different

timestamps by analysing the attention scores associated with each. The results confirmed that the most

recent snapshots play a crucial role in influencing the model’s output.

Future research could explore wider networks by incorporating additional layers to map more complex

inter-individual connections. The method could also be extended by further considering distance infor-

mation and assigning different weights to the network edges based on geographical proximity between

the centroids of neighbouring zip code areas. It might also be beneficial to vary the number of snapshots

by adjusting the window length for generating dynamic networks. The exploration of other GNNs and

RNNs not considered in this study presents another promising direction. Moreover, gaining a deeper

understanding of how different network connections influence default risk could offer valuable insights

into credit risk modelling.
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Compute Ontario (computeontario.ca), Calcul Québec (calculquebec.ca), and the Digital Research

Alliance of Canada (alliancecan.ca).

References

Aliabadi, M. M., Emami, H., Dong, M., & Huang, Y. (2020). Attention-based recurrent neural network for multistep-ahead

prediction of process performance. Computers & Chemical Engineering , 140 , 106931.

24

computeontario.ca
calculquebec.ca
alliancecan.ca
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Óskarsdóttir, M., & Bravo, C. (2021). Multilayer network analysis for improved credit risk prediction. Omega, 105 , 102520.
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Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018). Graph attention networks. In 6th

International Conference on Learning Representations (ICLR).

Vinciotti, V., Tosetti, E., Moscone, F., & Lycett, M. (2019). The effect of interfirm financial transactions on the credit

risk of small and medium-sized enterprises. Journal of the Royal Statistical Society Series A: Statistics in Society , 182 ,

1205–1226.

27



Wang, D., Zhang, Z., Zhao, Y., Huang, K., Kang, Y., & Zhou, J. (2023). Financial default prediction via motif-preserving

graph neural network with curriculum learning. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge

Discovery and Data Mining (pp. 2233–2242).

Wang, J., Zhang, S., Xiao, Y., & Song, R. (2022). A review on graph neural network methods in financial applications.

Journal of Data Science, 20 , 111–134.

Wang, S., Hu, L., Wang, Y., He, X., Sheng, Q. Z., Orgun, M. A., Cao, L., Ricci, F., & Yu, P. S. (2021). Graph learning based

recommender systems: A review. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence

(IJCAI-21) (pp. 4644–4652).

Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., & Chua, T.-S. (2017). Attentional factorization machines: Learning the weight of

feature interactions via attention networks. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial

Intelligence (IJCAI-17) (pp. 3119–3125).

Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive representation learning on temporal graphs. In

8th International Conference on Learning Representations (ICLR).

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R., & Bengio, Y. (2015). Show, attend and tell:

Neural image caption generation with visual attention. In Proceedings of the 32nd International Conference on Machine

Learning (Volume 37) (pp. 2048–2057).

Yang, S., Yu, X., & Zhou, Y. (2020). LSTM and GRU neural network performance comparison study: Taking Yelp review

dataset as an example. In 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI)

(pp. 98–101).

Yang, S., Zhang, Z., Zhou, J., Wang, Y., Sun, W., Zhong, X., Fang, Y., Yu, Q., & Qi, Y. (2021). Financial risk anal-

ysis for SMEs with graph-based supply chain mining. In Proceedings of the Twenty-Ninth International Conference on

International Joint Conferences on Artificial Intelligence (IJCAI-20) (pp. 4661–4667).

Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A deep learning framework for traffic

forecasting. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

(pp. 3634–3640).

Zhang, M., & Chen, Y. (2018). Link prediction based on graph neural networks. In Proceedings of the 32nd International

Conference on Neural Information Processing Systems (NIPS’18).

Zhao, L., Song, Y., Zhang, C., Liu, Y., Wang, P., Lin, T., Deng, M., & Li, H. (2020). T-GCN: A temporal graph convolutional

network for traffic prediction. IEEE Transactions on Intelligent Transportation Systems, 21 , 3848–3858.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., & Sun, M. (2020). Graph neural networks: A review

of methods and applications. AI Open, 1 , 57–81.

28



Appendix A. Statistics of the node features

Feature Mean Std. Dev. Min. Max.

fico 752.76 44.75 565 832
mi pct 2.40 7.40 0 35
cnt units 1.02 0.17 1 4
dti 33.61 11.15 1 65
ltv 69.30 16.07 7 97
cnt borr 1.50 0.50 1 2
current upb 173,036.60 97,258.30 13,829.33 716,617.50
mths remng 304.58 65.55 73 574
current int rt 4.88 0.45 3.25 7.25

Table A.1: Descriptive statistics of the non-binary node features. For each loan’s behavioural features (‘current upb’,
‘mths remng’, and ‘current int rt), the maximum values over all monthly snapshots are considered.

Feature 0s 1s

if fthb 128,131 20,389
if prim res 12,790 135,730
if corr 89,602 58,918
if sf 42,195 106,325
if purc 95,380 53,140
if sc 147,130 1,390
if delq sts 118,184 30,336
default 141,094 7,426

Table A.2: Frequency of the binary node features. For each loan, the maximum value of ‘if delq sts’ over all monthly
snapshots is considered.

Appendix B. Architecture of the DNN baseline model

Figure B.1: Architecture of the DNN baseline model.
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Appendix C. Hyperparameters for model training and computation resources

Hyperparameter Value

Epochs 200
Early stop 50
Learning rate 0.001
Optimizer Adam

Table C.1: Hyperparameters for model training.

Resource Specification

Processor AMD Milan 7413 @ 2.65 GHz 128M cache L3
CPU cores per task 2
GPU NVidia A100
Memory per GPU 40 GB

Table C.2: Computation resources.
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