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CONTROLLING A SYSTEM USING AN ARTIFICIAL NEURAL NETWORK
AND ARTIFICIAL NEURAL NETWORK TRAINING

FIELD OF THE INVENTION

The present invention relates to controlling a system using an artificial

neural network and a training method for such an artificial neural network.

BACKGROUND

Control systems are used for many varied purposes. Examples include
controlling unwanted noise and/or vibration in engineering systems or in public
and private spaces. Passive control solutions are capable of effectively
eliminating high frequency components of noise and vibration but are typically
large or heavy, possibly exceeding the design constraints of a given application.
Active control solutions, by contrast, are capable of good control at low
frequencies, and are typically lightweight and small in size. Historically,
feedforward active noise and vibration control systems have been implemented
using linear control filters and linear plant models, commonly using the well-

known FxXLMS algorithm.

Figure 1 is a schematic diagram of a typical known linear feedforward
control system 100. The system includes a controller 102 that receives input
comprising a system reference signal x[n] and generates an output u[n] in the
form of a control signal, e.g. u[n] = h[n] = x[n]. h[n] and x[n] which are convolved
to produce the (scalar) control signal u[n] at time/sample n represent the Finite
Impulse Response (FIR) control filter and tapped delay line of the reference signal
x[n], respectively. The control signal is typically computed to cancel out the effect
of a disturbance in the primary path 104 of the system by producing a control

action based on a measurement of the disturbance.

The control signal u[n] is received by a plant model 106 that is configured

to simulate the system and generate the expected output that the real system
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would output in response to a given input. The plant model outputs a plant signal
y[n] based on the inputted control signal, e.g. y[n] = g * u[n]. The plant model
output y[n] is linearly summed with the disturbance signal d[n] by a summing
component 110 to generate an error signal e[n]. In general the aim is for the plant
model output y[n] to match the disturbance signal d[n] so that the system error

is minimised in order to reduce noise/vibration in the system, for example.

If the plant is assumed to be Linear Time Invariant (LTI) then it can be well
modelled by Finite Impulse Response (FIR) g. For a linear (e.g. FIR) controller, it
is possible to ‘switch’ the controller and plant model, allowing for the FXLMS
algorithm. However, nonlinearities present in either the plant or primary path of
the control system can have a significant impact on control performance. If the
plant is nonlinear then a nonlinear plant model is required. Further, if the primary

path is nonlinear then a nonlinear controller is required.

A further known approach which has been applied to active control over
the past few decades is the use of machine learning. Artificial Neural Networks
(NNs) in particular possess the property of being ‘universal approximators’ and
have been used in the modelling and control of unknown or uncertain nonlinear

systems.

Figure 2 is a schematic diagram of a known feedforward control system
200 that uses NNs. The system comprises a first NN 202 that has been trained
to function as a controller that outputs control signals. The first NN will have been
trained using a dataset comprising system input signals and error signals
generated in response to those inputs signals. Similarly to the case of the linear
controller of Figure 1, the first NN 202 receives as input a tapped delay line of
x[n] and outputs a control signal u[n]. A tapped delay line comprising the control
signal u[n] is input into a second NN 206 that has been trained to function as a
system plant model. As in the arrangement of Figure 1, the plant model output

y[n] is linearly summed by a component 210 with the disturbance signal d[n] of
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the primary path 204 in order to generate an error signal e[n]. The error signal is

then used to update the weights and biases of the first NN.

The properties of the input, and therefore the effect of the system
nonlinearity, may change in time and known solutions that use NNs do not
generalize across a range of inputs. Controllers with good performance across a
range of input magnitudes are essential in the control of real systems where the
system input varies. Further, obtaining a tapped delay line between the controller
NN 202 and the plant model NN 204 is problematic in the case of nonlinear inputs,

where the ‘switching’ approach is not acceptable.

SUMMARY

Embodiments of the present invention are intended to address the above

technical problems.

Some embodiments are based on training Multilayer Perceptron (MLP)
NNs for a single-input-single-output (SISO) control system, e.g. an acoustic noise

control system.

According to a first aspect of the present invention there is provided a
computer-implemented method of training an artificial neural network, NN,

useable as a controller for a system, the method comprising:

obtaining input data representing a tapped delay line comprising a plurality

of reference signals of the system;

inputting the plurality of reference signals to a respective plurality of NNs
that output a respective plurality of control signals, the plurality of NNs comprising
a first NN and at least one further NN, wherein weights and biases of the at least
one further NN correspond to weights and biases of a current iteration of the first

NN;

H
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providing data representing a tapped delay line comprising the plurality of
control signals as input to a model configured to simulate the system and to

output a model signal;

generating a system error signal using the model signal, and

training a next iteration of the plurality of NNs using training data

comprising the obtained input data and the system error signal.

A number of the plurality of NNs can correspond to a number of the
plurality of reference signals in the obtained input data (and the length of the

tapped delay line represented by the obtained input data).

The current iteration of the NN may be generated using training data
comprising previously-obtained input data comprising a plurality of reference
signals obtained immediately prior to the obtained input data and corresponding

system error signal generated using the previously-obtained input data.

The method may further comprise storing data representing a trained NN
including the weights and biases of the first NN updated according to the current
iteration of the NN.

The system error signal may be obtained by linearly summing a

disturbance signal of the system and the model signal.

The weights and biases of the NN may be updated by backpropagation of
the error signal. The method may further comprise applying a backpropagation
technique to update the weights and biases of the NN to minimise a cost function

of the error signal.

The model may comprise a further NN that has been trained to function as

a plant model of the system.
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The NN may comprise a Multilayer Perceptron (MLP) with a single hidden

layer.

The outputs of the plurality of NNs may be represented by an equation:
uln—kJ] = Z w;’a® ([Wx[n — K], + bic'h) + b

where all weights and biases are those of the current iteration of the NN

during training.

The input and output of the plurality of NNs may be non-linear. The input
and output of the model may be non-linear. The controller may comprise an active

and/or feedforward controller for the system.

The controller may be configured to control acoustic noise/vibration in the

system.

According to another of the present invention there is provided apparatus
for training an artificial neural network (e.g. a NN useable as a system controller),
the system comprising a processor and memory, the memory comprising
computer executable instructions for performing a method substantially as

described herein.

According to another aspect of the invention there is provided an artificial

neural network trained according to a method substantially as described herein.

According to another aspect of the present invention there is provided a
system controller comprising an artificial neural network trained according to a

method substantially as described herein.

According to another aspect of the invention there is provided a system

including a system controller comprising an artificial neural network trained
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according to a method substantially as described herein. The system may
comprise a model component configured to simulate the system, receive input
from the controller and output a model signal. The system may comprise a
component configured to linearly sum a disturbance signal of the system and the

model signal.

According to a further aspect of the present invention there is provided a
computer readable medium, or circuit, storing a computer program to operate

methods substantially as described herein.

It will be appreciated that features described in relation to one aspect of
the present invention can be incorporated into other aspects of the present
invention. For example, an apparatus of the invention can incorporate any of the
features described in this disclosure with reference to a method, and vice versa.
Moreover, additional embodiments and aspects will be apparent from the
following description, drawings, and claims. As can be appreciated from the
foregoing and following description, each and every feature described herein, and
each and every combination of two or more of such features, and each and every
combination of one or more values defining a range, are included within the
present disclosure provided that the features included in such a combination are
not mutually inconsistent. In addition, any feature or combination of features or
any value(s) defining a range may be specifically excluded from any embodiment

of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention will now be described by way of example

only and with reference to the accompanying drawings:

Figure 1 is a schematic diagram of a control system based on a

conventional linear feedforward design;
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Figure 2 is a schematic diagram of a control system based on a

conventional dual-NN design;

Figure 3 is a schematic diagram of an architecture used to train an NN

according to an example embodiment;

Figure 4 is a flowchart illustrating example steps executed to train the NN

using the architecture of Figure 3;

Figure 5 is a schematic diagram of an arrangement that was used to obtain
experimental results including a controller that can comprise an NN trained

according to an embodiment;

Figure 6 is a graph presenting an example of the control performance of
the trained NN controller of Figure 5 compared to the known FXLMS algorithm in

the frequency domain, and

Figure 7 is a graph presenting the equivalent time domain results.

DETAILED DESCRIPTION

A diagram of an architecture 300 used for training an NN for system
controller according to an example embodiment is shown in Figure 3. The
architecture of a system typically refers to its structure in terms of system
components and their interrelationships. Typically the architecture will be
implemented using one or more processor configured to execute software
modules. The input to the system comprises a tapped delay line that includes a
plurality of reference signals. In practice, the length of the tapped delay line will
be based on various factors including the impulse response, sample rate, etc, of

a particular system.

The example architecture 300 comprises a first NN 302 configured to

output data useable as a control signal based on the input. The example
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architecture also comprises a further NN 306 configured to function as a plant
model that simulates the real system and can generate the expected output that
the real system would output in response to a given input. In terms of architecture,
the plant model NN can be anything that is capable of mapping the tapped delay
line of control signals u[n] to the plant model output y[n]. If the mapping between
u[n] and y[n] is nonlinear then any typical NN architecture (e.g. MLP, RNN,
LSTM etc) can be used to model this mapping. The choice of activation function
will likely affect the maximal performance of a given architecture and its
computational efficiency. The training of the NN model can be achieved via
supervised learning using standard backpropagation methods, and defining a
‘plant modelling error’ which would be the difference between the prediction y[n]
of the plant model given an input u[n], and the true measured output of the

system, y[n].

The controller NN 302 receives as input the tapped delay line of x[n] and
outputs a control signal u[n], which is received by the plant model NN 306. The
plant model NN output y[n] is linearly summed by a summation component 310
with the disturbance signal d[n] of the primary path 304 to generate a system

error signal e[n].

In more detail, given a tapped delay line of length L of the reference signal

x[n], given by

x[n]
x[n] = x[n—1]

x[n —L +1]

the control signal u[n] can be generated by inputting x[n] to the controller
NN 302. In cases where the NN architecture is that of a Multilayer Perceptron

(MLP) with a single hidden layer, then the output of the NN is given by

uln] = Z w[h{ + bo°
;
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where w,*° are the output weights of the NN, b<° is the NN output bias,

and h{ are the NN hidden layer node values, given by

h¢ =o° ([Wx[n]]i + bf’h)

where W is a matrix of weights between the input layer and hidden layer,

[Wx[n]]i is the ith element of the vector Wx[n], ¢¢(+) is the nonlinear activation

function applied to the controller hidden layer, and bf'h is the bias of the i*™" hidden

layer node. In total,
uln] = Z w;’a® ([Wx[n]]i + bf’h) + bee

However, a full tapped delay line u[n] is required to input to the plant model
NN 306 to generate the plant model output y[n] and therefore the error e[n]. It is
therefore necessary to have available previous control signal values ul[n —

1],u[n — 2],...,u[n — I + 1] for a tapped delay line of length I.

A known solution (see Z.-c. Qiu and W.-z. Zhang, “Trajectory planning and
diagonal recurrent neural network vibration control of a flexible manipulator using
structural light sensor,” vol. 132, pp. 563-594) to this problem is to store the
values of the control signal in memory, and simply call upon them when
evaluating the output of the plant model and updating the controller weights and
biases using a backpropagation method. However, this is an unusual task and

standard machine learning libraries are not typically set up to handle it.

To explain how this known memory-based solution would operate in the
dual-NN system controller of Figure 2, the memory would be provided to store
the output of controller NN 202 and make it available as input for the plant model
NN 206 (effectively taking the place of the unit delay component 209 in Figure 2).
Therefore, the output u[n] from the controller NN 202 based on the reference

signal x[n] would be generated based on the current iteration of the controller NN;
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however, the output u[n-1] retrieved from the memory would have been

generated by the previous iteration of the controller NN.

Thus, the result of this known memory-based method is that the error
signal e[n] does not accurately reflect the control performance of the current
iteration of the controller; rather, it is calculated from a combination of the output
u[n] generated by the current iteration of the controller NN and the outputs u[n-k]
of the previous L — 1 iterations of the controller NN. This may lead to stability and
performance issues in the training of the controller NN. An iteration can comprise
the number of batches of training data that is needed to complete one training

epoch/learning cycle.

As shown in Figure 3, embodiments overcome this problem by generating
the previous controller outputs u[n — K] as if the current iteration of the controller
NN 302 has always been in place. Embodiments achieve this using one or more
copies 302A of the first controller NN 302 so that the total number of controller
NNs corresponds to the number of reference signals input/the length of the
tapped delay line input. Typically, at least one processor will execute the copies
of the NNs.

As shown in Figure 3, the output of the first controller NN 302, for example,
is u[n], is the first input to the plant model NN 306. Unit delays (z~!) indicate the
tapped delay line used. This is a vector u[n] as defined above. The tapped delay
line is used (as opposed to, for example, the current value of the reference x[n])
because the past inputs to the system continue to affect its output in the present

and so this information is needed to model the current output of the system.

In the example of Figure 3, the length of the tapped delay line is 2 (i.e. it
comprises 2 reference signals) and so there is one additional controller NN 302A,
resulting in a total number of 2 controller NNs in the architecture. This is purely
illustrative and the skilled person will understand that the numbers can vary. For

example, if the tapped delay line included 1000 reference signals then there
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would be a corresponding total of 1000 controller NNs (one “original” controller
NN 302 and 999 “copied’ controller NNs 302A). The weights and biases of
the/each ‘copied NN 302A are exactly the same as those of the first controller NN
302. All the controller NNs 302, 302A are also updated/trained in the same way
simultaneously using the same training data comprising the input data x[n] and

the corresponding error e[n] that is generated using it.

Using the same notation as above, in general,
uln—kJ] = Z w;’a® ([Wx[n — K], + bic'h) + b

where all the weights and biases in the above equation are those of the
current iteration of the controller during training. The values of u[n — k] are
generated from the current iteration of the controller and standard
backpropagation techniques can then be used to update the weights and biases

of the controller to minimise a given cost function of e[n].

In specific embodiments a Rectified Linear Unit (ReLU) activation is used
for the controller NNs 302, 302A. In general, any activation function can be used,
although there are likely to be significant differences in performance for a given
size of network. The adjustment of the weights and biases of the networks can
be achieved via backpropagation of the error through the network. In specific
embodiments this is achieved using the ADAM optimizer. Backpropagation
techniques are generally fundamentally gradient descent algorithms to minimize
the cost function. In general, the cost function will be determined by the
application/system. For example, when aiming to achieve broadband attenuation
of the acoustic disturbance at the error sensor the cost function is the mean
square value of the error. As this example is an acoustics application, and
humans essentially perceive sound intensity (rather than the true pressure of a
sound), this is an appropriate cost function. In general, the cost function can be

any function of e[n] which can be evaluated and minimized.
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Figure 4 is a flowchart illustrating steps performed by an example method
of training a NN that will be useable as a system controller using the training
architecture shown in Figure 3. The steps can be performed by software
instructions being executed on one or more processor. It will be appreciated that
at least one of the steps may be re-ordered or omitted. One or more additional
steps may be performed in some cases. Further, although the steps are shown
as being performed in sequence in the Figure, in alternative embodiments some
of them may be performed concurrently, possibly on different processors or
cores. It will also be understood that embodiments can be implemented using any
suitable software application, programming language, data editors, etc, and may

be represented/stored/processed using any suitable data structures and formats.

Specific embodiments can use the Tensorflow and Keras libraries for
Python™ for the training of the networks, as well as generating their outputs for
a given input. In practice, the structure of these NNs comprises a series of nested
operations of matrix multiplication, nonlinear activation functions and addition.
Similarly, the training algorithms use nested functions to calculate the gradient of
the cost function with respect to a given weight or bias of the network. As such,

any suitable software can be used for these tasks.

At step 402, input data representing a tapped delay line comprising a
plurality of reference signals x[n] of the system to be controlled is obtained. The
data may be obtained from storage. Alternatively, the data may be obtained
(possibly in real-time) during actual use or simulation of the system. In some
cases the data may be obtained from a remote device, such as a sensor

connected to the system.

At step 404, the plurality of reference signals x[n] are input to a respective
plurality of NNs 302, 302A. As discussed above, the plurality of NNs comprise a
first NN 302 and one or more copies 302A of the first NN. Each of the copies
302A are configured such that all their weights and biases are exactly the same
as weights and biases of the current iteration of the first NN 302 during training.
Thus, all the NNs are substantially identical. The plurality of NNs 302, 302A
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output a respective plurality of control signals that can represent a tapped delay

line u[n].

At step 406, the tapped delay line u[n] comprising the plurality of control
signals is received by a model configured to simulate the system. The model can
comprise a further NN 306 trained as a plant model for the system and which

outputs a model signal y[n].

At step 408, a system error signal e[n] is generated using the model signal
y[n]. In embodiments this can be done by linearly summing a disturbance signal

d[n] of the system and the model signal y[n].

At step 410 the next iteration of the plurality of NNs is generated by training
the plurality of NNs using training data comprising the data that was input at step
402 and the error signal generated at step 408. Thus, all the NNs are substantially
identical with the weights and the biases of all the NNs in the plurality of NNs
matching exactly (i.e. the weights and the biases of the next iteration of the at
least one further NN 302A correspond to the weights and the biases of the next
iteration of the first NN 302 as updated).

Control may then return to step 402 to continue the training, or the method
may end when the training is complete, e.g. when no more input data is provided

or in response to user instruction.

Data representing one of the trained NNs 302, 302A, including all its
weights and biases, can be extracted from the full dual-net architecture and
stored or transferred to another device for further use/processing, e.g. by a real-
time system control application. As the generation of the output of the NN
comprises a series of nested operations this can be undertaken on a variety of
different types of processors. It will also be understood that the NN data can be
in any suitable format that is compatible with any software application or

processor that will use it. The NN data can be used to execute the trained NN in



10

15

20

25

30

WO 2024/180310 PCT/GB2024/050150

-14 -

prediction mode so that it functions as a controller for the system (or the same

type of system) from which the training data originated.

The new NN training approach disclosed herein is more computationally
intensive than the known method that simply stores u[n] in memory and retrieves
it. However, the new approach can reduce or eliminate the stability and
performance issues that arise when using the known memory-based approach.
Further, computing u[n] is only required during the training of the controller NN,
as is the availability of the previous control signal values. When the trained
controller NN is used as the actual system controller during operation/prediction
phase it is fixed and so, for the same sized controller, the computational cost to
produce u[n] from x[n] is independent of the training method. It will be
understood that only one controller NN is required in use, and none of the copies
that are utilized during the training phase. For example, a controller NN 302 that
has been trained using the architecture illustrated in Figure 3 can be used in the

place of the controller NN 202 in the control system shown in Figure 2.

It will be understood that embodiments can be designed to train a NN
useable as a controller for any suitable system. Specific applications will be

disclosed below, but it will be understood that these are exemplary only.

In a first example embodiment the system comprises an acoustic noise
control system where a primary loudspeaker generates a disturbance and a
secondary loudspeaker creates a cancelling signal. In this embodiment the input
reference signal x[n] comprises the frequency of the signal input to the primary
speaker and the disturbance d[n] comprises the frequency of the signal output by
the primary speaker. The control signal u[n] output by the controller NNs
represents a frequency of a signal that would be input to the secondary
loudspeaker to generate the cancelling signal. The plant model NN outputs a
signal y[n] that simulates the disturbance generated by the primary loudspeaker
based on its input u[n]. The error signal represents the difference between the
disturbance d[n] and the signal y[n] output by the plant model NN. The training

data for the plant model NN can typically be generated by inputting a random
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control signal u[n] to the control actuator/loudspeaker. The resultant signal y[n]
at the error microphone/accelerometer is also measured and recorded. The plant
model NN can then be trained to map a tapped delay line u[n] of the random
control signal to the signal y[n] measured at the error microphone. A limitation of
this specific acoustic implementation is the assumption that the primary path and

the plant are not coupled.

Another acoustic/vibroacoustic embodiment comprises control of road
noise in a vehicle cabin. It is well known that the vibroacoustic pathway from the
interaction of vehicle tyres with the ground to the acoustic noise in vehicle cabins
can be strongly nonlinear as a result of the nonlinear behaviours of modern
suspension systems. Embodiments can therefore be applied to improve acoustic
control in a cabin for cancelling tyre noise. The controller input can comprise an
accelerometer close to the wheel. The primary path is the vibroacoustic pathway
from the accelerometer to the (likely approximate) location of the passenger ears.
The disturbance is the noise caused at the passenger ears caused by the
interaction between the wheel(s) and ground surface. The control signal
comprises a voltage applied to a loudspeaker within the vehicle cabin aiming to
produce acoustic cancellation at the passenger ears. The plant model models the
mapping between the voltage applied to the loudspeaker and the pressure

measured at (or close to) the passenger ear(s).

Another acoustic/vibroacoustic embodiment comprises control of vibration
in a large structure, such as a cargo ship. Large engines can cause strong
vibrations that propagate throughout the structure, causing unwanted vibration
(perhaps at the location of some delicate cargo). Due to the large amplitude of
the structural displacement caused by the engine(s), the structure exhibits
nonlinear behaviour local to the engines. As a result of structural damping, the
structure behaves approximately linearly further from the engines. In this case,
control actuators further from the engines will potentially be decoupled from the
nonlinear behaviour of the structure local to the engines, and so embodiments
can be used to control the vibration. In this case, the input comprises an

accelerometer measurement on an engine. The primary path is the vibration
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pathway(s) from the engine to the location where vibration control is desired. The
disturbance is the vibration (displacement of the structure) that is to be controlled
at the control location. The control signal can comprise a voltage applied to the
control actuator. The plant model models the mapping from the voltage signal
applied to the control actuator and the resultant displacement of the structure at

the control location.

In embodiments the fixed NN controllers have been found to have the
ability to generalise well across a range of magnitudes of inputs to the nonlinear
system. Relative to the performance of the FxLMS algorithm, the control
performance of the NN controllers is generally best close to the upper limit of the
range of magnitudes of inputs over which the controllers are trained. This may be
a result of the chosen cost function during the training of the NNs. Increasing the
training range generally improves performance at higher input magnitudes, but
may compromise performance at lower input magnitudes. Increasing the number
of hidden nodes in the NN controllers can improve performance within the trained
range and generalised performance can be improved above the trained range.
The residual error of a NN controller under sudden changes to the system input

indicates that the controller shows robust behaviour over this transition.

To demonstrate the advantages that can be offered by embodiments,
experimental results for an arrangement where a controller was used in
combination with a pair of simulated loudspeakers will be discussed. Figure 5 is
a schematic diagram of the arrangement. A primary loudspeaker 503, which
generates acoustic disturbance, was modelled as a damped Duffing oscillator. A
secondary loudspeaker 505, which generates the cancelling acoustic signal, was
modelled as a simple harmonic oscillator. Both sources are assumed to behave
as monopoles. The displacement of the Duffing oscillator, ya(t), was caused by
the motion of the floor to which it is attached. The displacement x(t) of this floor
is also taken to be the reference signal passed to the feedforward controller. The
displacement yn(t) of the mass mb was caused by the control force F(t) produced

by the controller 502.
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Figure 6 is a graph presenting an example of the control performance of
the controller 502 in the frequency domain when it was implemented using a
controller NN trained according to an embodiment (e.g. the first NN 302) and
compared to a conventional controller using the FXLMS algorithm. The equivalent

time domain results are presented in Figure 7.

In the experiment the NN controller had 30 hidden layer nodes and was
trained over the range [0, 6 x 107®] m. The controllers were tested at an input
magnitude of 5 x 107®m. The linear FXLMS controller achieved a total attenuation
of 16.4 dB, whereas the NN controller achieved a total attenuation of 28.0 dB.
Both controllers achieve broadband control up to 200 Hz with similar shaped error
spectra, with the NN controller achieving 10-15 dB greater performance across
this entire range. The frequency content present in the disturbance above 200 Hz
was a result of the nonlinearity of the system and remained uncontrolled by either

implementation of the controller due its low level.

In alternative embodiments reconsidering the form of the cost function
used to train the NN controllers can help to improve performance at lower input
magnitudes. This may also be achieved by including fixed, pretrained linear
elements within the NN during training to provide some degree of ’transfer
learning’ from the linear case. Alternative embodiments may also be based on
other NN architectures, which may provide relative benefits for the control of
different types of nonlinearities. MLPs are capable of nonlinear mappings, and
therefore are an appropriate architecture to model and control nonlinear systems.
However, MLPs may not be able to fully capture the dynamics of systems which
include hysteretic or other time-dependent nonlinearities. Networks which
incorporate recurrence (e.g. RNNs, LSTMs, etc) may offer advantages for these.
An analogy can be drawn between FIR and IIR filters, and MLPs and RNNs. IIR
filters are known to offer, in some cases, increased computational efficiency over
FIR filters due to their internal feedback. A similar advantage may arise for
recurrent networks over MLPs for nonlinear modelling and control. Convolutional

networks have also shown good performance, which may be a result of their
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inherently efficient architecture when applied to image and signal processing.

Thus, such NNs can also be suitable for alternative embodiments.

Embodiments can provide advantages including being relatively easy to
set up in standard Machine Learning libraries, and the tapped delay line for the
plant model is always generated from the most ‘up to date’ version/iteration of the

controller NN and so can improve training stability and performance.

Terms such as ‘component’, ‘module’, ‘processor’ or ‘unit’ used herein may
include, but are not limited to, a hardware device, such as circuitry in the form of
discrete or integrated components, general processing units (GPUs), a Field
Programmable Gate Array (FPGA) or Application Specific Integrated Circuit
(ASIC), which performs certain tasks or provides the associated functionality. In
some embodiments, the described elements may be configured to reside on a
tangible, persistent, addressable storage medium and may be configured to
execute on one or more processors. These functional elements may in some
embodiments include, by way of example, components, such as software
components, object-oriented software components, class components and task
components, processes, functions, attributes, procedures, subroutines,
segments of program code, drivers, firmware, microcode, circuitry, data,
databases, data structures, tables, arrays, and variables. Although the example
embodiments have been described with reference to the components, modules
and units discussed herein, such functional elements may be combined into fewer

elements or separated into additional elements.

Where, in the foregoing description, integers or elements are mentioned
that have known, obvious, or foreseeable equivalents, then such equivalents are
herein incorporated as if individually set forth. Reference should be made to the
claims for determining the true scope of the present disclosure, which should be
construed so as to encompass any such equivalents. It will also be appreciated
by the reader that integers or features of the disclosure that are described as

optional do not limit the scope of the independent claims. Moreover, it is to be
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understood that such optional integers or features, while of possible benefit in
some embodiments of the disclosure, may not be desirable, and can therefore be

absent, in other embodiments.
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CLAIMS

1. A computer-implemented method of training an artificial neural network,

NN, useable as a controller for a system, the method comprising:

obtaining (402) input data representing a tapped delay line comprising a

plurality of reference signals of the system;

inputting (404) the plurality of reference signals to a respective plurality of
NNs that output a respective plurality of control signals, the plurality of NNs
comprising a first NN and at least one further NN, wherein weights and biases of
the at least one further NN correspond to weights and biases of a current iteration
of the first NN;

providing (406) data representing a tapped delay line comprising the
plurality of control signals as input to a model configured to simulate the system

and to output a model signal;

generating (408) a system error signal using the model signal, and

training (410) a next iteration of the plurality of NNs using training data

comprising the obtained input data and the system error signal.

2. A method according to claim 1, wherein a number of the plurality of NNs
corresponds to a number of the plurality of reference signals in the obtained input

data.

3. A method according to claim 1 or 2, wherein the current iteration of the NN
was generated using training data comprising previously-obtained input data
comprising a plurality of reference signals obtained immediately prior to the
obtained input data, and corresponding system error signal generated using the

previously-obtained input data.
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4. A method according to any preceding claim, further comprising storing

data representing a trained NN including the weights and biases of the first NN.

. A method according to any preceding claim, wherein the system error
signal is generated (408) by linearly summing a disturbance signal of the system

and the model signal.

6. A method according to any preceding claim, wherein the training (410)
comprises applying a backpropagation technique to update the weights and

biases of the plurality of NNs to minimise a cost function of the error signal.

7. A method according to any preceding claim, wherein the model comprises

a further NN trained to function as a plant model of the system.

8. A method according to any preceding claim, wherein each of the plurality

of NNs comprises a Multilayer Perceptron, MLP, with a single hidden layer.

9. A method according to any preceding claim, wherein inputs and outputs of
the plurality of NNs are non-linear and/or inputs and outputs of the model are

non-linear.

10. A computer readable medium, or circuit, storing a computer program to

operate a method according to any preceding claim.

11.  Apparatus (300) for training an artificial neural network useable as a
system controller, the system comprising a processor and memory, the memory
comprising computer executable instructions for performing a method according

to any of claims 1 to 9.

12. A system controller (202) comprising an artificial neural network (302)

trained using a method according to any of claims 1 to 9.
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13. A system controller according to claim 12, wherein the system controller

(202) comprises a feedforward system controller.

14. A system controller according to claim 12 or 13, wherein the system

controller (202) is configured to control acoustic noise/vibration in the system.

15. A system including a controller (202) according to any of claims 12 to 14.
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