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A B S T R A C T

Whereas traditional credit scoring tends to employ only individual borrower- or loan-level predictors, it has
been acknowledged for some time that connections between borrowers may result in default risk propagating
over a network. In this paper, we present a model for credit risk assessment leveraging a dynamic multilayer
network built from a Graph Neural Network and a Recurrent Neural Network, each layer reflecting a different
source of network connection. We test our methodology in a behavioural credit scoring context using a dataset
provided by U.S. mortgage financier Freddie Mac, in which different types of connections arise from the
geographical location of the borrower and their choice of mortgage provider. The proposed model considers
both types of connections and the evolution of these connections over time. We enhance the model by
using a custom attention mechanism that weights the different time snapshots according to their importance.
After testing multiple configurations, a model with GAT, LSTM, and the attention mechanism provides the
best results. Empirical results demonstrate that, when it comes to predicting probability of default for the
borrowers, our proposed model brings both better results and novel insights for the analysis of the importance
of connections and timestamps, compared to traditional methods.
1. Introduction

Network science provides a beneficial tool to study complex systems
of interacting entities that can be found in many areas, such as biology,
finance and economics (Barabási & Pósfai, 2016). To represent con-
nections between these entities, graphs are a common representation
method, which have diverse applications in social network analy-
sis (Haythornthwaite, 1996), computational finance (Wang, Zhang,
Xiao, & Song, 2022), and recommender systems (Wang et al., 2021),
among many others. Graph Neural Networks (GNNs) are models in
the field of deep learning, specifically tailored to perform over graph
domains. They have been utilized for different tasks, including node
classification (Tang et al., 2021), edge prediction (Zhang & Chen,
2018), and graph clustering (Tsitsulin, Palowitch, Perozzi, & Müller,
2020). In most cases, they have been used with static single layer
networks, in which nodes are linked based on one source of connection,
and the network remains unchanged over time. In reality, though,
nodes could be connected by more than one source of connection, as is
the case in our application setting. Such networks are generally called
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multilayer networks (Kivelä et al., 2014). Furthermore, the nodes and
edges in a graph may evolve. For example, new nodes may appear,
node features may change, and a new relation may emerge between two
nodes. Being able to capture these changes in the models could lead to
higher predictive performance for problems that are characterized by
such dynamic graphs.

To enable dynamic graph learning, we consider Recurrent Neural
Networks (RNNs) (Elman, 1990). RNNs are used for data that is pre-
sented in a sequence, such as time series data or natural language.
Their main objective is to create a representation of a series of inputs,
usually indexed by time, to predict an output. Because of their powerful
learning capacity, they have been applied successfully in various types
of tasks, including speech recognition (Graves, Fernández, & Schmid-
huber, 2007), acoustic modelling (Qu, Haghani, Weinstein, & Moreno,
2017), trajectory prediction (Altché & de La Fortelle, 2017), sentence
embedding (Palangi et al., 2016), and correlation analysis (Mallinar
& Rosset, 2018). Since dynamic graphs represented by discrete snap-
shots can be considered sequence data, RNNs provide a solution to
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capture the evolution of these graphs. However, it is known that
attention-based RNNs outperform encoder–decoder-based RNNs, indi-
cating that the incorporation of attention can improve the prediction
performance (Aliabadi, Emami, Dong, & Huang, 2020).

The application area that we focus on in this paper is credit scoring
— one of the prominent applications of data analytics. Lenders build
credit scoring models to help adjudge the risk involved in granting a
loan and decide on the terms of the loan and the interest rate (Thomas,
Crook, & Edelman, 2017). Traditional credit scoring models use loan-
or borrower-level data to assess a loan applicant’s default risk, thus
treating borrowers as independent entities. While potential default
correlation between borrowers has been acknowledged for some time,
it is only more recently that this has started to be further investigated
using network science. This is part of a broader trend in which credit
scoring research increasingly focuses on improving the performance of
existing credit scoring models through the incorporation of machine
learning methods, and the inclusion of alternative data sources such as
network data (Bravo & Óskarsdóttir, 2020).

In this paper, we propose using an attention-based dynamic multi-
layer graph neural network to model the problem of credit risk across
time and explicitly incorporate default correlation between borrowers.
This work makes the following contributions. Firstly, our solution,
Dynamic Multilayer Graph Neural Networks (DYMGNN), represents
a novel approach for node classification in multilayer networks. Sec-
ondly, we show how to apply the proposed method to credit risk
modelling, using the example context of mortgage loan default pre-
diction. Finally, we show that, in this setting, our model, by consider-
ing dynamicity, multilayer effects, and using an attention mechanism,
outperforms other baseline methods.

The structure of this paper is as follows. The next section discusses a
selection of previous work on GNN and credit risk modelling. Section 3
explains the methodology, multilayer networks, embeddings, and the
models used in this paper. Section 4 sheds light on the data, dynamic
networks, and the experiments in the paper. Section 5 presents the
experimental results and highlights some discussion points relevant to
the models. The final section summarizes our conclusions and suggests
future work.

2. Previous work

2.1. Graph neural networks

Graphs can be seen in many real-world applications. In some cases,
the graph is static, i.e., the graph structure and node features do not
change over time. In other cases, the graph is dynamic, i.e., the graph
evolves. GNNs are neural models that capture the dependencies be-
tween the nodes within a graph through message passing between the
nodes of the graph. A comprehensive survey of methods and applica-
tions related to GNNs is provided by Zhou et al. (2020). Recently, some
types of GNNs such as the Graph Convolutional Network (GCN) (Kipf &
Welling, 2017) and Graph Attention Network (GAT) (Veličković et al.,
2018) have been widely used for various deep learning tasks, albeit
mostly on static graphs.

GCN is an approach for semi-supervised learning on
graph-structured data, utilizing an efficient layer-wise linear model
based on a first-order approximation of spectral graph convolutions.
To prevent overfitting, it simplifies the convolution calculation by
constraining the number of parameters, and by minimizing the number
of operations, for example, reducing the matrix multiplications per
layer. The number of graph edges is linearly scaled in GCN and this
model learns hidden layer representations in which both the local
graph structure and node features are encoded. GCN has shown accept-
able performance on citation networks and knowledge graphs (Kipf &
Welling, 2017).

A second type of GNN, known as GAT, uses an attention mech-
anism to learn node-level representations (Veličković et al., 2018).
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The encoder–decoder-based neural machine translation system was
outperformed by the attention mechanism in natural language process-
ing (Bahdanau, Cho, & Bengio, 2015). Nowadays, attention models are
widely utilized for document categorization (Pappas & Popescu-Belis,
2017), recommendation systems (Xiao et al., 2017), and the creation of
image captions (Xu et al., 2015). The attention mechanism concentrates
on a few selected relevant attributes while ignoring other irrelevant
attributes (Bahdanau et al., 2015). The categories of attention models
that are now in use are global and local attention (Luong, Pham,
& Manning, 2015), soft and hard attention (Bahdanau et al., 2015),
and self-attention (Vaswani et al., 2017). Global attention considers
all source positions when deriving the context vector, providing a
comprehensive overview of the entire input sequence. In contrast,
local attention focuses on a subset of source positions, making it more
efficient by narrowing the context to relevant parts. Soft attention
generates a weighted sum of the attention scores, allowing gradients
to pass through and making the model end-to-end trainable. Hard
attention, on the other hand, selects a single source position, making it
less computationally expensive but more challenging to optimize due to
its non-differentiable nature. Self-attention is an attention mechanism
that is applied to compute a representation of a single sequence,
enabling the model to weigh the importance of different positions in the
sequence when generating its output. In conjunction with RNN or con-
volutions, self-attention can be used in many applications like learning
sentence representations (Lin et al., 2017) and machine reading (Cheng,
Dong, & Lapata, 2016). The GAT is a type of GNN that applies an
attention mechanism to graph-structured data, so as to classify nodes.
It computes the hidden representation of each node by paying attention
to its adjacent nodes and then applying a self-attention strategy. GAT
achieved state-of-the-art results in both transductive (semi-supervised)
and inductive (supervised) settings.

Most of the GNN models have been proposed for static graph learn-
ing; however, over the past few years, several machine learning models
capturing the structure and evolution of dynamic graphs have been
introduced. A complete review of representation learning approaches
for dynamic graphs is given in Kazemi et al. (2020), while a more
specialized review of GNN-based approaches for dynamic graphs is
provided by Skarding, Gabrys, and Musial (2021). There are many
different approaches to modelling spatial and temporal information
in graph-structured data. Diffusion Convolutional Recurrent Neural
Network (DCRNN; Li, Yu, Shahabi, & Liu, 2018) and Spatio-Temporal
Graph Convolutional Networks (STGCN; Yu, Yin, & Zhu, 2018) analyse
graph-structured data first and pass the results to sequence-to-sequence
models or RNNs. Structural-RNN collects spatial and temporal data
synchronously to associate the graph structure with temporal data so
that it can apply RNNs on new graphs (Jain, Zamir, Savarese, & Saxena,
2016). Dynamic Graph Convolutional Networks (DGCN) propose a
novel approach that combines RNNs and GCNs to learn long short-
term dependencies together with the graph structure (Manessi, Rozza,
& Manzo, 2020). EvolveGCN is an approach for graph representation
learning in dynamic graphs that uses an RNN to evolve the parameters
of a GCN model. By doing so, EvolveGCN can capture the dynamics
of the graph sequence without relying on node embeddings (Pareja
et al., 2020). Temporal Graph Convolutional Network (T-GCN) is a
novel method for real-time traffic forecasting that uses GCN to learn
the complex topological structure of the urban road network for spatial
dependence. It also employs RNN to capture the dynamic changes in
traffic data for temporal dependence (Zhao et al., 2020). Temporal
Graph Attention (TGAT) has been proposed for inductive representation
learning on temporal graphs that uses a self-attention mechanism and
a novel functional time encoding technique to efficiently aggregate
temporal–topological neighbourhood features and learn time-feature
interactions. TGAT can handle both node classification and link predic-
tion tasks, and can be extended to include temporal edge features (Xu,
Ruan, Korpeoglu, Kumar, & Achan, 2020). Joint Dynamic User–Item

Embeddings (JODIE) has been proposed to predict future user–item
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interactions in domains such as e-commerce, social networking, and
education. It is a coupled recurrent neural network model that learns
the embedding trajectories of users and items through representation
learning, and it introduces a novel projection operator to estimate the
embedding of the user at any time in the future (Kumar, Zhang, &
Leskovec, 2019). Dynamic Representation (DyRep) encodes evolving
information over dynamic graphs into low-dimensional representations,
namely as embeddings, using an inductive deep representation learn-
ing framework. The learned embeddings drive the dynamics of two
fundamental processes: communication and association between nodes
in dynamic graphs (Trivedi, Farajtabar, Biswal, & Zha, 2019). Dy-
namic Self-Attention Network (DySAT) computes node representations
by jointly using self-attention layers along two dimensions: structural
neighbourhood and temporal dynamics, and has been evaluated on link
prediction experiments (Sankar, Wu, Gou, Zhang, & Yang, 2019).

The methods mentioned above are all designed for single layer
networks, and would thus not be suitable for the multilayer problem
we tackle. Recently, however, several approaches to generalize GNNs
to the multilayer case have been proposed. Firstly, Graph Attention
Models for Multilayered Embeddings (GrAMME) introduces attention
mechanisms and develops two GNN architectures to exploit the in-
terlayer dependencies: GrAMME-SG and GrAMME-Fusion. GrAMME-SG
considers a multilayer network to be a supra graph with implicit edges
between layers, whereas GrAMME-Fusion makes use of a supra fusion
layer to aggregate embeddings from layerwise attention models (Shan-
thamallu, Thiagarajan, Song, & Spanias, 2019). Secondly, Multilayer
network Embedding via Learning Layer vectors (MELL) incorporates
the idea of a layer vector that characterizes the connectivity in a layer.
MELL embeds nodes in each layer into the lower embedding space
using all layer structures and incorporates layer vectors to differentiate
edge probabilities in the layers (Matsuno & Murata, 2018). Thirdly,
Multilayer Graph Neural Network (mGNN) presents an innovative way
of employing GCN on multilayer networks. In this approach, node fea-
ture propagation occurs independently in both intralayer and interlayer
edges, and multiple layers can be stacked to capture information from
the topology and features further in the network. This method can
handle node classification, intra layer link prediction, and network
clustering (Grassia, De Domenico, & Mangioni, 2021).

All the aforementioned methods have been developed for networks
that are either static and single layer, static and multilayer, or dynamic
and single layer. A unified approach that can handle networks that
are both dynamic and multilayer has not been put forward yet. This
is significant, as most real-life networks share both characteristics
simultaneously. Our approach focuses on solving this problem.

2.2. Credit risk modelling with network data

Credit risk modelling has a long history, and researchers from a
broad range of areas have been working on developing credit risk rating
systems (Markov, Seleznyova, & Lapshin, 2022). The statistical models
that were traditionally used for credit risk modelling seemed to have
difficulties dealing with large datasets as they may be characterized
by increased noise, heavy-tailed distributions, nonlinear patterns, and
temporal dependencies (Gordy, 2000). Advances in computing power
and availability of large credit datasets paved the way to artificial
intelligence (AI) driven credit risk estimation algorithms such as ma-
chine learning and deep learning (Shi, Tse, Luo, D’Addona, & Pau,
2022). Recently, some machine learning methods were found to out-
perform conventional models in terms of accuracy when applied to
large datasets (Gunnarsson, Vanden Broucke, Baesens, Óskarsdóttir, &
Lemahieu, 2021; Lessmann, Baesens, Seow, & Thomas, 2015).

Whereas traditional methods such as logistic regression make the
IID assumption, treating borrowers as independent observations, it is
widely understood that correlated default exists in lending (Óskarsdót-
tir & Bravo, 2021). Default correlation measures the extent to which

the default of one borrower is related to that of another borrower, t
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which may be caused by similar economic conditions affecting both,
or, within a sector, by industry-specific reasons. Several researchers
have shown that these correlations should be taken into account to
avoid misestimating credit risk (Fenech, Vosgha, & Shafik, 2015).
Some researchers have used alternative data sources such as network
data to show the existence of correlation. For this purpose, they used
different sources of data such as telephone call data (Óskarsdóttir,
Bravo, Sarraute, Vanthienen, & Baesens, 2019), app-based marketplace
data (Roa et al., 2021), social media data (De Cnudde et al., 2019),
and agricultural loan network data (Óskarsdóttir & Bravo, 2021). Some
other researchers have used network data from inter-firm transactions
to improve credit risk modelling strategies for Small and Medium-sized
Enterprises (SMEs) (Vinciotti, Tosetti, Moscone, & Lycett, 2019). A
common feature of the aforementioned studies is that they all use nu-
merical measures obtained from the alternative data sources. However,
all of them consider networks that are either static or single layer. In
fact, nodes could be connected in various ways in a network, and these
relationships could change over time, making them dynamic. Our work
is an effort to take advantage of dynamic multilayer networks in this
field and thus address some of the limitations of previous work.

Whereas traditionally numerical features were extracted from the
network and used for credit scoring, more recently, GNNs have been
used to develop predictive models in this field, eliminating the need
to explicitly extract those features. In one study, GCNs were employed
to predict peer-to-peer loan defaults and were found to outperform
baseline models such as SVM, Random Forest, and XGBoost (Lee,
Lee, & Sohn, 2021). GNN with Self-attention and Multi-task learn-
ing (SaM-GNN) has been proposed for credit default risk prediction.
This approach incorporates two parallel tasks based on shared in-
termediate vectors for input vector reconstruction and credit default
risk prediction (Li et al., 2022). Motif-preserving Graph Neural Net-
work with curriculum learning (MotifGNN) has been introduced to
jointly learn the lower-order structures from the original graph and
higher-order structures from multi-view motif-based graphs for default
prediction (Wang et al., 2023). In another study, a novel spatial–
temporal aware GNN was proposed to predict SME loan default risk
from a network of mined supply chain relationships (Yang et al., 2021).
The potential benefits of using networks that are both dynamic and
multilayer in credit risk modelling are not yet fully realized. This
research presents a novel method for utilizing these networks within
this area of study.

3. Methodology

In this section, we describe our methodology. First, we explain our
approach for constructing a sequence of snapshots of multilayer net-
works. Then, we discuss how we employ different types of embeddings
to encode topological and temporal dependencies in the networks.
After that, we describe different configurations of DYMGNN and their
respective architectures.

3.1. Multilayer networks

We start by defining the multilayer network and its node features.
Consider an unweighted and undirected network 𝐺 = (𝑉 ,𝐴,𝑋), where

= {𝑣1, 𝑣2,… , 𝑣𝑛} is the set of nodes in a layer of the network, 𝑛 = |𝑉 |

enotes the number of distinct nodes, and 𝑋 ∈ R𝑛×𝑑 is a feature matrix,
n which 𝑋𝑖 is a column vector that represents the features of node 𝑣𝑖
nd 𝑑 stands for the number of features. A network is represented by
ts supra adjacency matrix, 𝐴 ∈ R𝑛𝑙×𝑛𝑙, where 𝑙 denotes the number
f layers. This matrix encodes information about connections between
airs of nodes within a layer as well as connections between pairs of
odes from two different layers, i.e., if 𝑣𝑖 from layer 𝑘 and 𝑣𝑗 from
ayer 𝑚 are connected (1 ≤ 𝑘, 𝑚 ≤ 𝑙), then 𝐴(𝑘−1)𝑛+𝑖,(𝑚−1)𝑛+𝑗 = 1;
therwise, the value is 0. In a multilayer network, all layers contain

he same set of nodes, while their edge sets are assumed to be different.
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Fig. 1. A multilayer network (left) and its supra adjacency matrix (right).
Each layer focuses on a particular type of relationship, with intra layer
edges connecting the nodes that are related. In addition, a series of
interlayer edges simply specify which nodes are identical. Fig. 1 shows
a multilayer network and its corresponding supra adjacency matrix.

The network dynamics are captured through a sequence of snap-
shots [𝐺(1),… , 𝐺(𝜏)] where 𝐺(𝑡) = (𝑉 (𝑡), 𝐴(𝑡), 𝑋(𝑡)) for each 𝑡 ∈ {1,… , 𝜏}.
We are interested in obtaining the node embeddings at 𝑡 ≤ 𝜏 based on
snapshots at or before 𝑡. For the application in this paper, we assume
𝑉 (1) = 𝑉 (2) = ⋯ = 𝑉 (𝜏) and 𝐴(1) = 𝐴(2) = ⋯ = 𝐴(𝜏), i.e., nodes and their
connections remain constant over time, but features can vary from one
snapshot to another. Once the set of multilayer networks is complete,
an embedding must be calculated from this data, as explained in the
next section.

3.2. Topological embedding

Neural networks are a type of machine learning model inspired by
the human brain, consisting of layers of interconnected neurons. Each
neuron processes input data, applies a mathematical transformation
using weights and biases, and passes the result to the next layer. They
are trained through a process called backpropagation, which adjusts the
weights and biases to minimize prediction errors measured by a loss
function (Goodfellow, Bengio, & Courville, 2016). GNNs extend these
neural networks to handle graph-structured data.

Capturing the topological dependence in a network is a key prob-
lem, as neighbouring nodes could influence each other. In this work,
we trial two different types of GNNs, i.e., GCN (Kipf & Welling, 2017)
and GAT (Veličković et al., 2018), to obtain the topological relationship
between a node and its neighbours, encode the topological structure
of the network and the features of nodes, capturing the information
within the node connections. GCN or GAT is applied to each 𝐺(𝑡) to
obtain a hidden representation matrix 𝑍(𝑡). Each row of 𝑍(𝑡) contains
a node embedding, meaning that for node 𝑣𝑖 we have a sequence of
embeddings [𝑍(1)

𝑖 , 𝑍(2)
𝑖 ,… , 𝑍(𝜏)

𝑖 ].
The GCN formulation performs isotropic aggregation, according to

which each neighbour contributes equally to update the representation
of the central node. The GCN model for a snapshot can be expressed as
follows:

𝑍 = �̃�−1∕2�̃��̃�−1∕2𝑋𝑊 𝑇 . (1)
4 
Here, �̃� = 𝐴 + 𝐼𝑛𝑙 is the supra adjacency matrix of the snapshot
with inserted self-loops. 𝐼𝑛𝑙 is the identity matrix, �̃�𝑖𝑖 =

∑

𝑗 �̃�𝑖𝑗 is the
diagonal degree matrix of �̃�, and 𝑊 𝑇 ∈ R𝑑×𝐷 is a learnable weight
matrix where 𝐷 is the embedding size.

The GAT model expands the basic aggregation function of the
GCN, assigning different importance to each edge through the attention
coefficients. It can be formulated as follows:

𝑒𝑖𝑗 = LeakyReLU(𝑎𝑇 [𝑊𝑋𝑖 ∥ 𝑊𝑋𝑗 ]), (2)

𝛼𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗 )

∑

𝑘∈𝑁(𝑣𝑖)∪{𝑣𝑖} 𝑒𝑥𝑝(𝑒𝑖𝑘)
, (3)

𝑍𝑖 =
∑

𝑗∈𝑁(𝑣𝑖)∪{𝑣𝑖}
𝛼𝑖𝑗𝑊𝑋𝑗 . (4)

Eq. (2) computes a pairwise denormalized attention score between
two neighbours, where ∥ denotes the concatenation operation and 𝑎𝑇 ∈
R1×2𝐷 is a learnable weight vector. The attention score indicates the
importance of a neighbour node in the message passing framework.
Eq. (3) applies a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function to normalize the attention scores
on each node’s incoming edges. This function puts the output of the
previous step in a probability distribution and, as a result, the attention
scores are more comparable across different nodes. In this equation,
𝑁(𝑣𝑖) represents the neighbourhood of node 𝑣𝑖. Note, we also include
the self-edge for each node. In Eq. (4), the embeddings from neighbours
are aggregated together, scaled by the attention scores. The main
objective of this process is to learn a different contribution from each
neighbour. The operations from (2) to (4) constitute a single head. The
modelling capacity can be improved by considering multiple attention
heads, thus allowing for different attention being given to different sets
of neighbours. The output representations from the different heads can
be aggregated using averaging operations.

3.3. Temporal embedding

Dealing with the temporal dependence is another key problem, as
the temporal sequence of connections between nodes could provide use-
ful information. In this work, we use LSTM (Hochreiter & Schmidhuber,
1997) and GRU (Cho, Van Merriënboer, Bahdanau, & Bengio, 2014)
to capture the information related to the evolution of the networks.
Both LSTM and GRU use gated mechanisms to memorize as much
information as possible; however, there are some differences between
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these two models (Chung, Gulcehre, Cho, & Bengio, 2014). Comparing
these two, LSTM has a more complex structure, more parameters, and
longer training time. LSTM is known to be able to deal with long-
range dependencies, making it the preferred choice for models built
over data of relatively large size (Yang, Yu, & Zhou, 2020). As our
data is of medium size and the interface between GNNs and RNNs is
not fully explored, the choice between LSTM and GRU is not obvious.
We will, therefore, compare both models in Section 5. After obtaining
the sequence of topological embeddings [𝑍(1)

𝑖 , 𝑍(2)
𝑖 ,… , 𝑍(𝑡)

𝑖 ], we need to
input it into the RNN model and use the hidden representation of the
RNN model as the temporal node embeddings for 𝑣𝑖.

LSTM uses a total of three gates, i.e., input gate, forget gate, and
output gate. The input gate determines what information from the
current topological embedding and previous temporal embeddings will
be cached, or stored for future use, in long term memory. The forget
gate decides which information from the long term memory should be
maintained or repudiated. The output gate takes the current topological
embedding, the previous temporal embedding and the newly computed
long term memory to produce the new temporal embedding that will
be passed on to the cell in the next time step. The LSTM model can be
formulated as follows:

𝐼 (𝑡) = 𝜎(𝑍(𝑡)𝑊𝑖𝑖 +𝐻 (𝑡−1)𝑊𝑖ℎ + 𝑏𝑖), (5)
𝐹 (𝑡) = 𝜎(𝑍(𝑡)𝑊𝑓𝑖 +𝐻 (𝑡−1)𝑊𝑓ℎ + 𝑏𝑓 ), (6)

𝐶 (𝑡) = 𝐹 (𝑡) ⊙ 𝐶 (𝑡−1) + 𝐼 (𝑡) ⊙ 𝑡𝑎𝑛ℎ(𝑍(𝑡)𝑊𝑐𝑖 +𝐻 (𝑡−1)𝑊𝑐ℎ + 𝑏𝑐 ), (7)
𝑂(𝑡) = 𝜎(𝑍(𝑡)𝑊𝑜𝑖 +𝐻 (𝑡−1)𝑊𝑜ℎ + 𝑏𝑜), (8)

𝐻 (𝑡) = 𝑂(𝑡) ⊙ 𝑡𝑎𝑛ℎ(𝐶 (𝑡)). (9)

In the equations above, ⊙ denotes element-wise (Hadamard) prod-
uct. 𝜎 is an activation function (typically 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) and 𝑡𝑎𝑛ℎ represents
the hyperbolic tangent function. 𝐼 (𝑡) ∈ R𝑛𝑙×𝐷, 𝐹 (𝑡) ∈ R𝑛𝑙×𝐷, and
𝑂(𝑡) ∈ R𝑛𝑙×𝐷 represent input, forget, and output gates for the nodes,
respectively. 𝐶 (𝑡) ∈ R𝑛𝑙×𝐷 and 𝐻 (𝑡) ∈ R𝑛𝑙×𝐷 are memory cell and
hidden state for the node embeddings, respectively. 𝑊(⋅⋅) ∈ R𝐷×𝐷 and
𝑏(⋅) ∈ R1×𝐷 are weight matrix and bias vector, respectively. 𝐻 (0) and
𝐶 (0) can be initialized with zeros or learned from the data (Mohajerin
& Waslander, 2017).

GRU is similar to LSTM, but it incorporates two gates, i.e., an update
gate and a reset gate. The reset gate determines how much of the
previous temporal embedding should be neglected, while the update
gate determines the amount of the new input that needs to be passed
along to the next state. The GRU model can be formulated as

𝑈 (𝑡) = 𝜎(𝑍(𝑡)𝑊𝑢𝑖 +𝐻 (𝑡−1)𝑊𝑢ℎ + 𝑏𝑢), (10)
𝑅(𝑡) = 𝜎(𝑍(𝑡)𝑊𝑟𝑖 +𝐻 (𝑡−1)𝑊𝑟ℎ + 𝑏𝑟), (11)

𝐻 (𝑡) = (1 − 𝑈 (𝑡))⊙𝐻 (𝑡−1) + 𝑈 (𝑡) ⊙ 𝑡𝑎𝑛ℎ[𝑍(𝑡)𝑊ℎ𝑖

+(𝑅(𝑡) ⊙𝐻 (𝑡−1))𝑊ℎℎ + 𝑏ℎ]. (12)

In the equations above, 𝑈 (𝑡) ∈ R𝑛𝑙×𝐷 and 𝑅(𝑡) ∈ R𝑛𝑙×𝐷 represent
update and reset gates for the nodes, respectively. All other definitions
are the same as LSTM. Fig. 2 depicts the respective structures of the
LSTM and GRU models.

3.4. GNN-RNN models

The GNN-RNN model is one of the proposed models for DYMGNN
in this work. Within the GNN-RNN framework, there are two config-
urations, i.e., GNN-LSTM and GNN-GRU, which can be summarized
as

𝑍(𝑡) = GNN(𝑋(𝑡), 𝐴(𝑡)), (13)
𝐻 (𝑡), 𝐶 (𝑡) = LSTM(𝑍(𝑡),𝐻 (𝑡−1), 𝐶 (𝑡−1)) for GNN-LSTM, (14)

𝐻 (𝑡) = GRU(𝑍(𝑡),𝐻 (𝑡−1)) for GNN-GRU. (15)
Fig. 3 displays an overview of these models.
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These models are capable of capturing the topological and temporal
dependencies of snapshots through combining GNN and RNN, whilst
the same importance is assigned to each timestamp. The temporal
embedding for the nodes is obtained by feeding their sequence of
embeddings, produced by the GNN model, to the RNN model.

3.5. GNN-RNN-ATT models

The GNN-RNN-ATT model is another proposed model for DYMGNN.
In GNN-RNN-ATT models, a soft attention mechanism is applied to
assign different importance to each timestamp. This approach contrasts
with GNN-RNN models which assign equal importance to every times-
tamp. The use of attention in GNN-RNN-ATT models allows for a more
nuanced weighting of temporal information. Our approach for creating
a new hidden state for the node embeddings that is more expressive of
the global variation trends can be formulated as follows:

𝑠(𝑡) = 𝑎ℎ𝐻
(𝑡)𝑊ℎ, (16)

𝛽(𝑡) =
𝑒𝑥𝑝(𝑠(𝑡))

∑𝜏
𝑘=1 𝑒𝑥𝑝(𝑠(𝑘))

, (17)

𝐻𝑎𝑡𝑡 =
𝜏
∑

𝑡=1
𝛽(𝑡)𝐻 (𝑡). (18)

First, the hidden states at different timestamps, 𝐻 (𝑡), are obtained
sing GNN and RNN, as discussed in the previous model. Eq. (16)
omputes an denormalized attention score for each hidden state, where
ℎ ∈ R1×𝑛𝑙 and 𝑊ℎ ∈ R𝐷×1 are learnable weight vectors. The normalized

attention score for each hidden state is computed using a 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
function as shown in Eq. (17). In Eq. (18), 𝐻𝑎𝑡𝑡 is calculated by
aggregating the hidden states scaled by the normalized attention scores.
The main goal of this process is to re-weight the influence of snapshots
at different timestamps. Finally, the final output results can be obtained
using 𝐻𝑎𝑡𝑡 that can describe the global variation information.

Fig. 4 shows two configurations of GNN-RNN-ATT, i.e., GNN-LSTM-
ATT and GNN-GRU-ATT.

3.6. Decoder and loss function

A deep neural network model is typically comprised of an encoder
and a decoder. The encoder takes input and produces embeddings,
whereas the decoder takes the embeddings and performs the prediction
task (Goodfellow et al., 2016). In our specific case, GNN, RNN, and
ATT comprise the encoder of the full model, while the decoder is a
set of feed-forward neural networks applied to the node embeddings,
followed by a series of layers that either apply a chosen activation
function for non-linearity or dropout function for regularization. The
final output is the model prediction for our binary outcome (here,
default Y/N), i.e., whether the node 𝑣𝑖 belongs to class 1 (𝑌𝑖 = 1)
r 0 (𝑌𝑖 = 0). The decoder outputs a vector 𝑌 where 𝑌𝑖 specifies
he probability of a node 𝑣𝑖 belonging to class 1 given the snapshots
𝐺(1),… , 𝐺(𝜏)]. While there is no unique format for the decoder, the
rchitecture used in this work is shown in Fig. 5.

One of the most important aspects of a deep learning model is
ts loss function. For our work, we use the well-known binary cross-
ntropy loss function (Gneiting & Raftery, 2007) which can be written
s

oss = −1
𝑛

𝑛
∑

𝑖=1

[

𝑌𝑖 ⋅ 𝑙𝑜𝑔(𝑌𝑖) + (1 − 𝑌𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑌𝑖)
]

. (19)

4. Experimental setup

4.1. Dataset

In this paper, the goal of our models is to predict one-year-ahead
loan default based on borrower or loan characteristics. For this purpose,
we use the Single-Family Loan-Level (SFLL) dataset provided by the
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Fig. 2. The cell structures of RNN models.
Fig. 3. GNN-LSTM (left) and GNN-GRU (right) dynamic models.
Federal Home Loan Mortgage Corporation (FHLMC), commonly known
as Freddie Mac, which contains loan-level data for a sizable share of
mortgage loans in the United States (FreddieMac, 2022). Freddie Mac
purchases mortgages on the secondary market, pools them, and sells
them as a mortgage-backed security to investors on the open market.

The dataset includes information regarding the loan, such as the
amount, the interest rate, the insurance percentage, and the provider,
as well as information on the borrower, including the borrower’s debt
to income ratio and/or unpaid balance, FICO credit score, the geo-
graphical area in which they reside, and whether they are a first-time
home buyer. It also includes information about the property (type,
number of units, etc.). To represent the categorical information, we
introduce our own binary features contrasting one category against
other categories combined. Numerical node features are normalized
using min–max scaling. We clean the data by treating outliers and
null values. Specifically, outliers are capped at the 99th percentile and
1st percentile points. There are not many null values, and they are
treated with median imputation. Feature descriptions for the data used
in model training are given in Table 1. Most of the features are available
at the time of loan application and do not change from one month
to another; however, a few features such as ‘current_upb’, ‘if_delq_sts’,
‘mths_remng’, and ‘current_int_rt’ can change from month to month, as
they track repayment behaviour over the loan period. More information
about the data can be found in Appendix A.
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Table 1
Description of the node features.

Feature Description

fico Credit score at the time of acquisition
if_fthb Is the borrower a first-time home buyer?
mi_pct Mortgage insurance percentage
cnt_units Number of units in the property
if_prim_res Is the property a primary residence?
dti Original debt to income ratio
ltv Original loan to value ratio
if_corr Is a correspondent involved in the origination of the mortgage?
if_sf Is the property a single family home?
if_purc Is the mortgage loan a purchase mortgage?
cnt_borr Number of borrowers obligated to repay the mortgage
if_sc Does the mortgage exceed conforming loan limit?
current_upb Current unpaid principal balance
if_delq_sts Are there any payment arrears (between 30 and 90 days)?
mths_remng Number of remaining months of the mortgage
current_int_rt Current interest rate
default Being 90 days or more in payment arrears over next 12 months

4.2. Dynamic networks

As we are interested in studying the effect of connections between
the borrowers and the evolution of those connections over time, we
use the data to create a sequence of dynamic networks following the
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Fig. 4. GNN-LSTM-ATT (left) and GNN-GRU-ATT (right) dynamic models. By adding an attention layer to the model, we are able to re-weight the impact of different snapshots.
Fig. 5. Architecture of the decoder.
process in Section 3.1. In particular, we are interested in predicting
one-year-ahead loan default based on application information and six
months of borrower’s repayment behaviour. We choose a six-month
period because six and twelve months are common choices for lookback
periods (Kennedy, Mac Namee, Delany, O’Sullivan, & Watson, 2013).
Furthermore, this paper will later show that extending beyond six
months offers minimal additional benefits.

For this work, loans originated in 2009 and 2010 are used for
training and testing. We select these years to ensure sufficient default
information is available for reliably comparing the models. It is im-
portant to note, however, that loan population and behaviour change
over time, and our sample data may reflect some effects of the global
financial crisis. Thus, further research could explore the robustness of
our proposed methods across different time periods and financial condi-
tions. We use application data and 18 months of behavioural data, from
January 2012 to June 2013, for training. We also use application data
and six months of behavioural data of a holdout set, from July 2013
to December 2013, for testing. We consider rolling windows, shifting
by one month, for training and testing, with each window containing
six snapshots [𝐺(1),… , 𝐺(6)], and each snapshot corresponding to one
month. So, we have 13 windows for training and one window for
testing. All snapshots of a specific window have the same set of nodes.
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However, the node set could be different from one window to another;
a loan that has defaulted will remain marked as a defaulter for the
observation window but will disappear once the window moves past
it. During the training of each window, the goal is to predict default
within 12 months following the month of the last snapshot in that
window. A one-year horizon is practical for credit management and
decision-making, as it balances the need for a sufficiently long period
to assess risk while not extending so far that predictions become highly
speculative (Lopez & Saidenberg, 2000). Fig. 6 displays the timeline for
the windows and their corresponding horizons in model training.

We can train the models using either single layer or double layer
networks, with geographical location of the borrower and the company
lending the loan being the connector variables. Borrowers whose zip
codes have the same first two digits are assumed to be in the same
geographical area. In the case of the double layer network, nodes in
one layer are also connected to their twins in the other layer. Some
previous studies showed that applying some sort of dropout techniques
on graph structures could help increase the expressiveness of the GNN
models (Shu et al., 2022). Therefore, we decide to randomly select and
isolate 50% of the nodes in each snapshot of a window. In other words,
in each snapshot, at least half of the nodes do not have any connections
with other nodes.
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Fig. 6. The timeline for windows and their corresponding horizons in model training.
Table 2
Network description for 𝐺(𝑇 ).
Set Single layer: Area Single layer: Company Double layer: Area-company

#Nodes #Edges #Nodes #Edges #Nodes #Edges

Training 148,520 16,368,244 148,520 91,486,176 297,040 108,151,460
Validation 82,180 4,725,842 82,180 27,735,664 164,360 32,625,866
Test 96,490 6,761,051 96,490 38,404,277 192,980 45,358,308
To gain insight into the size and characteristics of the networks,
we provide some descriptions in Table 2. Letting 𝐺(𝑇 ) =

⋃6
𝑡=1 𝐺

(𝑡),
Table 2 shows the number of nodes and the number of edges for 𝐺(𝑇 )

created from the snapshots in the first window of the training set, as
well as the snapshots of the validation and test sets. It is evident that
the single layer networks derived from the lending company are denser
than those derived from the geographical area. This is because there
are fewer lending companies serving as connector variables compared
to the number of geographical areas serving as such.

4.3. Experiments

We are interested in comparing the performance of different models
on single layer and double layer networks, and in benchmarking them
against some baseline methods. The classes are imbalanced in this
binary node classification problem, so we use the Area Under the Curve
(AUC) and 𝐹1 score to assess the performance of each model. The results
are presented with 95% confidence intervals, derived from bootstrap
over the test set.

As computational efficiency is another consideration, we also exam-
ine the runtime for training the models. In addition, we use the Shapley
approach to help us interpret the best performing model and better
understand the importance of the different node features. We also look
at the attention scores to assess the relative contribution of snapshots
at different timestamps.

5. Results and discussion

5.1. Baseline methods

We benchmark our proposed model against a selection of GNN-
based and non-GNN-based baseline models. Table 3 shows the results
for two GNN-based baseline models, i.e., static GCN and static GAT,
whereas Table 4 shows the results for three non-GNN-based baseline
models, i.e., Logistic Regression (LR), XGBoost (XGB), and a Deep
Neural Network (DNN). LR is popular in the commercial and finan-
cial sectors due to its straightforwardness and ease of understanding.
Meanwhile, XGB has established itself as a powerful technique for both
classification and regression tasks involving structured datasets (Gun-
narsson et al., 2021). DNN is fundamental to deep learning and has
seen broad usage across a variety of predictive tasks.
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For training the GNN-based baseline models, we consider a static
network, which is the last snapshot of each window, and values of
behavioural features are the mean values of those features across the
six snapshots of the respective window. We do not use RNNs for these
static models; the decoder and the loss function for these models are
the same as those used in the dynamic models.

For non-GNN-based baseline models that rely solely on non-network
features, we use a grid search to tune the hyper-parameters for each
model using the validation dataset. The LR model is tuned with saga
solver and a grid search for the penalty {L1, L2}. The XGB model hyper-
parameters are tuned with a grid search for the learning rate {0.001,
0.01, 0.1}, maximum depth {2, 3, 4}, number of estimators {50, 100,
250, 500}, and alpha {0.1,. . . ,0.9}. The architecture of the DNN is
given in Appendix B.

In Table 3, we can see that the Static GAT performs better than
the Static GCN, on both single layer and double layer networks. The
difference in performance between them is considerable, and could be
due to the different way in which GAT and GCN aggregate information
from the one-hop neighbourhood. Among the non-GNN models (see
Table 4), XGB appears to have better performance compared to LR
and DNN; however, the differences are fairly small. XGB outperforms
LR, suggesting that XGB can capture non-linear relationships better
than LR does. It is also not unexpected to see that DNN does not
outperform XGB, as this might be the case where the structured data
is not very complex or does not contain many features (Borisov et al.,
2022; Gunnarsson et al., 2021). Comparing Table 4 against Table 3,
it is observed that the performance of each non-GNN-based baseline
model surpasses that of the best performing GNN-based baseline model,
i.e., Static GAT, on both single layer and double layer networks. This
observation is important as it indicates that more complex models do
not always yield better performance.

5.2. Performance of the dynamic models

Tables 5 and 6 show the performance of the different models on our
two single layer networks, while Table 7 shows the performance on the
double layer network. Out-of-sample performance is again measured in
terms of AUC and 𝐹1 score on a test set. The best performing model in
each group is highlighted in bold.

Tables 5 and 6 show that, for each of the single layer networks,
the GAT-LSTM-ATT model produces the highest AUC and 𝐹1 score,
while GCN-GRU gives the poorest results. This could be due to the
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Table 3
Performance of the GNN-based baseline models.
Model Single layer: Area Single layer: Company Double layer: Area-company

AUC 𝐹1 AUC 𝐹1 AUC 𝐹1

Static GCN 0.701 ± 0.014 0.802 ± 0.012 0.681 ± 0.014 0.798 ± 0.013 0.729 ± 0.012 0.810 ± 0.012
Static GAT 0.752 ± 0.013 0.814 ± 0.010 0.746 ± 0.011 0.812 ± 0.009 0.763 ± 0.014 0.817 ± 0.012
Table 4
Performance of the non-GNN-based baseline models.

Model AUC 𝐹1

LR 0.796 ± 0.020 0.824 ± 0.013
XGB 0.805 ± 0.018 0.837 ± 0.012
DNN 0.803 ± 0.016 0.833 ± 0.014

Table 5
Performance of the dynamic models on the single layer network derived from the
geographical area.

Model AUC 𝐹1

Topological Temporal Without ATT With ATT Without ATT With ATT

GCN LSTM 0.804 ± 0.011 0.807 ± 0.012 0.841 ± 0.008 0.847 ± 0.009
GRU 0.775 ± 0.013 0.780 ± 0.011 0.825 ± 0.006 0.829 ± 0.008

GAT LSTM 0.806 ± 0.009 𝟎.𝟖𝟏𝟎 ± 𝟎.𝟎𝟏𝟐 0.842 ± 0.005 𝟎.𝟖𝟒𝟗 ± 𝟎.𝟎𝟎𝟕
GRU 0.793 ± 0.005 0.802 ± 0.014 0.833 ± 0.004 0.840 ± 0.006

Table 6
Performance of the dynamic models on the single layer network derived from the
lending company.

Model AUC 𝐹1

Topological Temporal Without ATT With ATT Without ATT With ATT

GCN LSTM 0.802 ± 0.012 0.804 ± 0.012 0.840 ± 0.009 0.843 ± 0.007
GRU 0.769 ± 0.013 0.774 ± 0.014 0.818 ± 0.006 0.823 ± 0.006

GAT LSTM 0.805 ± 0.012 𝟎.𝟖𝟎𝟖 ± 𝟎.𝟎𝟏𝟎 0.840 ± 0.009 𝟎.𝟖𝟒𝟔 ± 𝟎.𝟎𝟎𝟖
GRU 0.786 ± 0.007 0.795 ± 0.014 0.832 ± 0.004 0.835 ± 0.006

Table 7
Performance of the dynamic models on double layer network created with both
geographical area and lending company.

Model AUC 𝐹1

Topological Temporal Without ATT With ATT Without ATT With ATT

GCN LSTM 0.806 ± 0.010 0.810 ± 0.009 0.845 ± 0.004 0.848 ± 0.006
GRU 0.789 ± 0.010 0.793 ± 0.011 0.833 ± 0.005 0.835 ± 0.009

GAT LSTM 0.807 ± 0.008 𝟎.𝟖𝟏𝟐 ± 𝟎.𝟎𝟎𝟖 0.847 ± 0.005 𝟎.𝟖𝟓𝟏 ± 𝟎.𝟎𝟎𝟕
GRU 0.800 ± 0.004 0.804 ± 0.006 0.839 ± 0.003 0.843 ± 0.008

fact that GAT assigns different importance to each edge, and we know
that some connections could be more informative than others. Also, the
complex structure of LSTM appears to make it the preferred RNN for
this problem. Another key observation is that models enhanced with the
attention mechanism consistently show better performance compared
to those without attention.

As for the double layer network, we can see from Table 7 that,
similarly to what was observed for the single layer networks, the GAT-
LSTM-ATT model again shows the best performance. The results for
the double layer network, however, tend to outperform the single
layer ones, which is intuitive as the double layer network is able
to consider connections of either type. It is also noticeable that the
results obtained from the double layer network have shorter confidence
intervals, suggesting greater robustness in these results. Importantly,
the best performing dynamic modelling approach, i.e., GAT-LSTM-ATT,
performs better on average than the baseline methods presented in
the previous subsection. For example, the GAT-LSTM-ATT model for
the double-layer network produces AUC and 𝐹1 score of 0.812 and
.851, respectively, compared to 0.805 and 0.837 for the best baseline

odel, i.e., XGB (see Table 4). This translates to a 0.87% gain in
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AUC and a 1.67% gain in 𝐹1 score. Although these numerical gains
might seem modest, even a 1% improvement can yield significant
financial benefits for some businesses. Interestingly, even when applied
to either of the single layer networks, the GAT-LSTM-ATT still tends to
perform well compared to the baseline models. This demonstrates that
DYMGNN offers an advantage over conventional methods by capturing
a richer set of information, thus providing a more comprehensive
and realistic picture of a borrower’s default probability. Hence, incor-
porating dynamic network information is able to provide additional
information over simply using local features and/or static networks.
The most pronounced difference lies between our dynamic model and
the static network-based models, demonstrating the importance of
capturing network changes over a sufficiently long time window.

5.3. Runtime analysis

Computational complexity of training machine learning models con-
siders two core aspects: time complexity and space complexity. Time
complexity relates to the time it takes to train a model and how this
is affected by problem size, whereas space refers to how much space a
model uses (memory footprint).

As time complexity is a potential consideration in our work, we
report the runtimes for the dynamic models in Tables 8 and 9. The
runtimes for the GNN-RNN models and GNN-RNN-ATT models are pre-
sented in separate tables as those models’ architectures differ from each
other. The hyperparameters and resources used for the computations
can be found in Appendix C. Note, to allow for easier comparison, the
runtimes in each table are also normalized with respect to the lowest
number in that table.

From the tables, we can see that training a model on a single layer
network derived from the lending company takes longer than training
a model on a single layer network created based on geographical
area. This is not unexpected as the former network contains a higher
number of connections between the nodes compared to the latter. GAT-
LSTM and GAT-LSTM-ATT have the highest training runtimes among
the GNN-RNN and GNN-RNN-ATT models, respectively, whereas GCN-
GRU and GCN-GRU-ATT have the lowest runtimes. GNN-RNN-ATT
models normally have higher runtimes compared to the GNN-RNN
models, owing to the complexity added to those models by the attention
mechanism. It is worth noting that the runtime for the XGB model is
only 151 s, highlighting the greater complexity of our proposed models
compared to traditional non-network classifiers.

5.4. Interpretability of the architecture

Having established that the best results can be obtained by applying
the GAT-LSTM-ATT model to the double layer network, in this section,
we employ the Shapley approach (Lundberg & Lee, 2017) to better
understand this model. Using this method, we can establish each node
feature’s relative importance and quantify its contribution to the model
output. Fig. 7(a) displays the relative importance of node features for
the best performing proposed model, i.e., GAT-LSTM-ATT, and the best
performing baseline model, i.e., XGB. Fig. 7(b) displays an information-
dense summary of how the node features for the best performing
proposed model impact its output.

As seen in Fig. 7(a), the presence of overdue payments holds the

most significant relative importance compared to other features, for
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Table 8
Runtime for training the GNN-RNN models (seconds).

Model Single layer: Area Single layer: Company Double layer: Area-company

Topological Temporal Non-normalized Normalized Non-normalized Normalized Non-normalized Normalized

GCN LSTM 1690 1.18 7090 4.93 8397 5.84
GRU 1437 1.00 6109 4.25 7221 5.03

GAT LSTM 2571 1.79 10,148 7.06 12,171 8.47
GRU 2081 1.45 8390 5.84 10,019 6.97
Table 9
Runtime for training the GNN-RNN-ATT models (seconds).

Model Single layer: Area Single layer: Company Double layer: Area-company

Topological Temporal Non-normalized Normalized Non-normalized Normalized Non-normalized Normalized

GCN LSTM 1700 1.16 7104 4.86 8481 5.80
GRU 1463 1.00 6190 4.23 7225 4.94

GAT LSTM 2597 1.78 10,151 6.94 12,120 8.28
GRU 2114 1.44 8413 5.75 10,054 6.87
Fig. 7. Summary of node feature importance.
both GAT-LSTM-ATT and XGB. Overdue payments are a strong indi-
cator of a borrower’s financial health; similarly, while timely payments
generally suggest good financial management, payment arrears can
signal financial distress. The FICO credit score has the second highest
relative contribution among the features. This is intuitive as this fea-
ture summarizes a lot of information about the payment history and
financial behaviour of the borrower. For both models, the number of
borrowers ranks as the third most crucial feature. For the GAT-LSTM-
ATT model, the number of remaining months holds the fourth position
in terms of importance, whereas for the XGB model, the debt to income
ratio claims the fourth spot. Notably, the disparity in the significance
attributed to features by the two models is more pronounced for the
top two features.

Fig. 7(b) shows that payment arrears are highly indicative of default
risk. It can also be viewed that borrowers with high credit scores are
less likely to default, according to the model, while borrowers with low
credit scores are more prone to be classified as defaulters. High values
of the number of borrowers are associated with lower default risk,
while low values are associated with higher default risk. Higher (lower)
number of remaining months is linked with higher (lower) default risk.

Fig. 8 displays the dependency plots of the four most important
features. Note, the feature values are scaled to be between 0 and 1 using
min–max scaling. Fig. 8(a) illustrates that borrowers who consistently
meet their payment deadlines tend to have high credit scores and
are less prone to default. On the other hand, those who experience
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delays in making payments are more commonly associated with the
cohort of defaulters. Fig. 8(b) demonstrates that the credit score, by
and large, has a linear impact, with higher scores signalling lower risk
of default. Lower values of credit score are much more informative
than the higher values. Additionally, the model reveals some intriguing
interaction effects. The relative impact of credit score on the default
risk is more pronounced in the case of borrowers who have a history of
late payments. This indicates that while a low credit score is generally a
good indicator of high default risk, its predictive influence increases for
those who do not consistently make timely payments. Fig. 8(c) suggests
that cases involving fewer borrowers are more likely to default on
their loans. This might be attributed to various factors, such as limited
financial resources, reduced collective responsibility, or lesser peer
pressure to maintain creditworthiness among a smaller group. Fig. 8(d)
indicates that the number of remaining months displays a nearly linear
trend, with lower numbers pointing to safer cases. This may stem
from the increased uncertainty associated with longer durations (as
opposed to shorter durations which signal an approaching end to the
financial commitment) or from survival bias. Additionally, the figure
points out that this feature’s effect on default risk is more significant for
borrowers with a pattern of delayed payments. We also aim to analyse
the normalized attention scores from the GAT-LSTM-ATT model to
determine the relative importance of each timestamp. Fig. 9 illustrates
how these scores vary over time.

The figure shows that for the first few timestamps, the attention

score is relatively stable and low, remaining close to 0.1. This indicates
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Fig. 8. Dependency plots of the four most important features for GAT-LSTM-ATT. The colour shows the value of the closest feature by correlation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. Variation of the normalized attention scores.

a minimal level of attention or importance being assigned during
these early timestamps. However, as time progresses, particularly after
timestamp 3, there is a noticeable upward trend in the attention score.
This increase becomes more pronounced between timestamps 4 and
6, where the attention score rises sharply, peaking just below 0.6
at timestamp 6. This pattern suggests that as time progresses, the
snapshots grow in importance. The reason for this progressive increase
in attention could be that the most recent information holds greater
value. Additionally, it can be inferred that longer lookback periods are
11 
unlikely to add anything extra, since the bulk of attention is allocated
within a relatively brief period.

6. Conclusions

This study introduced an innovative approach to credit risk assess-
ment through the use of dynamic graph neural networks. We found
that this technique outperforms traditional models commonly applied
in the sector when tested against US mortgage data. By harnessing the
capabilities of both GNN and RNN, our method successfully captures
the evolving connections between individual loans. We engineered this
methodology to exploit the potential of multilayer networks, rather
than the common single layer ones. The findings suggested that mod-
els incorporating double layer networks with a customized attention
mechanism show enhanced predictive capability.

The evaluation of these models was conducted using a dataset from
the mortgage lending domain. In our experiments, we constructed
single and double layer networks using the borrower’s geographical
location and the lending company as the connector variables. Through
rigorous testing of various models, we established that the GAT-LSTM-
ATT model exhibits the best performance among all configurations
of DYMGNN, and other baseline models, both GNN-based and non-
GNN-based. Furthermore, this model is able to capture a richer set of
information, thereby providing more realistic insights into a borrower’s
probability of default.

When comparing training times, it became apparent that models
employing the attention mechanism exhibit greater complexity and
require more extensive training times, yet the runtime remains within
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Fig. B.1. Architecture of the DNN baseline model.
acceptable limits. As in any operational research area, explainability is
important to consider (De Bock et al., 2024). Therefore, we applied the
Shapley approach to decode the model’s inner workings, assessing the
impact of each node feature on the final output. This analysis revealed
the differences in the importance of node features between a baseline
model and our DYMGNN model, with particular focus on the four
most pivotal features. Additionally, we investigated the relative impor-
tance of snapshots at different timestamps by analysing the attention
scores associated with each. The results confirmed that the most recent
snapshots play a crucial role in influencing the model’s output.

Future research could explore wider networks by incorporating
additional layers to map more complex inter-individual connections.
The method could also be extended by further considering distance
information and assigning different weights to the network edges based
on geographical proximity between the centroids of neighbouring zip
code areas. It might also be beneficial to vary the number of snapshots
by adjusting the window length for generating dynamic networks. The
exploration of other GNNs and RNNs not considered in this study
presents another promising direction. Moreover, gaining a deeper un-
derstanding of how different network connections influence default risk
could offer valuable insights into credit risk modelling.
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Appendix A. Statistics of the node features
12 
Table A.1
Descriptive statistics of the non-binary node features. For each loan’s behavioural
features (‘current_upb’, ‘mths_remng’, and ‘current_int_rt’), the maximum values over
all monthly snapshots are considered.

Feature Mean Std. Dev. Min. Max.

fico 752.76 44.75 565 832
mi_pct 2.40 7.40 0 35
cnt_units 1.02 0.17 1 4
dti 33.61 11.15 1 65
ltv 69.30 16.07 7 97
cnt_borr 1.50 0.50 1 2
current_upb 173,036.60 97,258.30 13,829.33 716,617.50
mths_remng 304.58 65.55 73 574
current_int_rt 4.88 0.45 3.25 7.25

Table A.2
Frequency of the binary node features. For each loan, the maximum value of ‘if_delq_sts’
over all monthly snapshots is considered.

Feature 0s 1s

if_fthb 128,131 20,389
if_prim_res 12,790 135,730
if_corr 89,602 58,918
if_sf 42,195 106,325
if_purc 95,380 53,140
if_sc 147,130 1390
if_delq_sts 118,184 30,336
default 141,094 7426

Table C.1
Hyperparameters for model training.

Hyperparameter Value

Epochs 200
Early stop 50
Learning rate 0.001
Optimizer Adam

Table A.1 presents the detailed statistics of the non-binary node
features, while Table A.2 shows the frequency of zeros and ones for
the binary node features.

Appendix B. Architecture of the DNN baseline model

Fig. B.1 provides an overview of the architecture of the DNN base-
line model.

Appendix C. Hyperparameters for model training and computa-
tion resources

Table C.1 presents the hyperparameters for model training, while
Table C.2 shows the computation resources employed in the process.

https://www.computeontario.ca/
https://www.calculquebec.ca/
https://alliancecan.ca/en
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Table C.2
Computation resources.

Resource Specification

Processor AMD Milan 7413 @ 2.65 GHz 128M cache L3
CPU cores per task 2
GPU NVidia A100
Memory per GPU 40 GB
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